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Abstract

In the last decades, the use of cloud storage has grown significantly. Si-
multaneously, awareness around privacy issues related to outsourced
data increases among uses, causing several cloud storage services of-
fering end-to-end encryption to emerge. As an extension of its existing
privacy-oriented product line, Proton AG launched its own end-to-end
encrypted (E2EE) cloud storage service, Proton Drive, in 2022. Among
the other existing providers such as MEGA and Nextcloud, Proton
Drive stands out due to its use of OpenPGP and the structure of its
key hierarchy.

We fully document the cryptographic protocol used in Proton Drive,
and analyze the security of the file encryption algorithm. We prove that
it achieves OUT-IND-CPA security for confidentiality and OUT-WUF-
CMA security for authenticity, and show with an attack that stronger
notions of OUT-IND-CCA and OUT-SUF-CMA are not possible. In the
threat model implied by E2EE, where the adversary controls cipher-
texts, weak unforgeability is sufficient for authenticity. For confiden-
tiality however, security under chosen plaintext attack is not sufficient,
and it is advisable to aim for security under chosen ciphertext attack.

We put these results in perspective, and discuss other weaknesses in
Proton Drive which could lead to attacks. In particular, we stress that
the lack of consequences of failed signature checks can lead to powerful
attacks, where an adversary who successfully inserts a folder in the file
system of a user gains access to everything which the user puts in that
folder. We also point out a weak attack allowing to swap some folder
and file names, and warn against the addition of compression before
file encryption.
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Chapter 1

Introduction

The amount of data stored on computers has increased exponentially over
the past few decades. Businesses and individuals alike are moving from
physical to digital storage, as it tends to be less cumbersome and more
practical, but even though larger and faster hard drives and SSDs have be-
come more widely available and affordable, keeping everything on one’s
computer can still prove resource intensive. To solve this problem, services
have emerged that offer to take the burden of storage away from consumers:
cloud storage.

This solution allows the problem of storage capacity to be delegated to third
parties. It also places the guarantee of availability on the shoulders of the
company providing the service, and offers additional benefits, such as easier
backup and file sharing. Due to their convenience, cloud storage services
have been widely adopted, with services such as Google Drive surpassing
one billion users in 2018 1.

However, one concession that comes with using cloud storage is the loss of
control over who has access to the data one stores. One way of ensuring
access control is to let the storage provider encrypt the data before storing
it, with the goal of limiting the access to unencrypted data to authorized
entities. This strategy is called encryption at rest, and while this does offer
protection against adversaries that compromise the database of the service
provider, but not the keys, it does not necessarily provide satisfactory guar-
antees. For example, several of the biggest cloud storage providers, notably
DropBox [23], Google Drive [30], and iCloud [7] (for its default setting) offer
encryption with keys that are generated and stored on their servers. Keep-
ing the encryption keys on the server of the service provider means that the
client does not need to store the keys, making it harder to lose them. How-
ever, this also implies that if the cloud storage provider is malicious or if the

1https://techcrunch.com/2018/07/25/google-drive-will-hit-a-billion-users-this-week/
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1. Introduction

servers containing the keys are compromised, all security assurances on the
data stored by that company are lost.

Because of privacy and security concern raised by cloud storage providers
keeping encryption keys, several cloud services have constructed their brand
identity around stronger security for the data they store. More specifically,
the gold standard for cloud storage security is to provide end-to-end en-
cryption (E2EE), meaning that the data is encrypted and authenticated with
keys that only authorized users have access to. Privacy-minded users now
consider it normal for their data to be E2EE, especially in messaging apps,
where the expectation is that only the sender and recipient of a message can
have access to it. In the context of cloud storage, E2EE prevents any other
entity, including the cloud storage provider and its servers, from gaining
access to the unencrypted files. Note that this is not a formal criterion, and
that while E2EE is widely accepted as being a goal to strive for, there is
currently no consensus on a security definition for cloud storage.

An increasing number of cloud storage providers are placing a strong em-
phasis on using E2EE. Examples include MEGA [39], iCloud (in its advanced
data protection setting) [7], NextCloud (from version 3.0, with E2EE en-
abled) [42], Sync [50], pCloud [44] or iDrive [33]. However, recent work on
such services [8, 4, 20, 46] has shown that building a robust protocol with
the constraints set by the threat model that comes with E2EE is far from
trivial.

In this thesis, we examine the solution offered by a relatively new contender,
launched in September 2022 by the company Proton AG: Proton Drive. With
a line of E2EE products, which started in 2014 with scientists from CERN
creating Proton Mail, an email service, Proton AG positions itself as a bas-
tion for privacy among an online services landscape dominated by big tech.
Apart from the original email service and Proton Drive, its range of products
includes a calendar, a VPN, and a password manager. Due to its history of
starting off as an email company, Proton AG makes heavy use of OpenPGP,
an open source message format standard which is mostly used for email
encryption. In fact, Proton AG is a maintainer for two OpenPGP libraries,
OpenPGP.js and GopenPGP, and all of its products use them for all crypto-
graphic operations.

Proton Drive is no exception to that rule, and the entire protocol is designed
around OpenPGP. This comes with its own set of constraints and difficulties,
because while OpenPGP is also intended for encryption of data at rest [27],
at its core, it is designed with email encryption in mind. Proton Drive there-
fore deviates from the traditional use of OpenPGP. This is due to its design
choices in the treatment of files of large size as well as in the structure of
the Proton Drive protocol, which closely follows that of a classical file sys-
tem. We consider these choices, and evaluate whether the downsides that

2



1.1. Related Work

come with the restrictions imposed by the use of the OpenPGP standard are
outweighed by the security provided by the use of an established library.

Overview. The remainder of this chapter is dedicated to related work and
contributions. We then start off by giving some notation, definitions, and
explanations of the cryptographic primitives used in Chapter 2. Chapter 3
gives a description of the Proton Drive protocol and its threat model. In
Chapter 4, we analyze and prove secure (with some restrictions) the file
encryption algorithm used in Proton Drive. Finally, we point out parts of
the protocol which might be problematic in Chapter 5, and conclude in
Chapter 6.

1.1 Related Work

E2EE. E2EE applications have been gaining more and more terrain in re-
cent years. Most notably perhaps, several messaging applications are using
E2EE. Examples include the Signal Protocol, which has gotten a lot of atten-
tion from academia [6, 19, 13], but also application which have been found
to have vulnerabilities, such as Threema [43] and Telegram [5].

While E2EE for messaging and for cloud storage share the same goal of
strictly restricting data access to a determined set of users, they present a few
differences. Firstly, data in cloud storage is persistent, whereas messages are
ephemeral. This means that contrary to cloud storage keys, messaging keys
can be discarded once they have been delivered and used, making it easier to
achieve strong security guarantees. Secondly, messaging is centered around
exchange between users, whereas this notion only appears when sharing
files in cloud storage, with most uses corresponding to a user retrieving the
data it previously stored. Finally, messaging needs to preserve the chrono-
logical order of messages, whereas chronology only comes in play in cloud
storage if it implements some form of versioning of files. In these aspects,
E2EE for cloud storage is closer to E2EE for password managers such as
1Password [2], Bitwarden [14] or Dashlane [21], where the server acts as a
vault more than as an intermediary between a sender and a receiver.

Note that E2EE does not aim to provide metadata protection. New file
sharing applications, such as Metal [18] and Titanium [17] aim to also hide
metadata, such as user identities and access rights, from the server. Such
systems are called metadata-hiding file-sharing systems.

Cloud Storage Security. Several cloud storage services centered around
security have been developed in recent years. Among these, MEGA [39],
Nextcloud [1], PreVeil [45], and Tresorit [53] provide a white paper of the
design of their protocol. Surveys on the security of such service have also

3



1. Introduction

been conducted by Virvilis et al. [54], and more recently by Haller [31]. The
latter revealed major vulnerabilities in the design of MEGA, which were
further explored by Backendal et al. [8] and Albrecht et al. [4]. Analyses
Nextcloud also pointed out some flaws in their protocol [20].

OpenPGP. OpenPGP is mostly used in email or email-related services,
with integration in Mailvelope, Mailfence, Proton Mail (which has been au-
dited several times [35, 48, 47]), and Delta Chat, for example. Other appli-
cations are rare, but examples include the password manager Passbolt [32],
the entire Proton suite (which includes a calendar, a VPN and a password
manager), and, more generally, using OpenPGP to encrypt local files.

We draw attention to some attacks that have been found on OpenPGP. The
first one is a key overwriting attack related to the way asymmetric keys
are encrypted, and is presented in a paper by Bruseghini et al. [16]. Some
attacks using format oracles have also been pointed out by Mister et al. [40]
and by Maury et al. [37].

Provable Security. To evaluate the security provided by the Proton Drive
protocol, we build on common security notions for different types of crypto-
graphic primitives. We use some notions that have long been well-established
in the field [10], such as indistinguishability or unforgeability, and more re-
cent notions such as key robustness [3, 25, 28] or security for signcryption
schemes [36]. We use standard game-hopping proof techniques that have
been described several times, by Bellare and Rogaway [11, 12], Shoup [49]
and Dent [22] among others.

1.2 Contributions

This thesis makes the following contributions:

1. We provide a full description of the Proton Drive protocol from a cryp-
tographic point of view. This description is completed with explana-
tions of the relevant parts of the underlying OpenPGP standard as well
as of some design choices in the protocol. We produce a white paper
of Proton Drive, which we use for our subsequent analysis.

2. We translate the claims made by Proton AG regarding the security of
Proton Drive into a threat model, and use this base to define concrete
goals in terms of security properties.

3. We evaluate whether the file encryption algorithm of Proton Drive
meets these goals. For confidentiality, we prove that it fails to provide
the security goal established by our threat model, and show a weaker
property instead. For authenticity, we prove that it meets the security
goal from the threat model.

4



Chapter 2

Background

As we will be discussing the security of a cryptographic protocol, we first
need to introduce some notation as well as the cryptographic primitives that
Proton Drive uses. We then present OpenPGP, the data formatting standard
which underlies operations in the protocol, and present the main building
blocks that are used in Proton Drive. This enables us to explain some of
the design choices of the protocol. For example, Proton Drives chose to use
a key hierarchy which is follows the same tree-like structure as unix file
systems, with nodes of the tree being linked to each other by the classical
PGP encryption method.

2.1 Notation

The following notation conventions are used in this thesis:

2.1.1 Operations on Strings

We consider characters in strings or bits in bitstrings to be numbered from
left to right starting from 0.

ax The string composed of the concatenation of the character a x times.

Sn With S a set of characters, the set of all strings of length n composed
of characters in the set S .

S∗ With S a set of characters, the set of all strings of non-negative
integer length composed of characters in the set S .

x ∥ y The concatenation of the strings x and y.

|x| The length of the string x. If |x| < |y|, x ⊕ y is syntactic sugar for
(x ∥ 0|y|−|x|)⊕ y, and vice versa.

5



2. Background

s[n : m] The substring of s from the n-th character (included) to the m-th
character (excluded).

Bytes The set of all bytes, i.e {0x00, ..., 0xff}.

Chars The set of all Unicode characters.

2.1.2 Pseudo-code

y← x The value of x is assigned to the variable y.

x $← X The value x is picked uniformly at random from the set X.

x = y The boolean expression that compares the values of x and y.
If they are equal, return true, else return false.

y← f (x) The output of the function f on input x is assigned to the
variable y.

y $← f (x) The output of the non-deterministic algorithm f on input x
is assigned to the variable y.

Obj.attr The attribute attr which belongs to object Obj.

Obj.fun The function fun which belongs to object Obj.

f (x1, ..., xar( f )) The function f called on its arguments x1, ..., xar( f ), where
ar( f ) denotes the arity of f .

S ∪← S ′ We use this as a shorthand notation for S ← S ∪ S ′.

In code, we consider that ⊤ has the boolean value true and that ⊥ has the
boolean value f alse.

When writing for loops of the form For i from 0 to n, we consider i to iterate
on all values from 0 to n, including n.

2.1.3 Cryptography

M The message space of a cryptographic primitive.

C The ciphertext space of a cryptographic primitive.

K The key space of a cryptographic primitive. For asymmetric primitives,
the space of key pairs.

PuK For asymmetric cryptographic primitives, the space of public keys.1

1 We use puk for public keys and prk for private keys instead of the conventional pk and
sk. This notation choice allows use to distinguish private keys from session keys, which we
write sk, and signature keys, which we write sik.

6



2.2. Cryptographic Primitives

PrK For asymmetric cryptographic primitives, the space of private keys.2

H The output space of a hash function or the Hash-based Message Au-
thentication Code (HMAC) function.

IV An initialization vector. This is a value which is passed to an encryp-
tion algorithm in order to give it a starting state. Typically, it is used to
allow reusing a key without risking to leak information on the plain-
text.

Sign The signature generation function of a signature scheme.

Vfy The verification function of a signature scheme.

When referring to an encryption or decryption algorithm that uses a given
key k, we write the key as a subscript, e.g. AES-256.Enck.

2.1.4 Game-Based Security

AO The adversary A is given access to an oracle O.

GameAScheme(args) The return value of game Game defined for the crypto-
graphic scheme Scheme with arguments args when played
by an adversary A.

AdvGame
Scheme(A) The advantage of adversary playing the game GameScheme.

For games where the adversary produces a guess b′ for a
value b ∈ {0, 1} chosen by the challenger, we define it as

AdvGame
Scheme(A) = 2

(
Pr[GameAScheme()]− 1/2

)
,

which is equivalent to

AdvGame
Scheme(A) = Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]

by the advantage rewriting lemma.

2.2 Cryptographic Primitives

We start by giving some basic cryptographic building blocks that we use.
When relevant, we also give game-based security definitions that can be
applied to those primitives. Such games allow to model the capacities of an
attacker and to put a bound on its winning probability.

2See Footnote 1.
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2. Background

Figure 2.1: The three algorithms composing an SE scheme.

2.2.1 Symmetric Encryption

A symmetric encryption (SE) scheme with key space K, message space M
and ciphertext space C is a tuple (Gen, Enc, Dec) of functions such that:

• Gen : ∅ → K generates a key uniformly at random from the keyspace
K.

• Enc : K ×M → C encrypts a message in the message space M using
a key in the keyspace K.

• Dec : K× C →M∪ {⊥} decrypts a message in the ciphertext space C
using a key in the keyspace K. In case of failure (typically due to an
invalid ciphertext) Dec returns ⊥.

An SE scheme is correct if we have

Pr[Deck(Enck(m)) = m] = 1 ∀m ∈ M

with k $← Gen().

IND-CPA

Indistinguishability under chosen plaintext attack (IND-CPA) is a security
notion for encryption schemes that indicates that an adversary which chooses
two plaintext and gets back the encryption of one of the two cannot distin-
guish which plaintext it was derived from. For a given symmetric encryp-
tion scheme SE = (Gen,Enc,Dec), we define it in Fig. 2.2.

The advantage of an adversary A playing that game is

AdvIND-CPA
SE (A) = 2

(
Pr[IND-CPAASE()]− 1/2

)
.

8



2.2. Cryptographic Primitives

Game IND-CPAASE()

1 b $← {0, 1}

2 k $← Gen()

3 b′ $← ALoR()

4 return b = b′

Oracle LoR(m0, m1)

1 if |m0| ̸= |m1|
2 return ⊥
3 return Enck(mb)

Figure 2.2: IND-CPA security game for SE schemes.

IND-CCA

Indistinguishability under chosen ciphertext attack (IND-CCA) follows the
same idea as IND-CPA, but the adversary has access to a decryption oracle
as well in addition to the encryption oracle. For a given symmetric encryp-
tion scheme SE = (Gen,Enc,Dec), we define it in Fig. 2.3.

Game IND-CCAASE()

1 b $← {0, 1}
2 S ← ∅

3 k $← Gen()

4 b′ $← ALoR,dec()

5 return b = b′

Oracle LoR(m0, m1)

1 if |m0| ̸= |m1|
2 return ⊥
3 c← Enck(mb)

4 S ∪← {c}
5 return c

Oracle dec(c)

1 if c ∈ S
2 return ⊥
3 return Deck(c)

Figure 2.3: IND-CCA security game for SE schemes.

The advantage of an adversary A playing that game is

AdvIND-CCA
SE (A) = 2

(
Pr[IND-CCAASE()]− 1/2

)
.

INT-CTXT

Integrity of ciphertexts (INT-CTXT) is a security notion for SE schemes that
indicates that an adversary which has access to an encryption oracle cannot
forge a new ciphertext. For a given symmetric encryption scheme SE =
(Gen,Enc,Dec), we define it in Fig. 2.4.

9



2. Background

Game INT-CTXTASE()

1 b $← {0, 1}

2 k $← Gen()

3 S ← ∅

4 c′ $← Aenc()

5 m′ ← Deck(c′)

6 return m′ ̸= ⊥ and c′ /∈ S

Oracle enc(m)

1 c← Enck(mb)

2 S ∪← {c}
3 return c

Figure 2.4: INT-CTXT security game for SE schemes.

The advantage of an adversary A playing this game is

AdvINT-CTXT
SE (A) = Pr[INT-CTXTASE()].

AE

Authenticated encryption (AE) is the combination of IND-CPA and INT-
CTXT security.

KROB

Key robustness (KROB) is a security notion indicating that for a given ci-
phertext c encrypted under a secret key k, it is not possible to find another
secret key k′ under which c decrypts correctly. This notion was first intro-
duced for public-key cryptography by Abdalla et al. [3] and adapted for
symmetric encryption by Farshim et al. [26]. We define the game KROB for
a given symmetric encryption scheme SE = (Gen,Enc,Dec) in Fig. 2.5.

Game KROBASE()

1 (c, sk0, sk1)
$← A()

2 return sk0 ̸= sk1 and
Decsk0(c) ̸= ⊥ and Decsk1(c) ̸= ⊥

Figure 2.5: KROB security game for SE schemes.

The advantage of an adversary A playing this game is

AdvINT-CTXT
SE (A) = Pr[KROBASE()].

10



2.2. Cryptographic Primitives

Figure 2.6: The three algorithms composing a PKE scheme.

2.2.2 Public-Key Encryption

A public-key encryption (PKE) scheme with key space K = PuK × PrK,
message space M and ciphertext space C is a tuple (Gen, Enc, Dec) of func-
tions such that:

• Gen : ∅ → PuK × PrK generates a key pair uniformly at random
from the keyspace K.

• Enc : PuK ×M → C encrypts a message in the message space M
using a key in the public key space PuK.

• Dec : PrK×C →M∪{⊥} decrypts a message in the ciphertext space
C using a key in the private key space PrK. In case of failure (typically
due to an invalid ciphertext) Dec returns ⊥.

A PKE scheme is correct if we have

Pr[Decprk(Encpuk(m)) = m] = 1 ∀m ∈ M

with (puk, prk) $← Gen().

IND-CPA

Similarly to the IND-CPA notion for SE schemes, we define the game IND-CPAAPKE
in Fig. 2.7.

The advantage of an adversary A playing this game is

AdvIND-CPA
PKE (A) = 2

(
Pr[IND-CPAAPKE()]− 1/2

)
.

IND-CCA

We define IND-CCA for PKE schemes in Fig. 2.8.

The advantage of an adversary A playing this game is

AdvIND-CCA
PKE (A) = 2

(
Pr[IND-CCAAPKE()]− 1/2

)
.

11



2. Background

Game IND-CPAAPE()

1 b $← {0, 1}

2 (puk, prk) $← Gen()

3 b′ $← ALoR(puk)

4 return b = b′

Oracle LoR(m0, m1)

1 if |m0| ̸= |m1|
2 return ⊥
3 return Encpuk(mb)

Figure 2.7: IND-CPA security game for PKE schemes.

Game IND-CCAAPKE()

1 S ← ∅

2 (puk, prk) $← Gen()

3 b $← {0, 1}

4 b′ $← ALoR,dec(puk)

5 return b = b′

Oracle LoR(m0, m1)

1 if |m0| ̸= |m1|
2 return ⊥

3 c $← Encpuk(mb)

4 S ∪← {c}
5 return Deck(c)

Oracle dec(c)

1 if c ∈ S
2 return ⊥
3 return Decprk(c)

Figure 2.8: IND-CCA security game for PKE schemes.

2.2.3 Message Authentication Code

A message authentication code (MAC) scheme with key space K, message
spaceM and tag space T is a tuple (Gen, Tag, Vfy) of functions such that:

• Gen : ∅ → K generates a key uniformly at random from the keyspace
K.

• Tag : K ×M → T returns a tag on a message in the message space
M using a key in the key space K.

• Vfy : K ×M× T → {⊤,⊥} verifies that a tag corresponds to a given
message. If this is the case, Vfy returns ⊤, otherwise it returns ⊥.

A MAC scheme is correct if we have

Pr[Vfytk(m,Tagtk(m)) = ⊤] = 1 ∀m ∈ M

with tk $← Gen().

12
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Figure 2.9: The three algorithms composing a MAC scheme.

WUF-CMA

Weak unforgeability under chosen message attack (WUF-CMA) is a security
notion for MAC schemes that indicates that an adversary which has access
to a tag oracle cannot create a valid tag for a message that it has never
queried before. We define the game WUF-CMAAMAC as in Fig. 2.10.

Game WUF-CMAAMAC()

1 S ← ∅

2 k $← Gen()

3 (m, τ)
$← Atag()

4 return m /∈ S and
5 Vfyk(m, τ) = ⊤

Oracle tag(m)

1 τ
$← Tagk(m)

2 S ∪← {m}
3 return τ

Figure 2.10: WUF-CMA security game for MAC schemes.

The advantage of an adversary A playing this game is

AdvWUF-CMA
MAC (A) = Pr[SUF-CMAAMAC()].

2.2.4 Digital Signature

A digital signature (DS) scheme with key space K = PuK×PrK, message
spaceM and signature space S is a tuple (Gen, Sign, Vfy) of functions such
that:

• Gen : ∅→ PuK×PrK generates a key uniformly at random from the
keyspace K.

• Sign : PrK×M → S signs a message in the message spaceM using
a key in the private key space PrK.

13
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Figure 2.11: The three algorithms composing a DS scheme.

• Vfy : PuK×M×S → {⊤,⊥} verifies that a signature corresponds to
a given message. If this is the case, Vfy returns ⊤, otherwise it returns
⊥.

A signature scheme is correct if we have

Pr[Vfyvk(m,Signsik(m)) = ⊤] = 1 ∀m ∈ M

with (vk, sik) $← Gen().

WUF-CMA

The notion of WUF-CMA for DS schemes is similar to WUF-CMA for MAC
schemes, with the difference that DS use a key pair, where the public part is
used for verification and the private part for signing. The adversary is given
the knowledge of the public part of the key.

SUF-CMA

Strong unforgeability under chosen message attack (SUF-CMA) for DS schemes
is a security notion indicating that an adversary which has access to a sig-
nature oracle cannot create a new valid message-signature pair. We define
the game SUF-CMAADS in Fig. 2.12.

The advantage of an adversary A playing that game is

AdvSUF-CMA
DS (A) = Pr[SUF-CMAADS()].

2.2.5 Signcryption

A signcryption (SC) scheme is a tuple (SGen, RGen, SC, USC) which per-
forms a combination of signature and encryption. Signcryption schemes
are designed to provide confidentiality and authentication on a message
transmitted from a sender to a receiver, with asymmetric keys rather than

14
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Game SUF-CMAADS(vk)

1 S ← ∅

2 (vk, sik) $← Gen()

3 (m, σ)
$← Asign(vk)

4 return (m, σ) /∈ S and
5 Vfyvk(m, σ) = ⊤

Oracle sign(m)

1 σ
$← Signsik(m)

2 S ∪← {(m, σ)}
3 return σ

Figure 2.12: SUF-CMA security game for DS schemes.

symmetric ones. Note that the sender and receiver can be the same entity,
as will typically be the case in our applications.

Signcryption schemes are often built from other cryptographic primitives,
for instance a PKE and a DS scheme, in which case its sender key space
would be SK = DS.K and its receiver key space RK = PKE.K. Because of
this, we borrow the notations for keys from DS and PKE schemes: we refer
to the sender key pair as (vk, sik) and to the receiver key pair as (puk, prk).

• SGen : ∅ → SK generates a sender key pair uniformly at random
from the keyspace SK. The sender key is attached to the identity of a
given sender, and it is assumed that only that sender knows the private
sender key. This allows to authenticate the entity which has performed
a given signcryption.

• RGen : ∅ → RK generates a receiver key pair uniformly at random
from the keyspace RK. The receiver key is attached to the identity of
a given receiver, and it is assumed that only that receiver knows the
private receiver key. This allows to restrict the ability to unsigncrypt a
ciphertext to a given receiver.

• SC : PKE.PuK×DS.PrK×M→ C, the signcryption algorithm, sign-
crypts a message in the message spaceM using an encryption key in
the keyspace RK.PuK and a signature key in the keyspace SK.PrK.
The result can either be a signature-ciphertext pair, in which case we
say that the signature is detached, or the signature can be encrypted
together with the plaintext, in which case it is attached.

• USC : PKE.PrK×DS.PuK× C →M∪{⊥} unsigncrypts a signcryp-
tion using a decryption key in the keyspace PKE.PrK and a verifica-
tion key in the keyspace DS.PuK. In case of failure (for example if the
signature does not correspond to the message) Dec returns ⊥.

A signcryption scheme is correct if we have

Pr[USCvk,prk(SCsik,puk(m)) = m] = 1 ∀m ∈ M
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with (vk, sik) $← SGen() and (puk, prk) $← RGen().

Security notions for signcryption schemes are classified into categories fol-
lowing two axes. The first one is how many users are involved in the sign-
cryption scheme. If there is only one sender and one receiver, we speak
of a two-user setting, otherwise we call it a multi-user setting. The second
axis depends on the knowledge of the adversary. In a setting where the
adversary is internal, we consider that it can have access to some of the pri-
vate keys, either because the adversary belongs to some entity involved in
the signcryption or because some key has been compromised. On the other
hand, outsider security implies that the adversary does not have any knowl-
edge of private keys. We give three security notions for outsider security
which are adapted from those defined in [36].

OUT-IND-CPA

The OUT-IND-CPA notion for signcryption is similar to that of PKE schemes,
with the addition of the sender keys. We define it in Fig. 2.13.

Game OUT-IND-CPAASC()

1 b $← {0, 1}

2 (vk, sik) $← SGen()

3 (puk, prk) $← RGen()

4 b′ $← ALoR(vk, puk)

5 return b = b′

Oracle LoR(m0, m1)

1 if |m0| ̸= |m1|
2 return ⊥
3 return SCsik,puk(mb)

Figure 2.13: OUT-IND-CPA security game for SC schemes.

The advantage of the adversary A against this game is

AdvOUT-IND-CPA
SC (A) = 2

(
Pr[OUT-IND-CPAASC()]− 1/2

)
.

OUT-IND-CCA

The IND-CCA notion for signcryption schemes is similar to that of PKE
schemes. The most notable difference lies in the addition of the sender key,
of which the public part is given to the adversary. A signcryption scheme
satisfying IND-CCA security notion makes recognizing which of two chosen
plaintexts was used to produce the retrieved signcryption. We define the
game OUT-IND-CCA in Fig. 2.14.
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Game OUT-IND-CCAASC()

1 b $← {0, 1}
2 S ← ∅

3 (vk, sik) $← SGen()

4 (puk, prk) $← RGen()

5 b′ $← ALoR,usc(vk, puk)

6 return b = b′

Oracle LoR(m0, m1)

1 if |m0| ̸= |m1|
2 return ⊥

3 c $← SCsik,puk(mb)

4 S ← S ∪ {c}
5 return c

Oracle usc(c)

1 if c ∈ S
2 return ⊥
3 return USCvk,prk(c)

Figure 2.14: OUT-IND-CCA security game for SC schemes.

The advantage of an adversary A playing that game is

AdvOUT-IND-CCA
SC (A) = 2

(
Pr[OUT-IND-CCAASC()]− 1/2

)
.

OUT-WUF-CMA

The OUT-WUF-CMA notion for signcryption indicates that an adversary
with access to a signcryption oracle cannot find a valid signcryption for a
message that it has never queried before. We define the game OUT-WUF-CMAASC
in Fig. 2.15.

Game OUT-WUF-CMAASC()

1 S ← ∅

2 (vk, sik) $← SGen()

3 (puk, prk) $← RGen()

4 c $← Asc(vk, puk)
5 m← USCvk,prk(sc)

6 return m ̸= ⊥ and
7 m /∈ S

Oracle sc(m)

1 c $← SCsik,puk(m)

2 S ∪← {m}
3 return c

Figure 2.15: OUT-WUF-CMA security game for SC schemes.

The advantage of an adversary A playing that game is

AdvOUT-WUF-CMA
SC (A) = Pr[OUT-WUF-CMAASC()].
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OUT-SUF-CMA

The OUT-SUF-CMA notion for signcryption indicates that an adversary with
access to a signcryption oracle cannot find a new message-signcryption pair.
We define the game OUT-SUF-CMAASC in Fig. 2.16.

Game OUT-SUF-CMAASC()

1 S ← ∅

2 (vk, sik) $← SGen()

3 (puk, prk) $← RGen()

4 c $← Asc(vk, puk)

5 m′ ← USCvk,prk(sc)

6 return (m, c) /∈ S and
7 m ̸= ⊥

Oracle sc(m)

1 c $← SCsik,puk(m)

2 S ∪← {(m, c)}
3 return c

Figure 2.16: OUT-SUF-CMA security game for SC schemes.

The advantage of an adversary A playing that game is

AdvOUT-SUF-CMA
SC (A) = Pr[OUT-SUF-CMAASC()].

2.2.6 Hash

A cryptographic hash function Hash : {0, 1}∗ → {0, 1}ℓ is a cryptographic
primitive that maps any binary string to a binary string of length ℓ.

Collision Resistance

Collision resistance (CR) is a security notion for hash functions stating that it
is hard to find two values that produce the same hash. We give its definition
in Fig. 2.17.

Game CRAHash()

1 m0, m1
$← A()

2 return Hash(m0) = Hash(m1)

Figure 2.17: Collision resistance security game for hash functions.

The advantage of an adversary A playing that game is

AdvCR
Hash(A) = Pr[CRAHash()].

18



2.3. Cryptographic Algorithms

2.2.7 PAKE

A Password Authenticated Key Exchange (PAKE) is a way to derive a key
between two parties, typically a client and a server, based on at least one
party knowing a password. PAKEs can also be used as a way for a client
to prove to the server that it knows a secret without revealing its value. In
these cases, since the server itself does not know the password, the protocol
is actually called an augmented (or asymmetric) PAKE (aPAKE). Currently,
the aPAKE which Proton uses is Secure Remote Password (SRP), but there
are discussions about replacing it by OPAQUE.

2.3 Cryptographic Algorithms

2.3.1 AES

OpenPGP uses the Advanced Encryption Standard (AES) for all symmetric
encryption. AES is a block cipher, i.e. a symmetric encryption algorithm that
encrypts blocks of 128 bits of data at a time. It exists in three version, namely
AES-128, AES-192, and AES-256, with key lengths of 128, 192, and 256 bits
respectively. The version used in Proton drive is AES-256.

Data of length greater than 128 bits needs to be split into blocks of compliant
size. The way a symmetric encryption scheme is built from AES is called the
mode of operation. We present two modes of operation, Cipher Feedback
(CFB) and Galois/Counter Mode (GCM), as the former one is currently used
for symmetric encryption in OpenPGP and the latter is being introduced as
part of the revision of the message format, crypto refresh [56].

CFB

AES-CFB is the SE scheme that is currently used by OpenPGP. This mode
of operation presents the advantage of not requiring an implementation of
AES-256 decryption. We give a graphical representation of the CFB mode
encryption in Fig. 2.18, but no complete description as we do not need it in
this thesis.

Assuming that AES-256 is a pseudo-random permutation (PRP) and as long
as the IV is not predictable, AES-CFB is IND-CPA. A proof of this can be
found in [55].

GCM

GCM is an AEAD scheme which is not yet used in OpenPGP, but will be
introduced as part of the crypto refresh [56] to replace the current use of
AES-CFB for encryption. We do not give a description of the GCM mode of
operation as we do not need it in this thesis.
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Figure 2.18: Graphical representation of the encryption for the CFB mode of operation for block
ciphers.

Assuming that AES-256 is a PRP and that the IV is not repeated, AES-GCM
is proven to be AE secure in [38].

2.3.2 PKE on Curve25519

By default, Proton Drive uses a PKE based on Elliptic Curve Diffie Hellman
(ECDH) on Curve25519 for public-key encryption, as specified in the crypto
refresh [56], because there are no standardized PKEs using solely elliptic
curve cryptography (ECC). The algorithm that is used is a hybrid; it utilizes
a key agreement algorithm to generate a symmetric key, which serves to
initialize a chain of encryption of symmetric keys, thus internally using a SE
scheme for the effective encryption of data. The high-level algorithm, which
involves elliptic curve Diffie-Hellman (ECDH), a key derivation function
(KDF), a key wrapping algorithm, and OpenPGP.SE, is the following.

A key is derived using ECDH, then passed through a KDF to transform it
into a key encryption key (KEK). Then a session key is generated, which
encrypts the data, and is stored encrypted by the KEK. It is possible for a
user to manually add a key for a different algorithm, namely RSA on the
condition that the key be at least 2048 bits long, or one of the NIST elliptic
curves. In the following, we only consider the use of ECC with Curve25519,
and refer to that PKE as OpenPGP.PKE.

2.3.3 HMAC-SHA256

As Message Authentication Code (MAC), HMAC-SHA256 is used, and we
refer to it as OpenPGP.HMAC. HMAC-SHA256 has been shown to be a PRF
by Bellare [9], and as a MAC built from a pseudo-random-function (PRF)
is WUF-CMA secure [10, Proposition 7.3], we have that HMAC-SHA256 is
WUF-CMA.

2.3.4 EdDSA

As for PKE, the default digital signature algorithm in Proton Drive, Edwards-
Curve Digital Signature Algorithm (EdDSA), uses Curve25519, but it is also
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possible to import keys for RSA signature or other curves. Again, we de-
note the use of Ed25519 (EdDSA on Curve25519) as a DS as OpenPGP.DS
and disregard the other options.

Ed25519 has been shown to be SUF-CMA by Brendel et al. [15].

2.3.5 SHA256

As a generic hash function, Proton Drive uses Secure Hash Algorithm (SHA)256,
which we denote as OpenPGP.Hash.

2.3.6 bcrypt

bcrypt is a key derivation function (KDF) which is used to derive a passphrase
(the name given to a key used for ”locking” —that is, encrypting— another
key), as well as as part of the user authentication.

2.3.7 SRP

SRP is an interactive protocol between a client and a server and belongs to
the family of aPAKEs. The server holds a password-derived value which
is used to verify that the client knows the password. This value is created
by the client during the password registration as follows: the client picks a
salt s, computes v = gH(s,p) mod N (where p is the password, H is a hash
function, N is a Sophie Germain prime, and g is a generator of Z∗N are SRP
parameters), and sends s and v to the server, which links them to the identity
of the client. To verify that the client has knowledge of the password, they
both create a value derived from ephemeral asymmetric keys, and the server
deduces that the client knows the password if both values are equal.

2.4 OpenPGP

OpenPGP is a standard defining formats for secure exchange and storage
of data, and is based on PGP (Pretty Good Privacy), an encryption program
released in 1991 by Phil Zimmermann. Its current official version, and that
which is used for all Proton applications, is RFC4880 [27], but a revision
of the document, crypto refresh [56], is submitted for validation. The use
of OpenPGP was motivated by the fact that the company already had an
OpenPGP implementation, due to its first product being a mailing service.

2.4.1 Messages and Packets

To achieve confidentiality and integrity for the data it handles, OpenPGP
uses symmetric and asymmetric encryption as well as signature algorithms.
It therefore needs to manipulate keys, signatures and encrypted data. All of
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these are formatted in blocks called messages, which themselves are formed
from one or more data units named packets, where each packet has a given
type indicating what it contains. The type of a packet is indicated in the first
byte of its header.

The rest of the header is used to indicate the length of the packet. This value
can either be entirely determined in the header, in which case its maximal
possible size is around 4MiB, or, for a data packet whose final length is not
known at first, it can give a partial body length, meaning that the packet
is actually composed of multiple chunks, with each chunk starting with an
indication of its length. Only the former is used in Proton Drive.

In the next subsections, we give an overview of the various parts of Open-
PGP that Proton Drive utilizes.

2.4.2 Keys

Asymmetric keys

In OpenPGP, asymmetric keys are stored in key material packets (KM packet),
which encapsulate either a public key, that contains only the public key ma-
terial, or a private key, in which case it comprises both the public and secret
key material. An interesting thing to note is that in RFC4880 [27], when en-
crypting a private key for storage, only the secret key material is encrypted,
meaning that there is no integrity protection on the public key material and
a verification step should be added after decryption to check that both parts
of the key match.

Moreover, a key can be a subkey, meaning it is associated to a primary key,
which allows to constitute some form of keyring. A subkey only differs
from a normal key by its tag; its bound to a given primary key is indicated
by a (separate) subkey binding signature packet. Since the primary key is
required to sign such a packet, it is necessary for it to be a signing key.
Typically, applications use a primary signing key to identify the user, and
associate a subkey to it for encryption.

Every key is identified either by its fingerprint, which consists of a hash
digest of the key, or by its key ID, which corresponds to the first sixty-four
bits of the fingerprint. This allows to identify which key was used to sign or
encrypt a given packet.

Symmetric keys

Symmetric keys are called session keys and are used to encrypt messages.
They are randomly generated and have the format of the key for the cipher
that is being used, e.g. if the encryption cipher is AES-256, the session key
is 32 bytes long.
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Symmetric keys need to be encrypted for storage. There are two types of
packets for that, namely public-key encrypted session key (PKESK) packets
and symmetric-key encrypted session key (SKESK) packets, for asymmetri-
cally and symmetrically encrypted session keys respectively. These can be
prepended to a packet encrypted by the session key they contain. It is to be
noted that SKESK packets are not encrypted directly by another session key,
but rather use passphrases, which we describe next.

Passphrases

Passphrases are used to encrypt keys symmetrically. In contrast to sym-
metric keys, they do not need to respect the key format of the block cipher,
because they are passed through the KDF of OpenPGP, string-to-key (S2K).
The way S2K works is by passing the provided passphrase and (in the case
of a salted S2K) a salt one or more times through a hash function. The num-
ber of hash iterations, the presence and value of a salt as well as the hash
functions to use are all indicated in a specific packet type called an S2K
packet. In the case of Proton, Iterated and Salted S2K is used, with SHA256
as hash function.

If a passphrase is used, we say that it locks and unlocks a key instead of
encrypting and decrypting it.

2.4.3 Signatures

Signatures are used to link the knowledge of a secret, which is generally
recognized as a proof of identity, to some data. The main uses of this are
to show ownership, give a certification (typically to recognize that some key
belongs to a given user) or revoke it, and key binding (as mentioned in
Section 2.4.2).

Note that signatures are not made for confidentiality, and may they therefore
leak information about the data they sign. In our context, signatures are
applied on top of unencrypted data, to give an authenticity guarantee on the
content (i.e. the content has not changed since the signature was computed).
Therefore, revealing information is problematic. To mitigate this, OpenPGP
signatures compute a digest of the message and the signature algorithm
is applied to that digest rather than to the message itself. This operation is
part of the OpenPGP signature algorithm. We call the cryptographic scheme
which combines the hashing with the DS scheme OpenPGP.DS.

The packets holding signatures are called Signature Packets. Their body
starts with metadata which includes the signature version, the identifiers of
the algorithms used to hash and sign the data, and signature subpackets,
which are used to give usage indications about the data being signed. The
last element in the Signature Packet is the signature itself, which is com-
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puted over the hash of a concatenation of parts of the metadata, and the
data to be signed. To facilitate checking that a signature is valid, an Open-
PGP message may start with a packet called a One-Pass Signature Packet,
which contains the information about the hashing and signing algorithms
as well as the signing key. This allows to check the signature by doing one
pass (hence the name) on the OpenPGP message.

A signature can be qualified as attached or detached depending on whether
it is stored alongside the data it signs or not. If the encryption scheme
used provides some authentication, attached signatures benefit from it as
the signature is encrypted together with the plaintext, which makes them
harder to tamper with. In the rest of this paper, we use OpenPGP.AttSig
to denote the DS that returns the concatenation of a signature of a message
and the message instead of just the signature.

OpenPGP.AttSig presents the same properties as OpenPGP.DS, as the only
difference between the two is whether the signature and message are han-
dled separately or together.

Signing Keys

When creating a new asymmetric key pair, it should immediately be signed
in order to bind it to its owner, and specify its usage. This is done through
a so-called self-signature, or subkey binding signature. Each user has a
signing key which is bound to its identity, and which is what we call the
primary key of the keyring of the user. To mark a key (which can be either
a signing key or an encryption key) as belonging to that keyring, it needs
to be signed by the primary key. Alongside the key itself, we also sign
information about its usage, i.e. things like the algorithm for which it is
suitable, the creation date and the validity status of the key. This whole
thing forms a self-signature. Note that the primary key is also part of the
keyring, and that as such, a self-signature also needs to be computed on that
key.

It is also possible for a key to be signed by someone who doesn’t own it. This
is used to indicate that that user recognizes that key as belonging to some
given user and establishes the level of trust that is put into that binding. If
such a signature already exists, a revocation signature could also be emitted
in order to withdraw that certification.

2.4.4 Encrypted Data

In OpenPGP, data is symmetrically encrypted and stored in symmetrically
encrypted integrity protected data packets (SEIPD). Symmetrically encrypted
data packets also exist for legacy, but they are deprecated.
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Figure 2.19: In the modified CFB mode of encryption used by OpenPGP, the input to the
regular CFB mode derived from the plaintext. r is a sixteen bytes value generated uniformly at
random.

All data is encrypted in CFB mode, and the block cipher that is used de-
pends on the implementation (Proton applications use AES-256). The initial
vector (IV) is specified as all zeros. Instead of relying on the IV for random-
ness, OpenPGP prefixes random bytes to the data before it is encrypted. The
number of bytes is equal to the block size of the cipher in bytes, plus two
(16 + 2 = 18 bytes for AES-256), and the last two octets are a repetition of the
two preceding.

To provide some integrity, the plaintext is appended two constant octets,
and twenty octets corresponding to the SHA-1 hash of all of what precedes
are appended afterwards. This hash is called Modification Detection Code
(MDC) and serves to detect errors in the plaintext when decrypting.

We provide a graphical representation of the input construction in Fig. 2.19.

We call OpenPGP.SE the cryptographic scheme which creates an input as
described above and applies AES-CFB on top of it. The key generation al-
gorithm is the same as that of AES-CFB. The encryption algorithm first con-
structs the input and passes it to AES-CFB for encryption. The decryption
algorithm applies AES-CFB decryption, and then checks that the format of
the input is correct. If it is, it returns the plaintext, otherwise it returns ⊥.

2.4.5 Usages

In the following, we define a few blocks that are frequently used in Open-
PGP.

We start by describing the classical use of OpenPGP, where a public encryp-
tion key is used on a randomly generated session key that encrypts the data
rather than on the data itself. This forms a PKE scheme which we call Hyb
for hybrid because both symmetric and asymmetric cryptography are used
internally. Its key generation algorithm is the key generation algorithm of
OpenPGP.PKE and we specify its encryption algorithm in Algorithm 1 and
its decryption algorithm in Algorithm 2. The entire scheme is illustrated in
Fig. 2.20.

OpenPGP does not provide the possibility of symmetrically encrypting a
key with a symmetric key directly. To circumvent this restriction, a locking
mechanism is used, which we call PSE, for password symmetric encryption.
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Algorithm 1: OpenPGP.Hyb.Encpuk(m)

Input: puk ∈ OpenPGP.PKE.PuK
m ∈ OpenPGP.SE.M

Output: csk ∈ OpenPGP.PKE.C
c ∈ OpenPGP.SE.C

1 sk $← AES-256.Gen() //Generate a session key

2 csk
$← OpenPGP.PKE.Encpuk(sk)

3 c $← OpenPGP.SE.Encsk(m)
4 return csk, c

Algorithm 2: OpenPGP.Hyb.Decprk(csk, c)
Input: prk ∈ OpenPGP.PKE.PrK

csk ∈ OpenPGP.PKE.C
c ∈ OpenPGP.SE.C

Output: sk ∈ OpenPGP.SE.K
m ∈ OpenPGP.SE.M

1 sk← OpenPGP.PKE.Decprk(csk)

2 m← OpenPGP.SE.Decsk(c)
3 return sk, m

Figure 2.20: The Hyb PKE scheme.
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This corresponds to a SE scheme where the key space is the set of possible
passwords, Bytes∗, and the message space is the key space of either a SE
or a PKE scheme. Note that the key generation is not uniformly random in
practice because the password is picked by a user. We specify the encryption
algorithm in Algorithm 3 and the decryption algorithm Algorithm 4. The
entire scheme is illustrated in Fig. 2.21.

Algorithm 3: OpenPGP.PSE.Lockpp((puk, prk))
Input: pp ∈ OpenPGP.PSE.PP //The space of passphrases.

(puk, prk) ∈ OpenPGP.SE.K ∪OpenPGP.PKE.K
Output: l(puk,prk) ∈ OpenPGP.SE.C

1 sk← OpenPGP.S2K(pp)

2 l(puk,prk)
$← OpenPGP.SE.Encsk((puk, prk))

3 return l(puk,prk)

Algorithm 4: OpenPGP.PSE.Unlockpp(l(puk,prk))

Input: pp ∈ OpenPGP.PSE.PP //The space of passphrases.

l(puk,prk) ∈ OpenPGP.SE.C
Output: (puk, prk) ∈ OpenPGP.SE.K ∪OpenPGP.PKE.K

1 sk← OpenPGP.S2K(pp)
2 (puk, prk)← OpenPGP.SE.Decsk(l(puk,prk))

3 return (puk, prk)
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2. Background

Figure 2.21: The PSE SE scheme. Here, we give an example where an encryption key pair is
locked, but it can also be applied on a signature key pair.
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Chapter 3

The Proton Drive Protocol

In this chapter, we provide a description of the Proton Drive protocol which
serves as a basis for analysis. Note that there are several implementations
of Proton Drive, namely one for each platform for which Proton Drive has a
client; we aim to describe the underlying protocol rather than its implemen-
tations, unless they all noticeably deviate from the planned protocol in the
same way.

Proton Drive is the cloud storage service from Proton AG. As such, it is
used to store files and folders from users on the infrastructure provided by
Proton. Ideally, the experience for a user should be as close as possible to
that of accessing local files on their computer. However, as files are stored
on a remote machine, it is not possible to replicate it exactly, because there
are necessarily intermediates introducing authentication steps and delays
which are not present on a local storage. Keeping interface elements such
as the tree-like structure of the file system helps keep that familiar feeling.

The user interface is not the only place where Proton Drive retrieves that
characteristic of file systems. The key hierarchy follows the same structure,
with nodes in the tree corresponding to files, folders and helpers for user au-
thentication or access control. Links between nodes represent the encryption
of a child using the keys of its parents, where all cryptographic functions
being called from the OpenPGP library.

In more detail, all keys used by Proton Drive are kept in a key hierarchy
containing both signature and encryption keys. One signature key is gener-
ally used for every signature created by a user, because it is attached to the
identity of that user, specifically to an email address belonging to that user.
On the other hand, there is one encryption key associated to each node in
the key hierarchy, and the encryption key of a node is used to encrypt both
the key and data of its children. Altogether, the resulting key hierarchy
structure closely follows that of the underlying file system, with only a few
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3. The Proton Drive Protocol

Figure 3.1: An example of a file system and its associated key hierarchy. Blue key pairs represent
encryption keys, and red key pairs represent signature keys. Blue arrows represent the key pair
at their start being used for encryption on the key pair and/or file or folder they point to. Red
arrows are used in the same way but for signatures.

auxiliary nodes and the signature keys as outliers. An example illustration
of a file system and its associated key hierarchy is given in Fig. 3.1.

As for a typical file system, once the user is authenticated to the server,
every file or folder in the volume can be accessed from an entry point, the
root folder, by trickling down the file system tree and decrypting the key
and data at every level with the encryption key from the parent object and
the right signature key. In each link between a node and its children, a
combination of encryption and authentication through signatures is used.
This combination is called signcryption, and the inverse operation is called
unsigncryption.

Like all Proton applications, the Proton Drive protocol is built using the O-
penPGP message formatting standard. Specifically, cryptographic functions
are called from GopenPGP and OpenPGP.js, two libraries of which Proton
AG is a maintainer. OpenPGP signatures and encryption are used to provide
both authentication and confidentiality.

Proton Drive aims to secure online storage using end-to-end encryption
(E2EE), endeavoring for the contents and metadata of any file, folder or
key to only be accessible with the authorization of their owner. All the keys
are generated on the client-side, and the processing of the data, metadata
and keys is also done locally. The server only acts as an authenticator and
a storage service. For each user, an allotted memory space which we call
the volume is kept, and the whole file system of the user is stored on that
volume. The user can then send and retrieve the encrypted data to and from
the server.
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3.1. Use of OpenPGP

We start by presenting the way Proton Drive uses OpenPGP in Section 3.1
in order to be able to concretely explain the different objects that are used in
the protocol and how they combine in Section 3.2, and finish by giving the
security goals that Proton Drive claims to achieve in Section 3.3.

3.1 Use of OpenPGP

In the Proton Drive protocol, OpenPGP.Hyb.Enc and OpenPGP.PSE.Lock, two
basic OpenPGP building blocks that we presented in Section 2.4.5, are used
together in order to chain several OpenPGP encryptions.

These two cryptographic schemes by themselves do not provide any cipher-
text integrity guarantees. This is due to the fact that the part of the key
which is used for encryption is public, and that public parts of keys are not
encrypted. Therefore, anyone who can access the public key can produce a
valid ciphertext for any message they want. In the setting of Proton Drive
this is not desirable; instead, we expect an encryption to be bound to the
identity of the user performing it by the use of a secret key. Because of this,
a signature of the passphrase by the signing key linked to the identity of
the user is added. Note that the passphrase is not encrypted before signa-
ture, because it is assumed that its high entropy suffices to make its recovery
difficult using the signature only.

This forms a signcryption scheme, which we call hybrid signed encryption
(HybSig). Its key generation functions are respectively that of the underlying
PKE and DS schemes, namely

OpenPGP.HybSig.SGen = OpenPGP.DS.Gen

and
OpenPGP.HybSig.RGen = OpenPGP.Hyb.Gen.

We specify the pseudocode of the signcryption algorithm in Algorithm 5
and of the unsigncryption in Algorithm 6, and give an illustration of HybSig
in Fig. 3.2.

3.2 Structure

Proton Drive is heavily centered around storage, with the only operation
which is not directly storage-related being user authentication, which uses
an interactive protocol between the client and server.

The construction that Proton Drive uses for file hierarchy is the same as the
one that is used in classical file systems. Semantically, there are two objects
that exist, folders and files. A folder is a container, which can hold other
folders or files, and a file is an object containing file data. We call the objects
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3. The Proton Drive Protocol

Algorithm 5: ProtonDrive.HybSig.SCsik,puk((puk′, prk′))
Input: sik ∈ OpenPGP.Sign.PrK

puk ∈ OpenPGP.PKE.PuK
(puk′, prk′) ∈ OpenPGP.PKE.K ∪OpenPGP.DS.K

Output: csk ∈ OpenPGP.PKE.C
σpp ∈ OpenPGP.PKE.C
cpp ∈ OpenPGP.SE.C
l(puk′,prk′) ∈ OpenPGP.SE.C

1 pp $← OpenPGP.PSE.Gen() //Generate a passphrase.

2 σpp ← OpenPGP.DS.Signsik(pp)

3 csk, cpp
$← OpenPGP.Hyb.Encpuk(pp)

4 l(puk′,prk′)
$← OpenPGP.PSE.Lockpp((puk′, prk′))

5 return csk, σpp, cpp, l(puk′,prk′)

Algorithm 6: ProtonDrive.HybSig.USCvk,prk(csk, σpp, cpp, l(puk′,prk′))

Input: vk ∈ OpenPGP.Sign.PuK
prk ∈ OpenPGP.PKE.PrK
csk ∈ OpenPGP.PKE.C
σpp ∈ OpenPGP.PKE.C
cpp ∈ OpenPGP.SE.C
l(puk′,prk′) ∈ OpenPGP.SE.C

Output: (puk′, prk′) ∈ OpenPGP.PKE.K ∪OpenPGP.DS.K ∪ {⊥}
1 sk, pp← OpenPGP.Hyb.Decprk(csk, cpp)

//Verify the passphrase.

2 if OpenPGP.DS.Vfyvk(σpp, pp) = ⊥ then
3 return ⊥
4 (puk′, prk′)← OpenPGP.PSE.Unlockpp(l(puk′,prk′))

5 return (puk′, prk′)
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3.2. Structure

Figure 3.2: The HybSig signcryption scheme.

contained in a folder its children, and the folder itself is the parent of these
objects. In a non-encrypted file system, the link between a parent folder and
its children is done with pointers, namely a list of references to every child.
For an encrypted storage, we additionally want a key to be associated to
each node, which is used as encryption key for its children if the node is a
folder, or for the file data itself if the node is a file.

The aim of encryption is to provide confidentiality, but we also want au-
thentication on the files. Every folder or file belongs to a user, and the user
provides a signature in every node of its file system, or of every file it mod-
ifies.

Syntactically, Proton Drive uses a several object types, to represent users,
to provide and manage access to the files and folders, and to to keep the
names and metadata of files and folders. Except for the topmost level, every
object has a parent whose key is used to encrypt and decrypt the object, and
retrieving the information contained in a specific node can hence be done
by decrypting the whole chain from the topmost level down to the node in
question (while checking that all signatures are correct). In the following
subsection, we present the different object types used in Proton Drive, and
give the algorithms used to encrypt and decrypt them.

3.2.1 Users and Addresses

A user is an entity interacting with Proton Drive through an account using
an application on their device or browser which we call the client. Upon
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3. The Proton Drive Protocol

registering, a user provides the server with some value derived from its
password, which is used for authentication at each login. The server only
sends back the data that a user stored if the authentication was successful.
We represent this as a new authenticated session being established between
the client and server upon calling SRP.Server.Vfy⇌1 with the correct pass-
word. The user can then query any value in its volume using this session.

Users are identified by their ID, and each have a key which allows them to
sign and asymmetrically encrypt data. One or more email addresses, each
with their own address key, are linked to a user. If several addresses belong
to the same user, one of them is defined as the default address and, unless
otherwise specified, that address provides the signing key and encryption
address key used in drive. In the rest of this report, we only consider the
default address. This could be extended to have an address that is shared
between several people in the future (e.g. for company services).

Both the user key and address key are actually keyrings composed of a
primary signing key and an encryption key. In general cases, more than
one key of each type can be contained in a keyring, in which case one of
them needs to be marked as the default, but we ignore this possibility in our
analysis, as only one signing key and one encryption key are used. The way
keyrings are formed is described in Section 2.4.2.

The keys are locked for storage on the server. We call ProtonDrive.UserKey
the SE scheme that is used to lock and unlock them. The key generation
function corresponds to the user picking a string as a password, and is
therefore not uniformly random. We give the pseudocode of the signcryp-
tion of a user key in Algorithm 7 and of its unsigncryption in Algorithm 8,
and give an illustration in Fig. 3.3. Note that we also include user authenti-
cation in the scheme, and that decryption can fail if the user provides a bad
password.

We call ProtonDrive.AddressKey the signcryption scheme that is used to
encrypt and decrypt the share. The sender key generation algorithm returns
the user signature key pair as the DS key pair and the receiver key gener-
ation algorithm returns the user encryption key as the PKE key pair. We
define the pseudocode of the signcryption algorithm in Algorithm 9 and of
the unsigncryption algorithm in Algorithm 10, and give an illustration of
the entire scheme in Fig. 3.4.

Throughout the rest of the structure, objects use the signing key of their
owner address in order to sign their attributes. To this end, they keep track
of the identity of the address who created them.

1We use ⇌ as a subscript to emphasize that this is an interactive call to the server.
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3.2. Structure

Algorithm 7: ProtonDrive.UserKey.Lock(password, (pukuser, prkuser))

Input: password ∈ String

(pukuser, prkuser) ∈ OpenPGP.PKE.K ∪OpenPGP.DS.K
Output: saltSRP ∈ Bytes16

srpVeri f ier ∈ Z∗SRP.N
saltkey ∈ Bytes16

locked(pukuser ,prkuser) ∈ OpenPGP.SE.C
//Create a verifier for SRP authentication.

//The verifier value is sent to the server and kept by it.

1 saltSRP
$← Bytes16

2 hpassword ← bcrypt(srpSalt, password)
3 for i from 0 to 3 do
4 hpassword ← OpenPGP.Hash.h(hpassword)

5 srpVeri f ier ← SRP.GenerateVerifier(hpassword)

//Lock the user key.

6 saltkey
$← Bytes16

7 pp← bcrypt(keySalt, password)

8 l(pukuser ,prkuser)
$← OpenPGP.PSE.Lockpp((pukuser, prkuser))

9 return saltSRP, srpVeri f ier, saltkey, l(pukuser ,prkuser)

Figure 3.3: User registration and authentication.
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Algorithm 8: ProtonDrive.UserKey.Unlock(password, srpSalt, srpVeri f ier,
keySalt)

Input: password ∈ String

saltSRP ∈ Bytes16

srpVeri f ier ∈ Z∗SRP.N
saltkey ∈ Bytes16

Output: (pukuser, prkuser) ∈ OpenPGP.PKE.K ∪OpenPGP.DS.K
//Verifying is done by communicating with the server, who establishes an

authenticated session if the client can prove that it knows the

password. The value password itself is never sent to the server.

1 hpassword ← bcrypt(saltSRP, password)
2 for i from 0 to 3 do
3 hpassword ← OpenPGP.Hash.h(hpassword)

4 authSession← SRP.Server.Vfy⇌(hpassword)

5 if authSession = ⊥ then
6 return ⊥
//Retrieve the locked key.

7 l(pukuser ,prkuser) ← Server.getLockedUserSubkey(authSession)

//Unlock the key.

8 pp← bcrypt(saltkey, password)
9 (pukuser, prkuser)← OpenPGP.PSE.Unlockpp(l(pukuser ,prkuser))

10 return (pukuser, prkuser)

Algorithm 9: ProtonDrive.AddressKey.SCpukuser ,sikuser((pukaddr, prkaddr))

Input: pukuser ∈ OpenPGP.PKE.PuK
sikuser ∈ OpenPGP.DS.PrK
(pukaddr, prkaddr) ∈ OpenPGP.PKE.K ∪OpenPGP.DS.K

Output: csk ∈ OpenPGP.PKE.C
cppaddr ∈ OpenPGP.SE.C
σppaddr ∈ OpenPGP.DS.S
l(pukaddr ,prkaddr) ∈ OpenPGP.SE.C

1 return ProtonDrive.HybSig.SCpukuser ,sikuser
((pukaddr, prkaddr))
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3.2. Structure

Algorithm 10: ProtonDrive.AddressKey.USCprkuser ,vkuser(csk, cppaddr , σppaddr ,
l(pukaddr ,prkaddr))

Input: prkuser ∈ OpenPGP.PKE.PrK
vkuser ∈ OpenPGP.PKE.PuK
csk ∈ OpenPGP.PKE.C
cppaddr ∈ OpenPGP.SE.C
σppaddr ∈ OpenPGP.DS.S
l(pukaddr ,prkaddr) ∈ OpenPGP.SE.C

Output: (pukaddr, prkaddr) ∈ OpenPGP.PKE.K ∪OpenPGP.DS.K ∪ {⊥}
1 return ProtonDrive.HybSig.USCprkuser ,vkuser

(csk, cppaddr , σppaddr ,
l(pukaddr ,prkaddr))

Figure 3.4: Address registration and authentication.
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Figure 3.5: Share creation and retrieval.

3.2.2 Shares

Shares are the entry points to the drive file system. They can point to a
folder or a file. Each file hierarchy has a root share, which represents the
entry point to the basis of a volume, the root folder, but other shares can
also be created lower in the hierarchy.

As a share is the first object encountered when entering the file system, it
directly uses the encryption key of the address for asymmetric encryption.
To encrypt the object that it points to, the share needs to have its own asym-
metric key, which we call the Share Key. Additionally, every share has a
session key, a share passphrase, and a signature over that passphrase.

We call ProtonDrive.Share the signcryption scheme which is used to en-
crypt and decrypt the shares. The sender key generation algorithm returns
the address signature key pair as the DS key pair and the receiver key gen-
eration algorithm returns the address encryption key as the PKE key pair.
We give the pseudocode of the signcryption algorithm in Algorithm 11 and
of the unsigncryption algorithm in Algorithm 12, and an illustration of the
whole scheme in Fig. 3.5.

Algorithm 11: ProtonDrive.Share.SCpukowner ,sikowner((pukshare, prkshare))

Input: pukowner ∈ OpenPGP.PKE.PuK
sikowner ∈ OpenPGP.DS.PrK
(pukshare, prkshare) ∈ OpenPGP.PKE.K

Output: csk ∈ OpenPGP.PKE.C
cppshare ∈ OpenPGP.SE.C
σppshare ∈ OpenPGP.DS.S
l(pukshare,prkshare) ∈ OpenPGP.SE.C

1 return ProtonDrive.HybSig.SCpukowner ,sikowner((pukshare, prkshare))

38



3.2. Structure

Algorithm 12: ProtonDrive.Share.USCprkowner ,vkowner(encSessionKey,
encSharePassphrase, signSharePassphrase, l(pukshare,prkshare))

Input: prkowner ∈ OpenPGP.PKE.PrK
vkowner ∈ OpenPGP.DS.PuK
csk ∈ OpenPGP.PKE.C
cppshare ∈ OpenPGP.SE.C
σppshare ∈ OpenPGP.PKE.C
l(pukshare,prkshare) ∈ OpenPGP.SE.C

Output: (pukshare, prkshare) ∈ OpenPGP.PKE.K
1 return ProtonDrive.HybSig.USCprkuser ,vkuser

(csk, cppshare , σppshare ,
l(pukshare,prkshare))

As its name suggests, a share can be used for sharing folders and files with
other people or accounts. For now, only sharing using a URL is imple-
mented, but it is also planned to add sharing between Proton accounts in
the future. The idea behind both kinds of sharing is to reencrypt the session
key of a share to make it accessible to whoever it is to be shared with.

URL Share

A URL share is an object used to give access to a regular share through a
URL link, which is generated by the owner of the share. The link is made up
of a part that is common to every shared file, https://drive.proton.me/
urls/, followed by ten characters between A-Z and 0-9 that identify where
the share is pointing. To lock the file, a password is created, that has a
mandatory random part and an optional part that can be chosen by the
owner. The random part consists of nine bytes encoded in URL-safe no-
padding base64. The custom part is a Unicode string of at most fifty charac-
ters. The entire URL password is then formed by concatenating both parts,
with the random part coming first.

To access the URL share, one can either put the URL password in the frag-
ment of the URL, which is the part after the # symbol that the queried server
does not receive, or be prompted for it when entering the web page. As for
the user password, the URL password is first checked to be correct with SRP
before being passed to bcrypt. The resulting hash is used to encrypt a URL
passphrase, which locks the session key of the underlying share.

The owner of the URL share also stores the URL password encrypted with
its address encryption key. Therefore, the owner does not need to remember
or store the password in plaintext in order to be able to access the share
through the URL share.

We call the scheme that is used for the creation and decryption of URL
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shares ProtonDrive.ShareURL and define it as (Gen,Enc,DecURL,DecUser),
where

• Gen : ∅ → OpenPGP.PKE.K× {a, ..., z, A, ..., Z, 0..., 9}10 × Chars≤50, the
password generation algorithm. The key pair is the address encryption
key pair of the creator of the URL share, the second part is generated
uniformly at random upon creation of the URL share, and the last part
can be chosen by the user but left blank by default.

• Enc as defined in Algorithm 13,

• DecURL as defined in Algorithm 14,

• DecUser as defined in Algorithm 15.

Note that this scheme differs from a regular SE or PKE scheme in that it
provides two ways to retrieve the URL share, namely through the encrypted
URL password for the URL share owner, or through the URL link for others.

Proton to Proton Share

While it is not implemented yet, sharing between Proton members can be
done by creating a new copy of the session key, encrypted with the address
key of the user we want to share it with.

We call ProtonDrive.ShareInternal the PKE scheme that is used to en-
crypt and decrypt the Proton to Proton share. The key generation algorithm
returns the address encryption key of the member who we want to share
the share to as the PKE key pair and the address signature key pair of the
share owner as the DS key pair. We define the encryption algorithm in
Algorithm 16 and the decryption algorithm in Algorithm 17.

3.2.3 Folders

A folder is composed of two main parts, namely a link and a node, a basic
structure that it shares with files. We present these two objects in the context
of a folder first and then explain how they are also used in files. The link is
the entry point to the folder for its parents, and the node connects it to its
children.

Link

A link is both responsible for linking a folder with any object pointing to it,
be it a parent folder or shares, and for holding data relevant to the folder,
namely its name and some extended attributes (xAttr). The name is a string
(with no length limit), whereas xAttr come in the form of a JSON document
in UTF-8 format storing information such as the last modification time. Both
are stored signed and encrypted, with the addition of being compressed
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Algorithm 13: ProtonDrive.ShareURL.Encpukowner(customPassword,
skshare)

Input: pukowner ∈ OpenPGP.PKE.PuK
randomPassword ∈ {a, ..., z, A, ..., Z, 0..., 9}10

customPassword ∈ Chars≤50

skshare ∈ OpenPGP.SE.K
Output: curlPassword ∈ OpenPGP.PKE.C

saltSRP ∈ Bytes16

srpVeri f ier ∈ SRP.V
saltpp ∈ Bytes16

lskshare ∈ OpenPGP.PSE.C
//Derive password and encrypt it for storage.

1 urlPassword← randomPassword ∥ customPassword

2 curlPassword
$← OpenPGP.PKE.Encpkowner(urlPassword)

//Create a verifier for SRP authentication.

3 saltSRP
$← Bytes16

4 srpVeri f ier ← SRP.GenerateVerifier(bcrypt(saltSRP, urlPassword))

//Generate and encrypt a passphrase.

5 saltpassphrase
$← Bytes16

6 urlPassphrase← bcrypt(saltpp, urlPassword)[29 :] //Remove the bcrypt

prefix.

//Lock the share session key.

7 lskshare

$← OpenPGP.PSE.LockurlPassphrase(skshare)

8 return curlPassword, saltSRP, srpVeri f ier, saltpp, lskshare

first for xAttr. Moreover, for non root folders, a HMAC tag of the name is
kept, which allows for quick lookup and prevents name duplicates without
needing to decrypt the name. Note that this value is not used for verification
purposes. The choice of a keyed primitive over a simple hash function here
serves to prevent the server from being able to check whether some folder
contains a file or folder of a given name, providing some metadata hiding.

We call ProtonDrive.Name the combination of a signcryption and MAC
scheme which is used to encrypt and decrypt file or folder names. The
sender key generation algorithm of the signcryption returns the address
signature key pair as the DS key pair, its receiver key generation algorithm
returns the parent node or share encryption key as the PKE key pair. Ad-
ditionally, the tag key for the MAC scheme is a key belonging to the parent
node and is encrypted with the encryption key of the parent. We give the
pseudocode of the signcryption and MAC algorithm in Algorithm 18 and of
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Algorithm 14: ProtonDrive.ShareURL.DecURL(url, randomPassword,
customPassword, saltSRP, saltpp)

Input: url ∈ String

randomPassword ∈ {a, ..., z, A, ..., Z, 0..., 9}10

customPassword ∈ Chars≤50

saltSPR ∈ Bytes16

saltpp ∈ Bytes16

Output: skshare ∈ OpenPGP.SE.K
//Use the URL password to authenticate to the server and retrieve the

locked session key.

1 urlPassword← randomPassword ∥ customPassword
2 authSession← SRP.Server.Vfy⇌(url, bcrypt(saltSRP, urlPassword))
3 if authSession = ⊥ then
4 return ⊥
//Recompute the passphrase.

5 urlPassphrase← bcrypt(saltpp, urlPassword)[29 :]

//Get and unlock the share session key.

6 lskshare ← Server.getLockedShareSessionKey(authSession)
7 skshare ← OpenPGP.PSE.UnlockurlPassphase(lskshare)

8 return skshare

Algorithm 15: ProtonDrive.ShareURL.DecUserprkowner(curlPassword,
saltpp, lskshare)

Input: prkowner ∈ OpenPGP.PKE.PrK
curlPassword ∈ OpenPGP.PKE.C
saltpp ∈ Bytes16

lskshare ∈ OpenPGP.PSE.C
Output: skshare ∈ OpenPGP.SE.K
//Use the URL password to authenticate to the server and retrieve the

locked session key.

1 urlPassword← OpenPGP.PKE.Decprkowner(curlPassword)

2 urlPassphrase← bcrypt(saltpp, urlPassword)[29 :]

//Unlock the share session key.

3 skshare ← OpenPGP.PSE.UnlockurlPassphrase(lskshare)

4 return skshare
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Algorithm 16: ProtonDrive.ShareInternal.Encpukother user(skshare)

Input: pukother user ∈ OpenPGP.PKE.PuK
skshare ∈ OpenPGP.SE.K

Output: cskshare ∈ OpenPGP.PKE.C
1 return OpenPGP.PKE.Encpukother user(skshare)

Algorithm 17: ProtonDrive.ShareInternal.Decprkother user(cskshare)

Input: prkother user ∈ OpenPGP.PKE.PrK
cskshare ∈ OpenPGP.PKE.C

Output: skshare ∈ OpenPGP.SE.K
1 return OpenPGP.PKE.Decprkother user(cskshare)

the unsigncryption and verifying algorithm in Algorithm 19. We moreover
give a graphical representation of the signcryption algorithm in Fig. 3.6.

Algorithm 18: ProtonDrive.Name.SCTagpukparent,sikowner ,hkparent(name)

Input: pukparent ∈ OpenPGP.PKE.PuK
sikowner ∈ OpenPGP.DS.PrK
tkparent ∈ OpenPGP.HMAC.K
name ∈ String

Output: cskname ∈ OpenPGP.PKE.C
cσ∥name ∈ OpenPGP.SE.C
τname ∈ OpenPGP.HMAC.T

//HMAC the name with the HMAC key of the parent. Use the HMAC to check

whether the name is a duplicate, if yes break.

1 τname
$← OpenPGP.HMAC.Tagtkparent(name)

2 if the name is a duplicate then
3 return ⊥
//Sign and encrypt the name.

4 σname
$← OpenPGP.AttSig.Signsikowner(name)

5 (cskname , cσ∥name)
$← OpenPGP.Hyb.Encpukparent

(σname)

6 return cskname , cσ∥name, τname

We call ProtonDrive.XAttr the signcryption scheme which is used to en-
crypt and decrypt xAttr. The sender key generation algorithm returns the
address signature key pair as the DS key pair and the receiver key genera-
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Algorithm 19: ProtonDrive.Name.USCVfyprkparent,vkowner ,tkparent(cskname , cσ∥name)

Input: prkparent ∈ OpenPGP.PKE.PrK
vkowner ∈ OpenPGP.DS.PuK
tkparent ∈ OpenPGP.HMAC.K
cskname ∈ OpenPGP.SE.C
cσ∥name ∈ OpenPGP.SE.C

Output: name ∈ OpenPGP.SE.C
1 σname ← OpenPGP.Hyb.Decprkparent

(cskname , cσ∥name)

2 name← OpenPGP.AttSig.Vfyvk(σname)
3 return name

Figure 3.6: The name signcryption algorithm.

tion algorithm returns the parent encryption key as the PKE key pair. We
give the pseudocode of the signcryption algorithm in Algorithm 20 and of
the unsigncryption algorithm in Algorithm 21. We moreover give a graphi-
cal representation of the signcryption algorithm in Fig. 3.7.

Should there be a future version of Proton Drive implementing symbolic
links, implying that a folder could be accessed from more than one place
under more than one name, it would be possible to keep more than one link
for any given folder.

Node

A node is the object representing the point in the file hierarchy where the
folder is situated. It contains information that links it to its children, like
the hash key that serve for hashing their name, the node key which is used
to encrypt their link key packets, as well as the passphrase and passphrase
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Algorithm 20: ProtonDrive.XAttr.SCpukparent,sikowner(xAttr)

Input: pukparent ∈ OpenPGP.PKE.PuK
sikowner ∈ OpenPGP.DS.PrK
xAttr ∈ String

Output: cσcomprXAttr ∈ OpenPGP.PKE.C

1 comprXAttr ← OpenPGP.Comp.Compr(xAttr)
2 σcomprXAttr ← OpenPGP.DS.Signsikowner(comprXAttr)

3 cσcomprXAttr

$← OpenPGP.PKE.Encpukparent(σcomprXAttr)

4 return cσcomprXAttr

Algorithm 21: ProtonDrive.XAttr.USCprkparent,vkowner(cσcomprXAttr)

Input: prkparent ∈ OpenPGP.PKE.PrK
vkowner ∈ OpenPGP.DS.PuK
cσcomprXAttr ∈ OpenPGP.PKE.C

Output: xAttr ∈ String

1 σcomprXAttr ← OpenPGP.PKE.Decprkparent(cσcomprXAttr)

2 comprXAttr ← OpenPGP.AttSig.Vfyvkowner(σcomprXAttr)

3 if comprAttr = ⊥ then
4 return ⊥
5 xAttr ← OpenPGP.Comp.Decompr(xAttr)

6 return xAttr

Figure 3.7: The xAttr signcryption algorithm.
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signature which are used to decrypt the node key. The list of the children of
a folder is stored in clear.

Creating a folder

In Algorithm 22, we describe the creation of a the link and node objects that
are the basis for both folders and files. Of the outputs, everything related
to the name and XAttr belongs to the Link of the folder, whereas the other
outputs, such as the encrypted key pair and the signcrypted HMAC key are
attributes of the Node.

We call ProtonDrive.LinkAndNode the combination of the signcryption sche-
me for the link and node key and the signcryptions of the name and xAttr
of a file or folder. The key generation algorithm returns the parent node
or share encryption key as the PKE key pair and the address signature key
pair of the owner as the DS key pair. We give the pseudocode of the sign-
cryption algorithm in Algorithm 22 and of the unsigncryption algorithm in
Algorithm 23.

In the current state of the drive, it is possible to access the same folder
(under the same name) from different objects, because apart from its parent
(if the current folder is not the root), there could also be shares pointing to
it. This is allowed by keeping as many copies of the session keys as there
are accesses to the folder.

3.2.4 Files

Files contain the same structure as folders do, with two exceptions. First,
the node of a file does not contain any hash key. Second, the node key
encrypts a session key instead, which is used to encrypt the file data. Addi-
tionally, files contain the data in itself, and a few data structures serving the
confidentiality and integrity of the packet.

Data Block

Data blocks correspond to the file chunks encrypted using the node session
key. Their size is at most 4MiB, and they are OpenPGP SEIPD packets using
AES-256 as block cipher, as described in Section 2.4.4.

The reason for chunking the data before encryption instead of letting Open-
PGP do bigger packets using partial length (as we described in Section 2.4.1)
is to be able to have MACs on smaller data chunks instead of on the whole
file. This could allow re-encrypting only the relevant data when some but
not all chunks are modified, thus reducing the amount of volume being
used by a revision. That feature is not implemented yet, but is part of the
documentation, meaning that there is a strive to integrate it at some point.
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Algorithm 22: ProtonDrive.LinkAndNode.SCpukparent,sikowner ,hkparent(
name, xAttr, (puknode, prknode), tknode)

Input: pukparent ∈ OpenPGP.PKE.PuK
sikowner ∈ OpenPGP.DS.PrK
tkparent ∈ OpenPGP.HMAC.K
name ∈ String

xAttr ∈ String

(puknode, prknode) ∈ OpenPGP.PKE.K
tknode ∈ OpenPGP.HMAC.K

Output: cskname ∈ OpenPGP.SE.C
cσ∥name ∈ OpenPGP.SE.C
τname ∈ OpenPGP.HMAC.H
csk ∈ OpenPGP.PKE.C
σpp ∈ OpenPGP.DS.S
cpp ∈ OpenPGP.SE.C
l(puknode,prknode) ∈ OpenPGP.SE.C
cσtknode

∈ OpenPGP.PKE.C
cσcomprXAttr ∈ OpenPGP.PKE.C

1 (cskname , cσ∥name, τname)
$← ProtonDrive.Name.SC.Tagpukparent,sikowner ,tkparent(name)

2 (csk, σpp, cpp, l(puknode,prknode))
$← ProtonDrive.HybSig.SCpukparent,sikowner

((puknode, prknode))

3 σtknode

$← OpenPGP.AttSig.Signsikowner(tknode)

4 cσtknode

$← OpenPGP.PKE.Encpuknode(σtknode)

5 cσcomprXAttr

$← ProtonDrive.XAttr.SCpukparent,sikowner(xAttr)

6 return (cskname , cσ∥name, τname), (csk, σpp, cpp, l(puknode,prknode)), cσtknode
, cσcomprXAttr
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Algorithm 23: ProtonDrive.LinkAndNode.USCprkparent,vkowner ,hkparent(
encNameKey, signcryptName, hmacName,

encPassphraseKey, signPassphrase,
encPassphrase, lockNodeKey,

enHmacKey, signcryptComprXAttr)
Input: prkparent ∈ OpenPGP.PKE.PrK

vkowner ∈ OpenPGP.DS.PuK
hkparent ∈ OpenPGP.HMAC.K
cskname ∈ OpenPGP.SE.C
cσ∥name ∈ OpenPGP.SE.C
τname ∈ OpenPGP.HMAC.H
csk ∈ OpenPGP.PKE.C
σpp ∈ OpenPGP.DS.S
cpp ∈ OpenPGP.SE.C
l(puknode,prknode) ∈ OpenPGP.SE.C
cσtknode

∈ OpenPGP.PKE.C
cσcomprXAttr ∈ OpenPGP.PKE.C

Output: name ∈ String

xAttr ∈ String

(puknode, prknode) ∈ OpenPGP.PKE.K
tknode ∈ OpenPGP.HMAC.K

1 name← ProtonDrive.Name.USCVfyprkparent,vkowner ,hkparent(cskname , cσ∥name)

2 (puknode, prknode)← ProtonDrive.HybSig.USCprkparent,vkowner
(csk, σpp, cpp,

l(puknode,prknode))

3 σtknode ← OpenPGP.PKE.Decprknode(cσtknode
)

4 tknode ← OpenPGP.AttSig.Vfyvkowner(σtknode)

5 xAttr ← ProtonDrive.XAttr.USCprkparent,vkowner(cσcomprXAttr)

6 if name = ⊥ or xAttr = ⊥ or nodeKey = ⊥ or hmacKey = ⊥ then
7 return ⊥
8 return name, xAttr, (puknode, prknode), tknode
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For each block, three new values are generated and stored: the first one
is a symmetric encryption of that block, the second one is the hash of that
encryption, and the third is an asymmetrically encrypted signature over the
plaintext block.

We start by defining a helper function in Algorithm 24 for file splitting.

Algorithm 24: ProtonDrive.SplitFile( f )
Input: f ∈ Bytes∗

Output: f 0, ..., f n ∈ Bytes≤ℓ //ℓ is the block length of OpenPGP.SE, 4MiB

1 ℓ← OpenPGP.SE.blockLength

2 n =
⌈
| f |−1
ℓ

⌉
3 for i from 0 to n− 1 do
4 f i ← f [i · ℓ : (i + 1) · ℓ]
5 f n ← f [n · ℓ :]

6 return ( f 0, ..., f n)

We define ProtonDrive.File, the signcryption scheme used for file encryp-
tion and authentication, composed of the four algorithms SGen, RGen, SC,
and USC. The sender key generation SGen returns the DS key pair of the
address of user creating or modifying that file, and the receiver key genera-
tion RGen the PKE key pair of the file node. The output of SC is composed
of several components, namely the encrypted session key, encrypted file
blocks, encrypted signatures on the file blocks, digests of each encrypted
file block and a signature on the concatenation of all those digests, which
is called the signed manifest. This is described in Algorithm 25. The actual
implementations of the USC algorithm in Proton Drive return two results,
the verification result on one side, and the unsigncrypted message on the
other. The reason for this is that if a file does not contain signatures or has
signatures which are invalid, which might happen for older files, then the
user might still want to have access to the contents of the file, and simply be
warned that something went wrong during its unsigncryption. We model
this as returning ⊥ when the verification result is ⊥ and the unsigncrypted
message otherwise. USC is described in Algorithm 26. Moreover, we give
an illustration of the signcryption algorithm in Fig. 3.8.

Revision

A revision corresponds to a state of a file. It holds the file data and the
information that protects the integrity of the file, as well as its extended
attributes, which contain information such as the size of the unencrypted
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Algorithm 25: ProtonDrive.File.SCpuknode,sikwriter( f )
Input: puknode ∈ OpenPGP.PKE.PuK

sikwriter ∈ OpenPGP.DS.K
f ∈ Bytes∗ with n =

⌈
| f |−1

OpenPGP.SE.blockLength

⌉
Output: csk ∈ OpenPGP.PKE.C

ci ∈ OpenPGP.SE.C for 0 ≤ i ≤ n
ci

σ ∈ OpenPGP.PKE.C for 0 ≤ i ≤ n
hi ∈ OpenPGP.Hash.H for 0 ≤ i ≤ n
σmani f est ∈ OpenPGP.DS.S

1 sk $← OpenPGP.SE.Gen()

2 csk
$← OpenPGP.PKE.Encpuknode(sk)

3 ( f 0, ..., f n)← ProtonDrive.SplitFile( f )

4 for i from 0 to n do

5 ci $← OpenPGP.SE.Encsk( f i)

6 hi ← OpenPGP.Hash.h(ci)

7 σi $← OpenPGP.DS.Signsikwriter
( f i)

8 ci
σ

$← OpenPGP.PKE.Encpuknode(σ
i)

9 σmani f est ← OpenPGP.DS.Signsikwriter
(h0∥...∥hn)

10 return (csk, (c0, ..., cn), (c0
σ, ..., cn

σ), (h0, ..., hn), σmani f est)

Figure 3.8: File data encryption.

50



3.2. Structure

Algorithm 26: ProtonDrive.File.USCprknode,vkwriter(csk, (c0, ..., cn),
(c0

σ, ..., cn
σ), (h0, ..., hn), σmani f est)

Input: prknode ∈ OpenPGP.PKE.PuK
vkwriter ∈ OpenPGP.DS.K
csk ∈ OpenPGP.SE.K
ci ∈ OpenPGP.SE.C for 0 ≤ i ≤ n
ci

σ ∈ OpenPGP.PKE.C for 0 ≤ i ≤ n
hi ∈ OpenPGP.Hash.H for 0 ≤ i ≤ n

σmani f est ∈ OpenPGP.DS.S
Output: f ∈ Bytes∗

1 valid← ⊤
2 sk← OpenPGP.PKE.Decprknode(csk)

3 if sk = ⊥ then
4 valid← ⊥
5 for i from 0 to n do
6 f i ← OpenPGP.SE.Decsk(ci)

7 if f i = ⊥ then
8 valid← ⊥

9 σi ← OpenPGP.PKE.Decprknode(c
i
σ)

10 if σi = ⊥ then
11 valid← ⊥

12 if OpenPGP.DS.Vfyvkwriter
( f i, σi) = ⊥ then

13 valid← ⊥
14 if OpenPGP.Hash.h(ci) ̸= hi then
15 valid← ⊥

16 if OpenPGP.DS.Vfyvkwriter
(h0∥...∥hn, σmani f est) = ⊥ then

17 valid← ⊥
18 if valid = ⊥ then
19 return ⊥
20 f ← f 0∥...∥ f n

21 return f

51



3. The Proton Drive Protocol

file and the last modification dates. Modifications to a file can be made by
creating a new revision; keeping multiple allows to have a versioning on
the file, and roll back if needed. Each file has at least one revision, for its
last valid state, and at most one draft, which is the temporary object created
during the modification of a file which is transformed into a revision when
uploaded definitively.

We call ProtonDrive.Revision the signcryption scheme which is used to
create and retrieve data from a revision. The key generation algorithm re-
turns the file node key as the PKE key pair and the address signature key
pair of the address writing to the file as the DS key pair. We define the
encryption algorithm in Algorithm 27 and the decryption algorithm in Al-
gorithm 28.

Algorithm 27: ProtonDrive.Revision.SCpuknode,sikwriter( f , xAttr)
Input: puknode ∈ OpenPGP.PKE.PuK

sikwriter ∈ OpenPGP.DS.K
f ∈ Bytes∗ with n =

⌈
| f |−1

OpenPGP.SE.blockLength

⌉
xAttr ∈ String

Output: csk ∈ OpenPGP.PKE.C
ci ∈ OpenPGP.SE.C for 0 ≤ i ≤ n
ci

σ ∈ OpenPGP.PKE.C for 0 ≤ i ≤ n
hi ∈ OpenPGP.Hash.H for 0 ≤ i ≤ n
σmani f est ∈ OpenPGP.DS.S
cσcomprXAttr ∈ OpenPGP.PKE.C

1 (csk, (c0, ..., cn), (c0
σ, ..., cn

σ), (h0, ..., hn), σmani f est)
$←

ProtonDrive.File.SCpuknode,sikwriter( f )

cσcomprXAttr

$← ProtonDrive.XAttrpknode,skwriter(xAttr)

return (csk, (c0, ..., cn), (c0
σ, ..., cn

σ), (h0, ..., hn), σmani f est), cσcomprXAttr

3.2.5 Photos

The photo feature consists of a parallel file tree with its own root share and
root folder, which is entirely dedicated to storing pictures. The files that
are stored in this tree can only be pictures, and may store more information
in their xAttr than a regular file, such as the time and position at which
the picture was taken. Moreover, there is no check on duplicates for folder
names in the Photo partition.

52



3.3. Threat model

Algorithm 28: ProtonDrive.Revision.USCprknode,vkwriter(csk, (c0, ..., cn),
(c0

σ, ..., cn
σ), (h0, ..., hn), σmani f est, cσcomprXAttr)

Input: prknode ∈ OpenPGP.PKE.PuK
vkwriter ∈ OpenPGP.DS.K
csk ∈ OpenPGP.SE.K
ci ∈ OpenPGP.SE.C for 0 ≤ i ≤ n
ci

σ ∈ OpenPGP.PKE.C for 0 ≤ i ≤ n
hi ∈ OpenPGP.Hash.H for 0 ≤ i ≤ n
σmani f est ∈ OpenPGP.DS.S
cσcomprXAttr ∈ OpenPGP.PKE.C

Output: f ∈ Bytes∗

xAttr ∈ String

1 f ← ProtonDrive.File.USCprknode,vkwriter(csk, (c0, ..., cn), (c0
σ, ..., cn

σ),

(h0, ..., hn), σmani f est)

xAttr ← ProtonDrive.XAttr.USCprknode,vkwriter(cσcomprXAttr)

if f = ⊥ or xAttr = ⊥ then
return ⊥

return f , xAttr

3.3 Threat model

We consider two threat models in our analysis. The first one, which we
call Client-to-Server communication, corresponds to the case where the user
and server are both honest, and a powerful man-in-the middle (MitM) at-
tacker able to bypass any protection on the communication channel can read
and write on the connection between the two. The second one is when one
or more users are communicating and the server is considered to be po-
tentially adversarial or compromised. We refer to this as End-to-End (E2E)
communication. We make this distinction to be able to express differences
in capabilities between a malicious server and other attackers.

3.3.1 Assumptions

We operate under certain assumptions, without which no security guarantee
can be given.

• The client application is the application provided by Proton. More pre-
cisely, an honest user runs one of the official Proton Drive clients, and
is not using a client implementation provided by an attacker. This is
important because if a user can be tricked into using a malicious client,
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Client-to-Server End-to-End

The adversary can observe any
traffic between the client and the
server.

The adversary has access to every-
thing that the server stores.

The adversary can send messages
to any client and to the server.

The server can send messages to
any client.

The adversary can modify mes-
sages between the client and
server.

The server can modify anything it
stores.

The adversary can drop messages
between the client and server.

The server can ignore client mes-
sages.

Figure 3.9: The capabilities of an adversary in a Client-to-Server setting and in an End-to-End
setting.

then an attacker can trivially retrieve its credentials, and therefore gain
complete access to the volume of that user.

• When queried for the public key corresponding to a given user email
address, the server returns the correct one. Ensuring that the right key
is accessible is the objective of Key Transparency, a project which aims
to provide integrity over the public keys of addresses that are kept
by the server, and we therefore consider it to be out of scope for our
considerations. This closes off the scope of key overwriting attacks on
keys linked to addresses, and consequently any trivial attack where
the key server simply replaces public keys with its own. Note that
with sharing between users not being implemented, this only has a
very limited impact on our considerations, because a user does not
need to query the key server to retrieve its own keys.

We list the capacities of the adversary in the Client-to-Server and End-to-
End settings in Fig. 3.9.

3.3.2 Security Claims

In their blog post on the Proton Drive threat model [52], Proton states that
they ”[...] have no way of reading your data or using it to build a profile on
you for advertising purposes [...]”, and that ”[...] if an attacker gains access to
data flows between your device and our servers, they will not be able to de-
crypt user files”, meaning that neither Proton themselves (in an End-to-End
setting) nor eavesdroppers (in a Client-to-Server setting) can get information
on the contents of user files. This is best modeled as indistinguishability un-
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der chosen ciphertext attack, because attackers in both models are able to
modify or add ciphertexts. This is also generally recognized to be a desir-
able security property for E2EE cloud storage services, where the server has
access to all of the encrypted data of the users.

On authenticity protection, Proton states on its web page [51] that ”Proton
Drive uses cryptographic signatures to verify the authenticity of your files
and folders, meaning that you’ll immediately detect any efforts to tamper
with your files.” For an adversary to not be able to modify the files of a user
without it being detectable, we need the file authentication mechanism to
provide at least weak unforgeability, meaning that it is not possible for an
adversary to create a valid ciphertext corresponding to a plaintext that has
never been stored before. If that property is not provided, it can lead to
framing attacks, where the attacker puts compromising content in its target
storage. We therefore consider that the file encryption aims to be protected
with WUF-CMA tags or signatures (defined in Fig. 2.10 and Section 2.2.4).

Additionally, we consider that no entity can have access to keys which do
not belong to it. In a setting where we are dealing with both signature
and encryption keys, and where the cryptographic schemes we consider are
signcryption schemes (as presented in Section 2.2.5), this implies outsider
security notions, specifically OUT-IND-CCA (defined in Fig. 2.14) for confi-
dentiality and OUT-WUF-CMA (defined in Fig. 2.15) for authenticity.

We give the exact games corresponding to the expected security properties
for the objects we want them to apply to, and evaluate whether the proper-
ties are satisfied in Chapter 4. The properties we expect are summarized in
Fig. 3.10.

We only ask for outsider security on signcryption schemes because the keys
getting accessed by non-authorized entities is considered as a breach of the
system. However, it is necessary to point out that this might need to be
reconsidered once sharing between Proton users user will be implemented.
Indeed, in that context, it is most probable that the setting would be such
that several users sharing writing rights on a file or folder will all have
access to the same encryption (or receiver) key, while each having to use
their address signature key as sender key. This would then require insider
integrity, where the adversary has the same goal as in OUT-WUF-CMA, but
with the additional knowledge of the encryption key.

Additionally, note that the confidentiality of the structure of the file system
is not protected, and that its integrity is only mostly ensured. The weakness
in integrity we are referring to is the lack of binding between a file or folder
and its name, which would allow shuffling of names among the children of
one same parent folder.
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Client-Server End-to-End Property

No external eavesdropper
can learn any information
about the data stored or
the keys from the data it
can observe.

The server cannot learn
any information about the
data stored or the keys.

OUT-IND-CCA

No MITM which has not
been granted writing per-
mission to a file or folder
by its owner can modify or
add a file or folder to it in
such a way that the added
object decrypts without er-
rors.

The server cannot modify
or add any object in the
volume of any user in such
a way that the added ob-
ject decrypts without er-
rors.

OUT-WUF-CMA

Figure 3.10: Summary of the security expected from the cryptographic schemes used in Proton
Drive, and the corresponding game-based security notions.
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Chapter 4

Security Proofs

In this chapter, we assess the security of the file encryption algorithm used
for the Proton Drive protocol. We focus on the confidentiality and authen-
ticity provided by ProtonDrive.File, a signcryption scheme built entirely
upon the OpenPGP library.

4.1 File Encryption

There are two properties that we wish for from file encryption: confiden-
tiality and authenticity in an outsider security setting. Specifically, given the
threat model which we discussed in Section 3.3, we identify OUT-IND-CCA
and OUT-WUF-CMA as the security goals to aim for in the compromised or
malicious provider threat model.

We attempt to split the proof for OUT-IND-CCA security into confidential-
ity and authenticity, following a strategy similar to that used for symmetric
encryption schemes, where AE security implies IND-CCA security. We start
by successfully proving that ProtonDrive.File is OUT-IND-CPA, provided
that both OpenPGP.SE and OpenPGP.PKE are IND-CPA, in Section 4.1.1. But
then, ProtonDrive.File turns out to fail OUT-SUF-CMA security because
of an attack which we present in Section 4.1.2. This immediately implies
that it is also not OUT-IND-CCA, as explained in Section 4.1.3, and makes
showing that the combination of OUT-IND-CPA and OUT-SUF-CMA im-
plies OUT-IND-CCA for signcryption schemes out of scope for this thesis.
To evaluate the level of authenticity protection provided by the scheme, we
finally prove that ProtonDrive.File still satisfies OUT-WUF-CMA security
in Section 4.1.4.
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4.1.1 Confidentiality (Chosen Plaintext Attack)

As we show later on, ProtonDrive.File is not OUT-IND-CCA. We do
however give a proof of a weaker security notion, OUT-IND-CPA (defined
in Fig. 2.13).

Theorem 4.1 (OUT-IND-CPA of ProtonDrive.File) Let ProtonDrive.File
be the signcryption scheme used for signcryption of Proton Drive files as pre-
sented in Algorithm 25 and Algorithm 26. Let A be an adversary against the
OUT-IND-CPA security of ProtonDrive.File making at most q queries to its
oracle LoR, each of which has a message length of m, which is split into n blocks by
ProtonDrive.SplitFile. Then there exist adversaries BPKE and BSE such that

AdvOUT-IND-CPA
ProtonDrive.File(A) ≤ 2 · AdvIND-CPA

OpenPGP.PKE(BPKE)
+AdvIND-CPA

OpenPGP.SE(BSE).
(4.1)

Adversary BPKE makes at most (n + 1) · q queries to its oracle LoR, and the adver-
sary BSE makes at most n · q queries to its oracle LoR.

Proof (Theorem 4.1) We proceed by doing a three-hop game-hopping proof.
To this end, we define four games as follows:

G0 OUT-IND-CPAProtonDrive.File with b set to 0.

G1 The game G0 with two modifications. First, the encrypted session key csk
is the encryption of a new independent session key sk′. Second is that
the encrypted signatures ci

σ are computed on the second file f1 instead
of being computed on f0. These two changes are applied to the parts of
ProtonDrive.File pertaining to public-key encryption.

G2 The modification of game G1 such that the symmetrically encrypted file
blocks are computed on the second file f1 instead of f0. This also has
the consequence of changing the values of the ciphertext block digests
hi to the hashes of the ciphertext blocks computed on f1 and the signed
manifest σmani f est to the signature on the concatenation of these new hash
blocks.

G3 The modification of game G2 which restores csk to be the encryption of
the session key used for symmetric encryption rather than an indepen-
dent one. This game is equivalent to OUT-IND-CPAProtonDrive.File with
b set to 1.

For each of the three pairs of consecutive games, we show that an adver-
sary successfully distinguishing between the two games can also be used
to construct a successful adversary against either IND-CPAProtonDrive.PKE
or IND-CPAProtonDrive.SE, and that the advantage of the distinguishers is
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Games GA0 (), GA1 ()

1 (vk, sik) $← SGen()

2 (puk, prk) $← RGen()

3 b′ $← ALoR(vk, puk)

4 return b′

Oracle LoR( f0, f1)

1 if | f0| ̸= | f1|
2 return ⊥

3 sk $← OpenPGP.SE.Gen()

4 csk
$← OpenPGP.PKE.Encpuk(sk) // G0

5 sk′ $← OpenPGP.SE.Gen() // G1

6 csk
$← OpenPGP.PKE.Encpuk(sk′) // G1

7 f 0
0 , ..., f n

0 ← SplitFile( f0)

8 f 0
1 , ..., f n

1 ← SplitFile( f1) // G1

9 for i ∈ 0 to n + 1

10 ci $← OpenPGP.SE.Encsk( f i
0)

11 hi $← OpenPGP.Hash.h(ci)

12 σi $← OpenPGP.DS.Signsik( f i
0) // G0

13 σi $← OpenPGP.DS.Signsik( f i
1) // G1

14 ci
σ

$← OpenPGP.PKE.Encpuk(σ
i)

15 σmani f est
$← OpenPGP.DS.Signsik(h

0∥...∥hn)

16 return csk, c0, ..., cn, c0
σ, ..., cn

σ, h0, ..., hn, σmani f est

Figure 4.1: The first two games used for the confidentiality proofs.

therefore bounded by the sum of the advantages of the constructed adver-
saries playing against the IND-CPA game on the underlying cryptographic
schemes.

We start by giving the two games involved in the first hop in Fig. 4.1

Given an adversary A which can distinguish between these two games, G0
and G1, we build an adversary BPKE,1 against IND-CPAPKE in Fig. 4.2. That
new adversary generates the sender keys of the signcryption scheme. Then,
it calls the adversary A with the simulated oracle LoR′, which replicates the
behavior or the LoR oracles of game G0 and G1, and calls the LoR oracle
of IND-CPAPKE in the places where they differ, such that the output of the
oracle is the same as that of G0 when b = 0 and the same as that of G1 when
b = 1. The full details are given in Fig. 4.2.

Adversary BPKE,1 perfectly simulates game G0 if b = 0 and G1 if b = 1 for the
LoR oracle of IND-CPAPKE. Furthermore, since BPKE,1 halts and returns the
same output as A, we have that its advantage against game IND-CPAPKE is
at least as good as the advantage of A distinguishing G0 from G1. Eq. (4.2)
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Adversary BPKE,1(puk)

1 (vk, sik) $← SGen()

2 b′ $← ALoR′(vk, puk)

3 return b′

Simulated oracle LoR′( f0, f1)

1 if | f0| ̸= | f1|
2 return ⊥

3 sk $← OpenPGP.SE.Gen()

4 sk′ $← OpenPGP.SE.Gen()

5 csk ← LoR(sk, sk′)

6 f 0
0 , ..., f n

0 ← SplitFile( f0)

7 f 0
1 , ..., f n

1 ← SplitFile( f1)

8 for i ∈ 0 to n + 1

9 ci $← OpenPGP.SE.Encsk( f i
0)

10 hi $← OpenPGP.Hash.h(ci)

11 σi
0

$← OpenPGP.DS.Signsik( f i
0)

12 σi
1

$← OpenPGP.DS.Signsik( f i
1)

13 ci
σ

$← LoR(σi
0, σi

1)

14 σmani f est
$← OpenPGP.DS.Signsik(h

0∥...∥hn)

15 return csk, c0, ..., cn, c0
σ, ..., cn

σ, h0, ..., hn, σmani f est

Figure 4.2: The simulated adversary against IND-CPAPKE using adversary A.

follows from this.

Pr[G0(A)⇒ 1]− Pr[G1(A)⇒ 1] ≤ AdvIND-CPA
OpenPGP.PKE(BPKE,1). (4.2)

We continue onto our second hop. The games G1 and G2 are given in Fig. 4.3.

Given an adversary A which can distinguish between games G1 and G2, we
build an adversary BSE against IND-CPASE. That new adversary generates
the sender and receiver keys of the signcryption scheme. It then calls A with
the simulated oracle LoR′, which reproduces the behavior of the LoR oracles
of games G1 and G2. For the part where the aforementioned oracles differ,
LoR′ calls the LoR oracle of IND-CPASE, such that the output of the oracle is
the same as that of G1 when b = 0 and the same as that of G2 when b = 1.
The full details are given in Fig. 4.4. Note that the first change previously
made from G0 to G1 (on line 6 of Fig. 4.1) allows us to generate a value for
csk in the simulated oracle LoR′ even though the symmetric encryption key
is not known.
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Games GA1 (), GA2 ()

1 (vk, sik) $← SGen()

2 (puk, prk) $← RGen()

3 b′ $← ALoR(vk, puk)

4 return b′

Oracle LoR( f0, f1)

1 if |m0| ̸= |m1|
2 return ⊥

3 sk $← OpenPGP.SE.Gen()

4 sk′ $← OpenPGP.SE.Gen()

5 csk
$← OpenPGP.PKE.Encpuk(sk′)

6 f 0
0 , ..., f n

0 ← SplitFile( f0) // G1

7 f 0
1 , ..., f n

1 ← SplitFile( f1)

8 for i ∈ 0 to n + 1

9 ci $← OpenPGP.SE.Encsk( f i
0) // G1

10 ci $← OpenPGP.SE.Encsk( f i
1) // G2

11 hi $← OpenPGP.Hash.h(ci)

12 σi $← OpenPGP.DS.Signsik( f i
1)

13 ci
σ

$← OpenPGP.PKE.Encpuk(σ
i)

14 σmani f est
$← OpenPGP.DS.Signsik(h

0∥...∥hn)

15 return csk, c0, ..., cn, c0
σ, ..., cn

σ, h0, ..., hn, σmani f est

Figure 4.3: Games G1 and G2 of the confidentiality proof on ProtonDrive.File.

Adversary BSE perfectly simulates game G1 if b = 0 and G2 if b = 1 for
the LoR oracle of IND-CPASE. Furthermore, since BSE halts and returns the
same output as A, we have that its advantage against game IND-CPASE is
at least as good as the advantage of A distinguishing G1 from G2. Eq. (4.3)
follows from this.

Pr[G1(A)⇒ 1]− Pr[G2(A)⇒ 1] ≤ AdvIND-CPA
OpenPGP.SE(BSE). (4.3)

Our last hop is between games G2 and G3, which we give in Fig. 4.5.

If the adversary A is able to distinguish between games G2 and G3, we can
build an adversary BPKE,2 against IND-CPAPKE. BPKE,2 starts by generating
the sender keys for the signcryption scheme. It then calls the adversary
A with the simulated oracle LoR′, which recreates the behavior of the LoR
oracle from games G2 and G3, and uses the LoR oracle from IND-CPAPKE on
places where the aforementioned oracles differ. This implies that the output
of the simulated oracle is the same as that of G2 when b = 0 and the same as
that of G3 when b = 1. We give the full details of this reduction in Fig. 4.6.

Adversary BPKE,2 perfectly simulates game G2 if b = 0 and G3 if b = 1 for the
LoR oracle of IND-CPAPKE. Furthermore, since BPKE,2 halts and returns the
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Adversary BSE()

1 (vk, sik) $← SGen()

2 (puk, prk) $← RGen()

3 b′ $← ALoR′(vk, puk)

4 return b′

Simulated oracle LoR′( f0, f1)

1 if | f0| ̸= | f1|
2 return ⊥

3 sk′ $← OpenPGP.SE.Gen()

4 csk
$← OpenPGP.PKE.Encpuk(sk′)

5 f 0
0 , ..., f n

0 ← SplitFile( f0)

6 f 0
1 , ..., f n

1 ← SplitFile( f1)

7 for i ∈ 0 to n + 1

8 ci $← LoR( f i
0, f i

1)

9 σi $← OpenPGP.DS.Signsik( f i
1)

10 ci
σ

$← OpenPGP.PKE.Encpuk(σ
i)

11 hi $← OpenPGP.Hash.h(ci)

12 σmani f est
$← OpenPGP.DS.Signsik(h

0∥...∥hn)

13 return csk, c0, ..., cn, c0
σ, ..., cn

σ, h0, ..., hn, σmani f est

Figure 4.4: The simulated adversary against IND-CPASE using adversary A.

same output as A, we have that its advantage against game IND-CPAPKE is
at least as good as the advantage of A distinguishing G2 from G3. Eq. (4.4)
follows from this.

Pr[G2(A)⇒ 1]− Pr[G3(A)⇒ 1] ≤ AdvIND-CPA
OpenPGP.PKE(BPKE,2). (4.4)

Finally, we can compute a bound on the advantage of the adversary A play-
ing OUT-IND-CPAProtonDrive.File. To this end, we state and prove a simple
lemma about the addition of the advantages of two adversaries playing the
same game.

Lemma 4.2 Given an indistinguishability game G, and two adversaries A0 and
A1 playing that game, then there exists an adversary A such that

AdvG(A0) +AdvG(A1) ≤ 2 · AdvG(A).

Proof (Lemma 4.2) To show this, we show how to construct such an adver-
sary A, and prove that it satisfies our bound. We define adversary A as
picking either A0 or A1 uniformly as random, and returning the value that
the adversary it chose returns.
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Games GA2 (), GA3 ()

1 (vk, sik) $← SGen()

2 (puk, prk) $← RGen()

3 b′ $← ALoR(vk, puk)

4 return b′

Oracle LoR( f0, f1)

1 if | f0| ̸= | f1|
2 return ⊥

3 sk $← OpenPGP.SE.Gen()

4 sk′ $← OpenPGP.SE.Gen() // G2

5 csk
$← OpenPGP.PKE.Encpuk(sk′) // G2

6 csk
$← OpenPGP.PKE.Encpuk(sk) // G3

7 f 0
1 , ..., f n

1 ← SplitFile( f1)

8 for i ∈ 0 to n + 1

9 ci $← OpenPGP.SE.Encsk( f i
1)

10 hi $← OpenPGP.Hash.h(ci)

11 σi $← OpenPGP.DS.Signsik( f i
1)

12 ci
σ

$← OpenPGP.PKE.Encpuk(σ
i)

13 σmani f est
$← OpenPGP.DS.Signsik(h

0∥...∥hn)

14 return csk, c0, ..., cn, c0
σ, ..., cn

σ, h0, ..., hn, σmani f est

Figure 4.5: Games G2 and G3 of the confidentiality proof for the scheme ProtonDrive.File.

Adversary A()

1 b $← {0, 1}

2 b′ $← Ab()

3 return b′

Then, we have

2 · AdvG(A) = 4 · (Pr[G(A)]− 1/2)
= 4 · (1/2 · Pr[G(A0)] + 1/2 · Pr[G(A1)]− 1/2)
= 2 · (Pr[G(A0)]− 1/2) + 2 · (Pr[G(A1)]− 1/2)

= AdvG(A0) +AdvG(A1).

We have therefore successfully constructed an adversary satisfying our con-
dition. □

We can now show the bound on AdvOUT-IND-CPA
ProtonDrive.File(A). For legibility, we

call Pi the probability that Gi(A) returns 1.

From the definition of the advantage of OUT-IND-CPAProtonDrive.File with
the advantage rewriting lemma, we can extend the bound to Eq. (4.5) using
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Adversary BPKE(puk)

1 (vk, sik) $← SGen()

2 b′ $← ALoR′(vk, puk)

3 return b = b′

Simulated oracle LoR′( f0, f1)

1 if | f0| ̸= | f1|
2 return ⊥

3 sk $← OpenPGP.SE.Gen()

4 sk′ $← OpenPGP.SE.Gen()

5 csk
$← LoR(sk′, sk)

6 f 0
0 , ..., f n

0 ← SplitFile( f0)

7 f 0
1 , ..., f n

1 ← SplitFile( f1)

8 for i ∈ 0 to n + 1

9 ci $← OpenPGP.SE.Encsk( f i
1)

10 hi $← OpenPGP.Hash.h(ci)

11 σi $← OpenPGP.DS.Signsik( f i
1)

12 ci
σ

$← OpenPGP.PKE.Encpuk(σ
i)

13 σmani f est
$← OpenPGP.DS.Signsik(h

0∥...∥hn)

14 return csk, c0, ..., cn, c0
σ, ..., cn

σ, h0, ..., hn, σmani f est

Figure 4.6: The simulated adversary against IND-CPAPKE using adversary A.

a telescoping sum. We can further upper bound this by Eq. (4.6) using the
bounds Eqs. (4.2) to (4.4) that we found thanks to our reductions Figs. 4.2,
4.4 and 4.6.

AdvOUT-IND-CPA
ProtonDrive.File(A) = Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]

= P0 − P3

= (P0 − P1) + (P1 − P2) + (P2 − P3) (4.5)

≤ AdvIND-CPA
OpenPGP.PKE(BPKE,1)

+AdvIND-CPA
OpenPGP.SE(BSE) (4.6)

+AdvIND-CPA
OpenPGP.PKE(BPKE,2)

Finally, we can apply our result from Lemma 4.2 for game IND-CPAPKE

to build adversary BPKE from BPKE,1 and BPKE,2. This allows us to simplify
Eq. (4.6) to Eq. (4.7).

AdvOUT-IND-CPA
ProtonDrive.File(A) ≤ 2 · AdvIND-CPA

OpenPGP.PKE(BPKE) +AdvIND-CPA
OpenPGP.SE(BSE)

(4.7)
□
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Adversary Asc,usc(puk)

1 f $← ProtonDrive.File.M

2 (csk, c0, ..., cn, h0, ..., hn, c0
σ, ..., cn

σ, σmani f est)
$← sc( f )

3 (c′sk, c0′, ..., cn′, h0′, ..., hn′, c0′
σ , ..., cn′

σ , σ′mani f est)
$← sc( f )

4 return (csk, c0, ..., cn, h0, ..., hn, c0′
σ , ..., cn′

σ , σmani f est)

Figure 4.7: An efficient adversary A for the game OUT-SUF-CMAProtonDrive.File.

4.1.2 Strong Unforgeability

We first observe that the scheme ProtonDrive.File is not OUT-SUF-CMA
secure as we defined in Fig. 2.16. Indeed, we can construct an adversary A
which performs a forgery as follows: let the adversary make two queries
to the signcryption oracle, both with the same file. Then the adversary can
forge a new valid ciphertext by taking the values for csk, ci, hi and σmani f est

from the result of the first query it made, and the values for ci
sigma from the

second. With high probability (that of the two queries returning different
values for at least one of the ci

sigma) this generates a new ciphertext and
therefore breaks OUT-SUF-CMA security. We describe that adversary in
details in Fig. 4.7.

Let us now quantify the advantage of adversary A playing against the game
OUT-SUF-CMAProtonDrive.File. We define

S f b =

{c ∈ OpenPGP.PKE.C|OpenPGP.PKE.Encpuk(OpenPGP.DS.Signsik( f b)) = c}

to be the set of all possible images of some file block f b when passed through
the composition of the signature algorithm with key sik and the PKE encryp-
tion algorithm with key puk. We are specifically interested in the cardinality
of this set, and observe that it does not depend on the file block f b, and
that we necessarily have |S f b | > 1. Indeed, if this was not the case, then
encryption using OpenPGP.PKE would be deterministic, which would break
IND-CPAPKE. We also note that assuming that the sources of randomness
used in OpenPGP.PKE and OpenPGP.DS are uniform, then the probabilities
of ci

σ = ci′
σ for all i’s are independent.

By correctness of OpenPGP.SE, OpenPGP.DS, and OpenPGP.PKE, we have
that the ciphertext returned by the adversary does not return an error on
unsigncryption. This allows us to compute the advantage of A against

65



4. Security Proofs

OUT-SUF-CMAProtonDrive.File to be

AdvOUT-SUF-CMA
ProtonDrive.File(A) = 2 ·

(
Pr[∃i | 0 ≤ i ≤ n and ci

σ ̸= ci′
σ ]− 1/2

)
= 2 ·

(
1− Pr[∀i | 0 ≤ i ≤ n and ci

σ = ci′
σ ]− 1/2

)
= 2 ·

(
1/2− Pr[ci

σ = ci′
σ ]

(n+1)
)

= 1− 2 ·
(

1
|S f b |

)(n+1)

.

We note that the advantage of the adversary can be made arbitrarily close to
1 by picking a longer input file.

4.1.3 Confidentiality (Chosen Ciphertext Attack)

The previous result is not only interesting, it also leads us to deduce that
ProtonDrive.File is not OUT-IND-CCA secure as we defined it in Fig. 2.14.
Indeed, we can use the same construction to fool the unsigncryption oracle
into giving us the decryption of a ciphertext built from two distinct queries
to the LoR oracle of OUT-IND-CCAProtonDrive.File, thus allowing us to find
out which chosen plaintext was encrypted. By the same reasoning as before,
we would get the same advantage from building such an adversary A

AdvOUT-IND-CCA
ProtonDrive.File(A) = 1− 2 · |S f b |−(n+1),

which can also be made arbitrarily close to 1 by increasing the value of n.

4.1.4 Weak Unforgeability

We proceed by showing that while ProtonDrive.File is not OUT-SUF-CMA,
it still achieves OUT-WUF-CMA security (defined in Fig. 2.15).

Theorem 4.3 (OUT-WUF-CMA of ProtonDrive.File) Let ProtonDrive.Fi-
le be the signcryption scheme used for signcryption of Proton Drive files as stated in
Algorithm 25 and Algorithm 26. LetA be an adversary against the OUT-WUF-CMA
security of ProtonDrive.File making at most q queries to its oracle sc for each
of which the queried message m is split into n blocks by ProtonDrive.SplitFile.
Then there exist adversaries BSE, BDS,1, BHash, and BDS,2 such that

AdvOUT-WUF-CMA
ProtonDrive.File(A) ≤ min{AdvKROB

OpenPGP.SE(BSE),AdvSUF-CMA
OpenPGP.DS(BDS,1)}

+AdvCR
OpenPGP.Hash(BHash)

+AdvSUF-CMA
OpenPGP.DS(BDS,2).

(4.8)

The adversaries BDS,1 and BDS,1 make at most (n + 1) · q queries to their signing
oracle. BSE and BHash make no queries as they do not have any oracle.
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To prove Theorem 4.3, we use the fundamental lemma of game playing. It
can also be found under the names of difference lemma or the indistinguish-
able until bad lemma. We use it as it is presented by Bellare and Rogaway
in [11, 12] and adapt the notation to our usage.

Lemma 4.4 (Fundamental lemma of game playing) Let two games G0 and G1
be identical until bad, meaning that G0 and G1 are games containing a flag bad, and
are identical except for the few steps immediately following the setting of bad to true
in G1. More precisely, we have that G0 and G1 are strictly identical games, except
when bad is set to true, in which case G1 executes one or more steps that are not
present in G0. Then, for any adversary A playing the games G0 and G1, we have

Pr[G0(A)]− Pr[G1(A)] ≤ Pr[bad].

Proof (Lemma 4.4) We refer to Bellare and Rogaway [11, Lemma 2] for the
proof of this lemma. □

Proof (Theorem 4.3) Once again, we define several games for our proof.
Our starting point is the game OUT-WUF-CMAProtonDrive.File. We unfold
the definition of OUT-WUF-CMA from Fig. 2.15 with the implementation of
ProtonDrive.File given in Algorithm 25 and Algorithm 26 in Fig. 4.8.

The jump to the next game, G1, is the most substantial, but is really only
a change of form. We introduce new variables to increase the granularity
of our apprehension of the capacities of the adversary. The first new group
of variables includes three separate booleans, validm,σ, validh, and validman,
which replace the single valid boolean which we have in G0. If all the validity
checks performed on the ciphertext pass, then all three booleans are set to
true, and we therefore have that validm,σ and validh and validman = valid at
the end of the game. To accommodate this change, we replace the setting of
m to ⊥ when valid is f alse by returning ⊥ if any of these three booleans are
set to ⊥.

We also introduce three booleans f orgedm,σ, f orgedh, and f orgedman, each
indicating whether the adversary performed a successful forgery in one of
the three possible attack paths. We distinguish the notions of validity and
forgery on a part of a ciphertext because in order to win OUT-WUF-CMA,
all parts of the ciphertext must be valid, but only one successful forgery is
necessary. Consequently, if the plaintext is new and the validity checks pass,
we require at least one of these three booleans to be set to true as a winning
condition. These f orged booleans represent a valid forgery on some part of
the ciphertext, and as such they encompass both the freshness of a value or
set thereof, and their validity.

The last category of new variables is a group of sets keeping track of the
output of the signcryption oracle, such as the associations of session key
values sk with ciphertext block values (c0, ..., cn). These sets allow us to check
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Game GA0 ()

1 S ← ∅

2 (vk, sik) $← SGen()

3 (puk, prk) $← RGen()

4 c $← Asc(vk, puk)
5 valid← ⊤
6 sk← OpenPGP.PKE.Decprk(csk)

7 if sk = ⊥
8 valid← ⊥
9 for i from 0 to n

10 mi ← OpenPGP.SE.Decsk(ci)

11 if mi = ⊥
12 valid← ⊥
13 σi ← OpenPGP.PKE.Decprk(ci

σ)

14 if σi = ⊥
15 valid← ⊥
16 if OpenPGP.DS.Vfyvk(m

i, sigmai) = ⊥
17 valid← ⊥
18 if OpenPGP.Hash.h(ci) ̸= hi

19 valid← ⊥
20 if OpenPGP.DS.Vfyvk(h

0∥...∥hn, σmani f est) = ⊥
21 valid← ⊥
22 if valid = ⊥
23 m← ⊥
24 else

25 m← m0∥...∥mn

26 return m ̸= ⊥ and
m /∈ S

Oracle sc(m)

1 sk $← OpenPGP.SE.Gen()

2 csk
$← OpenPGP.PKE.Encpuk(sk)

3 m0, ..., mn ← ProtonDrive.SplitFile(m)

4 for i from 0 to n

5 ci $← OpenPGP.SE.Encsk(mi)

6 hi ← OpenPGP.Hash.h(ci)

7 σi $← OpenPGP.DS.Signsik(m
i)

8 ci
σ

$← OpenPGP.PKE.Encpuk(σ
i)

9 σmani f est

← OpenPGP.DS.Signsik(h
0∥...∥hn)

10 c $← SCsik,puk(m)

11 S ∪← {m}
12 return (csk, c0, ..., cn, h0, ..., hn,

c0
σ, ...cn

σ, σmani f est)

Figure 4.8: The starting game for the authenticity proof, G0. This corresponds to
OUT-WUF-CMAProtonDrive.File.
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Game G0

1 [...]
2 return m ̸= ⊥

and m /∈ S

≡ Game G0.5

1 [...]
2 if m ∈ S
3 return ⊥
4 else
5 if m ̸= ⊥
6 return ⊤
7 else
8 return ⊥

≡ Game G1

1 [...]

2 if (sk, c0, ..., cn) ∈ Ssk,c

or m ∈ S
3 return ⊥
4 elseif (sk, c0, ..., cn) /∈ Ssk,c

5 if m ̸= ⊥
6 bad← ⊤
7 return ⊤
8 else
9 return ⊥

Figure 4.9: Equivalences between game return values used to go from G0 in Fig. 4.8 to G1 in
Fig. 4.10. S is the set of all the plaintexts queried to the signcryption oracle, and Ssk,c that of

all the combinations of session key sk and ciphertext blocks (c0, ..., cn) returned by that same
oracle.

whether an adversary returning a valid ciphertext managed to perform a
forgery on a particular component of the ciphertext, or whether it reused
some value it received as part of one of its queries to the signcryption oracle.

We also rewrite the returning part of the game and merge the validity checks
to it. This change is based on a series of equivalences between winning
conditions, which we give in Fig. 4.9.

In Fig. 4.9, the first change from G0 to game G0.5 simply makes the return
values more explicit by splitting the return statement from G0 into cases.
G1 then expands on the distinction between m having already been queried
before or not, by using the combination (sk, c0, ..., cn) of session keys and ci-
phertext blocks that have been returned by the signcryption oracle. The key
observation is the following: if the oracle has already returned a ciphertext
with the combination (sk, c0, ..., cn) before, then the corresponding plaintext
m has already been queried. This is due to the correctness of OpenPGP.SE.
Therefore, if this is the case, we return ⊥, and we also return ⊥ in the cases
where (sk, c0, ..., cn) has never appeared before but corresponds to a plain-
text m which has already been queried to the oracle. If this is not the case,
we then check whether the values returned by the adversary form a valid
signcryption. If it does not, we return ⊥, and otherwise we set a bad flag
to ⊤ to indicate that the adversary succeeded and return ⊤. This is a setup
for the following steps, where we will isolate every winning path for the
adversary and does not affect the return value in G1.

Each subsequent game serves to eliminate one of the potential attack angles.
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The three possible ways for an adversary to forge a ciphertext for a fresh
plaintext are each represented by one of the bad flags. Hereafter, we explain
what path each game discards.

G2 When badm,σ is set, the adversary returns a ciphertext containing exactly
the same ciphertext blocks (c0, ..., cn) as one of the ciphertexts it got from
the oracle. Let us call m the plaintext which was sent to the oracle in
that query and sk the session key that was used. Since we already tested
whether the plaintext m′ corresponding to the value returned by the
adversary was queried before, it is necessarily different from m, and
the session key sk′ needs to be different from sk by correctness of O-
penPGP.SE. This means that the adversary has found a new session key
sk′ under which all the ciphertext blocks decrypt correctly, which is not
possible if the underlying SE scheme is key robust.

Additionally, for the ciphertext to be valid, the adversary needs to have
found valid encrypted signature blocks. That implies that it also man-
aged to perform a forgery on the signature scheme OpenPGP.DS.

G3 When badh is set, the adversary returns a ciphertext containing a new
combination of ciphertext blocks but the ciphertext hash digests combi-
nation has appeared in one of the previous queries. This means that the
adversary has managed to find a hash collision.

G4 When badman is set, the adversary returns a ciphertext containing a new
combination of ciphertext blocks and the ciphertext hash digests combi-
nation has not appeared in any of the previous queries. In that case, the
adversary has successfully forged the manifest signature.

Games G1 through G4 are all given in full detail in Fig. 4.10.

We start by computing a bound on the probability that the badm,σ flag is set
to true. Let us call sk the session key encrypted in the ciphertext returned
by the adversary, and (c0, ..., cn) the ciphertext blocks in that ciphertext. The
badm,σ flag can only be set inside the if statement on line 17. Because of this,
we know that there has been an oracle query returning a ciphertext with a
session key sk′ different from sk and the same ciphertext blocks (c0, ..., cn)
as the adversary. In that case, due to the check on line 11, we know that
the plaintext blocks (m0, ..., mn) corresponding to the ciphertext of the ad-
versary are new, and so are the signatures (σ0, ..., σn) on those. This means
two security properties are broken, with triplets (ci, sk, sk′) breaking the key
robustness of OpenPGP.SE for all i’s, and at least one index k for which
(mk, σk) breaks SUF-CMAOpenPGP.DS. Therefore, there are two ways to bound
the probability of badm,σ. We will build two adversaries, BSE and BDS,1, from
each of which we will deduce a bound on that probability.

We construct a first adversary BSE calling A with a simulated oracle sc′,
which it runs with sender and receiver key values that it generated. We
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Games GA1 () - GA4 ()

1 S ,Ssk,c,Sc,Sh ← ∅

2 (vk, sik) $← SGen()

3 (puk, prk) $← RGen()

4 (csk, c0, ..., cn, h0, ..., hn, c0
σ, ..., cn

σ,

σman)
$← Asc(vk, puk)

5 validm,σ, validh, validman ← ⊥
6 f orgedm,σ, f orgedh, f orgedman ← ⊥
7 sk← OpenPGP.PKE.Decprk(csk)

8 for i from 0 to n

9 mi ← OpenPGP.SE.Decsk(ci)

10 σi ← OpenPGP.PKE.Decprk(ci
σ)

11 if (sk, c0, ..., cn) ∈ Ssk,c or m0∥...∥mn ∈ S
12 return ⊥
13 if sk ̸= ⊥
14 if mi ̸= ⊥ and σi ̸= ⊥ ∀0 ≤ i ≤ n

15 if OpenPGP.DS.Vfyvk(m
i, σi) ∀0 ≤ i ≤ n

16 validm,σ ← ⊤
17 if (sk, c0, ..., cn) /∈ Ssk,c and (c0, ..., cn) ∈ Sc

18 f orgedm,σ ← ⊤
19 badm,σ ← ⊤
20 f orgedm,σ ← ⊥ // G2 - G4

21 if OpenPGP.Hash.h(ci) = hi ∀0 ≤ i ≤ n
22 validh ← ⊤
23 if (c0, ..., cn) /∈ Sc and (h0, ..., hn) ∈ Sh

24 f orgedh ← ⊤
25 badh ← ⊤
26 f orgedh ← ⊥ // G3 - G4

27 if OpenPGP.DS.Vfyvk(h
0∥...∥hn, σman)

28 validman ← ⊤
29 if (h0, ..., hn) /∈ Sh

30 f orgedman ← ⊤
31 badman ← ⊤
32 f orgedman ← ⊥ // G4

33 return validm,σ and validh and validman and
( f orgedm,σ or f orgedh or f orgedman)

Oracle sc(m)

1 sk $← OpenPGP.SE.Gen()

2 csk
$← OpenPGP.PKE.Encpuk(sk)

3 m0, ..., mn ← ProtonDrive.SplitFile(m)

4 for i from 0 to n

5 ci $← OpenPGP.SE.Encsk(mi)

6 hi ← OpenPGP.Hash.h(ci)

7 σi $← OpenPGP.DS.Signsik(m
i)

8 ci
σ

$← OpenPGP.PKE.Encpuk(σ
i)

9 σmani f est

← OpenPGP.DS.Signsik(h
0∥...∥hn)

10 c $← SCsik,puk(m)

11 S ∪← {m}

12 Ssk,c
∪← {(sk, c0, ..., cn)}

13 Sc
∪← {(c0, ..., cn)}

14 Sh
∪← {(h0, ..., hn)}

15 return (csk, c0, ..., cn, h0, ..., hn,

c0
σ, ...cn

σ, σmani f est)

Figure 4.10: The games G1 through G4 that are used for the proof of OUT-WUF-CMA.
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Adversary BSE()

1 S ← ∅

2 (vk, sik) $← SGen()

3 (puk, prk) $← RGen()

4 (csk, c0, ..., cn, h0, ..., hn, c0
σ, ..., cn

σ,

σmani f est)
$← Asc(vk, puk)

5 sk← OpenPGP.PKE.Decprk(csk)

6 Find sk′ such that (sk′, c0) ∈ S
and sk ̸= sk′

7 return (c0, sk, sk′)

Simulated oracle sc′(m)

1 sk $← OpenPGP.SE.Gen()

2 csk
$← OpenPGP.PKE.Encpuk(sk)

3 m0, ..., mn ← ProtonDrive.SplitFile(m)

4 for i from 0 to n

5 ci $← OpenPGP.SE.Encsk(mi)

6 hi ← OpenPGP.Hash.h(ci)

7 σi $← OpenPGP.DS.Signsik(m
i)

8 ci
σ

$← OpenPGP.PKE.Encpuk(σ
i)

9 σmani f est

← OpenPGP.DS.Signsik(h
0∥...∥hn)

10 S ∪← {(sk, c0)}
11 return (csk, c0, ..., cn, h0, ..., hn,

c0
σ, ...cn

σ, σmani f est)

Figure 4.11: The simulated adversary against KROBOpenPGP.SE using adversary A.

let BSE keep track of all the pairs (sk, c0) appearing in the queries to the
simulated oracle in a set S . Note that we do not need to keep track of the
values of ciphertext blocks for other indices because we know from line 17
that all ci’s from the ciphertext of the adversary are identical to the ciphertext
blocks that were yielded from some query to the oracle, i.e. the c0 of the
adversary is equal to that of the oracle. Then, when A returns a ciphertext,
we retrieve the session key sk′ it uses by decrypting the encrypted session
key and find the session key sk with which the first ciphertext block c0 has
been yielded by the simulated oracle. Finally, the adversary BSE returns the
triplet (c0, sk, sk′). The full details are given in Fig. 4.11.

From this reduction, we deduce

Pr[badm] ≤ AdvKROB
OpenPGP.SE(BSE). (4.9)

We then construct a second adversary BDS,1 callingAwith a simulated oracle
sc′, which it runs with receiver key values that it generated. Signature per-
formed by sc′ are delegated to the signature oracle of SUF-CMAOpenPGP.DS.
We let BDS,1 keep track of all the pairs (mi, σi) appearing in the queries to the
simulated oracle in a set S . Then, when A returns a ciphertext, we decrypt
the ci’s and ci

σ’s until we find a pair (mi, σi) which does not appear in the
set S . The adversary BDS,1 returns that pair. The full details are given in
Fig. 4.12.
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Adversary BDS,1(vk)

1 S ← ∅

2 (puk, prk) $← RGen()

3 (csk, c0, ..., cn, h0, ..., hn, c0
σ, ..., cn

σ,

σmani f est)
$← Asc(vk, puk)

4 sk← OpenPGP.PKEprk(csk)

5 for i from 0 to n

6 mi ← OpenPGP.SE.Decsk(ci)

7 σi ← OpenPGP.PKE.Decprk(ci
σ)

8 if (mi, σi) /∈ S
9 return (mi, σi)

10 return ⊥

Simulated oracle sc′(m)

1 sk $← OpenPGP.SE.Gen()

2 csk
$← OpenPGP.PKE.Encpuk(sk)

3 m0, ..., mn ← ProtonDrive.SplitFile(m)

4 for i from 0 to n

5 ci $← OpenPGP.SE.Encsk(mi)

6 hi ← OpenPGP.Hash.h(ci)

7 σi $← sign(mi)

8 S ∪← {(mi, σi)}

9 ci
σ

$← OpenPGP.PKE.Encpuk(σ
i)

10 σmani f est

← sign(h0∥...∥hn)

11 return (csk, c0, ..., cn, h0, ..., hn,

c0
σ, ...cn

σ, σmani f est)

Figure 4.12: The simulated adversary against SUF-CMAOpenPGP.DS using adversary A.

From this reduction, we deduce

Pr[badm,σ] ≤ AdvSUF-CMA
OpenPGP.DS(BDS,1). (4.10)

We now have two bounds on Pr[badm,σ], Eq. (4.9) and Eq. (4.10). We can
combine the two into one by observing that whichever advantage is the
lowest will give us the best bound out of the two, and therefore keep

Pr[badm,σ] ≤ min{AdvKROB
OpenPGP.SE(BSE),AdvSUF-CMA

OpenPGP.DS(BDS,1)}. (4.11)

Next, we bound the probability that the badh flag is raised. When this hap-
pens, the adversary A has performed a successful forgery where the cipher-
text block hashes (h0, ..., hn) have already appeared in some ciphertext which
has been yielded by the oracle sc, but with ciphertext blocks (c0, ..., cn) which
are different from the ciphertext blocks (c0′, ..., cn′) that the adversary has re-
turned. This means that there is an index k for which ck ̸= ck′, and that there
is a hash collision on those two values.

We can build an adversary BHash calling adversaryAwith a simulated oracle
sc′, which it runs with sender and receiver key values that it generated. We
let BHash keep track of all the ciphertext block to digest pairs returned by
the simulated oracle in a set S . When A returns a ciphertext with ciphertext
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Adversary BHash()

1 S ← ∅

2 (vk, sik) $← SGen()

3 (puk, prk) $← RGen()

4 (csk, c0, ..., cn, h0, ..., hn, c0
σ, ..., cn

σ,

σmani f est)
$← Asc(vk, puk)

5 if ∃k, c′.(c′, hk) ∈ S and c′ ̸= ck

6 return (c′, ck)

7 return ⊥

Simulated oracle sc′(m)

1 sk $← OpenPGP.SE.Gen()

2 csk
$← OpenPGP.PKE.Encpuk(sk)

3 m0, ..., mn ← ProtonDrive.SplitFile(m)

4 for i from 0 to n

5 ci $← OpenPGP.SE.Encsk(mi)

6 hi ← OpenPGP.Hash.h(ci)

7 σi $← OpenPGP.DS.Signsik(m
i)

8 ci
σ

$← OpenPGP.PKE.Encpuk(σ
i)

9 σmani f est

← OpenPGP.DS.Signsik(h
0∥...∥hn)

10 c $← SCsik,puk(m)

11 for i from 0 to n

12 S ∪← {(ci, hi)}
13 return (csk, c0, ..., cn, h0, ..., hn,

c0
σ, ...cn

σ, σmani f est)

14 return ⊥

Figure 4.13: The simulated adversary against CROpenPGP.Hash using adversary A.

blocks (c0, ..., cn) and hashes (h0, ..., hn), we search in S what hash digest hk

has already been returned for a ciphertext block c ̸= ck. Our adversary BHash
then returns the pair (c, ck). The full details of this reduction are presented
in Fig. 4.13.

From this reduction, we deduce

Pr[badh] ≤ AdvCR
OpenPGP.Hash(BSE). (4.12)

We give a fourth reduction in order to bound the probability that the badman
flag is raised. This happens when the adversary A performs a successful
forgery where the ciphertext block hashes combination (h0, ..., hn) has never
been returned as part of a query before. This means that the signed manifest
σmani f est is a new valid signature on the concatenation of hashes.

We can build an adversary BDS,2 playing SUF-CMAOpenPGP.DS which calls
adversary A with a simulated oracle sc′ running with receiver key values
(puk, prk) which it generates, and delegates all signatures to the oracle sign
of the SUF-CMAOpenPGP.DS game. Then, if the adversary returns a ciphertext
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Adversary BDS,2(vk)

1 (puk, prk) $← RGen()

2 (csk, c0, ..., cn, h0, ..., hn, c0
σ, ..., cn

σ,

σmani f est)
$← Asc(vk, puk)

3 return (h0∥...∥hn, σmani f est)

Simulated oracle sc′(m)

1 sk $← OpenPGP.SE.Gen()

2 csk
$← OpenPGP.PKE.Encpuk(sk)

3 m0, ..., mn ← ProtonDrive.SplitFile(m)

4 for i from 0 to n

5 ci $← OpenPGP.SE.Encsk(mi)

6 hi ← OpenPGP.Hash.h(ci)

7 σi $← sign(mi)

8 ci
σ

$← OpenPGP.PKE.Encpuk(σ
i)

9 σmani f est ← sign(h0∥...∥hn)

10 c $← SCsik,puk(m)

11 for i from 0 to n

12 S ∪← {(ci, hi)}
13 return (csk, c0, ..., cn, h0, ..., hn,

c0
σ, ...cn

σ, σmani f est)

Figure 4.14: The simulated adversary against SUF-CMAOpenPGP.DS using adversary A.

with hashes (h0, ..., hn) and signed manifest σmani f est, BDS,2 simply returns the
pair (h0∥...∥hn, σmani f est).

From this reduction, we have

Pr[badman] ≤ AdvSUF-CMA
OpenPGP.DS(BDS,2). (4.13)

Finally, we can bound the advantage of an adversary A playing the game
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OUT-WUF-CMAProtonDrive.File.

AdvOUT-WUF-CMA
ProtonDrive.File(A) = Pr[GA0 ()] (4.14)

= (Pr[GA0 ()]− Pr[GA1 ()])+

(Pr[GA1 ()]− Pr[GA2 ()])+

(Pr[GA2 ()]− Pr[GA3 ()])+ (4.15)

(Pr[GA3 ()]− Pr[GA4 ()])+

Pr[GA4 ()]

= Pr[badm,σ] + Pr[badh] + Pr[badman] (4.16)

≤ min{AdvKROB
OpenPGP.SE(BSE),AdvSUF-CMA

OpenPGP.DS(BDS,1)}
+AdvCR

OpenPGP.Hash(BSE) (4.17)

+AdvSUF-CMA
OpenPGP.DS(BDS,2)

Eq. (4.14) is an application of the definition of advantage, where we have
OUT-WUF-CMAProtonDrive.File = G0. Eq. (4.15) is a telescopic extension of
the sum such that all of our games appear in it. In Eq. (4.16), Pr[GA0 ()]−
Pr[GA1 ()] cancels out because as previously argued, G0 and G1 are equiva-
lent, Pr[GA1 ()]− Pr[GA2 ()] is replaced by Pr[badm,σ], Pr[GA2 ()]− Pr[GA3 ()] by
Pr[badh], and Pr[GA3 ()]− Pr[GA4 ()] by Pr[badman] using Lemma 4.4 because
the game pairs G1-G2, G2-G3, and G3-G4 are all equivalent until bad, and
Pr[GA4 ()] = 0 because G4 always returns ⊥ due to all f orged booleans hav-
ing value f alse. For our last step Eq. (4.17), we simply apply the bounds
Eq. (4.11), Eq. (4.12), and Eq. (4.13) which we previously computed. □

4.2 Likeliness of the Assumptions

In Section 4.1, we have used some assumptions for our proofs. Hereafter, we
discuss how likely it is that these assumptions hold, and therefore whether
the bounds we computed are meaningful.

4.2.1 IND-CPAOpenPGP.SE

We know that AES-CFB is IND-CPA secure assuming that AES-256 is a
pseudo random permutation and that the IV it uses is not predictable. Wood-
ing [55] gives a proof of this. The modifications brought to AES-CFB by
OpenPGP.SE are such that we cannot apply a simple reduction to show that
OpenPGP.SE is also IND-CPA secure. This is due to the fact that Open-
PGP.SE uses a fixed IV composed of all zeroes, and the first block of the
plaintext it passes to AES-CFB, which is randomly generated, serves as the
randomness source. We leave proving that OpenPGP.SE is IND-CPA to fu-
ture work, but consider it to be a reasonable assumption.
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4.2.2 IND-CPAOpenPGP.PKE

As described in Section 2.3.2, OpenPGP.PKE uses a combination of key ex-
change, key wrapping, key generation and symmetric encryption to encrypt
data. At its core however, it passes plaintexts to OpenPGP.SE with a ran-
domly generated session key for encryption. Therefore, its IND-CPA secu-
rity can be reduced to that of OpenPGP.SE.

4.2.3 SUF-CMAOpenPGP.DS

The algorithms used for signatures in OpenPGP is Ed25519, an EdDSA ellip-
tic curve algorithm using Curve 25519. Brendel et al. have proven Ed25519
to be SUF-CMA secure in [15].

4.2.4 KROBOpenPGP.SE

The construction of OpenPGP.SE, as we presented it in Section 2.4.4, in-
cludes some elements aiming to provide integrity on the ciphertext. In par-
ticular, as explained in RFC 4880 [27, Section 5.7], the repetition of two of
the random bytes at the start of the input to AES-CFB is intended to help
detect incorrect session keys. Note that this is not designed as a way to pro-
duce key robustness, but rather as a quick check on whether the right key
way used; the probability that the two repeated bytes are the same as the
two bytes right before when using a bad session key is 2−16, which is too
high to ensure that no two keys can give a valid decryption of a ciphertext.
OpenPGP.SE also adds two constant bytes and a SHA-1 digest to the input
to AES-CFB. While it is highly likely that this further decreases the chances
of an adversary breaking key robustness on that scheme, we do not make
any claim that this suffices to make OpenPGP.SE key robust, and leave it to
future work to prove or disprove it.

More notably however, the advantage of an adversary playing KROBOpenPGP.SE
only intervenes in Eq. (4.17) if it is smaller than that of SUF-CMAOpenPGP.DS.
This means that even if OpenPGP.SE is not KROB secure, we still have that
ProtonDrive.File is OUT-WUF-CMA secure as long as OpenPGP.DS is
SUF-CMA secure.

4.2.5 CROpenPGP.Hash

The algorithm used for OpenPGP.Hash is SHA256. While there is no proof
that it is collision resistant, it is generally assumed to fulfill that property.

4.2.6 Conclusion

We computed the advantages of adversaries playing against OUT-IND-CPA,
OUT-SUF-CMA, OUT-IND-CCA, and OUT-WUF-CMA on the scheme O-

77



4. Security Proofs

penPGP.File. For both OUT-SUF-CMA and OUT-IND-CCA, we showed
how to construct an adversary which gets an advantage that is arbitrarily
close to 1. In contrast, we proved that ProtonDrive.File achieves better
bounds for the two other security properties.

For OUT-IND-CPAProtonDrive.File, the security relies on both OpenPGP.SE
and OpenPGP.PKE being IND-CPA secure. Furthermore, as we argued in
Section 4.2.2, we can conjecture that the IND-CPA security of OpenPGP.PKE
relies on the IND-CPA security of OpenPGP.SE. Therefore, we conclude that
the OUT-IND-CPA security of ProtonDrive.File can be reduced to Open-
PGP.SE being IND-CPA secure, which, while it has not been proven to be
true, is not an unreasonable assumption to make.

For OUT-WUF-CMAProtonDrive.File, the bound that we get uses the KROB
security of OpenPGP.SE, the collision resistance of OpenPGP.Hash, and the
SUF-CMA security of OpenPGP.DS. We know that OpenPGP.DS is SUF-CMA
secure and make the assumption that OpenPGP.Hash is collision resistant.
Since the advantage of an adversary against OpenPGP.DS is established to
be negligible, we get a good bound on the advantage of an adversary against
OUT-WUF-CMAProtonDrive.File even if OpenPGP.SE is not KROB secure.
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Chapter 5

Caveats

In this chapter, we address some weaknesses we found in the design of
Proton Drive, some of which could lead to attacks.

5.1 File Encryption is not OUT-IND-CCA

As we showed in Section 4.1.3, the file encryption algorithm used by Proton
Drive does not satisfy the definition of OUT-IND-CCA from Section 2.2.5,
which we determined to be the security goal to strive for based on the threat
model we presented in Section 3.3. Note that this is due to a technicality in
the definition of OUT-IND-CCA, and that we did not manage to find real-
world attacks linked to this property not being satisfied. Because of the
lack of formal models for cloud storage, it is hard to say exactly what con-
fidentiality notion ProtonDrive.File would need to satisfy for the whole
protocol to fit the E2EE definition. Rather than highlighting an imminent
risk, this observation should be seen as a good opportunity to refine the
understanding and application of security definitions within the algorithm
design process.

We also note that due to laxness in the format of OpenPGP messages, which
are valid with different padding lengths, a redesign of the ProtonDrive.Fi-
le algorithm with the objective to satisfy OUT-IND-CCA would be ineffi-
cient without a revision of the underlying cryptographic library. Indeed, the
malleability in the message format could be exploited to query the oracle
for the decryption of an encryption query result, similarly to the attack we
presented in Section 4.1.3.

5.2 Signatures

The way signature verification results are treated in Proton Drive at the time
of writing is lacking. Proton makes the choice of giving a warning to the user
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rather than preventing access to files which fail signature checks. The reason
for this is that some files are expected to have bad signatures or lack them
altogether, even without having been produced in an irregular way, typically
for files which were added before the incorporation of some signatures to
the protocol. The visibility of this warning is subject to variations depending
on the client (web, Android, iOS, Windows, or Linux), but it is generally
insufficient. This can lead to users being unaware of signature check failures,
which is a problem because signatures are needed for authenticity.

As we pointed out in Section 3.1, OpenPGP encryption by itself does not
provide ciphertext integrity. Because the public part of asymmetric keys
is not encrypted for storage, public keys are stored in clear on the server,
meaning that a strong adversary which has access to the data stored on the
server can gain access to them. If a user is not alerted of failed signature
checks, an adversary can easily create new folders or files with invalid sig-
natures, and add them to the file system without being detected.

There are two ways in which this can be a problem. The first one is for
framing attacks, where an attacker puts compromising content in the file
system of a user. The second one however is a confidentiality breach. If
the adversary adds a new folder to the file system of a user, it knows the
encryption keys associated to that folder, which will be used to encrypt all
the children of that folder. This means that the adversary will be able to
decrypt anything that the user then puts in that folder. If this attack is
executed to substitute the root of the file system, then the adversary can
gain access to everything the user subsequently stores.

To mitigate this, we propose two modifications. The most urgent one is to
increase the visibility of warnings on all clients, to ensure that users cannot
ignore them when something goes wrong. Secondly, we suggest to provide
the users with the option to review the contents of a file that fails signature
checks and decide whether to re-encrypt or discard the file, but note that
this option is not risk-free for files of uncertain origin.

Another thing to note about signatures is that a given user has one address
signature key which it uses by default for all its signatures across all Proton
applications. This lack of key separation may be a problem if signatures
from one application can be used by an adversary to create a valid value for
another application. Proton plans to add context to signatures in order to
alleviate this problem.

5.3 File Names

In the current implementation of Proton Drive, there is nothing binding a
folder or file to its name, as both objects are encrypted separately. The only
bound on folder and file names is to their parent, because they use its keys

80



5.4. Compression before Encryption

for encryption, as described in Section 3.2.3. Because of this, the names
associated to the children of a given folder can be swapped between the
children. While this is not a very powerful attack, it remains a breach of
integrity on the data stored in Proton Drive. If Proton Drive switches to
using authenticated encryption with associated data (AEAD) for symmetric
encryption, one way to prevent this attack could be to include the HMAC of
the name as associated data in the encryption of the file or folder.

5.4 Compression before Encryption

For the encryption of extended attributes (as described in Section 3.2.3), the
data is compressed before encryption. This pattern is known to lead to
compression side-channel attacks, which are described by Kelsey [34]. We
refer to CRIME/BREACH attacks [24, 29] for concrete examples.

5.5 OpenPGP Format Oracles

Attacks described by Mister et al. [41] and Maury et al. [37] exploit format
oracles on OpenPGP.SE in order to achieve full plaintext recovery. If the
implementation of one of the Proton Drive clients were to reveal information
on the format of the decrypted ciphertext, we could could end up with such
a format oracle. For example, this could be the case if the decryption was
streamed, because format checks would then happen before the integrity
check, which uses the SHA-1 hash placed at the end of the input to AES-
CFB. Further examination of the source code of all Proton Drive clients is
necessary in order to determine whether such format oracles exist.
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Chapter 6

Conclusion

In this thesis, we presented a white paper of the Proton Drive protocol and
analyzed the security properties of the file encryption algorithm it uses.

We provided a comprehensive description of the cryptographic protocol un-
derlying Proton Drive, outlining both its key hierarchy and its data encryp-
tion algorithms. Notably, two design choices make the Proton Drive protocol
convoluted and laborious to analyze. The first one is utilizing OpenPGP for
encryption, which imposes the use of some algorithm combination patterns
in places where one single cryptographic primitive could have been used.
The second is the key hierarchy structure, which follows the structure of the
underlying file system. This means that every time a new file or folder is
added, the key hierarchy grows in size, which is not only a problem for its
complexity, but also takes up more space than necessary.

Next, we defined two security goals based on the claims made by Proton
AG on the security of Proton Drive [52, 51], one for confidentiality and
one for authenticity. We then evaluated whether the file encryption algo-
rithm meets these goals. For confidentiality, file encryption falls short of the
objective of OUT-IND-CCA (Section 4.1.3), but we show that it satisfies a
weaker property, OUT-IND-CPA (Section 4.1.1). For authenticity, we prove
that the file encryption algorithm meets the security goal OUT-WUF-CMA
(Section 4.1.4), but also show that it does not satisfy the stronger property
OUT-SUF-CMA (Section 4.1.2). While we could not find attacks associated
with the lack of OUT-IND-CCA security, we still consider it a prudent choice
of security to aim for, but note that the choice of OpenPGP as a crypto-
graphic library prevents a redesign to achieve this goal, due to the mal-
leability of OpenPGP messages. We generally suggest pondering the ways
in which formal security goals can be proven as part of the design process.
Not only does this contribute to the immediate assessment of the strengths
and weaknesses of the design, but it also facilitates future analyses by keep-
ing the algorithm simpler.
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Finally, we pointed to other weaknesses in Proton Drive. The most detri-
mental is without a doubt the way in which signature verification is han-
dled. Proton makes the choice to warn users rather than reject files when
signature verification fails. The problem with this is that the warnings are
not visible enough, effectively rendering the presence of signatures and sig-
nature verification useless. Users not being aware of failed signature verifi-
cation nullifies the authenticity which signatures are intended to bring, and,
in the worst cases, can lead to complete access to the contents of the file sys-
tem. We urge that the user interface of all Proton Drive clients be changed
to adequately reflect the importance of signature verification, and suggest
that users be prompted to approve and reencrypt invalid files. Overall, this
approach to signature verification illustrates how conflicts between security
and convenience can lead to potential vulnerabilities in an implementation.

Future Work. Given the intricate nature of the Proton Drive protocol, we
focused on the file encryption, and a large part of the protocol remains to
be analyzed. This includes the file sharing mechanisms, user authentication
mechanism, key encryption algorithms, and name and metadata encryption
algorithms.

Furthermore, Proton Drive is an evolving protocol, and its evolution will
call for revisions of the security goals. Notably, sharing and collaboration
on files between Proton users is not implemented yet, but addition of these
features to the protocol is planned. This introduction will introduce new
challenges, particularly when granting writing permissions to a file for mul-
tiple users. This will result in a setting where several people have access to
the same encryption key pair, which, for signcryption schemes, increases the
security requirements for authenticity from outsider WUF-CMA to insider
WUF-CMA.

It is crucial to note that even successfully proving the security of all these
components of the protocol would not entirely rule out attacks. Indeed, im-
plementation mistakes could lead to cryptographic attacks as well. Address-
ing this concern will require a comprehensive examination of the source
code of all five Proton Drive clients.
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