
Klondike: Finding Gold in SIKE

Master Thesis

Giacomo Fenzi

September 5, 2022

Advisors: Prof. Dr. Kenneth Paterson, Dr. Fernando Virdia

Applied Cryptography Group
Institute of Information Security

Department of Computer Science, ETH Zürich

Abstract

This work is an exploration of the practical costs of running van
Oorschot and Wiener’s (vOW) algorithm [vW94] for golden collision
finding in practice. We investigate the cost of memory accesses and
propose new models for concrete cost estimation. We also estimate
the complexity of vOW’s algorithm in a distributed setting, propos-
ing new models and an open-source library for performing large scale
golden collision searches, which we refer to as Klondike. In this the-
sis, we also fill some of the gaps in the theoretical understanding of
vOW’s algorithm behaviour and its interaction with memory, and pro-
pose new state-of-the-art models for estimating both the fill rate of the
memory and the number of distinguished triples required to fill the
memory partially or in full. We analysize some of the original heuris-
tic parameter selection in [vW94], and find them suboptimal for large
instance size. Consequently we propose a new heuristic criterion that
yields better practical running times in our experiments. We present
the currently available models (from [vW94, TID21]) for computing the
running time of vOW’s algorithm in terms of function evaluations and
present our own model, which relies on our previous results with re-
gards to fill rate. Finally, we present an analysis of the practical costs
of attacking the Supersingular Isogeny Path Problem using vOW’s al-
gorithm.

i

Acknowledgments

Dobfar

Papà

Thanking someone is always a delicate effort. On one hand, it is only
natural giving thanks to those who contributed to the development of some
work, acknowledging that any written piece of work is not birthed from
the proverbial cave, but rather is the culmination of many small threads that
tangled themselves in precisely the right way. On the other, Giulio Andreotti
famously said that ‘La riconoscenza è solo speranza di piaceri futuri’, which can
loosely be translated to ‘Gratitude is only hope of future pleasures’. I hope
I can convince the reader that this chapter is fully dedicated to the first aim,
and that my intentions are as far from Andreotti’s as can be.

My first thanks go to Fernando, which, at the risk of sounding cliché,
was the best supervisor that I could have wished for. At the start of this
project my knowledge of cryptanalysis and collision finding was minimal,
and I have to thank Fernando for, almost by osmosis, helping me gather the
understanding which I hope to have conveyed in this work. He was there
for my rambles, in discovering what worked and, most importantly, what
did not.

Then, I want to thank Kenny for his guidance, his insights, and his men-
torship during my time at ETH, and for generously providing a large chunk
of the computational resources required for this project.The remaining part
was graciously contributed by Martin Albrecht, without whom it would
have not been possible to derive some of the key results in this thesis.

I want to also apologize to Kien, Massimiliano and Marc for being subject
to my rambles about isogenies during the best part of the last years, and
thank them for not once telling me to shut up as they should have righly

iii

done. My thanks also go to Azzurra, Emma, Gianluca and Riccardo, for the
benessere during this summer in Zürich. Francesco, Giorgio, Mario, Renato,
Federico thought me that ‘camminare è povertà’, and for that I deeply thank
them. Tommaso and Alberto were my guidance and my wisdom in the start
of my academic career, and I cannot do justice to how helpful that was.

Finally, I want to thank my family for being my rock. Nothing would
have been possible if not for their unconditional trust and support. Mamma,
Papà, Caterina and Margherita were with me every step of the way, remind-
ing me that ‘dobfar’: dobbiamo farcela. I want to dedicate this work to Dede,
Dino and Mariarosa, who are not here with us, but in a sense never left.

iv

Contents

Contents v

1 Introduction 1

2 Preliminaries 7

3 Collision Finding Algorithms 11
3.1 Collisions . 11
3.2 Table Based Collision Finding 14
3.3 Pollard ρ-method [Pol75] . 23
3.4 van Oorschot and Wiener’s Algorithm [vW94] 27

4 Memory Filling & Function Versions 39
4.1 Experimental Setup . 39
4.2 Memory filling . 39
4.3 Fill rate . 47
4.4 Updating Function Versions . 54

5 Fine-grained cost analysis vOW 57
5.1 [vW94] Model . 57
5.2 [TID21] Model . 58
5.3 Towards a complete model . 59
5.4 Modelling Practical Costs . 60
5.5 Experiments . 64

5.5.1 Servers . 64
5.5.2 Busy Waiting vs Sleeping 64
5.5.3 Results . 66

6 Distributing vOW & Klondike 69
6.1 Revised Model . 69
6.2 Klondike . 70

v

Contents

6.2.1 Synchronization . 71
6.2.2 Memory . 75

6.3 Measurements and Observations 77
6.4 Improvements . 79

7 Case Study: SIKE 81
7.1 Preliminaries . 81
7.2 Isogeny Problems . 83
7.3 An attack on SIPP . 83
7.4 Efficient Isogeny Implementation 85

7.4.1 Efficient Field Operations 86
7.5 Attack Models . 88
7.6 SIKEp217 . 89
7.7 SIKEp434 . 92

A Appendix 95
A.1 Failed Approaches in Saving Memory on Function Switches . 95

Bibliography 99

vi

Chapter 1

Introduction

While the field of cryptography has grown considerably in recent years and
now encompasses a variety of different applications, a central focus remains
the need of communicating securely (and efficiently) over insecure channels.
The integer factorization and the discrete logarithm intractability assump-
tions have been central in building key exchange mechanisms to satisfy that
need, but are being threatened by Shor’s algorithm [Sho94] and by the in-
creasing progress towards building quantum computers. As a response to
this threat, the field of post-quantum cryptography has developed, which,
at its core, aims to develop cryptosystems that can efficiently be run on clas-
sical machines and are secure against attackers with a quantum computer at
their disposal. In this context of post-quantum cryptography, a number of
new computational assumptions have been introduced, and with them fol-
lows the need for appropriate cryptanalysis to better understand whether
those assumptions are, in fact, justified. This thesis stems from this need, in
particular applied to the family of isogeny-based assumptions.

Isogenies, as elliptic curves, originate in the context of algebraic geometry
and can be used to build public schemes with very compact public keys.
Roughly speaking, an isogeny is a ‘nice’ mapping between elliptic curves,
preserving both the algebraic and the geometric characteristics of the curve.
We can then consider the undirected graph with elliptic curves as nodes,
and where two curves are connected if and only if an isogeny (of a fixed
degree) connects them. This graph turns out to be Ramanujan, making so
that the distribution of the end node of short walks in the graph is close to
the uniform distribution over the graph, a property which makes the graphs
very appealing for cryptography. The fundamental hardness assumption
on which isogeny-based crypto relies on is the Supersingular Isogeny Path
Problem, that is: given two curves E0, E1 connected by a hidden isogeny
ϕ : E0 → E1 of small degree it will be hard to recover such an isogeny.
Rephrased in the graph context, SIPP states that given two connected nodes

1

1. Introduction

it is hard to find a path that connects them. From this graph intuition,
we can derive a first approach towards solving SIPP: a ‘meet-in-the-middle‘
method. We could compute a list of points E0,1, E0,2, . . . that are connected
to the node E0, together with the path ψi : E0 → E0,i. Similarly, we can com-
pute a list E1,1, . . . of those connected to E1. If we find then a E0,i = E1,j we
will have found a connecting path between E0, E1. Perhaps suprisingly, this
attack is the current state of the art classical algorithm for solving SIPP, in
terms of running times. However, in practice it suffers from large memory
requirments that make the practical cost of running such an attack unfea-
sible. Subject to this constraint, then the best classical (and quantum) algo-
rithm is based on the classical van Oorschot and Wiener’s (vOW) algorithm
for golden collision finding [vW94].

This observation motivated this work, whose focus is on developing mod-
els for cryptanalysis using the vOW’s algorithm in the context of golden
collision search.

Since the attack can be described as texbook vOW on a isogeny-tailored
random function, we are able to give a very modular description, in which
isogenies only appear in the final instantiation. Thus, this thesis can be
considered as an investigation on collision finding algorithms in general.

The problem of collision finding is central to many applications of cryp-
tography, and thus of independent interest. A collision for a function f :
D → R is a pair of distinct elements (x, y) ∈ D2 that are mapped to the
same image by f , i.e. f (x) = f (y). In this work, we consider attacks on
‘generic’ functions. This is a similar paradigm to the random oracle model,
in the sense that we assume we are given query access to this function f ,
and the description of f is hidden from us (in general, f will be drawn at
random from the set of functions, which makes its description unfeasible to
even read). The algorithms that we will be presenting can be considered as
providing upper bound on the levels of security that any function can have
against collision resistance.

The main computational problem that we will be considering in this thesis
is that of not only finding a collision, but finding a golden collision (follow-
ing the terminology introduced in [vW94]). Consider the set of collisions of
f , which we denote as Coll (f). In that set we identify one or few collisions,
which we refer to as golden collisions. The question is, given oracle access
to f , and oracle access to a ‘gold-test‘, what is the cost for finding such a
collision? The aforementioned [vW94] algorithm is considered the best al-
gorithm for solving this problem, and has survived essentially unchanged
since its original description. As noted, we are interested in furthering our
understanding of the algorithm from a cryptanalytical perspective. Previous
cryptanalytical works has considered the practical cost of breaking the SIPP
assumption, but this line of work has mainly considered models in which

2

memory accesses take O(1) time and can be perfectly parallelized.

In order to understand why memory accesses can have a large impact on
the cost of golden collision search in practice, a brief description of the al-
gorithm is in order. vOW’s algorithm can be run in parallel on a number of
processors, each of which performs the same operation. Roughly speaking,
each computing unit will mine a trail by iterating f from a random start-
ing point, and then stores the start and end point of the trail in a shared
memory unit. Once two trails have the same endpoint, they can be traced
back to identify a collision. The mining and backtracking operations can
be perfectly parallelized, but the memory is shared between every comput-
ing unit. Taking consumer hardware as an example, assuming that the cost
of accessing memory can be parallelized is not a fair assumption, and as
such can result in a bottleneck when scaling to cryptanalytical sizes. Fur-
thermore, we will see that these memory accesses are essentially uniformly
distributed over a potentially very large address space, so we believe that
even specialized hardware would not be able to overcome this bottleneck.

A second assumption that was made in the previous analysis is that an at-
tacker determined to break SIPP would utilize its resources to build a large
centralized machine, which could then be used to run the attack. In practice,
it might instead be convenient to reutilize existing computational resources,
and run the attack in a distributed manner. Previous large scale computa-
tional efforts such as GIMPS [GIM] and Folding@Home [SP00] have demon-
strated the potential of pooling large computational resources across the In-
ternet, and understanding whether this can also be done efficiently for vOW
can shed light on the feasibility of such an approach for smaller instances of
SIPP. Furthermore, as noted, we suspect that the cost of accessing memory
can be noteworthy, and thus, when limited by network latency and band-
width, we expect this effect to be very significant, warranting an extensive
investigation. Running a distributed golden collision search also requires
solving a number of practical problems regarding the nodes synchroniza-
tion that can already cause complications in a local setting and which get
exacerbated in the distributed attack.

The primary goal of this thesis was investigating and giving cost models
for this memory and distributed setting, with a focus on the SIKE [JAC+20]
key encapsulation mechanism, with the promise of running large scale isogeny
computations to break the challenge instance of p217. SIKE security re-
lied on a problem related to SIPP, namely the Computational Supersingular
Isogeny problem, which essentially reveals not only the start and end curves
of the isogeny ϕ : E → E′, but also the image of ϕ on an exponentially
large subgroup of the target curve (this information is commonly referred
to as torsion points). A spectacular line of work by Castryck, Decru, Mar-
tindale, Maino and Robert [CD22, MM22, Rob22] showed polynomial time

3

1. Introduction

attacks on the CSSI assumption, which allowed to break the p217 instance
in 9 seconds, and the parameters proposed for standardization in between
22 seconds and a couple of hours1 on a laptop. The combination of this
line of work, our estimates that running such an attack would require com-
putational resources that were outside of our capabilities, and independent
confirmation by [Cos] that breaking p217 using vOW’s algorithm would
have a comparable cost to breaking the RSA-1024 challenge instance2, lead
us to decide not to attempt those record breaking isogeny computations.

We want to still stress that the recent attack on the CSSI assumption cru-
cially relies on the torsion point information, and thus that the ‘pure’ SIPP
problem is still considered hard, with vOW’s algorithm representing the
best known attack.

Contributions Firstly, we propose two new cost models which fill the pre-
vious gap in the literature by accounting for memory accesses. These mod-
els are presented in Model 5.3 and Model 5.4, and differ in whether they
assume that accesses to memory can be parallelized or if they constitute
a serial bottleneck. These models also follow a modular approach, in the
sense that they can be instantiated with any model that predicts the num-
ber of function evaluations required to run the attack, and improvements in
such base model would translate directly into an improvement in the fine
grained cost model. We have conducted then a series of experiments to
validate these models, on a number of different servers and with different
cost metrics. These models were then ported to the distributed setting pre-
viously mentioned, resulting in Model 6.1. This model is flexible enough
to capture a huge variety of different network topologies, and retains the
modular characteristics of the previous models. In order to validate it, we
introduce Klondike, a library and a set of binaries for distributed golden col-
lision searching using vOW’s algorithm. To our knowledge, Klondike is the
first public library of the kind, allowing for great configuration flexibility,
modular choice of function f , syncing strategies and more.

Finally, in our investigation we noticed a path towards filling some of the-
oretical open questions in the analysis of the runtime of vOW’s algorithm.
The original vOW paper presents a ‘flawed’ analysis of the runtime, noting
estimation of the rate at which memory fills as a complex problem. In this
work, we present a series of experimentally validated models, based on clas-
sical techniques in probability to solve that problem, and in the process we
develop a novel model for estimating the runtime of vOW’s algorithm in the
golden collision case (dependant on an accurate model for the rate at which
memory fills).

1Using the optimised implementation of https://github.com/jack4818/
Castryck-Decru-SageMath

2Current record is RSA-250 (829 bits)

4

https://github.com/jack4818/Castryck-Decru-SageMath
https://github.com/jack4818/Castryck-Decru-SageMath

We also show one of the first practical improvements in parameter selec-
tion for vOW’s algorithm since the original paper, by showing experimen-
tally that the original selection of β = 10 is suboptimal for large parameter
sets, and propose an heuristic selection that yields improved running times.

Roadmap In Chapter 2 we will be fixing notation and terminology that
will be used in the rest of this work.

Chapter 3 will introduce and formalize the problem of collision finding,
multiple collision finding and golden collision finding (in Problem 3.6, 3.8,
3.9). We present and compare two classic algorithms for collision find-
ing: the table-based approach (Algorithm 1) and Pollard’s ρ-method (Al-
gorithm 3). This section also introduces some of the main probabilistic
techniques that we will be using troughout this work. Finally, we will be
introducing vOW’s algorithm (Algorithm 9).

Chapter 4 will introduce the two (dual) theoretical problems that we will
partially answer namely: the memory filling problem and the fill rate prob-
lem (resp. Question 4.1, 4.9). We will be answering the first question via
a coupon-collector inspired method, which will result in the two novel
Model 4.4 and Model 4.5, which we experimentally verified to be an im-
provement over the state-of-the-art. In Remark 4.10 we motivated why an-
swering Question 4.9 is important, and adapt a classical approach to mem-
ory filling to answer it, which results in Model 4.12 and Model 4.13. We also
experimentally validate these models, and report on their accuracy. Finally,
we look at the setting of function versioning, and ask ourselves whether the
choice of [vW94] of when to switch function version is optimal, answering
the question negatively, and proposing an heuristically justified new param-
eter selection.

Chapter 5 introduces the pre-existing models of [vW94] and [TID21] for
estimating the runtime of the vOW’s algorithm, and presents a novel blueprint
for constructing a more accurate model for the runtime, based on Remark 4.10
and an answer to Question 4.9. On top of these models, we introduce
Model 5.3 and Model 5.4 for fine grained estimation of the practical cost
of running the attack, and present our experimental validation.

Chapter 6 introduces the adaptation of the “local” cost models to the dis-
tributed setting, resulting in Model 6.1. We also present Klondike, our li-
brary for distributed golden collision search, with a description of syncing
algorithms and their adaptation to the distributed setting.

Finally Chapter 7 will be dedicated to showing how vOW’s algorithm can
be adapted to solving the SIPP problem. In doing so, we will be giving a
brief introduction to isogeny-based cryptography, formally introducing CSSI
(Problem 7.1) and SIPP (Problem 7.2). We report on our implementation of

5

1. Introduction

efficient isogeny evaluations, and apply the models derived in the previous
chapters to this setting.

6

Chapter 2

Preliminaries

General Notation When we are defining a new quantity we use ≜, when
assigning to it (for example in an algorithm) we instead use :=. We often do
tuple unpacking, i.e. if r ∈ S1 × · · · × Sk then the notation (r1, . . . , rk) ≜ r
will define ri to be equal to the corresponding i-th value of the tuple r.

Sets. We denote by A t B the disjoint union of A and B. A relation on
S1, S2 is a subset R ⊆ S1 × S2. For any relation R we write a ∼R b ⇐⇒
(a, b) ∈ R, and omit the subscript whenever the relation is clear from context.
For a relation ∼ we define:

a ∼? b ≜
{

1 if a ∼ b
0 otherwise

An equivalence relation on S is a relation R ⊆ S2 that is reflexive, sym-
metric and transitive (i.e. for every x ∈ S, x ∼ x, x ∼ y ⇒ y ∼ x,
x ∼ y ∧ y ∼ z ⇒ x ∼ z). For a set S and an equivalence relation ∼ we
denote by [x]∼ ≜ {y ∈ S | x ∼ y} the equivalence class of x and by
S/∼ ≜ {[x]∼ | x ∈ S} the quotient of S by ∼.

Notable Sets. We let N, Z, R denote, respectively, the natural numbers,
the integers and the real numbers. We take the dogmatic view that 0 ∈ N.
For n ∈ N, we let [n] ≜ {1, . . . , n}. For any integer n > 0, we let Zn ≜ Z/nZ

denote the integers modulo n. If q = pn for p prime we write Fq for the
(unique) finite field of size q. For a totally ordered set S, a, b ∈ S, we let
(a, b) = {x ∈ S : a < x < b}, [a, b) = {x ∈ S : a ≤ x < b}, (a, b] = {x ∈ S :
a < x ≤ b}. For a set S we let (S

k) = {(x1, . . . , xk) ∈ Sk : ∀i 6= j : xi 6= xj}/ ∼
where ∼ is the equivalence relation on Sk given by (xi)i∈[k] ∼ (yi)i∈[k] iff
there exists a permutation π on [k] such that xπ(i) = yi for every i ∈ [k].

7

2. Preliminaries

Notable Functions. We use log (·) to denote the logarithm in base 2, and
ln (·) for the natural logarithm. For the exponential function, we inter-
changeably use e(·) and exp (·). We also will need the Harmonic numbers,
which we denote as Hn, with H0 ≜ 0 and Hn ≜ ∑n

k=1
1
k for n > 0. We denote

by b·c the floor of a number, by d·e the ceil of a number and by b·e the
rounding of a number. More formally, bxc is the greatest integer z such that
z ≤ x, dxe ≜ −b−xc and bxe ≜ bx + 1

2c. As usual, we let (n
k) denote the

binomial coefficient. Note that
∣∣∣(S

k)
∣∣∣ = (|S|k).

Function Notation. We denote by Funcs(D, R) the set of functions f : D →
R. A function f : D → R is injective if f (x) = f (y) implies that x = y. It
is surjective if for every y ∈ R there is a x such that f (x) = y. A function
that is both injective and surjective is a bijection (or one-to-one). We denote
the image of a function by im f ≜ f (D) ≜ { f (x) : x ∈ D}. For a function
f : D → R, and a subset S ⊆ D we denote the restriction of f to S as f |S, that
is the unique function S → R that agrees with f on all points of S. We let
idS : S → S denote the identity function on S. Two functions f , g : D → R
are equal if and only f (x) = g(x) for every x ∈ D. For convenience we
also define ∆D : S → Funcs(D, S) to map any element s ∈ S to the constant
function d 7→ s on D. We also define the graph of a function f : S → S to
be the directed graph on |S| vertices which has an edge a→ b iff f (a) = b.

Probability. We use the notation x ←$ D to denote sampling a element
uniformly at random from the set D. If more than one element is sampled,
those samples are independent. More formally, for n > 0, any t1, . . . , tn ∈ D

Pr
x1,...xn←$D

[∀i xi = ti] =
1
|D|n

For simplicity, we often write Pr[·] without specifying over which distribu-
tion the randomness is distributed. For a random variable X we let E[X]
denote the expectation of X, which is defined as E[X] ≜ ∑x x · Pr[X = x],
where the sum is taken over the set of xs over which Pr[X = x] > 0, which
is the support of X.

Big-Oh notation [AB09]. Let g : N → R+ be a function. We define, as
usual, notation for asymptotic behaviour:

O(g) ≜
{

f : N → R+
∣∣∃c > 0, n0 ∈ N s.t. ∀n > n0 f (n) ≤ cg(n)

}
We say f ∈ Ω(g) iff g ∈ O(f) and f ∈ Θ(g) iff f ∈ O(g) and f ∈ Ω(g).
Finally, we also allow the costumary abuses of notation by letting f = O(g)
mean that f ∈ O(g) and write O(g(n)) for O(g) (and similarly for Ω, Θ).
We also write f = O(poly (n)) to signify that there exists a polynomial p(·),
of degree independent of n, such that f = O(p(n)).

8

Security Parameters. For simplicity, we will usually describe functions
and sets as concrete instances, but instead often it would be more appro-
priate to describe families parametrized by a security parameter λ ∈ N. For
example if we say that a certain algorithm f runs in time poly (|S|) for some
set S what is implicitly meant is that for each set in the family {Sλ}λ∈N there
is a corresponding algorithm fλ and there exists a polynomial p(·) such that
the running time of fλ is p(|Sλ|).

Definition 2.1 A set S has an efficient binary encoding iff there is a integer ℓS
such that:

• There is an efficiently computable injection binS : S→ {0, 1}ℓS

• The language xℓ ∈? im binS is efficiently decidable.

• The inverse bin−1
S : im binS → S is also efficiently computable.

• ℓS is O(poly (log (|S|)))

Unless otherwise specified, we assume that all the sets we deal with have an
efficient binary encoding, and as such they are finite. Note that this allows
us to efficiently sample and check set element for equality.

Bit operation. For any bitstring {0, 1}n we define a bijection bintoin :
{0, 1}n → Z2n with inverse itobinn. Given two bitstring a ∈ {0, 1}n and
b ∈ {0, 1}m we denote by a||b the string in {0, 1}n+m obtained by concate-
nating the two strings, in that order.

Approximations. We will often need to make approximations in our re-
sults. Notation wise, we write f (x) ≈ g(x) when x � b to mean that
the distance | f (x)− g(x)| is small when x is much smaller than the bound
b. We deliberatly do not completely formalise this, as it is standard. In-
stead, we write f (n) ∼ g(n) to signify asymptotic equivalence, namely that
limn→∞

f (n)
g(n) = 1. We can also consider closeness of distributions. We say

that two random variables A, B have approximately the same distribution if
Pr[A = x] ≈ Pr[B = x] for every x in the union of the support of the two
distributions. We list here the most common ones, so that we can later refer
to them.

Approximation 2.2

αnd ∼ αnd +
d−1

∑
i=0

βini

Approximation 2.3 If |x| � 1, ex ≈ 1 + x .

9

2. Preliminaries

Approximation 2.4 For f integrable,

∞

∑
i=a

f (i) ≈
∫ ∞

a
f (x)dx .

Approximation 2.5 (Stirling)

n! ∼
√

2nπ
(n

e

)n

Approximation 2.6 Let n→ ∞. Then∫ 2

0
exp

(
−x2

2n

)
dx ≈ 2

Proof The Laurent series of the integral at n = ∞ is 2− 4
3n + 4

5n2 − 8
21n3 +

O(n−4). □
Approximation 2.7

Hn ∼ ln (n) + γ +
1

2n

where γ ≈ 0.57721 . . . is the Euler-Mascheroni constant.

10

Chapter 3

Collision Finding Algorithms

In this chapter, we will be introducing the collision specific formalism and
results that we will be using trought this thesis. Furthermore, we will be pre-
senting some classical algorithms for collision finding such as Algorithm 1
and Pollard’s ρ-method (Algorithm 3), analysing their runtime and their
drawbacks. Finally, we will be presenting van Oorschot and Wiener’s algo-
rithm in Algorithm 9.

3.1 Collisions
First of all, let us define what a collision is.

Definition 3.1 (Collision) Let f : D → R be a function. A pair (x, x′) ∈ D2 is
a collision of f iff x 6= x′ and f (x) = f (x′). We define

Coll (f) ≜
{

c ∈ D2| c is a collision of f
}

/∼

where ∼ is the equivalence relation on D2 given by (a, b) ∼ (b, a).

Let us consider a sufficient condition for the existence of collisions.

Theorem 3.2 Let f : D → R be a function. If |D| > |im f | then f has a collision.
In particular, if |D| > |R| then f has a collision.

Proof This follows from the pigeonhole principle. Since |D| > |im f |, f
cannot be injective, as such has a collision. □

We can also prove a sufficient and necessary condition for a function with
equally sized domain and codomain to have a collision, namely:

Theorem 3.3 Let f : D → R and |D| = |R|. f has a collision if and only if f is
not a bijection.

11

3. Collision Finding Algorithms

Proof (=⇒) If f has a collision, it is not injective and as such it cannot be
a bijection.
(⇐=) Suppose f is not a bijection. It can either fail to be injective or fail
to be surjective. In the first case, a counterexample to injectivity directly
yields a collision. In the second case, |im f | < |R| = |D| and as such by our
previous theorem it has a collision. □

We also note that a randomly sampled function is a permutation with
very low probability, and so a randomly sampled function S→ S will, with
high probability, have one or more collisions. More formally:

Lemma 3.4 Let f ←$ Funcs(S, S) with n ≜ |S|. Then

Pr[f is a permutation] =
n!
nn

In particular, Approximation 2.5 shows this probability is small as n→ ∞.

Proof The number of permutations on n elements is exactly n!, and the total
number of functions on that domain is nn. Note that by Approximation 2.5
we have that n! ∼

√
2πn

(n
e

)n and as such

Pr[f is a permutation] ∼
√

2πn
(n

e

)n

nn =
√

2πn exp (−n)

which goes to 0 as n→ ∞. □

Very often, we will prove theorems for sequences of points uniformly
sampled at random from some set, and then translate them to evalutions
of some random function f . In that context we will be very interested in
repeating values, which we define here.

Definition 3.5 Let x1, . . . , xt be a sequence. The sequence has k repeated values
iff
∣∣∣{xi}i∈[t]

∣∣∣ = t− k.

The problem of collision finding can be defined as follows:

Problem 3.6 Let F ⊆ Funcs(D, R) be a family of functions. For any algorithm
A, with oracle access to f ←$ F , we define its advantage against the collision
finding problem as

Adv(A) = Pr
[
c ∈ Coll (f)

∣∣∣c←$ A f (·)
]

where that probability is taken over the choice of f and the random coins of A.

Remark 3.7 For some classes of functions, it can be remarkably hard (or easy) to
find collisions. Fix a set S and consider the class of functions F ≜ { fc,r}c∈S,r∈S−{c},
where fc,r|S−{c} = idS−{c} and fc(c) = r. A given fc always has a single collision,

12

3.1. Collisions

namely (c, r). A generic algorithm that is given oracle access to f ←$ F will only
be able to find such collision by querying f at c, and as such must take O(|S|)
function calls on average. For the easy case instead, consider the family of constant
functions G ≜ {gc}c∈S with gc(x) = c. Then every pair of distinct points in S2

yields a collision, so in fact an adversary can find a collision with no queries.

In practice however, those kind of functions tend not to be as interesting, and in-
stead we look at algorithm’s average performance when dealing with random func-
tions, i.e. f ←$ Funcs(D, R). With this model, we will see algorithms (for example
Algorithm 1) with expected running time O(|R|1/2).

In general, we are also interested of the case of multiple collisions, which
we generalize here.

Problem 3.8 As before, let F ⊆ Funcs(D, R) be a family of functions, and m > 0.
For any algorithm A, with oracle access to f ←$ F , we define its advantage
against the m-collision problem as

Adv(A) = Pr
[
|{c1, . . . cm}| = m
∀i, ci ∈ Coll (f)

∣∣∣∣c1, . . . , cm ←$ A f (·)
]

where the probability is taken as before.

We note that the relation between m-collision and single collision finding
is not as straighforward as one can imagine. Clearly, an adversary against
Problem 3.8 can be adapted to one against Problem 3.6. The most natural
strategy for the reverse reduction would be to run an adversary against
Problem 3.6 multiple times, but this fails if, for example, the adversary is
deterministic. Even if the adversary is randomized, it might have biases
towards sampling certain types of collisions (as we will see in practice!)
which, especially when m is large, can make the runtime of the reduction
algorithm blow up or not finish at all. Furthermore, even if an adversary A
were very nicely behaved (sampling collisions uniformly from Coll (f) for
example) a lower bound on the reduction would require m calls to A, and
we will see algorithms to tackle Problem 3.8 that only require a factor

√
m

more work compared to the single collision case.

Problem 3.9 Let F ⊆ Funcs(D, R) be a family of functions and for f ∈ F let
G f ⊆ Funcs(Coll (f) , {0, 1}) be a collection of associated predicates. For any
algorithm A, with oracle access to f ←$ F and gold f , we define its advantage
against the golden-collision problem as

Adv(A) = Pr
f←$F ,gold f←$G f

[
c ∈ Coll (f) ,
gold f (c) = 1

∣∣∣∣c←$ A f (·),gold f (·)
]

where the probability is taken also over the random coins of A. A c ∈ Coll (f) such
that gold f (c) = 1 is a golden collision.

13

3. Collision Finding Algorithms

Algorithm 1: Collision-Finding with a table
Data: f : D → R
Result: A collision (x, x′)
T ≜ [];
forall y ∈ R do

T[y] := ⊥;
end
repeat

x ←$ D;
y ≜ f (x);
if T[y] 6= ⊥ and T[y] 6= x then

return (x, T[y]);
end
T[y] := x;

until False;

A few notes are in order. Problem 3.9 is defined with respect to both a
family of function and a family of predicates associated to such functions.
In general, we will be interested to the case in which F = Funcs(D, R)
and the predicates selects a random collision from the set of collisions. The
adversary is given oracle access and is so able to check whether a collision
that it has found is indeed a golden collision.

Remark 3.10 Problem 3.8 and Problem 3.9 are not only interesting from a theo-
retical standpoint. A natural way in which they occur is the following. Consider
a graph G and two vertices v0, v1 ∈ V(G). Suppose furthermore that it is known
that a path between v0 and v1 exists, and that it has length d. Then one can define
the function f (i, x) : {0, 1} × S → V(G), for some suitable S, to be a func-
tion that samples a length d/2 path p(x) from vi. Then, a collision of the form
f (0, x) = f (1, x′) will allow us to recover a path from v0 to v1 (by concatenating
p(x) with the reverse of p(x′). Defining gold f to test for that condition exactly
brings us to the context of Problem 3.9.

3.2 Table Based Collision Finding
In Algorithm 1 we describe a first method to find a collision in a general
function f : D → R. While simple, the techniques that we introduce here to
analyze the running times turn out to be very useful, and we will be using
them with minor modifications for the more complex methods as well.

If f indeed has a colliding pair (which by Theorem 3.2 and Lemma 3.4
happens, respectively, always and with high probability), this algorithm will
eventually find it.

14

3.2. Table Based Collision Finding

Let us consider the complexity of Algorithm 11. We will model the func-
tion f as being randomly sampled from Funcs(D, R).

Lemma 3.11 Let S be a set and let x1, . . . be a sequence of uniformly and indepen-
dently sampled points from S. Let T be a random variable denoting the number of
points sampled before a value repeats. More formally, T is the smallest index such
that xi = xT for some i < T. Then, for k ≥ 2

Pr[T > k] =
k

∏
i=2

(
1− i− 1

|S|

)

Proof We show this by induction. Let n ≜ |S|. Let us start with k = 2.
T = 2 if and only if the x2 = x1, and that happens with probability 1

n . So,
since T > 0, 1 by definition of T, we have that Pr[T > 2] =

(
1− 1

n

)
. Now let

k > 2, then

Pr[T > k] = Pr[T > k− 1∧ T 6= k] (3.1)
= Pr[T > k− 1]Pr[T 6= k|T > k− 1] (3.2)

=
k−1

∏
i=2

(
1− i− 1

n

)
· Pr[T 6= k|T > k− 1] (3.3)

where Equation (3.3) follows by the inductive hypothesis on k. Now, con-
sider Pr[T 6= k|T > k− 1]. Since T > k− 1 we are guaranteed the sequence
x1, . . . , xk−1 contains k − 1 distinct elements. Since we are sampling a new
one independently, the probability that this newly sampled point is in this
list is k−1

n and as such Pr[T 6= k|T > k− 1] =
(

1− k−1
n

)
□

Theorem 3.12 [HPS14] Let T be as in Lemma 3.11. Then E[T] ≈
√

π|S|
2 , for |S|

large.

Proof From Lemma 3.11:

Pr[T > k] =
k

∏
i=2

(
1− i− 1

|S|

)
1Note that the first line of the algorithm would run in O(|R|). In practice, we can im-

plement the memory lazily so the cost upperbounded by the number of memory accesses,
which is itself bounded by evaluations of f , and as such we do not consider it.

15

3. Collision Finding Algorithms

Now,

E[T] =
∞

∑
t=2

t · Pr[T = t]

=
∞

∑
t=2

t · Pr[T > t− 1∧ T ≤ t]

=
∞

∑
t=2

t · (Pr[T > t− 1]− Pr[T > t])

= 2 +
∞

∑
t=2

Pr[T > t] (Telescoping sum)

We now use Approximation 2.3 and Approximation 2.22 which is valid since
i� |S| to rewrite Pr[T > k] and obtain that

Pr[T > k] ≈
k

∏
i=2

exp
(

1− i
n

)

= exp

(
1
n

k

∑
i=2

(1− i)

)

= exp
(
−k(k− 1)

2n

)
≈ exp

(
−k2

2n

)
(k2 ∼ k2 − k)

Finally, we approximate the infinite sum with an integral (Approximation 2.4)
to obtain

E[T] = 2 +
∞

∑
t=2

Pr[T > t]

≈ 2 +
∞

∑
t=2

exp
(
−t2

2n

)
≈ 2 +

∫ ∞

2
exp

(
−t2

2n

)
dt (Approximation 2.4)

≈
∫ ∞

0
exp

(
−t2

2n

)
dt +

(
2−

∫ 2

0
exp

(
−t2

2n

)
dt
)

≈
√

nπ

2
(Approximation 2.6)

□
2Note that in this case we are justified by the fact that

∫ ∞
0 exp

(
−t2

2n

)
− exp

(
−t(t−1)

2n

)
dt ∼

1
2 and so this inaccuracy does not effect later estimates.

16

3.2. Table Based Collision Finding

Since we modeled the function f as a random function, we can assume
that each query on a fresh value on D is equivalent to sampling uniformly
an element of R (independently from previous evaluations). So, finding a
collision requires in expectation O(|R|1/2) function evaluations on distinct
points. Points from D are sampled independently uniformly at random
from D, and as such the same analysis from Theorem 3.12 applies and we
expect an element to repeat after approximately O(D1/2) samples. In the
typical case of |D| � |R| then, no such repetition is expected to occur before
finding a collision. Consider instead the case of a self-map f : R → R. To
handle this case we introduce the coupon’s collector analysis.

Theorem 3.13 Let x1, x2, . . . be a sequence of elements uniformly and indepen-
dently sampled from a set S. Let n ≜ |S| and k ≤ n. Let T be the smallest index
such that |{xi}|Ti=1 = k. Then

E[T] = n (Hn − Hn−k) .

In particular, if k = n then E[T] = nHn.

Proof Denote by ti the smallest index such that the partial sequence x1, . . . ,
xUi−1 , . . . , xUi−1+ti contains i distinct elements, with Uj ≜ ∑k

i=1 ti. Note that
T = Uk. Now consider an individual ti. The probability of sampling a new
coupon once i− 1 have been sampled is exactly n−(i−1)

n , so we can model ti
as a geometric distribution, which then has expected value n

n−i+1 . Then:

E[T] = E[Uk] =
k

∑
i=1

E[ti] =
k

∑
i=1

n
n− i + 1

= n
k

∑
i=1

1
n− i + 1

= n (Hn − Hn−k)

Where the first line follows by linearity of expectation and the last by rear-
ranging. □

Remark 3.14 Note that by Approximation 2.7 we have that Hk ≈ ln (k) + γ so,
for n 6= k

Hn − Hn−k ≈ ln
(

n
n− k

)
Otherwise

Hn ≈ ln (n) + γ

Let us then use Theorem 3.13 and Remark 3.14 to tackle the case of f : R→
R. To sample the required

√
π|R|

2 distinct points we will need approximately

17

3. Collision Finding Algorithms

|R| ln
(

|R|
|R|−

√
π|R|

2

)
samples. In practice, this is ≈

√
π|R|

2 , so even in this case

we are unlikely to need to sample many more points than what our analysis
predicts.

For example, to find a collision for a typical cryptographic hash function

h : R → R with |R| = 2256 we would need to sample
√
|R|π

2 ≈ 1.25 · 2128

unique domain points, and Theorem 3.13 predicts that in doing so we will
need in expectation one single extra sample.

With the above observations, we can conclude that in both cases the algo-
rithm requires in expectation O(|R|1/2) function evaluations to find a colli-
sion, and stores O(|R|1/2) elements of D, or O(log (|D|) · |R|1/2) bits.

While the large memory requirement makes Algorithm 1 unfeasible to
run in practice for moderately sized instances, it has a few desirable fea-
tures. First of all, it is a general method that also works when D 6= R.
Most methods that we will later see limit their interface to self-maps, and
the transformation from a general map to a self map3 can be unyieldy. Sec-
ondly, the inner loop can be perfectly parallelized, so, if an attacker has
L processing units at his disposal, the time complexity can be reduced by
a factor of L.4 Finally, this algorithm can be adapted straighforwardly to
tackle Problem 3.8 and Problem 3.9.

The transformation for Problem 3.8 is as follows5, and is shown in Algo-
rithm 2.

Again, if f really has m distinct colliding pair, this algorithm will termi-
nate and output the list. Our next result predicts how many collisions we
should be expecting for a random function, which we denote as CD,R.

Theorem 3.15 Let f ←$ Funcs(D, R). The expected number of distinct collisions
of f is

CD,R ≜ 1
|R| ·

(
|D|
2

)
In particular, if n ≜ |D| = |R| we expect n−1

2 collisions and denote this as CR.

Proof For each pair p ∈ (D
2) define an indicator random variable Ip as fol-

lows:

Ip ≜
{

1 if p ∈ Coll (f)
0, otherwise

.

3By composing with a suitable map R→ D.
4Funnily enough, in this case the (huge) shared datastructure can be implemented with-

out any locking, since two cells will only be accessed concurrently on a collisions, and that
should be exceedingly unlikely.

5And the one for Problem 3.9 is very similar.

18

3.2. Table Based Collision Finding

Algorithm 2: Multiple Collision Finding with a table
Data: f : D → R, m ∈ Z

Result: m collisions {(xi, x′i)}m
i=1

T ≜ [];
coll ≜ ∅;
forall y ∈ R do

T[y] := ∅;
end
repeat

x ←$ D;
y ≜ f (x);
forall x′ ∈ T[y]/{x} do

coll := coll∪ {(x, x′)};
end
T[y] := T[y] ∪ {x};

until |coll| = m;
return coll;

Note that the number of distinct collisions is exactly ∑p∈(D
2)

Ip, and as such

by linearity of expectation it is expected to be ∑p∈(D
2)

E[Ip]. The number of

unordered pairs of distinct points of D is exactly (|D|2). For a given pair (x, x′)
with x 6= x′, the probability that f (x) = f (x′) is 1

|R| (where the randomness

is over the choice of f), and as such E[Ip] =
1
|R| . Therefore the expected

number of collisions is:
1
|R| ·

(
|D|
2

)
□

Now let us estimate the running time of the algorithm. This approach was
introduced in [TID21] in their analysis of parallel golden collisions search,
but can be adapted almost unchanged for this case. To give some context to
this proof, we will have T denote the number of points required to find the
m-th collision, given that m− 1 have been found thus far. In our proof we
first will give a similar expression to that in Lemma 3.11 for the probability
that T > k for some k, and then use this to estimate recursively the number
of points required to find m collisions.

Lemma 3.16 Let x1, x2, . . . be a sequence of elements of S, uniformly and inde-
pendently sampled. Suppose that the sequence x1, . . . xt contains (m− 1) repeated
elements (i.e it contains t−m + 1 distinct elements). Denote by T the smallest in-
dex such that the sequence x1, . . . , xt, xt+1, . . . , xt+T contains m repeated elements.

19

3. Collision Finding Algorithms

Then, for k ≥ 1:

Pr[T > k] =
k

∏
i=1

(
1− t−m + i

n

)

Proof Let n ≜ |S|. As in Lemma 3.11, we proceed by induction. The prob-
ability that T = 0 is 0, so Pr[T > 1] = Pr[T 6= 1]. Note that T = 1 only
if xt+1 is one of the t − m + 1 distinct elements present in x1, . . . , xt. So,
Pr[T = 1] = t−m+1

n and Pr[T > 1] = 1− t−m+1
n . Now, by the same reasoning

of Lemma 3.11 and the derivation of Equation (3.2) we have that

Pr[T > k] =
k−1

∏
i=1

(
1− t−m + i

n

)
· Pr[T > k|T > k− 1]

Now, since T > k− 1 we know that the sequence x1, . . . , xt, xt+1, . . . , xt+k−1
contains only m− 1 repeated elements, so xk will only create a collisions if
it is not one of the t + k − 1− (m − 1) = t + k − m distinct values in the
sequence. This happens with probability 1 − t−m+k

n . This concludes our
proof. □

Theorem 3.17 Let x1, x2 . . . be a sequence as in Lemma 3.16. Let T1 be the smallest
index such that x1, . . . , xT contains a single repeated value. For i > 1, let Ti be the
smallest index such that the sequence x1, . . . , xUi−1 , xUi−1+1, . . . , xUi−1+Ti contains i
repeated values, where Ui ≜ ∑i

j=1 Tj. Then Uk ∼
√

2kn as k→ ∞.

Proof By Theorem 3.12 we have that E[T1] ≈
√

π|S|
2 . Now, to estimate E[Tj]

we can take a similar strategy as that in Theorem 3.12.

E[Tj] =
∞

∑
k=1

k · Pr[Tj = k]

=
∞

∑
k=1

Pr[Tj > k]

Now, by Lemma 3.16 and by applying the usual approximations we have

20

3.2. Table Based Collision Finding

that

Pr[Tj > k] =
k

∏
i=1

(
1−

Uj−1 − 1 + i
n

)
≈

k

∏
i=1

exp
(

1−Uj−1 − i
n

)
(Approximation 2.3)

= exp

(
1
n

k

∑
i=1

1−Uj−1 − i

)

= exp
(

1
n

(
k
(
1−Uj−1

)
− k(k + 1)

2

))
≈ exp

(
1
n

(
−kUj−1 −

k2

2

))
(1−Uj−1 ≈ −Uj−1, k2 + k ∼ k2)

= exp

(
−2kUj−1 − k2

2n

)

Note that Approximation 2.3 is valid as long as Uj−1 + i � n, which we
expect to be the case since each Ui will be O(

√
n). Then we replace the sum

with an integral:

E[Tj] =
∞

∑
t=1

Pr[Tj > t]

≈
∞

∑
t=1

exp

(
−2tUj−1 − t2

2n

)

≈
∫ ∞

0
exp

(
−2tUj−1 − t2

2n

)
dt (Approximation 2.4)

= exp

(
U2

j−1

2n

) ∫ ∞

0
exp

(
−(Uj−1 + t)2

2n

)
dt

=
√

2n exp

(
U2

j−1

2n

) ∫ ∞

Uj−1√
2n

e−x2
dx

(
x :=

Uj−1 + t
√

2n

)

Now we can use integration by part, using the fact that e−x2
= −2xe−x2

−2x for

21

3. Collision Finding Algorithms

x > 0 and so

E[Tj] =
√

2n exp

(
U2

j−1

2n

) ∫ ∞

Uj−1√
2n

e−x2
dx

=
√

2n exp

(
U2

j−1

2n

) ∫ ∞

Uj−1√
2n

−2xe−x2 · 1
−2x

dx

=
√

2n exp

(
U2

j−1

2n

)[−e−x2

2x

]∞

Uj−1√
2n

−
∫ ∞

Uj−1√
2n

e−x2

2x2 dx

=
√

2n exp

(
U2

j−1

2n

)(
exp

(
−U2

j−1

2n

)
·
√

2n
2Uj−1

−
∫ ∞

Uj−1√
2n

e−x2

2x2 dx

)
≈ n

Uj−1
,

where we neglect the last integral since it is very small. From this and Uk =

∑k
i=1 Ti we also get the recurrence Uk = Uk−1 +

n
Uk−1

. Now we seek to apply

the Cesaro-Stoltz theorem [Mur09]. Define Vk ≜ Uk√
n so that Vk = Vk−1 +

1
Vk−1

.

Then V2
k = V2

k−1 + 2 + 1
V2

k−1
so we have that V2

k − V2
k−1 = 2 + 1

Vk−1
. It follows

that

lim
k→∞

V2
k −V2

k−1

k− (k− 1)
= 2 ,

and by Cesaro-Stoltz, this implies that V2
k
k → 2 and as such Vk ∼

√
2k and

Uk ∼
√

2kn. □

Let us use Theorem 3.17 to estimate the running time of Algorithm 2.

Let f : D → R, and suppose we aim to find m distinct collisions. A
first rough estimate is that, to find m collisions we will need Um ∼

√
2m|R|

function evaluations. Note that the naive strategy of simply running the
algorithm multiple times, stopping after a collision is found, and restarting
from scratch would have had a complexity of O(m ·

√
|R|) to find m colli-

sions, so this is a saving of a factor of
√

m function evaluations. However,
to be completely accurate we need to account for the fact that the domain
points sampled might not be unique, and that the algorithm might find the
same collision multiple times.

Note that Algorithm 2 essentially samples collisions uniformly at random
from the set of collisions, which by Theorem 3.15 we expect to have size
roughly CD,R = 1

|R| (
|D|
2). So, by Theorem 3.13, we expect to have to sample

m′ ≜ CD,R
(

HCD,R − HCD,R−m
)

collisions. By Theorem 3.17 this will require
Um′ ∼

√
2m′|R| distinct evaluations of f , which, again by Theorem 3.13 will

22

3.3. Pollard ρ-method [Pol75]

#Collisions Distinct Time
m� CD,R ✓ O

(
m1/2|R|1/2)

m ≈ CD,R ✓ O
(

m1/2 ln
(

CD,R
CD,R−m

)1/2
|R|1/2

)
m = CD,R ✓ O

(
m1/2 ln (CD,R)

1/2 |R|1/2
)

m 7 O
(
m1/2|R|1/2)

Table 3.1: A summary of the time requirements of Algorithm 2 for a function f : D → R,
dependent on the number of required collisions. Distinct refers to whether we require the found
collisions to be distinct. Time is measured in function evaluations.

take a total of
|D|

(
H|D| − H|D|−

√
2m′|R|

)
function evaluations.

For concreteness, let us again take the case of a cryptographic hash func-
tion f : R → R with n ≜ |R| = 2128. Suppose that we wanted to com-
pute m := 264 collisions. A first analysis based on Theorem 3.17 predicts
that this will take ≈

√
2 · 264 · 2128 = 296 function evaluations, and a re-

fined analysis based on Remark 3.14 very closely agrees. Instead, if we set
m ≈ CR = 2128−1

2 there is some discrepancy. The first analysis would expect√
2 · 2127 · 2128 ≈ 2128 function evaluations. By the second analysis instead

we have that m′ ≈ 2133.5 and our total number of function evaluations is then
expected to be on the order of 2131, i.e. 24 times higher.

To summarize, Algorithm 2 can be used for solving the Problem 3.8, and
with m � CD,R this takes time O(m1/2|R|1/2). If instead m ≈ CD,R we can
use the refined analysis of Theorem 3.13 and Remark 3.14 to obtain a better
estimate.

As for Problem 3.9 let g ≜ Pr
[
gold f (c) = 1

∣∣∣c←$ Coll (f)
]
. Then, the

expected number of collisions (not necessarily distinct) that will need to be
sampled to obtain a golden one will be g−1, and Theorem 3.17 predicts that
this will take O(g−1/2|R|1/2) function evaluations. We summarize the results
in Table 3.1.

As for space requirements, Algorithm 2 stores an element of D for each
function evaluation in the main datastructure, and at most |D| elements in
total. So the total space requirement will be (roughly) O

(
log (|D|)min

(
|D|, m1/2|R|1/2)).

3.3 Pollard ρ-method [Pol75]
Pollard’s ρ-method improves on the previous method by addressing the
large space requirements. To do so, it assumes that the function is a self-
map, i.e. it is of the form f : S → S. From now on, we will let n ≜ |S|. The

23

3. Collision Finding Algorithms

Figure 3.1: Pollard’s ρ method. Illustration taken from [Sil09].

Algorithm 3: Pollard’s ρ-method
Data: f : S→ S
Result: A collision (x, x′)
s←$ S;
t, h ≜ s, s;
repeat

t := f (t);
h := f (f (h));

until t = h;
t := s;
repeat

t′, h′ ≜ t, h;
t := f (t);
h := f (h);

until t = h;
return (t’, h’);

intuition behind Pollard’s ρ-method is that, when f is a self-map, we can it-
erate the function from a start point and obtain a sequence x, f (x), f 2(x), . . .
and so on. Since the set S is finite, this sequence will ‘trace’ a ρ, and the cycle
can be detected by a cycle finding algorithm, leading to a collision. Differ-
ent cycle finding method can be used, but for simplicity our exposition,
presented in Algorithm 3, will focus on Floyd’s cycle finding algorithm.

24

3.3. Pollard ρ-method [Pol75]

With this setup, the memory requirement is O(1). Let us prove correct-
ness.

Lemma 3.18 Let x0 ∈ S. Consider the sequence xi+1 ≜ f (xi) = f i+1(x0) for
i ≥ 0. Then:

• The sequence eventually has a repeating value.

• Let y be the first repeating value in the sequence. Let T and C′ denote,
respectively, the index of the first and second occurrence of y in x0, x1,
Then,

xT+i = xT+i+kC, ∀i, k ∈ N

where C = C′ − T

• There exists an index j such that xj = x2j

Proof The sequence is infinite and S is finite, so by the pigeonhole principle
a value must repeat, and this proves the first point. Now let y be the first
appearance of the repeating value in the sequence, say that y = xT = xT+C.
Let i ≥ 0. By definition,

xT+i = f T+i(x0) = f i(f T(x)) = f i(y) = f i(f T+C(x0)) = xT+C+i

Applying this identity with i = (k − 1)C shows that y = xT+kC for k ≥ 0
and another application yields the second point. Note that this implies that
xT+k = xT+(k mod C). So a solution to xj = x2j can be found when j ≥ T and
j− T ≡ 2j− T (mod C) so j ≡ 0 (mod C) satisfies that, proving existence.□

Theorem 3.19 Let xi ≜ f i(x), and let T, C be as in Lemma 3.18. Algorithm 3,
started at point x0 always terminates, and if T 6= 0, C 6= 1 finds a collision.

Proof First of all, Lemma 3.18 directly show that the first loop of Algo-
rithm 3 terminates. So, at the end of the first loop, we have reached a
point of the sequence xj with j ≥ T and j ≡ 0 (mod C). Now, since j ≡ 0
(mod C), we have that xi = xi+j for every i ≥ T. Note also that for i < T we
have necessarily that xi 6= xk for every k, since otherwise, by definition of
T, i ≥ T. So, the second loop tests this condition and will terminate when
i = T, at which point, if T 6= 0 and C 6= 1, the points xT−1 and xT+j−1 will
yield a collision. □

Now that we have shown correctness, we can analyze the runtime of the
algorithm. In fact, we will not do so with Floyd’s algorithm, since in practice
it does more function evaluations than what it is necessary. We first use
Theorem 3.12 to estimate the expected value of T + C, which will be the
most important quantity that cycle finding algorithms depend on.

Theorem 3.20 Let f be a random function. The expected value of T +C (as defined
in Lemma 3.18) is

√
πn
2 .

25

3. Collision Finding Algorithms

Algorithm Function Evals Space
Floyd 3T + C O(1)

[Bre80] 2 max(T + C) + C O(1)
[SSY82] (T + C)

(
1 + c√

M

)
M

[Niv04] T + (1 + α)C O(α−1 log (T + C))

Table 3.2: A rough summary of Cycle Detection methods complexity. This is ignoring the cost
of finding a collision after the cycle has been detected, which is T + C. For [SSY82] M is a
parameter regulating how much memory the algorithm can use and c a constant. For [Niv04], α
can be arbitrarily reduced at the cost of increased memory

Proof Note that, until the loop closes, since f is a random function, every
point on the trail is sampled uniformly at random from S. Then, Theo-
rem 3.12 predicts that we will need

√
πn
2 points until duplication occurs. □

Now, there are few methods that we can employ, whose complexity, in
terms of T + C and memory usage, are presented in Table 3.2. Detailed
analysis can be found in [Jou09].

In fact, a lower bound is know from [Fic81], in that any cycle detecting
algorithm that stores at most M element of the sequence must make at least
(T + C) ·

(
1 + 1

M−1

)
function evaluations. Since Theorem 3.20 in any case

predicts that E[T + C] will be O(n1/2) the runtime of Algorithm 3 will also
be O(n1/2).

So, Algorithm 3 addresses the main drawback of Algorithm 1, that is the
large memory requirement, while having comparable runtime. However, it
makes tradeoffs in return. First of all, there is no obvious way to parallelize
it. The repeated function evaluation is inherently serial, and as such multiple
threads do not seem to bring benefits. Using Pollard to handle Problem 3.8
seems also not to be trivial, since, once a collision is found, the algorithm
would continue to traverse the loop and no more useful work would be
done. We could run many instances, but then the expected runtime would
be O(m · n1/2), a factor of

√
m worse than what Algorithm 2 would achieve

(albeit using only constant memory). Also, the previous algorithm sampled
collisions uniformly from the set of collisions, while Algorithm 3 might have
biases.

Remark 3.21 When m is small the tradeoff between larger runtime and storage
might be desirable. For example, consider n = 2128 and say we would like to find
m = 216 not necessarily distinct collision. Algorithm 2 is expected to terminate after
272.5 function evaluations and need approximately 279.5 bits of memory. Instead,
Algorithm 3 would require 280.3 evaluations but only around 29 bits of storage.
This might be a desirable tradeoff, altough parallelisation might skew the results
towards Algorithm 2. Note that, Algorithm 3 can actually make meaningful use
of L = m extra processors (simply by starting a walk on each of the processors

26

3.4. van Oorschot and Wiener’s Algorithm [vW94]

from points independently sampled). Instead, if L > m the parallelisation will not
be perfect and only likely to bring minor benefits compared to the L = m case.
So, in the previous example, if L = 216 the balance between the two methods will
remain unchanged (with Algorithm 2 taking 256.5 parallel evaluations 279.5 bits, and
Algorithm 3 taking 264.3 evaluations and 225 bits of memory). Instead if L = 224

Algorithm 2 gains significant ground requiring 248.5 parallel function evaluations
compared to the 264.3 of Algorithm 3.

Instead, consider the case where we would want to sample CR ≈ 2127 collisions.
Our previous analysis suggests that the table based method takes time on the order
of 2128 function evaluations and 2135 bits of space. Instead Pollard-ρ would take
2191.3 function evaluations, with negligible space.

Similarly, using Algorithm 3 to tackle Problem 3.9 has its issues. Finding
many collisions is problematic for the same reasons as mentioned before,
and the bias in which collisions are found can exacerbate the problem. We
do not discuss this in depth, but we will see similar issues with van Oorschot
and Wiener’s algorithm soon, and a way to partially solve them.

3.4 van Oorschot and Wiener’s Algorithm [vW94]
Let us now introduce the main topic of this work, that is the parallel golden
collisions finding algorithm introduced by [vW94]. As the name suggests,
this is an algorithm to tackle Problem 3.9 for F = Funcs(S, S).

As in Algorithm 3, we are interested in the sequence xi ≜ f (xi−1) obtained
by repeatedly applying f to a randomly sampled starting value in S. Before,
we were interested in detecting a loop in the infinite sequence, which would
then with high probability lead to a collision. In this case instead, we will
artificially truncate the sequence once xi is in a subset D ⊂ S, which we
will call the distinguished points of S. Now consider two trails x1, . . . , xd and
x′1, . . . , x′d′ . If at any point xi = x′j then, since the function is deterministic,
xd = xd′ . So, trails which share a point will end in the same distinguished
point. This suggests to store such distinguished points, together with the
starting point, in a table, indexed by that distinguished point. Then, once
two trails ending in the same point are identified, we can traceback and find
the shared point, which, with high probability, will yield a collision.

We now give a more formal description of the algorithm, starting by list-
ing the various parameters that we can adjust. Some will be introduced later
on, but we list them all in Table 3.3 for completeness.

We will also assume that n, w are powers of two, which makes our de-
scription easier.

First of all, we define what we mean by distinguished points. We select a
subset D ⊂ S such that θ ≜ |D|/|S|. We want the membership test x ∈? D

27

3. Collision Finding Algorithms

Parameter Type Description Typical value Origin
f S→ S Input Function Input
n N |S| Input
w N Memory available6 Input
L N Available Processors Input
θ (0, 1] Distinguishedness probability 2.25

√w
n [vW94]

β R+ Function Version Switching 10 [vW94]
maxlen N Maximum trail length 20 · θ−1 [vW94]

B N Distinguished bound θ · 2log(n)−log(w) [CLN+20]

Table 3.3: Inputs and Parameters for vOW

to be very efficient and elements of D to be well distributed with respect
to f , so that Prx←$S[f (x) ∈ D] ≈ θ. If f is a random function, a natural
candidate (and what was proposed in [vW94]) is to set D to be the elements
of S whose binary representation starts with log θ−1 zeros. This also al-
lows to compress distinguished points from needing approximately log (n)
bits to log (n)− log θ−1. There are better ways to implement this tough, as
described in [CLN+20], but we will defer describing them until the improve-
ment is needed. For now we abstract over this:

Definition 3.22 Let S be a set, f : S → S, θ ∈ (0, 1]. A distinguished scheme
Dist for S consists of the following:

• A set Dist.D ⊆ S

• A polynomial time algorithm that we denote as Dist.isDist(·) for testing mem-
bership.

• Dist.compress(·), a deterministic polynomial time algorithm that compresses
x ∈ Dist.D to a binary representation

• Dist.decompress(·), a deterministic polynomial time algorithm that decom-
presses a binary representation to an x ∈ Dist.D

We require that the scheme satisfies the following properties:

• Dist.isDist(x) outputs 1 iff x ∈ Dist.D, and 0 otherwise.

• Dist.decompress ◦Dist.compress = idDist.D

• The size |Dist.D| ≈ θ.

From now on, we will assume we have a distinguished scheme Dist, and
abbreviated Dist.D to D. With this, we can define the mining operation,
which is shown in Algorithm 4.

The arbitrary bound of maxlen is required in order to avoid exactly the
situation that we were hoping to achieve in Algorithm 3. If the algorithm

28

3.4. van Oorschot and Wiener’s Algorithm [vW94]

Algorithm 4: mineDist
Data: f : S→ S, distinguished scheme Dist
Result: A triple ∈ S×Dist.D× [maxlen] or an error ⊥
s←$ S;
x ≜ f (s);
c ≜ 1;
repeat

x := f (x);
c := c + 1;

until Dist.isDist(x) or c = maxlen;
if c = maxlen then

return ⊥;
end
return (s, x, c);

gets stuck in a cycle which does not contain an element of D the loop would
run forever, without doing any useful work. One could consider adding a
cycle detection algorithm to detect this and possibly find a collision, but we
will see later that the trails are in expectation short enough for it not to be
worth it.

Note that we always unconditionally evaluate f on the first sampled point.
This ensures that, even if the originally sampled point is distinguished, no
trails of length zero are stored, since those will not be useful.

For convenience we make the following definition:

Definition 3.23 A triple (x0, xd, d) is a vOW triple iff x0 ∈ S, xd = f d(x0) ∈ D,
d > 0 and for every 0 < i < d, f i(x0) ∈ S− D. To any vOW triple we associate a
sequence xi ≜ f i(x0).

Lemma 3.24 The outputs of Algorithm 4, is either an error or a vOW triple.

Proof The starting point s is sampled in S. Then, the loop iterates until
the x ∈ D, or the max length is exceeded. In the second case, an error is
returned. So, the loop only ends when x ∈ D and the previous iterations
must be in S− D. □

We now investigate the distribution of trails sampled by Algorithm 4.

Theorem 3.25 Let 1
θ �

√
n. The error probability of Algorithm 4 is approxi-

mately exp (−maxlen · θ). Let (x0, xd, d) be the (non error) output of Algorithm 4.
Then, x0 is uniformly distributed over S and d approximately follows a geometric
distribution.

29

3. Collision Finding Algorithms

Proof We first investigate what is the probability of an error occuring. This
happens exactly when d = maxlen. Consider the associated sequence xi ≜
f i(x0) for 0 ≤ i ≤ k. If k �

√
n then, by Theorem 3.12 we expect not to

have any repeated elements. The sequence then behaves like sequence of
elements randomly sampled from S. Then, the length of the sequence be-
fore encountering a distinguished points (denoted as K) follows a geometric
distribution, with Pr[K = k] = θ(1− θ)k−1. An error occurs exactly when
K ≥ maxlen and then:

Pr[mineDist() = ⊥] = Pr[K ≥ maxlen]

= ∑
k≥maxlen

Pr[K = k]

=

(
∞

∑
k=1

θ(1− θ)k−1 −
maxlen−1

∑
k=1

θ(1− θ)k−1

)

= θ

(
∞

∑
k=0

(1− θ)k −
maxlen−2

∑
k=0

(1− θ)k

)

= θ

(
1
θ
− 1− (1− θ)maxlen−1

θ

)
Geometric Series

= (1− θ)maxlen−1

≈ e−θ·maxlen Approximation 2.3

Now, let us consider the distribution of the output when the algorithm
sucessfully completes. The first element is sampled uniformly at random
from S. Next, as discussed beforehand, we can model d as following a
truncated geometric distribution, where values d ≥ maxlen are set to have
zero probability mass. In a sense, this is also like doing replacement sam-
pling, but discarding trails longer than maxlen. As such, the Pr[d = k] =

θ(1−θ)k

1−Pr[K≥maxlen]
which, by the previous result is approximately (1−θ)k

1−exp(−θ·maxlen)
.

So, if e−θ·maxlen is small, d is approximately geometrically distributed. □

Note that in the proof of Theorem 3.25 we rely heavily on the quantity
exp (−θ ·maxlen) to be small. We note that if maxlen = c

θ then that value is
e−c and so c can be chosen to make this arbitrarily small. In [vW94] c is set
to be 20, which then makes e−20 ≈ 2 · 10−9, and the wasted work negligible.

In Algorithm 5 we describe the backtracking algorithm in the classical
version described in [vW94]. [CLN+20] proposed a different backtracking
algorithm, that has improved performance at the cost of storing some inter-
mediate values.

We now prove correctness of this backtracking algorithm.

30

3.4. van Oorschot and Wiener’s Algorithm [vW94]

Algorithm 5: backtrack

Data: f : S→ S, two vOW triples (x0, xd, d), (y0, yd′ , d′) with xd = y′d′
Result: A collision or an error
if d > d′ then

return backtrack(f , (y0, yd′ , d′), (x0, xd, d));
end
δ ≜ d′ − d;
ℓ ≜ f δ(y0);
s ≜ x0;
if s = ℓ then

return ⊥ ; // Robinhood case
end
for i = 1 . . . d do

ℓ′, s′ ≜ ℓ, s;
ℓ := f (ℓ);
s := f (s);
if ℓ = s then

return (ℓ′, s′);
end

end

Lemma 3.26 Let (x0, xd, d) and (y0, y′d, d′) be two vOW triples. If xi = yj for
any i, j, then xi+k = yj+k for k ≥ 0. If xd = y′d there must be a k ≥ 0 such that
xd−k = yd′−k.

Proof For the first statement note that, for k ≥ 0:

xi+k = f i+k(x0) = f k(xi) = f k(yj) = f j+k(y0) = yj+k .

For the second part, note that k = 0 works already (but might not be the
largest one). □

Lemma 3.27 Let (x0, xd, d) and (y0, yd′ , d′) be two vOW triples with xd = yd′ ,
and d ≤ d′. Then Algorithm 5 running on that input outputs a collision or an
error.

Proof By Lemma 3.26 the set {k ≥ 0 | xd−k = yd′−k} is nonempty. Let k de-
note the maximal such k, which by definition must be ≤ d. As in the algo-
rithm let δ ≜ d′ − d ≥ 0. Then d′ − k = δ + d− k so define a new sequence
zi ≜ yi+δ. At j ≤ k, then xd−j = zd−j, and so it suffices stepping xi and zi
at unison to find the maximal k. Since k is maximal, for k + 1 we will have
that xd−k−1 6= yd′−k−1 and that will yield a collision, unless d− k− 1 ≤ −1,
which implies then that d ≤ k and, since d ≥ k, this implies that d = k. This

31

3. Collision Finding Algorithms

then implies that x0 = yd′−k = yδ+d−k = z0 and that is what we check for
and return an error. □

Lemma 3.26 and Lemma 3.27 prove the correctness of Algorithm 5. What
is left is then analyzing the performance of the algorithm.

Note that the number of steps is at most δ + 2 · d = d′ + d, and since d, d′

are geometrically distributed by Theorem 3.25 the expected number of steps
will be at most 2

θ .

Next we define the interface to our memory.

Definition 3.28 A memory scheme Mem consists of:

• A initalization algorithm Mem.Init(w) which takes a memory size w and
returns an handle to memory mem,

• An address space mem.A and a value space mem.T,

• An algorithm Mem.sendPoint(mem, a, t) that takes an handle, an address
a ∈ mem.A and a value mem.T. It returs a new updated handle and either a
value or an error ⊥.

Definition 3.29 We define an addressing scheme Addr for a memory handle mem
consists of:

• An index set Addr.I,

• A deterministic algorithm Addr.addr that converts a value of Addr.I to an
address in mem.A.

We defer the implementation of Definition 3.29 to later on (only men-
tioning that Addr.I = S will be sufficient for the main description), but can
already present the memory scheme we will be using. Memory is modeled
as a large array, as in [vW94] and [CLN+20]. Recent work in [TID21] has
proposed a new datastructure that might bring performance benefits, but we
present this simpler one for now, since it translates better to the distributed
setting we will be seeing later on. The initalization is shown in Algorithm 6
and the point sending routine in Algorithm 7

With our main building routines in place, we can now describe the parallel
golden collision search algorithm, which we do in Algorithm 8.

Algorithm 8 tries to mine a vOW triple, retrying as often as needed. Once
the triple has been mined it is sent to memory, which then returns either
the occupant of the cell or a distinguished error symbol. If an occupant
is present then we check whether the distinguished portion of the triples
match, and if so we can invoke the backtracking algorithm, which will either
return a collision or an error (in the Robinhood case). Finally, we check
whether this collision is in fact the golden one, and if so return.

32

3.4. van Oorschot and Wiener’s Algorithm [vW94]

Algorithm 6: Mem.Init
Data: How many triples to allocate w ∈ N

Result: An handle to memory mem
mem.A ≜ [w];
mem.T ≜ S× {0, 1}comp × [maxlen];
mem.arr ≜ [];
for i = 0, . . . , w do

mem.arr[i] = ⊥;
end
return mem;

Algorithm 7: Mem.sendPoint
Data: A memory handle mem, an address a ∈ mem.A, a value

t ∈ mem.T
Result: Either the existing value ∈ mem.T or an error
t′ ≜ mem.arr[a];
mem.arr[a] := t;
return t′

We now have enough context to introduce the missing puzzle piece. Sim-
ilarly to Algorithm 3, and differently from Algorithm 2, Algorithm 8 has a
bias in which collision it finds. For example, collisions after distinguished
points (i.e. those of the form a→ x ← b for either a or b distinguished) will
be harder to find compared to those which are ‘far’ from a distinguished
point. In order to overcome this we will need to protect against this case, as
was already noted by [vW94]. This can be done using the concept of func-
tion versioning. In fact, this technique also allows us to adapt Algorithm 8
to functions f : S→ R with S 6= R.

Definition 3.30 Let f : S → R be a function. Let g0, g1, · · · ∈ Funcs(R, S). We
define the k-th version of f to be

fk ≜ gk ◦ f

Lemma 3.31 Let f : S→ R, Then Coll (f) ⊆ Coll (fk) for k ∈ N

Proof Let (x, y) ∈ Coll (f). Note that x 6= y and f (x) = f (y). Then fk(x) =
gk ◦ f (x) = gk ◦ f (y) = fk(y) and so (x, y) ∈ Coll (fk). □
Lemma 3.32 Let f : S → S, k ∈ N, gk a permutation on S, and fk as in Defini-
tion 3.30. Then Coll (f) = Coll (fk)

Proof Coll (f) ⊆ Coll (fk) by Lemma 3.31. Let (x, y) ∈ Coll (fk). Then
gk ◦ f (x) = fk(x) = fk(y) = gk ◦ f (y) and composing with the inverse shows
that (x, y) ∈ Coll (f). □

33

3. Collision Finding Algorithms

Algorithm 8: vOWVersion
Data: f : S→ S, golden test gold f memory handle mem, distnguished

scheme Dist, addressing scheme Addr, memory scheme Mem
Result: A golden collision or an error
dist ≜ 0;
while dist ≤ βw do

r ←$ mineDist(f ,Dist) ; // Mine points
if r = ⊥ then

continue;
end
dist := dist + 1;
(x0, xd, d) ≜ r;
a ≜ Addr.addr(xd);
c ≜ Dist.compress(xd);
(t, mem) ≜ Mem.sendPoint(mem, a, (x0, c, d)) ; // Store
if t = ⊥ then

continue;
end
(y0, c′, d′) ≜ t;
yd′ := Dist.decompress(c′);
if xd 6= yd′ then

continue;
end
b ≜ backtrack(f , (x0, xd, d), (y0, yd′ , d′));
if b 6= ⊥ and gold f (b) = 1 then

return b;
end

end
return ⊥;

For Lemma 3.32, note that, in fact, composing with a permutation is use-
ful as the resulting graph is not necessarily isomorphic to the starting graph,
which follows from the fact that not all permutations are graph isomor-
phisms.

Remark 3.33 While this concept of versioning is very useful there are some sub-
tleties that are important to highlight. In particular, for f ←$ Funcs(S, R), g ←$

Funcs(R, S) the composition g ◦ f : S → S is not in general a random function.
A easy counterexample is letting R = {1}, which makes the composition become a
constant function. In general, the composition is only a random function when f is
an injection. In all of our setting we will have |R| > |S| and f close to an injection

34

3.4. van Oorschot and Wiener’s Algorithm [vW94]

Algorithm 9: vOW
Data: f : S→ R
Result: A golden collision
mem ≜ Mem.Init(w);
for k = 0, . . . do

gk ←$ Funcs(R, S);
fk := gk ◦ f ;
r = vOWVersion(fk, gold fk

,mem,Distk,Addrk,Mem);
if r 6= ⊥ then

return r;
end

end

(i.e. with only a single collision), which makes the composition approximately a ran-
dom function. Because of this, we consider acceptable modelling fk as a randomly
sampled function for each k.

We can easily translate a golden collision test for f to one for fk.

Definition 3.34 Let f : S → R be a function, gold f be as in Problem 3.9, and fk

as in Definition 3.30. Define gold fk
: Coll (fk)→ {0, 1} as

(x, y) 7→ (f (x) =? f (y)) ∧ gold f (x, y)

Note gold fk
(c) = 1 iff gold f (c) = 1.

Using this, we can finally show the final algorithm, which is presented in
Algorithm 9.

We also show how to implement Definition 3.22 and Definition 3.29 in
a function-version aware manner, following the ideas from [CLN+20]. We
will assume that fk is close to a randomly sampled function in Funcs(S, S),
so we can consider elements of S obtained in our iteration as random bit-
strings of length log n. We will take this log n bits substring and subdivide
it into sections. The first will be log w bits and will be used for deciding the
address, and the second will take the remaining log n − log w bits and be
used in order to check distinguishedness. We start with addressing scheme,
which is shown in Algorithm 10. As mentioned before, we let Addr.I = S.

The reason for the shift is that, between function iterations, memory is
reused, and Lemma 3.27 only finds collisions w.h.p. when two trails for the
same function versions are considered. Therefore, we would like to mini-
mize the number of times when two vOW triples (x1, xd, d) and (x′1, x′d′ , d′)
with xd = xd′ but obtained with different function versions are mapped to
the same address. With our addressing scheme, if the first triple is obtained

35

3. Collision Finding Algorithms

Algorithm 10: Addrk.addr
Data: A point x ∈ Addr.I = S
Result: An address a ∈ mem.T
b ≜ binS(x);
a ≜ bintoilog n(b) + k (mod w);
return a;

by version k and the second by version k′ the address will be the same if and
only if k ≡ k′ (mod w), which only occurs every w function versions. If w is
large enough, and functions are switched only after mining a considerable
number of distinguished points, the probability that a point in version k is
not overwritten after w version will be very little, as the next lemma shows.

Lemma 3.35 Fix a ∈ [w]. Let a1, . . . , ak, . . . be a sequence of integers, sampled
uniformly and independently from [w]. The probability that the sequence a1, . . . , ak
does not contain a is (

1− 1
w

)k

≈ exp
(
− k

w

)
In fact, when k = w · βw this probability is exp (−βw).

Proof The probability that ai = a is exactly 1− 1
w for every i, and each ai is

sampled independently and uniformly. Then we use Approximation 2.3. □

If we model our address function as a random function (which in general
it will approximate, since the log w lower bits of a distinguished point are
random and independently from the distinguished property7) then the re-
mark at the end of Lemma 3.35 estimates the probability of the unwanted
case to occur, which is negligible if β · w is large.

With this addressing scheme, we are essentially guaranteed that points
in memory from previous functions version will not lead Algorithm 8 to
wasteful backtracking and thus allows us to reuse the same memory across
all function versions without having to clear it explicitly. When w is large, or
in the distributed setting, this can be a significant advantage since the cost
of clearing memory can be considerable.

Next we look at an implementation for Definition 3.22. We let B ≜ θ n
w , and

comp ≜ log w + blog Bc+ 1. Our specification are shown in Algorithm 11,
Algorithm 12, Algorithm 13.

As mentioned before, this amounts to taking the highest log n− log w bits
of the bit representation of an element of S, and then testing whether that

7The addresses in fact will not be independent, which will be explored more in Sec-
tion 4.3, but this rough approximation suffices here

36

3.4. van Oorschot and Wiener’s Algorithm [vW94]

Algorithm 11: Distk.isDist
Data: A point x ∈ S
Result: x ∈? Distk.D
b ≜ binS(x);
i ≜ bbintoilog n(b)/wc;
return i + k · B ≤ B (mod n

w);

Algorithm 12: Distk.compress

Data: x ∈ Distk.D
Result: A string {0, 1}comp

s ≜ comp− log w;
b ≜ binS(x);
i ≜ bintoilog n(b);
l ≜ i (mod w);
u ≜ bi/wc+ k · B;
u′ = u (mod 2s);
return itobins(u′)||itobinlog w(l);

Algorithm 13: Distk.decompress

Data: A string {0, 1}comp

Result: x ∈ Distk.D
s ≜ comp− log w;
u′||l′ ≜ c;
u ≜ bintois(u′)− k · B (mod n

w);
l ≜ bintoilog w(l′);
x ≜ bin−1

S (u · 2w + l);
return x;

value, incremented by k · B, where k is the function version, is less than the
specifed bound. As noted in [CLN+20], adding k · B makes any point in
S distinguished every B function versions, and heuristically reduces every
instance to the average case.

As for compression, if a point is distinguished then, by definition, i + k ·
B ≤ B (mod n

w) then i + kB can be stored in at most the same number of
bits needed to store B, namely blog Bc+ 1. Since we also need to store the
log w address bits, a compressed point will have exactly comp points.

Remark 3.36 The previous algorithms have assumed that the elements of S are
uniform bitstrings. If S and f have some more structure the addressing and distin-

37

3. Collision Finding Algorithms

guishedness will need to be adjusted accordingly in order to keep the nice properties
we seek.

38

Chapter 4

Memory Filling & Function Versions

In this chapter we set out to answer some theoretical questions on the
behaviour of memory in a run of vOW’s algorithm. We define formally
the question, and propose a number of models to answer them, verifying
the models experimentally in the process. Furthermore, we also investi-
gate whether the choice of β in [vW94] is optimal and conclude negatively,
proposing a new heuristic selection that yields better concrete efficiency.

4.1 Experimental Setup
In order to validates our models and observations, we performed a num-
ber of simulations, via a script provided in python/new advanced model.py.
Given input n, w, θ and a number of repetitions, the simulation will iter-
atively sample distinguished points using Algorithm 4, using SHAKE128
[Dwo15] as f . For each sampled distinguished point, we kept track of the
current number of distinguished points in memory, and exported this as our
experimental data.

4.2 Memory filling
In this section we aim to answer the following question:

Question 4.1 How many distinguished points does Algorithm 8 need to compute
before the entire memory is full?

We start by giving a motivation on why we are interested in the problem.
As mentioned in the description of Algorithm 9 and Algorithm 10 each
function version effectively starts with an empty memory, and progressively
applies Algorithm 4 to produce distinguished points, which fill the memory
gradually. Obtaining a more careful estimate of the number of distinguished
points needed to fill the memory is helpful in both figuring out the optimal

39

4. Memory Filling & Function Versions

value for β (i.e. when to switch function versions), and as an intermediate
step in the computation of the runtime in [TID21]. Historically, difficulty in
estimating this quantity was also source of the ‘flawed’ analysis in [vW94].
We show a number of different models, starting with most unrealistic one,
which is implicitly assumed in [TID21].

Model 4.2 (Linear) Letting w, θ be as in Table 3.3, the number of distinguished
points required to fill the memory is w.

This model is a clear lower bound, since it is impossible to fill a memory
of size w without storing at least w points. However, it completely ignores
memory collisions, which in practice have a rather large effect. In fact, if we
model each distinguished point as a randomly sampled point in D, and the
address Addr.addr as a random function D → [w] for |D| � w we can use
Theorem 3.13 to obtain a more accurate model.

Model 4.3 (Coupon Collector) Letting w, θ be as in Table 3.3, the number of
distinguished points required to fill the memory is wHw ≈ w ln (w) + γw.

While, as we will see later, Model 4.3 is already an improvement com-
pared to Model 4.2 in our experiments, there is still room for improvement.
Consider a random function f . Before any query is made, each value f (x)
for x ∈ S can be seen as being distributed uniformly and independently in
S. Once a query is made tough, the value is fixed for any following query.
In particular, consider a sequence x1 → f (x1) → · · · → f d(x1) = xd. Each
following query of f at x1, . . . , xd−1 will in fact lead back to xd and as such
lead to a memory collision.

Motivated from this observation, let us develop a more refined model to
account for this fact. In fact, the following discussion will result in three
further models, each harder to compute but more accurate.

In all of the three cases we follow the approach of Theorem 3.13. For
i > 1 we let Ti be the numbers of distinguished points required to fill i
memory cells after i − 1 cells had been filled. T1 instead is the number of
distinguished points required to fill the first cell, which is exactly 1. We then
let Uk = ∑k

i=1 Ti. The value that we are seeking is then Uw. By linearity of
expectation, E[Uw] = ∑w

i=1 E[Ti]. So, by estimating E[Ti] for every 1 ≤ i ≤ w
we can get an answer to our problem. What makes the problem challenging
is that the Ti do not only depend on the number of points in memory (as
was the case in Theorem 3.13) but also on the number of points sampled
so far i.e. Ui−1 and in fact on the current sampling trial that we are on.
This is because each new point sampled will determine the functions f and
Addr.addr completely on the trail and the resulting distinguished point, and
any new sampled trails that touches one of these points will yield a memory
collision. Our three models will progressively ‘book-keep’ more, in practice
improving in accuracy while becoming harder to compute.

40

4.2. Memory filling

First of all, let us fix some terminology. At each point in time, the state
of the system consists of the set of points on which f or Addr.addr have
been evaluated. Any point that is not in the state will be fresh. Each time
Algorithm 8 does one iteration, a new trail is sampled by Algorithm 4,
and Addr.addr is then evaluated on the final point, so if (x0, xd, d) is the
(non-error) output of Algorithm 4 the state is augmented by the elements
{x0, . . . , xd}. Suppose the state S consists of P points, and let us sample a
vOW triple (x0, xd, d). What is the probability that xd is fresh?

Pr[xd /∈ S] = Pr[xd /∈ S|xd−1 ∈ S]︸ ︷︷ ︸
=0

Pr[xd−1 ∈ S] + Pr[xd /∈ S|xd−1 /∈ S]Pr[xd−1 /∈ S]

≈
(

1− P
n

)
Pr[xd−1 /∈ S]

=

(
1− P

n

)d+1

≈ exp
(
−Pd

n

)

Where in the first line we have used the fact that a non fresh non distin-
guished point will lead to a non fresh point by Lemma 3.261. By Theo-
rem 3.25 we also expect d ≈ 1

θ , and, if p distinguished points have been
collected so far, the number of points in the state is expected to be P ≈ p

θ .
By this, the probability that a new trail is fresh when p distinguished points
have been sampled is approximately exp

(
− p

nθ2

)
. Now, what we are really

interested in is whether the address of the newly sampled distinguished
point is fresh. Suppose that i − 1 distinct addresses have been sampled so
far, and let us denote this set as A. By an entirely similar reasoning as before

Pr[Addr.addr(xd) /∈ A] =

(
1− i− 1

w

)
Pr[xd /∈ S]

With this observation, let us develop our models. For the first model,
we will assume that, when i− 1 points are stored in memory, only the trails
from which those points are originated are counted in the state, i.e. p = i− 1.
So, pi = Pr[Addr.addr(xd) /∈ A] =

(
1− i−1

w

)
exp

(
− i−1

nθ2

)
. As in the proof of

Theorem 3.13 we can model then the probability of an address being new as
a geometric distribution with expectation 1/pi. So with this E[Ti] =

1
pi

and
we get the following model.

1In fact, here we also assumed that, of the P state points, approximately θP will be
distinguished

41

4. Memory Filling & Function Versions

Model 4.4 (Sum Model) Letting n, w, θ be as in Table 3.3, the number of distin-
guished points expected to fill the memory is approximately

w

∑
k=1

(
exp

(
− k− 1

nθ2

)(
1− k− 1

w

))−1

For the next refinement, we instead make the more realistic observation
that when i− 1 points are in memory the state will consists of the trails for
the previous Ui−1 points, and so P ≈ Ui−1/θ. As such, the probability that
an address is new will be

pi = exp
(
−Ui−1

nθ2

)
·
(

1− k− 1
w

)
.

In this model the probability is independent from trials, and as such we can
use the same geometric reasoning to conclude that the E[Ti] = 1

pi
. Note

however that pi depends on Ui−1. To estimate this, we can compute E[Ui−1]
and recurse until the base case E[U1] = E[T1] = 1. This leads us to the next
model.

Model 4.5 (Recurrence Model) Letting n, w, θ be as in Table 3.3, we let µT1 = 1,
and

µTk ≜
(

exp
(
−

µUk−1

nθ2

)
·
(

1− k− 1
w

))−1

for k > 1

with µUk ≜ ∑k
i=1 µTi . The expected number of distinguished points to fill the mem-

ory is µUw .

A further refinement can be obtained by addressing the last sampling
inaccuracy that we have allowed. In Model 4.5 we have a probability of an
address being fresh pi that depends only on Ui−1. So, we could model the
distribution as geometric. However in fact the probability will not be the
same for each of the samples, since the previous samples will also go and
effect the state. A more accurate model would let pi,j be the probability that
the j-th sample is fresh after i− 1 points have been stored in memory. Using
our estimate with P ≈ Ui−1+(j−1)

θ we can then conclude that

pi,j = exp
(
−Ui−1 + (j− 1)

nθ2

)(
1− i− 1

w

)

Due to this dependence we cannot model the distribution as geometric
anymore. What can be done is rewriting E[Tk] = ∑∞

i=1 Pr[Tk > i] and noting
that Pr[Tk > i] = ∏i

j=1(1− pk,j) to obtain Model 4.6.

42

4.2. Memory filling

Model 4.6 Letting n, w, θ be as in Table 3.3, we let µT1 = 1, and

µTk ≜
∞

∑
i=1

i

∏
j=1

(
1− exp

(
−

µUk−1 + j− 1
nθ2

)(
1− k− 1

w

))
with µUk ≜ ∑k

i=1 µTi . The expected number of distinguished points to fill the mem-
ory is µUw .

Remark 4.7 Model 4.2 and Model 4.3 are very easy to compute, as they take O(1)
floating point operations. Instead, Model 4.4 and Model 4.5 are much more compu-
tationally expensive, taking O(w) operations to compute naively. Model 4.6 is even
more complex, and finding a closed formula or approximation is left as future work.

In order to validate our models, we have run a number of experiments.
Note, first and foremost, that our models do not only make a prediction on
the number of points required to completely fill the memory, but also can
be adapted to predict the number of distinguished points sampled before
a certain number of cells have been filled. This adaptation, in the case of
Model 4.3, can be done by using Remark 3.14, and in the case of Model 4.4
and Model 4.5 by simply taking µUk with k is the number of memory cells to
be filled. In order to understand where our models have predictive power
and where they fail, we have plotted that estimate against the experimentally
measured average. In this analysis, and in general in most of our figures we
have plotted the ratio between model prediction and actual measurement,
so we would like our graphs to be as close to a ratio of 1 as possible.

As Figures 4.1 to 4.3 show, Model 4.3 is the worst performing model,
systematically underestimating the number of points required to fill the cor-
responding memory cells. Model 4.4 is a significant improvement, but the
best model is really Model 4.5, which agrees with the experiment extremely
closely. Note, however, that all three models systematically fail when the
number of filled cells k ≈ w. In such case Model 4.3 and Model 4.4 under-
shoot and Model 4.5 overshoots the experimental values.

Remark 4.8 To the best of our knowledge, Model 4.4, Model 4.5 and Model 4.6 are
new and an improvemnt over the state of the art. However, there are still clear areas
of improvement, that we list here for future reference.

• The length of the trails is not always 1
θ . This can have some effect since, for

example, longer trails in the function graph will be sampled with an higher
probability and thus lead to more memory collisions than expected.

• In Model 4.4 we were helped by the fact that the trails for the i − 1 points
in memory must have been distinct by Lemma 3.26. In the following models
however we neglected the fact that the Ui−1 sampled trails will definitely be
intersecting, and as such the number of points will be most likely less than
the Ui−1

θ that we would be expecting otherwise.

43

4. Memory Filling & Function Versions

(a) Ratio to expected value (log-log)

(b) Raw comparison

Figure 4.1: ‘Coupon Collector’ refers to Model 4.3 and ‘Sum model’ to Model 4.4 and ‘Recur-
rence Model’ to Model 4.5. Experiment averaged over 100 runs. Parameters: n = 216, w =
210, θ = 0.2813.

44

4.2. Memory filling

(a) Ratio to expected value (log-log)

(b) Raw comparison

Figure 4.2: ‘Coupon Collector’ refers to Model 4.3 and ‘Sum model’ to Model 4.4 and ‘Re-
currence Model’ to Model 4.5. Experiment averaged over 50 runs. Parameters: n = 220, w =
214, θ = 0.2813.

45

4. Memory Filling & Function Versions

(a) Ratio to expected value (log-log)

(b) Raw comparison

Figure 4.3: ‘Coupon Collector’ refers to Model 4.3 and ‘Sum model’ to Model 4.4 and ‘Re-
currence Model’ to Model 4.5. Experiment averaged over 50 runs. Parameters: n = 224, w =
214, θ = 0.0703.

46

4.3. Fill rate

4.3 Fill rate
In this section we aim to answer the dual to Question 4.1.

Question 4.9 How full will the memory be when Algorithm 8 has computed k
distinguished points?

Remark 4.10 Why is this question of interest? Well consider one run of Algo-
rithm 8, in which a total of k distinguished points are mined. As we will see in
Section 5.3, a rather important question to answer is how many collisions will be
detected in those k points. An answer to Question 4.9 directly translates to an an-
swer to this arguably more important question. Let us assume that Ui is a model
that predicts the number of filled memory cells when i distinguished points have
been mined. Define the indicator variable Ii as follows:

Ii ≜
{

1, if a collision is detected when the i-th distinguished point is mined
0, otherwise

Note that the expected number of detected collisions (C say) is exactly C =

∑k
i=1 Ii. As such:

E[C] =
k

∑
i=1

E[Ii]

And since Ii is binary E[Ii] = Pr[Ii = 1]. Now, note that when the i-th distin-
guished point is sampled, the memory is expected to contain Ui−1 distinguished
points, each with an associated trail of expected length 1/θ. The only way for Ii
to equal 0 is if all the 1/θ points in the trail sampled are not in the set of these

associated trails, which happens with probability
(

1− Ui−1
θn

) 1
θ . As such, the total

we get that

E[C] =
k

∑
i=1

1−
(

1− Ui−1

θn

) 1
θ

≈
k

∑
i=1

1−
(

1− Ui−1

θ2n

)
=

k

∑
i=1

Ui−1

θ2n

=
1

θ2n

k

∑
i=1

Ui−1

Note here that the only simplification in this model is that the length of the trails
is θ−1, since they are guaranteed to be disjoint since they have different memory
addresses. The approximation is only valid when Ui � θn which is what we expect

47

4. Memory Filling & Function Versions

with typical parameters since by definition Ui ≤ w. As such, we do expect that a
good model Ui that answers the fill rate question would directly yield a good model
for predicting the number of detected collisions by Algorithm 8.

As before, we will build up to our final model incrementally, starting from
the equivalent of Model 4.3.

Theorem 4.11 Let a1, . . . , ak be a sequence of values, sampled uniformly and inde-
pendently from [w]. The expected size of {ai}k

i=1 is

w ·
(

1−
(

1− 1
w

)k
)
≈ w ·

(
1− exp

(
−k
w

))
Proof Define a random variable Ii, for 1 ≤ i ≤ w as:

Ii =

{
1 if, for some j, aj = i
0 otherwise

Note that the expected size of the set {aj}k
j=1, which we denote as U, is

exactly ∑w
i=1 Ii, and so by linearity of expectation E[U] = ∑w

i=1 E[Ii] = wE[I1],
where the last equality comes from the fact the distribution is uniform over
[w]. Now, since I1 is binary, we have that E[I1] = 1− Pr[I1 = 0] and the
probability that I1 = 0 is

(
1− 1

w

)k
by Lemma 3.35. □

From Theorem 4.11 we get then the following model

Model 4.12 Let w be as in Table 3.3. After k distinguished points have been sam-
pled the fill rate of the memory is

1−
(

1− 1
w

)k

To approach the vOW case we follow most of the setup of Theorem 4.11,
except for the very last step. As in Model 4.6 the state of the system is
effected by the previous trials, so, for example, if for the first x1, . . . , xk−1
distinguished points a certain address has not been hit the probability that
the xk point hits it will be lower than what predicted by Theorem 4.11 since
there will be k− 1 trails pointing to other memory addresses. We formalise
this intuition as follows.

We let U, I1 be as before, and again look at Pr[I1 = 0]. Let x1, . . . , xk be the
sequence distinguished points sampled so far, and let Sj be the set of points
in the trails leading to x1, . . . , xj. In the interest of space, we let a ≜ Addr.addr
and also write Ej for the event that, for i = 1, . . . j, it holds that a(xi) 6= 1.

48

4.3. Fill rate

Effectively, Ej is the event that none of the distinguished points x1, . . . , xj is
mapped to the memory address 1. Note that

Pr[I1 = 0] = Pr[Ek]

= Pr[a(xk) 6= 1|Ek−1]Pr[Ek−1]

= pk · Pr[Ek−1]

=
k

∏
j=1

pj

where pj ≜ Pr[a(xj) 6= 1|Ej−1]. Note that

pj = Pr[a(xj) 6= 1|Ej−1]

= Pr[a(xj) 6= 1|Ej−1, xj ∈ Sj−1]Pr[xj ∈ Sj−1] + Pr[a(xj) 6= 1|Ej−1, xj /∈ Sj−1]Pr[xj /∈ Sj−1]

= Pr[xj ∈ Sj−1] +

(
1− 1

w

)
Pr[xj /∈ Sj−1]

Where the last simplication is given by the fact that if a distinguished point
is not fresh, and all the previous distinguished point did not map to 1, then
that point will not map to 1 as well. Now, if we assume that the set of trails
induced by the first j distinguished points do not overlap and have expected
length 1/θ as predicted by Theorem 3.25, we can say that |Sj| ≈ j

θ . By an
observation entirely analogous to that in the derivation of Model 4.4 we can
then say that Pr[xj /∈ Sj−1] ≈ (1− j−1

θn)1/θ ≈ 1− j−1
θ2n . This tells us that

pj ≈
j− 1
θ2n

+

(
1− 1

w

)(
1− j− 1

θ2n

)
= 1−

(
θ2n− (j− 1)

θ2nw

)
≈ exp

(
− θ2n− (j− 1)

θ2nw

)

49

4. Memory Filling & Function Versions

This leads to conclude that

Pr[I1 = 0] =
k

∏
j=1

pj

≈
k

∏
j=1

exp
(
− θ2n− (j− 1)

nwθ2

)

= exp

(
k

∑
j=1
− θ2n− (j− 1)

nwθ2

)

= exp

(
−1

θ2nw

k

∑
j=1

(
θ2n− (j− 1)

))

≈ exp
(

k2 − 2knθ2

2nwθ2

)

And as such we can conclude that

E[U] ≈ w
(

1− exp
(

k2 − 2knθ2

2nwθ2

))
Note however, that the quadratic polynomial inside the exponential has a
minima at k = nθ2, so after that point the model would predict that the
number of points stored in memory will start to decrease, which of course
is nonsensical. This leads us to formulate Model 4.13, with that restriction
on its predictive power.

Model 4.13 Let n, w, θ be as in Table 3.3. After k < nθ2 distinguished points have
been sampled the fill rate of the memory will be

1− exp
(

k2 − 2knθ2

2nwθ2

)
We have run a number of experiments to verify the accurateness of the

models. In Figure 4.4 we report our measurements.

Note that, for k � nθ2 Model 4.13 predicts the fill rate very accurately,
always within 10% of the experimental value. When k increases, the simpler
Model 4.12 catches up and eventually outperforms the new model. When
far away from the critical point, not only is the average experimental value
very close to the predicted one, but, as the box plots in Figure 4.5 show, is
very consistently close to it.

Remark 4.14 The same points raised in Remark 4.8 apply without fail to this sec-
tion. An open path towards improving the modelling can be either accounting for
the fact that not all trails have in fact length 1/θ and/or by considering the fact that
the aforementioned trails will be likely to intersect when many distinguished points
have been sampled.

50

4.3. Fill rate

(a) n = 216, w = 210, θ = 0.28125

(b) n = 220, w = 214, θ = 0.28125

51

4. Memory Filling & Function Versions

(c) n = 224, w = 210, θ = 0.0703

Figure 4.4: Ratio of prediction of Model 4.12 and Model 4.4 to actual fill rate. ‘Ignoring
collision’ refers to Model 4.12 and ‘Accounting for collisions’ to Model 4.13. Actual is averaged
over 100 runs. x-axis cut off at nθ2. Log-Log scale.

(a) n = 216, w = 210, θ = 0.28125

52

4.3. Fill rate

(b) n = 220, w = 214, θ = 0.28125

(c) n = 224, w = 210, θ = 0.0703

Figure 4.5: Boxed ratio of prediction of Model 4.4 to actual fill rate. Measurements are taken
over 50 runs. Note the changed scale. Parameters: n = 216, w = 210, θ = 0.28125. x-axis cut
off at nθ2

53

4. Memory Filling & Function Versions

4.4 Updating Function Versions

The next step in this investigation can be seen as motivated from Model 4.3.
The model predicts that, in order to completely fill a memory of size w,
we will be requiring around w ln (w) distinguished points. As Figures 4.1
to 4.3 show, the model predicts substantially fewer points than what is truly
required, and as such can be considered a lower bound. In Algorithm 8,
memory is shared between function version, but our definition of Addr.addr
allows us to consider the simpler case in which memory is reset on every
function version switch, which happens after every βw distinguished points
have been mined.

In [vW94], it was determined, by testing with log (n) = 32 and log (w) =
16, that the optimal value of β is 10. This value of β was then used in subse-
quent work, such as [CLN+20]. The observation of Model 4.3 suggests that
this might not be the optimal setting of β. For any w such that ln (w) > 10
(note the changed base of the logarithm), the model predicts that a single
function version will not fill the memory completely. While it is not imme-
diately obvious that this is suboptimal, intuitively this would mean at least
a portion of the resources used to run Algorithm 9 would not be utilised
fully, and as such that there could be room for improvement. This suggest
the conjecture that choosing β ≈ ln (w) would translate to better practical
runtimes, by ensuring that the memory has a chance to fill completely.

We have performed experiments to validate this conjecture. Our method-
ology was a following. We selected two instance sizes, namely n = 224, 232.
For each of these sizes, we tested a number of different memory sizes w.
For each pair of n, w, we then selected a range of β, including the original
β = 10 from [vW94] and the values bln (w)e − 3, . . . , bln (w)e+ 3. For each
triple of parameters (n, w, β) we run Algorithm 9 to completion, using the
generic implementation from [CLN+20]. Each attack is run 50 times, and
the results are then averaged. The results are shown in Table 4.1.

Note that Table 4.1 does not directly show that βopt is always ln (w), but
does suggest that the two quantities are closely related, and that choosing
a β closer to that value can yield significantly better practical runtimes than
what [vW94]’s method yielded. That suggests that additional effort towards
identifying what the optimum value of β can be worthwhile in order to
reduce the cost of running the attack.

Question 4.15 Given n, w as in Table 3.3, what is the optimal β that minimizes
the runtime of Algorithm 9?

We do not fully answer this question, and leave it for future work, but
we mention a few factors that we believe are important. The main reason
that switching function versions is required at all is that Algorithm 9 does

54

4.4. Updating Function Versions

log n log w ln (w) βopt
β=10
βopt

24 12 8.3 9 1.40
24 13 9.0 8 1.02
24 14 9.7 10 1.00
24 16 11.0 10 1.00
24 17 11.7 11 1.50
24 19 13.1 15 1.82
24 20 13.8 14 1.52
32 22 15.2 13 1.29
32 23 15.9 16 1.05
32 26 18.0 16 1.26

Table 4.1: βopt is the optimal β according to our experiments (by number of function eval-
uations). The ratio is the number of steps required to find the golden collision when β = 10
compared to when β = βopt. Averaged over 50 runs.

not sample collisions uniformly at random as Algorithm 1 does, but instead
has biases towards certain collisions. Since, for a given function version,
the golden collision might be very unlikely to be found, we then apply the
versioning techniques, which effectively randomize the graph of the func-
tion. A smaller β allows us to perform this randomization step more often.
However, randomizing too often is counter-productive, since (as mentioned
in the description of Algorithm 10) switching version effectively clears the
memory, and Algorithm 8 tends to find more collisions when the memory is
close to full. Quantifying this tradeoff would be a possible path towards de-
termining the optimal β. In particular, in Section 5.3 we propose a blueprint
to estimate the cost of running Algorithm 9 in terms of β, w, and once such
a model is developed this could allows us to answer Question 4.15.

55

Chapter 5

Fine-grained cost analysis vOW

In our exposition of Algorithm 9, we purposefully did not present an analy-
sis of the running cost of the attack. The purpose of this chapter is to present
the two models to estimate the theoretical cost of the attack, and to provide
a more fine-grained analysis to note the practical cost of running the algo-
rithm. This fine-grained analysis has then been verified via a number of
experiments.

In the sequel, we will use n, w, θ, β, S, f as in Table 3.3. We will also con-
sider the setting of Problem 3.9 in which there is a single golden collision in
Coll (f).

5.1 [vW94] Model

Our first analysis is the one that was presented in the original [vW94] paper.

Their analysis (as they point out), is simple, but flawed. They start by
assuming that the memory is full with w distinguished points. Each of these
distinguished points will lie in a trail, which, by Theorem 3.25, is expected to
have length approximately θ−1. When sampling a new trail by Algorithm 4,
a collision will be detected exactly when this newly sampled trail contains
any of the w

θ points. Consider each invocation of f as a sampling a new
point in S. Then, the probability that a newly point sampled uniformly at
random generates a collision is the probability that this point is one of the
w
θ trail points, i.e. it is w

θn . As such, modelling as a geometric distribution,
each collision will require nθ

w function evaluations to be detected. Then, the
cost for backtracking (Algorithm 5) is 2

θ function evaluations and as such the

total per collision cost is nθ
w + 2

θ . This quantity is minimized if θ =
√

2w
n , and

this, applied to the CS,S ≈ n
2 collisions that we are expected to have to find

by Theorem 3.15, yields a final estimate of
√

2n3

w function iterations.

57

5. Fine-grained cost analysis vOW

The first, and most glaring, flaw is that the memory in a run of Algo-
rithm 8 starts as empty and not as full. In fact, as our discussion in Chap-
ter 4 mentioned, with β = 10 and a large enough w the memory will almost
never be completely full. More subtle issues also play a role: collisions are
not all equally likely to be found (as discussed with Algorithm 3 and in Def-
inition 3.30), and as such simply sampling CS,S collisions might not in fact
find the golden collision.

In order to examine the true performance of the algorithm, [vW94] run
several experiment, using function versioning, and developed Model 5.1.

Model 5.1 ([vW94]) Let n, w be as in Table 3.3. Let θ = 2.25
√w

n and β = 10.
Then, the number of function iterations required to find the golden collision can be
slightly overestimated as

2.5

√
n3

w

One of the drawback of this model is the fact that it is heuristic only,
even tough in practice it is quite accurate. It also is not as granular as we
would like it to be, since for example it does not mentions how much of
the runtime will be used in computing points and how much in locating
collisions. Heuristic measurements (mentioned in [vW94] and [CLN+20])
show that around 80% of the running time is spent mining points and 20%
in locating collisions.

5.2 [TID21] Model

Recently, [TID21] proposed a new model that aims to remove some of the
heuristics in Model 5.1. The core of their model is an analysis entirely sim-
ilar1 to that in Theorem 3.17. In our derivation, we let Uk be the number
of function evaluations required to find k collisions, and determined that
Uk ∼

√
2kn. In their analysis, they instead let Sk the number of distin-

guished points required to find k collisions in Algorithm 8, while not being
limited by memory, and in their analysis find that Sk ∼ θ

√
2kn. From that,

they set Sk = w and solve to find how many collisions will have been found
when the memory fills up, and find this to be w2

2θ2n . As such, when we are
trying to compute m collision, CS,S − w2

2θ2n will have to be found when the
memory is full, and for each of these the cost will nθ

w as in [vW94]’s analysis.
To actually find those m collisions then, we will have to bactkrack which
costs 2m

θ function evaluations. This results in model Model 5.2.

1Since our analysis is effectively based on theirs

58

5.3. Towards a complete model

Model 5.2 ([TID21]) Let n, w, θ be as in Table 3.3. The number of function eval-
uations that are required to find m collisions is

w
θ
+

(
m− w2

2θ2n

)
nθ

w
+

2m
θ

In particular, in the context of Problem 3.9, the number of function evaluations to
find the golden collisions will be

w
θ
+

nθ2 − w2

2θw
+

n
θ

And choosing θ =
√

w2+2nw
n the final number of function evaluations is

n(4n + 3w− 1)
2
√

w(2n + w)

While this model is in many way an improvement compared to the al-
most entirely heuristic analysis of Model 5.1, it has a few shortcomings of
note. First of all, setting Sk = w to estimate the number of collisions found
when the memory full is effectively akin to using Model 4.2 and, as seen
in Chapter 4, in practice filling the memory requires many more distin-
guished points than that. In fact, Model 4.12 predicts that at that point only
a 1− e−1 ≈ 0.63 fraction of the memory will be occupied, and Model 4.13
(for typical choices of θ) reduces this to ≈ 0.59.

We also found a small algebra mistake in their derivation. In particular,
they derive the recurrence Uk = Uk−1 +

θ2n
LUk−1

and then substitute Vk =
LUk√

nθ
to obtain the recurrence Vk = Vk−1 +

1
Vk−1

. However, in fact with that

substition the result would be Vk = Vk−1 +
L

Vk−1
, and the correct substition to

obtain the recurrence would be Vk =
√

LUk√
nθ

. As such, following their line of

reasoning the corrected value for Uk would then be θ
√

2kn√
L

, which leads to an
apparent contradiction, since then the number of distinguished points for m
collisions would become θ

√
2mnL and this should not depend on L (which

is the number of threads).

5.3 Towards a complete model
What both Model 5.1 and Model 5.2 do not capture fully is the effect of
function versioning. Let us take Model 5.2 as an example for this discus-
sion. Their model essentially divides the execution of Algorithm 8 into two
parts: before w distinguished points have been gathered and after. So, in
that analysis, once the memory has been filled, it remains full until all m re-
quired collisions have been found. In fact, as the pseudocode of Algorithm 9

59

5. Fine-grained cost analysis vOW

shows, in the full attack we will switch function version after every βw dis-
tinguished points have been mined, and (as our remark in Algorithm 10
mentioned) this effectively resets the memory to be empty. What we pro-
pose instead is the following approach.

We make the reasonable assumption (justified by our implementation of
Algorithms 10 and 11 and by Definition 3.30) that each run of Algorithm 8
will be independent from the other runs. In each of these runs, the algorithm
will mine βw points, and in the process detects a number of collisions. If we
can derive a model to predict the number of detected (not necessarily distinct)
collisions from sampling βw distinguished points (denote these as C), then
the number of required function versions to detect the golden collision will
be V ≜ n

2C . The number of function evaluations required for each of these
function versions will be βw

θ to mine the required points, and 2C
θ for the

backtracking required to locate the collisions, and as such the final cost of
the attack, in terms of function evaluations, would be

n
2C
·
(

βw
θ

+
2C
θ

)
=

nβw
2θC

+
n
θ

Note that, by Remark 4.10 we expect E[C] ≈ 1
nθ2 ∑

βw
i=1 Ui for some unspec-

ified model Ui that answers Question 4.9. Letting Sθ,β = ∑
βw
i=1 Ui, this yields

a final model of
n2wβθ

2Sθ,β
+

n
θ

Optimizing then β, θ should allow us to find the optimal cost of Algo-
rithm 9 in terms of function evaluations.

Unfortunately, due to time requirements, we have not been able to plug
Model 4.12 and Model 4.13 into this framework to confirm the accuracy
of the model, but we leave this for future work. Ideally, we envision that
when starting with an appropriate memory rate model this section would
provide a blueprint to estimate runtimes, and when instantiated with β = 10
recover the asymptotics and the leading constant of 2.5 that was observed
heuristically in [vW94].

5.4 Modelling Practical Costs
In practice, when running Algorithm 9, function evaluations do not tell the
whole story. While they are an important metric, and in practice often a very
considerable portion of the runtime, practical implementations have to deal

60

5.4. Modelling Practical Costs

Figure 5.1: Flamegraph of a local execution of Klondike. Parameters n = 232, w = 224. Run
with 40 cores. Algorithm 4 is responsible of 77.6% of the runtime, Algorithm 5 of 19.7%, and
Algorithm 7 of 1.96%

with a much wider set of possibly costly operations, and that can elevate
the cost of the attack considerably. When scaling the attack to cryptographi-
cally sized instances these costs can also increase and come to dominate the
overall cost of Algorithm 9.

Instrumentation of our practical implementation (shown in Figure 5.1),
run in a local setting and with small parameters, show that most of the
algorithm runtime can be explained as part of three main parts.

The first, and bigger portion, which in our measurements account for
around 75% of the runtime, is Algorithm 4. As Theorem 3.25 shows, this is
expected to require θ−1 function evaluations, and2 each evalution will mine
a distinguished point.

The second fragment comes for the backtracking in Algorithm 5, which ac-
counts for approximately 20% of the runtime (as was also noted in [vW94]).
The runtime of the backtracking algorithm is then expected to be 2θ−1 func-
tion evaluations.

The previous two parts have been already considered vastly in the liter-
ature, what we aim to focus on is the third and smallest chunk, which is
caused by Algorithm 7. In our experiments, this accounts for a relatively

2Modulo the small error probability

61

5. Fine-grained cost analysis vOW

Quantity Model 5.1 Model 5.2

Pc 2
√

n3

w
w
θ +

(
m− w2

2θ2n

)
nθ
w

Ps 5.625n θPc

Pb 0.5
√

n3

w
n
θ

Figure 5.2: Values of Pc, Ps, Pb predicted by Model 5.1 and Model 5.2

small portion of the runtime, approximately 2%, which raises the question
of why do we exactly care at all? The cost of Algorithm 7 is caused almost
completely by the cost of memory accesses, and while this is almost negli-
gible in the case of a small local attack, when the scale of the instance scales
to cryptanalytic sizes this cost can come to dominate the attack. The situa-
tion is only exacerbated in the setting of a distributed attack, but we will be
looking at that later in Chapter 6.

Our aim is also to make this fine grained analysis to be modular and
independent from the underlying model that predicts the asymptotic cost of
the attack in terms of function evaluations. To that end, we will denote by Pc
the number of function evaluations during a run of Algorithm 9, by Ps the
number of vOW triples stored, and by Pb the number of function evaluations
during backtracking. Some values predicted from Model 5.1Model 5.2 are
shown in Figure 5.2.

Note that Ps = θPc, since each point computed from mining in Algo-
rithm 8 will then be stored immediately.

With this, we can develop a fine grained model for the cost of running
Algorithm 9. Until now, we have deliberately not discussed the impact of
multithreading in detail, but one of the main advantages of Algorithm 9
over Algorithm 3 is that the function evaluations coming from Pc, Pb can
be perfectly parallelized. There are some details in practice on how this
parallelization should be implemented, but we refer to Section 6.2.1 for a
summary. Whether the cost of Ps can be effectively parallelized is instead a
very delicate point.

Most commonly used consumer hardware follows the von Neumann ar-
chitecture, in which (roughly) central processing units access a shared large
memory via a bus. The speed at which data can travel trough this bus is
a bottleneck, which cannot be circumvented by just increasing the number
of cores. If the computing part of the system produces enough triples to
saturate the bandwidth, then the cost of storing Ps of them will become a
mostly serial operation. If instead the computing end produces relatively
few triples per unit time, the write to memory will be effectively parallel.
As such, we propose two models, for each of these two situations. Choosing

62

5.4. Modelling Practical Costs

which of the two models will be more accurate is complicated, as very much
reliant on the available hardware.

Model 5.3 (Parallel Storing) Let tc be the time for a single evalution of f , and ts
be the time required for storing a triple in memory. Let Pc, Ps, Pb be as in Figure 5.2
and L be the number of processing unit. The total time to run an instance of
Algorithm 9 in practice will be

1
L
((Pc + Pb)tc + Psts)

Model 5.4 (Serial Storing) Let tc be the time for a single evalution of f , and ts
be the time for storing a triple in memory. Let Pc, Ps, Pb be as in Figure 5.2 and L
be the number of processing unit. The total time to run an instance of Algorithm 9
in practice will be

(Pc + Pb)
tc

L
+ Psts

Remark 5.5 In our later estimates for Model 5.3 we will use the latency of writing
to main memory as our main metric for ts, and bandwidth for Model 5.4. In both
cases, we do not believe that this strategy captures the full cost of the attack, but
should be seen as providing rough lower bounds.

Remark 5.6 In modelling the cost of memory access, we only consider the cost of
writing to main memory. This choice is motivated by two factors. First of all,
memory addresses in [w] are accessed uniformly at random, which is essentially the
worst case scenario for microarchitectural optimizations such as caches. In typical
consumer hardware, this pattern of memory accesses will cause a large number of
cache faults and essentially make the overall operation bottlenecked on the cost of
accessing main memory. An other option would be to consider disk storage, as that
would allow to store a larger number of triples. While we have not investigated
this fully, we remark that latency for SSDs is three orders of magnitude higher than
that for writing to RAM, and SSDs are mostly optimized for sequential operations,
which is far from our use case. Furthermore, hard storage tend to be specialized for
a small number of input-output operations of large size, rather than our use-case
in which we have many operations, each reading and writing a small amount of
information.

In both the case of Model 5.3 and Model 5.4, the choice of θ should be
informed by the the actual values of tc, ts. In particular, using Model 5.4 as
an illustration, we note that the total time cost of the attack is

C(θ) = (Pc(θ) + Pb(θ))tc + Ps(θ)ts

and, as such, minimizing this quantity is equivalent to finding the zeros
of C′(θ), which are dependent on the actual costs. In practice, what this
amounts to is choosing smaller θs when the cost of writing to memory are
large compared to the costs of computation.

63

5. Fine-grained cost analysis vOW

Server Name Processor Cores Memory
Choripan Intel(R) Core(TM) i5-9500 CPU @ 3.00GHz 6 8 GB

Iwo Intel(R) Core(TM) i7-4790K CPU @ 4.00GHz 8 32 GB
Daisen Intel(R) Xeon(R) Gold 6258R CPU @ 2.70GHz 112 377 GB
Alishan AMD EPYC 7742 64-Core Processor @ 2.25GHz 128 504 GB

Holzfusion Intel(R) Xeon(R) Gold 6252 CPU @ 2.10GHz 96 755 GB
Euler Varied � 256 � 1 TB

Figure 5.3: Servers we utilized for the experiments. Cores refer to physical and virtual cores.
Euler is ETH’s supercomputing cluster, whose exact number of cores and available memory is
ever-changing.

5.5 Experiments
In order to validate Model 5.3 and Model 5.4, we performed a series of
experiments. The methodology was the following. We took as a starting
point the C++ vOW4SIKE library developed in [CLN+20], and modified the
interface to memory in order to conform to the interface of Algorithm 19.
Then, we introduced arbitrary slowdowns in either the evaluation of f or
in Mem.sendPoint to control tc, ts. We then run the modified code with a
range of parameters and function versions. Finally, we compare the wall
time and/or the cyles to what the model predicts.

5.5.1 Servers

We tested our models on a number of different servers. Their capabilities,
in terms of cores and main memory sizes, are summarized in Section 5.5.1.
Access to Choripan, Iwo, Daisen, Alishan and Euler was obtained thanks to
ETH, while Holzfusion by gentle concession of Royal Holloway.

5.5.2 Busy Waiting vs Sleeping

In order to obtain a fine grained control towards the cost of various oper-
ations, we had to develop a reliable way to introduce arbitrary delays in a
computation. There are two general ways to obtain this: sleep delays and
busy waiting. Sleep delays, or just “sleeps” are system calls that suspend
the execution of the current thread and cede control to the operating sys-
tem. Busy waiting is instead the process of doing arbitrary wasteful com-
putation in order to waste CPU cycles. Sleep delays are the natural first
tool to reach for, since they allow for fine grained temporal control, to the
level of hundreds of nanoseconds, and can be compared directly to the wall
time of process. However, the standard POSIX implementations (nanosleep
and clock nanosleep) do only give guarantees that the process will be sus-
pended for at least as long as it is specified, and the scheduler can arbitrarily

64

5.5. Experiments

include <time . h>

define ITERS 100000
define MICROSECONDS 10

i n t main () {
s t r u c t t imespec t s ;
t s . t v s e c = 0 ;
t s . t v n s e c = MICROSECONDS * 1000 ;

for (i n t i = 0 ; i < ITERS ; i ++) {
nanosleep(& ts , NULL) ;

}
}

Figure 5.4: A sleep program that sleeps more than what it should

void busy wait (u i n t 6 4 t i t e r a t i o n s) {
for (u i n t 6 4 t i = 0 ; i < i t e r a t i o n s ; i ++) {

asm v o l a t i l e (”” : ”+g” (i) : :) ;
}

}

Figure 5.5: An useless program which the compiler thinks is useful

decide how much extra time to allocate. For short intervals the effect is ex-
acerbated since the scheduler will always suspend the thread for a minimal
time (in the order of magnitude of 60µs).

As an example, consider the program in Figure 5.4. Compiled with GCC
12.1.0 with -O3 this program takes approximately 6s to execute, while we
would expect it to take 10 · 105µs = 1s. Increasing the microseconds by a
factor of 10 and decreasing the iterations accordingly reduces the elapsed
time to 1.5s, and higher delays also close the gap. This creates a conflict,
since we would like to have the highest precision possible, but also have
as short delays as possible to make sure that the experiments do not take
excessive time.

Busy waiting instead faces different challenges. First of all, compilers tend
to be very good at optimising away useless code, and our code is utterly
useless. This can be circumvented by appropriate uses of inline assembly
instructions. The function we used for busy-waiting is shown in Figure 5.5
There are some problems with this approach. First of all, on different archi-
tectures and machines the number of cycles that the loop takes to execute

65

5. Fine-grained cost analysis vOW

can vary wildly. In order to measure that, we can run benchmarks at the
start of the execution, which we can then base our analysis on. Unfortu-
nately, that is not the end of the story, since modern processors can under
and overclock depending on the machine load. That can also skew the mea-
surements, since the load the process is under at the start of the run (when
the benchmarks are being run) and in the middle of the execution can be
very different and as such our initial readings be inaccurate.

On machines that we fully control (over/under)-clocking can be disabled
which results in very accurate measurements. Yet on others servers (such
as the Euler cluster) it is very hard to reach the level of control needed to
get accurate readings. On the contrary, sleeping techniques tend to be unef-
fected from machine load, and as such for shared servers they are ideal. To
obviate the sleep timing inconsistency we can measure the time spent sleep-
ing and tally that up at the end of the execution, using this tally a posteriori
to deduce the time spent per sleep call. In order to validate our models then,
we decided to use both approches, busy waiting on the Holzfusion server
and sleeping on Euler.

5.5.3 Results

We have run two sets of experiments, one on Holzfusion and one on Euler,
using the techniques detailed in the previous section. We have collected the
results using the busy-wait strategy in Table 5.1 and the ones using the sleep
techniques in Table 5.2.

log (n) log (w) Ratio
24 17 1.07
28 20 1.01
30 20 1.01

(a) Evaluation slowed by 1.2 · 106 cycles.

log (n) log (w) Ratio
24 17 1.10
28 20 1.05
30 20 1.04

(b) Evaluation slowed by 1.2 · 106 cycles for
half of the cores, by 3.2 · 106 for the other
half.

log (n) log (w) Ratio
24 17 1.08
28 20 1.05
30 20 1.04

(c) Evaluation slowed by 1.5 · 105 cycles for
half of the cores, 3 · 105 for the other half.
Memory accesses slowed down by 1.5 · 105

cycles.

Table 5.1: Ratio between the prediction of Model 5.3 applied to Algorithm 9 with busy-waiting
and the measured cycles. Averaged over 100 function versions. Experiment on Holzfusion.

66

5.5. Experiments

log (n) log (w) Ratio
20 10 1.00
22 14 1.00
26 16 1.00
28 18 1.01
30 20 1.01

(a) Evaluation slowed by 100µs.

log (n) log (w) Ratio
20 10 1.00
22 14 1.00
26 16 1.00
28 18 1.01
30 20 1.01

(b) Evaluation slowed by 100µs for half of
the cores, by 300µs for other half.

Table 5.2: Ratio between the predictions of Model 5.3 applied to Algorithm 9 with sleeps and
to measured wall-time. Averaged over 100 function versions. Experiment on Euler.

The full data collected and the scripts used to run these experiments are
available in our fork of vOW4SIKE at github.com/WizardOfMenlo/vOW4SIKE.
As the table shows, the models that we have developed accurately predict
the experimental data.

67

github.com/WizardOfMenlo/vOW4SIKE

Chapter 6

Distributing vOW & Klondike

In the previous chapters, we have considered Algorithm 9 in a mostly local
setting, and developed some cost models accordingly. In a real instance
of the attack, especially one of considerable size, we believe that an at-
tacker might be inclined in ‘pooling together’ computation from different
pre-existing machines, rather than spending the considerable resources to
build a new single large machine. In this section, we will be investigating
what would be additional costs, difficulties and tradeoffs that would appear
when running Algorithm 9 in a distributed setting.

6.1 Revised Model

Let us start by revising our models Model 5.3 and Model 5.4 for this dis-
tributed setting. In the local setting, we have a single machine with L com-
puting units and which was responsible for the entire memory space w. For
that machine, the cost of computing a single iteration of f was tc and the
cost of storing a point to memory ts. In the distributed setting, we will have
k nodes, each of which with Li computing units (that we assume equally
powerful) and memory for wi triples. As such, w = ∑k

i=1 wi. We let tc,i be
the time that a computing unit on node i requires to compute f , and ts,i→j
the time required to store a triple generated on node i in node j’s memory.
Note in particular that ts,i→i is the cost to store a triple in local memory on
node i.

We let L ≜ ∑k
i=1

Li
tc,i

. Note that 1
tc,i

is the number of function evaluations
computed by an unit of node i per unit time, so L is exactly the number of
points computed per unit time by the ensemble of the nodes.

As such, computing the Pc required function evaluations will take time
Pc/L, and this will be cost of function evaluations for the system.

69

6. Distributing vOW & Klondike

Now, if f is a random function, a node i will be tasked to store a share
of wi

w of the computed points, and an according share of the backtracking
points. As such, each node i will be computing wi Pb

w backtracking evalua-
tions, each of which at cost tc,i shared across Li threads. As such, the cost of
the backtracking will be exactly ∑k

i=1
Pbwitc,i

wLi
.

Finally, for the cost of storing. Each node i will produce points to store in
accordance to their performance, so write Si ≜ Li

tc,i L
for the share of points

node i will compute. The number of points each node will have to store
will be SiPs, and of these a wj/w fraction will be stored in node j (including
j = 1). As such, the total number of points that will have to be stored from
node i to j will be PsSi

wi
w . What will be the cost of this? As before, it depends

on whether storing to memory (in this case in a distributed setting!) can be
parallelized. Compared to before, the situation is even more complicated,
since for some connections i→ j it might be that there is enough bandwidth
for the storing to appear parallel, while for others it might be sequential,
or it might be something in between that. As such, we will introduce a
parallelization factor 1 ≤ πi→j ≤ Li to account for this. For example, the
local connection i → i is unlikely to be bandwidth limited, and as such we
expect πi→i to be closer to Li. Instead, a remote network connection might
quickly reach its capacity, and as such the parallelization factor will be closer
to 1. In practice, determining the correct value for the parallelization factor
is complicated, since it will both depend on the cost of function evaluations,
the value θ, the state of the network and many other factors. As such, it
should be carefully estimated before the start of the attack.

Model 6.1 Let Li, wi be, respectively, the number of computing units and memory
size of node i, w = ∑k

i=1 wi where k is the number of nodes. Let tc,i be the time for
a single evalution of f on node i, ts,i→j be the time for storing a triple from node i
to node j. Let πi→j be the parallelization factor of the connection from i→ j.

Let Pc, Ps, Pb be as in Figure 5.2.

Let L ≜ ∑k
i=1

Li
tc,i

, Si ≜ Li
tc,i L

. The total time to run a distributed instance of
Algorithm 9 in practice will be

Pc

L
+

k

∑
i=1

k

∑
j=1

SiPswjts,i→j

wπi→j
+

k

∑
i=1

Pbwitc,i

wLi

6.2 Klondike
In order to validate our model, and as part of our contributions, we devel-
oped Klondike, a library and a set of binaries for executing Algorithm 9
efficiently and in a distributed setting. This section will be focusing on de-
scribing Klondike, and on a more theoretical side the issue of syncronization

70

6.2. Klondike

between workers in Algorithm 9, which is exacerbated in a distributed set-
ting.

6.2.1 Synchronization

One of the most important improvements of Algorithm 9 over Algorithm 3
is the fact that it claims to be perfectly parallelizable. Looking at the body
of the loop in Algorithm 8, we can see that the mining routine (Algorithm 4)
and the backtracking routine (Algorithm 5) can be executed in parallel by
many workers threads with no dependencies on each other. While memory
would need to be shared between workers, if its size is large enough com-
pared to the number of workers, as is expected to be the case in practice,
the probability that two writes to the same memory cell occur concurrently
becomes very small. The remaining shared data between workers is given
by the distinguished point counter, which is used to switch function version.

As a reminder, when a certain number of points have been mined (namely
β · w) a new function version should be selected. What is crucial is that all
the workers always are synced, i.e. they should all be computing on the same
function version. That is because points mined using different function ver-
sion, as mentioned in Algorithm 10, are not useful. Consider, for example,
two threads minining with function version k 6= k′. Each distinguished point
generated by version k and stored in memory is seen as an empty memory
cell by the worker on version k′, which will then overwrite it.

As such, our synchronization strategy should, as a priority, ensure that
different workers switch at unison. Switching when precisely βw points
have been mined is desirable, but not fundamental. For Klondike, we have
implemented two syncing strategies from [CLN+20], namely ‘No Biggie’
and ‘Stakhanov’. Our local implementation is general and allows to specify
the desired syncing strategy.

In both cases, each worker keeps track of the number of distinguished
point it has mined using the current function versions. The worker counter is
periodically synced with a global counter, using atomic instructions to avoid
locking and at the same time ensuring consistency between threads. Each
worker has a local copy of the function version, which is what is required to
be updated as function versions are changed. We also designate one of the
local workers as the leader, which will be responsible for keeping the global
state consistent.

No Biggie The general strategy of ‘No Biggie Sync’ is the following. After
every worker mines a new distinguished point, it syncs the local statistics to
the global one, and checks whether that value is higher than the threshold. If
so, it waits (using a barrier) until every threads also realizes that. Then, the

71

6. Distributing vOW & Klondike

Algorithm 14: NoBiggieSync
Data: nbState, localDist the local number of distinguished points

mined since last sync.
Result: ⊥ or a new function version
nbState.dist = nbState.dist+ localDist ; // Atomically
if nbState.dist ≤ β · w then

return ⊥;
end
B1: Wait for every thread;
if Worker is leader then

nbState.ver = nbState.ver+ 1;
end
B2: Wait for every thread;
return nbState.ver;

leader updates the function version in a global location, which then every
worker checks and moves their local function version to this new version. A
more accurate specification is shown in Algorithm 14.

A real implementation of this algorithm is slightly more complicated, as
for example it needs to check if any worker has found the golden collision,
and can be found in sync/nobiggie.rs.

Algorithm 14 can be called either at the end of every loop of Algorithm 8
or every few iterations, and a choice should be informed by benchmarks
and the cost of atomic operations on the architecture of choice (See [SBH20]
for an overview). In our case, we note that each iteration takes θ−1 function
evaluations and a write to memory (plus possibly a backtracking step), and
that should be much more expensive than the single atomic operation that
is executed unconditionally on a call to Algorithm 14. Thus, in our imple-
mentation we make the call to syncing after every iteration. In general, this
syncing strategy gives very strong guarantees. Supposing that the algorithm
is called every s iterations, and that there are L workers in the system, Al-
gorithm 14 guarantees that no more than βw + sL distinguished points are
mined, and that no two workers will be mining points with different func-
tion versions. The drawback is that waiting workers do not do any useful
work, so, especially when some of the workers are slow, this might waste
valuable time.

Stakhanov ‘Stakhanov sync’ addresses the drawback of Algorithm 14 by
letting workers work harder than what they have to. Each worker is given
a share of the βw points to mine, in accordance to their performance. Every
worker mines its share, and then signal that it is done by writing to a shared

72

6.2. Klondike

Algorithm 15: StakhanovSync
Data: svState, i thread identifier, localDist the local number of

distinguished points mined since last version update
Result: ⊥ or a new function version
if svState.share[i] ≤ localDist then

return ⊥;
end
if svState.sync[i] = ⊥ then

svState.sync[i] := started;
end
everyoneDone ≜ ∀j : svState.sync[j] 6= ⊥;
shouldSync ≜ everyoneDone ∧ svState.sync[i] 6= done;
if worker i is leader then

everyoneMovedOn ≜ ∀j 6= i : svState.sync[i] = done;
shouldSync := everyoneMovedOn ∧ everyoneDone;

end
if ¬shouldSync then

return ⊥;
end
ver ≜ svState.ver+ 1;
if worker i is leader then

for worker j do
svState.sync[j] := ⊥;

end
svState.ver := ver;

else
svState.sync[i] := done;

end
return ver;

array, and keeps mining. Once all the workers have signaled that they are
done (by looking at the shared array) every non-leader switches the function
versions and signals again. Once every non-leader worker is done, the leader
updates the global version and switches itself. Algorithm 15 gives a formal
description of this strategy.

As before, a fully featured implementation of Algorithm 15 can be found
in sync/stakhanov.rs.

Remark 6.2 In deciding the share of points that each worker should mine, we make
the strong assumption that the performance of a worker is stable over time. In
practice, due to frequency boosting, optimizations in processor’s design, varying
load of the server and other factors, this is not the case. Some measures can be

73

6. Distributing vOW & Klondike

taken in order to minimize these factors, and they should be taken to ensure that
the balance between worker remains accurate during the run of Algorithm 9. In
our local implementation, we simply assume that each core of the server’s processor
has the same performance, and simply assign each worker (one per core) a share of
βw/L, where L is the number of cores.

As for Algorithm 14, we can choose how often to call the sync function,
but note that for Algorithm 15 the cost is very much reduced. The uncon-
ditional check is only an integer comparison (without atomic instructions)
and as such the cost is essentially negligible. We make concessions on both
of the strong guarantees of Algorithm 14. First of all, some workers will
concurrently be mining points on different function versions, leading to a
small amount of wasted work. Secondly, especially if our share allocation is
fallacious, it can happen that the function version is switched after consider-
ably more than βw points have been mined. While these are valid concerns,
experimental work in [CLN+20] has shown that Algorithm 9 implementa-
tions using Algorithm 15 outperform in practice those using Algorithm 14,
and as such we have elected to use Algorithm 15 as our syncing algorithm
for the networked implementation.

Networked Stakhanov The networked setting presents new challenges, but
luckily Algorithm 15 needs only minor adjustments to work in that setting.
We start by introducing some terminology. A worker node is a collection of
local workers. An orchestrator node will instead be a central server whose
only responsability is to keep track of the syncing status of the worker nodes.
We stress that the orchestrator node does not run Algorithm 9 at all, and as
such can be very low powered, with the only requirements being able to
handle a connection from each of the worker nodes.

The networked adaptation of Stakhanov Sync works as follows. Each
worker node will locally run a version of Algorithm 15, but once everyone
has mined their share locally the leader of the cluster will signal the or-
chestrator node. Once the orchestrator node has received confirmation that
every worker node is done, it signals to each of them to switch to the next
function version. A more formal specification is shown in Algorithm 16 and
Algorithm 17.

An implementation of Algorithm 16 can be found in sync/networked stakhanov.rs
and one of Algorithm 17 in networking/orchestrator/manager.rs. In
our implementation, communication between the orchestrator node and the
worker nodes is implemented as a TCP connection, since the syncing oper-
ation is only done occasionally (in the case of n = 224, w = 216, β = 10 for
example, a function version is switched only every 0.6 seconds) and reliabil-
ity is very important for the overall status of the attack. Using Algorithm 15
compared to Algorithm 14 as a base for the networked syncing algorithm

74

6.2. Klondike

Algorithm 16: LocalStakhanov
Data: Sync state svState, node state node, i thread identifier, localDist

the local number of distinguished points mined since last
version update

Result: ⊥ or a new function version
if svState.share[i] ≤ localDist then

return ⊥;
end
if svState.sync[i] = ⊥ then

svState.sync[i] := started;
end
everyoneDone ≜ ∀j : svState.sync[j] 6= ⊥;
shouldSync ≜ everyoneDone ∧ node.gDone ∧ svState.sync[i] 6= done;
if worker i is leader then

if everyoneDone then
Signal to orchestrator node is done;

end
everyoneMovedOn ≜ ∀j 6= i : svState.sync[i] = done;
shouldSync := everyoneMovedOn ∧ everyoneDone ∧ node.gDone;

end
if ¬shouldSync then

return ⊥;
end
ver ≜ svState.ver+ 1;
if worker i is leader then

for worker j do
svState.sync[j] := ⊥;

end
svState.ver := ver;
node.gDone := false;

else
svState.sync[i] := done;

end
return ver;

also allows the worker node to do useful work while the network syncs,
which is why we chose it for our implementation.

6.2.2 Memory

Distributing memory in the networked setting also presents challenges. Pre-
vious work such as [BBB+09] mainly focused on the case of a few central

75

6. Distributing vOW & Klondike

Algorithm 17: Stakhanov Manager
Data: Number of nodes n
nodeStatus ≜ [];
for i=1. . . n do

nodeStatus[i] := ⊥;
end
repeat

Wait for message from node i;
nodeStatus[i] := done;
if ∀i : nodeStatus[i] = done then

for i = 1 . . . n do
Set gDone to true in node i;
nodeStatus[i] := ⊥;

end
end

until False;

Algorithm 18: Memory Init
Data: Total size of memory w, local memory size wi
Result: An handle to memory mem
mem.A ≜ [w];
mem.T ≜ S× S× [maxlen];
mem.local = Mem.Init(wi);
return mem;

servers at a single site whose only responsability was to receive distin-
guished points. This work enables a more flexible model, in which any
node can double as a memory node, and both send and receive points. We
assume that each node ni has associated a memory wi and let w ≜ ∑ wi be
the total memory. We associate to each node a partition of the address space
[w]. In particular, we define O1 ≜ 0 and Oi = Oi−1 + wi, and let node ni be
responsible for the address range [Oi, Oi−1). To actually construct this new
shared memory, we can simply abstract over the original scheme described
in Algorithm 6 and Algorithm 7. The resulting memory scheme is described
in Algorithm 18 and Algorithm 19. In a nutshell, depending on the address,
a mined distinguished point is either written to local memory, or sent to the
node whose address space contains the address. On the receiving end, the
node will receive the point, write it to its local memory and do backtracking
if necessary.

Implementations of this memory scheme can be found in the memory mod-

76

6.3. Measurements and Observations

Algorithm 19: Send Point for node ℓ

Data: A memory handle mem, and address a ∈ [w], a value t ∈ mem.T
Result: Either the existing value ∈ mem.T or an error ⊥
if a ∈ [Oℓ, Oℓ+1) then

return mem.local.sendPoint(a−Oℓ, t);
end
for i 6= ℓ do

if a ∈ [Oi, Oi+1) then
Send point to ni;

end
end
return ⊥;

ule, while the receiver implementation is in networking/receiver.rs. In
our implementation, we have decided to use UDP for sending distinguished
points. The reason for this is that, in a distributed attack, the cost of send-
ing packets is the bottleneck of the system, especially if evaluating f is not
too computationally expensive. TCP has an expensive handshake proto-
col, and offers strong guarantees of sequential ordering and reliability that
our application does not need. Ordering of distinguished points can be im-
portant (consider for example the case in which two triples are sent to the
same memory address, the first one, in conjunction with the current occu-
pant, leading to a golden collisions, and the second leading to a memory
collision; then ordering would be crucial to find the golden collision), but it
seems hard a priori imposing an optimal order. A possible strategy would
be buffering triples with the same address and checking all possible order-
ings, but we do not have explored this solution further, and do not know
whether it could bring some performance improvements in practice. Also,
in the case of UDP, even if a fraction of our mined points are not deliv-
ered successfully we expect the attack to still succeed with a possibly longer
runtime.

6.3 Measurements and Observations
In this section, we report our findings in running Klondike. First of all,
we compared the diffent syncing strategies and heuristically observe that
while Stakhanov sync (Algorithm 15) often mines more distinguished points
than what it is required, in a local setting this number of points is only
marginally higher than βw (by at most 1%). Since Stakhanov ensures that
processing units are always active, we recommend using it over NoBiggie
sync (Algorithm 14) in most settings. When running in a distributed setting
instead we observe that the number of points mined per function version is

77

6. Distributing vOW & Klondike

Figure 6.1: Flamegraph of a distributed execution of Klondike. Parameters n = 232, w = 224.
Run with 20 cores on Alishan, 20 on Daisen, orchestrator on Iwo. Algorithm 4 is responsible of
55.87% of the runtime, Algorithm 5 of 4.96%, and Algorithm 7 of 31.44%. Recorded on Alishan.

often much higher than what desired, from 50% to 700%, with this number
increasing when bandwidth is decreased.

We have profiled the run of the application in a few settings, and shown
the resulting flamegraphs in Figures 6.1 to 6.3.

The relevant network topology is that Daisen and Alishan are on the same
local area network, Iwo is also on the university network but not in the same
local network, finally Choripan is a personal server not directly connected
with the other two. As such, we expect the network connection to Chori-
pan to be the most congested. What the flamegraphs show is that in this
new distributed setting the cost of writing point to memory becomes very
significant. Compare Figure 5.1 to Figures 6.1 to 6.3. The cost of writing to
memory in the local case accounted for less than 2% of the runtime, while
in the distributed case it is between 31% to 37%. In fact, note that in ev-
ery distributed instance, despite the bandwidth being very different, the
share of computation devoted to sending point remains quite similar. For

78

6.4. Improvements

Figure 6.2: Flamegraph of a distributed execution of Klondike. Parameters n = 232, w = 224.
Run with 20 cores on Alishan, 4 on Iwo, orchestrator on Daisen. Algorithm 4 is responsible of
56.6% of the runtime, Algorithm 5 of 3.8%, and Algorithm 7 of 31.35%. Recorded on Alishan.

reference, the bandwidth between Alishan and Daisen is 200 MB/s, while
that between Alishan and Iwo is 95 MB/s, and that between Alishan and
Choripan is 30 MB/s. The similar share is explained by the fact that, in a
bandwidth constrained setting, triples are dropped. In our estimates, in a
run between Alishan and Choripan, only 1 in 4 triples sent from Alishan
actually is delivered to Choripan. Instead, almost every triple sent from
Choripan to Alishan arrives to destination.

6.4 Improvements

In this section, we sketch some of the possible improvements and/or mod-
ifications to Klondike that we did not have time to test in detail, and that
we leave for future development. First of all, in our implementation a UDP
packet is sent for each distinguished point that has to be sent. Each packet

79

6. Distributing vOW & Klondike

Figure 6.3: Flamegraph of a distributed execution of Klondike. Parameters n = 232, w = 224.
Run with 64 cores on Alishan, 2 on Choripan, orchestrator on Daisen. Algorithm 4 is responsible
of 56.76% of the runtime, Algorithm 5 of 2.84%, and Algorithm 7 of 37.45%. Recorded on
Alishan

has 28 bytes of header information, so for small triples most of the packet
consists of header information. For n = 232, for example, a triple is on the
order of 12 bytes so only a third of the packet is used for the payload. An
obvious solution to this issue is buffering the triples, sending more than one
per packet. As future work, we aim to investigate the performance benefits
of this optimization. Secondly, we have chosen to use UDP for our imple-
mentation, and we do believe this is the optimal choice. However, experi-
ments show that, under heavy network load, a majority of the packets are
silently dropped by the network, leading to wasted computation. It could
be worthwhile establishing whether TCP’s reliability would offer benefits,
and whether this outweighs its additional costs.

80

Chapter 7

Case Study: SIKE

The Supersingular Isogeny Key Exchange [JAC+20] was a key encapsu-
lation scheme, currently in 4th round of the National Institute of Stan-
dards and Technology (NIST) competition for Post Quantum Cryptogra-
phyic primitives. SIKE security relied on the difficulty of the Computa-
tional Supersingular Isogeny (CSSI) problem, and until very recently the
best known attack (classical or quantum) on this assumption was Algo-
rithm 9 ([CLN+20] [ACC+19] [JS19]). Recently, [CD22] showed a classical
polynomial time attack on CSSI when the endomorphism ring of the starting
curve is known (as in SIKE). The limitation of the attack was then rapidly
lifted firstly the subexponential attack of [MM22] and then by a polynomial
time attack in [Rob22]. This line of work showed that the CSSI problem is in
fact solvable in polynomial time, and as such SIKE is insecure.

In this section, we will be introducing CSSI and the related Supersingular
Isogeny Path Problem (SIPP). SIPP is known from [EHL+18] to be equiv-
alent to the Supersingular Smooth Endomorphism Problem on which the
soundness of SQISign [DKL+20] relies. Currently, the best attack on SIPP is
still Algorithm 9, which makes it a viable candidate for our investigation.

7.1 Preliminaries

This section is inspired by [GV17] and general references can be found in
[Sil09]. If G is a group and H is a subgroup of G we write H ≤ G. Let p > 3
be a prime, q = pn for n > 0. Recall that there exists a unique field Fq with q
elements, and we denote by Fq its algebraic closure. An elliptic curve over
Fq is given by two coefficients A, B ∈ Fq and is defined as set of points

E(Fq) = {(x, y) : y2 = x3 + Ax + B} t {∞}

81

7. Case Study: SIKE

where ∞ is the point at infinity. To any elliptic curve we associate the dis-
criminant and the j-invariant which are defined as

∆ = −16(4A3 + 27B2), j(E) = −1728
(4A)3

∆

If ∆ = 0, the curve is singular. From now on, all considered curves will be
non-singular. Any elliptic curve has an associated abelian group structure
with identity ∞, which we write additively. In particular, we denote addition
of two points P, Q ∈ E(Fq) as P + Q, the inverse of a point as −P and scalar
multiplication by k ∈ Z as [k]P. An elliptic curve E over Fq is supersingular
if and only if |E(Fq)| ≡ 1 (mod p). For k ∈ N, we let E[k] = {P ∈ E(Fq) :
[k]P = ∞} be the k-torsion subgroup of E. If p - k then |E[k]| = k2 and
E[k] ∼= Zk ×Zk as a group.

A morphism of elliptic curves is f : E → E′ is a function that map points
of E to points of E′ and can be described as ratios of polynomials. An
isomorphism f : E → E′ is a morphism which also maps f (∞) = ∞ and
whose inverse is also a morphism. j(E) = j(E′) if and only if there exists an
isomorphisms f : E→ E′.

Any supersingular curve over Fp is isomorphic to one over Fp2 and as
such all the supersingular j-invariants are in Fp2 . There are approximately
p/12 supersingular j-invariants.

An isogeny between E and E′ is a morphism ϕ : E → E′ that satisfies
ϕ(∞) = ∞, in this case we say that E and E′ are isogenous. It can be shown
that an isogeny is also a group homomorphism. We also say that an isogeny
is defined over Fq if the isogeny is given as a rational function of poly-
nomials in Fq[x, y]. Tate’s isogeny theorem proves that two elliptic curves
defined over Fq are isogenous over Fq if and only if |E(Fq)| = |E′(Fq)|. The
degree of an isogeny is the size (as a set) of its kernel1, and is multiplica-
tive over composition, in the sense that deg ϕ ◦ ψ = deg ϕ · deg ψ. For any
k ∈ N, the map [k] : E → E defined as P 7→ [k]P is an isogeny. For any
isogeny ϕ : E → E′ there exists a unique dual isogeny ϕ̂ : E′ → E such that
ϕ ◦ ϕ̂ = [deg(ϕ)].

Every isogeny ϕ : E → E′ has a finite kernel G = ker(ϕ) ≤ E(Fq). Con-
versely, every finite subgroup G of E(Fq) determines a unique (up to com-
position with isomorphisms) isogeny ϕ : E → E/G with ker(ϕ) = G. If
G ⊆ E(Fq) then ϕ is defined over Fq. Vélu’s formulas allow us to compute
ϕ and E/G in time linear in |G|. In practice, we would like to compute
isogenies of large degree, and as such we will not be able to apply these
formulas directly. However, we can decompose long isogenies into shorter

1This is true for separable isogenies, and in this exposition we will only consider that
kind.

82

7.2. Isogeny Problems

ones. A separable isogeny ϕ : E→ E′ can be written as ϕ = ϕ1 ◦ · · · ◦ ϕk ◦ [n]
and, by multiplicativity of the degree, deg(ϕ) = n2 ∏k

i=1 deg(ϕi). In practice,
this means that we can compute an isogeny of degree ℓe as a composition of
e ℓ-isogenies, at cost O(e · ℓ) compared to O(ℓe). In fact, [BDLS20] recently
showed how to improve the cost of computing an isogeny of prime degree
ℓ in O(

√
ℓ), reducing the cost of the isogeny to O(e ·

√
ℓ).

7.2 Isogeny Problems
We now can introduce a (now) easy problem on isogenies and an hard one.

Problem 7.1 Let p be a prime, with p = 2e23e3 − 1, ℓ ∈ {2, 3}, E and E′ two su-
persingular elliptic curves defined over Fp2 which are ℓeℓ-isogenous via an isogeny
ϕ : E → E′. Let P, Q be two generators for E[ℓeℓ]. The computational supersin-
gular isogeny problem is the following: given p, ℓ, E, E′, ϕ(P), ϕ(Q), compute ϕ.

Note in particular that in CSSI we are given the image of ϕ on the gen-
erators of E[ℓeℓ], via the points ϕ(P), ϕ(Q) ∈ E′. Those points are referred
to as torsion points, and this information is crucial in the attacks of [CD22],
[MM22] and [Rob22].

A related problem that does not reveal those torsion point is given next,
slightly generalized for the setting of [DKL+20].

Problem 7.2 Let p be a prime, E and E′ two supersingular elliptic curves defined
over Fp2 which are isogenous via an isogeny ϕ : E → E′ of order d with known
factorization. The supersingular isogeny path problem is the following: given
p, d, E, E′, compute ϕ.

To our knowledge, the best known attack on Problem 7.2 is still based on
Algorithm 9, and we will be showing this attack in the next section, and
analyzing its runtime. As previously mentioned, this problem is not only of
theoretical interest: soundness of the SQISign signature scheme [DKL+20]
relies on an equivalent problem to a version of Problem 7.22.

7.3 An attack on SIPP

Remark 7.3 The literature of attacks on Problem 7.1, 7.2 starts in [DJP11], which
phrased the problem as a claw finding problem, that is, given two function f : A→
B, g : B → C, computing a pair (a, b) ∈ A × B such that f (a) = g(b). In
the classical case, the optimal black-box asymptotics for solving such problem are
O(|A| + |B|), while in the quantum case an algorithm due to [Tan09] improves
this to O(3

√
|A||B|). However, successive work by [ACC+19] showed that, while

2Only changing the prime

83

7. Case Study: SIKE

classical claw finding attacks had the best runtime, the storage costs that it imposed
were large enough as to make the attack unfeasible in any reasonable cost model.
They proposed instead a new cryptanalytical model, in which the attacker only has
access to a large (but limited) amount of memory, in the order of 280 units of storage,
and analyzed concrete attacks on SIKE in that setting, concluding that Algorithm 9
would be the best classical algorithm for tackling Problem 7.23. On the quantum
side, [JS19] showed that, under a hypothetically more accurate modelling of quan-
tum memory, known quantum algorithms do not have significant advantages over
Algorithm 9 in solving Problem 7.2.

Motivated by Remark 7.3, we here present how to leverage Algorithm 9
to solve Problem 7.2. This general attack was first described by [ACC+19],
and later refined by [CLN+20], on whose version we base our description.

We assume that we are given a prime p, and two supersingular elliptic
curves E0, E1 that are d-isogenous. We assume that the factorization of d is
known so that d = ∏k

i=1 pei
i for pi (small) known primes. Assuming that

p - d, we have that E[d] ∼= Zd × Zd. Note that Zd
∼=
⊕

i Zp
ei
i

and so the

number of subgroups of E[d] of order d is exactly ∏i=1(pi + 1)pei−1
i . Now,

let us select d0, d1 such that4 d0 ≈ d1 and d0d1 = d. The main idea of the
attack is the following. Consider the d-isogeny ϕ : E0 → E1 that we are
hoping to find. We can write φ = ψ̂ ◦ θ for a d0-isogeny θ : E0 → E′ and a d1-
isogeny ψ : E1 → E′, with E′ an unknown curve. Since ψ̂ can be efficiently
computed from ψ, finding θ, ψ leads directly to finding the secret φ. Note
now that E′ can be reached from Ei by an isogeny of degree di, so what
this suggests is computing the j-invariants of curves reached in this manner
until an intersection of this form is found. Let us make this more formal.

Let us write di = ∏k pei,k
k for i = 0, 1 so that e0,k + e1,k = ek.

Define Si = {K : K ≤ E[di] is cyclic, of order di}. Then consider the set
Ri = {j(Ei/K) : K ∈ Si}. By a reasoning as before this set has size |Ri| =
∏k(pk + 1)pei,k−1

k . In our choice of d0, d1 we also want to ensure that |R1| ≈
|R2|. Now, since we can decompose φ = ψ̂ ◦ θ, we know that |R0 ∩ R1| > 0,
and, since |Ri| � p/12 which is the size of the set of the j-invariants of
all supersingular curves, we can assume that |R0 ∩ R1| = 1, i.e. there is
a unique curve E′ that is reachable from both E0, E1 with a small degree
isogeny. Finding this curve can be done via claw-finding (for example, let
fi : Si → Fp2 be the map K 7→ j(Ei/K) and look for a claw) but we would
like to reduce our memory footprint.

Without loss of generality5, let |S0| ≥ |S1| and let N ≜ |S0|. We assume
3In fact, at the time this was best attack against Problem 7.1 as well
4We will also require a further condition, but more on this later
5And without much efficiency problem, since the assumptions that |R0| ≈ |R1| implies

that |S0| ≈ |S1| by the correspondence of isogenies and subgroups.

84

7.4. Efficient Isogeny Implementation

that we have maps ιi : [N] → Si (ideally, ι0 is an injection and ι1 is an
injection composed with the modulo operation [N]→ [|S1|]).

We build a set S : {0, 1} × [N], and define the map f : S → Fp2 as
mapping (i, x) 7→ j(Ei/ιi(x)). We also define our golden collision test
gold f : Coll (f) → {0, 1} as mapping ((i, x), (i′, x′)) 7→ i 6=? i′, i.e. test-
ing whether the f -collision originated from two different curves.

By our definition of versioning with Algorithm 9, it is easy to see that a
golden collision for f is a pair (0, x), (1, x′) with j(E0/ι0(x)) = j(E1/ι1(x′))
and from that we can then compute the isogenies ψ, θ and thus the secret
isogeny.

Remark 7.4 Note that, as mentioned in Remark 3.36, since S has some special
structure, we should adapt Algorithm 10 and Algorithm 11 accordingly.

As such, we can apply Algorithm 9 to solve Problem 7.2. What would
be the complexity of this? Recalling our models from Chapter 5 we know
that asymptotically the cost of the attack when using w memory cells is
O(|S|3w−1/2). |S| = 2N and depends crucially on the choice of d, d0, d1.
For example, in the case of SIKE we have that d = 2e ≈ p1/2, and that
d0 ≈ d1 = 2e/2 and as such N = 3 · 2e/2 ≈ p1/4 so that the final asymptotic
cost of the attack is O(p3/4w−1/2) evaluations of f . In general if we can select
d0, d1 close in value and as thus approximately equal to

√
d we can mount

the attack with O(d3/2w−1/2) functions evaluations.

The cost of evaluating f is dominated by the cost of di-isogeny com-
putations, which is O(∑k ei,k

√
pk) field operations using the techniques of

[BDLS20]6. In order for this to be efficient (which is also desirable construc-
tively) we would like for E[di] to be defined over a small field extensions of
Fp, and we will assume this for the remainder of this chapter.

7.4 Efficient Isogeny Implementation

The asymptotic analyses mentioned in Chapter 5 give an estimate of the
costs of running Algorithm 9 in terms of function evaluations. As such, in
order to give a pratical estimate of the cost of breaking Problem 7.2, it is
important to understand the cost of computing isogenies of a given degree.
Our starting point in doing so is the Microsoft’s [PQC] library, which pro-
vides an optimised constant time implementation of both SIDH and SIKE,
for the parameter sets specified in the SIKE spec, namely p434, p503, p610,
and p751.

6In fact, for pi < 100, [DKL+20] suggest that using naı̈ve technique might be faster.

85

7. Case Study: SIKE

As part of our contributions, we have also provided support for p217, and
optimised such implementation for x64 platforms. The repository will be
available as supplementary material to this work.

7.4.1 Efficient Field Operations

The distinct form of SIKE primes allows for a number of optimisations in
implementing arithmetic over both Fp and Fp2 . The current state of the art
is due to Longa [Lon22], in this section we will be sketching the core of
their results and how it is applied in the implementation of p217. Recall
that in SIKE the characteristic of the base field has a special form, namely
p = 2e23e3 − 1. Computation in SIKE is over Fp and Fp2 , and as such central
to the efficiency of the scheme is efficient arithmetic in that setting.

For consistency with [Lon22], in this section we will let w be the word size
of the processor, which in our case will be 64 bits. We will let l ≜ dlog (p)e,
n ≜ dl/we and N ≜ nw.

The core of the arithmetic is Montgomery multiplication [Mon85]. Let
p be a prime, and suppose that we wanted to compute in Fp. We define
R ≜ 2N and p′ = −p mod R. For a value a ∈ Zp we define its Montgomery
representation as ã = aR mod p. Note that for a, b ∈ Zp we have that

ã + b = ã + b̃. In the case of multiplication, let us assume that ãb̃ < pR.
Then ãb̃ = abR2 mod p 6= abR mod p = ãb. Instead, we would like to
compute the Montgomery residue c = ãb̃R−1 mod p = abR mod p. This
can be done by computing

c =
(
ãb̃ + (ãb̃p′modR) · p

)
/R

Note that since R = 2N the division and the modulo can be computed very
efficiently.

To compute this residue, an interleaved approach can be taken. We set
r = 2w as the radix7, and compute c in an iterative manner. We represent
a = (an−1, . . . , a0)r in its base r representation, and we set c := 0, in each
iteration computing

c :=
(
c + ãi b̃ + (c + ãi b̃p′modr) · p

)
/r

for i going from 0 to n− 1.

Finally, the main contribution of [Lon22] is the fact that this interleaved
computation can be used to compute efficiently sums ∑t−1

i=0 aibi (under some
conditions). The full algorithm is presented in Algorithm 20

7[Lon22] used a slightly different formulation in which r = 2Bw, but in our setting B = 1
is sufficient

86

7.4. Efficient Isogeny Implementation

Algorithm 20: [Lon22] Algorithm 2

Data: A prime p. w, R, l, r, p′ as before. A list of integers
(a0, . . . , at−1), (b0, . . . bt−1) with ai, bi ∈ [0, 2p) and
0 ≤ ∑i aibi < pR. Integers are in radix r, so ai,j is the j-th r-word
of ai.

Result: The Montgomery residue c = ∑i aibi · Ri−1 mod p with
c ∈ [0, 2p)

u := 0;
for j = 0 . . . n− 1 do

u := ∑t−1
i=1 ai,jbi;

q := up′ mod r;
u := (u + qp)/r;

end
return u

Algorithm 21: [Lon22] Algorithm 4

Data: A prime p = 2e23e3 − 1. w, R, l, r, p′ as before. z ≜ be2/wc,
p̂ ≜ (p + 1)/2zw. A list of integers (a0, . . . , at−1), (b0, . . . bt−1)
with ai, bi ∈ [0, 2p) and 0 ≤ ∑i aibi < pR. Integers are in radix r,
so ai,j is the j-th r-word of ai.

Result: The Montgomery residue c = ∑i aibi · Ri−1 mod p with
c ∈ [0, 2p)

u := 0;
for j = 0 . . . n− 1 do

u := ∑t−1
i=1 ai,jbi;

q := up′ mod r;
u := bu/rc+ 2(z−1)wq · p̂;

end
return u

Remark 7.5 Note that integers are represented as being in the range [0, 2p) instead
of the more traditional [0, p). This allows to elide a conditional subtraction after
multiplication to bring the result back in that range.

Since the prime p for SIKE has a special form, we can enable some opti-
mizations. First, p′ ≡ 1 (mod r). Second, the prime p will start with some
number z of zeros, so we can replace multiplication by p with multiplication
by the much smaller value p̂ ≜ (p + 1)/2zw. In brief, the final algorithm is
presented in Algorithm 21

Finally note that if we take Fp2 = Fp(i) for i2 − 1 = 0 then we can write
multiplication in Fp2 as (a + bi)(c + di) = ac− db + (ad + bc)i, and so can

87

7. Case Study: SIKE

Operation p217 p434
Fp Addition 30 30

Fp Subtraction 30 30
Fp Multiplication 54 107

Fp Inversion 9637 48388
Fp2 Addition 31 40

Fp2 Subtraction 30 33
Fp2 Multiplication 137 307

Fp2 Inversion 9927 49705

Table 7.1: Number of cycles for common operations over Fp, Fp2 . Measured on AMD Ryzen
3950X 16-Core Processor. Averaged over a million iterations

Operation p217 p434
Point Doubling 693 1661
Point Tripling 1373 3329

4-isogeny computation 437 900
4-isogeny evaluation 923 2233

3-isogeny computation 628 1507
3-isogeny evaluation 668 1728

Table 7.2: Number of cycles for common operations in SIKE. Measured on AMD Ryzen 3950X
16-Core Processor. Averaged over a million iterations

be computed as applying Algorithm 21 to the sums ac− db and ad + bc.

We have implemented this for p217 and have collected (and compared
with SIKEp434) the cost of operations in Fp and Fp2 in Table 7.1.

On top of these, we also have measured the cost of computing isogenies
and common elliptic curves operation using our implementation. The re-
sults are shown in Table 7.2

7.5 Attack Models

Before presenting our estimates, it is crucial to fix our attack model. In this
section we propose a few different models for attacking Problem 7.2 (as such
without torsion point information) using Algorithm 9. In each case, we will
be looking at instantiations of SIPP in which p, d are of the form of SIKE,
since that is where we have investigated the cost of evaluating the attack
function f . Some of the models will be mainly local, and as such can be
compared to other models in the literature, while others will be distributed,
and, as far as we know, are novel.

88

7.6. SIKEp217

Name Target L w Cost of f Bandwith
Academic p217 [216, 228] [234, 247] 65 µs 20 GB/s

Nation State p434 [254, 264] [272, 280] 3 ms 1 TB/s

Table 7.3: Local models for attackers on Problem 7.2. Target reflects whether the target
instance has p, d as in p434 or p217. Memory size in units where a unit is approximately 2 log n
bits for n ≈ p1/4

Name Target Nodes ∑i Li w Cost of f L. Bandwidth R. Bandwidth
Even Share p217 8 [219, 231] [237, 250] 65 µs 20 GB/s 20 MB/s
2 Compute p217 3 [219, 231] [237, 250] 65 µs 20 GB/s 20 MB/s
8 Compute p217 9 [219, 231] [237, 250] 65 µs 20 GB/s 20 MB/s

Table 7.4: Distributed models for attackers on Problem 7.2. Target reflects whether the target
instance has p, d as in p434 or p217. Li refers to computing units per node. Memory size in
units where a unit is approximately 2 log n bits for n ≈ p1/4

The local models are specified in Table 7.3. Some notes on why we chose
those numbers. For the academic model the ranges of processors start from
approximately the total number of cores on the Euler [Eul] cluster to the
number of cores on the Sugaku Supercomputer [Sug]. Memory similarly
ranges from very little (around 32 GB) to the 4.85 PB of Sugaku. The cost
of an evaluation is what we measured on a local machine, and the memory
bandwidth is standard for DDR4 RAM modules. For the nation state model
we used the same range as [ACC+19] for processors and memory units, and
assumed that the attacker can access the whole of its memory at L1 memory
bandwidth. For the cost of function evaluations, we have taken the estimate
of [LWS21] for ASIC implementations of SIKEp434.

As for the distributed setting we propose a number of models, shown in
Table 7.4. For simplicity, in the distributed case we have focused on the
p217. We assume the same time costs for function evaluation as in the local
case, and fix the bandwidth between two nodes to 20 MB/s, as suggested
by our measurements. The three models differ in the following way. The
Even Share model shares computing units and memory evenly between the
8 nodes. The 2 Compute model share computing units evenly between the
three nodes, but places all of the memory in a single node. The 8 Compute is
similar to the 2 Compute node but 8 nodes are used instead for computation.
In both cases, we will be using Model 5.2 as our underlying model.

7.6 SIKEp217

First of all, let us see what the cost of breaking Problem 7.2 would be in a
local setting using our academic attack model. We have collected the esti-
mates in Figure 7.1, showing the estimates in years to break p217 under our

89

7. Case Study: SIKE

(a) Without storage cost

academic models, and plotting the slowdown when accounting for storage.
As it is evident from Figure 7.1c, as the capabilities increase, the ‘slow’ local
memory becomes a bottleneck.

Finally, in Figure 7.2 we have shown the cost of breaking p217 in a dis-
tributed attack within the models of Table 7.4. Note that even if these models
allow 8 times the computing resources of the original local model, the costs
imposed by the slow networked connections are very noticeable. Compared
to equivalent resources, in Figure 7.2a, this is anywhere between a 10 to
a 83 time slowdown, which increases when L, w increase. As such, if the
network’s bandwidth does not scale accordingly it rapidly becomes a very
noticeable bottleneck. Comparing with Figures 7.2b and 7.2c, moving all
the memory to a single node seems to have a noticeable improvement in the
running time of the attack, and increasing the number of nodes (while keep-
ing total number of processors and memory equal) increases still the cost of
the attack8. As such, our reccomendation for running vOW’s algorithm in
a distributed setting is to try to have a few large memory nodes, and few

8This is caused mostly by the fact that comparatively fewer computational resources are
available for backtracking. In fact, these particular models likely undershoot the costs that
would originate by using more nodes, since they assume that pairwise bandwidth between
peers remains constant. Most likely in a real world setting adding more nodes would reduce
the available bandwidth at a node and as such reduce the pairwise bandwidth accordingly.

90

7.6. SIKEp217

(b) With storage cost

(c) Relative Slowdown

Figure 7.1: Cost estimates for breaking Problem 7.2 with p217 parameters using the Academic
model of Table 7.3. Estimates in years

91

7. Case Study: SIKE

(a) Even Share

powerful compute nodes.

7.7 SIKEp434
We have also applied our cost model estimates to p434 in the context of the
Nation State Attacker of Table 7.3, and we report our findings in Figure 7.3.
What the models suggest is that, especially when the attacker capabilities
increase, memory becomes the bottleneck, and this increases the cost of
attacking the SIPP problem noticeably. In particular, Figure 7.3c shows that
breaking SIPP with p434 is approximately 8-bits more costly than previously
estimated. We also note that the Nation State model that we are considering
here makes a strong assumption, namely that an attacker is able to access
an extremely large memory at the same bandwidth as that guaranteed by a
L1-cache which can generally only store on the order of hundreds of KBs of
data. We stress that hardware design for achieving such bandwidth is out
of the scope of the work, and out of our area of expertise, but it does seem
plausible that practical attacks will be much more memory limited, and as
such attacking SIPP might be even harder than what this analysis predict.

92

7.7. SIKEp434

(b) 2 Compute

(c) 8 Compute

Figure 7.2: Cost estimates for breaking Problem 7.2 with p217 parameters using the Distributed
models of Table 7.4. Estimates in years 93

7. Case Study: SIKE

(a) Without storage cost (b) With storage cost

(c) Relative Slowdown

Figure 7.3: Cost estimates for breaking Problem 7.2 with p434 parameters using the Nation
State model of Table 7.3. Estimates in (log)-years

94

Appendix A

Appendix

A.1 Failed Approaches in Saving Memory on Function
Switches

Recall that, in Algorithm 9, the function version is switched after βw distin-
guished points have been collected, which essentially entails replacing fk to
fk+1 and (explicitly or implicity) clearing the memory. As we have seen in
our analysis, and as mentioned in [vW94]’s analysis, collisions are detected
most efficiently when the memory is full, so this operation essentially dis-
cards the useful work done so far and requires some time for the algorithm
to start finding collisions again. A natural question that we can ask then is
the following:

Question A.1 Is it possible to save some of the distinguished points that are stored
in memory between function versions?

At the start of this work we had investigated a few ways to achieve this aim,
and discarded most of them for various reasons. In this appendix we sketch
the two most promising approaches and their pitfalls, in the hope to inspire
future work in this direction.

First of all, the correctness of Algorithm 5 relies crucially on the fact that
the two trials are computed with the same version. So, if (x0, xd, d) is mined
in function version k and (x′0, xd′ , d′) is mined with version k′ and xd = xd′ ,
no collision can be found if k 6= k′. So, if we want to successfully reuse points
mined with the previous function version, it is important that fk|U = fk+1|U
for some U ⊆ f . Not only that, but since backtracking is only done when a
distinguished point is found, also the distinguished check Dist.isDist should
agree for at least a subset of Dist.D (ideally the subset of points kept in
memory).

Recall from Definition 3.30 that the main reason for switching function
versions is to prevent ‘unlucky’ functions in which the golden collision is

95

A. Appendix

hard to find. The reason for which a golden collision can be hard to find are
essentially two. Suppose that (in a given function version) the collision is of
the form x → i ← x′, i.e. f (x) = i = f (x′) for x 6= x′. Algorithm 8 will find
the collision if it samples two trails, one containing x and one containing x′.
That is increasing likely if x, x′ are on a long ‘path’ of function evalutions.
These long paths exist exactly when x, x′ are far from distinguished points
and extremal points. Extremal points are points in the function graph that
have no incoming edges, i.e. a point p is extremal iff ∀x ∈ S : f (x) 6= p.

Our first method is to modify the distinguished test Dist.isDist. When
switching function version, we do not in fact change the function (at least,
not on every switch), but modify the test. Let Dist.isDistk be the test for
the current function version and ˜Dist.isDistk+1 be the distinguished tests de-
scribed in Algorithm 11. We define

Dist.isDistk+1(x) =

{
˜Dist.isDistk+1(x), if binS(x) starts with 1

Dist.isDistk(x), otherwise
.

In essence, for a half of S the distinguished test agrees with the old test,
while for the other half a new fresh test is used. The effect of this is to
partially rerandomize where the distinguished nodes in the function graph,
which should make sure that if a golden collision is ‘close’ to a distinguished
points, it will not be with high probability in the next function version. The
positives of this technique is that it can be implemented very efficiently, with
minimal changes. The negative is that the function graph is not randomized
at all, but only where some of these distinguished point lie. As such, ex-
tremal points remain the same, and golden collisions near an extremal point
remain a problem. A quick estimate also shows that in fact the probability
that a random point is extremal is very high (=

(
1− 1

n

)n ≈ e−1), and so we
expect that extremal points account for a large part of the ‘bad cases‘.

The second approach would be to modify partially the function itself. A
strategy that we investigated was using a Bloom filter [Blo70]. A Bloom
filter is a probabilistic datastructure that allows to test efficiently whether an
element was inserted into it, trading space cost with the possibility of false
positives. The idea that we sketched was to build incrementally a Bloom
filter during the mining operations, and use that to fix the value of fk+1 to
equal fk on a chosen subset of S. What makes this challenging is that the
value of fk has to be fixed not only on the distinguished points in memory,
but also on the trails computed so far, which makes the number of points
needed to be stored very high. For example, some back of the envelope
calculation estimated that with p217-like parameters a Bloom filter as large
as the memory itself would be needed just to reuse 1/255 of the points
stored in memory, which is clearly not a worthy tradeoff.

96

A.1. Failed Approaches in Saving Memory on Function Switches

We hope that these ideas, here deliberately left vague, will enable future
research in this direction, and yield practical improvements in vOW’s run-
time.

97

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Mod-
ern Approach. Cambridge University Press, 2009. 8

[ACC+19] Gora Adj, Daniel Cervantes-Vázquez, Jesús-Javier Chi-
Domı́nguez, Alfred Menezes, and Francisco Rodrı́guez-
Henrı́quez. On the cost of computing isogenies between
supersingular elliptic curves. In Carlos Cid and Michael J.
Jacobson Jr:, editors, SAC 2018, volume 11349 of LNCS, pages
322–343. Springer, Heidelberg, August 2019. 81, 83, 84, 89

[BBB+09] Daniel V. Bailey, Lejla Batina, Daniel J. Bernstein, Peter Birkner,
Joppe W. Bos, Hsieh-Chung Chen, Chen-Mou Cheng, Gauthier
van Damme, Giacomo de Meulenaer, Luis Julian Dominguez
Perez, Junfeng Fan, Tim Güneysu, Frank Gurkaynak, Thorsten
Kleinjung, Tanja Lange, Nele Mentens, Ruben Niederhagen,
Christof Paar, Francesco Regazzoni, Peter Schwabe, Leif Uh-
sadel, Anthony Van Herrewege, and Bo-Yin Yang. Breaking
ECC2K-130. Cryptology ePrint Archive, Report 2009/541, 2009.
https://eprint.iacr.org/2009/541. 75

[BDLS20] Daniel J. Bernstein, Luca De Feo, Antonin Leroux, and Ben-
jamin Smith. Faster computation of isogenies of large prime
degree. Cryptology ePrint Archive, Report 2020/341, 2020.
https://eprint.iacr.org/2020/341. 83, 85

[Blo70] Burton H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Commun. ACM, 13(7):422426, jul 1970. 96

[Bre80] Richard P. Brent. An improved monte carlo factorization algo-
rithm. BIT, 20(2):176–184, June 1980. 26

99

https://eprint.iacr.org/2009/541
https://eprint.iacr.org/2020/341

Bibliography

[CD22] Wouter Castryck and Thomas Decru. An efficient key recov-
ery attack on SIDH (preliminary version). Cryptology ePrint
Archive, Report 2022/975, 2022. https://eprint.iacr.org/
2022/975. 3, 81, 83

[CLN+20] Craig Costello, Patrick Longa, Michael Naehrig, Joost Renes, and
Fernando Virdia. Improved classical cryptanalysis of SIKE in
practice. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden,
and Vassilis Zikas, editors, PKC 2020, Part II, volume 12111 of
LNCS, pages 505–534. Springer, Heidelberg, May 2020. 28, 30,
32, 35, 37, 54, 58, 64, 71, 74, 81, 84

[Cos] Craig Costello. personal communication. 4

[DJP11] Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-
resistant cryptosystems from supersingular elliptic curve isoge-
nies. Cryptology ePrint Archive, Report 2011/506, 2011. https:
//eprint.iacr.org/2011/506. 83

[DKL+20] Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit,
and Benjamin Wesolowski. SQISign: Compact post-quantum sig-
natures from quaternions and isogenies. In Shiho Moriai and
Huaxiong Wang, editors, ASIACRYPT 2020, Part I, volume 12491
of LNCS, pages 64–93. Springer, Heidelberg, December 2020. 81,
83, 85

[Dwo15] Morris J. Dworkin. SHA-3 standard: Permutation-based hash
and extendable-output functions. Technical report, July 2015. 39

[EHL+18] Kirsten Eisenträger, Sean Hallgren, Kristin E. Lauter, Travis Mor-
rison, and Christophe Petit. Supersingular isogeny graphs and
endomorphism rings: Reductions and solutions. In Jesper Buus
Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part III,
volume 10822 of LNCS, pages 329–368. Springer, Heidelberg,
April / May 2018. 81

[Eul] Euler. https://scicomp.ethz.ch/wiki/Euler. Accessed: 2022-
08-26. 89

[Fic81] Faith E. Fich. Lower bounds for the cycle detection problem. In
Proceedings of the thirteenth annual ACM symposium on Theory of
computing - STOC '81. ACM Press, 1981. 26

[GIM] Great internet mersenne prime search. https://www.mersenne.
org/. Accessed: 2022-08-26. 3

100

https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2011/506
https://eprint.iacr.org/2011/506
https://scicomp.ethz.ch/wiki/Euler
https://www.mersenne.org/
https://www.mersenne.org/

Bibliography

[GV17] Steven D. Galbraith and Frederik Vercauteren. Computational
problems in supersingular elliptic curve isogenies. Cryptology
ePrint Archive, Report 2017/774, 2017. https://eprint.iacr.
org/2017/774. 81

[HPS14] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. An Intro-
duction to Mathematical Cryptography. Springer New York, 2014.
15

[JAC+20] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig
Costello, Luca De Feo, Basil Hess, Amir Jalali, Brian Koziel,
Brian LaMacchia, Patrick Longa, Michael Naehrig, Joost
Renes, Vladimir Soukharev, David Urbanik, Geovandro Pereira,
Koray Karabina, and Aaron Hutchinson. SIKE. Tech-
nical report, National Institute of Standards and Technol-
ogy, 2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions. 3, 81

[Jou09] Antoine Joux. Algorithmic Cryptanalysis. Chapman and Hal-
l/CRC, June 2009. 26

[JS19] Samuel Jaques and John M. Schanck. Quantum cryptanalysis in
the RAM model: Claw-finding attacks on SIKE. In Alexandra
Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I,
volume 11692 of LNCS, pages 32–61. Springer, Heidelberg, Au-
gust 2019. 81, 84

[Lon22] Patrick Longa. Efficient algorithms for large prime characteristic
fields and their application to bilinear pairings and supersingu-
lar isogeny-based protocols. Cryptology ePrint Archive, Report
2022/367, 2022. https://eprint.iacr.org/2022/367. 86, 87

[LWS21] Patrick Longa, Wen Wang, and Jakub Szefer. The cost to break
SIKE: A comparative hardware-based analysis with AES and
SHA-3. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,
Part III, volume 12827 of LNCS, pages 402–431, Virtual Event,
August 2021. Springer, Heidelberg. 89

[MM22] Luciano Maino and Chloe Martindale. An attack on SIDH
with arbitrary starting curve. Cryptology ePrint Archive, Re-
port 2022/1026, 2022. https://eprint.iacr.org/2022/1026. 3,
81, 83

[Mon85] Peter L. Montgomery. Modular multiplication without trial divi-
sion. Mathematics of Computation, 44:519–521, 1985. 86

101

https://eprint.iacr.org/2017/774
https://eprint.iacr.org/2017/774
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2022/367
https://eprint.iacr.org/2022/1026

Bibliography

[Mur09] Marian Mureşan. A Concrete Approach to Classical Analysis.
Springer New York, 2009. 22

[Niv04] Gabriel Nivasch. Cycle detection using a stack. Information Pro-
cessing Letters, 90(3):135–140, May 2004. 26

[Pol75] J. M. Pollard. A monte carlo method for factorization. BIT,
15(3):331–334, September 1975. v, 23, 25

[PQC] SIDH v3.5.1 (c edition). https://github.com/microsoft/
PQCrypto-SIDH. Accessed: 2022-08-26. 85

[Rob22] Damien Robert. Breaking SIDH in polynomial time. Cryptology
ePrint Archive, Report 2022/1038, 2022. https://eprint.iacr.
org/2022/1038. 3, 81, 83

[SBH20] Hermann Schweizer, Maciej Besta, and Torsten Hoefler. Evaluat-
ing the cost of atomic operations on modern architectures. 2020.
72

[Sho94] P.W. Shor. Algorithms for quantum computation: discrete loga-
rithms and factoring. SIAM Journal of Computing 26, pages 124–
134, 12 1994. 1

[Sil09] Joseph H. Silverman. The Arithmetic of Elliptic Curves. Springer
New York, 2009. 24, 81

[SP00] Michael Shirts and Vijay S. Pande. Screen savers of the world
unite! Science, 290(5498):1903–1904, 2000. 3

[SSY82] Robert Sedgewick, Thomas G. Szymanski, and Andrew C. Yao.
The complexity of finding cycles in periodic functions. SIAM
Journal on Computing, 11(2):376–390, May 1982. 26

[Sug] Sugaku. https://www.fujitsu.com/global/about/
innovation/fugaku/specifications/. Accessed: 2022-08-
26. 89

[Tan09] Seiichiro Tani. Claw finding algorithms using quantum walk.
Theoretical Computer Science, 410(50):5285–5297, nov 2009. 83

[TID21] Monika Trimoska, Sorina Ionica, and Gilles Dequen. Time-
memory analysis of parallel collision search algorithms. IACR
TCHES, 2021(2):254–274, 2021. https://tches.iacr.org/
index.php/TCHES/article/view/8794. i, v, 5, 19, 32, 40, 58, 59

102

https://github.com/microsoft/PQCrypto-SIDH
https://github.com/microsoft/PQCrypto-SIDH
https://eprint.iacr.org/2022/1038
https://eprint.iacr.org/2022/1038
https://www.fujitsu.com/global/about/innovation/fugaku/specifications/
https://www.fujitsu.com/global/about/innovation/fugaku/specifications/
https://tches.iacr.org/index.php/TCHES/article/view/8794
https://tches.iacr.org/index.php/TCHES/article/view/8794

Bibliography

[vW94] Paul C. van Oorschot and Michael J. Wiener. Parallel colli-
sion search with application to hash functions and discrete log-
arithms. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan,
and Ravi S. Sandhu, editors, ACM CCS 94, pages 210–218. ACM
Press, November 1994. i, v, 2, 5, 27, 28, 29, 30, 31, 32, 33, 35, 37,
39, 40, 54, 57, 58, 60, 61, 95

103

	Contents
	Introduction
	Preliminaries
	Collision Finding Algorithms
	Collisions
	Table Based Collision Finding
	Pollard -method Pollard1975
	van Oorschot and Wiener's Algorithm CCS:VanWie94

	Memory Filling & Function Versions
	Experimental Setup
	Memory filling
	Fill rate
	Updating Function Versions

	Fine-grained cost analysis vOW
	CCS:VanWie94 Model
	TCHES:TriIonDeq21 Model
	Towards a complete model
	Modelling Practical Costs
	Experiments
	Servers
	Busy Waiting vs Sleeping
	Results

	Distributing vOW & Klondike
	Revised Model
	Klondike
	Synchronization
	Memory

	Measurements and Observations
	Improvements

	Case Study: SIKE
	Preliminaries
	Isogeny Problems
	An attack on SIPP
	Efficient Isogeny Implementation
	Efficient Field Operations

	Attack Models
	SIKEp217
	SIKEp434

	Appendix
	Failed Approaches in Saving Memory on Function Switches

	Bibliography

