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Abstract
In this thesis we present a constant-time implementation of NTS-KEM, a
post-quantum secure KEM based on the McEliece and Niederreiter PKE schemes
and currently taking part in the NIST post-quantum cryptography standardization
process. We verified our implementation using ctgrind and show that we achieve
performance suitable for practical use. We present several techniques to achieve
security against timing attacks, and provide insights into the implementation of fast
constant-time algorithms.
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1. Introduction
The advent of quantum computing will usher in successful attacks on till then
secure cryptographic schemes, due to the different computational model of quan-
tum computers. Fortunately, cryptographers have been researching the impact of
this on current cryptographic schemes as well as how to build new, secure cryp-
tographic schemes with this threat in mind. This has resulted in several new
cryptographic schemes.

However, implementations of cryptographic schemes have a long history of being
insecure even if the underlying cryptographic protocols are secure. These issues
range from normal bugs to abstractions in the theoretical model that are not valid
in the real world. One of these issues are so called timing side-channels.

The US National Institute of Standards and Technology (NIST) has also been
aware of the threat posed by quantum computers and started a standardization
process in 2017 [38]. This process has reached its second round in 2019 and will
soon reach its third round.

1.1. Contribution
In this thesis we focused on NTS-KEM [3], a post-quantum secure key-encapsulation
mechanism by Albrecht et al. that is one of the proposals in the second round of the
NIST post-quantum cryptography standardization process. While the NTS-KEM
team took care to provide a secure implementation, the reference implementation
is not fully secure against timing attacks. Our goal was to implement a version
of NTS-KEM that is secure against timing attacks, and if possible to achieve this
without changes to the NTS-KEM specification. Furthermore we also aim for high
performance, to ensure that NTS-KEM is competitive and usable in practice in a
secure way.

1.2. Outline
This thesis is structured as follows. We start with a short note on notation and
prerequisites below. We will then briefly introduce some cryptographic defini-
tions and provide some background on side-channels in Chapter 2. Section 2.3
then gives an introduction into the techniques used to prevent timing based side-
channels. We follow this up in Chapter 3 with a discussion of NTS-KEM and its
implementation as well as timing issues present in it. In Chapter 4 we will present
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1. Introduction

our implementation, followed by a performance evaluation in Chapter 5. In Ap-
pendices A and B we provide some supplementary proofs. Furthermore during the
work on this thesis we identified several bugs in the NTS-KEM [3] implementation
which are listed in Appendix C.

1.3. Notation and Prerequisites
In the following chapters we assume that the reader is familiar with C, as C will
be used for code snippets. We also assume that the reader is familiar with integer
representations in modern computers.

All logarithms are logarithms to the base 2 if not explicitly stated otherwise,
i.e. we write log instead of log2. Nm denotes the subset of N with elements smaller
than m. We include 0 in N. We denote the field with two elements as F2, and an
extension field of F2 with 2m elements as F2m . For any field F, F[x] is the ring of
univariate polynomials over F. We use common notation for vectorspaces, spaces
of matrices and matrix transposition (i.e. Fn

2 , Fk×n
2 , and GT respectively). Vectors

are typeset using bold lowercase (e) and bold uppercase is used for matrices (G).
The i-th row of matrix G is denoted by Gi = (gi,0, gi,1, . . . , gi,n−1). We use hw(e)
to denote the Hamming weight of a vector e. Concatenation of vectors is denoted
by (· | ·), i.e (v | w) := (v0, ..., vn1−1, w0, ..., wn2−1 ).
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2. Background
While we assume some familiarity with basic cryptographic concepts, we will give
the relevant cryptographic definitions in Section 2.1. Furthermore this chapter
introduces the basics of side-channels (Section 2.2), focusing on timing attacks
and cache-timing attacks. We will then introduce concepts of constant-time pro-
gramming as a way to prevent such attacks in Section 2.3.

2.1. Cryptography
In cryptography we distinguish between symmetric and asymmetric cryptography.
Symmetric cryptography uses one key that is used both for encrypting and de-
crypting a message. We omit a detailed discussion of symmetric encryption as it
is not relevant to the issues discussed in this thesis.1

In contrast to symmetric cryptography, asymmetric (or public-key) cryptogra-
phy uses two distinct keys, a public key used for encryption and a private (or
secret) key used for decryption.

Definition 2.1.1 (Public-key Encryption Scheme). A public-key encryption (PKE)
scheme consist of:

• a randomized key-generation function, KGen : ∅ → P × S,

• an encryption function, Enc :M×P ×R → C,

• a decryption function, Dec : C × S →M∪ {⊥},2

so that the following holds:

∀m ∈M, r ∈ R, (pk, sk) = KGen() : Dec(Enc(m, pk; r), sk) = m

We call P the public-key space, S the private-key space,3 M the message space,
C the ciphertext space and R the randomness space.

As the name implies, the public key can be released to the public while the
private key is kept secret. This allows anybody to send encrypted messages to the
entities in possession of the corresponding private key.

1 Interested readers not familiar with these concepts can find formal definitions in common
introductory literature like Introduction to Modern Cryptography by Katz and Lindell [26].

2 ⊥ denotes a decryption error.
3 Also called secret-key space.
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2. Background

To enable security proofs, a PKE scheme is often parameterized with a security
parameter n, usually relating to the length of the (private) key. The usual security
definition requires that an adversary is not able to decide whether a ciphertext c
is the encryption of a message m0 or m1, both chosen by the adversary, even when
given access to a decryption oracle. Formally this is captured in the following
definitions.

Definition 2.1.2 (IND-CCA for PKE). Consider the following game:4

1. The challenger generates a public/private key pair (pk, sk) and the public-
key pk is given to the adversary.

2. The adversary can obtain the decryption of any ciphertexts of his choosing.

3. The adversary chooses two messages m0 and m1 of the same length.

4. The challenger chooses a random bit b ∈ {0, 1} and sends c = Enc(mb, pk)
to the adversary.

5. The adversary can repeat step 2. They may not ask for decryption of c.

6. The adversary outputs a bit b′ ∈ {0, 1}.

Then a PKE scheme Π with security parameter n is called IND-CCA5 secure, if
for any efficient adversary

f(n) = Pr
PKE(Π,n)
[b = b′]− 1

2

is a negligible function.6 Here Pr
PKE(Π,n)
[·] denotes the probability space defined by the

above game, when instantiated with the scheme Π and the security parameter n.

Definition 2.1.3 (IND-CPA for PKE). A PKE scheme Π is called IND-CPA7

secure, if the conditions of Definition 2.1.2 hold, when steps 2 and 5 are removed
from the game.

Note that IND-CCA security implies IND-CPA security.
Public-key encryption is usually based on number theory or other algebraic

structures and the security proofs rely on assumptions about the hardness of un-
derlying mathematical problems, e.g. factoring integers or computing the discrete

4 A game in a security definition is played by two distinct entities, an adversary trying to break
the scheme and an honest challenger.

5 Indistinguishable under Chosen-Ciphertext Attack.
6 A function f is negligible, if it grows slower than any inverse polynomial or formally
∀c ∈ N ∃n ∀x > n : |f(x)| < 1

xc .
7 Indistinguishable under Chosen-Plaintext Attack.
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2.1. Cryptography

logarithm. For example, RSA [42] is easy to break if factoring integers into prime
numbers is computationally easy.

Due to being based on algebraic structures PKE schemes are often significantly
more computationally expensive than symmetric cryptography based on block
ciphers. On the other hand public-key cryptography makes key distribution easier,
since the encryption key does not have to be kept a secret and can be openly
shared. For this reason encryption is often done using symmetric encryption
schemes, where public-key cryptography is used to ensure that all parties have
a secret symmetric key, for example by using a key-agreement protocol or a key
encapsulation mechanisms.

Definition 2.1.4 (Key Encapsulation Mechanism). A key encapsulation mecha-
nism (KEM) consists of:

• a randomized key-generation function, KGen : ∅ → P × S,

• an encapsulation function, Enc : P ×R → K× C,

• a decapsulation function, Dec : C × S → K ∪ {⊥},

so that the following holds:

∀r ∈ R, (pk, sk) = KGen() : (c, k) = Enc(pk; r) −→ Dec(c, sk) = k

We call P the public-key space, S the private-key space, K the symmetric-keyspace,8
C the ciphertext space, and R the randomness space.

Note that a key encapsulation mechanism is not a public-key encryption scheme.
It does not grant the ability to encrypt arbitrary messages directly. However one
can construct a PKE scheme from a KEM by combining it with a symmetric
encryption scheme, that makes use of the encapsulated key, often called KEM-
DEM.9 It is also possible to construct a KEM from a PKE scheme, when the PKE
scheme’s message space is large enough.

For a KEM, security is defined by the adversary’s inability to decide whether
a given ciphertext is the encapsulation of a given key. This is formally stated by
the following definitions:

Definition 2.1.5 (IND-CCA for KEM). Consider the following game:

1. The challenger generates a public/private key pair (pk, sk) and sends pk to
the adversary.

2. The challenger generates a random r ∈ R and (k1, c) = Enc(pk; r), and picks
a random k2 with the same length as k1, and a random bit b ∈ {0, 1}. They
then send (kb, c) to the adversary.

8 also encapsulated-key space.
9 from DEM – Data Encapsulation Mechanism.
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2. Background

3. The adversary can obtain the decapsulation of any ciphertexts of his choos-
ing, except c.

4. The adversary outputs a bit b′ ∈ {0, 1}.

Then a KEM Π with security parameter n is called IND-CCA secure, if for any
efficient adversary

f(n) = Pr
KEM(n)
[b = b′]− 1

2

is a negligible function. Pr
KEM(n)
[·] denotes the probability space defined by the above

game, when instantiated with the scheme Π and the security parameter n.

Definition 2.1.6 (IND-CPA for KEM). A KEM is called IND-CPA secure if the
conditions of Definition 2.1.5 hold when step 3 is removed from the game.

Post-Quantum Cryptography

While the mathematical structure of public-key cryptography is highly beneficial
for provably secure cryptography, the rise of quantum computers threatens their
security.

The security of many common public-key cryptographic algorithms relies on
the hardness assumptions about certain computational problems, often in the
form of a function f , where f(x; pk) is easy to compute but f−1(y; sk) is difficult
to compute without knowledge of sk. (Note that such assumptions are in NP.)

Since it is not known whether BQP, the set of all problems solvable by a quantum
computer in polynomial time with bounded error, is equal to NP, not all public
key cryptography is automatically broken. In fact it is believed that there are
problems that are suitable for cryptographic hardness assumptions.

However, a working quantum computer breaks some common hardness assump-
tions due to Shor’s algorithm [44], which can be used to factor a large number
into primes, or compute the discrete logarithm.

2.2. Side-Channel Attacks
Side-channel attacks usually arise when physical properties of the execution, which
are absent from the theoretical model, can leak secret information to the attacker.
Many physical properties can be used to construct side-channels, like timing [29],
power consumption [30], sound [19], heat [23], and electromagnetic emissions [36].

While most of these require the attacker to be close to their victim, timing
based side-channels can in principle be observed and exploited remotely over the
Internet. Therefore this thesis only treats timing based side-channels.
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2.2. Side-Channel Attacks

Listing 2.1 – Vulnerable array comparison.
1 int arrayEquals(char* a, char* b, int len)
2 {
3 for (int i = 0; i < len; i++) {
4 if (a[i] != b[i])
5 return 0;
6 }
7 return 1;
8 }

Timing Attacks

Timing attacks were the first published side-channel attack, namely an attack
leveraging a timing difference due to the square-and-multiply method used in the
modular exponentiation in Diffie-Hellman, RSA and other systems at the time,
published in 1996 by Kocher [29]. A simple example of a timing attack is array
equality checking (see Listing 2.1). In this example we restrict ourselves to the
case of two arrays of the same length. It is easy to see that the runtime of the
function arrayEquals is directly dependent on how many elements have to be
compared until a difference in the strings is found. Put another way, the runtime
of the function depends only on the length the longest common prefix of a and b.

For an attack sketch, assume the secret b = "password". Then, by trying
strings of the form "aaaaaaaa", "baaaaaaa", ... the attacker can measure the
timing difference between a = "aaaaaaaa" and a = "paaaaaaa" and conclude
that the first character is p. Thus they can infer the whole password by infer-
ring the characters individually, reducing the complexity from 256n to 256 · n.10

Even such a simple example as non-constant-time array comparison is practically
relevant, e.g. until 2009 Java’s standard library had a timing vulnerability in
its method java.security.MessageDigest.isEqual, which is used to compare
hashes [25].

Cache-Timing Attacks

Cache-timing attacks leverage timing differences induced by the cache hierarchy
of modern computers, to infer secrets from secret dependent memory accesses.
They were first described in 2002 by Page [39]

Caches store recently accessed data in a smaller, faster memory unit to speed up
data access times, which are usually orders of magnitudes slower than other CPU
instructions. To increase performance further modern computers usually employ
10 This example overly simplifies the reality of password cracking. In practice, passwords are

usually not chosen uniformly at random over the space of all possible values of the underlying
data type. Thus the base might be significantly smaller than 256. This example can be viewed
as the more general problem of comparing byte arrays.
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2. Background

a hierarchy of caches with increasing size and access time, where each layer in
this hierarchy caches accesses to the next higher level. Essentially caches are a
table consisting of fixed size entries to store the data, where a line in the table is
called a cache line. The data in the cache is identified using the cache line and a
cache tag, both of which are computed from the address of the accessed memory.
This can result in different elements of a data structure, like an array, to live in
different levels of the hierarchy, and thus access times are not uniform, but instead
dependent on the address.

An example relevant to cryptography is the use of look-up tables, as found in
fast implementations of AES [17]. AES uses a 256-byte table (S-boxes) to substi-
tute the input bytes with bytes from the tables, where the substitution pattern is
defined by the secret key. Thus the access pattern depends on the key. By measur-
ing timing differences between different input messages (and additional knowledge
from precomputation on similar hardware) an attacker can then infer the secret
index used to access the table and hence information about the key. In 2004
Bernstein [9] executed such an attack against the OpenSSL AES implementation.

2.3. Constant-Time Programming
The term constant-time programming is used to describe the collection of pro-
gramming techniques used to ensure the absence of timing side-channels. In the
following we will show techniques to ensure that the control flow of a program
is independent from any secrets. We will also discuss how to ensure that basic
operations like comparisons are executed in constant-time. Moreover we will dis-
cuss additional complications arising from compilers. Finally, we will give a short
overview over tools to automatically verify constant-time properties, that might
stop the programmer from falling into one of the many pitfalls of constant-time
programming.

Branches

One of the main causes of side-channel issues are branches. Listing 2.1 gave an
example of this. In that case our branch causes the number of loop iterations to
be different depending on the secret. To avoid this our loop variables may not
depend on secrets. This is already the case in Listing 2.1, though. The issue
is actually an early break (or in this case a return) in the loop body. Thus we
also need to omit early breaks, to ensure that loops always have a bound that
is either fixed or at least only dependent on a public run-time value (as we can
clearly not get rid of all dynamic bounds, e.g. the runtime of any encryption or
hash algorithm that is able to work on arbitrarily long inputs will always depend
on the length of the input).

Applying these fixes to our string compare results in the program shown in
Listing 2.2. Here we use an error flag err to keep track of whether the arrays

8



2.3. Constant-Time Programming

Listing 2.2 – Second version of array comparison.
1 uint32_t arrayEqualsV2(uint8_t* a, uint8_t* b, int32_t len)
2 {
3 uint8_t err = 0;
4 for (int32_t i = 0; i < len; i++) {
5 err |= a[i] != b[i];
6 }
7 return (uint32_t)!err;
8 }

Listing 2.3 – Modular exponentiation using square-and-multiply.
1 // selectBit(x, k) returns the k-th bit of n,
2 // where the most significant bit is the 0-th bit.
3 exp(y, x, n)
4 {
5 s = 1;
6 for (k = 0; k < bitlength(x); k++) {
7 s = (s * s) % n;
8 if (selectBit(x, k)) {
9 s = (s * y) % n;
10 }
11 }
12 return s;
13 }

elements differ while we iterate over all elements. At the end we can then simply
return the negation of the error flag to indicate whether the arrays are equal.

Not only loops are problematic, though. In the end every jump-instruction in
the assembly that depends on secrets is dangerous. This is obviously also the case
for any if/if-else constructs, as was the case in Kocher’s original attack on RSA
[29]. The vulnerable RSA implementation used an approach called square-and-
multiply11 to efficiently compute yx mod n, shown in Listing 2.3. Here Line 9 is
only executed when condition in Line 8 is true, i.e. the k-th bit is set, and thus
this method directly leaks the hamming-weight of x. While we omit the details
of the attack, note that in 1998 Dhem et al. [16] were able to turn this into a
practical attack.

Such an attack is fixed by eliminating the branch and ensuring the operations
are always executed. The result can then be conditionally written to the variable
constant-time conditional assignment. Such an assignment can be realized in sev-
eral ways, the fastest is using a constant-time conditional move (cmove) instruction
when the hardware provides such an instruction (like modern x86 processors). A
11 also binary exponentiation or exponentiation by squaring.
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platform independent way to achieve this is implementing a mux utilizing bitwise
operations:

/**
* c is either 0 or 1.
* returns a if c is 1, b otherwise.

**/
uint64_t mux(uint64_t c, uint64_t a, uint64_t b) {

return b ^ (-c & (a ^ b));
}

Here we use the fact that b ^ b = 0 and thus a ^ b ^ b = a, as well as the
commutativity of ^. Additionally computing -c & a is conditionally returning a
if c is 1 and 0 if c is zero. The minus simply broadcast the 1 in the 0-th bit of c
to all bits by using that the two’s complement representation of -1 is an all-one
bitstring. Putting all this together the return expression is either b ^ a ^ b = a
if c is one or b ^ 0 = b if c is 0.

Bitwise Operations

Hardware instructions provided by the CPU are a source of additional issues when
trying to implement constant-time cryptography. Modern CPUs provide a big set
of instructions, however, not all of them execute in constant-time. The canonical
example of this is integer division (which usually extends to mod, often using the
same instruction). While addition and subtraction are easy to implement fast,
division is until today still comparatively slow. For this reason many division
implementations take shortcuts wherever they can, which results in execution
times that are highly dependent on the inputs. This used to be the case for
multiplication, too, which was often faster when the upper half of an operand was
zero. On modern x86 processors (especially Intel and AMD) this is not the case
anymore, and therefore we will not discuss multiplication.

Other issues stem from gaps in the language standards. The C-standard usu-
ally does not define any mapping between high-level C-operations and hardware
instruction. This leads to the fact that operations might be implemented in
non-constant-time. While this is potentially the case for any operation, some
operations like comparators or logical boolean operators, are more prone to non-
constant-time implementations than others (e.g. addition, subtraction, or bitwise
logical operators like &, |, ̃, ̂) due to a lack of directly corresponding assembly in-
structions. In some cases seemingly simple operations are even defined inherently
with non-constant-time semantics. The most import example of this are the two
logical operators && and ||, whose short-circuit-evaluation semantics12 necessitate
a jump depending on the value of the left operand.

The best way to solve these problems depends on the assumption that the most
12 The right operand is not evaluated if the result is already clear from evaluating the left

operand.
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basic operations (addition, subtraction, and bitwise logical operators) will always
be translated to directly corresponding hardware instructions. In the following
we will present solutions to these problems, these are mostly based on Pornin’s
BearSSL [40] as well as the Guidelines for low-level cryptography software by
Aumasson [7].

Division is the most difficult one. For divisions by powers of two, a shift can be
used, and some divisions can be decomposed into several shifts by powers of two
combined with additions and subtractions.13 This is difficult when the dividend is
only known at run time, though. In the case that such a transformation is not pos-
sible, algorithms have to be changed to get by without needing secret dependent
division. For some well known problems there are solutions, e.g. the multiplica-
tion modulo n in modular exponentiation (see Listing 2.3) can be eliminated via
a Montgomery multiplication [35].

Logical boolean operators can usually just be directly replaced by the corre-
sponding bitwise operators. Sometimes care has to be taken to ensure that the
result is either 0 or 1, which is not guaranteed by the bitwise boolean operators.
For this an isNotZero check can be implemented in the following way:
uint64_t isNotZero(uint64_t a) {

return (b | -b) >> 63;
}

This utilizes the fact that in two’s complement representation the most significant
bit of an integer stores the sign, and for all integers a other than 0 either −a < 0
or a < 0 and thus the sign bit is set. Note that the implementation depends
on the size of the integer (because of the shift amount) and thus we have to
implement different version for all integer sizes we need by changing the shift
amount accordingly.

The logical not can easily be implemented using xor:
uint64_t not(uint64_t a) {

return a ^ 1;
}

Comparators Checking inequality can be easily implemented using xor similarly
to the logical not. Checking for equality can then be implemented based on
inequality by logical negation.
uint64_t isNotEqual(uint64_t a, uint64_t b) {

return isNotZero(a ^ b);
}

13 In fact such transformations are regularly done by compiler optimizations, due to the high
cost of divisions.
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2. Background

uint64_t isEqual(uint64_t a, uint64_t b) {
return not(isNotEqual(a, b));

}

The only comparators missing are the order relations on integers. Strictly speaking
we only need to find one (e.g. <) and can then express all the remaining ones by
combining it with not and comparison with zero. However this results in functions
requiring more instructions than what can be achieved if we define them separately.
We also have to take care of signed and unsigned integers separately and similarly
to isNotZero we need different versions for different integer sizes. First we will
start with comparison with zero, which is only necessary for signed integers. The
easy cases simply involve checking the sign bit:

uint64_t isLessThanZero(uint64_t a) {
return a >> 63;

}

uint64_t isGreaterThanOrEqualZero(uint64_t a) {
return ~a >> 63;

}

To check b ≥ 0 we cannot simply check the sign bit since zero also has the sign
bit set to zero. Instead we can check that −b ≤ 0. However, negation in two’s-
complement representation has two fixed-points, one at zero and one at INT-MIN.
Thus we have to check that the sign bit is not set and its negation’s sign bit is set

uint64_t isGreaterThanZero(int64_t a) {
uint64_t b = a;
return (~b & -b) >> 63;

}

Similarly for b ≤ 0 we have to check that the sign bit is set, or that it is zero. This
we can simplify to check whether −b is non-negative. Note that the second check
would again not be sufficient because of INT-MIN being a fix-point of negation:

uint64_t isLessThanOrEqualZero(int64_t a) {
uint64_t b = a;
return (b | ~-b) >> 63;

}

For the generic comparisons a < b it seems tempting to just build them from
comparisons with zero, i.e. checking a−b < 0. However for integers on a computer
those two checks are unfortunately not equivalent due to integer overflow. But we
can observe that integer overflow can only happen if they have different signs. If
the sign bits are different, it suffices to check the sign bit of a, though, since it is
only smaller than b if a is negative and b is non-negative. In the other case we
do not have overflow and can simply return the sign bit of a − b. Putting that
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together we get the following pseudocode:

if sign(a) 6= sign(b) then return sign(a); else return sign(a− b); end (2.1)

To implement this in constant-time we can utilize a bitwise version of the mux
above. From the less-than relation we can then build the other relations. Note
that for the mux we use unsigned integers which results in a type conversion.
Remember that C performs conversion from signed to unsigned integers as follows.
If x is the value represented by the variable int x then the value x′ represented by
(unsigned int) x is computed as x′ = x mod (MAX_UNSIGNED_INT + 1).
On a two’s complement machine and when converting integers of the same size
this results in x and x′ having the same binary representation in memory.
/**
* if bit i of c is 1, then bit i of return value is equal to

↪→ bit i of a,
* otherwise bit i of return value is equal to bit i of b.

**/
uint64_t bitMux(uint64_t c, uint64_t a, uint64_t b) {

return b ^ (c & (a ^ b));
}

uint64_t isLessThan(int64_t a, int64_t b) {
uint64_t c = a - b;
return bitMux(a^b, a, c) >> 63;

}

uint64_t isGreaterThan(int64_t a, int64_t b) {
return isLessThan(b, a);

}

uint64_t isLessThanOrEqual(int64_t a, int64_t a) {
return not(isGreaterThan(a, b));

}

uint64_t isGreaterThanOrEqual(int64_t a, int64_t a) {
return not(isLessThan(a, b));

}

For unsigned integers we can in principle utilize the same trick, as overflow occurs
in the same instances, i.e. when the most significant bits are different. However
for unsigned integers a number with MSB set is bigger than a number with the
MSB not set. Thus for a < b we return the sign of b instead:
uint64_t isLessThan(uint64_t a, uint64_t b) {

uint64_t c = a - b;
return bitMux(a^b, b, c) >> 63;

}
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2. Background

Listing 2.4 – Constant-time array comparison.
1 uint32_t ct_arrayEquals(uint8_t* a, uint8_t* b, int32_t len) {
2 uint8_t err = 0;
3 for (int32_t i = 0; i < len; i++) {
4 err |= a[i] ^ b[i];
5 }
6 return ~((uint32_t)(err | -err)) >> 31;
7 }

The other relations can than be constructed from isLessThan in the same way as
in the signed case.

With the above knowledge, we can also see that our second approach to make
array comparison constant-time (see Listing 2.2) might be non-constant-time since
we are using != and !. But we also know how to fix this, as shown in Listing 2.4.

Bitslicing

Bitslicing is a programming technique to implement virtual circuits on general
purpose computers and is thus closely related to the design of digital circuits.
The general idea is to implement a circuit by using elementary bit-wise operations
as basic gates. For this the input data is represented in an orthogonalized fashion,
i.e. an 8-bit integer would be distributed over 8 n-bit integers, each corresponding
to one bit of the input. This was originally used as a performance optimization,
since an orthogonal representation of the inputs allows for parallel computation
of n instances of the circuit. Usually n is at least the word size of the processor,
but can also be higher if the processor provides vector instructions like AVX2.

It turns out however that if one is careful to only use bit-wise operations, this
incidentally fulfills the same restrictions as our bit tricks used above to replace
branches and potentially variable-time instructions. It thus naturally leads to
constant-time programs.

Unfortunately generating circuits for arbitrary problems is hard. Additionally,
not all problems are easy to bitslice in a fast way, e.g. many bitsliced versions of
AES have struggled to achieve the performance of non-bitsliced AES implemen-
tations [11, section 1 – Bitslicing].

Compilers

As explained above high-level programming languages usually do not include run-
time in their semantics. Hence compilers provide no guarantees about the runtime
of a program. Instead they try, depending on the compiler settings very aggres-
sively, to make programs as fast as possible. The results can differ vastly between
compilers. This can be beneficial to performance of cryptographic software, but
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its unpredictability is detrimental to security. Take as example the functions in
Listing 2.5. Without optimization all functions are compiled as one would expect,
with cond implementing the branch using jumps. But when enabling optimiza-
tion both gcc and clang use the cmov instruction to implement the branch in cond,
which makes the function constant-time! However, there is no guarantee that this
will be the case for all versions of gcc or clang. Additionally from line 16 clang
is able to infer that c is always either zero or one, which then enables it to use a
cmov instruction as can be seen from Listing 2.6.

Compilers can be even smarter, as can be seen from ct_cond3,14 which uses
a different method of expressing the ternary operator using bit operations. Here
the knowledge that c is either zero or one enables clang to fully infer that this is
simply an implementation of the ternary operator, and thus it compiles to the same
instructions as cond. While in theses cases the final versions do indeed compile to
constant-time code, there is no guarantee for this in general. If the compiler found
a more efficient way to implement cond using jumps it is reasonable to assume
that ct_cond3 might be implemented in this way, too. Thus we not only need to
take care that we do not use any non-constant-time operations. But we also have
to take care that our implementation is obfuscated enough so that the compiler
cannot fully understand its semantics and thus produces constant time assembly.

With this knowledge, it is also apparent why we must get rid of branches, even
though one might think it sufficient to ensure that all branches take the same time.
A compiler will not take time differences between branches into consideration and
thus will reduce the time needed to take one branch whenever it can.

Verification of Constant-Time Properties

Fortunately we are not completely on our own when writing constant-time pro-
grams. There are several approaches to automatically verify constant-time prop-
erties. Rodrigues, Pereira, and Aranha [43] use information flow analysis to find
side-channels. Almeida et al. [6] developed a formal framework to capture tim-
ing side-channels as well as an automated verification tool, ctverif, based on the
intermediate verification language Boogie.

A different approach is the design of domain specific programming languages
like FaCT [15, 14] or Jasmin [5]. Both of these come with special compilers and
verification infrastructure, that can automatically verify the compiled code, with
respect to constant-time properties.

Another direction is related to fuzzing. He, Emmi, and Ciocarlie [22] use fuzzing
to find constant-time issues, while Reparaz, Balasch, and Verbauwhede [41] use
statistical methods to detect timing differences.

14 example taken from Pascal Cuoq at
https://trust-in-soft.com/when-in-doubt-express-intent-and-leave-the-rest-
to-the-compiler/

15

https://trust-in-soft.com/when-in-doubt-express-intent-and-leave-the-rest-to-the-compiler/
https://trust-in-soft.com/when-in-doubt-express-intent-and-leave-the-rest-to-the-compiler/


2. Background

Listing 2.5 – Ternary operator implemnted in several ways
1 int cond(int a, int b, int c) {
2 if (c) {
3 return a;
4 } else {
5 return b;
6 }
7 }
8
9 int ct_cond(int a, int b, int c) {
10 int t = a ^ b;
11 return b & ((-c) & t);
12 }
13
14 int ct_cond2(int a, int b, int c) {
15 int t = a ^ b;
16 c = !!c;
17 return b & ((-c) & t);
18 }
19
20 int ct_cond3(int a, int b, int c) {
21 c = !!c;
22 return (a & -c) | (b & ~-c);
23 }

16



2.3. Constant-Time Programming

Listing 2.6 – Ternary operator from Listing 2.5 compiled using clang (left) and gcc
(right). Conditional move instructions highlighted in red.

1 cond:
2 testl %edx, %edx
3 cmovel %esi, %edi
4 movl %edi, %eax
5 retq
6
7 ct_cond:
8 xorl %esi, %edi
9 negl %edx
10 andl %esi, %edx
11 andl %edi, %edx
12 movl %edx, %eax
13 retq
14
15 ct_cond2:
16 xorl %esi, %edi
17 testl %edx, %edx
18 cmovel %edx, %edi
19 andl %esi, %edi
20 movl %edi, %eax
21 retq
22
23 ct_cond3:
24 testl %edx, %edx
25 cmovel %esi, %edi
26 movl %edi, %eax
27 retq

1 cond:
2 testl %edx, %edx
3 movl %esi, %eax
4 cmovne %edi, %eax
5 ret
6
7 ct_cond:
8 movl %edx, %eax
9 xorl %esi, %edi
10 negl %eax
11 andl %esi, %eax
12 andl %edi, %eax
13 ret
14
15 ct_cond2:
16 testl %edx, %edx
17 setne %al
18 xorl %esi, %edi
19 movzbl %al, %eax
20 negl %eax
21 andl %edi, %eax
22 andl %esi, %eax
23 ret
24
25 ct_cond3:
26 testl %edx, %edx
27 setne %dl
28 movzbl %dl, %edx
29 movl %edx, %eax
30 subl $1, %edx
31 negl %eax
32 andl %edx, %esi
33 andl %edi, %eax
34 orl %esi, %eax
35 ret
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Lastly, the dynamic analysis tool Valgrind [45] can be used to check some of the
desired properties. Its tool Memcheck can track uninitialized memory and detect
any branches and memory accesses depending on it. Langley developed a patch,
called ctgrind [32], providing functions to instrument a program to mark memory
locations as containing secret values. These are then treated by Memcheck as
uninitialized, detecting such timing issues. Since Valgrind works by emulating
the execution of the binary on a virtual processor, we are not only able to detect
issues stemming from design problems in the higher-level language used, but also
issues introduced by the compiler.

We are not completely safe, though. Valgrind only cares about branches and
memory accesses, and not CPU instructions that are inherently non-constant-
time. Additionally, Memcheck can report false positives, due to the way Valgrind
simulates the CPU. This can be especially common when using Intel’s vector
instructions, since their state is not tracked at the same granularity as the normal
instructions. Since compilers can use vector instructions on higher optimization
levels this also increases the false positive rate on higher optimization levels [46,
Section 2.2].

2.3.1. Conclusion
As we have seen in this section, constant-time programming requires a lot of care
and knowledge of low-level details. Its correctness directly depends on aspects
of the machine, like integer representation. Moreover we cannot rely on com-
piler support, in fact we cannot trust it. In the following chapters we will now
use the knowledge presented here to identify issues in the NTS-KEM reference
implementation (Chapter 3) and provide a solutions to these issues (Chapter 4).
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3. NTS-KEM
In this chapter we will explain the design of NTS-KEM, and discuss its imple-
mentation and the timing issues that arise from it. We will not provide a detailed
discussion of the security of NTS-KEM with regards to classical or quantum cryp-
tographic notions. These can be found in the NTS-KEM specification [4] as well
as in the QROM security proof by Maram [33]. We restrict ourselves to timing
based side-channels.

3.1. Specification
This section is directly taken from section 3 of the NTS-KEM submission [4], with
a few minor adjustments. NTS-KEM is a KEM based on the McEliece [34] and
the Niederreiter [37] PKE scheme. As such NTS-KEM is based on error correcting
codes, more specifically binary separable Goppa codes. Such a code CG is defined
by a Goppa polynomial G(z) = g0+g1z+· · ·+gτz

τ ∈ F2m [z] fulfilling the following
properties:

- G(z) has no roots in F2m ;

- G(z) has no repeated roots in any extension field, which guarantees that CG
is capable of correcting up to τ errors.

It can be described by a generator matrix G ∈ Fk×n
2 , or a parity-check matrix

H ∈ F(n−k)×n
2 , such that G · HT = 0. A vector w ∈ Fk

2 can be encoded as a
codeword in C as c = w ·G ∈ Fn

2 . Moreover, for any codeword c in C, we have
c ·HT = 0. More generally, given any vector v ∈ Fn

2 , the vector s = v ·HT ∈ Fn−k
2

is called a syndrome. The problem of syndrome decoding is to find a vector of
minimum weight v ∈ Fn

2 such that s = v ·HT given a syndrome s.
We can construct a decoding algorithm that can correct up to τ errors as follows.

Let crec = c+e, where c = w ·G. Then s := crec ·HT = w ·GHT +e ·HT = e ·HT

. We can then compute e, e.g by using a lookup table, which is precomputed
for all possible error vectors hw(e) ≤ τ . This then allows recovering the original
codeword c = crec − e. Lastly we have to map the codeword c back to a message
w, i.e. we have to solve w ·G = c for w.

An instance of NTS-KEM is characterized by four public parameters:

- n = 2m: a power-of-two, positive integer, which denotes the length of code-
words.
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3. NTS-KEM

- τ : a positive integer denoting the number of errors corrected by the code.

- f(x): an irreducible polynomial of degree m over F2, defining the extension
field F2m

∼= F2[x]/f(x).

- ` = 256: a positive integer, which denotes the length of the random key to
be encapsulated.

Furthermore it is required that log
(
n
τ

)
≥ `, and ` < k < n, where k = n− τm.

NTS-KEM makes use of a pseudorandom bit generator to produce `-bit binary
strings, which we denote by H`(·). As pseudorandom bit generator NTS-KEM
uses SHA3-256.

3.1.1. Key-Generation
The procedure to generate a NTS-KEM key-pair is as follows:

1. Randomly generate a monic Goppa polynomial of degree τ

G(z) = g0 + g1z + · · ·+ gτ−1z
τ−1 + zτ ,

where gi ∈ F2m
∼= F2[x]/f(x), with g0 6= 0. The polynomial G(z) defines a

binary Goppa code CG of length n = 2m, dimension k = n− τm, capable of
correcting up to τ errors.

2. Randomly generate a permutation vector p of length n, representing a per-
mutation πp on the set of n elements.

3. Construct a generator matrix in the reduced row echelon form G = [Ik | Q]
of a permuted code CG as follows:

a) Let β ∈ F2m be a root of f(x), where F2m
∼= F2[x]/f(x) and B be a

basis of F2m , B = 〈β(m−1), . . . , β, 1〉. The i-th element of F2m in the
basis of B is defined by

B[i] = {b0β(m−1) + b1β
(m−2) + . . .+ bm−2β + bm−1 : bj ∈ {0, 1}},

where i =
∑m−1

j=0 bj2
j.

b) Let a′ be the sequence of all elements of F2m given by

a′ = (a0, a1, a2, . . . , an−2, an−1) = (B[0], B[1], B[2], . . . , B[n− 2], B[n− 1]),

where B[i] is defined above.

c) Let a = πp(a
′) = (ap0 , ap1 , . . . , apn−1) ∈ Fn

2m be the sequence obtained
by re-ordering the elements of a′ according to πp.
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d) Construct the parity-check matrix Hm ∈ Fτ×n
2m using the sequence a,

as described by

Hm =


G(a0)

−2 G(a1)
−2 · · · G(an−1)

−2

a0G(a0)
−2 a1G(a1)

−2 · · · an−1G(an−1)
−2

... ... . . . ...
aτ−1
0 G(a0)

−2 aτ−1
1 G(a1)

−2 · · · aτ−1
n−1G(an−1)

−2

 .

Let h = (hp0 , hp1 , . . . , hpn−1) ∈ Fn
2m be the first row of Hm.

e) Let B(ai) = (bi0, bi1, . . . , bi(m−1)) be a representation of ai over F2, i.e.

ai = bi0 + bi1β + bi2β
2 + · · ·+ bi(m−1)β

m−1,

where bij ∈ F2. Transform Hm to H ∈ Fmτ×n
2 using operator B(·)T .

f) Transform H to reduced row echelon form, re-ordering its columns if
necessary, such that the identity matrix In−k occupies the last n − k
columns of H. If ρ is the permutation representing this re-ordering of
columns, apply the same re-ordering to the vectors a, h and p, i.e. make
a = ρ(a), h = ρ(h) and p = ρ(p).

g) Construct the generator matrix G = [Ik | Q] ∈ Fk×n
2 of the permuted

code CG from the parity-check matrix H = [QT | In−k].

4. Sample z ∈ F`
2 uniformly at random.

5. Partition the vectors a and h as a = (aa | ab | ac) and h = (ha | hb | hc),
where aa,ha ∈ Fk−`

2m , ab,hb ∈ F`
2m and ac,hc ∈ Fn−k

2m . Finally, define

a∗ = (ab | ac) and h∗ = (hb | hc) .

The NTS-KEM public and private keys are given as follows.

• The public key is pk = (Q, τ, `), where Q ∈ Fk×(n−k)
2 and τ, ` are positive

integers (determined in the parameter sets).

• The private key is sk = (a∗,h∗,p, z, pk), where a∗,h∗ ∈ Fn−k+`
2m , p ∈ Fn

2m

and z ∈ F`
2.

3.1.2. Encapsulation
Given a NTS-KEM public key pk = (Q, τ, `), the encapsulation process produces
two vectors over F2, one of which is a random vector kr, where |kr| = ` = 256;
the other is the ciphertext c∗ encapsulating kr.

NTS-KEM encapsulation makes use of the following function, acting on input
(pk, e) and denoted as Encap(pk, e), which proceeds as follows.
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1. Partition e as e = (ea | eb | ec), where ea ∈ Fk−`
2 , eb ∈ F`

2 and ec ∈ Fn−k
2 .

2. Compute ke = H`(e) ∈ F`
2.

3. Construct the message vector m = (ea | ke) ∈ Fk
2.

4. Perform systematic encoding of m with Q:

c = (m |m ·Q) + e

= (ea | ke | (ea | ke) ·Q) + (ea | eb | ec)
= (0a | ke + eb | (ea | ke) ·Q+ ec)

= (0a | cb | cc) ,

where cb = ke + eb and cc = (ea | ke) ·Q+ ec. Then remove the first k − `
coordinates (all zero) from c to obtain c∗ = (cb | cc) ∈ Fn−k+`

2 .

5. Output the pair (kr, c
∗) where kr = H`(ke | e) ∈ F`

2.

NTS-KEM encapsulation is then defined as:

1. Generate uniformly at random an error vector e ∈ Fn
2 with Hamming weight

τ .

2. Call Encap(pk, e) and return its outputs.

3.1.3. Decapsulation
The decapsulation of a NTS-KEM ciphertext c∗ = (cb | cc) proceeds as follows:

1. Consider the vector c = (0a | cb | cc) ∈ Fn
2 , and apply a decoding algorithm

— using the private key — to recover a permuted error pattern e′.

2. Compute the error vector e = πp(e
′) and partition e = (ea | eb | ec).

3. Compute (kr, c
′) = Encap(pk, e). Verify that c′ = c∗ and hw(e) = τ . If

yes, return kr ∈ F`
2; otherwise return H`(z | 1a | cb | cc).

3.2. Implementation and Issues
For each of the three core functions of NTS-KEM we will now go through the steps
in the specification and explain, in as much detail as needed, how the optimized
implementation implements them. Moreover we will identify timing issues as we
go along.
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3.2.1. Key-Generation
Step 1 starts with generating a random Goppa polynomial G(z). This is done by
first sampling random coefficients and then checking that the resulting polynomial
is a valid Goppa polynomial. The Goppa polynomial is represented as an array
of coefficients, stored in 16-bit integers where the most significant 16 − τ bit are
zero, together with some book-keeping information (e.g. the degree). Sampling
is straight-forward, just sample m bits for every coefficient. Note that we want
a monic polynomial. Thus the first coefficient is always 1 and we only need to
sample τ coefficients. The validity check is then done in three steps:

1. Checking that G(z) has no roots in F2m . This is done using an additive
FFT [18]. NTS-KEM makes use of a bitsliced implementation, which is
naturally constant-time.

2. Computing d
dz
G(z). Note that computing the derivative of a polynomial in

a field of characteristic 2 results in a polynomial with only even coefficients.
More precisely the derivative is given by d

dz
G(z) =

∑dτ/2e−1
j=0 g2j+1z

2j. The
implementation therefore simply copies every uneven coefficient of G(z) to
the next smaller array index, and ensures that all other array elements
are zero. Since (now leading) coefficients could be zero, the degree of the
derivative is computed. This was done in the following way
for (i=0; i<fx->degree; ++i) {

/* in case coefficients are zero */
if (dx->coeff[fx->degree-1-i])

break;
--dx->degree;

}

which leads to a timing issue.

Issue 1 (Computing the derivative of a polynomial). Degree computation in
formal derivative potentially leaks the number of consecutive zero coefficients
following the leading coefficient in the secret polynomial G(z).

3. Checking that GCD
(
G(z), d

dz
G(z)

)
= 1. This ensures G(z) has no repeated

roots in any extension field. This is achieved using a version of Euclid’s
algorithm for polynomials (see Algorithm 3.1). However, Euclid’s algorithm
is a variable time algorithm.

Issue 2 (Computing the GCD of two polynomials). The number of loop
iterations in Algorithm 3.1 depends on the inputs. Moreover the polynomial
modular reduction has to be implemented in constant-time if needed.

Step 2 of key-generation is generating the permutation vector uniformly at
random. This is done using the Fisher-Yates shuffle depicted in Algorithm 3.2 on
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Algorithm 3.1 Greatest common divisor of a(z) and b(z). Algorithm 6 in the
NTS-KEM submission [4].

1: function GCD(a(z), b(z))
Require: deg a(z) ≥ deg b(z)

2: while deg b(z) ≥ 0 do
3: t(z)← b(z)
4: b(z)← a(z) mod b(z)
5: a(z)← t(z)
6: end while
7: return a(z)
8: end function

an input (0, 1, ..., n− 1). While the loop of the Fisher-Yates shuffle has a constant
bound that is not secret (it only depends on n, a public parameter), it contains
secret dependent memory accesses.

Issue 3 (Generating random permutations). The memory accesses in Line 5 of
Algorithm 3.2 depend on the randomness sampled in Line 4, which is a secret.

Algorithm 3.2 Fisher-Yates shuffle on sequence a = (a0, a1, . . . , an−1). Algo-
rithm 7 in the NTS-KEM submission [4].

1: function RandomShuffle(a)
2: i← n− 1
3: while i > 0 do
4: r←$ {0, 1, . . . , i}
5: Swap ai with ar
6: i← i− 1
7: end while
8: return the shuffled sequence a
9: end function

To sample the randomness in Line 4 the Knuth-Yao algorithm (Algorithm 3.3)
is used. Unfortunately the Knuth-Yao algorithm is not constant-time.

Issue 4 (Sampling bounded integers). The number of iterations of the Knuth-Yao
algorithm (Algorithm 3.3) depends on the sampled randomness, which is a secret.

Step 3 starts with initializing a as in steps 3a and 3b, involving no secrets. Then
we compute a vector h̄ = (G(B[0]), G(B[1]), . . . , G(B[n− 1])) using the bitsliced
additive FFT. Both a and h̄ are then permuted using p.

Issue 5 (Permuting elements of F2m). Permuting a and h̄ uses p as array index,
but p is secret.
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Algorithm 3.3 Knuth-Yao algorithm to generate a uniform random number in
{0, . . . , i− 1}. Algorithm 8 in the NTS-KEM submission [4].

1: function KnuthYaoUniformRNG(i)
2: u← 1
3: x← 0
4: while TRUE do
5: while u < i do
6: u← 2u
7: x← 2x+ RandomBit
8: end while
9: d← u− i

10: if x ≥ d then
11: return x− d
12: else
13: u← d
14: end if
15: end while
16: end function

We then compute h = h̄−2, and then Hm as in step 3d from h and a us-
ing constant-time procedures for inversion, squaring, and multiplication in F2m

described in appendix A of the NTS-KEM submission [4] which implicitly also
perform the transformation from step 3e.

The transformation into reduced row echelon form (Step 3f) is then implemented
using an efficient implementation of the Gauss-Jordan algorithm by Albrecht,
Bard, and Pernet [2] based on the method of four Russians (M4R). Unfortunately
this algorithm is not constant time.

Issue 6 (Gaussian elimination). The M4R-based Gaussian elimination is designed
to utilize the structure of the input matrix to achieve higher performance for most
inputs, but can degrade to the performance of classical Gauss-Jordan elimination
in the worst case. This results in an inherently non-constant-time algorithm.

After the reduced row echelon transform, the columns of the matrix are per-
muted to ensure that the identity matrix In−k occupies the last n − k columns.
This permutation is done in a non-constant-time fashion.

Issue 7 (Permuting matrix columns). Permuting the matrix columns is done by
linearly searching the row for a nonzero element. The corresponding columns are
then swapped and the permutation is mirrored onto h and a. These swaps use the
column indices as array indices leading to a potential cache side-channel.

For step 3g the matrix is transposed and truncated by iterating over the matrix.
This is done in constant time.
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Listing 3.1 – Excerpt from the matrix multiplication corresponding to multiplication
of ea with Q, taken from the NTS-KEM reference implementation [3].

1 \\ A and R are constants corresponding to the size of the
↪→ arrays chunks

2 for (i=0; i<A; i++) {
3 memcpy(&v, &e[i*sizeof(v)], sizeof(v));
4 while (v) {
5 l = (int32_t)lowest_bit_idx(v);
6 v ^= (ONE << l);
7 l += (BITSIZE*i);
8 for (j=0; j<R; j++) {
9 c_c[j] ^= Q[l][j];
10 }
11 }
12 }

Finally we sample z using a secure PRNG and copy a∗ and h∗ into the appro-
priate return variables, completing steps 4 and 5 as well as key-generation. Before
the keys are returned however, there is an additional last step, where the keys are
serialized, to ensure they are in a well-defined platform independent format.

3.2.2. Encapsulation
Encapsulation consists of two steps, generation of e uniformly at random, and the
core encapsulation procedure. Generating e so that hw(e) = τ is done by using
the Fisher-Yates shuffle (Algorithm 3.2) on the input (0, ..., 0, 1..., 1).

Issue 8 (Sampling a random error vector). As explained in issue 3, the Fisher-
Yates shuffle is not constant-time.

The core encapsulation procedure essentially consists of computing hash func-
tions and performing the encoding via matrix multiplication. To compute the hash
functions in steps 2 and 5 NTS-KEM uses Keccak-Tiny [21], which is constant-
time. The matrix multiplication is done in a vectorized way using 64-bit integer
xor. Moreover the matrix multiplication is optimized to skip unnecessary xor
operations, as can be seen from Listing 3.1.

Issue 9 (matrix vector multiplication over F2). The loop in Line 4 of Listing 3.1
depends on the Hamming weight of ea (via the variable v).

Issue 10 (lowest_bit_idx). The function lowest_bit_idx used in Listing 3.1
and shown in Listing 3.2 is branching on its (secret) input.
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Listing 3.2 – lowest_bit_idx as used in Listing 3.1.

1 uint64_t lowest_bit_idx(uint64_t x)
2 {
3 uint64_t r = 0;
4 if (!x) return -1;
5 x &= -x;
6
7 if ( x & 0xffffffff00000000UL ) r += 32;
8 if ( x & 0xffff0000ffff0000UL ) r += 16;
9 if ( x & 0xff00ff00ff00ff00UL ) r += 8;
10 if ( x & 0xf0f0f0f0f0f0f0f0UL ) r += 4;
11 if ( x & 0xccccccccccccccccUL ) r += 2;
12 if ( x & 0xaaaaaaaaaaaaaaaaUL ) r += 1;
13
14 return r;
15 }

3.2.3. Decapsulation
The first step of decapsulation is the decoding step. Decoding is implemented
based on the Berlekamp-Massey algorithm. For this, we first have to compute
the 2τ syndromes of the ciphertext c∗. This is done using the Algorithm 3.4,
which is implemented in constant-time by using constant-time multiplication and
addition implementations (note that all bounds in the sums and the loop are public
parameters). Then we apply the Berlekamp-Massey algorithm (see algorithm 3 of

Algorithm 3.4 Syndrome Computation on ciphertext c∗ = (cb | cc). Algorithm
2 in the NTS-KEM submission [4].

1: function ComputeSyndrome(c∗, a∗,h∗)
Require: c∗ ← (cb,0, cb,1, . . . , cb,`−1 | cc,0, cc,1, . . . , cc,r−1)
Require: a∗ ← (ab,0, ab,1, . . . , ab,`−1 | ac,0, ac,1, . . . , ac,r−1)
Require: h∗ ← (hb,0, hb,1, . . . , hb,`−1 | hc,0, hc,1, . . . , hc,r−1)

2: s0 ←
∑`−1

j=0(cb,j · hb,j) +
∑r−1

j=0(cc,j · hc,j)
3: i← 1
4: while i < 2τ do
5: h∗ ← h∗ · a∗ . Pointwise component multiplication modulo F2m

6: si ←
∑`−1

j=0(cb,j · hb,j) +
∑r−1

j=0(cc,j · hc,j)
7: i← i+ 1
8: end while
9: return s = (s0, s1, . . . , s2τ−1)F2m

10: end function

the NTS-KEM submission [4]) using a bitsliced implementation. While a bitsliced
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3. NTS-KEM

Listing 3.3 – bit scan reverse. Finds index of highest set bit.

1 static inline uint64_t bsr(uint64_t x) {
2 uint64_t r = 0;
3 if (x & 0xffffffff00000000UL ) { x >>= 32; r += 32; }
4 if (x & 0xffff0000UL) { x >>= 16; r += 16; }
5 if (x & 0x0000ff00UL) { x >>= 8; r += 8; }
6 if (x & 0x000000f0UL) { x >>= 4; r += 4; }
7 if (x & 0x0000000cUL) { x >>= 2; r += 2; }
8 if (x & 0x00000002UL) { r += 1; }
9
10 return mux(isZero(x), 0, r);
11 }

implementation is usually inherently constant-time, this implementation makes
use of Listing 3.3, to find the index of the highest set bit.

Issue 11 (Bit scan reverse). bsr in Listing 3.3 is not constant-time due to branch-
ing.

Additionally there were several instances where logical or (||) was used.

Issue 12 (Logical boolean operators). Usage of logical or to compute the dis-
junction of two binary values in the implementation of the Berlekamp-Massey
algorithm.

The next step of decoding evaluates an error locator polynomial σ(x) returned
by the Berlekamp-Massey algorithm using an additive FFT. The additive FFT
is done using a bitsliced implementation without any timing issues. From the
evaluation of σ(x) we then know the positions of the errors and can therefore
recover e′, concluding the decoding step.

Next we have to permute the recovered error e′ according to p.

Issue 13 (Permuting bit vectors). Similarly to issue 5, p is used as index to
directly access the array containing the vector, but p is secret.

The final step is recomputing Encap(pk, e), which is coverd in Section 3.2.2,
and performing the verification as in step 3. Here care is taken to ensure that both
possible return values are computed and the final return value is chosen using a
mux, to not create a timing issue in case of errors.
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4. Constant-Time NTS-KEM
In Chapter 3 we identified 13 issues with regards to timing based side-channels in
the current NTS-KEM implementation:

1. Computing the derivative of a polynomial
2. Computing the GCD of two polynomials
3. Generating random permutations
4. Sampling bounded integers
5. Permuting elements of F2m

6. Gaussian elimination
7. Permuting matrix columns
8. Sampling a random error vector
9. matrix vector multiplication over F2

10. lowest_bit_idx
11. Bit scan reverse
12. Logical boolean operators
13. Permuting bit vectors

We will first show how to fix the smaller issues, namely issues 1 and 9 to 12. We
then discuss the Gaussian elimination and matrix column swaps in Section 4.2
(issues 6 and 7). Section 4.5 shows how to sample the random objects we need
(issues 3 and 4). In Section 4.3 we present the constant-time GCD algorithm we
used (issue 2) and finally in Section 4.4 we discuss how to perform permutations
in constant time (issues 5 and 13).

4.1. Fixing the Smaller Issues
We start by taking care of the smaller issues. Issue 12 is trivial. The involved
operations are always on operands that are either 0 or 1 and can thus just be
replaced by the corresponding bitwise operations. The remaining issues are matrix
multiplication and simple issues involving branching. For the branching issues, two
are due to conditionals, and one because of early loop termination.

Matrix Multiplication over F2

To make the matrix multiplication constant-time we simply do not skip the cases
where bits are zero. Instead we simply iterate over all bits and perform a plain and
straight-forward matrix multiplication as shown in Listing 4.1. As a side effect we
also solve issue 10, since lowest_bit_index is not used anymore.
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4. Constant-Time NTS-KEM

Listing 4.1 – Excerpt of constant-time matrix vector multiplication over F2. (Compare
with Listing 3.1)

1 for (i=0; i<A; i++) {
2 memcpy(&v, &e[i*sizeof(v)], sizeof(v));
3 for(l = 0; l < sizeof(v)<<3; l++) {
4 for (j=0; j<R; j++) {
5 c_c[j] ^= -((v & (ONE << l))>>l) & Q[l + (BITSIZE*i)][j];
6 }
7 }
8 }

Listing 4.2 – Constant-time degree computation.

1 int zero = 1;
2 for (i = 0; i < fx->degree; i++) {
3 zero &= isZero(dx->coeff[fx->degree -1-i]);
4 dx->degree -= zero;
5 }

Computing the Degree in Polynomial Derivative

We have to remove the early break in issue 1. We can achieve this by storing the
value we subtract from the degree in a variable, which we set to 0 once we have
found a nonzero coefficient. This is shown in Listing 4.2.

Bit Scan

Issues 10 and 11 are basically the same issue. The functions lowest_bit_index
and bsr (see Listings 3.2 and 3.3) consist of a sequence of branches. Issue 10 was
already solved above, so we only need to focus on issue 11. Since every branch
only consists of very few computations, we can easily fix this by always performing
the computations and then either using the results or keeping the old values using
a mux, as we have seen in Section 2.3. Listing 4.3 shows a constant-time version
of bsr.
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Listing 4.3 – Constant-time bit scan reverse.

1 uint64_t bsr(uint64_t x) {
2 uint64_t r = 0;
3 uint64_t y, t, ctrl;
4 // if (x & 0xffffffff00000000UL ) { x >>= 32; r += 32; }
5 y = x >> 32;
6 t = r + 32;
7 ctrl = isZero(x & 0xffffffff00000000UL);
8 r = mux(ctrl, r, t);
9 x = mux(ctrl, x, y);
10 // if (x & 0xffff0000UL) { x >>= 16; r += 16; }
11 y = x >> 16;
12 t = r + 16;
13 ctrl = isZero(x & 0xffff0000UL);
14 r = mux(ctrl, r, t);
15 x = mux(ctrl, x, y);
16 // if (x & 0x0000ff00UL) { x >>= 8; r += 8; }
17 y = x >> 8;
18 t = r + 8;
19 ctrl = isZero(x & 0x0000ff00UL);
20 r = mux(ctrl, r, t);
21 x = mux(ctrl, x, y);
22 // if (x & 0x000000f0UL) { x >>= 4; r += 4; }
23 y = x >> 4;
24 t = r + 4;
25 ctrl = isZero(x & 0x000000f0UL);
26 r = mux(ctrl, r, t);
27 x = mux(ctrl, x, y);
28 // if (x & 0x0000000cUL) { x >>= 2; r += 2; }
29 y = x >> 2;
30 t = r + 2;
31 ctrl = isZero(x & 0x0000000cUL);
32 r = mux(ctrl, r, t);
33 x = mux(ctrl, x, y);
34 // if (x & 0x00000002UL) { r += 1; }
35 t = r + 1;
36 ctrl = isZero(x & 0x00000002UL);
37 r = mux(ctrl, r, t);
38
39 return mux(isZero(x), 0, r);
40 }
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4. Constant-Time NTS-KEM

4.2. Gaussian Elimination
NTS-KEM uses codes in systematic form, i.e. with a generator matrix of the form
G = [Ik | Q]. Remember that for NTS-KEM we have an m× n full rank matrix,
with m < n (note that in this section m and n do not refer to the NTS-KEM
parameters), which we want to transform into the above form. Unfortunately a
full Gauss-Jordan elimination runs in O(m2 · n) for such a matrix.

We start by shortly repeating how Gauss-Jordan elimination works. We then
show how to implement a constant time version of Gauss-Jordan elimination in
Section 4.2.2. Since a full Gauss-Jordan elimination is slow, we also show a alter-
native version in Section 4.2.3, which increases performance significantly at the
price of a higher usage of randomness.

4.2.1. Plain Gaussian Elimination

Algorithm 4.1 Gauss-Jordan elimination
Require: M is a m× n matrix.
Ensure: M is in reduced row echelon form.

1: procedure GaussJordan(M)
2: r = 0
3: while r < m do
4: for c ∈ (0, 1, . . . , n− 1) do
5: Find r′ ≥ r s.t. Mr′,c = 1.
6: if found r′ then
7: Swap rows r and r′

8: for all r′ ∈ {0, 1, . . . ,m− 1} \{r} with Mr′,c = 1 do
9: Add row r to row r′

10: end for
11: r = r + 1
12: end if
13: end for
14: end while
15: end procedure

First, remember the definition of the reduced row echelon form (rref). A matrix
M is in rref if

- all non-zero rows are above all zero rows,

- the first non-zero entry in each non-zero row is 1,

- each column containing a leading 1, contains only this one non-zero value,

- each leading coefficient of a row is to the left of all leading coefficients of the
rows below it.
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4.2. Gaussian Elimination

Note that we are working on matrices over F2, so all values are either zero or one
and addition is the same as subtraction Furthermore in the following we assume
that M is an m× n-matrix with m < n. We can then transform any such matrix
M into rref, using the Gauss-Jordan elimination, which utilizes swapping of rows
and replacing a row with the its sum with another row, i.e. Mi = Mi + Mj.
Pseudocode for the procedure is depicted in Algorithm 4.1.

4.2.2. Constant-Time Gaussian Elimination
We first discuss the constant-time Gauss-Jordan elimination, which transforms a
matrix into reduced row echelon form. Then we will discuss how to permute the
columns of the rref matrix to get a systematic matrix as defined above.

Constant-Time Gauss-Jordan Elimination

Gauss-Jordan elimination has many pitfalls for timing issues. Since our matrix has
rank m it may happen that a column becomes zero during elimination. However
we cannot use this for a speedup, since that might leak, especially via the mem-
ory access pattern, which columns become zero. Similarly we cannot stop when
we have an rref matrix, since this leaks how many of the columns were needed,
i.e. it leaks information about the number of columns that became zero during
elimination. Moreover we may not leak which row we are currently working on,
as this again leaks information about the zero columns, since we stay on the same
row when encountering a zero column. Thus the timing between accessing new
rows depends on the zero columns. (Note that ctgrind was actually able to find
all of the above issues in a non-constant-time Gauss-Jordan elimination.)

Since we are working with a matrix over F2, multiplication and addition are
simply bitwise and and xor. Our implementation is thus vectorized using 64-bit
integers (and 256-bit avx registers in the avx version) to access chunks of the
matrix rows. Algorithm 4.2 shows pseudocode for a constant-time Gauss-Jordan
elimination. All operations that only involve vectors can be parallelized. We
will now go over the algorithm and explain the important steps. Note that our
implementation starts elimination in the lower right corner.

First we have to iterate over all columns c, for this we keep track of the row
we are working on. As first step of the loop body, we copy the current row into a
fixed area, by iterating over all rows. This ensures that across all loop iterations,
accesses to the row currently worked on go to the same memory locations. We
thus avoid leaking how many (column-)loop iterations we spend on the same row.

Next, we look for a pivot element (lines 10 to 27). We do this by swapping
currentRow with Ar if (A)r,c while iterating over all rows r. Note that this
reorders the rows wildly and in the end the row-th row appears twice in the
matrix. The row that is missing is only stored in currentRow. Since columns
can be all zeros, we also save whether we found a pivot.
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4. Constant-Time NTS-KEM

The elimination step (lines 20 to 27) then performs two tasks, while iterating
over all rows. Firstly, it writes currentRow to the row-th row, finalizing the row
swapping started during pivot search. Secondly for all other rows r it adds (via
xor) currentRow to them if Ar,c is set.

In the end, we update the row variable. We use the fact that the row variable
will be negative once we finished elimination to be able to continue iterating over
the columns. Lines 12 and 21 ensure that the writes occurring in the remaining
iterations do not change the matrix. We visualize row swaps and eliminations on
a simple example.

Example 4.2.1. Let m = 3 and A =

· · · 1 1 1
· · · 1 0 1
· · · 0 1 1

. We will show the

first iteration of the outermost loop (i.e. c = n − 1). We set row = 2 and
currentRow = (· · · , 0, 1, 1). We then start the pivot search loop (Line 10)

1. Then the first iteration of pivot search (r = 2) sets found = 1, but does not
swap anything.

2. For r = 1 we then set currentRow = (· · · , 1, 0, 1) andA =

· · · 1 1 1
· · · 0 1 1
· · · 0 1 1

.

3. For r = 0 we set currentRow = (· · · , 1, 1, 1) and A =

· · · 1 0 1
· · · 0 1 1
· · · 0 1 1

.

The elimination loop (Line 20) then proceeds as follows.

1. For r = 2 we write currentRow to Ar, finishing the pivot swap; A =· · · 1 0 1
· · · 0 1 1
· · · 1 1 1

.

2. For r = 1 and r = 0 we perform elimination by settingAr = Ar⊗ currentRow;

A =

· · · 0 1 0
· · · 1 0 0
· · · 1 1 1

.

We then continue with the next column. Here, repeating the above steps will
result in swapping rows 1 and 0 and adding them to row 3, resulting in A =· · · 1 0 0
· · · 0 1 0
· · · 0 0 1

, which is in reduced row echelon form.
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4.2. Gaussian Elimination

Algorithm 4.2 Constant-time Gauss-Jordan elimination.
Require: A is an m× n matrix.
Ensure: A is in reduced row echelon form.

1: procedure rref(A)
2: currentRow← (0, . . . , 0)
3: row ← m− 1
4: for c ∈ (n− 1, n− 2, . . . , 0) do
5: for r ∈ (m− 1,m− 2, . . . , 0) do . Select currentRow in ct
6: eq ← isEqual(r, row)
7: currentRow← mux(eq,Ar, currentRow)
8: end for

9: found ← 0
10: for r ∈ (m− 1,m− 2, . . . , 0) do . Search for pivot
11: m←lessOrEquals(r, row)
12: m← m∧biggerOrEqualsZero(row)
13: m← m∧Ar,c

14: found ← found ∨m
15: mask← (m, . . . ,m)

16: t← currentRow⊗Ar

17: currentRow← currentRow⊗(t∧mask)
18: Ar ← Ar⊗(t∧mask)
19: end for

20: for r ∈ (0, 1, . . . ,m− 1) do . Eliminate column
21: m← Ar,c ∧biggerOrEqualsZero(row)
22: mask← (m, . . . ,m)
23: eq ← isEqual(r, row)

24: t← currentRow⊗Ar

25: t←mux(eq, t,mask∧ currentRow) . Don’t eliminate pivot
26: Ar ← Ar⊗ t
27: end for
28: row ← row − found
29: end for
30: end procedure
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4. Constant-Time NTS-KEM

Constant-Time Column Swaps

Unfortunately Algorithm 4.2 does not necessarily result in a matrix in systematic
form. Imagine for example the matrix in Example 4.2.1 had a zero column before
the last column. Gauss-Jordan will then preserve that zero column. We therefore
have to move this zero column somewhere to the left to get an identity matrix.

Since column swaps are very expensive, due to the way the matrix is represented
in cache, we want to avoid them as much as possible. Instead we proceed as follows.
We do a constant-time linear scan of each row and store the position of the first
set bit, starting from the right. Using these position we can then perform the
necessary swaps. We can, however, perform these swaps more efficiently. Note
that after transforming the matrix to systematic form, we transpose it to obtain a
generator matrix (see Section 3.1.1 step 3g). So we can perform row swaps instead
of column swaps by transposing the matrix first! We then perform ct row swaps
based on the positions we stored (similarly to the row swaps during Gaussian
elimination). While doing this we perform the same swaps on p, a and h. This is
done similar to the naive permutation explained in Section 4.4.1.

4.2.3. Alternative Gauss-Jordan elimination
Doing a full Gauss-Jordan elimination in constant-time is very slow. This comes
from the requirement to always run with the worst case performance, i.e. in
O (m2 · n) operations. Moreover most of these operations involve memory, that
does not fully fit the L1-cache. We therefore implemented an additional approach,
by Bernstein et al. [13]. We simply restrict the range of key-pairs to the set of
keys that are already in systematic form after the Gauss-Jordan elimination as de-
scribed above, not requiring any column swaps. This allows for several additional
speed-ups other than removing column swaps.

Firstly, this assumes that there are no zero columns in our rightmost m ×
m-submatrix, in essence we assume that the rightmostm×m-submatrix is regular.
By this assumption, we do not have to iterate over several columns to look for
pivots, and thus we do not have to hide over how many columns we had to iterate.
This allows us to only iterate over m columns, reducing the asymptotic complexity
from O (m2 · n) to O (m3 ).1 Since in our case m is much smaller than n, this
already increases performance a lot.

Secondly, this means that we always do a constant amount of work for every
row we look at, and thus we do not have to hide which row we are working on, i.e.
we can get rid of the loop in Line 5 of Algorithm 4.2, as well as the currentRow
variable and the copies necessary in its usage. This reduces the work per column
by about a third.

1 We have ignored the cost of performing the elimination on the remaining m×(n−m)-matrix.
However for our choice of parameters and due to vectorization, even in the non-AVX2 version,
this is possible in O

(
m3

)
in total.
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Thirdly, it allows us to reduce the loop bounds in Line 10. Originally, we had
to scan the whole matrix, otherwise we would have leaked the current row. Since
the current row index is now public, we do not have to look at the rows below the
current row to hide the row index. Pseudocode for the alternative Gauss-Jordan
algorithm is shown in Algorithm 4.3

The problem is sampling those restricted keys. We chose to use the same ap-
proach as Classic McEliece, namely we just assume that our assumptions hold
during Gauss-Jordan elimination, and abort early and return an error when we
notice that they are violated during the elimination, i.e. if we come across an
all zero column we immediately return an error. This error is then handled by
the key-generation function to trigger a restart of key-generation, resampling all
randomness. This way it is ensured that the information about an error cannot
leak anything about the actual used randomness, since the randomness being used
comes from a run without error with all new randomness.

Note that this approach does not in fact lead to any reduction in the size of
the key-space. NTS-KEM already has this restriction, it simply chooses to “fix”
the sampled key by changing the random permutation, when it does not lead
to such a matrix. It simply turns out that when trying to construct systematic
codes in constant-time, the randomized approach is much faster than “fixing” the
permutation. This is due to speedups in the Gauss-Jordan elimination.
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Algorithm 4.3 Alternative Gauss-Jordan algorithm.
Require: A is an m× n matrix, m < n.
Ensure: If rightmost m×m submatrix of A is regular, A is systematic.

1: procedure systematic(A)
2: row = m− 1
3: for c ∈ (n− 1, n− 2, . . . , n−m) do
4: found← 0
5: for r ∈ (row, row − 1, . . . , 0) do
6: m← Ar,c

7: found← found⊗m
8: mask← (m, . . . ,m)
9: t← Ar⊗Arow

10: Ar ← Ar⊗(t∧mask)
11: Arow ← Arow⊗(t∧mask)
12: end for
13: if not(found) then
14: return Error
15: end if
16: for r ∈ (0, 1, . . . ,m) do
17: m← Ar,c ∧notEqual(row, r)
18: mask← (m, . . . ,m)
19: Ar ← Ar⊗(Arow ∧mask)
20: end for
21: row ← row − 1
22: end for
23: end procedure

4.3. GCD

While computations making use of the GCD are common in cryptography there
is surprisingly little in the literature on computing the GCD in constant-time.
This might be because the extended Euclidian algorithm is often used to compute
the modular inverse, and constant-time implementations then often use different
approaches to compute the modular inverse. Moreover, most of the literature
related to constant-time GCD computation actually treats variants of the GCD
computation that are used to compute the modular inverse. We choose to use a
constant-time GCD algorithm by Bernstein and Yang [12], which to our knowledge
is the only constant-time algorithm in the literature that actually computes the
GCD and not the modular inverse.

For a detailed discussion and a proof of correctness we refer to their paper. We
will only give a brief overview of the necessary steps to implement the algorithm.

We begin by defining the function divstep : Z×F[[x]]×F[[x]] 7→ Z×F[[x]]×F[[x]],
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4.3. GCD

where F[[x]] denotes the ring of univariate formal power series over F.

divstep(δ, F,G) =


(
1− δ,G,

G(0)F − F (0)G

x

)
if δ > 0 and G(0) 6=0,(

1 + δ, F,
F (0)G−G(0)F

x

)
otherwise.

(4.1)
As shown by Bernstein and Yang [12, Appendix C], for polynomials F and G
with d1 = deg(F ), d2 = deg(G), and d1 > d2 a sequence of iterative 2(d1 − d2)
divstep applications with input polynomials xd0F (1/x) and xd0−1G(1/x) corre-
sponds to the computation of F mod G as performed during the polynomial
GCD algorithm. They then show that this allows to compute deg(gcd(F,G))
using 2 · deg(F ) − 1 iterations of divstep on input polynomials xd0F (1/x) and
xd0−1G(1/x) [12, Theorem 6.2]. This is sufficient for us, since we only compute
the GCD to check that two polynomials are relatively prime, i.e. that the degree
of the GCD is zero.

We now show how we implemented their algorithm in constant-time. Note
that our version is mostly a C-port of the Sage implementation2 of Bernstein
and Yang, with some adjustments to handle our representations of polynomials.
In the following we will use pseudocode to abstract away some aspects of C (e.g.
memory management, null pointer checks, …), which just make the algorithms less
readable. The implementation consists primarily of two functions, a constant-time
implementation of divstep, as well as a polynomial reversion (i.e. a function that
computes xdF (1/x)). A gcdDegree (see Algorithm 4.4) function then simply
wraps the calls to these functions.

Algorithm 4.4 gcdDegree function.
Require: Polynomials A,B, with d = deg(A) > deg(B).
Ensure: Returns gcd(A,B).

1: function gcdDegree(A,B)
2: F ← reverse(A, d)
3: G← reverse(B, d− 1)
4: (δ, F,G)← divstepsx(2d− 1, 2d− 1, 1, F,G)
5: return δ >> 1
6: end function

We represent a polynomial
∑d

0 aix
i as a struct which contains a fixed size

array, whose length is an implementation parameter, storing the vector a =
(a0, a1 . . . , ad, 0, . . . , 0), and the degree. Computing xdA(1/x) is then easily im-
plemented by reversing the order of the coefficients and moving the coefficients
by d − deg(A) positions as shown in Algorithm 4.5. Note that this function is

2 Which is not constant-time due to the use of non-constant-time built-in Sage functions, as
pointed out by Bernstein and Yang.
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4. Constant-Time NTS-KEM

not constant-time with respect to d. This is not a problem for security, though,
since we only call it with d = τ and d = τ − 1, which are public parameters. It is
constant-time with respect to the input polynomial. The divstepsx function in

Algorithm 4.5 Function to compute xdA(1/x).
Require: Polynomial A with d ≥ deg(A).
Ensure: Returns xdA(1/x).

1: function reverse(A, d)
2: initPoly(F )
3: for i ∈ (0, 1, . . . , d) do . Reverse and move coefficients
4: F.coeff [i]← A.coeff [d− i]
5: end for
6: F.deg ← d
7: zero ← 1
8: for i ∈ d, d− 1, . . . , 0 do . Update the degree in constant-time
9: zero ← zero ∧equalsZero(F.coeff [i])

10: F.deg ← F.deg − zero
11: end for
12: return F
13: end function

Algorithm 4.6 performs n iterative divstep evaluation, where the returned poly-
nomial has at most degree t. We use a mux-like construction in Lines 9, 10 and 12
to implement the branching from the divstep definition in Eq. (4.1). Note that
in Line 15 we do not need to conditionally swap the order of the operands in the
subtraction of Eq. (4.1), since we are working on polynomials over a field with
characteristic 2 and thus subtraction is the same as addition. Apart from that,
the implementation is straight-forward, since our bounds are only depending on
public parameters.

Our implementation uses the slower constant-time GCD from [12] which is
quadratic in the degree of the polynomials. Bernstein and Yang also provide a
subquadratic version, which requires a fast polynomial multiplication (for exam-
ple based on FFT). Due to time constraints, we did not implement the faster
version. In the end the slower version was sufficient in terms of performance (see
Chapter 5).
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Algorithm 4.6 Constant-time pseudocode for computing iterations of divstep.
Require: Polynomials F,G, n > 0.
Ensure: Iteratively compute divstep n times on F and G.

1: function divstepsx(n, t, δ, F,G)
2: initPoly(F2)
3: initPoly(G2)
4: sz = 0 . used to store sign(δ)∧(G(0) 6= 0)
5: for i ∈ (0, 1, . . . , n) do
6: F2 ← F
7: G2 ← G
8: sz ←lessThanZero(−δ) ∧ notZero(G2.coeff [0])
9: δ ← (1 + δ)− ((δ << 1)∧(−sz))

10: F.deg ← F2.deg ⊗((−sz)∧(F2.deg ⊗G2.deg))
11: for j ∈ (0, 1, . . . , F.coeff .size ) do
12: F.coeff [j]← F2.coeff [j]⊗((−sz)∧(F2.coeff [j]⊗G2.coeff [j]))
13: end for
14: for j ∈ (0, 1, . . . , G.coeff .size − 1) do
15: G.coeff [j]← F2.coeff [0] ·G2.coeff [j+1]+G2.coeff [0] ·F2.coeff [j+1]
16: end for
17: updatePolyDegree(G, t)
18: end for
19: return (δ, F,G)
20: end function
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4.4. Permutations
Performing fast permutations in constant-time is very important, since the security
of NTS-KEM relies on the permutation being secret. In this section we want to
permute an array or a bit-vector according to a permutation π on the index set.
NTS-KEM represents this permutation as a permutation vector p, i.e. an array
of size n containing every value in Nn exactly once. Applying this permutation to
an array is then defined as πp(a) = (ap0 , ap1 , . . . , apn−1). Unfortunately, doing this
in constant-time is not a straight-forward task, since we are accessing memory
locations in a secret-dependent way.

4.4.1. Naive Approach
The first way to fix this is ensuring that we are actually accessing the whole array
whenever we access an element of the permutation. This can be achieved with the
code in Listing 4.4. We utilize our constant-time mux function, to ensure that the
compiler does not optimize our memory accesses away and conditionally select the
correct element to keep in the variable r. The obvious issue with this approach is
that permute in Listing 4.5 needs n2 memory accesses, which makes it very slow.

4.4.2. Sorting Networks
An alternative to the naive permutation are permutation and sorting networks as
shown by Bernstein, Chou, and Schwabe [10].

Definition 4.4.1 (Permutation Network). Let cswap be a gate that takes 3 inputs
a, b, c, and produces 2 outputs a′, b′. a, b, a′, b′ are of bit length n and c is 1 bit.
cswap swaps the values of a and b if c is set, i.e.

cswap(a, b, c) := if c then a′ = b; b′ = a; else a′ = a; b′ = b; end

Listing 4.4 – Access an array in constant time
1 uint16_t array_access(uint16_t* array, uint32_t pos, size_t len

↪→ ) {
2 uint32_t b;
3 uint16_t r = 0;
4 for(size_t i = 0; i < len; i++) {
5 b = is_equal(i, pos);
6 r = mux(b, array[i], r);
7 }
8 return r;
9 }
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Listing 4.5 – Naive Permutation using constant-time array access from Listing 4.4
1 void permute(uint16_t* a, uint16_t* a_prime, uint16_t* p,

↪→ size_t len) {
2 for (size_t i = 0; i < len; i++){
3 a[i] = array_access(a_prime, p[i], len);
4 }
5 }

A permutation network is a circuit that consists solely of cswap gates and can
compute any fixed permutation p by fixing the inputs c to the cswap gates to
some values.

Definition 4.4.2 (Sorting Network). Let comp be a gate that takes 2 inputs a,
b, and produces 2 outputs a′, b′, all of bit length n. comp sorts a and b, i.e.

comp(a, b) := if a ≤ b then a′ = a; b′ = b; else a′ = b; b′ = a; end

A sorting network is a circuit consisting only of comp gates, that sorts its inputs.

Note that any sorting network can be turned into a permutation network, by
exchanging the comp gates with cswap gates. The inputs c can then be computed
by applying the original sorting network to the permutation p and storing c :=
a > b at each comp gates. Furthermore, when implemented in software, with
constant-time comp or cswap, sorting and permutation networks are constant-
time by design, since the memory access pattern is fixed and only dependent on
the number of inputs.

The canonical choice when using a permutation network is the Beneš network
[47], due to its optimality. The downside of using such a permutation network is
the requirement to transform the permutation vector into the controlbits, which
can result in a complicated algorithm if said transformation is to be done in an
optimal way. Permutation networks based on sorting networks are usually not
optimal, however the transformation from permutation vector to controlbits is
easier to implement, since it is simply book-keeping while performing the sorting
algorithm. Additionally, the sorting network based approach also allows to per-
mute without the need for precomputation of the controlbits, by simply mirroring
the swaps performed in the permutation network onto the array that we want to
permute.

When using a sorting network, we have a wide array of options to choose from.
Technically, bubblesort is a sorting network, though networks like bitonic sort
or odd-even mergesort [8] are obviously preferable due to their asymptotic com-
plexity of only O(n log(n)2 ). While sorting networks that achieve an asymptotic
complexity of O (n log(n)) are possible, e.g. in the form of the AKS network [1],
these are not practically relevant due to large constant factors. As pointed out
by Knuth [27, Section 5.3.4, Minimum-comparison networks], odd-even mergesort
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4. Constant-Time NTS-KEM

performs better in practice and works for arbitrary network sizes (as long as they
are a power of 2). It also performs less comparisons than other networks with the
same asymptotic complexity [31], which is why we chose odd-even mergesort.

Odd-Even Mergesort

Algorithm 4.7 Recursive odd-even mergesort
Require: n = 2k for k ∈ N \{0}
Require: The two halves (ai)0≤i<n

2
and (ai)n

2
≤i<n, are sorted.

Ensure: The sequence (ai)0≤i<n is sorted.
1: procedure Odd-Even-Merge((a0, a1, . . . , an−1 ) , n)
2: if n > 2 then
3: Odd-Even-Merge((a0, a2, . . . , an−2 ), n

2
)

4: Odd-Even-Merge((a1, a3, . . . , an−1 ), n
2
)

5: for all i ∈ {1, 3, . . . , n− 3} do
6: comp(ai, ai+1)
7: end for
8: else
9: comp(ai, ai+1)

10: end if
11: end procedure

Require: n = 2k for k ∈ N.
Ensure: The sequence (ai)0≤i<n is sorted.
12: procedure Odd-Even-Mergesort((a0, a1, . . . , an−1 ) , n)
13: if n > 1 then
14: Odd-Even-Mergesort(

(
a0, a1, . . . , an

2
−1

)
, n
2
)

15: Odd-Even-Mergesort(
(
an

2
, an

2
+1, . . . , an−1

)
, n
2
)

16: Odd-Even-Merge((a0, a1, . . . , an−1 ) , n)
17: end if
18: end procedure

Our implementation is based on Batcher’s odd-even mergesort [8] shown in
Algorithm 4.7. Similar to classical mergesort, odd-even mergesort sorts arrays of
size nk for k ∈ N, by splitting the input array into two halves, recursively sorting
those halves, and then merging the sorted halves into a sorted list. Classical
mergesort achieves this merge step by linearly scanning the halves, which allows
the mergestep to merge two halves of size n

2
each in O(n) operations. This comes

with a data-dependent memory access pattern, making it potentially vulnerable
to cache-timing attacks. Odd-even mergesort instead merges the two halves by
recursively merging the odd and the even subarray using a fixed access pattern
(only dependent on n), visualized in Fig. 4.1 for n = 16. This fixed access pattern
leads to a complexity of O(n log(n)), which increases the overall complexity from
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4.4. Permutations

Figure 4.1. – Odd-even mergesort for 16 inputs. Each horizontal line represents one
array position, vertical lines represent comp gates. Inputs on the left,
outputs on the right side. The dashed box corresponds to odd-even
mergesort for 8 inputs, the dotted box to 4 inputs.

mergesort’s O(n log(n)) to O(n log(n)2 ) for odd-even-mergesort. However, as can
be seen from the comparison pattern in Fig. 4.1 many of the comparisons are not
dependent on each other and can thus be parallelized, leading to a parallel runtime
of O(log(n)2 ).

A correctness proof of the mergestep is omitted, and can be found in [27] (Sec-
tion 5.3.4. – Networks for Sorting). The following examples show how odd-even
mergesort works.
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a0

a1

a2

a3

b0

b1

b2

b3

c0

c1

c2

c3

c4

Figure 4.2. – Odd-even mergesort for 4 inputs. Corresponding to the dotted box in
Fig. 4.1. Inputs ai on the left, outputs bi on the right.

Example 4.4.1 (Odd-Even Mergesort for 4 Inputs). Figure 4.2 shows the odd-
even mergesort network for 4 inputs. Let p := [3, 1, 0, 2] and let a′i, a

′′
i denote

intermediate values on the wires, then applying the network to p, i.e. setting
a := p, we get:

c0 := (a0 > a1) = (3 > 1) = 1; a′0 := 1, a′1 := 3

c1 := (a2 > a3) = (0 > 2) = 0; a′2 := 0, a′3 := 2

c2 := (a′0 > a′2) = (1 > 0) = 1; a′′0 := 0, a′′2 := 1

c3 := (a′1 > a′3) = (3 > 2) = 1; a′′1 := 2, a′′3 := 3

c4 := (a′′1 > a′′2) = (2 > 1) = 1; a′′′1 := 2, a′′′2 := 3

b0 := a′′0 = 0, b1 := a′′′1 = 1, b2 := a′′′2 = 2, b3 := a′′3 = 3

Thus b = [0, 1, 2, 3], which is sorted.

If we store the vector c [c0, c1, c2, c3], we can then use the network to permute
by supplying it as input and replacing the comp gates with cswap gates.

Example 4.4.2 (Using Odd-Even Mergesort to Apply a Permutation). Let a :=
[a0, a1, a2, a3] with c := [1, 0, 1, 1, 1] and p := [3, 1, 0, 2] as in Example 4.4.1, then
we get:

c0 := 1 7−→ a′0 := a1, a′1 := a0

c1 := 0 7−→ a′2 := a2, a′3 := a3

c2 := 1 7−→ a′′0 := a2, a′′2 := a1

c3 := 1 7−→ a′′1 := a3, a′′3 := a0

c4 := 1 7−→ a′′′1 := a1, a′′′2 := a3

b0 := a′′0 = a2, b1 := a′′′1 = a1, b2 := a′′′2 = a3, b3 := a′′3 = a0

And thus b = [a2, a1, a3, a0] = π−1
p (a), i.e. bpi := ai.

As we can see, when applying a sorting network in this way we actually apply
the inverse of the permutation. To see why this happens, think about what we
are doing when we compute the controlbits. We are sorting the permutation, i.e.
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4.4. Permutations

we are applying a permutation π′ on the permutation vector p, so that the result
is permutation vector representing the identity. Thus π′ = π−1

p , and therefore the
steps we record by storing the controlbits are the steps to apply π−1

p .
Luckily, we can also easily compute πp(a) by traversing the network backwards,

i.e. from right to left with inputs bi and outputs ai. This works, since we simply
undoing the changes that applying π−1

p would have done

Example 4.4.3 (Applying the Permutation in Reverse). Let b := [b0, b1, b2, b3]
with c and p as in Example 4.4.1.

c4 := 1 7−→ b′1 := b2, b′2 := b1

c3 := 1 7−→ b′′1 := b3, b′3 := b2

c2 := 1 7−→ b′0 := b1, b′′2 := b0

c1 := 0 7−→ b′′′2 := b0, b′′3 := b2

c0 := 1 7−→ b′′0 := b3, b′′′1 := b1

a0 := b′′0 = b3, a1 := b′′′1 = b1, a2 := b′′′2 = b0, a3 := b′′3 = b2

we get a = [b3, b1, b0, b2] = πp(b), i.e. ai := bpi .

Implementation

We use odd-even mergesort both for the permutation of the vectors a and h during
key generation (issue 5), and for permuting the error-vector e during decapsula-
tion (issue 13). In both cases we utilize an iterative implementation of odd-even
mergesort.

Key-Generation To permute during key-generation we do not precompute the
results of the comparisons c. Instead our implementation (see Listing 4.6) simply
takes two arrays val and key as input and sorts key (i.e. performs comparisons
and swaps on key) while mirroring all swaps done on key to val.

We call the sets of comparisons that do not depend on each other and can be
done in parallel steps. A set of steps corresponding to one call of Odd-Even-
Merge in the body of Odd-Even-Mergesort is called a stage. We number
the stages logarithmically, meaning stage n is the stage that corresponds to the
call Odd-Even-Merge((ai)0≤i<2n , 2

n). Steps are numbered starting from 0, and
relative to their stage, e.g. in Fig. 4.2 c0 and c1 are step 0 of stage 1, c2 and c3 are
step 0 of stage 2, and c3 is step 1 of stage 2.

The iterative implementation is based on the fact that stage n consists of n steps.
Step 0 of stage n compares the i-th element with the (i+ 2n−1)-th element. Step k
of stage n compares the i-th element with the

(
i+ 2n−k−1

)
-the element, excluding

the first and last 2n−k−1 elements. We can thus simply iterate over the stages with
mergesort and then iterate over the steps with merge. This implementation does
not utilize any parallelism. We do however provide an AVX2 version.
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Listing 4.6 – Iterative implementation of odd even mergesort without precomputation.

1 /**
2 * Permute val by sorting key using odd-even mergesort.
3 * val and key contain 2^n elements.
4 **/
5 void mergesort(uint16_t* val, uint16_t* key, uint32_t n) {
6 for (uint32_t i = 1; i <= n; i++) {
7 for (uint32_t j = 0; j < POW2(n); j += POW2(i)) {
8 merg(val, key, i, j);
9 }
10 }
11 }
12
13 /**
14 * Iterate over the steps of stage n at an offset.
15 **/
16 void merge(uint16_t* val, uint16_t* key, uint32_t n, uint32_t

↪→ offset) {
17 for (uint32_t i = 0; i < POW2(n-1U); i++){
18 compare(val, key, i, i + POW2(n-1U), offset);
19 }
20 for (uint32_t k = 1; k < n; k++) {
21 for (uint32_t j = 0; j < (POW2(n) - POW2(n-k)); j += POW2(n

↪→ -k)) {
22 for (uint32_t i = j + POW2(n-k-1U); i < j + POW2(n-k); i

↪→ ++) {
23 compare(val, key, i, i+POW2(n-k-1U), offset);
24 }
25 }
26 }
27 }
28
29 /**
30 * Compare and swap elements i and j of key at an offset.

↪→ Mirror the swap to val.
31 **/
32 void compare(uint16_t* val, uint16_t* key, uint32_t i, uint32_t

↪→ j, uint32_t offset) {
33 uint32_t c = isGreaterThan(key[offset+i], key[offset+j]);
34 uint16_t t_key = key[offset+i] ^ key[offset+j];
35 uint32_t t_val = val[offset+i] ^ val[offset+j];
36 key[offset+i] ^= (-c) & t_key;
37 key[offset+j] ^= (-c) & t_key;
38 val[offset+i] ^= (-c) & t_val;
39 val[offset+j] ^= (-c) & t_val;
40 }
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When using odd-even mergesort to permute, we are always using it with both
16-bit key and 16-bit val. Using AVX2’s 256 bit-registers we can therefore do up
to 16 compare operations at once. We omit the code since the only changes to the
non-AVX2 version are the types and the fact that Intel’s vectorized greaterThan
instruction returns −1 instead of 1 in case the comparison is true. We can thus get
rid of the negation of c in compare. The tricky part is loading the correct elements
into the AVX2 registers due to odd-even mergesort’s somewhat complicated access
pattern. For this we distinguish whether we have to do a step 0 or a different step.

For the zero step our approach loads 16 values (consecutive in memory) per
operand into an AVX2 register. Depending on the distance3 of the elements we
need to compare, we now shuffle and permute these two vectors in such a way
that we cleanly split the left and right hand side of the comparison into the
two registers, so that we can then simply use the vectorized compare. E.g. for
stage 1, step 0 we want compare adjacent elements (d = 1), thus we want load
the elements (a0, ..., a15 ) ,(a16, ..., a31 ) into registers and then redistribute them
so that we store (a0, a2, ..., a30 ) in one register and (a1, a3, ..., a31 ) in the other
register. We implemented this by using AVX2 shuffle and permute instruction
that interpret the register as 16-bit vectors, 32-bit vectors, and 128-bit vectors
to achieve the necessary permutation, as depicted in Fig. 4.3. After applying
the conditional swaps, we then apply the inverse of this shuffling to realign the
register elements with the corresponding memory elements. Different step sizes
between the compared elements can be done analogously, e.g. by skipping the first
shuffles in Fig. 4.3 for a distance of 2. Distances of 16 or higher, skip the shuffling
altogether.

For the the other steps we are only handling the cases were the distances are
16 or higher, by unrolling the loops by 16 and using the vectorized compare.
The cases with smaller distances fall back to the sequential version. Since we are
working on sorting networks with 4096 or 8192 inputs, these sequential parts make
up for only a very small part of the network.

Decapsulation For decapsulation we have to permute bit vectors instead of in-
teger vectors. In principle this can be achieved by simply changing the memory
access to val in compare in Listing 4.6 to only access single bits. Such an imple-
mentation is grossly underutilizing the available parallelism, though. Instead our
approach utilizes precomputation of the bits controlling the conditional swaps as
explained above. Given these bits we can then perform up to 64 conditional swaps
in one go, by packing both the control bits and the data bits into 64-bit integers
and using bitwise operations as we already do in compare. A version implement-
ing this for a network with 64 inputs is shown in Listing 4.7. left64 and right64
are bit masks encoding the access pattern, i.e. the i-th bit of left64[j][k] is
set if ai is the left argument of a comp call in step k of stage j (analogously
for right64). left64 is shown in Listing 4.8, right64 is can be computed as

3 For two elements ai and aj , the distance is d(ai, aj) := ‖i− j‖.
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Figure 4.3. – Shuffling process to split comparison operands into two registers.
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Listing 4.7 – Bitwise odd-even mergesort using precomputed control bits for 64 inputs.

1 /**
2 * @param[in,out] arr bit vector to be permuted
3 * @param[out] control controlbits defining the

↪→ permutation
4 **/
5 void bitPermute(uint64_t arr, const uint64_t* control) {
6 uint64_t l, r, shift, cshift, t, stage, step;
7 for (stage = 0; stage < 6; stage++){
8 for (step = 0; step <= stage; step++) {
9 shift = 1 << (stage - step);
10 // Select the bits to be conditionally swapped.
11 l = arr & left64[stage][step];
12 r = arr & right64[stage][step];
13
14 // Unset selected bits in arr.
15 arr ^= l|r;
16
17 // Conditional swap
18 t = (r >> shift) ^ l;
19 l ^= control[stage][step] & t;
20 r ^= (control[stage][step] & t) << shift;
21
22 // Store the bits in arr
23 arr |= l|r;
24 }
25 }
26 }

left64<<shift. For ease of implementation we store the control bits in the same
pattern as left64, i.e. only positions of control where left64 is set are used, the
remaining positions are zero. The actual versions used for 4096 and 8192 inputs
work in the same principle, though using highly unrolled loops for the remaining
cases, as well as storing the bit mask for stages 7 and up in a more compressed
format, i.e. not repeating redundant integers.

For computing the control bits we simply use a modified version of mergesort
from Listing 4.6 that only works on key and stores the result in the pattern defined
via left64. In the AVX2 version only the computation of the bits is vectorized,
based on our AVX2 version of odd-even mergesort. Applying the permutation
uses the non-AVX2 implementation, since performance was good enough without
vectorization.
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Listing 4.8 – Bit mask used in Listing 4.7.

1 uint64_t left64[6][6] = {
2 {
3 0x5555555555555555 , 0,
4 0, 0,
5 0, 0
6 },
7 {
8 0x3333333333333333 , 0x2222222222222222 ,
9 0, 0,
10 0, 0
11 },
12 {
13 0x0F0F0F0F0F0F0F0F , 0x0C0C0C0C0C0C0C0C ,
14 0x2A2A2A2A2A2A2A2A , 0,
15 0, 0
16 },
17 {
18 0x00FF00FF00FF00FF , 0x00F000F000F000F0 ,
19 0x0CCC0CCC0CCC0CCC , 0x2AAA2AAA2AAA2AAA ,
20 0, 0
21 },
22 {
23 0x0000FFFF0000FFFF , 0x0000FF000000FF00 ,
24 0x00F0F0F000F0F0F0 , 0x0CCCCCCC0CCCCCCC ,
25 0x2AAAAAAA2AAAAAAA , 0
26 },
27 {
28 0x00000000FFFFFFFF , 0x00000000FFFF0000 ,
29 0x0000FF00FF00FF00 , 0x00F0F0F0F0F0F0F0 ,
30 0x0CCCCCCCCCCCCCCC , 0x2AAAAAAAAAAAAAAA
31 },
32 };
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4.5. Random Sampling
This section discusses the creation of the random permutation π as well as the
random error vector e in a constant-time fashion. For this we assume we have
a cryptographically secure source of randomness. In practice this is provided via
a pseudo-random number generator (PRNG) which returns random bytes. Note
that this allows us to sample an arbitrary number of bits – since we can sample
several times and throw away unneeded bits, but means we can only sample in
constant time from {0, 1}n for arbitrary n. This is due to the well known fact that
in general we cannot transform a uniform distribution over an arbitrary finite set
into a uniform distribution over a different arbitrary finite set, without using a
probabilistic-time algorithm.

Fortunately, the constant-time requirement is stronger than the property we re-
quire. Instead we require that an attacker cannot learn any information about the
secret (i.e. the randomness in our case) by observing the runtime of our algorithm.
This can be formally captured as follows:

Definition 4.5.1. For any (probabilistic) algorithm A, let TA be the random
variable denoting the runtime and S be the random variable denoting the secrets
used by the algorithm. We call A secure against timing attacks if and only if

I (TA;S) = 0,

where I(·; ·) denotes the mutual information. Equivalently, we require that TA
and S are statistically independent (i.e. Pr[S |TA ] = Pr[S ]).

When using this definition care has to be to not overly inflate the secrets S.
Including, for example, a length in S, might often not allow proving that the
mutual information is zero. (Though in the case of lengths this is consistent with
classical security definitions, which often assume the length to be fixed.) It is
easy to see that an algorithm that is constant-time fulfills this condition since
its runtime is in a sense a fixed public parameter. It is equally easy to come up
examples that are not constant-time, but fulfill this definition, showing that it is
indeed weaker than constant-timeness. E.g. assume we can sample random bits
in constant-time. Then sample two bits independently from each other a and b,
where b is the secret. If a is set wait for a fixed amount of time and return b,
otherwise return b without waiting. The runtime of this (somewhat nonsensical)
example is obviously not constant-time, but it is statistically independent from
the secret b since a and b are independent.

While we are not aware that this intuitive definition has been stated in the
literature or is used to analyze algorithms, related concepts exist in the form
of Mutual Information Analysis (MIA) [20]. MIA is a technique used in side-
channel analysis which uses measurements of mutual information to extract secrets
through a side-channel. Gierlichs et al. [20] also mention that ideally this mutual
information would in theory be zero when no leakage occurs.
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In practice, showing that an algorithm is constant-time is often much easier
than the above property. For this reason constant-timeness is usually required
instead. In this section we cannot achieve this, however, and thus aim for the
property in Definition 4.5.1.

In the following we will present our solutions to issues 3 and 8. As we will
see, these solutions do not depend on the ability to sample uniformly from Nk for
arbitrary k. As such, we do not require the Knuth-Yao algorithm, which solves
issue 4. Nonetheless, the Knuth-Yao algorithm is safe to use, since it satisfies
Definition 4.5.1. A proof of this can be found in Appendix B.

4.5.1. Random Permutation
First we want to generate a uniformly random permutation over the set of n = 2m

elements (where n and m are NTS-KEM parameters), which we will represent
as a permutation vector. An easy way to securely create a random permutation
is making the memory accesses in the Fisher-Yates shuffle constant-time. This
results in a significant performance degradation though. A faster alternative works
by realizing that any finite, non-repeating sequence s with si ∈ N implicitly defines
a permutation f . We can see this by mapping each element si of a sequence s
with |s| = n to an element of Nn as follows.

Let ŝ = (ŝi)i∈Nn be the ordered sequence of elements of s, i.e. the following
conditions hold

1. {s|s ∈ ŝ} = {s|s ∈ s},

2. ∀i, j ∈ Nn : i < j −→ ŝi < ŝj.

Then f maps each element of s to its position in ŝ, i.e. f(s) := i, s.t. ŝi = s.

Example 4.5.1. Let s := (8, 3, 4, 1), then ŝ = (1, 3, 4, 8). And thus we map s to
f represented by the permutation vector f = (f(s1), ..., f(sn)) = (3, 1, 2, 0), .

Therefore we can simply repeatedly sample n integers until all n integers are
distinct to create s, and then sort ŝ to define f (represented by a vector f). To
decrease the probability of collisions, we sample 64-bit integers. Using the fact
that n = 2m and the birthday bound, we can bound the probability pn of collision
(and thus of resampling) by

pn ≤
n2

265
=

22m

265
=

{
2−41 if m = 12

2−39 if m = 13
.

To compute the mapping from random integers to a permutation, we simply
use odd-even mergesort (see Section 4.4.2) to sort s and mirror the swaps to
p = (0, 1, ..., n− 1) in constant time. Since this way we also sort s, we only check
for duplicates in s after sorting, which is then done using a simple linear scan.
The whole process is depicted in Listing 4.9.
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Listing 4.9 – Creating a uniformly random permutation.

1 // N is the NTS-KEM parameter n
2 // M is the NTS-KEM parameter m, i.e. m = log(n)
3 void create_permutation(uint16_t* p) {
4 uint64_t ran[N];
5 uint64_t t;
6 do{
7 t = 1;
8 randombytes((uint8_t*) ran, sizeof(ran));
9 for(int i = 0; i < N; i++) {
10 p[i] = i;
11 }
12 mergesort(p, ran, M);
13 for(int i = 1; i < N; i++) {
14 t &= isNotEqual(ran[i], ran[i-1]);
15 }
16 } while (not(t));
17 }

4.5.2. Random Error Vector
Here the problem is to generate a uniformly random bit vector e of length n with
Hamming weight τ . Using a constant-time version of the Fisher-Yates shuffle,
which ensures to access every array element for every swap, was too slow. Instead,
if we can sample the τ distinct indices where the vector will be set, we can then
simply set these bits. Setting the bits is easy to do in constant time, by simply
checking for every index whether it is in the list of sampled indices. This check is
done using a simple linear scan. We then only have to continue with loop when
an index is found instead of stopping early, as depicted below.

1 // N = NTS-KEM paramter n/8
2 // char e[N] will store the error as bit-vector
3 // uint64_t idx[tau] contains the sampled indices
4 for (int i = 0; i < N; i++) {
5 e[i] = 0;
6 for (int j = 0; j < tau; j++) {
7 c = -isEqual(i, idx[j] >> 3);
8 e[i] |= (1 << (idx[j] & 7)) & c;
9 }
10 }

This problem then boils down to sampling τ distinct indices. For this we use
the approach used in the Classic McEliece implementation [13], which works as
follows.

1. Sample 2τ random numbers from {0, ...n}.

55



4. Constant-Time NTS-KEM

2. Check if there are at least τ distinct numbers, this is done by checking for
every element whether it is equal to any of the elements before it.

3. If we have do not have enough elements go to step 1, otherwise pick the first
τ distinct elements.

Note that this approach fulfills Definition 4.5.1, since one iteration of this sampling
process is constant-time and the randomness from all but the last iteration is not
used.

We chose the parameter 2τ in step 1 the same way as the Classic McEliece
team did. Simply sampling τ would lead to a high probability of retries in step 3
as that case would reduce to the birthday problem, for which we can bound the
probability of collision pcoll by 1 − e−τ ·(τ−1)/2n ≤ pcoll ≤ τ2

2n
. For τ = 136 and

n = 8192, which has the highest bounds, this results in bounds of 0.67 and 1.13.
By instead sampling 2τ numbers the probability of at least τ distinct numbers is
empirically very close to 1. And thus the probability of retrying in step 3 is close
to 0. The additional cost of sampling twice as many numbers should be negligible.

To sample random numbers in step 1 we tried several approaches. First we
used simple rejection sampling. This was significantly slower than the Knuth-Yao
algorithm. Note that as stated above and shown in Appendix B the Knuth-
Yao algorithm is actually safe to use here. We found an even simpler and faster
approach, though. We can use the fact that, in NTS-KEM, n is always a power
of two (212 or 213). This means we can simply sample 2 byte integers and zero the
additional upper bits.

4.6. Verification
We used ctgrind to successfully verify our implementation on optimization levels
-O0 to -O3 when compiled with gcc-6.3. As part of our implementation, we also
provide scripts to automatically run ctgrind with the appropriate settings. As
discussed in Section 2.3, memcheck can produce false positives when using vector
registers. On higher optimization levels the compiler tries to vectorize loops on its
own, which can trigger these false positives. In our case ctgrind reported issues for
the 13-80 and 13-136 NTS-KEM version’s bitsliced Berlekamp-Massey algorithm.
We manually inspected the produced assembly to ensure that these were actually
false positives. Similarly ctgrind reports issues in the avx2 version which are also
false positives.

We can only give guarantees for the compiler and optimizations we tested (i.e.
gcc-6.3 with the above optimizations). When using different compilers we rec-
ommend running ctgrind using the provided scripts to verify that no issues are
introduced by the compiler. In case of issues we recommend inspecting the assem-
bly to ensure that the issues are false positives due to vectorization. For conve-
nience we also provide ways to deactivate loop vectorization during compilation.
We provide an optional make target use_pragma which uses pragmas to instruct
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the compiler to not vectorize the specific sections of the code where false posi-
tives were caused in our case. These pragmas are implemented to work with gcc
and clang. Additionally the makefiles provide targets no_loop_vectorize_gcc
and no_loop_vectorize_clang, which fully deactivate loop vectorization during
compilation. Note however that both ways of deactivating loop vectorization can
reduce performance (see Section 5.3.5) and inspecting the assembly to ensure that
any reports generated by ctgrind are false positives is preferable.
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5.1. Methodology
We instrumented our implementation at several points in the program to collect
runtime data. Namely we collect average and total runtime of code sections, as
well as minimum, maximum value observed. Additionally we compute the median
and the 1st and 3rd quartiles of the observed runtimes. These are computed on
the fly using the P 2 algorithm by Jain and Chlamtac [24]. Our machine is an Intel
Core i5-4570 CPU @ 3.20GHz with 16 GB RAM.

The evaluation setup is as follows. For one configuration of our implementation
a single run consists of performing key-generation, encapsulation with that key,
and decapsulation of the encapsulated ciphertext with the corresponding key. We
use 1000 such runs per configuration. The selection of configurations is depicted
in Table 5.1

Table 5.1. – Configurations used for the performance evaluation.
non-ct Optimized and AVX2 implementations of NTS-KEM.
ct Constant-time version as explained in Chapter 4. Uses the

rejection sampling approach for Gaussian elimination.
rref like ct, but using a full Gaussian elimination, with column

swaps at the end.
reduced-randomness like ct, but using 32-bit random integers during the generation

of the random permutation.
Fisher-Yates like ct, but using a constant-time Fisher-Yates shuffle to create

the random permutation.
no-sorting-network like ct, but using the naive constant-time permutation instead

of sorting networks to permute a during key-generation.
Knuth-Yao like ct, but using Knuth-Yao to sample bounded integers when

creating the error vector.
rejection-sampling like ct, but using rejection sampling to sample bounded inte-

gers when creating the error vector.
no-bit-sorting-net like ct, but using a naive ct bit-vector permutation instead of

sorting networks during decapsulation.
bit-shuffle like ct, but using the constant-time Fisher-Yates shuffle to

create the random vector.
pragma like shuffle, but using pragmas to disable loop vectorization

locally to remove false positives.
no-loop-vectorize like shuffle, but deactivating loop vectorization globally.
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Table 5.2. – Overview over mean number of cycles measured for non constant-time
NTS-KEM as per reference implementation.

Key-Generation Encapsulation Decapsulation

12-64 optimized 87 119 976 138 052 1 129 596
avx2 76 377 368 176 495 967 353

13-80 optimized 257 709 964 552 701 2 862 617
avx2 225 757 666 641 278 2 490 900

13-136 optimized 437 865 095 934 001 5 513 895
avx2 371 496 148 976 928 4 236 917

Figure 5.1. – Mean time spent in key-generation for non-ct NTS-KEM.

5.2. Baseline – Non Constant-Time NTS-KEM
We start with presenting the performance of the original NTS-KEM implementa-
tion on our machine, which we use as a baseline. Table 5.2 gives an overview of
the total timings. Note that our timings are slightly higher than those reported
in the submission [4], which is most likely due to our instrumentation being more
involved. In the following we will briefly go over the bottlenecks of NTS-KEM.

Key-Generation

Figure 5.1 shows the mean timings for the important steps of key-generation. As
we can see the bottleneck lies in creating the matrix, which takes about half of
the time needed for key-generation. Again half of that is taken by the M4RI
algorithm and the other half by transposing the matrix. Apart from serialization
of the keys at the end, the remaining steps do not make up a significant portion
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Figure 5.2. – Mean time spent in encapsulation for non-ct NTS-KEM.

of the runtime.

Encapsulation

For encapsulation most of the work is done in the core encapsulation function (see
Fig. 5.2). Figure 5.3 shows the timings for the steps of the core encapsulation
function. Interestingly the most relevant part of encapsulation is the setup step,
which loads the serialized matrix from the public key into a matrix. In addition,
the AVX2 version is slightly slower, which is most likely caused by the fact that
the AVX2 matrix is larger, since it consists of memory chunks that are a multiple
of 256 bit instead of 64 bit. This leads to additional memory being written (i.e.
set to zero) during initialization.

Decapsulation

Figure 5.4 gives an overview of the decapsulation timings. Immediately, we can
see that syndrome computation makes up about half of the runtime. Other steps
contains mostly the setup phase (i.e. reading the key data into data structure) and
reencapsulation. The remaining steps only make up a small part of the runtime.
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Figure 5.3. – Mean time spent in the core encapsulation function for non-ct NTS-
KEM.

Figure 5.4. – Mean time spent in decapsulation for non-ct NTS-KEM.
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5.3. Results – Constant-Time NTS-KEM
We now present the performance of our constant-time version (ct in Table 5.1).
We will then follow-up with a discussion of different approaches explained in Chap-
ter 4. A summary of the timings is given in Table 5.3.

Table 5.3. – Overview over mean timings measured for constant-time NTS-KEM.

Key-Generation Encapsulation Decapsulation Precompute

12-64 opt. 735 926 942 343 526 909 871 1 821 409
avx2 347 025 387 233 326 697 696 1 445 779

13-80 opt. 2 488 549 580 1 093 456 2 088 743 4 599 707
avx2 1 227 321 932 933 114 1 649 790 3 599 908

13-136 opt. 6 282 556 806 1 789 491 4 057 654 5 383 955
avx2 2 806 302 970 1 323 330 2 684 412 4 350 258

Immediately we notice the huge impact of increasing the parallelism with AVX2
especially for key-generation, though key-generation is still immensely slower than
in the non-constant-time version, with a factor of up to 10 for the non AVX2
and a factor of about 5-7 for the AVX2 version. Encapsulation times roughly
double, while decapsulation time roughly doubles when we include the cost of
precomputation.

5.3.1. Key-Generation
Figure 5.5 gives an overview over the time spent during different steps of key-
generation. When comparing with the non-constant-time version (Fig. 5.1, note
the change of the x-axis scale), we can see that the transformation into systematic
form now completely dominates the runtime. This is to be expected given that
the extremely fast but unfortunately non-constant-time M4RI algorithm used in
the non-constant-time versions already made up a big portion of the runtime. Ad-
ditionally we can see that the creation of the Goppa polynomial G(z) in constant-
time now makes up a noticeable portion of the runtime, where before it was
completely insignificant. This is due to our choice of using the simple version
of Bernstein and Yang’s ct-GCD algorithm. We expect that this could be signifi-
cantly improved upon by implementing a constant-time polynomial multiplication
using FFT and then following Bernstein and Yang’s approach for a faster ct-GCD.
Performance gains for key-generation as a whole through this would be minimal
however, since the rref transformation require most of the time.

Figure 5.6 shows the quartiles of constant-time key-generation. Most impor-
tantly we can see that the median runtime is significantly lower than the average
runtime, with 50 % of key-generations taking less than 240 000 000, 930 000 000
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Figure 5.5. – Mean time spent in key-generation for ct NTS-KEM.

Figure 5.6. – Quartiles of ct key-generation.
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and 2 300 000 000 cycles for the three AVX2 versions. This is to be expected given
that such a rejection sampling approach should result in a geometric distribution.

On average we needed 3.4 attempts to generate a valid key. This is consistent
with the numbers reported by Bernstein et al. [13], who report that about 29 %
of randomly chosen matrices can be transformed into systematic form without
column swaps.

Gaussian Elimination

We will now briefly compare our two approaches to Gaussian elimination, i.e. the
full Gaussian elimination with column swaps and the rejection sampling approach
without column swaps. Figure 5.7 shows the timings for the full Gaussian elimina-

Figure 5.7. – Average time spent transforming a matrix into systematic form in
constant-time.

tion contrasted with the rejection sampling approach. As we would expect mean
key generation is much slower than in the rejection sampling approach. Since
we are working on an mτ × (n − mτ)-matrix we would expect a factor roughly
corresponding to n−mτ

mτ
between the two versions, which directly stems from using

an O((mτ)3 ) algorithm instead of an O((mτ)2(n−mτ)) algorithm. This would
then come down to factors of 4.3, 6.9 and 3.6 which fits well with our measured
factors of 4.3, 6.3 and 3.9 for the non-AVX2 and 4.0, 5.2 and 3.4 for the AVX2
versions.

Creating Random Permutations

Now, we will focus on creation of the random permutation. We will first look
at the constant-time Fisher-Yates shuffle in contrast to the sorting network based
approach. The time needed for the Fisher-Yates shuffle is depicted in Fig. 5.8.
We can immediately see there are huge differences between these two approaches.
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Figure 5.8. – Average time spent generating the random permutation during key-
generation for different approaches.

Figure 5.9. – Mean time spent in key-generation for Fisher-Yates configuration of ct
NTS-KEM.
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Figure 5.10. – Average time spent generating the random permutation during key-
generation using different integer sizes.

This is simply caused by the fact that our constant-time Fisher-Yates accesses the
whole array for every swap, which results in a quadratic runtime. Our sorting
network based approach only needs n log (n)2 operations. Since we are talking
about memory accesses, these differences are especially relevant. In fact constant-
time Fisher-Yates is so bad, that creation of the permutation actually becomes a
significant part of the overall key-generation time, as depicted in Fig. 5.9.

Secondly, we compare the performance impact of using 32-bit integers instead
of 64-bit integers when creating the random permutation as explained in Sec-
tion 4.5.1. Remember, that this is done by sampling n integers and sorting them.
We expect that the 32-bit version would be slightly faster, since we need to sam-
ple half as much randomness and more importantly the sorting network has to
access half as much memory. As can be seen in Fig. 5.10 this is true. The differ-
ence is small, though, especially when looking at the context of key-generation,
where the time needed by creation of the permutation is completely negligible as
seen in Fig. 5.5. However, using 32-bit integers our collision probability rises to
22m

233
=

{
2−9 if m = 12

2−7 if m = 13
from 22m

265
=

{
2−41 if m = 12

2−39 if m = 13
in the 64-bit case. This

does not make the 32-bit version slower than the 64-bit version, though. Addi-
tionally we have double the memory usage in the 64-bit variant, i.e. 32 and 64
KB instead of 16 and 32 KB (for m = 12 and 13 respectively). Given the size of
the keys, namely between 321 and 1406 KB depending on the parameter set as
reported in the original submission, this is also only a very small increase.

Independent of the choice of integer size our constant-time approach is how-
ever significantly slower than the non-constant-time Fisher-Yates shuffle. This is
expected, since one try of our approach runs in O(n log(n)2 ), whereas the Fisher-
Yates shuffle runs in O (n). Still, as a result, our approach using 64-bit integers
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Figure 5.11. – Mean time spent permuting a.

is good. Optimizations in this part would not lead to any significant speedups of
key-generation as a whole. On very memory constrained devices using the 12-64
version, it might be preferable to use 32-bit integers, however.

Overall, we can conclude that our method of permutation creation performs
well. Even with 64-bit integers its runtime is negligible with respect to the total
key-generation time, which is bottlenecked by the matrix transformation.

Permuting Elements of F2m

We will now show the difference in performance between the naive approach to
permuting in constant-time and the sorting network based approach. Remember
that the naive approach runs in quadratic time similarly to the Fisher-Yates shuffle
above. Thus we expect a similarly big difference in performance compared to
the sorting network based approach. Figure 5.11 confirms this expectation, with
the naive approach being an order of magnitude slower (note the logarithmic
scale!). Similarly to the case of ct-Fisher-Yates above, this approach would make
permutation of a take a significant part of total key-generation time.

Figure 5.11 also shows the difference between the sorting network based constant-
time permutation and the non-constant time permutation. We see that unfor-
tunately constant-time permutation is 3 orders of magnitude slower than non-
constant-time permutation. However comparing with Fig. 5.5 we see that per-
muting (as part of ’other steps’) makes up for a very small amount of the total
key-generation time. Thus in the context of much more expensive Gaussian elim-
ination, our approach to permutation performs reasonably well.
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Figure 5.12. – Mean time spent in encapsulation for ct NTS-KEM.

Figure 5.13. – Mean time spent in the core encapsulation function for ct NTS-KEM.
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Figure 5.14. – Mean time spent creating the random error vector.

5.3.2. Encapsulation
As can be seen from Fig. 5.12, our new constant-time random error vector sampling
makes up a significant amount of the total time, about 25-50 % depending on
the parameters and AVX support. Such an increase is to be expected since our
approach needs O(n× τ ) time to avoid a cache-timing side-channel when setting
the bits at the sampled indices. Additionally we can see that, as expected, the time
needed for the matrix multiplication in the core encapsulation function increases
significantly (see Fig. 5.13), since we don’t skip operations when elements of the
multiplied vector are zero. Thus our multiplication runs in time O(n) instead of
O(τ + `). From those runtime estimates we would predict an increase by a factor
of somewhere around 12.8, 24.4 and 20.9 for the three different parameter-sets
12-64, 13-80, and 13-136 respectively. This roughly fits with our measurements,
which give us factors of 9.1, 18.2 and 16.1 in the non-AVX2 case, and 16.2, 31.6
and 24.3 in the AVX2 case.

Creating the Random Error Vector

Figure 5.14 shows the time needed to create the random error vector using different
approaches. While both constant-time versions are significantly slower than the
non-ct version, they are relatively close to each other. Note, that for bit shuffling
the Fisher-Yates shuffle performs considerably better than during key-generation
above. This is due to the fact that we are only doing τ shuffles and accessing n

8

memory locations, leading to nτ
8

memory accesses instead of n2.
In the AVX2 version the Classic McEliece approach is considerably faster. This

is due to less overhead when sampling the random numbers and vectorizeability
of the loop that sets the bits. In contrast the Fisher-Yates shuffle is inherently
sequential and can thus not be vectorized easily. This ability of the compiler to
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Figure 5.15. – Mean time spent in decapsulation for ct NTS-KEM.

optimize makes the Classic McEliece style approach clearly superior.

5.3.3. Decapsulation
Figure 5.15 gives an overview over the timings of the decapsulation steps. Since
the only major change is the permutation of the error vector (and the precompu-
tation of the controlbits), the remaining steps require the same time as in the non-
constant-time version. As expected timings for the precomputation and permu-
tation across the versions with m = 13 are roughly the same since the algorithms
only depend on m and the timings roughly double compared to the 12-64-version,
as expected from its O (n log(n)2 ) complexity. We can also see that the actual
decapsulation given the controlbits is even slightly faster in the constant-time case
than in the non-constant-time case. This can be explained by the fact that the
original permutation is fully sequential, while the sorting-network-based approach
is parallelized.

The time needed for the permutation in the AVX2 versions is the same as in
the non-AVX2 version, since they use the same implementation. However we also
see that this is justified, since the bottleneck clearly is syndrome computation
followed by the reencapsulation step and the initial loading of the secret key data
(both contained in the ‘other steps’).

Permuting Bitvectors

Here we have a look at the difference between our sorting network based bitvec-
tor permutation and the naive constant-time bitvector permutation. Figure 5.16
shows the time needed to permute the bitvector during decapsulation. We can
immediately see two things.
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Figure 5.16. – Mean time spent permuting the bitvector during decapsulation.

Firstly, permuting using our sorting network is comparable in speed with the
non-constant time permutation, when we ignore the cost of precomputation.

Secondly the cost of precomputation is immense and trumps even the cost of the
naive ct permutation. Note however that in the avx2 versions there is still some
space for optimization left, as the precomputation contains sequential parts that
might be further parallelized, and the actual permutation is not using the AVX2
instructions which would allow 256 operations in parallel instead of 64. Especially
the latter should be a comparatively easy change, though the performance gain is
not required since, as noted above, the bottleneck is syndrome computation.

Looking at Fig. 5.17 we make a somewhat contradictory observation. Com-
paring with Fig. 5.15 we see that for the AVX2 versions the total time spent in
decapsulation is lower in Fig. 5.15 even if including the precomputation, and that
despite that permuting + precomputing is slower than the naive permutation.
The cause seems to be the setup phase of the function, where the private key data
is loaded into memory, which is significiantly faster in the version utilizing the
sorting network. For example in the 13-136 AVX2 case we measured about 420
thousand cycles as mean setup time for the sorting network version and about
2 million cycles for the naive ct permutation. Note that this difference in setup
time is also present when comparing the sorting network based version with the
non-ct version and is independent of whether we use the AVX2 version or not,
with the timings of the non-ct version being the same as the timings of the naive
ct permutation. The direct cause of this is unknown. The only difference during
setup is an additional null-check in the sorting network based version. Looking at
the actual instructions in the assembled files, the null-check difference is also the
only difference. It seems unlikely that this is the root cause however. More likely
it might be due to differences in the instruction alignment in the assembly file or
different cache access patterns.
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Figure 5.17. – Mean time in decapsulation using naive ct bitvector permutation.

Table 5.4. – Memory requirements in Bytes for sorting network based bitvector per-
mutation.

12-64 13-80 13-136
controlbits 73 728 173 056 173 056
masks 800 800 800

private-key size 328 736 947 316 1 439 626

Another aspect to consider are the memory requirements of this approach. For
the most part our version should not consume significantly more memory than the
non-constant-time version. However when using the sorting net with precomputed
bits this is not the case, since we need to store the controlbits, as well as store
some masks to select the bits. The memory requirements are presented in Table 5.4
together with the private key size, which is unchanged. On their own these memory
requirements are rather high. However in the context of the private key size
they seem more reasonable. Still, there is room for optimization. The space
required by the masks could be halved, since we are essentially storing redundant
masks. Moreover, based on Theorem A.2 we can calculate that the minimal
amount of memory needed is 17 408 bytes for m = 12 and 40 960 bytes for m = 13.
We are obviously far above that and optimization might be worthwhile. Note
however that our current memory usage simplifies accessing the individual bits,
and optimizations packing the data more tightly together most likely come with
an increased runtime. Another alternative is the usage of a different permutation
network. For example, the Beneš network needs about n log(n) comparisons, and
thus would only require 6144 and 13 312 bytes to store the controlbits for the two
different values of m.

Overall our sorting network based approach works very well. Especially when

73



5. Performance Evaluation

we precompute and cache the controlbits, it performs even better than the original
non-ct version, due to the above setup timings. There is room for memory usage
optimization, however.

5.3.4. Sampling Bounded Integers
We now take a closer look at the three versions of sampling bounded integers we
tried, namely Knuth-Yao, rejection sampling, and throwing away unnecessary bits
when the bound is a power of two, which is the approach used in our ct version.
For this we used these three different methods when sampling bounded integers
during creation of the random error vector and look at the total time needed to
create the random vector. The results are shown in Fig. 5.18 and are as expected.
Throwing away the unused bits is fastest and Knuth-Yao is faster than rejection
sampling, since it is an optimal way to sample arbitrarily bounded integers in
contrast to rejection sampling. Rejection sampling is at least two times slower
than throwing away unused bits in the AVX2 versions. This might be caused by
loop vectorization, since we first do all the sampling and then throw away the
unnecessary bits in one go, which can in theory be done in parallel. Interestingly
our rejection sampling implementation is even 2 times slower than Knuth-Yao in
the case of the 12-64 AVX2 version. Overall we can see that the choice of sampling
method can have a very big impact on performance and time spent optimizing
this can be worth the gains.

5.3.5. The Impact of Loop Vectorization
Lastly we will have a look at the impact of loop vectorization. As discussed in
Section 4.6 we provide make targets to deactivate the compiler’s loop vectorization.
However deactivating it might have a potentially big impact on the performance
since that decreases parallelism.

Figures 5.19 and 5.20 show our measurements. We omit the graph for key-
generation, as there was no significant difference. In the non-AVX2 version every-
thing behaves as we expect: the more we deactivate loop vectorization, the slower
the execution gets. The effect is primarily visible for encapsulation, which stems
from the fact that the random vector creation, which is vectorizeable, makes up
for a significant part of the runtime.

Surprisingly disabling loop-vectorization globally in the AVX2 version performs
better than local deactivation for encapsulation and actually improves perfor-
mance in decapsulation. We can only speculate why this is the case and it is
probably highly dependent on the compiler (version). It might be due to instruc-
tion alignment or force the compiler to use different optimizations that work better
in our cases. However the differences are rather small. As such we don’t think
that disabling loop-vectorization globally should be done in general. However, it
seems to be a valid option in case one cannot verify whether issues reported by
ctgrind are actually false positives.
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Figure 5.18. – Mean time in creation of random error e using different sampling meth-
ods.

Figure 5.19. – Mean time for encapsulation for different loop vectorization settings.
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Figure 5.20. – Mean time for decapsulation for different loop vectorization settings.

5.3.6. Summary
The final version we picked is the ct in Table 5.1. This version uses the rejection
sampling approach described in Section 4.2.3 to construct a systematic matrix.
The random permutation is created using the sorting network approach from
Section 4.5.1 using 64-bit integers and we also use sorting networks to apply
the permutation during key-generation. During encapsulation we use the Classic
McEliece approach to create the random error vector. For decapsulation we also
use the sorting network approach with precomputed controlbits to permute the
bitvectors. To uphold the API given by NIST we technically do not precompute
the controlbits, instead our decapsulation function computes the controlbits and
then calls a core decapsulation function which uses the controlbits. We do however
extend the API to provide access to both the controlbit computing function as
well as the core decapsulation function to allow users to cache the controlbits in
their application. Based on our analysis this should provide the best performance,
especially for decapsulation.

Lastly we want to remark on serialization. During (de-)serialization key data is
transformed between a platform independent format used for key-distribution and
a platform and implementation dependent format used to speedup computations.
As we have seen through this evaluation, in all three functions (key-generation,
encapsulation, decapsulation) (de-)serialization of key data has a significant im-
pact on the total runtime. For key-generation there is not really much way to get
around this, however for encapsulation and decapsulation this might be possible.

Under similar assumptions to the ones used when arguing for precomputation
of the controlbits, namely that the same key is repeatedly used and thus only
needs to be loaded once, it also seems plausible that this could be applied to se-
rialization. This should be achievable by providing API access to deserialization
functions and keeping the deserialized keys in memory for the lifetime of the pro-
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gram. The encapsulation and decapsulation functions can then directly take the
deserialized keys as inputs, and thus deserialization costs can be amortized across
several invocations of encapsulation and decapsulation. We did not however im-
plement this, and can therefore not provide concrete numbers on the performance
gains. Sections 5.3.2 and 5.3.3 suggest significant improvements especially for
encapsulation, though.
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6. Conclusion
We have developed a constant-time implementation of NTS-KEM. We have seen
that directly plugging-in constant-time code snippets can often lead to signifi-
cant performance losses, especially when we are trying to prevent cache-timing
attacks. In these cases we had to choose completely different approaches, often
ones that are asymptotically not optimal when compared with the non-constant-
time approaches. Moreover our performance analysis suggest that it can be highly
beneficial to treat constant-timeness as an important requirement when designing
a cryptographic scheme from the start, for example regarding the question of how
to handle the controlbits.

We also saw that strict constant-timeness is sometimes not achievable. This
is especially the case when dealing with randomized algorithms. We propose a
relaxed security definition, which can be used for the analysis of algorithms and
which we used several times.

As we have seen our implementation performs well, incurring a reasonable in-
crease in encapsulation time, and, assuming per-key caching of the controlbits,
a performance increase for decapsulation. Constant-time key-generation is slow,
however. In practice this will not be an issue, though, since we do not expect
NTS-KEM to be used in scenarios where lots of fresh keys have to be generated
frequently. For the same reason we can also cache the controlbits to enable fast
decapsulation.

For memory constrained systems, future implementations might want to look
into optimizations of memory usage. However the large key-sizes already require
a significant amount of memory. Thus there already is a substantial memory
requirement given by the NTS-KEM specification, which we increase slightly.

We verified our implementation using ctgrind, a tool for checking constant-
timeness based on valgrind’s memcheck. Thus we can give users strong guarantees
that our implementation does not contain timing-based side-channels.
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A. Analysis of Odd-Even Mergesort
Theorem A.1. The number of calls to COMP by procedure Odd-Even-Merge
in Algorithm 4.7 is

TM(n) =
n

2
(log(n)− 1) + 1 (A.1)

Proof. The number of calls to COMP is given by the recursion:

T rec
M (n) = 2 · T rec

M

(n
2

)
+

n

2
− 1 (A.2)

T rec
M (2) = 1 (A.3)

Now given n = 2k, Eq. (A.1) is equivalent to:

TM

(
2k
)
= (k − 1) · 2k−1 + 1 (A.4)

and Eq. (A.2) to:

T rec
M

(
2k
)
= 2 · T rec

M

(
2k−1

)
+ 2k−1 − 1 (A.5)

We now prove equality of T rec
M and TM by induction over k, which concludes the

proof:

Induction Hypothesis:

T rec
M

(
2k−1

)
= TM

(
2k−1

)
(I.H.)

Base Case: k = 1

TM

(
21
)
= 0 · 20 + 1 = 1 = T rec

M

(
21
)

Step Case: k − 1→ k

T rec
M

(
2k
)
= 2 · T rec

M

(
2k−1

)
+ 2k−1 − 1

I.H.
= 2 · TM

(
2k−1

)
+ 2k−1 − 1

= 2 ·
(
(k − 2) · 2k−2 + 1

)
+ 2k−1 − 1

= (k − 2) · 2k−1 + 2 + 2k−1 − 1

= (k − 1) · 2k−1 + 1

= TM

(
2k
)
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A. Analysis of Odd-Even Mergesort

Theorem A.2. The number of calls to COMP by procedure
Odd-Even-Mergesort is

TS (n) =
n

4
· (log(n)− 1) · log(n) + n− 1 (A.6)

Proof. The number of calls to COMP is given by the recursion:

T rec
S (n) = 2 · T rec

S

(n
2

)
+ TM(n) = 2 · T rec

S

(n
2

)
+

n

2
(log(n)− 1) + 1 (A.7)

T rec
S (1) = 0 (A.8)

By substituting n = 2k Eq. (A.6) is equivalent to:

TS

(
2k
)
= 2k−2 · (k − 1) · k + 2k − 1 (A.9)

and Eq. (A.7) to:

T rec
S

(
2k
)
= 2 · T rec

S

(
2k−1

)
+ 2k−1 (k − 1) + 1 (A.10)

We prove equality of T rec
S and TS by induction over k.

Induction Hypothesis:

T rec
S

(
2k−1

)
= TS

(
2k−1

)
(I.H.)

Base Case: k = 0

TS

(
20
)
= 2−2 · (−1) · 0 + 21 − 1 = 1− 1 = 0 = T rec

S

(
20
)

Step Case: k − 1→ k

T rec
S

(
2k
)
= 2 · T rec

S

(
2k−1

)
+ 2k−1 (k − 1) + 1

I.H.
= 2 · TS

(
2k−1

)
+ 2k−1 (k − 1) + 1

= 2 ·
(
2k−3 · (k − 2) · (k − 1) + 2k−1 − 1

)
+ 2k−1 (k − 1) + 1

= 2k−2 · (k − 2) · (k − 1) + 2k − 2 + 2k−1 (k − 1) + 1

= 2k−2 · (k − 2) · (k − 1) + 2k−1 (k − 1) + 2k − 1

= (k − 1) ·
(
2k−2 · (k − 2) + 2k−1

)
+ 2k − 1

= 2k−2 · (k − 1) · ((k − 2) + 2) + 2k − 1

= 2k−2 · (k − 1) · k + 2k − 1

= TS

(
2k
)
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B. The Security of the Knuth-Yao
Algorithm

We claimed in Section 4.5 that the Knuth-Yao algorithm fulfills Definition 4.5.1
We will show this here.

Theorem B.1. The Knuth-Yao algorithm (Algorithm 3.3) fulfills Definition 4.5.1,
where the secret S is the return value of the algorithm. That is, let X denote the
random variable describing the return value of the Knuth-Yao algorithm, and T
be the random variable describing its runtime. Then it holds that:

Pr[X |T ] = Pr[X ] .

Proof. For this proof we use a Hoare-like notation to annotate the algorithm with
logical formula F describing information about the execution state, here denoted
as {|F |}. Each {|F |} describes the state before (after) the execution of the next
(previous) line of code. These are essentially invariants of the program, which
hold at the given line. Logical entailment ` is used to transform one formula into
another. Note that when working within a probabilistic framework, a conditional
branch involving a random variable corresponds to conditioning the distribution
of the random variable on the truth value of the branch condition. This can be
seen in Line 20 in Listing B.1, which shows the Knuth-Yao algorithm with our
annotations.

Most of the steps can easily be read step by step. For the conditioning in Line 20,
the following equations show the effect of conditioning on the distribution of x.
Note that by Line 19 X ∼ U(0, d+ b− 1).

Pr[x |x < d ] =
Pr[X = x∧X < d ]

Pr[X < d ]
=

Pr[{x} ∩{0, 1, . . . , d− 1} ]
d

d+b

(*)

=


1

d+ b
·
(

d

d+ b

)−1

=
1

d
if 0 ≤ x < d,

0 otherwise.
−→ (x|x < d) ∼ U(0, d− 1)
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Listing B.1 – Knuth-Yao algorithm with Hoare annotations.

1 random_uint16_bounded(b){
2 d = 0; u = 1; x = 0;
3 {|x ∼ U(0, u− 1)|}
4 do{
5 {|(x ∼ U(0, u− 1))∨(x ∼ U(0, d− 1)∧u = d)|}
6 ` {|x ∼ U(0, u− 1)|}
7 while (u < b) {
8 {|x ∼ U(0, u− 1)|}
9 u = u << 1;
10 {

∣∣x ∼ U(0, u2 − 1)
∣∣}

11 x = (x << 1) + randombit();
12 {|x ∼ U(0, u− 1)|}
13 }
14 {|x ∼ U(0, u− 1)|}
15 d = u - b;
16 {|x ∼ U(0, u− 1), d = u− b|}
17 ` {|x ∼ U(0, d+ b− 1), d = u− b|}
18 u = d;
19 {|x ∼ U(0, d+ b− 1), u = d|}
20 } while (x < d);
21 {|x ∼ U(d, d+ b− 1)|}
22 x -= d;
23 {|x ∼ U(0, b− 1)|}
24 return x;
25 }

condition on x < d*

condition on x ≥ d**

Pr[x |x ≥ d ] =
Pr[X = x∧X ≥ d ]

Pr[X ≥ d ]
=

Pr[{x} ∩{d, d+ 1, . . . , d+ b− 1} ]
b

d+b

(**)

=


1

d+ b
·
(

b

d+ b

)−1

=
1

b
if d ≤ x < d+ b− 1,

0 otherwise.
−→ (x|x ≥ d) ∼ U(d, d+ b− 1)

Let X be the random variable denoting the return value, which is our secret,
and T be the random variable denoting the runtime. Since all of the formulas
in Listing B.1 are true, for every possible execution flow of the program and
especially every number of possible loop iterations, we can conclude that for all
possible execution times t the return value X is distributed uniformly over Nb−1,
i.e. ∀t : Pr[X |T = t ] = 1

b
. This implies Pr[X ] = 1

b
.
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C. Bugs found in NTS-KEM
During the work on this thesis, we found four bugs in the reference implementation
of NTS-KEM. All of these bugs were reported to the NTS-KEM team and are fixed
in the updated second round submission.

Wrong Hash Function

NTS-KEM uses a hash function to derive the encapsulated key. For this use of
SHA3-256 is specified, the reference implementation used SHAKE-256 instead,
which is a similar but different function of the Keccak family.

Use of Insecure memset

The reference implementation used memset to clean secrets from memory. How-
ever, use of memset in this scenario is not secure, since compilers are known to
remove calls to memset as part of dead store elimination. We observed this hap-
pening with our compiler.

Malloc Failure not Handled

During checking the validity of the sampled Goppa polynomial the functions
formal_derivative_poly and gcd_poly could return an error due to malloc
failing. This failure was not handled by the caller which would have caused it to
treat the polynomial as valid even though the check could not be performed.

Out of Bounds Array Access

The 13-80 and 13-136 AVX2 versions were violating array bounds when loading
the ciphertext into vectorized AVX2 arrays.
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