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Abstract

With the increasing availability of networked devices such as the In-
ternet of Things, services and applications increasingly collect large
amounts of sensitive time-series data. Often this data is offloaded to
a third-party storage for availability and analytics. While outsourcing
data storage is convenient, this raises concerns about privacy and secu-
rity for example, if data breaches occur. Previous systems such as Time-
Crypt [7] and Zeph [8] aim to resolve this issue by encrypting records
end-to-end. However, an adversary is still able to observe access pat-
terns which can be detrimental in certain applications. For example,
a malicious database provider, who observes the access patterns of a
doctor retrieving encrypted heart rate measurements of a patient can
deduce with high probability which time-windows contain irregular
heart rates since a doctor tends to be interested in outlying data points.
In this thesis, we present a time-series data storage system that hides a
client’s query access patterns from the database provider. Our system
hides the accessed time window and stream from the server as long as
two semi-honest storage providers do not collude. To achieve this, we
employ a recently developed cryptographic tool called Function Secret
Sharing (FSS), which allows splitting a query into compact shares to
send to replicated servers without revealing the original query. With
our implementation running on a 4-core system, we can support small-
to medium-sized databases with acceptable latency requirements, such
as querying a database with 1M records in under 1.5s.
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Chapter 1

Introduction

Recent years have seen unprecedented growth in networked devices and ser-
vices that continuously collect increasingly detailed time-series data about
individuals. The collection of time-series data is increasingly prevalent
across a wide range of systems and applications. The growth of time-series
data is primarily attributed to the rising demand for instrumentation. In-
dividuals and organizations are continuously logging various metrics that
report systems’ state for better diagnoses, forecasting, decision making, and
resource allocation. However, with this trend comes the problem of ensuring
the privacy of user data. Users today typically entrust their data to a third-
party storage or application provider. However, there is growing concern
that this model leaves users vulnerable to privacy violations due to misuse
of their data - whether deliberate or inadvertent - by third-party providers.
These concerns appear to be amply justified, given the numerous reports of
recent data breaches and misuse.

A potential solution to this problem is to encrypt data end-to-end but en-
able the server to execute queries over encrypted data. Existing encrypted
storages tailored for time-series data such as TimeCrypt [7] and Zeph [8]
provide such efficient solutions to execute queries on encrypted time-series
data. However, these systems have a serious limitation. Although, they
protect the confidentiality of the queried data, they do not prevent the
server from learning which parts of the data the client queries. In par-
ticular, they reveal the queried time interval to the server, which can be
problematic in certain applications. For example, a patient stores their
encrypted heart rate measurements on a server and gives their doctor ac-
cess to them. A malicious database server can observe the specific time
range the doctor queries and can conclude with a high probability, that
the patient in question had some form of irregular heart rate at that spe-
cific time since a doctor tends to be interested in outlying data points.
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1. Introduction

In this thesis, we investigate how to eliminate this query leakage for time-
series data stores. Potential general-purpose tools that could be used to
eliminate query pattern leakage are oblivious RAM (ORAM) [10, 23] for
encrypted data and Private Information Retrieval [9, 13] for public data.
Though, applying these general-purpose tools directly to time-series work-
loads would incur high overheads that would render such systems imprac-
tical.

A recent cryptographic tool that can be used to hide query patterns with
more efficiency is Function Secret Sharing (FSS) [4, 5]. In essence, FSS allows
a client to generate compact shares of a function that the servers can use
to evaluate the function (e.g., range predicate) without learning what the
function is. For this hiding property, FSS assumes non-colluding servers
that do not have to communicate with each other. Prior work explored how
to use FSS to hide query patterns in different settings on encrypted and non-
encrypted data [11, 27]. However, these techniques do not directly translate
to the time-series setting. The goal of this thesis is to fill this gap and explore
how FSS can be employed to hide query patterns in time-series workloads
and evaluate its feasibility.

1.1 Contributions

In this thesis, we present a design and implementation of a time-series data
store system, which employs FSS to hide query patterns from time-series
storage providers. To hide query patterns with FSS, our system assumes
that at least two non-colluding semi-honest storage providers from different
trust domains exist. In the default setting, our system operates on plaintext
data, but the design is compatible with TimeCrypt [7] to work on encrypted
data.

We make the following contributions in our thesis:

• Design of Access Pattern Hiding Time-Series Data Store: We design
an efficient time-series data storage system that hides the time win-
dow as well as the stream a client queries from the replicated storage
providers. We propose two optimizations to improve the efficiency of
the baseline design.

• C++ Implementation: We provide an efficient implementation of our
system in C++. The implementation consists of a client and a server
library, compatible to run in cloud scale infrastructure.

• Evaluation: We provide a thorough evaluation of our system in a re-
alistic cloud deployment. We provide insights on the feasibility and
scalability of individual components and the end-to-end system. Our
evaluation shows that our system can execute realistic queries on 1M
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1.2. Outline

records in under 1.5s, allowing us to handle small- to medium-sized
databases within reasonable time bounds.

1.2 Outline

In this thesis, we first discuss background information relevant to the details
of our system’s design. In Chapter 3 we review relevant work for privacy-
preserving data processing of time-series data. We proceed by discussing
the core objectives of our system. We then outline the design in Chapter 5.
We continue with the implementation and end with the evaluation of our
system, running a variety of benchmarks to assess its feasibility and scala-
bility.
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Chapter 2

Background

In this section, we discuss the relevant background for this thesis. First,
we provide an overview of time-series data and then present the concept of
Function Secret Sharing.

2.1 Time-Series data

Time-series data is a sequence of data points indexed by time. For example,
most sensors produce time-series data streams by collecting measurements,
or in cluster monitoring where time-series logs are used to ensure availabil-
ity.

Compared to other types of data, time-series workloads have unique char-
acteristics that allow for efficient storage and processing designs:

• Append-only: Data is almost exclusively append-only. For example, a
sensor always appends the latest measurement to its data stream [24].

• Immutability: Time-series data mostly consists of machine-generated
observations that do not change and thus once a record has been writ-
ten its value is rarely modified at a later point in time [7, 24].

• High-volume: Data is written at an extremely high rate and must sup-
port millions of writes per day. For example, a satellite continuously
collecting and streaming telemetry produces several hundred million
records a day [14].

• Aggregation queries: Most applications, require analysis aggregated
along the time dimension as, for example, a metrics dashboard of a
website showing the number of daily requests throughout a year [15].

• Data decay: Recent data is most valuable. This is the case when query-
ing aggregated data as mentioned above where recently appended
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2. Background

data is more often queried than older ones. This can be seen for ex-
ample in a stock market, where minute-granularity of a past day is
preferred over the same granularity in a day a week prior [24].

These characteristics can be taken advantage of to build database manage-
ment systems (DBMS) tailored to time-series data. For example, as data
gets older one can replace specific entries with aggregations, decreasing the
resolution of queries and thus keeping the storage footprint low [7, 18].

Many modern DBMS have been designed which add additional features to
improve performance on time-series workloads, such as TimescaleDB [25]
and InfluxDB [16]. These DBMSs add specialized indexes over their own
data structures, chunks and shards respectively, to further increase the effi-
ciency of statistical queries.

2.2 Function Secret Sharing

In this section, we describe the concept of Function Secret Sharing [4, 5],
which is a core building block of our design.

In essence, Function Secret Sharing (FSS) provides a way for a client to split
a function into function shares such that no strict subset reveals any infor-
mation about the original function. The client can, however, combine the
evaluation of these individual shares on a specific input to reconstruct the
evaluation of the actual function on the same input.

More specifically, FSS provides a way to split a function f from a function
class F into m succinct function shares f1, . . . , fm such that Âm

i=1 fi = f holds
and where any strict subset of the function shares computationally hides f .

An m-party FSS scheme is a pair of algorithms (Gen, Eval) which, for a
function class F , are defined in the following way:

• Gen(1l, f ) ! (k1, . . . , km). Given a security parameter 1l and a func-
tion description f 2 F , returns m keys.

• Eval(i, ki, x) ! yi. Given a party index i, key ki and string x, returns
the party’s share yi of f (x).

Thus, any FSS scheme can be divided into a key generation and evalua-
tion function. Both algorithms should be computationally efficient and have
succinct key sizes. Furthermore, the generated shares should not reveal
anything about the underlying function f but when all shares fi(x) are ad-
ditively recombined f (x) is revealed. The computational complexity and the
key size of the scheme depend on the function class F and their construc-
tion, of which we discuss relevant ones in the following section.

If an FSS scheme is correct then Gen(1l, f ) is guaranteed to generate m

keys k1, k2, . . . , km, which when evaluated with Eval(i, ki, x) and their results

6



2.2. Function Secret Sharing

aggregated, return the same result as the original function. If an FSS scheme
is secure then an adversary given a function description f and a strict subset
p of the m keys generated by Gen(1l, fa) can distinguish with negligible
probability if f = fa.

2.2.1 E�cient Constructions of FSS Schemes

We now discuss two FSS constructions relevant to our design: distributed
point functions and distributed comparison functions. Both in the 2-party
setting, which we make extensive use of in our design.

Distributed Point Function

Point functions are a family of functions where all but one input evaluate
to zero. More precisely, F is the family of point functions fa,c where the
following holds:

fa,c(x) =

(
c if x = a

0 otherwise.

A distributed point function (DPF) scheme (Gen•, Eval•) is a way to secret
share a vector of 2n elements in which only one element at index a is c. Here,
the vector represents the function table of fa,c where the vector indexes are
the possible function inputs and the vector values are the respective function
outputs. However, simply secret sharing the whole function table is highly
inefficient. Boyle et al. [4] provide an efficient construction of a 2-party DPF,
where they reduce the size of the secret share to O(ln), where l is the
security parameter.

In essence, the Gen• algorithm returns two keys k1, k2 that define two bi-
nary trees of depth n with a pseudo-random string at each node, where n

represents the size of the input in bits. The two binary trees are identical ex-
cept for the path from the root to the selected point a, where the strings are
chosen pseudo-randomly and independently from each other. Eval•(i, ki, x)
traverses these binary trees from the root to x = x1, . . . , xn computing the
share’s evaluation along the path, with respect to an Abelian group G. The
shares’ evaluations on inputs not equal to the target a will cancel each other
out when added together with respect to G, resulting in the additive combi-
nation of the shares to equal c only if the input is equal to the target value.

Boyle et al. [5] further improve this scheme by shrinking the key size by a
factor of 4.

Distributed Comparison and Interval Function

A distributed comparison function (DCF) is an FSS construction for a func-
tion that evaluates to a non-zero value if the input is smaller than a selected
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2. Background

value and 0 otherwise. That is, ga,c is the family of comparison functions
where the following holds:

ga,c(x) =

(
c if x < a

0 otherwise.

Boyle et al. [4] provide a construction similar to the one for DPFs, where,
given 2 keys, when evaluating both binary trees and additively combining
the results the target value c is computed when the input value is smaller
than a and 0 otherwise. This construction increases the secret share size to
O(ln + n log |G|).

DCFs can trivially be extended to support the class of distributed interval
functions ha,b,c, which are intuitively defined as follows:

ha,b,c(x) =

(
c if a  x < b

0 otherwise.

The construction is achieved by computing the difference between the two
distributed comparison functions gb,c � ga,c, thus resulting in a factor of 2
overhead.
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Chapter 3

Related Work

In this chapter, we review relevant work for privacy-preserving data pro-
cessing of outsourced time-series data in cloud storages.

We first discuss relevant work that uses advanced encryption techniques to
protect the privacy of time-series data but does not provide query privacy.
In the second part, we discuss systems that employ Function Secret Sharing
as a technique to hide query patterns from a data provider.

3.1 Private Time-Series Data Processing

In the following, we present TimeCrypt [7] and Zeph [8], which are both
systems that provide queries on encrypted time-series data.

3.1.1 TimeCrypt

TimeCrypt [7] is a system that provides scalable and real-time analytics over
large volumes of encrypted time-series data through a careful design of
cryptographic primitives tailored for times series data. This competitive
performance is achieved by the following techniques:

• Different keys for every timestamp: To allow for fine-grained access
control, each segment in the time-series database is encrypted with a
different encryption key.

• Homomorphic Encryption: Through the use of an additively homo-
morphic symmetric encryption scheme, TimeCrypt is able to natively
support aggregation queries. These aggregates are computed by the
server by summing up all ciphertexts in a given time range which a
client can later decipher.

• Key Canceling: To decrypt the aggregated ciphertext, a client would
need to additively combine all keys used in the target range resulting
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3. Related Work

in local computation being linear in the number of aggregated cipher-
texts. Since most time-series queries are over a continuous range in
time, this can be reduced to a constant by choosing individual en-
cryption keys such that the inner keys cancel each other out during
aggregation.

Although the plaintext values are hidden from the server through seman-
tically secure encryption, TimeCrypt is non-oblivious. That is, it does not
hide the access patterns of a client since the server accesses only the time
range requested by the client. For example, if a client queries an aggregate
of a specific month in TimeCrypt, the server does not learn the result of the
query but learns that the client issued an aggregation query for that specific
month.

3.1.2 Zeph

Zeph [8] is a system that enables users to set privacy preferences on how
their data can be shared and processed, which through the use of cryp-
tographically enforced privacy transformations, guarantees that data con-
sumers are not able to access more data than is granted to them. Zeph is
optimized for streaming data, thus a fit for time-series workloads, scaling to
thousands of data sources and allowing support for large-scale low-latency
data stream analytics. This is achieved through the following approaches:

• Decoupling Encryption from Privacy: Zeph decouples the end-to-end
encrypted data stream, in the data plane, from the policy enforcement
logic, in the privacy plane. This separation ensures that a data pro-
ducer can encrypt its data without adhering to a specific privacy pol-
icy.

• Homomorphic Secret Sharing: The decoupling of these two planes
is achieved with the help of additively homomorphic secret sharing
(HSS) [6, 3]. HSS allows computing a function on secret shared mes-
sages by combining the outputs of a separate function applied on the
individual secret shares.

• Transformation Tokens: A privacy plane controller is capable of au-
thorizing a transformation on the encrypted data by computing a so-
called transformation token using HSS. These tokens are computed by
applying the same transformation to the individual encryption keys of
the target values. This computation is performed independently from
the ciphertext transformation. The token can then be used to reveal
the plaintext.

Similarly to TimeCrypt, Zeph is non-oblivious, allowing an adversary to
learn which parts of the data are queried.

10



3.2. Private Queries with Function Secret Sharing

3.2 Private Queries with Function Secret Sharing

We continue with Splinter [27] and Dory [11], which are systems that hide
access patterns with the help of Function Secret Sharing.

3.2.1 Splinter

Splinter is a practical relational database system that hides user query pat-
terns from honest-but-curious database hosts. Splinter supports a subset of
the SQL language on top of public datasets including aggregation function
COUNT, SUM, AVG and more complex queries such as MAX and TOPK, which
returns up to k individual records matching a predicate.

Splinter assumes that the database is replicated among at least two non-
colluding database hosts. To hide the query patterns, Splinter builds on effi-
cient function secret sharing schemes for distributed point and comparison
functions. Queries are compiled into FSS shares that each server executes
on the whole database to select records of interest. Due to its design with
FSS, the system does not hide the type of the query and the column names
that are being filtered and selected.

Splinter achieves practical performance with an improved FSS implementa-
tion that leverages modern AES-NI [19] instructions, achieving more than
2x higher performance than a naı̈ve implementation.

Though, Splinter supports SQL queries on public relational databases, Splin-
ter does not scale to high volumes of time-series data and is not compatible
with encrypted data processing.

3.2.2 Dory

Dory [11] addresses the need for a system with practical server-side keyword
search on encrypted documents that does not leak document access pat-
terns. Dory splits search queries between multiple servers, using a DPF [4],
to protect against an attacker who controls all but one of the servers. Dory
achieves high performance, searching over 1M documents in under 1s. This
is achieved with the following techniques:

• Encrypted Bloom Filter: To support efficient search, a server builds a
table where every row corresponds to a bitmap of words for a docu-
ment and every column represents a different keyword. The storage
footprint of these bitmaps is reduced by using a bloom filter for com-
pression. Furthermore, these bloom filters are encrypted before being
inserted into the table to prevent an attacker from immediately re-
constructing the entire plaintext search index if all servers have been
compromised.

11



3. Related Work

• Distributed Point Function: To search for a keyword within a folder of
documents, a client splits the request into DPF shares and sends them
to separate servers, which then evaluate their share on every column
of the table of encrypted bloom filters, thus hiding the keyword access
patterns. Evaluations are XORed and sent back to the client.

Dory improves the linear scan by only executing its DPF on subfolders. This
is the consequence of the tradeoff in reducing the number of DPF evalua-
tions a server must perform from all documents to a subset only in order
to increase performance. However, this approach only hides access patterns
for keyword searches within a specific subfolder and thus the subfolder ac-
cesses are leaked to the database provider.

12



Chapter 4

Objectives

In this chapter, we discuss the scenario our system fits in and the goals, our
system should achieve. We continue with a description of the threat model
we consider in our scenario.

4.1 Scenario

For our system we consider a standard time-series pipeline scenario, as de-
picted in Fig. 4.1. A time-series pipeline consists of three main actors, data
producers, a database server and data consumers. A data producer is an
entity, usually with limited computational performance and storage space,
such as an industry monitoring sensor or Internet of Things (IoT) device [2],
which continuously generates time-series data. The data producer continu-
ously sends its generated data to the remote database server for storage. The
database server stores time-series streams and appends incoming records

Figure 4.1: Time-series database setting. Devices produce large volumes of data which are sent

to storage servers to later be used by various data consumers.
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4. Objectives

accordingly. A data consumer (e.g. health service) issues statistical aggrega-
tion queries to the database server to extract utility. For example, a health
service issues queries to visualize the time-series stream in a dashboard ap-
plication. These queries often take the following form expressed in SQL:

SELECT agr (*) FROM streams WHERE t1  t < t2
AND stream_id = s

0

where agr denotes a supported statistical aggregate query such as SUM or
AVG, streams the target table of the database, [t1, t2[ the target time range,
stream id the id of individual streams and s

0 the target stream id. A stream
may be used to separate different types of measurements. For example, a
health service may differentiate clients’ heart rates by assigning them differ-
ent stream ids.

Statistical queries are a key necessity in time-series workloads. For example,
a health service storing clients’ heart rates may offer an app that displays a
dashboard of average heart rates over certain periods of time. Queries from
the app to the health service would include many queries for the client’s
average heart rate.

4.2 Goals

We aim to build a system within this scenario with the following properties:

• Hiding Query Access Patterns: The main goal of our system is to hide
query access patterns issued by the data consumers from the database
server. Based on query patterns, storage operators may learn detailed
information about the underlying data even if the data is protected
with encryption or other tools. In time-series workloads query access
patterns reveal which stream and which timestamps of the stream a
particular data consumer queries.

In our system, we aim to hide this information from the storage oper-
ators. Specifically, given the query structure that we consider (see sec-
tion 4.1), we aim to hide the queried time range [t1, t2[ and stream s

0.
The system, however, does not hide all access patterns. The database
server learns what type of statistical query agr a client has executed
as well as a client’s target table streams. For example, a health service
providing a doctor access to a client’s heart rates will neither learn the
specific time range [t1, t2[ queried by the doctor, nor the client id whose
data is being accessed. The server will, however, learn that a query has
been made by the doctor and the type of the statistical query.

• Support for Statistical Queries: Another crucial goal is for our system
to support a broad range of statistical queries, common in time-series

14
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workloads. In particular, we aim to support queries of the following
form:

SELECT agr (*) FROM streams WHERE t1  t < t2
AND stream_id = s

0.

where agr is an aggregation query such as SUM or VAR, streams the
target table of streams in the database, [t1, t2[ the target time range,
stream id the id of individual streams and s

0 the target stream id.

• Practical Scalability: We aim to build a system that scales to practical
database sizes and can handle realistic time-series applications.

• Compatibility with TimeCrypt: Our system does not provide confi-
dentiality, i.e., the server can observe data in the clear. However, we
aim to be compatible with TimeCrypt [7].

4.3 Threat Model

Our system assumes that there are at least two non-colluding servers oper-
ating identical databases. We consider a passive adversary that can statically
corrupt all but one server. The adversary can observe all processes and in-
teractions with the compromised server(s) but does not deviate from the
protocol.

4.4 Access Pattern Leakage

Our system aims to hide access patterns, but each query leaks a confined
amount of information to the adversary. If a client executes a query, the
adversary learns the following:

• A query is being executed: Once a query has been made, the database
servers know that the client is requesting some data from the database.
This could be mitigated by having the client constantly send ‘dummy’
queries (for example generated randomly) at a high rate regardless of
whether they want to retrieve data from the database or not. In this
case, the server would constantly be executing queries, either dummy
or relevant, sent by the client.

• Query Aggregate: We do not hide the type of statistical query the
client performs. For example, if the client requests the sum over a
target interval, the database servers learn that the client is request-
ing the sum of said interval but do not however learn which interval
is targeted. This can be mitigated by querying all statistical digests
(see subsection 5.2.1).

15
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• Number of Digest Elements: We do not hide the number of digest
elements and their type stored in every entry of the database. The
database providers thus know which aggregation type each digest el-
ement corresponds to.

16



Chapter 5

Design

In this chapter, we present our system, which enables private queries on
time-series data by hiding database record access patterns and still achiev-
ing low-latency requirements for small database sizes. We begin with an
overview of the system and continue with an in-depth explanation of each
component.

5.1 Overview

Our system builds on typical time-series database designs [1, 7, 16], which
augment a key-value store with further logic and APIs optimized for time-
series workloads. As illustrated in Fig. 5.1, Our system consists of a three
components. A client, which compiles requests from data consumers to
equivalent FSS shares and sends each of them to a different replicated data-

Figure 5.1: Overview of a data consumer’s query, which is sent to the client component, which

compiles it into query shares that are sent to several replicated servers. Results of the evaluated

shares are sent back to the client component, combined and returned to the data consumer. The

producer component sends the data producers’ generated data to the replicated servers.
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5. Design

base server via the Server API. These server components take the generated
shares, and evaluate them on all database records before sending results
back to the client, which aggregates all share results into a final query result
returned to the data consumer. The producer component sends time-series
data streams generated by data producers to all replicated servers.

Due to the properties of FSS, the system hides the client access patterns to
database records from the database servers as long as one provider is honest
and does not collude with others.

5.1.1 Client, Server and Producer System Components

The client allows a data consumer to execute queries of the following form:

SELECT agr (*) FROM streams WHERE t1  t < t2
AND stream_id = s

0

where agr can be one of five supported query types: COUNT SUM, sum of
squares, AVG (average) and VAR (variance), often used in time-series work-
loads [8, 27]. A data consumer creates queries with a target time range
[t1, t2[, stream id s

0 (discussed in subsection 5.2.2) and a table streams as
parameters and sends them to the system’s client via its API.

Given a query type and parameters, the client generates as many query
shares as there are replicated database servers and sends each to a different
database server via the servers’ API. Each server evaluates its share on all
pairs of stream ids and timestamps in the database and returns its result.
The client then uses modular addition to aggregate the returned results from
the query shares into one final result. If the query is one of the three basic
types (COUNT, SUM, sum of squares) then the result is forwarded to the data
consumer, otherwise, further computation is performed for AVG and VAR

request, before being delivered to the data consumer.

5.2 Stream Abstractions

We continue with a detailed discussion of the techniques used for handling
and storing time-series data as well as components needed to execute a
private query.

5.2.1 Client Data Serialization & Encoding

We introduce a custom serialization and value encoding technique to ad-
dress the scalability challenges of applying FSS to time-series data. Data
producers write to the time-series databases through the producer compo-
nent, which provides an API to the data producers and processes the gen-
erated data stream in predefined time windows before forwarding it to the
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5.2. Stream Abstractions

Figure 5.2: Encoding used to store time-series data, where for each time chunk D = ti+1 � ti

a statistical summary of the count d, sum s and sum of squares ssq of the underlying data is

stored.

database servers [7]. As illustrated in Fig. 5.2, for each time window [ti, ti+1[
of predefined size D = ti+1 � ti, the producer component of our system
aggregates the values within the time window and computes a digest con-
sisting of statistical summaries of the underlying data. This digest enables
us to perform statistical queries efficiently.

Efficient FSS constructions are limited to additive operations (i.e., no multi-
plications) on the server side, and, therefore, limit the queries a system can
support. To overcome this issue, we encode the aggregated data such that
it consists of a vector of three separate statistical summaries: the number of
individual underlying data points d, the sum of data points s and the sum
of squares of the underlying data ssq of a time window [ti, ti+1[.

In combination with client-side computation, we can support a wider range
of aggregate queries. We compute an AVG query by requesting d and s of
a target time range and computing s

d on the client side. Furthermore, we
can support variance queries by requesting all three digest elements and
performing the following computation:

VARt1,t2 =
ssq � 2 · s2

d

d
+

⇣s

d

⌘2
(5.1)

where VARt1,t2 is the underlying data’s variance of the time-window [ti, ti+1[.

5.2.2 Server Storage Layout

We design our system to support multiple streams of time-series data as
is typical in time-series workloads [17, 26]. Streams are used to allow the
system to differentiate measurements taken at the same point in time. This
can be used for example to differentiate heart rate data produced by separate
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5. Design

Figure 5.3: Layout of a database server where each digest vector dij is stored within a row

associated with a timestamp ti and column associated with a stream si.

users over the same time period or different types of measurements taken
by an industry sensor, such as temperature or relative humidity.

As illustrated in Fig. 5.3 we model our databases store of time-series data as
a table where each columns represents a specific stream si containing digests
of different points in time ti. Each entry in the table indexed by (ti, si) stores
a digest value containing statistical summaries over the time range [ti, ti+1[
of stream si.

In our system, we maintain this table in a key-value store. Each digest is
stored with the key consisting of the stream id si appended to the times-
tamp ti, denoted with si||ti, and where all three statistical summaries are
appended to each other to form the key’s value.

5.3 Enabling Private Queries

We now discuss how our system integrates FSS [4] to hide query patterns
from the database operators. FSS is a tool that allows to split a function
f into function shares f1, f2, . . . , fn so that multiple parties can evaluate f

without revealing which function f has been shared (see subsection 2.2.1).
More precisely, an FSS scheme is a pair of algorithms (Gen, Eval), where
given a function description, Gen generates n keys which can each be used
to independently evaluate a share of the original function using Eval. All
share results can then be recombined to equate to the original function. We
begin by giving an overview of how a query is executed in our system using
FSS and continue with an example of a SUM query.

5.3.1 Query Overview

A data consumer can create a query of the following form expressed in SQL:

SELECT agr (*) FROM streams WHERE t1  t < t2
AND stream_id = s

0
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5.3. Enabling Private Queries

where agr denotes one of the five queries supported by our system (see
section 5.2.1), s

0 denotes the target stream id, [t1, t2[ denote the queried
time range and streams the name of the database table containing our data
streams.

To hide the time-range and the selected stream id of a query, we construct
a selection function for each query that returns 1 when given a stream id s

equals to s
0 and timestamp t within the predetermined time-window [t1, t2[

and 0 otherwise:

ht1,t2,s0(s||t) =

(
1 if t1  t < t2 ^ s = s

0

0 otherwise

where || denotes string concatenation. The selection function outputs 1 if
the pair (s, t) should be in the aggregation for the query and 0 if not. Thus
ht1,t2,s0(s||t) is an interval function (see section 2.2.1). The server executes
this selection function on each timestamp and stream id pair (sj, tk) in the
storage database and multiplies it with the stored digest at timestamp k in
stream j:

ht1,t2,s0(sj||tk) · gj,k

where gj,k denotes any one of the three statistical summaries in a digest
(see subsection 5.2.1).

Since the server stores the stream id sj concatenated to the timestamp tk as
its key to a database record, we use string concatenation to pass both the
string id and the timestamp to the interval function. This prevents us from
needing to evaluate two separate interval functions, one for the stream and
one for the timestamp. Furthermore, it guarantees a lexicographic ordering
to all stream id and timestamp pairs allowing us to directly compare time
ranges within a stream with a single interval function.

Thus the database server evaluates the selection function on each stream
id and timestamp pair of the database and multiplies the result with its
corresponding digest entry:

Q(t1, t2, s
0, g) =

m

Â
j=1

l

Â
k=1

ht1,t2,s0(sj||tk) · gj,k

where Q denotes our query which we perform over the time-window [t1, t2[
on stream with id s

0, which retrieves digest element g 2 {d, s, ssq} and
where m is the total number of streams and l the total number of timestamps
within our database.

Making Use of Function Secret Sharing

So far, the database server can observe the output of the selection function.
To hide the output from the server we apply function secret sharing on the
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5. Design

selection function. In particular, we can construct the selection function with
a distributed comparison function (DCF) (see subsection 2.2.1):

Q(t1, t2, s
0, g) =

m

Â
j=1

l

Â
k=1

(gt2,s0(sj||tk)� gt1,s0(sj||tk)) · gj,k

where gta,s0 is defined as:

gta,s0(sj||tk) =

(
1 if tk < ta ^ sj = s

0

0 otherwise

and ta 2 {t1, t2}.

Furthermore, we assume all computations over function shares are done
over Z2q where q is the number of bits in the output range.

The client uses the FSS algorithm Gen(1l, f ) ! (k1, . . . kn), where 1l is a
security parameter and f a function description to generate key shares to
be used with Eval(i, ki, x) ! yi to evaluate the i-th key share on the input
x. For FSS schemes used for comparison functions we denote the pair of
algorithms as (Gen<, Eval<). Thus the client uses Gen<(1l, gta,s0) twice to
efficiently generate two sets of keys {k11, k12, . . . k1n} and {k21, k22 . . . , k2n},
where n is the number of replicated database servers, to later be used to
evaluate shares of the two comparison functions. Furthermore the Eval<

algorithms have the following property:

gta,s0(s||t) =
n

Â
i=1

Eval<(i, kai, (s||t))

which we use for our query:

m

Â
j=1

l

Â
k=1

(gt2,s0(sj||tk)� gt1,s0(sj||tk)) · gj,k

=
m

Â
j=1

l

Â
k=1

(
n

Â
i=1

Eval<(i, k2i, (sj||tk))�
n

Â
i=1

Eval<(i, k1i, (sj||tk))) · gj,k

which we can further rearrange to push our function share loop to the out-
side:

Q(t1, t2, s
0, g) =

n

Â
i=1

m

Â
j=1

l

Â
k=1

(Eval<(i, k2i, (sj||tk))� Eval<(i, k1i, (sj||tk))) · gj,k.

(5.2)

As illustrated in Fig. 5.4, given n replicated servers and two sets of n key
shares, {k11, k12, . . . k1n} and {k21, k22 . . . , k2n}, each key share pair (k1i, k2i)
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5.3. Enabling Private Queries

Figure 5.4: Overview of a query where the client component generates n key pairs (k1i, k2i)
from the data consumer’s request to send to the database servers. All servers evaluate their key

pairs on all their pairs of timestamps and stream ids before sending their result ri back to the

client to be aggregated into the final result r.

can be sent to one of the n database servers. Each server can evaluate its
pair of key shares independently on all pairs of timestamps and stream
ids and return the result back to the client, which aggregates all individual
server results. This process is described in further detail in our following
example of a SUM query.

5.3.2 Example: SUM Query

We focus on the details of a sum query first illustrated in Fig. 5.5 and later
discuss the other types of queries supported by our system.

Figure 5.5: Process of a SUM query, which is split into function shares using FSS by the client

component and sent to individual database servers to be evaluated on all pairs of timestamps

and stream ids in the database. Results are sent back to the client to be aggregated.

A data consumer creates a ranged SUM query of the following form:

SELECT SUM (*) FROM streams WHERE t1  t < t2
AND stream_id = s

0
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5. Design

where t1 and t2 denote the queried time-window, s
0 the target stream id

and streams the name of the database table which in our case contains all
database entries. The query is given to the client component of our system
for further processing and denoted as Q(t1, t2, s

0, s).

Client Side Execution

Our client component aims to create a distributed interval function that
returns 1 if evaluated on a timestamp and stream id that is within the time-
window [t1, t2[ and stream with id s

0. This is achieved by using two com-
parison functions for the two intervals [0, t1[ and [0, t2[.

The client uses the FSS algorithm Gen(1l, f ) to generate the two sets of key
shares {k11, k12, . . . k1n} and {k21, k22 . . . , k2n} for the n replicated database
servers. The client then sends a key pair (k1i, k2i) as well as additional meta-
data, such as the input domain size of the Eval< algorithm, to all n servers.

Server Side Execution

The server component receives the pair of function keys and evaluates them
in the following way. Each key k1i and k2i is used to evaluate every times-
tamp and stream id pair (sj, tk) in the database with the Eval algorithm,
denoted as Eval<(i, kai, (sj||tk)) where a 2 {1, 2}. Every evaluation with
individual keys are separately added together and then the smaller is sub-
tracted from the larger. More precisely the database server i performs the
following computation on a database with m streams and l separate times-
tamps:

ri =
m

Â
j=1

l

Â
k=1

Eval<(i, k2i, (sj||tk)) · sj,k �
m

Â
j=1

l

Â
k=1

Eval<(i, k1i, (sj||tk)) · sj,k

=
m

Â
j=1

l

Â
k=1

Eval<(i, k2i, (sj||tk)) · sj,k � Eval<(i, k1i, (sj||tk)) · sj,k

where sj,k denotes the sum entry of the jth stream at timestamp k and every
addition is modular over Z2q where q is the number of bits in the output
range.

Intuitively, one can see that a sum sj,k is only included in the final result if
its timestamp is in the queried range and in the corresponding stream since
only then will Eval<(i, k2i, (sj||tk))�Eval<(i, k1i, (sj||tk)) return 1. The result
ri is then returned to the client.
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The client then adds up all individual results received from the database
servers with modular addition and returns the final result r to the data
consumer:

r =
n

Â
i=1

ri.

Due to the fact that every sum entry sj,k of the databases was accessed and
that FSS schemes computationally hide the original comparison functions,
the servers can only know that a SUM query was performed but neither have
access to the specific time range nor stream requested by the client.

5.3.3 Further Supported Queries

COUNT and sum of squares queries work analogously to our SUM example
except that the respective d or ssq summary of the digest is multiplied with
the key share evaluation Eval<(i, kai, (sj||tk)).

Our design additionally supports averages and variances of time ranges. An
AVG query is performed by querying the servers for the count and sum of
the target time range and dividing the sum by the count. A VAR query is
performed by requesting all three digest components and performing the
computation from Equation 5.1.

5.4 Security Analysis

In this section, we provide arguments for the correctness and privacy of
our system. We argue that if a secure FSS DCF construction is employed,
our system both hides certain parameters of queries as well as produces the
correct query result.

5.4.1 Correctness

We argue that if the construction of an FSS scheme for a distributed compar-
ison function provided by Boyle et al. [4, 5] is correct and the adversary is
passive and follows the protocol, then a query given to our system’s client
by a data consumer will be returned with a correct result.

If said FSS scheme construction is correct, the following relationship be-
tween function and function shares holds (see subsection 5.3.1):

gta,s0(s||t) =
n

Â
i=1

Eval<(i, kai, (s||t))

25



5. Design

Furthermore, we have seen that a query in our system amounts to the fol-
lowing equation using comparison functions:

Q(t1, t2, s
0, g) =

m

Â
j=1

l

Â
k=1

(gt2,s0(sj||tk)� gt1,s0(sj||tk)) · gj,k

which we show is equivalent to Equation 5.2:

m

Â
j=1

l

Â
k=1

(gt2,s0(sj||tk)� gt1,s0(sj||tk)) · gj,k

=
m

Â
j=1

l

Â
k=1

(
n

Â
i=1

Eval<(i, k2i, (sj||tk))�
n

Â
i=1

Eval<(i, k1i, (sj||tk))) · gj,k

=
m

Â
j=1

l

Â
k=1

(
n

Â
i=1

Eval<(i, k2i, (sj||tk))� Eval<(i, k1i, (sj||tk))) · gj,k

=
m

Â
j=1

l

Â
k=1

n

Â
i=1

Eval<(i, k2i, (sj||tk)) · gj,k � Eval<(i, k1i, (sj||tk)) · gj,k

=
n

Â
i=1

m

Â
j=1

l

Â
k=1

(Eval<(i, k2i, (sj||tk))� Eval<(i, k1i, (sj||tk))) · gj,k.

Thus if the FSS scheme construction for a distributed comparison function
Eval< is correct, then our system returns the correct query result.

5.4.2 Privacy

We argue that if the DCF construction is a secure FSS scheme for distributed
comparison functions, then the adversary does not learn the output of the
query nor certain of its parameters.

If the FSS construction for a distributed comparison function is secure, then
the keys kai generated by Gen<(1l, gt1,s0) and Gen<(1l, gt2,s0) computation-
ally hide t1, t2 and s

0. Since these keys are the only information we share
with the replicated servers, this implies that our system computationally
hides the parameters t1, t2 and s

0 from our database servers as long as at
least two of them do not collude.

Although we hide t1, t2 and s
0 from our database servers, they do learn

that a query was executed and the type of aggregation that was requested,
be it the count, the sum or the sum of squares. Both of these leaks could
be mitigated by constantly having the client component of our system send
‘dummy’ queries regardless of whether the data consumer wants a query to
be executed or not. Furthermore, one could mitigate leaking the aggregation
type by always requesting all three components of the digest.
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5.5 TimeCrypt Compatibility

Though our system does not hide digest values, it is compatible with Time-
Crypt [7] to hide them. We use a similar stream abstraction and their
employed homomorphic encryption is compatible with our function secret
sharing approach, though, the plaintext multiplications and additions we
use must be replaced with their respective operations on ciphertexts.

5.6 System Optimizations

In our design, the server has to perform a linear scan of the full database for
each query. Thus, with increased database size, the linear scan is a dominant
performance bottleneck. In this section, we present two optimizations to our
baseline design to mitigate the performance hit from this linear scan. The
two optimizations include batching multiple queries to decrease the number
of round trips taken between client and server and the use of multithreading
to parallelize the key pair evaluations on the database servers.

5.6.1 Parallelism

Though a linear scan is necessary to evaluate a server’s key pair with the
use of the Eval< algorithm, each evaluation of a timestamp and stream id
pair is performed independently from another. Thus, one can substantially
decrease the latency of queries by parallelizing the execution of the Eval<

algorithm across streams and timestamps. This optimization leads to a con-
stant speedup proportional to the number of processors available.

5.6.2 Batching

A time-series application often issues multiple statistical queries simultane-
ously. For example, a health service providing a dashboard within an app
displaying a client’s average heart rate over different periods of time gen-
erates many request for averages over time windows for one view of the
dashboard. We can optimize I/O operations at the server and reduce the
number of network round-trips by batching queries into a single request.

Thus, when a server performs its linear scan of the database, every time it
requests a block of data containing a digest, it can multiply every evaluated
key from the batch with its corresponding digest element. This reduces the
number of I/O requests to the database by a factor proportional to the num-
ber of requests within a batch. Furthermore due to all requests in the batch
being sent at once, and all results being returned together by the server, we
reduce the number of round trips needed to send all keys from the number
of queries in a single batch to one per batch.

27





Chapter 6

Implementation

We implement our two client and server components in a 2-server setting
in ⇠660 lines of C++ code excluding benchmarking infrastructure and FSS
library. We rely on Splinter’s [27] FSS implementation [28] to build the client
and server, which can perform, SUM, COUNT, sum of squares, AVG and VAR of
a given continuous time range within a specific stream. Furthermore, we
exclude any encryption from our implementation thus only operating on
plaintext data.

For our key-value store in our database servers, we use LevelDB [22], storing
the digest vector as the value with its corresponding stream ID and times-
tamp concatenated to form the key. Since we access every record in the
databases, we are able to reduce the number of database accesses by storing
more than one digest into a single entry of our key-value store. We allow
for a predefined block size, which sets the number of digests stored in a sin-
gle database entry, in this case, the key corresponds to the timestamp and
stream of the first entry of the block.

For client-server communication, we use gRPC [21], serializing the batched
key pairs and other metadata such as the input domain size of the Eval<

algorithm.

6.1 Batching & Parallelism

We parallelize the evaluation of our distributed interval function Eval< on
each database server across streams. Thus, for every stream, a separate
thread is created to evaluate its stream ID and timestamps. This approach
leads to a constant speedup of server performance roughly proportional to
the number of CPUs available. Furthermore, we take the trivial step of
parallelizing queries to our two servers, sending function shares to both
simultaneously.

29



6. Implementation

We implement batch queries with various sizes depending on the appli-
cation, generating several key pairs before sending them to the database
servers.
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Chapter 7

Evaluation

In this chapter, we evaluate the scalability and feasibility of our system.
We first provide a description of the experimental setup and methodology.
Then, we discuss the microbenchmarks of the function secret sharing library
to understand its impact on the system. We then end with the performance
of our overall system.

7.1 Experimental Setup

For our evaluation, we use different hardware for the client and servers.
For the client, we use an early 2015 MacBook Pro equipped with a 2.7 GHz
Intel Core I5-5257U CPU and 16 GB RAM located in Zürich, Switzerland.
For the database servers, we use two AWS c5.xlarge instances located in
Frankfurt, Germany. Each of these instances runs with 4 Intel Xeon Plat-
inum 8000 series vCPU, a total of 8 GB RAM and up to 10 Gbit/s network
bandwidth [20]. We measure an average of 9ms RTT between the client and
both servers.

In all benchmarks, we measure latency, which is the time the system takes
to return a result given a computation. In the case of the microbenchmarks,
we measure the time to evaluate a share of an FSS scheme locally on the
MacBook Pro. In the end-to-end benchmarks, we measure the time elapsed
between dispatching a certain query to the client component and receiving
its result.

We evaluate and plot every benchmark 10⇥ where the batch size is set to 1.
For batches of size 10, we measure once and divide the resulting time by 10
to plot the average latency of a query within the batch.
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Figure 7.1: Latency of a a single FSS share evaluation with and without the use of the AES-NI

hardware instruction. The x-axis represents the number of bits a share must evaluate.

7.2 Microbenchmarks

Our system uses function secret sharing constructions for its distributed in-
terval functions as a core building block to hide query access patterns. The
database servers have to perform a linear scan to evaluate the FSS shares
on every timestamp and stream id pair and multiply it with the desired di-
gest value. The greatest bottleneck of these operations is executing the core
Eval< algorithm (see subsection 5.3.2), making it crucial for this algorithm
as well as Gen< to be implemented efficiently and understand its perfor-
mance impact. Thus in this section, we evaluate the latency of our pair of
core FSS algorithms (Gen<, Eval<).

7.2.1 Eval Latency

In Fig. 7.1, we show the computation latency of the Eval< algorithm in the
Splinter FSS library for varying input domain sizes in bits. The cost of
each evaluation increases linearly with the domain size. In our system, the
input domain size is dependent on the required number of streams and
timestamps. That is, the greater the input domain to the Eval< algorithm,
the larger the database can be. In a standard configuration with 48 bits, i.e.,
32-bit stream id and 16-bit timestamp, the evaluation cost is 9.05µs with the

32



7.2. Microbenchmarks

Figure 7.2: Latency of the FSS share generation algorithm Gen< with and without the use of

the AES-NI hardware instruction. The x-axis represents the number of bits of the input domain

of the distributed comparison function.

AES-NI hardware support and 21µs without.

Taking advantage of the AES-NI hardware instruction we achieve on average
2.2⇥ faster evaluation compared to a software AES implementation, a key
contributing factor to the practical scalability of our system discussed in
the following section. Thus on average we are able to evaluate an Eval<

algorithm with a 48-bit input size over 1100000⇥ per second.

7.2.2 Gen Latency

In Fig. 7.2, we plot the computation latency of Splinter’s Gen< algorithm
for varying input domain sizes in bits. Cost for both AES hardware and
software implementations increase linearly. In the standard configuration
(32-bit stream id and 16-bit timestamp), the evaluation cost is 40.6µs with
AES-NI hardware support and 420.72µs without.

On average, support for the AES-NI hardware instruction decreases the la-
tency of the Gen< algorithm by 10.2⇥. Here we see the performance benefit
the AES-NI hardware instruction gives an implementation of an FSS DCF,
greatly reducing the latency compared to a software implementation.
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Figure 7.3: Latency for single COUNT queries with batch sizes set to 1 and 10 as well as with

and without the use of multithreading (mlt).

7.3 End-to-End Benchmarks

In this section, we discuss the end-to-end performance of our full system
implementation in a realistic deployment. To understand the optimizations
discussed in section 5.6, we consider different system setups. In the base-
line configuration, no optimizations are enabled such that the queries are
executed on a single thread without batching. The second configuration en-
ables batching of queries where the size of batches is set to 10 but where
queries are executed on a single thread. The third configuration enables
multithreaded execution of the Eval< algorithm but sends every query in-
dividually without batching them. The final configuration consists of both
optimizations enabled where queries are batched where the size of batches
is set to 10 and function shares are evaluated in parallel when executing the
Eval< algorithm.

7.3.1 Single Query

Latency

In Fig. 7.3, we show the impact of the database size on the query latency
for a single COUNT query for the different setups. Since for every query a
linear scan of the database and multiplication with the chosen digest must
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be performed, regardless of the digest element chosen in the query (count,
sum, sum of squares), the actual digest element chosen has little impact on
the measured query latency.

For all setups, each database splits its records across 8 streams and sets
the server block size to 8. Our standard batch size is set to 10 since as
we will see in subsection 7.3.2, further increasing batch sizes yields dimin-
ishing returns. We observe a linear increase in latency from 0.1s for our
multithreaded implementations with batch sizes 1 and 10, up to 1.4s for our
fastest multithreaded implementation with a batch size of 10.

We note that our implementations with multithreading enabled offer the
greatest latency improvement, where on average a 2.1⇥ speedup compared
to their single-threaded counterpart. Our batching optimization however
yields an average 1.107⇥ speedup. This marginal improvement is because
many records can be cached in the LevelDB database servers’ memory, lead-
ing to quick accesses to individual records. This combined with the rela-
tively low latency of 9ms between our client and server, contributes to the
observed minimal speedup.

For single queries on databases of small to medium sizes, we observe a prac-
tical latency, implying that our system can be used in real-world scenarios
where a client’s requests are few and far between. Furthermore, we could
easily further decrease latency by evaluating requests on servers equipped
with a higher CPU count, since we evaluate our system with a server con-
taining 4 CPUs and typical modern servers can easily exceed 32 CPUs [20].

#Bits Size [Byte]
8 0.8K
16 1.7K
32 3.5K
64 7.1K

Table 7.1: Size of a single key share depending on the input domain size of the Eval< algorithm.

Bandwidth

We continue by discussing the bandwidth our system uses when executing a
query. Table. 7.1 shows the size of a key share given a certain input domain
size, which is generated by the client component. For every request, two
keys are sent as well as metadata about the key shares such as the number
of input bits to the FSS function and the number of total function shares. The
metadata for one server totals to 1.06kB. As an example, in a single request
in our evaluation from Fig. 7.3 on a database with 1M records, we send
11.28kB to the servers, which includes four key shares for the two servers
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Figure 7.4: Latency of a single COUNT query for di↵erent batch sizes using the single threaded

and multithreaded implementations on a database with 3’200’000 records divided into 4 streams.

Size of database blocks are set to 8.

with an input domain size of 21 bits (17-bit timestamp and 4-bit stream id)
and two copies of the metadata. The response received by both servers totals
16 bytes. In total, excluding any overhead introduced by gRPC, bandwidth
equals 7162 Bps in this specific case.

Due to the small bandwidth needed to send FSS key shares, our system can
scale to a high volume of single queries where bandwidth is limited and
where database sizes remain in the small to medium range.

7.3.2 Batch Sizes

In Fig. 7.4 we compare latency of COUNT queries with different batch sizes on
a database of 3.2M records evenly divided among 4 streams. We measure
the latency of batches with sizes set to 1, 2, 4, 8 and 16.

Increasing batch sizes to from 1 to 4 offers a decrease in latency from 5.57s
to 5.173s, or a 7.7% decrease. We observe a minimal increase in performance
with batch sizes greater than 4, where we measure a decrease in latency from
5.173s to 5.077s for a batch size of 16, implying 1.9% decrease. This marginal
gain in performance, again, is due to the relatively low latency of 9ms be-
tween client and server and the large cache of LevelDB. Since the latency
cost of a round trip is minimal, the advantage of batching a large number
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of requests together, which decreases the number of round trips, is small.
Thus one can keep batch sizes relatively low without affecting query latency.
Once very large database sizes are reached, however, batching queries will
show greater performance gains since only then will the database cache no
longer be able to store large portions of the total records and thus will need
to perform many more I/O operations.

7.3.3 Health App Dashboard

To understand the real-world performance of our system, we consider a
query workload from a health dashboard application. This dashboard dis-
plays a summary plot of a client’s heart rate at a chosen granularity. The
application creates one AVG request per data point in the plot, which the
client component of our system compiles to individual COUNT and SUM re-
quests leading to 2⇥ as many requests to the database servers as application
queries.

Figure 7.5: Latency in log-scale to request data for a windowed average view from a health service

storing one month of data where one measurement is taken every minute for 4 users (172’800

records). The x-axis shows the granularity of the requested data; one hour (1440 requests

database requests), one day (60 requests), one week (8 requests), one month (2 requests).

In Fig 7.5 we compare latencies of the application’s requests for one user’s
data at different granularity. We run every benchmark 5⇥ and plot the
results. Here, our implementations with batched queries send all their re-
quests in one single batch. Our evaluation’s database consists of a month
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of heart rate data where a measurement was taken at every minute (43’200
records per user) for 4 users, totaling 172’800 records. For a monthly gran-
ularity where a user sees an average of all his stored data, the application
generates 1 AVG query (2 server requests). At weekly granularity, 4 queries
are generated (8 requests), daily granularity consists of 30 queries (60 re-
quests) and finally 720 queries (1440 requests) are generated for an average
of a month’s data at hourly granularity.

For typical workloads, where a user requests his month’s data at weekly
or daily granularity, we observe an acceptable latency of 1.8s and 13.7s re-
spectively for our implementation with both optimizations enabled. For our
evaluation at an hourly granularity, we observe a latency of 344s. This high
latency is due to each server needing to evaluate 2880 separate function
shares, each of which consists of a linear scan of the database. We do note,
however, that this type of request is an extreme case, where plotting this
amount of data, which in this case amounts to the client requesting all of
his data, is not typically seen in this setting. Furthermore, this high latency
could still be reasonable to a client who requires the high level of privacy
that our system guarantees.

For larger database sizes which, for example, accommodate a larger user
base, or applications where both privacy and latency are important, further
measures would need to be taken to further decrease latency to a reasonable
level.
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Chapter 8

Conclusion

In this thesis, we provide the design and implementation of a time-series
storage system that hides a client’s query access patterns from the storage
providers as long as two of them do not collude. Our system enables effi-
cient pattern-hiding time-series queries on data streams by employing func-
tion secret sharing techniques. While previous work explored how FSS can
be used in other data storage systems [11, 27], our system applies FSS to
the setting of time-series data. To scale to large volumes of data common in
time-series workloads, our system introduces stream abstractions to allow
for efficient query execution with FSS evaluations. Furthermore, our system
introduces a module that translates times-series queries into query shares
which are distributed to replicated servers. We achieved this by generating
distributed comparison functions with the help of FSS, which select the re-
quested digest elements from the database without leaking the function’s
selection to the servers.

To demonstrate our system’s performance we implement a baseline which
we extend with two further optimizations and evaluate their performance.
The evaluation shows, that for small- to medium-sized time-series databases
we achieve acceptable query latency. This, combined with our system’s
strong privacy guarantee, enables it to be used in certain real-world sce-
narios, where hiding query access patterns is paramount.

8.1 Future Work

Different aspects of our design are open to future work. We design our sys-
tem with compatibility with TimeCrypt in mind but have not implemented
nor evaluated it. Implementing our system on top of TimeCrypt would
strengthen the privacy guarantees of the system by introducing end-to-end
encryption to database records. Furthermore, our system could be extended
to support further query types as well as support writes to the databases.
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8. Conclusion

This would introduce other challenges such as guaranteeing consistency of
the database replicated over several servers, which would need to be ad-
dressed.

During this thesis, another line of work applying FSS to time-series data ap-
peared [12]. Although we use a different system design and threat model, it
would be worth exploring the performance differences as well as comparing
the techniques used.
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