
Design and Analysis of Graph
Encryption Schemes

Master’s Thesis

Anselme Goetschmann

September 23, 2020

Advisors: Prof. Dr. Kenny Paterson, Dr. Sikhar Patranabis

Applied Cryptography Group
Institute of Information Security

Department of Computer Science, ETH Zürich

Abstract

With the advent of cloud storage and computing, the related privacy
issues have attracted the attention of researchers. This has resulted in
the development of encrypted databases which can be queried with-
out the server learning the content of the database or of the queries.
Although provably secure by some definitions, such schemes rely on
a trade-off between security and efficiency and thus leak a controlled
amount of information to the server. The analysis of the various types
of leakages has evolved in parallel to the development of new schemes
and has revealed important potential attacks.

In this Master’s thesis we focus on encrypted databases designed for
data in the form of graphs such as social networks or web graphs. Since
the leakage resulting from encrypted graph databases has not yet been
subject to thorough anaylsis we explore this topic. More specifically, we
consider schemes running shortest path queries on graphs and in par-
ticular encrypted sketch-based distance oracles like the GRECS scheme
introduced by Meng et al. in ACM CCS 2015. To our knowledge, the
sketch pattern leakage occuring in this type of construction has not yet
been analysed.

Based on two different algorithms to build distance sketches, we in-
vestigate how much information the sketch pattern reveals about the
sketches themselves. Using our observations, we explore potential at-
tacks which could be mounted by a malicious server. In particular, we
propose a query recovery attack feasible by an attacker with partial
database knowledge. Our results show that the sketch pattern leakage
can reveal sensitive information to the server and we propose a modi-
fication to the sketching algorithm to mitigate the impact of the sketch
pattern leakage on privacy.

i

Contents

Contents iii

1 Introduction 1
1.1 Overview and Motivation . 1
1.2 Our Contributions . 2
1.3 Outline of the Thesis . 3
1.4 Notation . 4

2 Background and Related Work 5
2.1 Relational Databases . 5

2.1.1 Schemes . 5
2.1.2 Leakage profiles . 8
2.1.3 Existing attacks . 9

2.2 Graph Databases . 10
2.2.1 Encrypted Graph Databases 11

2.3 Sketch-based Distance Oracle 11
2.3.1 Distance sketches . 11
2.3.2 Sketching algorithms . 12

2.4 GRECS . 14
2.4.1 Definitions . 14
2.4.2 Construction . 15
2.4.3 Leakage . 17

3 Distances Estimation from the Sketch Pattern Leakage 19
3.1 Sketch Pattern Leakage . 19
3.2 Das Sarma et al. Sketches . 20

3.2.1 Step 1: seed level recovery 20
3.2.2 Step 2: distance recovery from the seed level 24
3.2.3 Putting things together: distance recovery from the

seed frequency . 27

iii

Contents

3.2.4 Experiments . 27
3.3 Cohen et al. Sketches . 29

3.3.1 Distance recovery . 31
3.3.2 Experiments . 31

3.4 Chapter Summary . 32

4 Leakage-based Attacks on GRECS 35
4.1 Attacker Model . 35
4.2 Building Blocks . 36

4.2.1 Distance recovery . 36
4.2.2 Similarity metric . 37

4.3 Graph Information Recovery 38
4.4 Query Recovery Attack . 39

4.4.1 Recover one vertex from l candidates 39
4.4.2 Vertex recovery with restrictions 41
4.4.3 Permutation recovery 43

4.5 Countermeasures . 44
4.5.1 Add fake seeds . 44
4.5.2 Experiments . 46
4.5.3 Possible improvements 47

4.6 Chapter Summary . 47

5 Conclusion and Future Work 49

A Average distance in N-ball 51

Bibliography 53

iv

Chapter 1

Introduction

With the advent of cloud storage and computing, many companies out-
source their data to a third party. The cloud providers do not only store and
manage their customers’ data but also allow them to perform queries on the
data and run complex tasks on their infrastructure. This simplifies the ac-
cess to large storage space and high computing power for smaller companies
and allows them to focus on their core activity.

Since a data leak usually has devastating effects on their business [JA20], the
companies have to put a lot of trust in their cloud provider. In the meantime
the complexity of the systems lead to weaknesses and breaches are frequent
[EHF16].

The privacy concerns arising with cloud databases and the possible solu-
tions to provide some security guarantees have been an active area of re-
search. Currently, the main challenge is to encrypt the data in order to store
it on an untrusted server without losing the ability to work with it efficiently.
For example, a user of a Facebook-like social network may want to search
for the friends of a friend, which is equivalent to a neighouring query on a
graph, without the server gaining knowledge about the social network.

1.1 Overview and Motivation

Ideally, encrypted databases allow a client to send data to a server and query
it without the server learning anything about the data or the queries. En-
crypting the data with a block cipher before sending it to the server is not a
viable solution since the client has to download the full data for each query,
which is not feasible with the size of most databases, or share the decryp-
tion key to let the server execute the query, which defeats confidentiality
purposes.

Some schemes such as fully homomorphic encryption [GO96] or oblivious

1

1. Introduction

RAM [Gen09] achieve this goal but at a high computational cost or commu-
nication overhead, which makes them impractical in their current state. In
order to design usable schemes, a compromise between security and effi-
ciency has to be made. In practice, the security guarantees are weakened by
leaking a controlled amount of data to the server.

Many schemes allowing to search over encrypted data with a determined
leakage have been developed in recent years [G+03, CGKO11, KPR12, CJJ+14].
Numerous attacks exploiting the different leakage profiles have naturally
followed [IKK12, CGPR15, KKNO16] and researchers have been trying to
optimise the trade-off between usability and privacy [SPS13, LZWT14].

The aforementioned schemes handle either unstructured data in the form
of a collection of documents or data organised in the relational model, with
a fixed structure. However, some types of data such as social networks
or web graphs require more flexibility. Unlike relational databases, graph
databases treat relationships like values and are optimised for operations
such as neighboring queries or path traversals in a graph. Implementations
based on this principle and used in the industry include graph databases
such as Neo4j1, GraphBase2 or OrientDB3.

Some encrypted graph databases which can be queried with privacy guar-
antees have been designed [CK10, MKNK15], but each type of graph query
requires a specific construction and the current schemes remain very limited.
In this thesis, we will focus on shortest path queries and, more specifically,
on the analysis of the leakage resulting from sketch-based encrypted graph
database schemes.

1.2 Our Contributions

We present the analysis of the leakage resulting from the graph encryption
scheme by Meng et al. [MKNK15]. Their graph encryption for shortest dis-
tance queries (GRECS) construction relies on a sketch-based distance oracle
to solve approximate shortest path queries. A sketch is a data structure for
a vertex of a graph which contains the distance to a subset of other selected
vertices, named seeds. The shortest path length between two vertices is then
approximated by taking the minimum sum among the overlapping seeds
between their sketches.

In the GRECS scheme the sketches are encrypted, but the server nevertheless
learns a hidden version of the seed set of a sketch when its vertex is queried.
Hence, the server can deduce the pattern of common seeds across sketches

1https://neo4j.com/
2https://graphbase.ai/
3https://orientdb.org/

2

https://neo4j.com/
https://graphbase.ai/
https://orientdb.org/

1.3. Outline of the Thesis

and count how often an encrypted seed appears. This leakage is referred to
as sketch pattern and it has, to our knowledge, not been analysed yet.

Distance estimation from the sketch pattern leakage. Using the sketch
pattern leakage, we develop a technique to approximate the content of
sketches. Indeed, the sketch for a vertex is generated using an algorithm
which selects seeds to ensure a good performance of the distance oracle.
The number of sketches in which a seed appears thus reveals roughly its
average distance in the sketches. We formulate a distance estimate and eval-
uate how well it performs on the sketches of self-generated and real-life
graphs.

Leakage-based attacks on GRECS. Based on our distance estimate, we
investigate potential attacks which could expose private information to the
server. Our main result concerns the recovery of queries by an attacker
having some known queries and partial database knowledge. The known
queries allow the attacker to form vectors of distances to seeds for vertices
which can be queried. A similar distance estimate vector can be constructed
for a newly queried vertex using the sketch pattern leakage. The attacker can
then compare the distance estimate vector with the known distance vectors
and deduce which vertex was queried.

Evaluation of our attacks. In order to evaluate our attacks, we perform ex-
periments using our implementation4 of the algorithms to generate sketches
and some of the datasets used by Meng et al. [MKNK15]. Combined with
these experiments, our novel analysis confirms that the sketch pattern leak-
age can lead to serious privacy breaches and should not be overlooked.

Possible countermesure. Lastly, we consider a possible countermeasure
modifiyng the underlying distance oracle to make the sketch pattern leakage
less important. Fake seeds are inserted in the sketches to jam the frequency
of seeds among sketches. Our experiments show that the countermeasure
efficiently hides the sketch pattern at the cost of larger sketches.

1.3 Outline of the Thesis

In the rest of this chapter we introduce the necessary notation. We review
the existing encrypted database schemes and the attacks exploiting their
various leakage profiles in Chapter 2. We also explain in details the GRECS
scheme. In Chapter 3 we investigate one of the leakage types from the
GRECS construction, namely the sketch pattern. In Chapter 4 we use the

4Part of the code is available on https://github.com/agoetschm/master-thesis

3

https://github.com/agoetschm/master-thesis

1. Introduction

results from Chapter 3 to explore possible attacks and propose a counter-
mesure to lower the impact of the sketch pattern leakage. Chapter 5 con-
cludes the thesis and proposes future work.

1.4 Notation

In this section we introduce the notation and conventions adopted in the fol-
lowing chapters. Graphs are by default finite, undirected and unweighted.
For a graph G = (V, E), V is the set of vertices, E the set of edges and
n = |V| the number of vertices. The average degree k of a graph G is the
average of the vertex degree over the set of vertices V. The random graphs
Gn,p we use are based on the Erdős-Rényi model: they have n vertices and
each of the (n

2) pairs of vertices are linked by an edge with probability p.

We use the symbol ‖ to denote concatenation. Square brackets [] are used
either for access to an element in an array, or as short notation for the set
[N] = {1, ..., N} where N is a positive integer. Angle brackets are used for
tuples 〈v1, v2, ...〉 in which each element vi has a fixed size. The symbol ̂
denotes an estimate, e.g. the function f̂ approximates f . The arrow in a← b

stands for an assignment of the value of b to variable a and x $← X means
that x is sampled uniformly at random from the set X .

4

Chapter 2

Background and Related Work

The purpose of this chapter is to introduce the graph encryption scheme
we attempt to attack in the next chapters, namely the GRECS scheme from
Meng et al. which runs approximate shortest path queries on an encrypted
graph [MKNK15]. In order to do so, we first review the different types of
encrypted databases, existing constructions and attacks on them.

We start by giving an overview of the existing techniques to encrypt rela-
tional database, among which we find various types of searchable encryption.
After describing the different classes of leakages occuring in those encryp-
tion schemes we go over some leakage-abuse attacks. Next, we move to
schemes optimised for handling graph operations, a less popular research
area we want to explore further. Finally, we take a closer look at sketch-
based distance oracles solving approximate shorest path queries on a graph.
The GRECS scheme is based on the latter and introduced in the last section.

2.1 Relational Databases

Databases storing a large amount of data are usually running on a dedi-
cated system, hence in most settings we have one or more clients querying
a database on a server. With the advent of cloud storage and computing,
the server tends to be managed by a separate entity and the owner of the
data might be concerned with privacy issues if they do not fully trust the
server. Since encrypting the data before sending to the server would also
mean downloading it for every read or write operation, researchers have
been actively looking for a more efficient solution.

2.1.1 Schemes

ORAM, FHE and FE. In our context, the goal of encrypted databases is to
be able to store data on a server and query it without the server being able

5

2. Background and Related Work

to learn anything about the data or the queries. Some techniques such as
oblivious RAM (ORAM) [GO96], fully homomorquic encryption (FHE) [Gen09]
or functional encryption (FE) [BSW11] satisfy these requirements, but they
come at a high cost. The large number of communication rounds or the
high computing power requirements make these techniques not usable in
practice.

One way to make schemes more efficient is to relax their security require-
ments. If we allow the server to learn some controlled amount of data,
namely some leakage, we can achieve encryption schemes with a lower com-
munication and computation overhead, making them usable.

SE. One of the first type of schemes going in this direction is called search-
able encryption (SE) and enables keyword search queries over an encrypted
collection of documents. The scheme described by Song et al. [SWP00] uses
symmetric encryption and a set of keys to manage the access control. The
main issue with their scheme is that it requires a search time of O(n) which
is not good enough on a large amount of data.

Secure index. To address this issue a precomputed secure index can be used
[G+03]. The idea is to prepare an encrypted data structure storing the doc-
uments where a keyword appears and which can be queried efficiently for
a keyword.

SSE. Curtmola et al. formalised the concept and propose constructions
satisfying their definitions [CGKO11]. In particular, we give a simplified
overview of their definition of searchable symmetric encryption (SSE), illus-
trated in Figure 2.1. An encryption function takes a collection of documents
and produces a secure index which can be sent to the server. A trapdoor func-
tion takes a keyword on which the client wants to run a search query and
returns a token revealing nothing about the keyword. The server can then
use the token to run the search on the secure index and return an encrypted
collection of document identifiers which contain the keyword.

A number of researchers have published articles about SSE [CM05, vLSD+10,
KO12]. They worked among other things on making SSE dynamic to allow
updating the database [KPR12, KP13, SPS13, CJJ+14] and improve its ex-
pressiveness to allow boolean queries on keywords [CJJ+13, CJJ+14] as well
as range queries [FJK+15].

STE. Chase and Kamara introduced structured encryption (STE), which gen-
eralizes SSE [CK10]. They propose an encrypted data structure similar to
a secure index but which can handle various types of data. For exam-
ple, they describe a construction encrypting the adjacency list of a graph

6

2.1. Relational Databases

Figure 2.1: Searchable symmetric encryption as described in [CGKO11].

and solving neighbouring queries. Kamara et al. improved STE to support
a subset of SQL queries [KM18] and diminish the amount of data leaked
[KMO18, KM19].

PPE. In parallel to schemes based on an encrypted index, other work pro-
poses to encrypt the data records in a way which preserves some properties
allowing the server to perform queries on the data. Order-preserving encrp-
tion (OPE) [AKSX04, BCLO09], property-preserving encryption (PPE) [PR12]
and order-revealing encryption (ORE) [LW16] follow this idea. The resulting
schemes are more legacy-friendly since the structure of the data remains
the same but have O(n) querying time. In the same category we consider
deterministic encryption, which by definition reveals when two ciphtertexts
are encryptions of the same plaintext and thus allow the server to perform
queries. Bellare et al. proposed deterministic efficiently searchable encryption
(ESE) [BBO07] based on public-key encryption.

PEKS. Another family of schemes uses public-key (or asymmertric) in-
stead of symmetric cryptography to allow the server to run queries on the
data. Public-key encryption for keyword search (PEKS) [BDCOP04, ABC+05,
BKOS07, BW07] is a multi-user searchable encryption where the public-key
enables anybody to insert data while only the owner of the private key can
search the database. An issue regarding PEKS is that it relies on expensive
cryptographic primitives, which significantly lowers its efficiency.

Overview. Figure 2.2 summarises the previously mentioned types of en-
crypted database schemes. It also situates graph encryption and the GRECS
scheme we will look at in details in the next section. Note that the hier-

7

2. Background and Related Work

archy in Figure 2.2 only gives an overview and is not strict or exhaustive:
for example searchable encryption (SE) would englobe SSE and PEKS, but
STE generalises to queries other than search and PEKS does not use an en-
crypted index. A more comprehensive diagram would include overlaps and
be more complex.

2.1.2 Leakage profiles

Starting with a paper by Chang and Mitzenmacher [CM05], simulation-
based security definitions ensure some privacy guarantees for searchable
encryption schemes. Definitions like IND-CKA2 in [CGKO11] establish that
an attacker with chosen keyword queries cannot distinguish the real scheme
from a simulation having access to a specific leakage only. Thus the attacker
does not learn more than the leakage.

The proof that a scheme satisfies a security definition provides some guar-
antees, but it does not measure the impact of the leakage on privacy. Crypt-
analysis is for now the only known way to verify the effect of the data leaked
by a scheme on its security.

Cash et al. [CGPR15] introduced the concept of leakage profile to categorise
the leakages of various schemes. This allows attacks to target a class of
schemes with a given leakage profile instead of a specific scheme. We sum-
marise some of the leakage profiles in Table 2.1.

Figure 2.2: Hierarchical overview of the various encrypted database schemes
we mention. Reading the diagram from left to right, the schemes provide
more security and less efficiency.

8

2.1. Relational Databases

Table 2.1: Some leakage profiles and examples of schemes in which they
appear.

Leakage profile Leaked data Schemes

Access pattern reveals common records in query re-
sults

[SWP00]
[CGKO11]

Query/search
pattern

reveals whether two queries are iden-
tical

[CGKO11]

Volume pattern reveals the size of query results [FJK+15]
Rank pattern reveals the number of records with a

value smaller than a given record
[LW16]

2.1.3 Existing attacks

Using the previously mentioned leakage profiles and making various as-
sumptions, researchers have shown that an attacker can recover partial or
full information about an encrypted database content or the queries on it.
We now review some of these attacks to give a flavour of the kind of analysis
we want to make on the new leakage we introduce later.

Access pattern. Islam et al. showed how a malicious server can use the
access pattern to recover queries [IKK12]. They additionally require some
knowledge about the plaintext in the form of a set of m keywords and a
m×m co-occurrence matrix C which contains the probability that a pair of
keywords appear in a same document. Observing q unique search queries,
the server can use the access pattern to learn how many documents each
pair of tokens appear together and build a co-occurrence matrix Ĉ. Since Ĉ
is a permuted submatrix of C, the server can find the best token to keyword
mapping and learn which keywords where queried.

This attack showed for the first time that leakage which seems harmless for
the privacy of the database could have a devastating impact when used by
an attacker with a reasonable amount of additional information.

Search pattern. Liu et al. [LZWT14] investigated how the search pattern
can lead the server to recover queries keywords. Assuming statistical knowl-
edge about users’ search habits, an attacker observing a large enough amount
of queries can match the queried keywords having the highest frequency
with the statistically most searched keywords. The prior knowledge about
search habits could come from a public tool like Google Trends.

Volume pattern. Cash et al. worked on another query recovery attack
[CGPR15]. They use the volume pattern – i.e. the size of the query response,

9

2. Background and Related Work

which is part of the access pattern – and assume prior knowledge about the
number count[w] of documents a keyword w appears in. The server can then
find the best match between count and the size of the responses to learn the
content of the queries. Cash et al. show that the assumed knownledge count
does not need to be exact for their attack to yield good results.

File injection. Assuming a more powerful attacker able to insert docu-
ments in a database using searchable encryption, Zhang et al. mount a pow-
erful query recovery attack [ZKP16]. The idea is to inject documents with
subsets of keywords and observe whether a new query matches an inserted
document, thus revealing if the queried keyword is part of a subset.

Range queries. Another family of attacks targets schemes allowing queries
over ranges of ordered records [KKNO16, GLMP18, LMP18, GJW19]. A
range query returns records for which an ordered field (like an integer) has a
value in a given range. Knowning the access pattern and observing enough
range queries, the idea is to deduce the order of the records from range
overlaps [KKNO16]. The volume pattern can be used as well by matching
the result sizes to ranges, again assuming enough queries. Lacharité et al.
[LMP18] used the rank pattern, i.e. how many records have a lower value
than a given one, to improve those kind of attacks.

We can conclude that leakage analysis plays an important role in evaluating
the security of database encryption schemes. We now shift our focus to
graph databases in order to later perform the same kind of analysis on the
data some of them leak.

2.2 Graph Databases

The encrypted databases we have reviewed in the previous section follow
the relational model, which means that the data is organised in tables with a
fixed structure. Some types of data require more flexibility and the NoSQL1

family of databases has emerged.

Graph databases are a subset of the NoSQL family where the relationships
between data records are stored like values. More concretely the vertices
and edges of a graph are handled similarly to allow a flexible structure.
Social networks and web graphs are typical types of data for which graph
databases are suited.

One could argue that a graph can be stored in relational database in the
form of an adjacency list or matrix, but some graph operations requiring
path traversal – i.e. going from one vertex to another using edges – would

1https://nosql-database.org/

10

https://nosql-database.org/

2.3. Sketch-based Distance Oracle

be very inefficient. Thus graph databases such as Neo4j2, GraphBase3 or
OrientDB4 have been developped and adopted by the industry.

2.2.1 Encrypted Graph Databases

Graph databases stored by a third party raise the same privacy issues as
relational databases. The server storing the database is not fully trusted and
the client would like to keep the data private while still being able to query
it. Schemes with this functionality have been designed, but since there is a
wide range of graph operations the schemes only support a subset of them.

Chase and Kamara [CK10] introduced graph encryption along STE (see sec-
tion 2.1.1) and described constructions to run neighbouring and adjacency
queries. Cao et al. [CYW+11] used a feature-based index to run subgraph
queries as well as k-nearest neighbours queries. Meng et al. [MKNK15]
worked on a scheme running approximate shortest path queries on a graph,
which was generalized to constrained shortest path queries by Shen et al.
[SMZ+17] and made more accurate by Zhang et al. [ZZX+20].

In this thesis we will focus on the GRECS construction from Meng et al.
[MKNK15] for approximate shortest path queries. Before examining the
details of their scheme, we review the distance oracle on which it is based.

2.3 Sketch-based Distance Oracle

Given two vertices u and v in a graph, the length of the shortest path – or
distance – from u to v is the minimal number of edges one has to follow to
link u to v. The distance query is a basic operation in many graph algorithms
but also has applications of its own, such as the number of introductions
necessary for two person two meet in a social network or the similarity of
two websites in a web graph.

Standard algorithms to find the distance between two vertices like Dijkstra’s
require to explore the various paths between the vertices and their complex-
ity depends on the topology of the graph. One way to solve the problem
is to precompute the shortest paths between each pair of vertices, but this
is computationally too expensive on large graphs and requires a quadratic
storage space.

2.3.1 Distance sketches

Researchers have developped a technique to precompute a logarithmic data
structure, called sketch, which allows to approximate the shortest path be-

2https://neo4j.com/
3https://graphbase.ai/
4https://orientdb.org/

11

https://neo4j.com/
https://graphbase.ai/
https://orientdb.org/

2. Background and Related Work

tween two vertices in constant time [TZ05][DSGNP10][CDF+13]. Informally,
a sketch for a vertex consists of a collection of selected vertices called seeds
and the distance to each of them. The oracle takes two sketches and searches
among the common seeds (Figure 2.3) for the one building the combined
path of minimal length as illustrated.

More formally, we use a notation similar to [MKNK15] and define a distance
oracle as a pair of algorithms (Setup, D̂ist). Setup takes a graph G = (V, E)
and returns the set of sketches for each vertex. The sketch Sketchv for vertex
v is a set of tuples pairing a seed wi with the distance Dist(v, wi), i.e. the
length of the shortest path between v and wi. In short,

Setup(G) := {Sketchv}v∈V

Sketchv := {(w1,Dist(v, w1)), ..., (wl ,Dist(v, wl)))},

where l is the size of the sketch. D̂ist takes the sketches for two vertices u
and v and returns the minimal sum of distance over the seeds common to
Sketchu and Sketchv as an approximation of the distance Dist(u, v). That is

D̂ist(Sketchu, Sketchv) := min
(wi ,di)∈Sketchu
(wj,dj)∈Sketchv

wi=wj

{di + dj}.

The resulting distance is always an upper bound to the actual shortest path
length [DSGNP10]. The tightness of this upper bound depends on how the
seeds are chosen for each sketch and on the number of seeds. Next we look
at two possible Setup algorithms for chosing the seeds.

2.3.2 Sketching algorithms

Das Sarma et al. The first method we look at for selecting seeds for a
sketch was published by Das Sarma et al. [DSGNP10]. The idea is to have

Figure 2.3: Common seeds between two sketches.

12

2.3. Sketch-based Distance Oracle

sets of vertices, from which the seeds are selected, built in a way to ensure a
good balance between close seeds and seeds which appear in many sketches.

Let n = |V|, r = blog2(n)c and let S0, S1, ..., Sr be sets of seeds chosen uni-
formly at random over V with |Si| = 2i. We further define (wi,Dist(v, wi)) =
closest(v, Si) where wi is the vertex in Si closest to v. This allows us to con-
struct the minimal sketch of v:

SketchMinv :=
⋃

0≤i≤r

closest(v, Si).

To increase the precision of the distance oracle, a full sketch is the union
of σ minimal sketches built each with independently sampled sets of seeds.
We now have (r + 1)× σ sets Sj

i , where 0 ≤ i ≤ r, 1 ≤ j ≤ σ, and we can
construct the full sketch

Sketchv :=
⋃

0≤i≤r
1≤j≤σ

closest(v, Sj
i).

Das Sarma et al. showed that chosing σ = Θ̃(n2/(α+1)) guarantees α-precision
of the approximation of the distance, i.e. D̂ist(u, v) ≤ α ·Dist(u, v).

Cohen et al. The second sketching technique was designed by Cohen et al.
[CDF+13]. The idea is again to include a seed with higher probability if it is
closer, but this time the vertices are assigned a rank rank(v) ∈ [0, 1] influenc-
ing the inclusion probability instead of being chosen from predefined sets.
When building the sketch for vertex v, the probability that another vertex w
is included as seed in its sketch is higher when it is close to v or when its
rank is small.

Let us define the Cohen et al. Setup algorithm more formally. First, the rank
function is chosen to assign a value uniformly at random in [0, 1] for each
v ∈ V. Further, let Nd(v) be the set of vertices inside the ball of radius d
around vertex v, i.e. all vertices at a distance smaller than d from v. The
parameter ρ allows to tune the quality of the approximation and, for a set
of vertices W ⊆ V, we denote by ρth

rank(W) the ρth value in the ordered list
of ranks of the vertices in W. We can now build a sketch for vertex v by
including all seeds w which have a rank smaller than the ρth smallest rank
in the set of nodes closer to v than w:

Sketchv := {w ∈ V : rank(w) < ρth
rank(NDist(v,w)(v))}.

Cohen et al. showed that chosing ρ = Θ(n2/(α+1)) guarantees α-precision in
the distance approximation.

Notation. From now on we will refer to the algorithms above as the Das
Sarma et al. and the Cohen et al. sketching algorithms, respectively.

13

2. Background and Related Work

2.4 GRECS

Similarly to structured encryption, the GRECS scheme encrypts the data
structure storing the structure of the graph in a way that the server can
still run queries on it. We will now see in details the third construction in
[MKNK15], the only one computationally efficient and with optimal com-
munication complexity, as well as its leakage.

2.4.1 Definitions

Before delving into the scheme itself we review some standard definitions
of cryptographic primitives (e.g. see [KL14]).

In the following PPT stands for probabilistic polynomial time. A function
ν : N → N is negligible in t if for every positive polynomial p(·) and all
sufficiently large t, ν(t) < 1/p(t). A keyed function F is a two-input function
{0, 1}∗ × {0, 1}∗ → {0, 1}∗ where the first input is called key and is usually
fixed to form a single-input function Fk such that Fk(x) := F(k, x).

Definition 2.1 (Pseudo-random function – PRF) We say a keyed function Fk :
{0, 1}n → {0, 1}m is pseudo-random if it satifies the following:

• it is efficiently computable, i.e. given x ∈ {0, 1}n and k ∈ {0, 1}t there is a
PPT algorithm which computes Fk(x),

• no distiguisher has a non-negligible advantage, i.e. for any PPT algorithm D
there exists a negligible function negl such that

|Pr[DFk(1t) = 1]− Pr[D f (1t) = 1]| ≤ negl(t),

where k $← {0, 1}t and f $← { f : {0, 1}n → {0, 1}m}.

Definition 2.2 (Pseudo-random permutation – PRP) We say a keyed permu-
tation Pk : {0, 1}n → {0, 1}n is pseudo-random if it satisfies the definition of a
PRF with m = n.

Definition 2.3 (Somewhat homomorphic encryption) We say a somewhat ho-
momorphic encryption (SWHE) scheme is a tuple of algorithms (Enc,Dec,Eval)
such that (Enc,Dec) is a valid encryption scheme and

Enc(x1 � x2) = Eval(�,Enc(x1),Enc(x2))

for all x1, x2 and some operation �.

In the context of GRECS we need a SWHE scheme which supports any num-
ber of additions and one single multiplication as described in [MKNK15]. A
possible implementation is the scheme by Gentry et al. [GHV10].

14

2.4. GRECS

2.4.2 Construction

The construction is a pair of algorithms (Setup,Query). The Setup algorithm
takes the sketches {Sketchv}v∈V of a graph G = (V, E) and returns an array
A and a dictionary D along with the generated keys. Informally, A contains
the encrypted seed/distance pairs of the sketches as nodes of a permuted
linked lists. D maps an encryption of each vertex identifier to the start of
its sketch in A. Each sketch is thus ”spread” over A but can be recovered
by following the linked nodes starting from its head at which D points.
To allow the server to actually compute the shortest path length without
learning the distance stored in the sketches, the distances are encrypted
with a somewhat homomorphic encryption (SWHE) scheme.

Let us describe the algorithm in more details. We leave out the sizes of
the keys and of the domains refering to [MKNK15] for a formal definition.
Before starting, we need an SWHE scheme SWHE = (Enc,Dec,Eval), a PRP
P, a PRF F and a random oracle H as defined in 2.4.1.

Setup. First, the keys (pk, sk, K1, K2) are sampled, where (pk, sk) is a pub-
lic/private key pair for SWHE, K1 is a key for the PRP P and K2 is a key
for the PRF F. A collision-resistant hash function h and a permutation π
over [Z] are sampled as well, where Z is the total number of seed/distances
pairs, i.e. the sum of all sketch sizes. The algorithm then iterates over the
seed/distance pairs in all sketches and a global counter ctr increases for
each pair. When processing the seed/distance (wi, di), Setup first encrypts
di with SWHE as ci – we will explain how exactly later. A pointer to the next
node nxti is calculated, set to π(ctr+ 1) or NULL if it is the last pair of the
sketch. It then builds a node Ni := 〈h(wi)‖ci‖nxti〉. The node is encrypted
and stored in A:

A[π(ctr)] := 〈Ni ⊕ H(Kv‖ri), ri〉,

where Kv and ri are random values, sampled respectively for each vertex
and seed/distance pair.

A pointer to the start of each sketch v is then stored in D, using the PRP P
and PRF F to encrypt it:

D[PK1(v)] := 〈π(ctrv)‖Kv〉 ⊕ FK2(v),

where ctrv is the value of the global counter when processing the first
seed/distance pair of Sketchv.

Figure 2.4 illustrates the encryption of a simple sketch with three seeds.
When the client has run Setup, they keep the keys and send (A, D) to the
server.

15

2. Background and Related Work

... ...

D: PK1 Kv‖π(ctrv)⊕ FK2(v)

... ...

... ...

π(ctrv) 〈h(a)‖SWHE.Enc(2N−da)‖π(ctrv + 1)⊕ H(Kv‖ra), ra〉

A:

π(ctrv + 2) 〈h(c)‖SWHE.Enc(2N−dc)‖NULL⊕ H(Kv‖rc), rc〉

... ...

π(ctrv + 1) 〈h(b)‖SWHE.Enc(2N−db)‖π(ctrv + 2)⊕ H(Kv‖rb), rb〉

... ...

Figure 2.4: Encryption of Sketchv = {(a, d1), (b, d2), (c, d3)}. The arrows
indicate how the server recovers the pointers to the array entries and recon-
structs the sketch.

SWHE. Coming back on the distance encryption, Setup does not directly
encrypt di, but instead

ci := SWHE.Encpk(2N−di),

where N is a large enough constant. More precisely, for D the maximal
distance in all the sketches, N = 2 · D + 1. Roughly, this allows the Query
algorithm to find an approximation of the minimum combined distance be-
tween two sketches only with addition and multiplication operations, which
can be evaluated by SWHE.Eval on ciphertexts.

Query. To query the distance between vertices u and v, the client has to
send (PK1(u), PK1(v), FK2(u), FK2(v)) to the server. The server starts by read-
ing the pointers to the start of both sketches

〈au,0‖Ku〉 := D[PK1(u)]⊕ FK2(u)
〈av,0‖Kv〉 := D[PK1(v)]⊕ FK2(v).

The encrypted sketches are then reconstructed by recursively recovering the
nodes

〈σi, ri〉 := A[au,i]

16

2.4. GRECS

Nu,i := σi ⊕ H(Ku‖ri),

which can be parsed as hu,i‖cu,i‖au,i+1 := Nu,i, and similarly for v. The server
can then iterate over the hashed seed identifiers and sum the products of the
corresponding encrypted ditances using SWHE.Eval:

s := ∑
hu,i=hv,j

cu,i · cv,j.

s is sent to the client, which can decrypt it as d := 2N− log2 SWHE.Decsk(s)).
Since the distances were encrypted as SWHE.Encpk(2N−di), we have

d = 2N − log2

(
∑

wu,i=wv,j

2N−du,i · 2N−dv,j

)

= 2N − log2

(
22N · ∑

wu,i=wv,j

2−(du,i+dv,j)

)

= − log2

(
∑

wu,i=wv,j

2−(du,i+dv,j)

)
≤ min

wu,i=wv,j
du,i + dv,j,

where a proof of the last step as well as a lower bound for d can be found in
[MKNK15].

2.4.3 Leakage

The GRECS scheme leaks two types of information: the query pattern,
which we already know from previous schemes (cf Table 2.1), and the sketch
pattern.

Since the encryption of the queries is deterministic, the server can detect
when queried vertices are identic. Thus, the query pattern of GRECS for
m queries consists of an m × m matrix where the entry for q = (u, v) and
q′ = (u′, v′) reveals whether u = u′, u = v′, v = u′ and v = v′. A similar
leakage profile has been analysed by Liu et al. [LZWT14].

The second and new type of leakage consists of the pattern of common
seeds across sketches. Once a vertex has been queried, the server can learn
the hash of the seed identifiers in a sketch, as well as the size of each sketch.
Assuming that each vertex has been queried, the server can then learn how
frequent a seed identifier hash is in the sketches. Since the sketches have
been constructed in such a way that they contain more close seeds, some
information about the vertices could be inferred.

As far as we know, the sketch pattern has not been thorougly analysed yet.
In the next chapter we explore what data about the distances in the sketches
can be deduced from the sketch pattern.

17

Chapter 3

Distances Estimation from the Sketch
Pattern Leakage

In this chapter we will analyse the sketch pattern leaked by the GRECS
scheme [MKNK15] and try to recover useful information about the distance
sketches. For now, we do not try to mount an attack to recover data about
the graph itself or the queries a client is sending, but we only examine the
structure of the sketch pattern and attempt to construct sketch estimates as
close as possible to the original sketches.

We start by defining of what the sketch pattern exactly consists. We then
consider sketches from the Das Sarma et al. sketching algorithm (see section
2.3.2) and try to reverse the process of building them to gain knowledge
about the distance to each seed. Next, we adapt our technique to the Cohen
et al. sketches and, lastly, we evaluate how our method performs on sketches
of self-generated and real-life graphs.

3.1 Sketch Pattern Leakage

Definition 3.1 (Sketch pattern) The sketch pattern of a set of sketches consists of
sets of ”pseudo-ids” of the seeds, that is

SketchPattern({Sketchv}v∈V) := {SPv}v∈V

SPv := { f (w) : (w, d) ∈ Sketchv},

where f : V → V is a random function.

The sketch pattern is leaked in the GRECS scheme from Meng et al. but
not exclusively. The Connor scheme by Shen et al. [SMZ+17] extends to
cost-constrained shortest path queries, but it is based on distance sketches
as well and leaks the sketch pattern. Zhang et al. went futher in their PGAS

19

3. Distances Estimation from the Sketch Pattern Leakage

scheme [ZZX+20] by making the distance queries accurate, but they con-
serve the same leakage profile under the name label pattern leakage. Thus
investigating the impact of the sketch pattern leakage on the privacy is rele-
vant to multiple schemes.

In order to understand the relationship between the sketches and the sketch
pattern, we start by examining in details the case of Das Sarma et al. sketches.

3.2 Das Sarma et al. Sketches

Remember from section 2.3.2 that the seeds come from the sets of seeds
S0, S1, ..., Sr, where r = blog2(n)c, |Si| = 2i and Si ⊆ V is sampled uniformly
at random. To reflect the exploration approach adopted during the research
phase of this thesis, we will decompose the recovery of distances in the
sketches in two steps, as illustrated in Figure 3.1. In a first step, we are
going to estimate from which seed set Si a seed w of the sketch Sketchv
comes from. Then, we will estimate the distance between v and w knowing
from which seed set it comes from.

Figure 3.1: Overview of the Das Sarma et al. sketch construction and plan
for the distance estimate from the sketch pattern leakage. Step 1 estimates
from which seed set a seed comes from and step 2 estimates the distance in
the sketch from the level of the seed.

3.2.1 Step 1: seed level recovery

Since a Das Saram sketch is the union of multiple minimal sketches (cf.
section 2.3.2) which each sample their own seed sets, we will from now on
only consider the level of the seed set.

Definition 3.2 (Level of a seed set) For a seed set Si, its level is log2(|Si|), namely
i.

We will also use the phrase level of a seed w to designate the level of the seed
set from which a seed comes from.

We now make an observation linking the level of a seed to its frequency in a
sketch pattern.

20

3.2. Das Sarma et al. Sketches

Definition 3.3 (Frequency of a seed) For a seed w and a set of sketches
{Sketchvv∈V}, we denote by Freq(w) the number of sketches it appears in, that
is

Freq(w) := |{Sketchv : (w, ·) ∈ Sketchv}|,

where the symbol · represents any value.

Since a sketch gets one seed from each seed set, there will be the same
number of seeds from each seed set in the set of sketches. For now, we
ignore overlaps between seed sets and assume Si ∩ Sj = ∅ ∀i, j ∈ {0, ..., r}.
Further, we note that the seed set Si+1 contains twice as many seeds as Si
by definition, thus a seed from Si+1 will in average appear in half as many
sketches as a seed from Si, as illustrated in Figure 3.2.

Figure 3.2: In this graph with 16 vertices, a seed of S1 appears in average in
8 sketches and a seed of S2 in average in 4 sketches.

This also means that if the frequency of a seed is lower than the one of
another seed, it probably came from a higher level. Thus, we should be able
to approximate from which seed set a seed comes from only by observing
its frequency.

First attempt

Since |Si| = 2i, let’s assume that each sketch has probability 1
2i to contain a

seed w of level i. Thus, the frequency of seed w is binomially distributed,

21

3. Distances Estimation from the Sketch Pattern Leakage

that is

Freq(w) ∼ B
(

n,
1
2i

)
. (3.1)

Assuming that the frequency is close to its expected value n
2i , we can formu-

late our first attempt to estimate the level of a seed given its frequency:

L̂evel(w) := log2

(
n

Freq(w)

)
. (3.2)

At this stage, we conduct a small experiment with a random graph to con-
firm whether we are on the right path. First, we generate the sketches and
we plot in Figure 3.3a a histogram of the seed frequencies, using dots of a
different color for each level. We then compare these distributions with our
first hypothesis (3.1), represented with continuous lines in Figure3.3a. Al-
though the distributions of the different levels overlap, we can distinguish
that the actual distribution are relatively well aligned with the binomial
ones. We note that the observed distributions are flatter, which probably
means that the seeds are not as uniformly distributed as we assumed. In
Figure 3.3b we display the average frequency of seeds for each level along
with our first level estimate (3.2).

Taking the seed sets overlap into account

We mentioned earlier that we were ignoring the fact that two seed sets might
overlap. To improve our level estimate, we have to take into account that a
seed which was assigned to a sketch for a particular level might actually
also appear in another seed set, which will increase its frequency. When
observing the frequency of a seed of level i, we have to consider all the 2r

combinations of the r other levels in which the seed can be. Since the seed
sets are sampled independently from each other, the probability pJ that a
sketch contains a seed w appearing in a subset of a levels J ⊆ {0, ..., r} is

pJ = Pr

(w, ·) ∈ Sketchv | w ∈
⋂
j∈J

Sj


= max

(
1, ∑

j∈J

1
2j

)
,

where the maximum is necessary because S0 contains only one seed and
makes the sum go over 1. The frequency of a seed appearing in all those
levels is then binomially distributed with parameters n and pJ . Further,
the probability qJ that seed w of level i also appears in the other levels

22

3.2. Das Sarma et al. Sketches

(a) Proportion of seeds having a given frequency. Each color represents a different
level.

(b) Average frequency of seeds of a given level. The full line is the level estimate
L̂evel.

Figure 3.3: Seed level experiment on Das Sarma et al. sketches (with σ = 3)
of a random graph Gn,p with n = 50000 and p = 0.002.

23

3. Distances Estimation from the Sketch Pattern Leakage

J ⊆ {0, ..., r}\{i} is, again thanks to the independence of the seed sets,

qJ = Pr

w ∈
⋂
j∈J

Sj


= ∏

j∈J
Pr[w ∈ Sj]

=
2j

n
.

We can now formulate the probability mass function (PMF) of the event
”w has frequency x given that it is in set Si” as the weighted sum of the
binomially distributed PMFs for each of the 2r seed sets combination. That
is

Pr[Freq(w) = x | (w, ·) ∈ Si] = ∑
J⊆{0,...,r}\{i}

qJ · f (x, n, pJ∪{i}), (3.3)

where f (x, n, p) = Pr[X = x] given that X ∼ B(n, p).

Similarly to our first attempt, we check with a small visual experiment
whether the frequency distribution fits (3.3). Figure 3.4 shows that our im-
proved approximation of the frequency is closer to the actual values but still
does not fit perfectly.

The observed gap could, for example, be caused by the fact that we only
considered sketches with σ = 1 in our reasoning. We could explore possi-
bilities to further improve the seed level recovery, but for now we move on
to the next step, namely to approximate distances in a sketch with the help
of our seed level estimate.

3.2.2 Step 2: distance recovery from the seed level

Now that we are able to approximate from which level a seed w in Sketchv
comes from, we can take the next step and use the level to recover the dis-
tance between v and w.

In order to picture how the distances in a sketch are related to the level of
the seeds we will move our focus from a particular sketch with its seeds to
the reverse mapping, i.e. a particular seed and all sketches it appears in.

Definition 3.4 (Subgraph of a seed) For a graph G = (V, E) and a set of sketches
{Sketchv}v∈V , the subgraph of a seed w is the subgraph H ⊆ G induced by the sub-
set of vertices V ′ for which the sketch contains w, that is

V ′ := {v ∈ V : (w, ·) ∈ Sketchv}.

24

3.2. Das Sarma et al. Sketches

Figure 3.4: Frequency distribution for seeds of level 12, the dots are val-
ues of a random graph with n = 50000, the blue line is the basic binomial
distribution and the orange one the improved PMF.

We make the following observation: if a seed appears in more sketches it
will in average be further from the vertices in its subgraph. More abstractly,
the bigger is a subgraph, the bigger is the average distance from one vertex
to all other vertices of the subgraph. This can for example be observed in
Figure 3.2: the seeds of the seed set S1 will have a higher distance in the
sketches than the seeds of S2.

Definition 3.5 (Average path length of a vertex in a graph) The average path
length (or average distance) of a vertex u in graph G is the average length of paths
between u and v for all v ∈ V. That is

lG(u) =
1
|V| ∑

v∈V
Dist(u, v)

where Dist(u, v) is the length of the shortest path from u to v.

We assume that the average path length of a seed w in its subgraph is a
good approximation for the distance between v and w in the sketch of v.
Thus, we make an observation linking the average path length to the size of
a subgraph.

For a vertex v in the subgraph H of a seed w, every vertex v′ on the shortest
path between w and v is in the subgraph H as well, thus the subgraph is
”dense”. This means that if we take a second subgraph H′ of seed w′ such
that |H′| > |H|, the average path length lH′(w′) is probably greater than
lH(w).

25

3. Distances Estimation from the Sketch Pattern Leakage

How the distance relates to the level depends on the type of graph. We start
by considering an intuitive approach and embed the graph in an Euclidian
space with N dimensions. Later, we will reuse results from Fronczak et al.
[FFH04] about the average path length in a random graph to formulate a
second approach.

Graph embedded in an N-dimensional Euclidian space

Let us consider a graph embedded in an N-dimensional Euclidian space,
where the shortest path length between two vertices corresponds to their
Euclidian distance.

If we approximate the seed subgraphs as N-dimensional balls centered around
their seed, the average path length of a seed in its subgraph can be deduced
from the size of the subgraph. Indeed, since the volume of an N-ball of
radius R is proportional to RN and the average distance between the center
and a point of the same N-ball is proportional to R (see Appendix A), we
can approximate the average path length in the subgraph H of seed w by
ignoring the constants with

l̂H(w) = |V ′|1/N ,

where V ′ is the set of vertice of subgraph H.

As the graphs we consider in practice may have a high Euclidian dimension
because of a high maximum degree [FKS20], we will use the average degree
k of the graph to define the average dimension D = k/2 — imagine a D-
dimensional grid, each node has 2D neighbours. We now formulate our first
estimate for the distance assigned to a seed w in a sketch:

D̂ist1(w) =

(
n

2L̂evel(w)

)1/D

where we used the fact that the average subgraph size of a seed with level
i = L̂evel(w) is n

2i .

After this quite geometrical approach, we move on to a method more adapted
to the type of graphs for which the GRECS scheme was designed.

Random graph approach

As the GRECS experiments [MKNK15] only use real-life graphs with small-
world properties and a small diameter (see section 3.2.4), we will consider a
model which can have similar properties. The Erdős-Rényi model (see 1.4)
is the simplest model of random graphs and the diameter of Gn,p can be
controlled by adjusting the parameters n and p.

26

3.2. Das Sarma et al. Sketches

Fronczak et al. [FFH04] established that the average path length in a random
graph depends only on its size and average. That is

lGn,p =
ln n− γ

ln k
+

1
2

,

where γ ' 0.5772 is Euler’s constant and k is the average vertex degree.

We want to apply this result to the seed subgraphs. As in the previous
approach, we approximate the size of a subgraph with its level. To deter-
mine the average degree in a subgraph, we observe that the subgraphs are
formed by taking vertices closest to a seed, thus only few edges will be lost
in the ”partitioning” process. This means that the average degree of a seed
subgraph will be close to the average degree of the original graph.

This leads us to our second estimate for the distance assigned to a seed w of
level i

D̂ist2(w) =
ln n

2i − γ

ln k
+

1
2

,

where we assume a constant average degree k.

3.2.3 Putting things together: distance recovery from the seed
frequency

In step 1 we approximated the seed level from the seed frequency and in
step 2 we used the seed level to estimate the distance assigned to the seeds
in sketches. We now chain both steps and simplify the result.

We notice that in both approaches for the distance estimate we use the size
of the subgraph, which we approximate by n

2i with its level i, but not the
level only. Since the size of a subgraph is actually the frequency of its seed,
we can simplify the distance estimates:

D̂ist1(w) = (Freq(w))1/D

and

D̂ist2(w) =
lnFreq(w)− γ

ln k
+

1
2

.

Equipped with those tools, we will evaluate how good they perform in the
next section.

3.2.4 Experiments

Keeping in mind that we later want to approximate the result of an en-
crypted query with the sketch pattern only, we for now evaluate how well
we can estimate the content of the sketches. First, we define some met-
rics we use to measure the quality of the estimates and then experiment on
self-generated as well as real-life graphs.

27

3. Distances Estimation from the Sketch Pattern Leakage

Quality of the distance recovery

We will measure the quality of the distance estimate with two different met-
rics. The first one indicates how well the distance estimate approximates the
distance in the unencrypted sketch and the second measures how well the
distance estimate recovers the order of distances.

More formally, the distance recovery advantage for the sketches {Sketchv}v∈V
is

AdvD̂ist :=
lSketch − RMSE

lSketch
,

where lSketch is the average distance in the sketches and RMSE is the root-
mean-square error of the distance estimate of each seed in each sketch. The
advantage will be 1 if the estimate is exact and 0 if it randomly chooses a
distance in the sketches.

The ordering advantage of the distance estimate reflects whether the dis-
tance estimates are sorted like the actual distances:

Adv≤ := E
(

1(D̂ist(vi, wi) ≤ D̂ist(vj, wj))

−1(Dist(vi, wi) ≤ Dist(vj, wj))
)
· 2− 1,

where the expectation goes over all vertex/seed pairs ((vi, wi), (vj, wj)).

Datasets

Our experiments, in this chapter and the next, are run on some of the real-
life datasets used by Meng et al. in [MKNK15]. Table 3.1 summarises their
properties and Table 3.2 indicates their context. They are accessible from the
Standford SNAP website [LK14]. Note that the diameter of the graphs is
small compared to the number of vertices, which is a property observed in
many real-life graphs [LKF05]. Note as well that we mostly use the largest
connected component of the graph – which spans most of it, see Table 3.1 –
to avoid undefined distances and simplify the implementation.

In this section we run our distance recovery algorithm on a random graph
Gn,p (with n = 50000 and p = 0.0002), the CondMat and the Enron datasets.

Setting

The Das Sarma et al. sketches are generated with σ = 3 as in the GRECS
paper [MKNK15]. We approximate the distances with our two estimates,
namely D̂ist1 for the Euclidian space approach and D̂ist2 for the random
graph approach. The distances in all sketches are considered to evaluate the
recovery advantage, but we only take in account a subset of 10’000 sketches
for the ordering advantage since all pairs have to be considered for the latter
and this results in an extended computing time.

28

3.3. Cohen et al. Sketches

Table 3.1: Datasets used in our experiments.

Name Vertices Edges Average degree Diameter Largest CC

CondMat 23’133 93’439 8.08 14 21’363
Enron 36’692 183’831 10.02 11 33’696
Gowalla 196’591 950’327 9.67 14 196’591

Table 3.2: Context of the real-life datasets.

Name Description

CondMat Authors of articles about Condensed Matter research
linked if they co-authored an article

Enron Email adresses of the Enron Corporation linked
when at least one email was exchanged

Gowalla Users of the location-based social network Gowalla
and their friendships

Discussion of the results

Figure 3.5 gives an overview of the performance of our estimates. Each row
of subfigures corresponds to a dataset. The first row shows the results for
the first estimate D̂ist1, the second for D̂ist2 and the third row reveals the
distribution of distances in the sketches, which allows us to weight which
range of distances are more important to recover accurately.

Table 3.3 shows the quantitative results of our experiments. We note that
the recovery advantage of the first estimate AdvD̂ist1

is very low, especially
for the real-life datasets. This can be linked with the relatively large error
of the estimate D̂ist1 for frequent distances, as illustrated in Figures 3.5b
and 3.5c. Nevertheless we do not discard D̂ist1 because it performs better
in the actual attacks (see section 4.4.1). The recovery advantage of D̂ist2 as
well as the ordering advantages are more promising and clearly show that
the frequency of the seeds calculated from the sketch pattern allow us to
recover partial information about the distances in the sketches.

3.3 Cohen et al. Sketches

We will now apply a procedure similar to the one used in the previous sec-
tion to extract distance information from the sketch pattern resulting from
the Cohen et al. sketching algorithm.

Remember from section 2.3.2 that in this setting the vertices are assigned a

29

3. Distances Estimation from the Sketch Pattern Leakage

(a) Gn,p, D̂ist1 (b) CondMat, D̂ist1 (c) Enron, D̂ist1

(d) Gn,p, D̂ist2 (e) CondMat, D̂ist2 (f) Enron, D̂ist2

(g) Gn,p (h) CondMat (i) Enron

Figure 3.5: The first 6 figures show the median recovered distance from
Das Sarma et al. sketches compared with the actual distance, with a range
between the 25th and 75th percentiles. The blue line is the identity function
as reference. The last 3 figures show the distance distribution in the sketches.

Table 3.3: Measurement of the quality of sketch distance recovery on various
datasets.

Data set lSketch AdvD̂ist1
Adv≤1 AdvD̂ist2

Adv≤2

Gn,p 2.99 0.413 0.687 0.787 0.684
CondMat 3.23 0.014 0.541 0.668 0.536
Enron 2.54 0.016 0.425 0.473 0.445

30

3.3. Cohen et al. Sketches

rank, and a vertex w is a seed in sketch Sketchv if and only if its rank is lower
than the ρth rank in the set of vertices closer to v than w. This means that a
vertex with a low rank will probably be a seed in more sketches than a seed
with a high rank, thus we could approximate the rank of a seed knowing
its frequency as a first step and procede by estimating the distance of a seed
from its rank.

But as we have seen with the distance estimates in the last section (see 3.2.3),
these two steps partially cancel each other, therefore we will skip them and
directly estimate the distances from the frequency of the seeds.

3.3.1 Distance recovery

Examining the algorithm to construct the sketches from section 2.3.2, we
note that if a seed w is assigned to a vertex v, all vertices on the shortest
paths between w and v also contain w in their sketches. Thus, the subgraph
built by taking all vertices containing a particular seed is ”dense” in the
sense that it forms a group of vertices close to each other without ”holes”.

To approximate the distance from a seed to a vertex in a sketch we use the
size of its subgraph, which is equivalent to the frequency of the seed over all
sketches. Since this reasoning is exactly the same as in the case of the Das
Sarma et al. sketches (see 3.2.3), we reuse the same distance estimates:

D̂ist1(w) = (Freq(w))1/D ,

where D := k/2, and

D̂ist2(w) =
lnFreq(w)− γ

ln k
+

1
2

.

3.3.2 Experiments

Repeating the same experiments as for the Das Sarma et al. sketches, we
use Cohen et al. sketches with a precision parameter ρ = 4 and estimate
the distances with the average degree k as only prior knowledge about the
graphs.

Discussion of the results

We observe in Figure 3.6 and in Table 3.4 that the experiments on Cohen
et al. sketches yield results very similar to the ones on Das Sarma et al.
sketches. This is expected since both sketching algorithms rely on a balanced
distribution of close and farther seeds to give good distance approximations.

We mention here that it is impossible for estimates based on the sketch
pattern to be exact since there is less information in the sketch pattern than

31

3. Distances Estimation from the Sketch Pattern Leakage

in the sketches themselves. This means that the accuracy of our estimates
may be improved, but it is expected that it will never be perfect.

3.4 Chapter Summary

In this chapter we decomposed both the Das Sarma et al. and the Cohen et
al. sketching algorithms to ”reverse engineer” them and exploit the sketch
pattern leakage. We used two different approches to estimate the distances
in the sketches from the seed frequency and evaluated the performance of
our estimates on self-generated and real-life graphs.

Even if the values and plots resulting from our experiments show that our
estimates are not very accurate or precise, we still observed that a non-
negligible quantity of information can be recovered from the sketch pattern
leakage. This information can potentially be amplified and used by an at-
tacker to gain knowledge about the encrypted graph or queries on it, as we
will attempt to demonstrate in the next chapter.

Table 3.4: Meaurement of the quality of distance recovery in Cohen et al.
sketches.

Data set lSketch AdvD̂ist1
Adv≤1 AdvD̂ist2

Adv≤2

Gn,p 3.01 0.279 0.768 0.817 0.768
CondMat 3.60 0.026 0.646 0.653 0.644
Enron 2.66 0.127 0.598 0.577 0.586

32

3.4. Chapter Summary

(a) Gn,p, D̂ist1 (b) CondMat, D̂ist1 (c) Enron, D̂ist1

(d) Gn,p, D̂ist2 (e) CondMat, D̂ist2 (f) Enron, D̂ist2

Figure 3.6: Median recovered distance from Cohen et al. sketches compared
with the actual distance, with a range between the 25th and 75th percentiles.
The blue line is the identity function as reference.

33

Chapter 4

Leakage-based Attacks on GRECS

When a client sends an encrypted graph to a server which stores it and
runs queries on it as in the GRECS scheme [MKNK15], the server learns
among other things the sketch pattern. This leakage consists of the seed
pseudo-identifiers in each of the sketches (see Definition 3.1), which allows
the server to identify frequent and less frequent seeds across the sketches.
After our preliminary exploration of the sketch pattern leakage in the last
chapter we now attempt to recover information about the encrypted graph
and queries.

In the following we expose our findings about ways to exploit the sketch
pattern leakage. Not all the techniques lead to a feasible or useful attack in
a real-life situation, but we describe them nevertheless as possible building
blocks of more complex exploit chains.

We start by defining the assumptions we make about an attacker on the
GRECS scheme. The first attack we then describe recovers some general
information about the graph only requiring a honest-but-curious adversary.
Assuming some more knowledge we are able to recover queried vertices.
We further vary the settings of the query recovery attack to make it more
accessible.

4.1 Attacker Model

The adversarial model we consider in this chapter is that of a server execut-
ing the protocol correctly but trying to gain knowledge private to the client.
Indeed, the sketch pattern is revealed during the Query algorithm of the
GRECS construction and cannot be inferred from the communication with
the client. Therefore, a man-in-the-middle attacker having access to mes-
sages exchanged would not learn the sketch pattern. Hence we will only
consider the server as potential adversary.

35

4. Leakage-based Attacks on GRECS

Honest-but-curious. In a first step we consider a honest-but-curious server.
This means that the server executes the protocol as expected but attempts
to deduce some knowledge about the content of the database or the queries.
We make two reasonable assumptions. First, the server knows about the
average degree k of the vertices of the graph, which is equivalent to knowing
the type of data stored in the graph. Second, we assume that each vertex is
queried at least once: this allows the server to reconstruct all the encrypted
sketchs and learn the full sketch pattern. This is a legitimate assumption if
the server is queried often by the client over a certain period of time.

With known queries. As we will see that little information is revealed by
the sketch pattern only, we then assume that the server has access to a certain
number of known queries between candidate vertices and references vertices.
In the case of the partial distance matrix, the queries do not need to be
chosen and could be the result of the attacker passively learning queries
from another channel.

4.2 Building Blocks

Before we get to the attacks, we need to add two more items to our tool box.
We will first adapt the sketch distance recovery to approximate the result of
a query. Then, we will see how we can compare two vectors of distances
and evaluate how similar they are.

4.2.1 Distance recovery

The subsequent attacks are based on the fact that the server can estimate
the distance between two vertices with the sketch pattern. In the previ-
ous chapter we presented our method to estimate the distance d in each
seed/distance pair in a sketch, i.e. (w, d) ∈ Sketchv, from the frequency of
the seed Freq(w). We now use this estimate to replicate the sketch-based
distance oracle quering method and approximate the result of the GRECS
Query algorithm.

Algorithm 1 searches for common seed pseudo-ids (see Definition 3.1) in the
sketch patterns of u and v and returns the distance estimate for the closest
one. The estimate is multiplied by 2 since it has to account for the distance
first from u to the seed and then from the seed to v.

Note that the RecoverDist function takes two lists of arguments. We use
this currying-like notation to describe a modularisable function which can
be instanciated with different parameters before being applied to the actual
arguments. In this case, the distance recovery function can be evaluated
independently of the underlying sketch distance estimate D̂ist.

36

4.2. Building Blocks

Algorithm 1 Distance query recovery

1: function RecoverDist(D̂ist)(x, y)
2: d← ∞
3: for h ∈ SPx do
4: for h′ ∈ SPy do
5: if h = h′ then
6: d′ ← 2 · D̂ist(h)
7: if d′ < d then
8: d← d′

9: return d

4.2.2 Similarity metric

Later in the chapter we will need a metric to compare two vectors of dis-
tances.

Taking the distances from a vertex u in a graph to a set M of other vertices
we can build a vector a. Similarly, with a vertex v we can build a vector
b such that b = (Dist(v, y1),Dist(v, y2), ...) for M = (y1, y2, ...). A similarity
metric Sim is a function of a and b which evaluates to 1 if they are identical,
and thus probably u = v, and to another value 0 ≤ Sim(a, b) < 1 if a 6= b.
In our case, we will use a similarity metric to compare a vector of recovered
distances with vectors of actual distances.

Among the popular similarity measures between two vectors we count the
cosine similarity and the Euclidian distance. The so called cosine similarity
is the cosine of the angle between the two vector and the Euclidian distance
is the L2 norm1 of the difference between the vectors. Since the recovered
distance might have a scaling factor error depending on the quality of the
distance estimate, the Euclidian distance would ”forward” this error while
the cosine similarity normalises the vectors and cancels this type of system-
atic error. Some preliminary experiences also showed that cosine similarity
performs better, thus we choose this similarity metric.

Let θ be the angle between two vectors a and be b. Then we have

cos(θ) =
a · b
‖a‖‖b‖ ,

where · is the inner product. Since we are dealing with vectors of positive
distances and since the coordinates which are more significant for the sim-
ilarity are the smaller ones – corresponding to close vertices – we take the

1https://mathworld.wolfram.com/L2-Norm.html

37

https://mathworld.wolfram.com/L2-Norm.html

4. Leakage-based Attacks on GRECS

element-wise inverse of a and b. Thus we define our similarity metric as

Sim(a, b) =
a−1 · b−1

‖a−1‖‖b−1‖ ,

where e−1 = (e−1
1 , e−1

2 , ...) for e = (e1, e2, ...).

4.3 Graph Information Recovery

Now that we have a technique to approximate the distance between two
vertices of the encrypted graph, we can construct an n× n matrix with the
distance estimate of all pairs of vertices.

The distribution of the distance estimates allows us to approximate values
like the density of the area around a vertex or the average path length in the
graph. We will illustrate its usefulness by distinguishing the sketch patterns
of two graphs with similar properties.

Distinguish two graphs

Let G1 be a random graph Gn,p with n = 1000 vertices and an edge prob-
ability p = 0.008 and let G2 also have 1000 vertices but separated in two
clusters. The edges between two vertices of a same cluster have a probabil-
ity p as well, but inter-cluster edges have a probability q = 0.00001. Figure
4.1 shows possible instances for G1 and G2.

Using the distance estimate matrix, which can be computed knowing the
sketch pattern and the average degree, an attacker can observe a difference
in the approximation of the distance distribution. Figure 4.2 illustrates how,
in the graph with two clusters, the inter-cluster distances form a seperate
peak and allow the attacker to distinguish the distribution.

This kind of analysis could be performed on real-life graphs as well to re-
cover information about the distance distribution. But we notice that we

(a) G1 (b) G2

Figure 4.1: Random graphs with n = 1000 vertices.

38

4.4. Query Recovery Attack

(a) G1 (b) G2

Figure 4.2: Distance estimate distribution in random graphs.

are not able to recover information about connectivity or centrality which
could have lead to more significant weaknesses, thus we will now focus on
an attacker which has access to more knowledge.

4.4 Query Recovery Attack

In this setting we consider an attacker trying to recover the vertices in an
encrypted query. An query q = (u, v) becomes q̃ = (x, y) once encrypted
(= PK1(u), PK1(v) in the case of GRECS). Thus, the attacker tries to guess
which u ∈ V corresponds to x and similarly for v and y.

We will break down the problem by first considering an attacker observing
one encrypted vertex x and trying to recover to which of a set of candidate
vertices L it corresponds. Later on we decrease the assumptions and observe
how the initial attack performs.

4.4.1 Recover one vertex from l candidates

In order to distinguish the candidate vertices from each other, the attacker
knows the distance from each of them to each of a set M of reference vertices
in the form of a distance matrix. They can then use the distance estimate
from the unknown vertex x to each of the reference vertices and build a
distance estimate vector. This vector can then be compared to the rows of
the distance matrix to find out to which it is most similar.

Algorithm

More formally, the attacker has

• l candidate vertices L = (u1, ..., ul) and their unordered encryption
L̃ = {x1, ..., xl},

• m encrypted reference vertex identifiers M̃ = (y1, ..., ym), and

39

4. Leakage-based Attacks on GRECS

• an l × m distance matrix A where Ai,j = Dist(ui, vj) for ui ∈ L and
vj ∈ M.

Note that the attacker does not need the actual reference vertices M =
(v1, ..., vm).

In Algorithm 2 the attacker uses the sketch pattern to build a distance es-
timate vector D = (d1, ..., dm) such that di = RecoverDist(x, yi). The sim-
ilarity of each row of A and the vector D is then computed. The highest
similarity is the one corresponding to the best candidate, which is returned
as the most probable vertex identifier for the encrypted vertex identifier x.

Algorithm 2 Vertex recovery attack

Require: L, L̃, M̃, A
1: function RecoverVertex(Sim)(x)
2: for yi ∈ M̃ do
3: di ← RecoverDist(x, yi)
4: D ← (d1, ..., dm)
5: for Ai,∗ ∈ A do
6: si ← Sim(Ai,∗, D)
7: j← arg maxi(s1, ..., sl)
8: return Lj

Experiments

Setting. For our experiments we use the real-life datasets we introduced in
Table 3.1 and sketches generated by our implementation of the Das Sarma
et al. and Cohen et al. algorithms as in section 3.2.4. We run our experi-
ments 1000 times with randomly sampled reference and candidate vertices
to approximate the average performance of the recovery.

Distance estimate. In chapter 3 we developed two techniques to approxi-
mate the distances in a sketch, namely D̂ist1 and D̂ist2. After running some
preliminary experiments we observe that the first estimate D̂ist1 performs
better, as for example for the CondMat dataset in Figures 4.3a and 4.3b.
This can be surprising given the results of our evaluation of the estimates
(see section 3.2.4) but makes more sense considering that we only use the ap-
proximated distances as features that we compare with the similarity metric
Sim and not as values close to the actual ones.

Recovery metric. Since a recovery from l candidates will in the worst case
have a success rate of 1

l , we substract this shift and scale it to define the
recovery advantage.

40

4.4. Query Recovery Attack

Definition 4.1 (Recovery advantage) The recovery advantage of a recovery at-
tack of one among l candidates with success rate r is

Advrec :=
r− 1

l

1− 1
l

,

which is 0 when the recovery is uniform at random and 1 when it is always success-
ful.

Results. The results of the experiments shown in Figure 4.3 indicate that
from a reasonable number of reference vertices an attacker can distinguish
an unknown vertex among candidates with a clear advantage. When the
number l of candidate vertices increases, the probability that the unknown
vertex is close to another candidate and cannot be distinguished from it
becomes higher and the recovery advantage drops, as we can see in the
plots.

We observe that the recovery performs better on the CondMat graph than
the two others. This could be caused by the smaller size of this dataset or
another property of the graph. Further investigation would be needed here.

4.4.2 Vertex recovery with restrictions

Since the knowledge required to execute the vertex recovery attack is quite
extended, we investigate how the attack performs under different restric-
tions.

Partial distance matrix

First, we consider an attacker which cannot chose the reference vertices and
only gets a certain number of query results revealed to them. This results in
a distance matrix only partially filled, the rest being unknown.

As we can observe in Figure 4.4, the recovery advantage drops as expected.
But we note from this experiment that not all the distances to the reference
vertices are needed and more reference vertices can compensate a sparser
distance matrix.

Reference vertices in different cluster

Until now we sampled the sets of vertices M and L uniformly at random.
As a second restriction for the attacker we consider reference vertices in a
different region of the graph than the candidate vertices. This would trans-
late to an attacker learning the query results only from a localised set of
reference vertices.

41

4. Leakage-based Attacks on GRECS

(a) CondMat, D̂ist1 (b) CondMat, D̂ist2

(c) Enron (d) Gowalla

Figure 4.3: Recovery of one vertex from l condidates with 50 references
vertices using a Das Sarma et al. sketch. The average recovery advantage
over 1000 trial is displayed.

(a) m = 50 (b) m = 100

Figure 4.4: Vertex recovery advantage with partial distance matrix. From
the top: 100%, 80%, 60%, 40% and 20% of the distance matrix entries are
kept.

42

4.4. Query Recovery Attack

For the experiment illustrated in Figure 4.5 we used the community fastgreedy

function of the python-igraph library implementing the method of [CNM04]
to clusterise the vertices. The sets M and L are then chosen from two differ-
ent clusters. We can observe that the advantage drops faster with l increas-
ing than in the case of uniformly chosen candidate and reference vertices,
even when increasing m. This means that the rows of the distance matrix are
too similar and the attacker fails to distinguish the unknown vertex among
too many of its neighbours. The reason why the recovery apparently per-
forms worse with more reference vertices is unclear. A hypothesis is that
the vertices making a difference in the similarity metric, i.e. probably the
close ones, do not weigh enough in the similarity metric. Thus, a successful
recovery would be rarer.

4.4.3 Permutation recovery

Until now the attacker was only attempting to recover one vertex among l. A
more advanced setting is for the attacker to have an l× l distance matrix and
no reference vertices. This means that they can compute an l× l permutated
distance estimate matrix and attempt to recover the permutation.

This setting is comparable to the attack by Islam et al. in [IKK12], where
they recover a queried keyword permutation from a keyword co-occurence
matrix. Before trying to optimise the permuation recovery, we try a small
experiment by maximising over all possible permutation with small values
of l.

We can see that the results in Table 4.1 are not encouraging. The issue, in
our case, might be that two vertices close to each other might have identical
distances to most or all other candidate vertices and cannot be differentiated
in the distance estimate matrix, even if the estimate is exact. This results in
a poor recovery advantage even with small matrices.

Table 4.1: Recovery rate r (proportion of the vertices recovered correctly)
and corresponding recovery advantage of the permutation recovery of an
l × l distance matrix. The values are averaged over 100 random subsets of
the CondMat dataset.

l r Advrec

5 0.308 0.135
6 0.357 0.228
7 0.370 0.265
8 0.326 0.230
9 0.262 0.170

43

4. Leakage-based Attacks on GRECS

(a) m = 50 (b) m = 100

(c) m = 200

Figure 4.5: Recovery advantage with reference and candidate vertices in
different clusters.

4.5 Countermeasures

The attacks we previously described are based on the sketch pattern leak-
age. In this section we will attempt to reduce the amount of information an
attacker can learn with the sketch pattern to make such attacks inefficient.

4.5.1 Add fake seeds

The distance estimates we introduced in Chapter 3 is based on the frequency
of a seed from Definition 3.3, which itself relies on the sketch pattern. If
the seeds all had the same frequency, no information about the distance
could be inferred, but then either the distance oracle would not give a good
approximation anymore or the size of the sketches would be impractical.
We have to find a compromise between the sketch size and the remaining
leakage.

As Meng et al. mention in [MKNK15], adding fake seeds can improve the
privacy of their construction. First, we are going to consider the Das Sarma
et al. sketching algorithm and which seeds to add in this case.

44

4.5. Countermeasures

Uniformise the seed frequency

We propose to modify the sketching process to uniformize the frequency of
seeds above a certain level. Our level recovery method from section 3.2.1
should not be able to distinguish between the level of a large portion of the
seeds and should thus have a lower success rate.

Algorithm 3 takes a parameter c and completes the seeds of the levels above
s = b r

cc. The body of the if-statement at line 11 contains the modification to
the original algorithm. k is the number of missing seed occurences to reach
the same frequency as the seeds of level s. Thus, each seed w is added to
the sketch of k random vertices.

Algorithm 3 Modified Das Sarma Setup including fake seeds

1: function Setup
+(G, σ, c)

2: for v ∈ V do
3: Sketch+v ← Map()

4: r ← blog |V|c
5: s← b r

cc
6: for j ∈ (1, ..., σ) do
7: for i ∈ (0, ..., r) do

8: Sj
i

$← V2i

9: for v ∈ V do
10: Sketch+v

add← closest(v, Sji)

11: if i > s then
12: k← b n

2s − n
2i c

13: for w ∈ Sj
i do

14: V ′ $← Vk

15: for v ∈ V ′ do
16: Sketch+v

add← (w,Dist(v, w))

17: return {Sketch+v }v∈V

We can see in Figure 4.6b that the frequencies of the seeds have been uni-
formised above level 7. We will see in the next section how the attack per-
forms on the modified sketch.

Impact on the sketch size

Without the countermeasure, each sketch has a size of O(σ log n). We now
calculate the size increase. Ignoring the σ factor, we have

E
(
|Sketch+v | − |Sketchv|

)
=

1
n

r

∑
i=s+1

2i
(n

2s −
n
2i

)
45

4. Leakage-based Attacks on GRECS

(a) Without fake seeds. (b) With fake seeds (c = 2).

Figure 4.6: Average frequency of seeds for their level in the Das Sarma sketch
of the CondMat dataset.

= O
(

1
n

r

∑
i=s+1

n(2i−s − 1)

)

= O
(

r−s

∑
i=1

2i

)
= O

(
2r−s+1 − 2

)
= O

(
n

c−1
c

)
,

where the first equality is due to counting the average number of added
entries per sketch in Algorithm 3 and the last one is due to 2r ' n and
s ' r

c .

This means for example with c = 4
3 that the sketch size is now O(σn1/4),

which is a significant increase for a large n.

Adapting to the Cohen et al. sketches

As we uniformised the frequency of seeds above a certain level for the Das
Sarma algorithm, we can modify the Cohen sketching method to uniformise
the seed frequency above a certain rank. Since the procedure is very similar
we leave it aside for the moment.

4.5.2 Experiments

To verify the effect of our countermeasure we generate Das Sarma sketches
for some values of c and observe how the vertex recovery performs. Figure
4.7 shows the recovery advantage for values of c up to 2, c = 1 adding no
seeds. We observe that the countermeasure effectively reduces the recovery
advantage at the cost of increasing the sketch size as indicated in Table 4.2.

46

4.6. Chapter Summary

Figure 4.7: Vertex recovery with m = 50 on Das Sarma et al. sketches of
the CondMat dataset generated with various values of the countermeasure
parameter c. From the top, the values of c are: 1, 6

5 , 5
4 , 4

3 , 3
2 and 2.

Table 4.2: Average sketch size of Das Sarma sketches (σ = 3) for the Cond-
Mat dataset.

c Average sketch size

1 37.2
6/5 52.9
5/4 61.9
4/3 87.1
3/2 166.2

2 763.4

4.5.3 Possible improvements

Since a good performance of our countermeasure implies a large value of
c and thus a high increase in the sketch size and generation time, there is
room for improvement. One possibilitiy would be to randomise the seed
level obfuscation and only add fake occurences for some seeds and without
aiming at uniformisation. This could reduce the cost of the countermeasure
while adding enough noise to the seed level to prevent it from ”betraying”
the distances in the sketches.

4.6 Chapter Summary

In this chapter we described several attacks on encrypted sketch-based dis-
tance oracles which leak the sketch pattern. We started by investigating how
much a honest-but-curious server can learn about the encrypted graph with

47

4. Leakage-based Attacks on GRECS

the sketch pattern only and observed that it only learns general information
about the graph structure but nothing local like the importance of a node in
a network. Thus, we moved on to a more powerful attacker and described
an algorithm to recover queried vertices from some known queries in addi-
tion to the sketch pattern. We further showed that some contraints on the
attacker, such as non-uniform or sparse known queries, reduce the efficiency
of the attacks but can be worked around.

Our results show that an attacker can recover queries with a reasonable
amount of additional knowledge. Although this kind of attack would be
relatively hard to mount in a real-life situation, it shows that the security
guarantees of schemes leaking the sketches pattern should be put in per-
spective of the knowledge an attack knowing some queries can gain.

In the last section we proposed a countermeasure to reduce the impact of
the sketch pattern leakage by modifying the sketching algorithm to add
fake seeds. This modification makes the sketch pattern ”noisy” at the cost of
larger sketches and adds a paramater to control the security versus efficiency
trade-off.

48

Chapter 5

Conclusion and Future Work

Most recently developed encrypted databases sacrifice some privacy to be
efficiently queriable. Security definitions and the proofs that these schemes
satisfy the definitions guarantee that only a controlled amount of informa-
tion is leaked. However, there is no known technique to define exactly the
impact of this leakage on the privacy of the data, thus we have to rely on
cryptanalysis to investigate the importance of potential attacks exploiting
the leaked information.

In this Master’s thesis we tackled the analysis of the sketch pattern leak-
age resulting from encrypted sketch-based distance oracles. Focusing on
the GRECS scheme for approximate shortest path queries from Meng et al.
[MKNK15] we studied two sketching methods, namely the Das Sarma et al.
and the Cohen et al. algorithms, to understand what information the sketch
pattern reveals about the content of the sketches. Based on our observations
we developed two distance estimates which approximate the distances in
a sketch. Our experimental evaluation showed that the sketch pattern can
give an advantage of about 60% on a guess using the distance distribution
when estimating the distances in sketches of real-life graphs.

We further described an algorithm to recover the distance between two ver-
tices using our distance estimate. Based on this algorithm we explored
possible attacks from an honest-but-curious server on the encrypted graph
database. After experimenting with different settings, we observed that an
attacker with the sketch pattern only gains general information about the
structure of the graph, but some additional knowledge allows the attacker
to recover queried vertices. With some known queries, the server can distin-
guish among candidate vertices which one was queried, and this attack also
works with non-uniform and sparse known queries. For example, consider-
ing the CondMat dataset, an attacker knowing 80% of the distances between
50 reference vertices and 90 candidate vertices can distinguish which of the
90 candidates was queried in more than 60% of the cases.

49

5. Conclusion and Future Work

Our investigation of potential attacks showed that the sketch pattern, which
is at first glance only a set of random vertices, can actually lead to a serious
privacy breach and should not be overlooked. In response to this we pro-
posed a countermeasure to reduce the impact of the sketch pattern leakage
by modifying the underlying sketching algorithm.

Future work. Concerning future work we can mention two directions, namely
improving the analysis of the sketch pattern and designing encrypted graph
databases with more capabilities.

The distance estimate recovered from the sketch pattern leakage could prob-
ably be improved by taking in account topological properties of the targeted
graph. Moreover, the performance of the query recovery attack could be
increased by using a better method to measure the similarity between dis-
tance vectors. The attack could also be made more practical by reducing the
amount of information required by the attacker.

Taking a step back, the research area of encrypted graph databases could
be explored further. Schemes solving more than shortest path queries could
be developed and existing schemes could be improved to support multiple
users and to be dynamic.

50

Appendix A

Average distance in N-ball

Consider a ball B of radius R in an N-dimensional Euclidian space. Its
volume and surface are, respectively,

VN(R) =
π

1
2 N

Γ
(1

2 N + 1
)RN ,

SN(R) =
2π

1
2 N

Γ
(1

2 N
)RN−1

[DLMF, Eq. 5.19(iii)] where Γ(z) is Euler’s integral [DLMF, Eq. 5.2(i)].

Let us denote the average distance between the center c of the N-ball B and
a point sampled uniformly at random from B by lB(c). In order to compute
the value of lB(c) we observe that each point on the N-sphere with radius r
is at distance r from the center c, thus we integrate over the spherical layers
of thickness dr forming B, each weighted with the value r, and divide the
result by the volume of B. That is

lB(c) =
1

VN(R)

∫ R

0
SN(r) · r dr

=
1

VN(R)

∫ R

0

2π
1
2 N

Γ
(1

2 N
) rN dr

=
1

VN(R)
2π

1
2 N

Γ
(1

2 N
) [1

N + 1
rN+1 + C

]R

0

=
Γ
(1

2 N + 1
)

π
1
2 N

R−N 2π
1
2 N

Γ
(1

2 N
) 1

N + 1
RN+1

=
2

N + 1
Γ
(1

2 N + 1
)

Γ
(1

2 N
) R

=
2

N + 1
N
2

R

51

A. Average distance in N-ball

=
N

N + 1
R,

where C is a constant and where we used Γ(z + 1) = zΓ(z).

We can conclude that the average distance from the center of an N-ball is
proportional to its radius R, and is actually close to R in high dimensional
spaces.

52

Bibliography

[ABC+05] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz,
Tadayoshi Kohno, Tanja Lange, John Malone-Lee, Gregory
Neven, Pascal Paillier, and Haixia Shi. Searchable encryption
revisited: consistency properties, relation to anonymous ibe,
and extensions. In Victor Shoup, editor, Advances in Cryptol-
ogy – CRYPTO 2005, pages 205–222, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg.

[AKSX04] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and
Yirong Xu. Order preserving encryption for numeric data. In
Proceedings of the 2004 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’04, page 563–574, New York, NY,
USA, 2004. Association for Computing Machinery.

[BBO07] Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. De-
terministic and efficiently searchable encryption. In Alfred
Menezes, editor, Advances in Cryptology - CRYPTO 2007, pages
535–552, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[BCLO09] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and
Adam O’Neill. Order-preserving symmetric encryption. In An-
toine Joux, editor, Advances in Cryptology - EUROCRYPT 2009,
pages 224–241, Berlin, Heidelberg, 2009. Springer Berlin Hei-
delberg.

[BDCOP04] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and
Giuseppe Persiano. Public key encryption with keyword
search. In Christian Cachin and Jan L. Camenisch, editors, Ad-
vances in Cryptology - EUROCRYPT 2004, pages 506–522, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

53

Bibliography

[BKOS07] Dan Boneh, Eyal Kushilevitz, Rafail Ostrovsky, and William E.
Skeith. Public key encryption that allows pir queries. In Alfred
Menezes, editor, Advances in Cryptology - CRYPTO 2007, pages
50–67, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryp-
tion: Definitions and challenges. In Yuval Ishai, editor, Theory of
Cryptography, pages 253–273, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg.

[BW07] Dan Boneh and Brent Waters. Conjunctive, subset, and range
queries on encrypted data. In Salil P. Vadhan, editor, Theory of
Cryptography, pages 535–554, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg.

[CDF+13] Edith Cohen, Daniel Delling, Fabian Fuchs, Andrew V Gold-
berg, Moises Goldszmidt, and Renato F Werneck. Scalable sim-
ilarity estimation in social networks: Closeness, node labels,
and random edge lengths. In Proceedings of the first ACM confer-
ence on Online social networks, pages 131–142, 2013.

[CGKO11] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Os-
trovsky. Searchable symmetric encryption: improved defini-
tions and efficient constructions. Journal of Computer Security,
19(5):895–934, 2011.

[CGPR15] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart.
Leakage-abuse attacks against searchable encryption. In Pro-
ceedings of the 22nd ACM SIGSAC conference on computer and com-
munications security, pages 668–679, 2015.

[CJJ+13] David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk,
Marcel-Cătălin Roşu, and Michael Steiner. Highly-scalable
searchable symmetric encryption with support for boolean
queries. In Ran Canetti and Juan A. Garay, editors, Advances in
Cryptology – CRYPTO 2013, pages 353–373, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

[CJJ+14] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S Jutla,
Hugo Krawczyk, Marcel-Catalin Rosu, and Michael Steiner.
Dynamic searchable encryption in very-large databases: data
structures and implementation. In NDSS, volume 14, pages 23–
26. Citeseer, 2014.

54

Bibliography

[CK10] Melissa Chase and Seny Kamara. Structured encryption and
controlled disclosure. In Advances in Cryptology - ASIACRYPT
2010, pages 577–594. Springer Berlin Heidelberg, 2010.

[CM05] Yan-Cheng Chang and Michael Mitzenmacher. Privacy pre-
serving keyword searches on remote encrypted data. In John
Ioannidis, Angelos Keromytis, and Moti Yung, editors, Applied
Cryptography and Network Security, pages 442–455, Berlin, Hei-
delberg, 2005. Springer Berlin Heidelberg.

[CNM04] Aaron Clauset, Mark EJ Newman, and Cristopher Moore. Find-
ing community structure in very large networks. Physical review
E, 70(6):066111, 2004.

[CYW+11] N. Cao, Z. Yang, C. Wang, K. Ren, and W. Lou. Privacy-
preserving query over encrypted graph-structured data in
cloud computing. In 2011 31st International Conference on Dis-
tributed Computing Systems, pages 393–402, June 2011.

[DLMF] Nist digital library of mathematical functions.
http://dlmf.nist.gov/, Release 1.0.28 of 2020-09-15. F. W. J.
Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F.
Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl,
and M. A. McClain, eds.

[DSGNP10] Atish Das Sarma, Sreenivas Gollapudi, Marc Najork, and Rina
Panigrahy. A sketch-based distance oracle for web-scale graphs.
In Proceedings of the third ACM international conference on Web
search and data mining, pages 401–410, 2010.

[EHF16] Benjamin Edwards, Steven Hofmeyr, and Stephanie Forrest.
Hype and heavy tails: A closer look at data breaches. Journal of
Cybersecurity, 2(1):3–14, 12 2016.

[FFH04] Agata Fronczak, Piotr Fronczak, and Janusz A Hołyst. Av-
erage path length in random networks. Physical Review E,
70(5):056110, 2004.

[FJK+15] Sky Faber, Stanislaw Jarecki, Hugo Krawczyk, Quan Nguyen,
Marcel Rosu, and Michael Steiner. Rich queries on en-
crypted data: Beyond exact matches. In Günther Pernul, Peter
Y A Ryan, and Edgar Weippl, editors, Computer Security – ES-
ORICS 2015, pages 123–145, Cham, 2015. Springer International
Publishing.

55

Bibliography

[FKS20] Nóra Frankl, Andrey Kupavskii, and Konrad J. Swanepoel. Em-
bedding graphs in euclidean space. Journal of Combinatorial The-
ory, Series A, 171:105146, 2020.

[G+03] Eu-Jin Goh et al. Secure indexes. IACR Cryptol. ePrint Arch.,
2003:216, 2003.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lat-
tices. In Proceedings of the forty-first annual ACM symposium on
Theory of computing, pages 169–178, 2009.

[GHV10] Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. A sim-
ple bgn-type cryptosystem from lwe. In Henri Gilbert, edi-
tor, Advances in Cryptology – EUROCRYPT 2010, pages 506–522,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[GJW19] Zichen Gui, Oliver Johnson, and Bogdan Warinschi. Encrypted
databases: New volume attacks against range queries. In Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’19, page 361–378, New York, NY,
USA, 2019. Association for Computing Machinery.

[GLMP18] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Ken-
neth G Paterson. Pump up the volume: Practical database re-
construction from volume leakage on range queries. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 315–331, 2018.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection
and simulation on oblivious rams. Journal of the ACM (JACM),
43(3):431–473, 1996.

[IKK12] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantar-
cioglu. Access pattern disclosure on searchable encryption:
Ramification, attack and mitigation. In Ndss, volume 20,
page 12. Citeseer, 2012.

[JA20] Ahmad H Juma’h and Yazan Alnsour. The effect of data
breaches on company performance. International Journal of Ac-
counting & Information Management, 2020.

[KKNO16] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam
O’neill. Generic attacks on secure outsourced databases. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 1329–1340, 2016.

56

Bibliography

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to modern cryp-
tography. CRC press, 2014.

[KM18] Seny Kamara and Tarik Moataz. Sql on structurally-encrypted
databases. In Thomas Peyrin and Steven Galbraith, editors, Ad-
vances in Cryptology – ASIACRYPT 2018, pages 149–180, Cham,
2018. Springer International Publishing.

[KM19] Seny Kamara and Tarik Moataz. Computationally volume-
hiding structured encryption. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages
183–213. Springer, 2019.

[KMO18] Seny Kamara, Tarik Moataz, and Olya Ohrimenko. Structured
encryption and leakage suppression. In Annual International
Cryptology Conference, pages 339–370. Springer, 2018.

[KO12] Kaoru Kurosawa and Yasuhiro Ohtaki. Uc-secure searchable
symmetric encryption. In Angelos D. Keromytis, editor, Finan-
cial Cryptography and Data Security, pages 285–298, Berlin, Hei-
delberg, 2012. Springer Berlin Heidelberg.

[KP13] Seny Kamara and Charalampos Papamanthou. Parallel and
dynamic searchable symmetric encryption. In Ahmad-Reza
Sadeghi, editor, Financial Cryptography and Data Security, pages
258–274, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[KPR12] Seny Kamara, Charalampos Papamanthou, and Tom Roeder.
Dynamic searchable symmetric encryption. In Proceedings of the
2012 ACM Conference on Computer and Communications Security,
CCS ’12, page 965–976, New York, NY, USA, 2012. Association
for Computing Machinery.

[KT16] Amira Kharroubi and Jamel Touir. The Geocentric Model of the
Earth: Physics and Astronomy Arguments. PhD thesis, Depart-
ment of Geography, National Engineering School of Sfax, Sfax
University, 2016.

[LK14] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large
network dataset collection. http://snap.stanford.edu/data,
June 2014.

[LKF05] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs
over time: densification laws, shrinking diameters and possible

57

http://snap.stanford.edu/data

Bibliography

explanations. In Proceedings of the eleventh ACM SIGKDD inter-
national conference on Knowledge discovery in data mining, pages
177–187, 2005.

[LMP18] Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson.
Improved reconstruction attacks on encrypted data using range
query leakage. In 2018 IEEE Symposium on Security and Privacy
(SP), pages 297–314. IEEE, 2018.

[LW16] Kevin Lewi and David J Wu. Order-revealing encryption: New
constructions, applications, and lower bounds. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security, pages 1167–1178, 2016.

[LZWT14] Chang Liu, Liehuang Zhu, Mingzhong Wang, and Yu-an Tan.
Search pattern leakage in searchable encryption: Attacks and
new construction. Inf. Sci., 265:176–188, 2014.

[MKNK15] Xianrui Meng, Seny Kamara, Kobbi Nissim, and George Kol-
lios. Grecs: Graph encryption for approximate shortest distance
queries. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pages 504–517, 2015.

[PR12] Omkant Pandey and Yannis Rouselakis. Property preserving
symmetric encryption. In David Pointcheval and Thomas Jo-
hansson, editors, Advances in Cryptology – EUROCRYPT 2012,
pages 375–391, Berlin, Heidelberg, 2012. Springer Berlin Hei-
delberg.

[SMZ+17] Meng Shen, Baoli Ma, Liehuang Zhu, Rashid Mijumbi, Xiao-
jiang Du, and Jiankun Hu. Cloud-based approximate con-
strained shortest distance queries over encrypted graphs with
privacy protection. IEEE Transactions on Information Forensics
and Security, 13(4):940–953, 2017.

[SPS13] E. Stefanov, Charalampos Papamanthou, and E. Shi. Practical
dynamic searchable encryption with small leakage. IACR Cryp-
tol. ePrint Arch., 2013:832, 2013.

[SWP00] D Song, D Wagner, and A Perrig. Practical techniques for
searching on encrypted data, s & p 2000, 2000.

[TZ05] Mikkel Thorup and Uri Zwick. Approximate distance oracles.
J. ACM, 52(1):1–24, January 2005.

58

Bibliography

[vLSD+10] Peter van Liesdonk, Saeed Sedghi, Jeroen Doumen, Pieter Har-
tel, and Willem Jonker. Computationally efficient searchable
symmetric encryption. In Willem Jonker and Milan Petković,
editors, Secure Data Management, pages 87–100, Berlin, Heidel-
berg, 2010. Springer Berlin Heidelberg.

[ZKP16] Yupeng Zhang, Jonathan Katz, and Charalampos Papaman-
thou. All your queries are belong to us: The power of file-
injection attacks on searchable encryption. In 25th {USENIX}
Security Symposium ({USENIX} Security 16), pages 707–720,
2016.

[ZZX+20] Can Zhang, Liehuang Zhu, Chang Xu, Kashif Sharif, Chuan
Zhang, and Ximeng Liu. Pgas: Privacy-preserving graph en-
cryption for accurate constrained shortest distance queries. In-
formation Sciences, 506:325–345, 2020.

59

	Contents
	Introduction
	Overview and Motivation
	Our Contributions
	Outline of the Thesis
	Notation

	Background and Related Work
	Relational Databases
	Schemes
	Leakage profiles
	Existing attacks

	Graph Databases
	Encrypted Graph Databases

	Sketch-based Distance Oracle
	Distance sketches
	Sketching algorithms

	GRECS
	Definitions
	Construction
	Leakage

	Distances Estimation from the Sketch Pattern Leakage
	Sketch Pattern Leakage
	Das Sarma et al. Sketches
	Step 1: seed level recovery
	Step 2: distance recovery from the seed level
	Putting things together: distance recovery from the seed frequency
	Experiments

	Cohen et al. Sketches
	Distance recovery
	Experiments

	Chapter Summary

	Leakage-based Attacks on GRECS
	Attacker Model
	Building Blocks
	Distance recovery
	Similarity metric

	Graph Information Recovery
	Query Recovery Attack
	Recover one vertex from l candidates
	Vertex recovery with restrictions
	Permutation recovery

	Countermeasures
	Add fake seeds
	Experiments
	Possible improvements

	Chapter Summary

	Conclusion and Future Work
	Average distance in N-ball
	Bibliography

