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Abstract

Privacy Preserving String Search is a mechanism that allows search-
ing for a short string (the pattern) in a longer string (the text), where
both the pattern and text remain private from the party performing the
searching computation. Cloud-based computing services are becom-
ing increasingly popular and along with them, cryptographic privacy
preserving computation primitives gain greater importance, as they of-
fer tools to outsource computation to the cloud while still maintaining
privacy.

In this thesis, we introduce a formal syntax and security notion for
Privacy Preserving String Search. We then develop two new Privacy
Preserving String Search schemes that use Homomorphic Encryption
as building block. We prove both schemes secure according to our new
security notion. Using our new schemes, we can privately search for a
pattern of any length in a text of length 320000 in less than 60ms on an
average laptop.

In order to improve the practicality of the schemes, we propose a new
compression method for ciphertexts, resulting in lower storage and net-
work complexity.
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Chapter 1

Introduction

String Search. The string search problem consists of finding all occur-
rences of a short string (pattern) in a longer string (text). It has been exten-
sively studied and optimized due to its ubiquity. Use cases might include
web search engines, genome sequence search, database search and many
more.

Cloud Computing. Cloud storage and cloud computing services have ex-
perienced a rise in popularity in recent years. Such services allow a client
to outsource storage and computation of data to a cloud service provider
(CSP) (i.e. Amazon Web Services, Microsoft Azure, Google Cloud Platform
and many more) which is in charge of managing the underlying infrastruc-
ture of the data center. This has several advantages for the client:

• The client does not need to acquire and maintain its own physical
infrastructure or hire dedicated personnel.

• Scalability is easier to achieve by simply renting more resources on
demand.

• In many cases, data availability is better, as backup solutions are pro-
vided in case of hardware failures.

• Devices with hardware constraints such as phones or internet of things
devices can utilize the computation and storage that the cloud servers
provide.

In the case of the string search problem, a client might want to take advan-
tage of cloud infrastructure for string search, while still ensuring (partial)
confidentiality of either the pattern, the text, or both! For example, if the
client has a lot of texts that do not fit in local device storage, it can store the
texts on a server and simply search it privately directly on the server side.
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1. Introduction

Privacy Preserving String Search. Privacy preserving string search (PPSS)
schemes aim to enable string search queries on texts while maintaining spe-
cific privacy guarantees. State of the art PPSS schemes vary significantly in
their practicality and their privacy guarantees. Privacy is usually measured
using leakage functions, whereas practicality can be measured by metrics
such as storage cost, network cost and computation cost.

A plethora of constructions that provide string search functionality in a
privacy preserving way already exists. Unfortunately, most of them have
critical shortcomings that prevent them from being used in the real world.
String search schemes based on searchable encryption (SE) exhibit compli-
cated leakage functions. This kind of leakage is unpredictable and the ac-
tual information that is exposed is difficult to quantify. This makes SE-based
schemes prone to attacks that recover information about the plaintexts that
was originally intended to remain private. On the other end of the spec-
trum, there are string search schemes based on Homomorphic encryption
(HE). It is not uncommon for HE-based string search schemes to leak only
the length of the searched pattern as well as the length of the text. It is a
lot easier to reason about the things an adversary might do with this kind
of limited information. Unfortunately, current HE comes at high computa-
tional and storage cost and this cost is inherited by string search schemes
that use HE. Ciphertexts are usually many times larger than their underly-
ing plaintext and searching for a pattern in a text can take hours. We aim to
keep the excellent privacy properties of HE-based schemes, but improve on
computation and storage cost.

New Schemes. In this thesis we propose two new PPSS schemes, called
Fourier Private Search (FPS) and Randomized Fourier Private Search (RFPS).
Both schemes have very minimal leakage, while improving on practical-
ity considerations when compared to the state of the art. We hope to make
a step forward towards the viability of privacy preserving string search in
real world applications. These schemes could also be used as subroutines
to build more complex protocols. For example, the practicality gains could
open the doors for completely new cryptographic primitives such as Sub-
string Private Information Retrieval.

On a high level, FPS is modelled after a well-known plaintext string search
algorithm that uses the Discrete Fourier Transform to accelerate computa-
tion. The algorithm lends itself well to Single Instruction Multiple Data
(SIMD) computation. We use the SIMD-capability of the CKKS fully homo-
morphic encryption scheme to efficiently compute the plaintext algorithm
in a privacy preserving way.

RFPS is a randomized adaptation of FPS. The homomorphic computation is
significantly more efficient than the deterministic FPS, but as a trade-off, it
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might identify false positive matches.

PPSS Syntax and Security. We introduce a formal syntax for PPSS schemes
and define the semantic security under a chosen text and patterns attack (SS-
CTPA) notion. We then prove that FPS and RFPS are SS-CTPA-secure.

In [23], Mainardi et. al. introduce syntax and security notions for protocols
called Privacy Preserving Substring Search (also PPSS for short). We point
out that our definition of PPSS is more general than the one in [23] and FPS
or RFPS would not fit the syntax outlined by [23].

Compression. FPS and RFPS achieve the privacy targets we set ourselves,
but they still leave potential for improvement when it comes to practicality.
In particular, the ciphertext sizes and therefore the communication complex-
ity is quite large. Ciphertexts are many times larger than the underlying
plaintext was. This ciphertext expansion also applies to the query response,
which contains the matching results for the client. In terms of storage size,
the response is larger than the original plaintext.

To combat this, we devise a lossy compression method for CKKS ciphertexts
where we throw away the least significant bits of the polynomial coefficients.
Depending on encryption parameters, we manage to compress the matching
response ciphertext by roughly 20� 50% while still maintaining correctness.

Error Bounds. At multiple steps in the FPS and RFPS pipelines, there are
errors introduced, affecting the underlying raw data. The errors stem from
different sources such as the lossy ciphertext compression or the encryp-
tion noise that is required for maintaining security. We analyze these error
sources and bound their impact on correctness.

Implementation. To verify the practicality of FPS and RFPS we implement
them in C++ and test performance. Searching for a pattern in a text of length
320000 merely takes 60ms in FPS and 40ms in RFPS. Both schemes involve
very little preprocessing during setup. Setup takes 40ms in FPS and 25ms
in RFPS for a text of the same length.
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Chapter 2

Preliminaries

2.1 Notation

Table 2.1 provides and overview of symbols and notation used in this docu-
ment. We explain each notation in more detail as it is introduced.

Logarithm. log(·) denotes the 2nd logarithm.

Vectors. The i-th element of a n-dimensional vector x is denoted xi. The
first element of the vector has index i = 0, the last element has index i = n�
1. We allow negative values and values greater than n� 1 in the subscript.
In that case, we may omit the ( mod n) operation in the interest of legibility.

xi = xi mod n

Vector Slices. For two indices i and j and a vector x = (x0, . . . , xn�1), we
denote the (j� i + 1)-dimensional vector slice as xi:j.

xi:j = (xi, xi+1 . . . , xj)

2.2 String Search

In the string search problem, given a text and a pattern, we try to find all
the indices where the pattern occurs in the text.

More formally, we are given an alphabet S, a text T of length n and a pattern
P of length m.

S = {0, 1, . . . , |S|� 1}
T = (T0, T1, . . . , Tn�1) 2 Sn

P = (P0, P1, . . . , Pm�1) 2 Sm
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2. Preliminaries

Symbol Description Notes
S Alphabet S = {0, 1, . . . , |S|� 1}
n Text length
m Pattern length
T Searchable Text T = (T0, . . . , Tn�1)
P Pattern to be searched P = (P0, . . . , Pm�1)
R Random vector R = (R0, . . . , Rm�1)

cR RFPS Distribution
M Matching vector M = (M0, . . . , Mn�m+1)
I Indices where P occurs in T
t Matching Threshold

F (·) Discrete Fourier Transform
Enck(·) Encryption
Deck(·) Decryption
Ecd(·) Encoding
Dcd(·) Decoding
Ek(·) Encode, then encrypt Ek(·) = Enck(Ecd(·))
Dk(·) Decrypt, then decode Dk(·) = Dcd(Deck(·))

DN (s2) Discrete normal distribution
T Ternary distribution T ⇠ uniform{�1, 0, 1}
N Polynomial modulus degree
R Integer Polynomial Ring R = Z[X]/(F2N(X))

s(·) Canonical Embedding s : Rq 7! CN

k·kcan
• Canonical infinity norm kakcan

• = ks(a)k•
p(·) Embedding projection
� Element wise product
⇤ Circular convolution
S PPSS Scheme
# HE Scheme

Table 2.1: Notation used in this document

The alphabet may originally be any set of size |S| containing letters, sym-
bols, digits and more. We use an encoding function to represent the alphabet
as integers. For example, the UTF-8 encoding maps characters to the integer
set {0, 1, . . . , 255}.

The text T is a vector of n characters, all of which are an element of the
alphabet S. Analogously, the pattern P is a vector of m characters, all of
which are an element of S. We assume that n � m.

We say that P occurs in T at index i if and only if Ti:i+m�1 = P. The output
of the string search is the set I which contains all indices where P occurs in
T. There are n�m + 1 possible indices where P could occur in T.

I = {i : P occurs in T at index i}

In this document, we may also say that there is a match at index i if P occurs
in T at index i. We use Search() to denote a plain text algorithm that solves
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2.3. Homomorphic Encryption

the string search problem.

I = Search(T, P)

In literature, other terms such as pattern matching, substring search or substring
matching may be used to refer to the string search problem or variations
thereof.

2.2.1 Privacy Preserving String Search

The schemes presented in this thesis attempt to efficiently solve the Privacy
Preserving String Search (PPSS) problem. Intuitively, it is similar to the
conventional version of string search, but the owner of the text and pattern
wants to keep as much as possible about them secret while outsourcing
computation and storage to a second party.

Leakage. As is common with many multi-party privacy preserving com-
putation schemes, we use leakage functions, denoted L, to identify what
each party learns about the input. In this case, we are mainly interested in
the leakage to the server, as the client owns all input data and thus trivially
knows everything about it.

2.3 Homomorphic Encryption

Homomorphic Encryption (HE) describes encryption primitives designed
to enable computation on encrypted data without knowing the secret key.
HE schemes differ widely in their capabilities and practicality. Here we
categorize them and briefly give a few examples.

• Linearly and Multiplicative HE. Schemes falling within category en-
crypt numbers and permit a limited set of operations to be executed
on the ciphertexts. Often, the depth and type of functions that can be
evaluated is heavily constrained. The most common types of operation
are addition and multiplication.

– RSA [25]: Arbitrary number of modular multiplications.

– BGN [4]: Arbitrary number of additions, but only a single multi-
plication.

• Boolean HE Schemes in this category operate over boolean plaintexts.

– Goldwasser–Micali [15]: Arbitrary number of exclusive-or opera-
tions.

• LWE and RLWE-based HE Schemes in this category are relatively re-
cent. They rely on the hardness of the Learning With Errors (LWE)
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2. Preliminaries

[24] or the Ring Learning With Errors (RLWE) [22] problems, which
are both considered secure against attacks by quantum computers. En-
cryption involves applying some kind of random error to the original
plaintext. LWE- and RLWE-based schemes enable the user to encrypt
entire vectors rather than single scalar values. The user can then per-
form operations on these ciphertexts in a Single Instruction Multiple
Data (SIMD) manner. For example, it can add two n-dimensional inte-
ger vectors rather than performing n additions of integers.

– BFV [13, 6]: Arithmetic operations over vectors of integers.

– CKKS [10]: Arithmetic operations over vectors of complex num-
bers. More details can be found in subsection 2.3.2.

2.3.1 Fully Homomorphic Encryption

Fully Homorphic Encryption (FHE) describes a more powerful version HE.
The crucial difference here is, that while HE schemes only allow the user
to evaluate functions of a certain fixed depth (i.e. just one multiplication),
FHE schemes enable the user to evaluate functions of arbitrary depth. This
is commonly achieved using a technique called bootstrapping, proposed by
[14].

Computational Cost. While bootstrapping certainly makes FHE schemes
a lot more powerful than HE schemes, it comes at a high computational
cost. This unfortunately makes most current FHE schemes impractical to
use in real world applications. Nevertheless, since the original introduction
of FHE in 2009, schemes have improved drastically to the point, that people
are using FHE to develop complex applications such as privacy preserving
machine learning algorithms [27, 19].

2.3.2 CKKS

CKKS is a FHE scheme named after the authors Cheon et. al. who intro-
duced the scheme in [10]. It provides homomorphic arithmetic operations
over vectors of complex numbers. The two new string search schemes pre-
sented in this document were designed with the capabilities of CKKS in
mind. Here we will highlight a few features and explain the parts of CKKS’
construction that are especially relevant in more detail.

Parameters. CKKS relies on the hardness assumption of the Ring Learning
With Errors (RLWE) [22] problem and is (mostly) parameterized by a poly-
nomial modulus degree N and a coefficient modulus chain (qL, qL�1, . . . , q0).
N must be a power of 2.
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2.3. Homomorphic Encryption

Security. CKKS achieves indistinguishability under chosen plaintext at-
tacks (IND-CPA) security. It is worth noting however, that in [21], Li et.
al. demonstrate a passive key recovery attack on CKKS. The authors argue,
that in the case of approximate HE schemes (such as CKKS), the traditional
IND-CPA security notion is insufficient to capture security. They propose a
new, stricter security notion that covers security against this attack.

Standardization. First of all, we remark that CKKS is not yet standardized.
Hence, we generally follow the suggestions made by the authors of the orig-
inal paper [10], as well as the choices made by the authors of the Microsoft
SEAL library [26].

The Homomorphic Encryption Standard [2] provides baseline security esti-
mations for the RLWE problem. In particular, it recommends RLWE param-
eters that should be used in order to achieve a specific security level (i.e. 128
bit security). The Microsoft SEAL library chooses parameters based on this
standard.

Spaces. CKKS operates using a Message Space, a Plaintext Space and a
Ciphertext Space and defines encoding and encryption functions to map
between them.

• Message Space. The message space is the set of N
2 -dimensional com-

plex vectors C
N
2 . It is exposed to the user as the set of messages it can

homomorphically encrypt and perform operations on.

• Plaintext Space. The plaintext space R is the set of polynomials
with integer coefficients modulo the (2N)-th cyclotomic polynomial
F2N(X) = XN + 1. We denote it R = Z[X]/(XN + 1). It is used as
internal representation of plaintext messages.

• Ciphertext Space. The ciphertext space R2
q is the set of polynomial

pairs R2, but with the integer coefficients reduced modulo q. We
denote it R2

q = (Zq[X]/(XN + 1))2. It is used as representation of
encrypted messages.

Canonical Embedding. The encoding and decoding processes make heavy
use of the canonical embedding of R in CN , denoted s.

s : R 7! CN

s(p(x)) = (p(z1
N), p(z3

N), . . . , p(z2N�1
N ))

zN denotes the N-th root of unity e 2pi
N . In other words, the canonical embed-

ding of a polynomial p(x) evaluates p(x) at N different points, where the
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2. Preliminaries

j-th point is the (2j + 1)-th power of the root of unity zN . Given an embed-
ding z 2 CN , the inverse s�1 of the canonical embedding finds a polynomial
p0(x) such that p0(z2j+1

N ) = zj.

We use the canonical embedding to define a canonical infinity norm k·kcan
•

over R.
kp(x)kcan

• = ks(p(x))k•

This will prove useful later as we estimate error bounds.

Projecting Embeddings. For any p(x) 2 R, the canonical embedding z =
s(p(x)) is conjugate symmetric, meaning zk = z�k, where · denotes the
complex conjugate. Therefore, the embedding is uniquely defined by N

2
complex numbers. p(z) projects z to C

N
2 and p�1(m) expands a message to

CN .

Encoding and Decoding. The encoding and decoding functions Ecd(·) and
Dcd(·) map elements from the message space to the plaintext space and vice
versa. During the encoding process, messages are multiplied by a scale D.

• Dcd(p(x), D): Given a plaintext p(x) 2 R and a scale D 2 N, return
p(s(D�1 · p(x))).

• Ecd(m, D): Given a message m 2 C
N
2 and a scale D 2 N, return

s�1(
⌅
D · p�1(m)

⌥
s(R)).

Key Generation. CKKS uses a public key kp for encryption and a secret
key ks for decryption. Further keys contained in the evaluation key kev are
needed to perform certain homomorphic operations, but we do not explain
these in detail. ks and kp are generated as follows.

• ks: Sample s from cs. Return ks = (1, s).

• kp: Sample polynomial a from ca. Sample an error polynomial e from
ce. Return kp = (�a · s + e, a).

Encryption and Decryption.

• Enckp(p): Sample v from cv. Sample two error polynomials e0, e1 both
from ce. Return (c0, c1) = kp · v + (p + e0, e1) mod qL.

• Decks((c0, c1)): Return h(c0, c1), ksi = c0 + c1 · s mod ql .

The security of CKKS relies in part on the error polynomials that are added
to the ciphertexts during encryption. We can now also explain why the
encoding function multiplies the messages by a scale D. By scaling, the
magnitude of the message relative to the error increases. During decoding,
the message magnitude is normalized again.

10



2.3. Homomorphic Encryption

Figure 2.1 1 provides a overview of the three spaces and the functions that
map between them. Encoding and encryption are often chained together.

Message
m

Plaintext
p

Ciphertext
c = (c0, c1)

Message
m0 = f (m)

Plaintext
p0 = f (p)

Ciphertext
c0 = f (c)

C
N
2

C
N
2

Z[X]/(XN + 1)

Z[X]/(XN + 1)

(Zq[X]/(XN + 1))2

(Zq[X]/(XN + 1))2

encode encrypt

f (·)

decryptdecode

Figure 2.1: Overview over the CKKS pipeline for computing a function f (·)

As a shorthand, we use Ekp(·) to denote the encoding function followed by
the encryption function. Analogously, Dks(·) is a shorthand for decryption
followed by decoding.

Ekp(m) = Enckp(Ecd(m))

Dks(c) = Dcd(Decks(c))

Distributions An important part of CKKS standardization is choosing the
distributions ce, ca, cs, cv for key generation and encryption. For the rest of
this document we use the following distributions over R.

• ce draws each coefficient independently at random from the discrete
Gaussian distribution DN (s2). We use s = 3.2 as standard deviation.

• ca draws each coefficient uniformly and independently at random
from ZqL .

• cs draws each coefficient independently at random from the ternary
distribution T ⇠ uniform{�1, 0, 1}.

• cv draws each coefficient independently at random from the ternary
distribution T ⇠ uniform{�1, 0, 1}.

This choice affects the amount of encryption noise as well as for the security
of CKKS.

1Source: https://blog.openmined.org/ckks-explained-part-1-simple-encoding-and-decoding/,
Accessed on: 20.03.2024
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2. Preliminaries

Ciphertext Tags. For analysis purposes, we inherit the notation for tagged
ciphertexts that was introduced by Chen et. al. in [10]. The idea is, that for
each ciphertext c, we also keep track of publicly known meta-information
about this ciphertext. We write these tags as a tuple C.

C = (c, l, v, B)

c 2 Rql encrypts a plaintext p. l 2 {0, . . . , L} denotes the level of the cipher-
text. v 2 R provides an upper bound on the encrypted plaintext. v � kpkcan

• .
Similarly B 2 R provides an upper bound on the error that is present in the
ciphertext. B � kekcan

• where e is the error that has accumulated on c during
encryptions and calculations.

Homomorphic Operations. The original paper by Chen et. al. introduced
a set of different operations that could be performed on ciphertexts without
knowing the secret key. This set has since been expanded by a few new
operations. The following operations are relevant for this document.

• Homomorphic Addition and Subtraction. Given two ciphertexts ca
and cb, that encrypt vectors a and b respectively, we can compute a
ciphertext ca+b that encrypts the sum a + b. Analogously, we can com-
pute ca�b.

• Homomorphic Multiplication. Given two ciphertexts ca and cb, that
encrypt vectors a and b respectively, we can compute a ciphertext ca�b
that encrypts the element-wise product a� b.

• Plaintext Multiplication. If we are given a publicly known plaintext
p 2 R, we can create a valid transparent ciphertext cplain = (p, 0) 2 R2

q
that encrypts p without knowing either the secret or public key. Know-
ing this, we can use cplain as a generic ciphertext for multiplication.

2.4 Rotating Vectors

The rotation operation rot(x, k) rotates the elements in a vector x by k di-
mensions. x may be from an arbitrary vector space VN .

rot : VN ⇥Z 7! VN

rot((x0, . . . , xN�1), k) = (x00, . . . , x0N�1)

x0i = xi�k mod N

12



2.5. Discrete Fourier Transform

2.5 Discrete Fourier Transform

The string search schemes introduced in this thesis make use of the Discrete
Fourier Transform (DFT), denoted F . It is defined as follows:

F : CN 7! CN

F ((x0, x1, . . . , xN�1)) = (X0, X1, . . . , XN�1)

Xk =
N�1

Â
n=0

xn · e�2pi k
N n

The Discrete Fourier Transform has an inverse (iDFT), denoted F�1.

F�1((X0, X1, . . . , XN�1)) = (x0, x1, . . . , xN�1)

xk =
1
N

N�1

Â
n=0

Xn · e2pi k
N n

In particular, the schemes use the following well known properties.

• Linearity For any two vectors x, y 2 CN and any two numbers a, b 2 C,
it holds that

F (ax + by) = aF (x) + bF (y)

• Rotation Property Let x 2 CN and m be an integer. Given F (x), we
can compute F (rot(m, x)) as follows:

F (rot(x, m))k = F (x)k · e�2pi k
N m

In other words, if we construct a rotation vector r(m) 2 CN with r(m)
k =

e�2pi k
N m. Then:

F (rot(x, m)) = F (x)� r(m)

• Convolution Property The circular convolution of two vectors x, y 2
CN , denoted x ⇤ y 2 CN is defined as follows:

(x ⇤ y)k =
N�1

Â
i=0

xiy(k�i) mod N

Using F , the circular convolution can be computed using the element
wise product.

F (x ⇤ y) = F (x)�F (y)

• Symmetry Property For a real valued input x 2 RN , the Discrete
Fourier Transform of x is symmetric.

F (x)k = F (x)�k mod N

13



2. Preliminaries

where · denotes the complex conjugate.

We observe that because of the symmetry property, a input of N real
values is uniquely determined by the first bN

2 c+ 1 values of its trans-
form. In this document we will therefore also use the shorthand

F : RN 7! Cb
N
2 c+1

F�1 : Cb
N
2 c+1 7! RN

14



Chapter 3

Related Work

Privacy preserving string search has naturally been a popular topic of study
in recent years. We identify two main approaches to the problem.

• Searchable Encryption This approach aims to use conventional (usu-
ally symmetric) encryption schemes as building blocks to construct
new Searchable Encryption (SE) schemes. It is sometimes also known
as Structured Encryption or Searchable Symmetric Encryption.

• Homomorphic Encryption This approach aims to use the relatively
new (F)HE schemes as building blocks to construct schemes that en-
able string search.

3.1 String Search Based on Searchable Encryption

Design Philosophy. The Searchable Encryption (SE) approach uses con-
ventional encryption primitives to build string search schemes [9, 20], or
even more capable ones that allow queries such as range queries on the text
[12]. Characteristically, SE-based PPSS schemes perform a large amount of
preprocessing of the text during the setup phase to construct an encrypted
indexing data structure that can be searched. For example, the schemes in
[23, 20] employ the Burrows Wheeler Transform (BWT) [8] as preprocessing
step whereas the scheme in [9] uses encrypted suffix trees to quickly find
substring matches.

E�ciency. The most efficient SE-based constructions use well established
and optimized symmetric schemes as building blocks. As a result, SE-based
PPSS schemes tend to be computationally efficient. In [12], Faber et. al.
implement a working prototype that can perform queries on a Terabyte-
scale database in the matter of seconds. In [17], Hahn et al. search a database
containing 10’000 indexed emails in 98.3ms. In [23], preprocessing a 40MB
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genome string takes approximately 20 seconds. It then takes approximately
5 minutes to search for a pattern of length 6 in the genome.

High Leakage. While the SE-based string search schemes can be very ef-
ficient in terms of storage overhead and computation speed, their leakage
profiles tend to be quite substantial. This has led to theoretical and practical
attacks that manage to recover parts of the plaintext or the queries [16]. For
example, [17] presents an attack that manages to recover between 1% and
15% of the plaintext. Furthermore, the complicated nature of the leakage
functions for SE-based schemes may be undesirable, as it is not immediately
obvious to what extent they can be exploited. New attacks might surface in
the future, that exploit the leakage profiles in unforeseen ways.

3.2 String Search Based on Homomorphic Encryption

Schemes in this category make use of some form of Homomorphic Encryp-
tion (HE) in order to perform computations directly on ciphertexts. HE
opens up new possibilities that would not be available using symmetric
schemes. The type of HE used can vary. For example, in [28], the authors
devise their own Somewhat Homomorphic Encryption scheme that is specif-
ically designed to compute the Hamming distance between two bit-vectors.
This approach potentially enables additional use in applications where the
Hamming distance between text and pattern is relevant, rather than exact
matches. In [11], the authors merely require a linearly homomorphic en-
cryption scheme as a building block.

The authors of [5] propose a randomized string search scheme using a
RLWE-based HE scheme. They construct a HE circuit where the multiplica-
tive depth does not depend on the input text or pattern, but rather on public
encryption parameters. Searching for a pattern of length 100 in a UTF-32 text
of length 10080 takes 629 seconds and has a false positive probability of just
2�65. Their randomized construction has inspired the randomized version
of the PPSS scheme that we introduce in this document.

Leakage. HE-based PPSS(-like) schemes tend to have very minimal leakage
functions. In many cases the information leaked to the server is limited to
the text length n and the pattern length m [28, 18, 5]. In [11], the authors
take special care to not leak the length of the pattern, as this kind of leakage
is especially problematic in the setting of human genome search.

Computation and Storage cost. State of the art HE schemes are ineffi-
cient when compared to conventional encryption schemes, impacting both
computation efficiency as well as ciphertext sizes. Consequently, PPSS(-like)
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schemes that use these HE primitives also suffer from these inefficiencies to
some degree. Computation cost for encryption, processing and decryption
results should be carefully considered when constructing a PPSS scheme.
Remember, that the goal is to outsource the string search computation to a
server, so the encryption and decryption cost for a client should ideally be
cheaper than performing the string search computation locally. Ciphertext
size is important because it directly translates to networking and storage
cost.

In [11], an encrypted human genome string of length 3 · 109 takes up 100GB
of storage in encrypted form using EC-ElGamal. Furthermore, encrypting
such a genome string takes 115 hours. It is noteworthy, that once all prepro-
cessing and data transfer is done, searching for a pattern of length 10000 in
the entire genome string takes just 0.68ms.

In [5] encrypting a 10080 character text results in a ciphertext of size 930 KB.
This corresponds to an storage cost of 882 Bytes per UTF-32 character.
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Chapter 4

Constructing Privacy Preserving String
Search Schemes

In this chapter, we introduce a new syntax and security notion for PPSS,
then we introduce our constructions for two new PPSS schemes called FPS
and RFPS. Based on the characteristics of these new schemes, we propose a
ciphertext compression method that reduces network complexity. We then
identify and quantify the error sources that might affect correctness and
prove that FPS and RFPS are secure according to the new security notion.

4.1 Syntax for Privacy Preserving String Search Schemes

A PPSS scheme S with security parameter 1l and public parameters pub is
defined by the algorithms S = (KGen, Setup, Query).

• ks, kp, kev  KGen(1l, pub) is a probabilistic algorithm run by the client.
It takes a security parameter 1l, some public parameters pub and re-
turns a secret key ks, a public key kp and a evaluation key kev.

• (?, tdata)  [SetupClt(ks, kp, T, pub), SetupSrv(kev, pub)] is an inter-
active algorithm between the client and the server. SetupClt takes as
input a secret key ks, a public key kp, a text T and public parameters
pub. SetupSrv takes as input a evaluation key kev and public parame-
ters pub. After the algorithm, the server outputs some encrypted text
data tdata.

• (I ,?)  [QueryClt(ks, kp, P, pub), QuerySrv(kev, tdata, pub)] is an in-
teractive algorithm between the client and the server. QueryClt takes
as input a secret key ks, a public key kev, a pattern P and public pa-
rameters pub. QuerySrv takes as input a evaluation key kev, some text
data tdata and public parameters pub. After the algorithm, the client
outputs the matching indices I .
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The separation of keys into ks, kp, kev is common practice with HE schemes,
but might not make sense in a PPSS scheme that does not rely on a HE
primitive. In that case, kp and kev could be omitted.

Correctness. We say a PPSS scheme S is (n, m)-correct, if given security
parameter l 2 N and public parameters pub, for all keys ks, kp, kev output
by KGen(1l, pub), for all texts T of length at most n, for all tdata output
by the server after running [SetupClt(ks, kp, T, pub), SetupSrv(kev, pub)], for
all patterns P of length at most m and for all I 0 output by the client af-
ter running [QueryClt(ks, kp, P, pub), QuerySrv(kev, tdata, pub)], we have that
I 0 = Search(T, P).

Analogously we say that S is partially (n, m)-correct if the output I 0 is a
super set of I = Search(T, P). In other words, for partial correctness, we
allow false positive indices in I 0, but no false negative indices.

4.2 Security Definition for Privacy Preserving String
Search Schemes

For this model, we consider the server to be an honest-but-curious adver-
sary. This means that the server correctly follows the protocol laid out by
the scheme. However, it tries to learn more about the underlying text and
pattern than what is allowed by the leakage function. We assume the client
to be completely honest, as it knows everything about P and T to begin with.

The adversary is allowed to choose a text T and make as many adaptive
queries for patterns P(i) as it likes. In the end, the adversary tries to distin-
guish whether or not it has been interacting with a real client, or an ideal
simulator. We call this security notion semantic security under a chosen text
and patterns attack, or adaptive SS-CTPA for short.

Ideal and Real Security Games. Algorithm 1 and Algorithm 2 define two
security games. SetupSrv and QuerySrv are executed by the adversary and
hence it learns the corresponding inputs and communications. L denotes
the leakage function of the PPSS scheme. It is made up of two parts L =
(LSetup,LQuery).

• LSetup : S⇤ 7! {0, 1}⇤ defines the information about the text that the
server is allowed to learn during the setup algorithm.

• LQuery : S⇤ ⇥ S⇤ 7! {0, 1}⇤ defines the information about the text and
pattern that the server is allowed to learn during the query algorithm.

We say a PPSS scheme S with security parameter 1l is adaptively SS-CTPA
secure with leakage L if for every probabilistic polynomial time adversary
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Algorithm 1: RealPPSS
S ,A (1l, pub)

T  A(1l, pub)
ks, kp, kev  KGen(1l, pub)
(?, tdata) [SetupClt(ks, kp, T, pub), SetupSrv(kev, pub)]
i 0
while P(i)  A() do

(Ii,?) [QueryClt(ks, kp, P(i), pub), QuerySrv(kev, tdata, pub)]
i i + 1

end
b A()
return b

Algorithm 2: IdealPPSS
S ,A,L,Sim(1l, pub)

T  A(1l, pub)
ks, kp, kev  KGen(1l, pub)
(?, tdata) [SimSetup(1l, pub,LSetup(T)), SetupSrv(kev, pub)]
i 0
while P(i)  A() do

(Ii,?) 
[SimQuery(1l, pub,LQuery(T, P(i)), QuerySrv(kev, tdata, pub)]

i i + 1
end
b A()
return b

A there exists a simulator Sim such that As advantage AdvSS-CTPA
S (A) is

negligible.

AdvSS-CTPA
S (A) =
���Pr[RealPPSS

S ,A (1l, pub) = 1]� Pr[IdealPPSS
S ,A,L,Sim(1l, pub) = 1]

���  negl(l)

4.3 Fourier Private Search

With security and syntax for PPSS schemes formalized, we present our first
new scheme, called Fourier Private Search (FPS). FPS is modelled after a
well-known plaintext string search algorithm that uses DFT to accelerate
computation. The core idea is to homomorphically compute a matching
vector M, that contains all the information about matches.
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Underlying HE primitive. We use CKKS as the underlying HE primitive in
FPS. In particular, we require the following properties of CKKS.

• Message Space. Let N be power of 2. The message space is a set
of N

2 -dimensional complex vectors, C
N
2 . Ciphertext size is constant,

regardless of the encrypted vector.

• Homomorphic Operations.

– Addition and Subtraction. Given two ciphertexts ca and cb, that
encrypt vectors a and b respectively, we can compute a ciphertext
ca+b that encrypts the sum a + b. Analogously, we can compute
ca�b.

– Element-wise Multiplication. Given two ciphertexts ca and cb,
that encrypt vectors a and b respectively, we can compute a ci-
phertext ca�b that encrypts the element-wise product a� b.

– Plaintext Multiplication. Given a ciphertext ca and a vector b,
we can compute a ciphertext ca�b that encrypts the element-wise
product a� b.

Defining the Matching Vector. In FPS, given a text T and pattern P, to
compute a matching vector M.

M = (M0, . . . , Mn�m) (4.1)

Mi =
m�1

Â
j=0

(ti+j � pj)
2 (4.2)

We think of Mi as the matching value for T and P at index i. This definition
has the very nice property, that Mi evaluates to 0, if and only if there is a
occurrence of P in T at index i.

Mi

(
= 0 if P occurs in T at index i
> 0 otherwise

Thus, we can identify all occurrences of P in T by merely looking at the
indices of the 0-values in M.

Computing the Matching Vector. Now, we just need an efficient way to
compute the matching vector, given the homomorphic operations that CKKS
provides. There is of course the naive way of directly computing each ele-
ment of M using its definition, but doing so would result in a very inefficient
circuit with non-constant additive depth.
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4.3. Fourier Private Search

Using DFT and a bit of preprocessing, we devise a much more elegant algo-
rithm. If we rearrange equation (4.2), we can split it up into three terms S1,
S2 and S3 that can be independently computed.

Mi =
m�1

Â
j=0

(Ti+j � Pj)
2 =

m�1

Â
j=0

T2
i+j

| {z }
S1

+
m�1

Â
j=0

P2
j

| {z }
S2

�2
m�1

Â
j=0

Ti+jPj

| {z }
S3

(4.3)

Remember, that we want to compute not just a single element Mi, but rather
an entire vector M = (M0, . . . , Mn�m). Therefore, if we can obtain three vec-
tors corresponding to terms S1, S2 and S3 respectively, we can subsequently
determine M by summing these three vectors.

Computing S2. We start with S2, as it is the simplest. Notice, that S2 is
completely independent of i and T and can be computed given P alone.
Since the client knows P when it makes a query, it computes the value of S2
in plaintext and encrypts it before sending it as part of the query.

P⇤ = (P⇤0 , ..., P⇤n )

P⇤i =
m

Â
j=0

P2
j

| {z }
S2

Computing S1. S1 is a bit more tricky, as it depends on i as well as T. The
idea is to precompute a version of T called T⇤, that significantly simplifies
the computation of S1.

T⇤ = (T⇤0 , T⇤1 , . . . , T⇤n )

T⇤i =
i

Â
j=0

T2
j

T⇤n = 0

We can calculate S1 using elements of T⇤

m�1

Â
j=0

T2
i+j

| {z }
S1

=
i+m�1

Â
j=0

T2
j �

i�1

Â
j=0

T2
j = T⇤i+m�1 � T⇤i�1

Remember, that we need Mi for each i 2 {0, . . . , n�m + 1}, so naturally, we
also need S1 for each i. Given T⇤ and a pattern length m, we compute S1
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4. Constructing Privacy Preserving String Search Schemes

for each i using a single vector rotation (see section 2.4) and a single vector
subtraction.

T⇤(m) = T⇤ � rot(T⇤, m)

By definition of T⇤ and rot(·), we have the following.

T⇤(m)
i+m�1 = T⇤i+m�1 � T⇤i�1 =

m�1

Â
j=0

T2
i+j

| {z }
S1

So, T⇤(m)
i+m�1 is exactly the S1 term in equation (4.3).

Computing S3. Looking at the S3 term Âm�1
j=0 Ti+jPj, we observe, that this

sum looks quite a bit like a convolution. In fact, if we derive the n-dimensional
vector bP from P,

bP = (Pm�1, Pm�2, . . . , P1, P0, 0, . . . , 0) 2 Sn+1

then the convolution T ⇤ bP is exactly what we want.

(T ⇤ bP)i+m�1 =
n�1

Â
j=0

Tj bPi+m�1�j

=
n�1

Â
j=0

Ti+j bPm�1�j

=
m�1

Â
j=0

Ti+jPj

| {z }
S3

4.3.1 Applying the Fourier Transform

We have seen how to define three (n + 1)-dimensional vectors S1, S2 and S3
such that M can be calculated by simple vector addition.

M = (T⇤(m)
| {z }

S1

+ P⇤|{z}
S2

�2(T ⇤ bP| {z }
S3

))m�1:n�1 (4.4)

The task is now to compute these vectors as efficiently as possible, given
the tools that CKKS provides. The good thing about S1 and S2 is, that they
depend only on T, m and P respectively. Hence, S1 and S2 can (partially)
be precomputed before encryption. The tricky part, then, is to compute S3
because it depends on both, T and P. As we have seen, computing the S3
values can be done using the convolution of T and bP. Unfortunately, CKKS
has no operation to directly compute the convolution of two vectors. It does,
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4.3. Fourier Private Search

however have the capability to efficiently compute the element-wise product
of two encrypted vectors.

This is where the DFT comes in. Using the convolution property of the DFT
(section 2.5), we transform the convolution operation into an element wise
multiplication. All we need is the Fourier transformed versions of T and bP.

F (T)�F (bP) = F (T ⇤ bP)

We have seen how to obtain F (T ⇤ bP) in a single multiplication rather than
trying to obtain T ⇤ bP naively using a non-constant depth circuit. The prob-
lem is, that we have the S3 vector in Fourier space, whereas the S1 and S2
vectors are not. The key insight here is to bring S1 and S2 to Fourier space
as well and exploit the linearity of the DFT.

F (M) = F (T⇤(m) + P⇤ � 2(T ⇤ bP))
= F (T⇤(m)) +F (P⇤)� 2F (T ⇤ bP)
= F (T⇤(m)) +F (P⇤)� 2F (T)�F (bP)
= F (T⇤ � rot(T⇤, m)) +F (P⇤)� 2F (T)�F (bP)
= F (T⇤)�F (rot(T⇤, m)) +F (P⇤)� 2F (T)�F (bP)

= F (T⇤)�F (T⇤)� r(m)

| {z }
S1

+F (P⇤)| {z }
S2

�2F (T)�F (bP)| {z }
S3

(4.5)

On line 6 of equation (4.5), we used the rotation property of the DFT (see
section 2.5).

4.3.2 Applying the HE Layer

In equation (4.5) we have derived an equation for F (M) that uses addition,
subtraction, element-wise multiplication and plaintext element-wise multi-
plication. These are all operations that are supported by CKKS.

Ekp(F (M)) =Ekp(F (T⇤))� Ekp(F (T⇤))� r(m)

| {z }
S1

+ Ekp(F (P⇤))
| {z }

S2

� 2 Ekp(F (T))� Ekp(F (bP))
| {z }

S3

(4.6)

We left the scalar multiplication by 2 in the equation for clarity, even though
it is technically not a CKKS-supported operation. However, there are many
ways to emulate this doubling operation, for example using addition.

The last step is now, to put it all together into a protocol. Figure 4.1 pro-
vides an overview over the complete FPS scheme. Algorithm 3 shows a
pseudocode implementation of the FPS scheme.
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Client Server

Ekp (F (T)), Ekp (F (T⇤))
Store ciphertexts

Query Phase

Ekp (F (bP)), Ekp (F (P⇤)), m

Compute Ekp (F (M))

Ekp (F (M))

Compute M
I  {i : |Mi|  t}

Figure 4.1: High level overview over the FPS scheme

• Given T, the client precomputes T⇤ and applies F to T and T⇤ to obtain
F (T) and F (T⇤) respectively. It then encrypts F (T) and F (T⇤) and
sends cT, cT⇤ to the server.

• Given P, the client precomputes bP and P⇤. It then applies F to obtain
F (bP) and F (P⇤). It then encrypts F (bP) and F (P⇤) and sends c bP, cP⇤ , m
to the server.

• Given cT, cT⇤ , c bP, cP⇤ , m, the server computes cT⇤(m) and cT⇤bP as inter-
mediate results. It then computes cM according to equation (4.6) and
sends it to the client.

• Given cM, the client decrypts cM to obtain F (M). It then applies F�1

to obtain M. From M it then extracts the set of matching indices I by
including all i in I where |Mi|  t for some threshold t 2 R.

Note that we extract the index set I from M by comparing the Mi values to
a threshold t rather than checking if they are equal to 0. This might seem
redundant, since we saw in the definition of M that Mi is exactly 0 if there is
a match. However, this thresholding process is necessary, as the ciphertext
cM that the client receives from the server, contains an inexact version of
M. This is is due to several error sources such as encryption noise and
numerical imprecision. For more on this, see section 4.7.

4.4 Randomized Fourier Private Search

We now present Randomized Fourier Private Search (RFPS), which is a prob-
abilistic variant of FPS. RFPS features an even smaller leakage profile and
less computation cost than FPS, but as a trade-off, the computation result is
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Algorithm 3: FPS Pseudocode
Input : pub = (N, (qL, . . . , q0), P, h, ce, ca, cs, cv, D, t, cR, S)
Fn KGen(1l, pub):

(ks, kp, kev) KGenCKKS(1l, pub)
Send kev to the server.

Fn SetupClt(ks, kp, T, pub):
cT  Ekp(F (T), pub)
cT⇤  Ekp(F (T⇤), pub)
Send (cT, cT⇤) to the server.

Fn SetupSrv(kev, pub):
Store (cT, cT⇤) for later use.

Fn QueryClt(ks, kp, P, pub):
c bP  Ekp(F (bP), pub)
cP⇤  Ekp(F (P⇤), pub)
Send (c bP, cP⇤ , m) to the server.

Receive cM from the server.
M F�1(Dks(cM), pub)
I  {i : |Mi|  t}

Fn QuerySrv(kev, tdata, pub):
Receive (c bP, cP⇤ , m) from the client.
cT⇤(m)  cT⇤ � (cT⇤ � r(m))
cT bP  cT � c bP
cM  cT⇤(m) + cP⇤ � 2cT bP
Send cM to the client.

only partially correct, as there can be false positives. We introduce a new
vector R = (R0, . . . , Rm�1). R is sampled anew from the random distribution
cR by the client each time it makes a query.

Defining the Randomized Matching Vector. By modifying the formula in
equation 4.2 using R, we obtain a new definition of M.

M = (M0, . . . , Mn�m) (4.7)

Mi =
m�1

Â
j=0

(Ti+j � Pj)Rj (4.8)
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It is easy to see that Mi is zero if there is a match at index i.

Theorem 4.1 If P occurs in T at index i, then Mi = 0.

Proof

Ti:i+m�1 = P =) 8j 2 {0, . . . , m� 1} : Ti+j � Pj = 0

=) Mi =
m�1

Â
j=0

(Ti+j � Pj) ⇤ Rj = 0 ⇤

False Positives We have seen that Mi = 0 if there is a match at index i.
However, the reverse implication is not necessarily true. We could have an
unlucky combination of T, P and R such that Ti:i+m�1 6= P but Mi = 0. As
an example, consider T = (2, 0, 4), P = (0, 1, 3) and R = (2, 5, 1). Obviously,
P does not occur in T at all, yet M0 = (2� 0)2 + (0� 1)5 + (4� 3)1 = 0. In
this case the algorithm would incorrectly identify 0 as an index where there
is a match. Fortunately we can tweak the probability of such a false positive
(FP) case by choosing a suitable distribution cR from which R is sampled.
For a probability estimation, refer to subsection 4.7.5.

Computing the Randomized Matching Vector. The recipe for homomor-
phically computing M is actually similar to how we computed M in the FPS
scheme. We split up the formula for Mi into two terms S1 and S2.

Mi =
m�1

Â
j=0

(Ti+j � Pj)Rj =
m�1

Â
j=0

Ti+jRj

| {z }
S1

�
m�1

Â
j=0

PjRj

| {z }
S2

Computing S2. S2 exclusively depends on R and P which are both known
by the client during the query phase. The client can precompute a vector
PR of repeating elements.

PR = (PR0, . . . , PRn�1)

PRi =
m�1

Â
j=0

PjRj

Computing S1. Computing S1 is analogous to term S3 from the FPS com-
putation. We derive a n-dimensional vector bR from R.

bR = (Rm�1, Rm�2, . . . , R1, R0, 0, . . . , 0) 2 Sn
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The convolution of T with bR contains exactly the elements needed for S1.

(T ⇤ bR)i+m�1 =
n�1

Â
j=0

Tj bRi+m�1�j

=
n�1

Â
j=0

Ti+j bRm�1�j

=
m�1

Â
j=0

Ti+jRj

We have seen how to compute the to terms S1 and S2. Putting them together
gives us a formula for M.

M = (T ⇤ bR| {z }
S1

� PR|{z}
S2

)m�1:n�1 (4.9)

Applying the Fourier Transform and the HE Layer. We use the convolu-
tion property of the DFT to convert the convolution in equation 4.9 into a
element-wise multiplication.

F (T ⇤ bR� PR) = F (T)�F (bR)�F (PR)

We wrap this formula into a HE layer.

Ekp(F (T ⇤ bR� PR)) = Ekp(F (T))� Ekp(F (bR))
| {z }

S1

�Ekp(F (PR))
| {z }

S2

(4.10)

Using this formula, we define the RFPS protocol. Figure 4.2 provides an
overview over the complete FPS scheme. Algorithm 4 shows a pseudocode
implementation of the RFPS scheme.

• Given T, the client computes F (T). It then encrypts F (T) and sends
cT to the server.

• Given P, the client samples vector R of length m from cR. It then
precomputes vectors bR and PR. It then applies F to obtain F (bR) and
F (PR). It then encrypts F (bR) and F (PR) and sends cbR, cPR to the
server.

• Given cT, cbR, cPR, the server computes cTR as an intermediate result.
It then computes cM according to equation (4.10) and sends it to the
client.

• Given cM, the client decrypts cM to obtain F (M). It then applies F�1

to obtain M. From M it then extracts the set of matching indices I by
including all i in I where |Mi|  t for some threshold t 2 R.

As is the case with FPS, we use a threshold t to discriminate between
matches and non-matches. Any i with an |Mi|  t is counted as a match.
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Client Server

Ekp (F (T))
Store ciphertext

Query Phase

R cR Ekp (F (bR)), Ekp (F (PR))

Compute Ekp (F (M))

Ekp (F (M))

Compute M
I  {i : |Mi|  t}

Figure 4.2: High level overview over the RFPS scheme

4.4.1 Variations of RFPS

At this point we want to highlight two possible variations of RFPS that might
be of interest.

• Send R in plain. In this variant, at the start of the query phase, the
client sends R to the server as a plaintext rather than in encrypted
form Ekp(F (R)). The server computes F (bR) itself and proceeds with
the protocol as normal. This version has the advantage of saving net-
work complexity, as the R plaintext is commonly orders of magnitude
smaller than the encrypted ciphertext cbR. Furthermore, there is less
encryption error accumulated in the response ciphertext, as there is
no noise from the encryption of R. The downside is, that since R is a
vector with the same length as P, the length m is leaked to the server,
which is not the case with vanilla RFPS.

• Don’t send P at all. In this variant, at the start of the query phase,
the client sends just the random vector R to the server, but no other
data. The server then computes cTR = Ekp(F (T))� F (R) and sends
cTR back to the client. Upon receiving cTR, the client unwraps TR and
computes M = (TR � PR)m�1:n�1 in plain. This is by far the most
lightweight version of the RFPS protocol. The network complexity per
query is reduced to one plaintext vector and one response ciphertext.
Additionally, the server just needs to perform a single homomorphic
operation per query. However, one might argue that this variant is
so minimalist that it defeats the purpose of the remote computation
paradigm, as the server performs such a small portion of the compu-
tation.
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Algorithm 4: RFPS Pseudocode
Input : pub = (N, (qL, . . . , q0), P, h, ce, ca, cs, cv, D, t, cR, S)
Fn KGen(1l, pub):

(ks, kp, kev) CKKS.KGen(1l, pub)
Send kev to the server.

Fn SetupClt(ks, kp, T, pub):
cT  Ekp(F (T), pub)
Send cT to the server.

Fn SetupSrv(kev, pub):
Store cT for later use.

Fn QueryClt(ks, kp, P, pub):
R cR

cbR  Ekp(F (bR), pub)
cPR  Ekp(F (PR))
Send (cbR, cPR) to the server.

Receive cM from the server.
M F�1(Dks(cM), pub)
I  {i : |Mi|  t}

Fn QuerySrv(kev, tdata, pub):
Receive (cbR, cPR) from the client.
cM  cT � cbR � cPR
Send cM to the client.

4.5 Features and Limitations

We highlight a few of the strengths, weaknesses and properties of our newly
developed schemes FPS and RFPS.

Privacy. Both schemes have excellent privacy properties. FPS only reveals
the pattern length m to the server. RFPS goes even further and does not
reveal anything about the text or the queried patterns to the server. In both
cases, the matching results are also completely private. Not even the number
of matches is revealed.

Text length. Hiding the text and pattern length n, m is only possible be-
cause the ciphertext size is exclusively determined by the public parameters
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pub and completely independent from n or m. For example, the encryption
of T has a constant size whether T has length n = 10 or n = 10000. We
cannot store an arbitrarily long T inside a single ciphertext of course.

Remember that CKKS encrypts complex N
2 -dimensional vectors. Using the

DFT symmetry property (section 2.5) and the fact that N is even, we see that
if n  N � 1 then the DFT of T has dimension at most bN�1

2 c+ 1 = N
2 . This

shows us that n and m are bounded by the public parameter N in order to
ensure correctness.

n  N � 1
m  N � 1

E�ciency. FPS and RFPS were designed with the capabilities and restric-
tions of the CKKS HE scheme in mind. The homomorphic circuits have
constant multiplicative depth of 1. This is a big advantage as it limits noise
growth and enables really efficient computation on the server side. For per-
formance characteristics, see chapter 5.

Ciphertext Size. CKKS ciphertexts are orders of magnitudes larger than
the plaintexts they encrypt. The ciphertext expansion is a fundamental prop-
erty of RLWE based HE schemes (such as CKKS) and is a necessary part of
guaranteeing security. This means that a the network cost of the FPS and
RFPS protocols is also exceedingly high. In section 4.6 we propose a partial
solution to this problem using lossy ciphertext compression.

4.5.1 Comparison of Schemes

Table 4.1 shows a qualitative comparison of FPS, RFPS and the RFPS vari-
ants in a selection of disciplines. The RFPS variants plain R and R only
are described in subsection 4.4.1. The number of homomorphic multiplica-
tions is a good indicator for computation cost, as ciphertext multiplication is
much more expensive than ciphertext addition. The concrete storage size of
a CKKS ciphertext depends strongly on the CKKS parameters used (mostly
qL and N). Refer to chapter 5 for real-world storage sizes.

4.6 Ciphertext Compression

FPS and RFPS are efficient constructions in terms of computation cost, but
an issue that remains is the size of ciphertexts that need to be sent between
the server and the client for a query.

Recall from subsection 2.3.2 that any CKKS ciphertext c consists of a pair of
(N � 1)-degree polynomials with (modular) integer coefficients.

c = (c0, c1) 2 (Zq[X]/(XN + 1))2
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FPS RFPS RFPS, plain R RFPS, R only
False Positives No Yes Yes Yes

Leakage m ? m m
Storage 2 ciphertexts 1 ciphertext 1 ciphertext 1 ciphertext

Network 3 ciphertexts 3 ciphertexts 2 ciphertexts,
1 vector

1 ciphertext,
1 vector

Hom. Mult. 2 1 1 1

Table 4.1: Qualitative comparison of FPS, RFPS and RFPS variants. False Positives: whether
or not false positive indices could be returned. Leakage: information leaked to the server during
the setup and query process combined. Storage: amount of information about T the server needs
to store long-term in order to answer queries. Network: amount of information that needs to
be transmitted between the client and server per query. Hom. Mult.: number of homomorphic
multiplications the server needs to perform in order to answer a query.

In practice, ciphertexts are stored and transmitted as 2 length-N arrays of
coefficients plus some metadata. A coefficient a is represented as an integer
in dlog(q)e bits. Figure 4.3 shows a schematic representation the bits storing
the coefficient a. The rightmost bits are the Least Significant Bits (LSBs).

a = 1 0 . . . 1 0 0 1 1 0

dlog(q)e

b

Figure 4.3: Bit representation of an example integer polynomial coe�cient a. Every coe�cient
has a total width of dlog(q)e and b least significant bits are truncated during compression.

The key insight is, that changes to the LSBs of the ciphertext polynomial
coefficients have the least amount of impact on the underlying plaintext. Let
m = Dks(c) = Dks((c0, c1)). For example, if we toggle the least significant bit
of every coefficient in c0 and c1, then that will only change m very slightly.

Compression Functions. We define the functions truncate, compress and
decompress.

• truncate(a, b) takes as input a integer coefficient a and a nonnegative
integer b. It discards the b LSBs from the binary representation of a
and returns the remaining bits.

• compress((c0, c1), b0, b1) takes as input a ciphertext consisting of two
polynomials (c0, c1) and two nonnegative integers b0 and b1. It replaces
each coefficient a in c0 with truncate(a, b0) and each coefficient a in c1
with truncate(a, b1). It then outputs this compressed version (c00, c01).
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• decompress((c00, c01), b0, b1) takes as input a compressed ciphertext con-
sisting of two polynomials (c00, c01) and two nonnegative integers b0 and
b1. It appends b0 0-bits to each coefficient in c0 and appends b1 0-bits
to each coefficient in c1. It then outputs the decompressed ciphertext
(ec0, ec1).

Compression Factor. Let ec be the compressed version of c. ec = compress(c, b0, b1).
Let em be the decryption of ec. em = Dks(ec). ec takes N(b0 + b1) fewer bits to
store than c. Ignoring the constant-sized metadata part of a ciphertext, we
achieve a compression factor of r(q, b0, b1).

rq(b0, b1) =
size(c̃)
size(c)

=
N(dlog(q)e � b0) + N(dlog(q)e � b1)

2Ndlog(q)e

= 1� b0 + b1

2dlog(q)e

We choose b0 and b1 carefully, such that we can save as much ciphertext
size as possible while keeping the error incurred by the truncation below a
certain threshold. In other words, we choose b0 and b1 to minimize rq(b0, b1)
while keeping the compression error incurred by b0 and b1 below a tolerable
correctness threshold.

In the case of FPS and RFPS, we take advantage of the knowledge, that the
response vector M is a integer vector. Concretely, if a compressed message
m̃ 2 Rk is close enough to the actual message m 2 Zk (km� emk• < 0.5),
then we can infer m from em. For a analysis on the compression error, refer
to subsection 4.7.2.

4.7 Error Analysis

Multiple steps during the execution of FPS and RFPS introduce errors that
might break the correctness of the schemes. We identify four distinct sources
of errors.

• Encryption Error Denoted eenc The encryption error is introduced by
the CKKS encryption algorithm. It is necessary to provide the security
guarantees of CKKS.

• Compression Error Denoted ecomp. The compression error stems from
the compression operation on the final result-ciphertext.

• Numerical and Encoding Error Denoted enum. The numerical error
stems from the imprecision of floating point computation during the
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DFT computation and the CKKS encoding and decoding algorithms.
Additionally, during CKKS encoding, a rounding step is performed,
which is a source of error.

Inevitably, FPS and RFPS will need to be able to deal with some amount of
error acting on the result vector M in order to function correctly. Ideally,
we choose parameters in such a way such that the infinity norm of the final
error-perturbed vector eM differs less than 0.5 from the true vector M.

eacc(pub, b0, b1) =
���M� eM

���
•
= kM� (M + e)k• = kek• < 0.5

Higher bounds than 0.5 are acceptable in a scenario where false positives
are allowed.

We provide theoretical or experimental bounds for these errors and discuss
them in more detail. Then we discuss how these error types accumulate to
influence the correctness of the complete schemes.

4.7.1 Encryption Error

The CKKS encryption function adds random error (or ”noise”) polynomials
sampled from ce to the output ciphertext in order to conceal the contained
plaintext (see subsection 2.3.2). As well as ensuring confidentiality, these
errors do unfortunately change the underlying values in a small way. Fur-
thermore, performing operations on ciphertexts can accumulate and quickly
increase the error magnitude. As a brief informal example, if we multiply
two ciphertexts that encrypt the values m0 + e0 and m1 + e1, then the result
is (m0 + e0)(m1 + e1) = m0m1 + m0e1 + m1e0 + e0e1. The error of the product
has grown to m0e1 + m1e0 + e0e1.

Chen et. al. provide probabilistic bounds on these errors and their growth.
In particular, we refer to Lemma 1, 2, and 3 in [10]. Equation (4.11) shows
terms for Bclean and Bmult as defined in [10]. P is a large prime used for
relinearization and h refers to the Hamming weight of the secret polynomial
s.

Bclean = 8
p

2sN + 6s
p

N + 16s
p

hN

Bmult(l) = P�1ql Bks + Bscale

Bks =
8sNp

3

Bscale =

r
N
3
(3 + 8

p
h)

(4.11)

• Lemma 1 in [10] states that for a freshly encrypted ciphertext, the
encryption noise is bounded by Bclean with high probability. Recall the
notation for tagged ciphertexts in subsection 2.3.2.
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• Lemma 3 in [10] states that given two ciphertexts C0 = (c0, l, n0, B0)
and C1 = (c1, l, n1, B1), the sum of C0 and C1 has an error bounded by
B0 + B1. The product of C0 and C1 has an error bounded by n0B1 +
n1B0 + B0B1 + Bmult(l).

We combine these Lemmas to provide a probabilistic upper bound on the
encryption noise accumulated in the FPS and RFPS circuits.

FPS Encryption Error

We start with four fresh ciphertexts. Recall the tagged ciphertext notation
from subsection 2.3.2.

CT = (cT, 0, nT, Bclean)

CT⇤ = (cT⇤ , 0, nT⇤ , Bclean)

CbP = (c bP, 0, nbP, Bclean)

CP⇤ = (cP⇤ , 0, nP⇤ , Bclean)

Now we follow the homomorphic computation outlined by QuerySrv in algo-
rithm 3 and keep track of the errors. We model the intermediate ciphertexts
using tagged ciphertexts.

Cr(m) = (cr(m) , 0, 1, 0)
CT⇤(m) = (cT⇤(m) , 0, nT⇤(m) , BT⇤(m) )

CT⇤bP = (cT⇤bP, 0, nT⇤bP, BT⇤bP)

CM = (cM, 0, nM, BM)

Through repeated application of Lemma 3, we obtain a value for BM.

BM = BT⇤(m) + BP⇤ + 2BT⇤bP
= 2BT⇤ + Bmult(0) + BP⇤ + 2(nTBbP + nbPBT + BbPBT + Bmult(0))

= 3Bclean + 2Bmult(0) + 2Bclean(nT + nbP) + 2B2
clean

From the definitions of T and bP we determine their corresponding bounds
nT and nbP.

nT = N · |S| · D � kF (T)k• · D

nbP = N · |S| · D �
���F (bP)

���
•
· D

This gives a function to bound the size of the encryption error that acts on
the result ciphertext M.

eFPS
enc (pub) = BM = 4BcleanN|S|D + 3Bclean + 2Bmult(0) + 2B2

clean
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RFPS Encryption Error

We start with three fresh ciphertexts

CT = (cT, 0, nT, Bclean)

CbR = (cbR, 0, nR, Bclean)

CPR = (cPR, 0, nPR, Bclean)

We follow the homomorphic computation outlined by QuerySrv in algorithm
4. The intermediate result cTbR = cT � cbR is modelled using the tagged
ciphertext CTbR.

CTbR = (cTbR, 0, nTbR, BTbR)

CM = (cM, 0, nM, BM)

Through repeated application of Lemma 3, we obtain a value for BM.

BM = BTbR + BPR

= nTBbR + nbRBT + BTBbR + Bmult(0) + BPR

= (nT + nbR + 1)Bclean + B2
clean + Bmult(0)

We derive the following upper bounds nT and nbR.

nT = N · |S| · D � kF (T)k• · D

nbR = N · Rmax · D �
���F (bR)

���
•
· D

Rmax denotes the maximal coefficient value that can be sampled from cR.
We summarize this bound in the eRFPS

enc function.

eRFPS
enc (pub) = BM = (ND(|S|+ Rmax) + 1)Bclean + B2

clean + Bmult(0)

4.7.2 Compression Error

The compression method introduced in section 4.6 is lossy. Theorem 4.2
provides an upper bound on the compression error.

Theorem 4.2 Let c be a ciphertext. Let c̃ be the counterpart of c compressed using
b0 and b1. The compression error is bounded by

kDecks(c̃)�Decks(c)k
can
•  2b0 N + 2b1 N2

Proof Let s be the secret polynomial in ks = (1, s) where each coefficient si
is sampled the ternary distribution T . We know that kskcan

•  ksk1  N.
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Let c = (c0, c1) be the encryption of polynomial p. The CKKS Decryption
operation is defined as follows:

Decks(c) = c0 + c1s mod ql

During compression, each coefficient in c0 and c1 is truncated by throwing
away the least significant. For a ciphertext coefficient a and its compressed
counterpart ã = truncate(a, b) it holds that:

a� ã mod ql < 2b

We obtain the compressed ciphertext c̃ = (c̃0, c̃1) by truncating each coeffi-
cient in c0 and c1.

kDecks(c̃)�Decks(c)k• = kc̃0 + c̃1s� c0 � c1sk•

 kc̃0 � c0k• + k(c̃1 � c1)sk•

 2b0 + k(c̃1 � c1)sk•

 2b0 + N(kc̃1 � c1k• · ksk•)

 2b0 + 2b1 N

We have omitted the ( mod ql) operation for legibility. From the definition
of the canonical embedding s (see subsection 2.3.2) we derive the bound
kxkcan

• = ks(x)k•  N kxk•.

kDecks(c̃)�Decks(c)k
can
•  N kDecks(c̃)�Decks(c)k•

 2b0 N + 2b1 N2 ⇤

Using Theorem 4.2, we bound the compression error magnitude in the mes-
sage space as ecomp.

ecomp(pub, b0, b1) = 2b0 N + 2b1 N2

We measure the compression error kDecks(c̃)�Decks(c)k
can
• using an exam-

ple implementation. Figure 4.4 shows empirical measurements of the errors
alongside the theoretical bound ecomp.

4.7.3 Numerical and Encoding Error

When it comes to actually implementing our PPSS schemes, the real and
complex numbers need to be represented as a finite amount of bits. This
leads to numerical errors. The size of the numerical and encoding error
depends in part on the scale D used for encoding and decoding, as well as
the specific hardware and software implementation. We use e· to refer to the
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Figure 4.4: Compression error magnitude message space alongside the theoretical bound ecomp.
b0 and b1 is the number of least significant bits truncated in c0 and c1 respectively.

imperfect implementations of the underlying mathematical algorithms. For
example, eF refers to a implementation that tries to compute F , but does so
imperfectly, with errors.

We provide three separate measurements of error here. Let v be a vector
sampled uniformly at random from {0, 1}215�1. The DFT error measures the
error when performing one forward and one backward DFT.

���v� gF�1( eF (v))
���

•
kvk•

The Encoding error measures the error when performing one encoding and
one decoding step with scale D.

��� eF (v)� gDcd(gEcd( eF (v)))
���

•��� eF (v)
���

•

The DFT and encoding error measures the error of a full DFT-Encoding pipeline.
���v� gF�1(gDcd(gEcd( eF (v))))

���
•

kvk•
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Figure 4.5: Mean numerical errors from DFT and CKKS encoding algorithms, alongside the
upper bound enum(pub). The plaintext polynomial dimension is N = 215. The DFT dimension
is 215 � 1.

Since this kind of error is highly implementation and even hardware depen-
dent, but not necessarily a mathematical property of FPS or RFPS, we pro-
vide an experimental bound rather than a theoretical one. Figure 4.5 shows
experimental measurements of the error incurred by numerical imprecision
in the DFT and Encoding/Decoding steps.

For enum, we use a generous upper bound derived from these empirical
measurements.

enum(pub) = max(2� log(D)+3, 10�14) if N = 215

4.7.4 Accumulation of Errors

Now that we have defined our three different error functions enum, eenc, ecomp,
we investigate how they interact with each other bound the impact that the
accumulation of all these errors has.

We define eacc as the infinity norm of M� eM where M is computed exactly
according to its definition, and eM is the output of FPS or RFPS.

eacc(pub, b0, b1) �
���M� eM

���
•
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eenc and ecomp both act on the least significant bits of the coefficients in the
ciphertext cM. We can think of them overwriting each other. Thus, only
the larger of the two is relevant for the accumulation. Furthermore, as they
act on the ciphertext cM, their magnitude is scaled during the decoding
process as well as the inverse DFT. Hence, they are divided by the scale of
cM, denoted DM as well as the dimension of the iDFT, N � 1.

The numerical error enum scales with the infinity norm of the vector it acts
on. Let nM denote an upper bound on kMk• over all possible values of T, P
(and in the case of RFPS: R).

eacc(pub, b0, b1) = enum(pub)nM+

(1 + enum(pub))
✓

max(eenc(pub), ecomp(pub, b0, b1))

DM · (N � 1)

◆

Choosing a threshold. Both, FPS and RFPS compensate for errors by com-
paring the computed values eMi to some threshold t instead of comparing
them exactly to 0.

I = {i : | eMi|  t}

If Mi = 0, then | eMi|  eacc(pub, b0, b1). Hence, if we choose t = eacc(pub, b0, b1),
then FPS and RFPS will correctly identify all matches.

Typical Error Values. In our experiments we measured empirical values for
eacc(pub, b0, b1) using some example parameters. Table 4.2 shows measured
errors for some example parameters. We can see that the FPS error is

Scheme (b0, b1) Mean Error Std. Deviation
FPS (0, 0) 0.042 0.0002
FPS (12, 10) 0.22 0.012

RFPS (0, 0) 2.53 0.22
RFPS (30, 25) 2.58 0.24

Table 4.2: Experimentally measured error values for example scenarios . N = 215, n = N � 1,
m = 10. Mean Error: the mean of the error values

���M� eM
���

•
measured over 100 repetitions.

(b0, b1) denote the compression parameters used. (0, 0) indicates no ciphertext compression.

well below 0.5 in both cases, so we can comfortably choose the matching
threshold t = 0.5. Even without compression, RFPS already has errors well
above 0.5 due to the more conservative public parameters (smaller coefficient
modulus qL, smaller scale D). In an application where we tolerate false
positives, we choose the matching threshold t = 4.0. This choice results in
RFPS potentially incorrectly identifying indices as matches where there are
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none. For example, for an index i where the true matching value is |Mi| = 1,
the computed matching value could fit below the threshold | eMi|  t = 4.0.

4.7.5 False Positives in RFPS

The RFPS scheme is a probabilistic algorithm that can produce incorrect
results. Recall the definition for Mi in equation 4.8:

Mi =
m�1

Â
j=0

(Ti+j � Pj)Rj

RFPS identifies index i as a match if Mi = 0. From the definition it is easy
to see that RFPS will correctly identify all true matches with probability 1.
However, there is a possibility that RFPS identifies i as a match even though
there is no match at index i. We call this occurrence a False Positive (FP).
pFP denotes the probability that such a false positive occurs.

pFP(cT, cP, cR) = Pr[Mi = 0|Ti:i+m�1 = P]

Evidently, pFP depends on the distributions of T, P and R called cT, cP
and cR respectively. To give a estimation of pFP we make the following
assumptions about cT and cP.

• cT, cP sample each character independently and uniformly at random
from S.

• cT and cP both output vectors of the same length (n = m). Hence, the
RFPS matching vector M will only contain one element M0.

Computing pFP. Let J be the sequence of indices where T and P differ.

J = (j0, j1, . . .) = (j : Tj 6= Pj)

Let the distance d(T, P) be the exact number of characters where T and P
differ. d(T, P) = |J|. We note that the value of M0 is exclusively determined
by the characters at the indices in J.

M0 =
m�1

Â
j=0

(Tj � Pj)Rj

= Â
j2J

(Tj � Pj)Rj + Â
j/2J

(Tj � Pj)Rj

= Â
j2J

(Tj � Pj)Rj + 0

= Â
j2J

(Tj � Pj)Rj
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Figure 4.6: Values of pk(0) for di↵erent example cR distributions. k is the distance d(T, P). The
alphabet is S = {0, . . . , 255}. We assume each character in T and P to be sampled uniformly
at random from S.

We define pk(x) to be the probability that M0 = x given that d(T, P) = k.

pk(x) = Pr[M0 = x|d(T, P) = k]

Obviously, if T = P then d(T, P) = 0 and M0 = 0. So we can fix p0(x).

p0(x) =

(
1 if x = 0
0 otherwise

For any k > 0, pk(x) is computed using the recursive formula

pk(x) =
•

Â
x0=�•

pk�1(x0)Pr[(Tjk�1 � Pjk�1)Rjk�1 = x� x0]

Figure 4.6 shows values of pk(0) up to k = 10 using some example parame-
ters.
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Using pk(x), we derive an equation for the false positive probability pFP.
Recall that we assume P to have the same length as T (n = m).

pFP(cT, cP, cR) =
n

Â
k=1

pk(0)Pr[d(T, P) = k]

=
n

Â
k=1

pk(0)
✓

1� 1
|S|

◆k ✓ 1
|S|

◆n�k ✓n
k

◆

Table 4.3 shows the computed false positive probability for some example
distributions.

n cR pFP(cT, cP, cR)
10 uniform{3, . . . , 16} 1.18 · 10�4

10 uniform{3, . . . , 32} 6.28 · 10�5

10 uniform{3, . . . , 64} 3.24 · 10�5

10 uniform{32, . . . , 64} 2.46 · 10�5

Table 4.3: False positive probabilities for di↵erent cR distributions. cT and cP sample characters
independently and uniformly from S = {0, . . . , 255} and output vectors of length n = m = 10.

Choosing cR. Naturally, we want to minimize the false positive probability
pFP. Since cT and cP are application dependent, our only real dial to tweak
pFP is our choice of cR. Our analysis has shown that choosing cR with large
upper bounds is beneficial. Ideally, we would sample R from a distribution
that allows arbitrarily large elements, but we are restricted by the CKKS’
limitations. If R contains large integers, then this will propagate to large
integers in the matching vector M.

CKKS limits the largest plaintext vector element that can be represented.
This limit can be increased by tweaking public parameters of course, but
doing so also significantly expands the ciphertext size, which is already a
concern with HE schemes in general (see section 4.6). The challenge is then
to find a reasonable balance between a high-entropy cR and limiting the
size of the intermediate results in the homomorphic computation. For the
experiments in this paper we choose cR ⇠ uniform{3, . . . , 32}.

4.8 Security Analysis

We prove the security of our two schemes assuming that the underlying HE
primitive is secure. We use a simulation based proof.
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4.8.1 Security Proof for FPS

Theorem 4.3 The FPS scheme is adaptively SS-CTPA secure with leakage LSetup

and LQuery, public parameters pub and security parameter l. Where LSetup and
LQuery are defined as follows:

LSetup(T) = ?
LQuery(T, P) = m

Proof We prove Theorem 4.3 by constructing a simulator Sim for the ideal
PPSS-game (Algorithm 2). We then show through a series of game hops,
that the ideal game using Sim is computationally indistinguishable from the
real PPSS-game (Algorithm 1).

Simulator. The simulator is composed of two functions SimSetup and SimQuery.

• SimSetup(1l, pub,LSetup(T)) takes as input the security parameter 1l,
public parameters pub and the leakage LSetup(T) = ?. It sends to the
server a pair of ciphertexts (Ekp(F (0)), Ekp(F (0))).

• SimQuery(1l, pub,LQuery(T, P)) takes as input the security parameter
1l, public parameters pub and the leakage LQuery(T, P) = m. It sends
to the server a tuple (Ekp(F (0)), Ekp(F (0)), m).

Figures 4.7, 4.8 and 4.9 show games G1, G2 and G3 respectively.

Client Server

Ekp (F (0)), Ekp (F (T⇤)
Store ciphertexts

Query Phase

Ekp (F (bP)), Ekp (F (P⇤)), m

Compute Ekp (F (M))

Ekp (F (M))

Compute M
I  {i : |Mi|  t}

Figure 4.7: Game G1 for the FPS scheme.

Hop to G1. Let # be the HE scheme used by FPS. We show that if adversary
A can distinguish between games Real and G1, then we can construct an

45



4. Constructing Privacy Preserving String Search Schemes

Client Server

Ekp (F (0)), Ekp (F (0))
Store ciphertexts

Query Phase

Ekp (F (bP)), Ekp (F (P⇤)), m

Compute Ekp (F (M))

Ekp (F (M))

Compute M
I  {i : |Mi|  t}

Figure 4.8: Game G2 for the FPS scheme.

Client Server

Ekp (F (0)), Ekp (F (0))
Store ciphertexts

Query Phase

Ekp (F (0)), Ekp (F (0)), m

Compute Ekp (F (M))

Ekp (F (M))

Compute M
I  {i : |Mi|  t}

Figure 4.9: Game G3 for the FPS scheme.

adversary B that successfully attacks the IND-CPA security of #.

|Pr[RealPPSS
S ,A (1l, pub) = 1]� Pr[GPPSS

1,S ,A,L,Sim(1l, pub) = 1]|  AdvIND-CPA
# (B)

B interacts with a IND-CPA Left-or-Right (LoR) oracle and invokes A as
a subroutine. Upon receiving the text T from A, it sends (F (T),F (0)) as
a query to the oracle and receives back a ciphertext c which is either an
encryption of F (T) or F (0). B then proceeds normally through the FPS
scheme until it receives the bit b from A(). It directly outputs b. If A
can indeed distinguish between Real and G1, then B can use As output to
distinguish between a L-oracle and a R-oracle.
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4.8. Security Analysis

Hop to G2. The hop from G1 to G2 works analogously to the first hop.
This time B is given an adversary A that can distinguish between G1 and G2
as subroutine and uses it to distinguish between the encryptions of (F (T⇤)
and F (0)).

|Pr[GPPSS
1,S ,A,L,Sim(1l, pub) = 1]� Pr[GPPSS

2,S ,A,L,Sim(1l, pub) = 1]|
 AdvIND-CPA

# (B)

Hop to G3. Let A be an adversary that distinguishes between G2 and G3
and let nq the number of queries that A makes. We construct B in the
same way as we did before, but this time distinguishing the encryptions of
(F (bP),F (0)) and (F (P⇤),F (0)). Notice that per query that A makes, B
makes two queries.

|Pr[GPPSS
2,S ,A,L,Sim(1l, pub) = 1]� Pr[GPPSS

3,S ,A,L,Sim(1l, pub) = 1]|
 2nq AdvIND-CPA

# (B)

Game G3 is the same as the ideal game, so no adversary will ever exist
to distinguish the two. For legibility, let pi be the probability that game
Gi returns 1 and pReal, pIdeal be the probabilities that games Real and Ideal
return 1 respectively. Plugging it all together, we get

AdvSS-CTPA
FPS (A) = |pReal � pIdeal|

 |pReal � p1|+ |p1 � p2|+ |p2 � p3|+ |p3 � pIdeal|
 2 AdvIND-CPA

# (B) + 2nq AdvIND-CPA
# (B) + 0

= (2 + 2nq)AdvIND-CPA
# (B)

If # is a IND-CPA secure HE scheme, then AdvIND-CPA
# (B)  negl(l). It

follows that

AdvSS-CTPA
FPS (A)  (2 + 2nq)AdvIND-CPA

# (B)  negl(l) ⇤

4.8.2 Security Proof for RFPS

Theorem 4.4 The RFPS scheme is adaptively SS-CTPA secure with leakage LSetup

and LQuery, public parameters pub and security parameter l. Where LSetup and
LQuery are defined as follows:

LSetup(T) = ?
LQuery(T, P) = ?

Proof We prove Theorem 4.4 by constructing a simulator Sim for the ideal
PPSS-game (Algorithm 2). We then show through a series of game hops,
that the ideal game using Sim is computationally indistinguishable from the
real PPSS-game (Algorithm 1).
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Simulator. The simulator is composed of two functions SimSetup and SimQuery.

• SimSetup(1l, pub,LSetup(T)) takes as input the security parameter 1l,
public parameters pub and the leakage LSetup(T) = ?. It sends to the
server a ciphertext Ekp(F (0)).

• SimQuery(1l, pub,LQuery(T, P) takes as input the security parameter 1l,
public parameters pub and the leakage LQuery(T, P) = ?. It sends to
the server a pair of ciphertexts (Ekp(F (0)), Ekp(F (0))).

Figures 4.10 and 4.11 show games G1, G2 respectively.

Client Server

Ekp (F (0))
Store ciphertext

Query Phase

R cR Ekp (F (bR)), Ekp (F (PR))

Compute Ekp (F (M))

Ekp (F (M))

Compute M
I  {i : |Mi|  t}

Figure 4.10: Game G1 for the RFPS scheme.

Client Server

Ekp (F (0))
Store ciphertext

Query Phase

R cR Ekp (F (0)), Ekp (F (0))

Compute Ekp (F (M))

Ekp (F (M))

Compute M
I  {i : |Mi|  t}

Figure 4.11: Game G2 for the RFPS scheme.
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Hop to G1. Let # be the HE scheme used by FPS. We show that if adversary
A can distinguish between games Real and G1, then we can construct an
adversary B that successfully attacks the IND-CPA security of #.

|Pr[RealPPSS
S ,A (1l, pub) = 1]� Pr[GPPSS

1,S ,A,L,Sim(1l, pub) = 1]|  AdvIND-CPA
# (B)

B interacts with a LoR oracle and invokes A as subroutine. Upon receiving
T from A, it sends the pair F (T),F (0) as a query to the oracle and receives
back a ciphertext c, which is either an encryption of F (T) or F (0). B then
proceeds normally thorugh the RFPS scheme until it receives the bit b from
A(). It directly outputs b.

Hop to G2. Let A be an adversary that distinguishes between G1 and G2
and let nq be the number of queries that A makes. We construct B in the
same way as we did before, but this time distinguishing the encryptions of
(F (bR),F (0)) and (F (PR),F (0)).

|Pr[GPPSS
1,S ,A,L,Sim(1l, pub) = 1]� Pr[GPPSS

2,S ,A,L,Sim(1l, pub) = 1]|
 2nq AdvIND-CPA

# (B)

Game G2 is the same as the ideal game, so no adversary will ever exist
to distinguish the two. For legibility, let pi be the probability that game
Gi returns 1 and pReal, pIdeal be the probabilities that games Real and Ideal
return 1 respectively. Plugging it all together, we get

AdvSS-CTPA
RFPS (A) = |pReal � pIdeal|

 |pReal � p1|+ |p1 � p2|+ |p2 � pIdeal|
 AdvIND-CPA

# (B) + 2nq AdvIND-CPA
# (B) + 0

= (1 + 2nq)AdvIND-CPA
# (B)

If # is a IND-CPA secure HE scheme, then AdvIND-CPA
# (B)  negl(l). It

follows that

AdvSS-CTPA
RFPS (A)  (1 + 2nq)AdvIND-CPA

# (B)  negl(l) ⇤
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Chapter 5

Implementation

We implemented the FPS and RFPS schemes in C++ using the CKKS imple-
mentation in the Microsoft SEAL library [26] and tested the performance as
well as correctness.

5.1 Parameter choice

CKKS Parameters. The CKKS polynomial modulus degree N must be a
power of 2. We choose N = 215 unless otherwise noted. This is the maximal
value for N that is supported by MS SEAL. In FPS, we choose the maximal
level to be L = 1 and coefficient modulus chain (q1, q0) where q0 is a 60 bit
wide prime and q1 is the product of q0 and another 60 bit wide prime. In
RFPS, we choose the maximal level to be L = 0 and the coefficient modulus
chain (q0) where q0 is a 60 bit wide prime. For P we choose another 60 bit
prime. In [10] the parameter h defines the exact Hamming weight of the se-
cret polynomial s. This notion of h is not applicable in this implementation,
as MS SEAL samples s from the generic ternary distribution T and thus
the value of h is not a public parameter known prior to sampling the secret
key. The distributions ce, ca, cs, cv are instantiated by MS SEAL according
to the descriptions in subsection 2.3.2. For the scale D that is applied during
encoding, we choose 240 for FPS and 220 for RFPS.

According to the recommendations made by the HE standard in 2018 [2],
this parameter choice easily fits the requirements for the 128 bit security
level in RLWE-based schemes.

String Search Parameters For all tests, we use the UTF-8 alphabet S =
{0, . . . , 255}. For T and P, we sample each character uniformly at random
from S. Unless otherwise noted, T has the maximal possible length n =
N � 1 = 215 � 1. The pattern has length m = 100. Note that homomorphic
computation performance and network complexity do not depend on n or
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m as long as they are both below the upper bound N. For FPS, we choose
a matching threshold of t = 0.5. For RFPS, we choose a more generous
threshold of t = 4.0 and a R distribution cR ⇠ uniform{3, . . . , 32}.

5.2 Results

Experiment Setup. All experiments were performed on a laptop with a
Intel i7-8850H CPU @ 2.60GHz and 16GB of memory.

Figure 5.1: Setup times for di↵erent text lengths. CKKS public parameter N was chosen such
that n  N � 1. Setup time includes encoding and encryption of the text information.

Computation Cost. Figures 5.1 and 5.2 show the computation times for
the setup process and query process respectively. Recall that computation
cost scales with the public parameter N, which must be a power of 2. For
these measurements, N was chosen to be the smallest power of 2 such that
n  N � 1. This explains the jumps at points n = 213 = 80192 and n = 214 =
160384 in these and all subsequent performance graphs.

Given a text of length n = 320000 and a pattern of any length m  n, a
query in FPS takes less than 60ms. In RFPS, the same query takes less than
40ms. As expected, RFPS is more lightweight than FPS due to the simpler
homomorphic computation performed.

Figure 5.3 shows a breakdown of the FPS query computation time into its
components. The query processing time is dominated by the encoding and
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5.2. Results

Figure 5.2: Query times for di↵erent text lengths. CKKS public parameter N was chosen
such that n  N � 1. Query time includes encoding, encryption, homomorphic computation,
decryption and decoding, but no network transmission time.

encryption processes on the client side as well as the homomorphic compu-
tations on the server side.

Storage Cost. Figure 5.4 shows ciphertext sizes for FPS. Assuming N =
215, any fresh ciphertext, for example the encryption of F (T) has a size
larger than 1MB. The FPS implementation performs a rescaling operation
after the homomorphic computation, which reduces ciphertext sizes signifi-
cantly. This is why the size of the response ciphertext is less than 600KB. We
compress the response further by applying our compression method. All
polynomial coefficients in the response ciphertext originally have a width of
60 bits each. We truncate the 10 least significant bits from coefficients in c0
and 12 least significant bits from coefficients in c1. The resulting compressed
ciphertext is roughly 23% smaller than the original response. In our tests,
FPS is still correct with these compression parameters.

RFPS uses the CKKS plaintext space more efficiently. Hence we can choose
the CKKS public encryption parameters more conservatively. This results
in fresh ciphertexts being much smaller than in FPS. Since the RFPS imple-
mentation does not rescale ciphertexts at any point, the response ciphertext
is exactly as large as a fresh ciphertext. However, we can be more aggressive
with our compression parameters. In c0 polynomial coefficients, we truncate
30 out of 60 least significant bits and in c1 polynomial coefficients, we trun-
cate 25 out of 60 least significant bits. The resulting compressed ciphertext
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5. Implementation

Figure 5.3: FPS Query Time Breakdown for di↵erent text lengths. CKKS public parameter N
was chosen such that n  N � 1.

is roughly 49% smaller than the original response. Again, in our tests, these
compression parameters did not affect correctness of RFPS.
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5.2. Results

Figure 5.4: FPS Ciphertext sizes for di↵erent text lengths. CKKS public parameter N was
chosen such that n  N � 1.

Figure 5.5: RFPS Ciphertext sizes for di↵erent text lengths. CKKS public parameter N was
chosen such that n  N � 1.
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Chapter 6

Future Work

There are many exciting directions that future research projects could take.
Here we highlight some ideas.

6.1 Wildcard String Search

Adding wildcard characters is a natural extension to the string search prob-
lem. Informally, the wildcard character, denoted ”⇤”, is a special new char-
acter that matches with every other character in the alphabet. It can be used
in either the text or the pattern to make more flexible queries. Consider T
and P:

T = (0, 1, 0, 2, 0)
P = (0, ⇤, 0)

The wildcard in P matches with characters 1 as well as 2, so the correct
result of wildcard string search is I = {0, 2}.

Implementing Wildcards in RFPS. In FPS and RFPS, the wildcard func-
tionality is fairly simple to implement by modifying the definitions of M.
For example, in RFPS we can implement pattern-wildcards at almost no ad-
ditional cost. We sample R as usual from cR, but then replace Ri with 0 if
Pi = ⇤. The definition of M remains as before.

Mi =
m�1

Â
j=0

(Ti+j � Pj)Rj

Since Rj = 0 if Pj = ⇤, the j-th term of the sum evaluates to 0 regardless of
the values Ti+j or Pj. The wildcard version of RFPS is as efficient and secure
as vanilla RFPS.
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Implementing Wildcards in FPS. To implement pattern-wildcards in FPS,
we introduce a new masking vector H 2 {0, 1}m.

Hi =

(
0 if Pi = ⇤
1 otherwise

We adapt the definition of M to incorporate H.

Mi =
m�1

Â
j=0

(Ti+j � Pj)
2Hj

The wildcard version of FPS is less efficient than the vanilla version of FPS
due to the additional homomorphic multiplication as well an additional ci-
phertext cH needing to be transmitted.

6.2 Improve Compression

As we have seen in chapter 5, ciphertext size is a major challenge for FPS,
RFPS and HE schemes in general. Encrypting a 30KB UTF-8 text in FPS
results in a ciphertext size of more than 1MB without compression. This
corresponds to a ciphertext expansion of roughly 34⇥. The response cipher-
text is smaller at 600KB, but still about 20⇥ times larger than the plaintext.

In our compression method (section 4.6), we have exploited the knowledge
that our final ciphertext is composed of integers rather than real numbers.
However, there might still be a big untapped potential for more compres-
sion. Ultimately, in FPS and RFPS, we only care about whether or not a
value Mi is zero (|Mi|  t) or non-zero (|Mi| > t). So in theory, we could
encode all the important information about M in just |M| = n�m + 1 bits.

6.3 Using other Homomorphic Encryption Primitives

While the string search schemes developed in this thesis use CKKS as the
underlying HE primitive, there is nothing stopping us from using a different
HE scheme to compute the matching formulas. This might yield a new
string search scheme that has different practicality characteristics based on
the advantages and disadvantages of the HE primitive used.

6.3.1 Using linearly HE schemes

Given the simplicity of the homomorphic circuits in FPS and RFPS, some
well established linearly HE schemes might be suitable candidates as HE
primitives. In contrast to the vectorized RLWE-based schemes, schemes in
this category usually encrypt and operate on scalar values. This gives us a
lot more flexibility, but might also be less performant, as we cannot make
use of the powerful SIMD operations of RLWE-based HE.
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Using BGN. BGN introduced by Boneh et. al. in [4] is a encryption scheme
that enables homomorphic operations over integers. We highlight the most
relevant properties of BGN.

• Homomorphic Additions. The user can perform an arbitrary number
of additions of ciphertexts.

• Homomorphic Multiplications. The user can perform multiplications
of two ciphertexts. However, the result ciphertext of the multiplication
cannot be used in further multiplications.

• Decryption. Decryption involves solving the discrete logarithm prob-
lem for a small set of possible exponents. In [4], the authors use
boolean values as plaintexts, so only the two exponents 0 and 1 need
to be checked.

Points 1, 2 and 3 make BGN capable of evaluating any multivariate poly-
nomials of degree 2, so long as the set of possible results is small. FPS
and RFPS provide definitions for Mi that are just that! Mi is a multivariate
polynomial of degree 2 with the characters in T, P (and R) as function pa-
rameters. Furthermore, to extract the indices I from M, we only need to
know whether or not Mi is zero or non-zero. Given the BGN encryption of
Mi, it is therefore possible to efficiently deduce if Mi is zero. BGN stands out
as a possibly viable alternative to CKKS as HE primitive. Several advantages
and disadvantages over CKKS should be considered.

• The scalar nature of BGN allows us to encrypt each character in T,
P (and R) individually, rather than as a monolithic ciphertext. This
makes the ways in which they can be used a lot more flexible. For
example, we lose the upper bound on n that CKKS mandated and in
theory, T and P could be arbitrarily long.

• CKKS provided element-wise multiplication of vectors as a single ef-
ficient SIMD operation. We made great use of this fact in our con-
structions by applying the convolution property of the DFT. In Fourier
space, computing the convolution could be done using n multiplica-
tions or one element-wise vector multiplication. As BGN encrypts in-
tegers, we unfortunately cannot perform the convolution computation
in Fourier space. Instead, we need to compute the convolution naively
using O(n2) homomorphic multiplications.

• The new flexibility of encrypting each character separately opens the
door to employing SIMD and parallelization in a more traditional
sense. As a primitive example, each Mi ciphertext could be com-
puted on a separate CPU thread and multiple homomorphic opera-
tions could be performed at once using vectorized CPU instructions.
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• A BGN based implementation of FPS and RFPS is likely to have a
substantially lower ciphertext expansion factor than the CKKS version
we presented.

Exploring whether the increased flexibility of a BGN-based FPS-like con-
struction is worth the trade offs in practice is an interesting open research
question.

6.3.2 Using boolean HE schemes

Boolean HE schemes such as Goldwasser-Micali (GM) [15] are fundamen-
tally different from the other schemes in this list as they offer boolean opera-
tions over ciphertexts rather than arithmetic operations. Unfortunately, this
makes GM rather unsuitable as HE primitive for FPS which relies heavily
on arithmetic to compute M. The boolean operation paradigm might open
the door for completely different design approaches to PPSS, though.

6.3.3 Using other RLWE-based HE schemes

Next to CKKS, many other RLWE-based schemes exist and there is active
development in this area. BGV [7] and BFV [13, 6] are implemented in the
MS SEAL library and have a similar interfaces as CKKS. In particular, they
also operate in a SIMD manner, which is one of the key strengths used
by FPS and RFPS. In contrast to CKKS however, they operate on (modu-
lar) integer vectors instead of complex vectors. This makes them unsuitable
as direct drop-in replacements. Working with integers rather than floating
point complex numbers is somewhat easier as there is no numerical impre-
cision. Exploring this possibility may be worth-wile, for example using the
Number Theoretic Transform.

Number Theoretic Transform The Number Theoretic Transform (NTT) [1]
is a extension of the DFT to finite fields (i.e. integers modulo a prime).
It exhibits the same convolution property of the DFT that we rely on for
FPS, but does so with no numerical imprecision. One could use the NTT
combined with a integer vector scheme such as BFV to build a more practical
version of FPS or RFPS.

6.4 Privacy Preserving String Search as Building Block

With PPSS syntax and security formalized and implementations being more
practical, we can explore the possibility of using PPSS schemes as building
blocks for more complex cryptographic primitives.
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Substring Private Information Retrieval. Private Information Retrieval (PIR)
refers to a mechanism where a client retrieves an item from a database stored
on a server without the server knowing what item was retrieved. In some
cases, the database is publicly known. This mechanic can of course be ex-
tended to the realm of string search. A client might want to retrieve the
text segments surrounding all occurrences of a pattern in a large text. This
functionality is subtly different from PPSS, but existing PPSS schemes might
serve as a stepping stone towards achieving practical substring-PIR.

Encrypted Databases. In [3], Bian et. al. propose a HE-based encrypted
Database Management System called HE3DB. HE3DB offers various differ-
ent comparison and aggregation functionalities that are common in SQL
queries. Notably, HE3DB features exact string comparisons but no sub-
string queries. Using PPSS, HE3DB could potentially be expanded to allow
for substring queries using the SQL LIKE keyword.
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Chapter 7

Conclusion

In this thesis we have developed two new schemes for Privacy Preserving
String Search using Homomorphic Encryption as a building block. We de-
signed the constructions in such a way as to minimize to computational
complexity of the homomorphic circuits. In particular, the circuits have
multiplicative depth 1 and a constant number of additions.

The resulting schemes are really computationally efficient, being able to per-
form string search queries in a matter of tens of milliseconds. This demon-
strates the capability of modern HE schemes to be fast and practical if used
with care. On the other hand, network complexity remains a shortcoming
of our PPSS schemes despite our compression efforts. Using CKKS within
(R-)FPS, we observe ciphertext expansion factors of 20⇥ and upwards. Net-
work complexity seems to be the critical factor keeping HE-based PPSS
schemes from being fully practical.

In the case of PPSS, the target communication cost per query should be
lower than the size of text T. Otherwise, if the communication is higher, the
server could store a symmetrically encrypted ciphertext of T during setup
phase and just stream this ciphertext back to the client each time it makes a
query.

The phenomenon of large ciphertext expansion seems to extend across all of
RLWE-based HE. RLWE-based HE relies on the additional entropy provided
by larger ciphertexts for security. It remains a key open question by how
much we can reduce ciphertext expansion of FHE-based PPSS solutions,
such that they are competitive with other solutions.
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