
Post-Quantum Building Blocks for
Secure Computation – the Legendre

OPRF

Master Thesis

Lucas Dodgson

September 13, 2023

Advisors: Prof. Dr. Kenny Paterson, Dr. Julia Hesse (IBM Research Zürich),
Sebastian Faller (IBM Research Zürich)

Applied Cryptography Group
Institute of Information Security

Department of Computer Science, ETH Zürich

Abstract

An Oblivious Pseudo-Random Function (OPRF) is a two-party protocol
for jointly evaluating a Pseudo-Random Function (PRF), where a user
has an input x and a server has an input k. At the end of the protocol,
the user learns the evaluation of the PRF using key k at the value x,
while the server learns nothing about the user’s input or output. De-
spite OPRFs having numerous applications as building blocks of larger
protocols, there are only a handful that are based on mathematical as-
sumptions that cannot be easily broken by a quantum computer. These
so-called post-quantum OPRF candidates use either a less strong secu-
rity model, are practically inefficient, or are based on relatively new
and potentially insecure assumptions.

We design and analyse the security and efficiency of one such post-
quantum OPRF based on the Legendre symbols. Our construction
relies on a hardness assumption that currently withstands quantum
attacks. We model and prove the security of the OPRF in the Universal
Composability framework, therefore showing the security of protocols
such as OPAQUE when instantiated with the Legendre OPRF. We also
find the Legendre OPRF to not be secure according to an alternative
security notion and show how the achieved security notion does not
suffice for certain applications.

Additionally, we consider the generalisation to higher-power residues,
which brings a noticeable performance benefit in particular settings.
The benchmarks for both OPRFs highlight how, when we allow for
a preprocessing phase, the Legendre OPRF has significantly smaller
bandwidth requirements than other post-quantum alternatives.

i

Contents

Contents iii

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Organisation . 2

2 Background 5
2.1 Oblivious Pseudo-Random Functions 5
2.2 Legendre Symbols . 7

2.2.1 The Legendre PRF . 7
2.2.2 Cryptanalysis of the Legendre PRF 10
2.2.3 Higher-power residues 11

2.3 Universally Composable Security 12
2.4 Related Work . 15

3 The Legendre OPRF 19
3.1 The Legendre OPRF . 19

3.1.1 Ideal OPRF functionality 19
3.1.2 Legendre OPRF . 21

3.2 Insecurity of the Legendre OPRF 26
3.3 Correlated OPRF . 29

3.3.1 Ideal functionality . 29
3.3.2 Security analysis of the Legendre OPRF 30
3.3.3 Strengthening of the notion 47

3.4 Correlated OPRF with Prefixes 47
3.5 Higher-Power Residue OPRF 56

4 Alternative Uses of Correlated OPRFs 59
4.1 Password-Protected Secret Sharing based on Correlated OPRF 59

iii

Contents

5 Performance 67
5.1 Overview . 67
5.2 Legendre OPRF . 69

5.2.1 128-bit prime . 69
5.2.2 256-bit prime . 71
5.2.3 Semi-honest security . 71

5.3 Higher-Power Residue OPRF 73
5.3.1 Semi-honest performance 75

5.4 Ram Usage . 75
5.5 Comparison . 76

6 Conclusion 79
6.1 Future Work . 80

A Appendix 81
A.1 Additional Benchmarks . 81

A.1.1 Complete results for the semi-honest model 81
A.1.2 Complete results for the Power Residue OPRF 81

Bibliography 93

iv

Chapter 1

Introduction

With recent advances in quantum computing [4], the remaining life span of
a significant part of in-use cryptography is slowly diminishing [49]. Appli-
cations and protocols that require long-term security should consider attack-
ers with access to quantum computers. Due to results by Shor [55], efficient
quantum algorithms are known that with a sufficiently advanced quantum
computer can break most in-use asymmetric cryptography. This has led
to a drive towards developing and standardising cryptosystems based on
different hardness assumptions that do not have any known quantum vul-
nerabilities, commonly denoted as post-quantum schemes [8, 53].

In this thesis, we utilise one such post-quantum hardness assumption, the
randomness of the Legendre symbols, to design and study a post-quantum
scheme, the Legendre Oblivious Pseudo-Random Function (OPRF). We note
here that, as commonly done in the literature, we operate in the model of
presumably post-quantum schemes [27]. Meaning we consider schemes that
can be instantiated from post-quantum assumptions but do not necessarily
consider a quantum attacker for the security proofs.

1.1 Motivation

OPRFs have become ubiquitous in cryptographic protocols [16], finding ap-
plications ranging from private set intersection [47, 18] and secure cloud
key management [38] to protecting WhatsApp backups [23]. Therefore, it
is crucial to have OPRF protocols that rely on post-quantum hardness as-
sumptions, which the majority of in-use OPRFs do not. While recent works
have yielded massive improvements in post-quantum OPRFs [5, 33, 2, 27],
their efficiency still pales in comparison to many of the in-use OPRFs [35].
Furthermore, they often are based on novel and not-well studied hardness
assumptions [2, 5], require the server to be semi-honest [27, 33, 2], or only
include security proofs in a non-composable security framework [33, 2]. As

1

1. Introduction

formulated by Kampanakis and Lepoint in a recent paper, when talking
about one OPRF application OPAQUE [39], “but a fully-fledged post-quantum
OPAQUE would also necessitate the OPRF to be quantum-resistant. Unfortu-
nately, state-of-the-art post-quantum OPRFs are orders of magnitude away from
being practical” [42].

Therefore, due to the wide range of protocols that rely on OPRFs, it is crucial
for further research into post-quantum OPRFs so that these protocols can be
adjusted and implemented in a post-quantum way if the requirement arises.
Furthermore, because OPRFs are used as building blocks for various pro-
tocols, they can be run in complex environments where multiple sessions
may be run in parallel. Thus, we believe it is vital for OPRFs to be proven
secure in a framework that provides security even in case of composition
and execution in arbitrary environments. To address this, we use the Uni-
versal Composability (UC) framework [15], which provides us with strong
composability guarantees that can be especially useful for OPRFs.

1.2 Contributions

We design an OPRF based on a post-quantum hardness assumption, the
randomness of the Legendre symbols. We expand on previous works that
introduced a Pseudo-Random Function (PRF) and a single output bit OPRF
based on the Legendre symbols [30, 54]. We present an alternative OPRF
that supports having multiple output bits and include a full security proof
in the UC framework [15], whereas the single output bit Legendre OPRF did
not have a security proof. We also introduce a second OPRF, based on the
generalisation of Legendre symbols to higher-power residues, and discuss
the necessary assumptions and adjustments for the security of that scheme.

Furthermore, we show that the Legendre OPRF is not secure according to
an alternate security notion and that the achieved security notion does not
suffice for a specific password-protected secret sharing scheme.

Finally, we implement and provide performance results of both our OPRFs
using a Multi-Party Computation (MPC) framework [43]. With these results,
we analyse the concrete performance trade-offs between the two OPRFs and
compare them to other post-quantum OPRFs. We also evaluate the perfor-
mance benefits of the two OPRFs when running multiple sessions in parallel.

1.3 Organisation

In Chapter 2 the necessary background on OPRFs, the Legendre symbol,
and the universal composability framework are introduced. Furthermore,
we provide an overview of post-quantum OPRFs in the literature.

2

1.3. Organisation

In Chapter 3 we present our variant of the Legendre OPRF. Furthermore,
we consider the security of the Legendre OPRF using two different secu-
rity notions and present the proof of the Legendre OPRF in one of these
security notions. We also consider a variant of this security notion in which
prefixes are output. These are additional messages the parties output dur-
ing the OPRF evaluation that are required and used by certain higher-level
applications, such as OPAQUE [39]. Finally, we discuss the required mod-
ifications to the OPRF and security proof to adapt them to the generalised
Power Residue OPRF.

In Chapter 4 we analyse the security of a password-protected secret sharing
scheme when the utilised OPRF has the correlate OPRF security notion we
have shown the Legendre OPRF to have.

In Chapter 5 we benchmark the concrete efficiency of our schemes. We
do so considering both a malicious and a semi-honest security model and
provide timing benchmarks in a simulated Wide-Area Network (WAN) en-
vironment. We also include comparisons to existing post-quantum OPRFs.

Finally, in Chapter 6 we draw conclusions on the properties and perfor-
mance of the Legendre and Power Residue OPRFs and propose ideas for
future work.

3

Chapter 2

Background

We begin by introducing OPRFs and their various properties in Section 2.1.
We then present the necessary background on Legendre symbols, the Leg-
endre PRF, and the single output bit Legendre OPRF in Section 2.2. Finally,
in Section 2.3 we give a short overview of the universal composability frame-
work and the various functionalities we will make use of.

2.1 Oblivious Pseudo-Random Functions

Pseudo-Random Functions (PRFs), first introduced by Goldreich, Goldwasser,
and Micali in 1986 [29], are amongst the most widely used cryptographic
primitives. They denote a class of keyed functions PRFk(·). Given a ran-
domly chosen and secret value k, the output of an oracle that given an ele-
ment x returns the value PRFk(x) is indistinguishable from a truly random
value for any probabilistic polynomial-time algorithm [52]. That means that
the PRF for any value x needs to output something indistinguishable from
a truly random value.

Naor and Reingold [51, 52] realised that certain PRFs could be evaluated
obliviously, meaning that if there are two parties U and S, where S holds
the key k and U holds the value x, they can run a protocol together in
which U learns PRFk(x), but nothing else about k or any of the other PRF
output values, and S learns nothing about x or about the output value. This
idea was then formalised by Freedman et al. [28] and was given the name
Oblivious Pseudo-Random Function (OPRF). On a high level, the requirements
during the evaluation of an OPRF, OPRFk(x), are the following:

• The client does not learn anything about k

• The client learns the pseudo-random output OPRFk(x)

• The server does not learn anything about x

5

2. Background

• The server does not learn anything about the output

There are various ways to model these security requirements formally [36,
39, 40, 14]. In this work, we consider three variants of OPRF security notions,
which we introduce in Chapter 3.

In the years since, there is a vast literature on different OPRFs [3, 2, 40,
5, 12, 27, 33, 36] and their numerous applications. These applications in-
clude secure messenger backups [23], password-protected secret sharing
[35, 36, 37, 1], private set interaction [24, 47, 57], oblivious keyword search
[28], password-authenticated key exchange [39], single-sign on [50, 7], and
various others [16].

There is a large variety of properties that OPRFs can have [16]. While an
exact description of all these properties is beyond the scope of this thesis,
we include a short overview of some of the more common properties.

• Partially-oblivious PRFs. These reveal part of the client’s input to the
server during the execution, which can be useful for establishing some
form of rate limiting on client requests.

• Verifiable OPRFs. These assure the client that it has received the correct
output, i.e., an assurance that the server did not change the key.

• Updateable OPRFs. These aim to enable the client to efficiently update
previously computed OPRF values to a new key.

• Programmable OPRFs. These allow the server to program the OPRF
output on a limited number of inputs.

• Distributed & Threshold OPRFs. These distribute the server role to sev-
eral entities, requiring a certain number of them to partake in the pro-
tocol in order for the client to receive the output.

• Single-Point OPRFs. These do not take a key as an input but instead
give a server the used key as an output. This results in the OPRF, for
any given key, to be evaluated only once. OPRFs for which this is not
the case can also be called multi-point.

• Batched OPRFs. These can be evaluated in parallel, either with different
inputs and the same key or with the same inputs and different keys.
The main goal is to provide a performance benefit when requiring
multiple protocol evaluations.

One way of creating an OPRF is to evaluate a PRF in a Multi-Party Com-
putation (MPC) protocol [27, 54, 25, 17]. These protocols enable the joint
evaluation of functions on different parties’ inputs without requiring the
parties to reveal their inputs to each other. However, one downside is that
computation performed inside MPC is costly because it requires the par-

6

2.2. Legendre Symbols

ties to exchange data. Therefore, it is crucial to minimise the computation
performed as part of the MPC protocol.

2.2 Legendre Symbols

An element x is a quadratic residue modulo p if an element y exists such
that y2 = x mod p. For a prime number p and natural number x < p,
the Legendre symbol Lp(x) :=

(
x
p

)
is defined as 1 if x is a quadratic residue

modulo p, −1 if x is a quadratic non-residue modulo p, and 0 if x is 0
modulo p, i.e. we have:

(
x
p

)
≡ x

p−1
2 mod p =


1 if x ̸= 0 is a quadratic residue modulo p
−1 if x is a quadratic non-residue modulo p
0 if x ≡ 0 modulo p

The Legendre symbol can also be mapped to {0, 1} by computing⌊
1
2

(
1−

(
x
p

))⌋
then quadratic residues and 0 have a value of 0 and quadratic non-residues
have a value of 1.

One important property of the Legendre symbol is its multiplicativity which
states that given elements a, b that:(

a · b
p

)
=

(
a
p

)(
b
p

)
The idea of using the Legendre symbols as a source of randomness goes
back to a paper published in 1988 by Damgård, who postulated the pseudo-
randomness of the Legendre symbol [20]. In particular, that without know-
ing a key k, the sequence of Legendre symbols(

k
p

)
,
(

k + 1
p

)
,
(

k + 2
p

)
, . . .

is indistinguishable for a polynomial-time adversary from a sequence of
random elements in {±1}. It is this underlying assumption on which the
Legendre PRF and OPRF are based.

2.2.1 The Legendre PRF

From this randomness assumption, a PRF with a single-bit output can be
defined as PRFk(x) =

(
k+x

p

)
. The security of this PRF is based on the

following two problems: the Shifted Legendre Symbol (SLS) problem and the
Decision SLS (DSLS) problem [30].

7

2. Background

Definition 2.1 (Shifted Legendre Symbol (SLS) Problem) Let p be some prime
and k randomly chosen in Zp. Given an oracleOLeg that given an x outputs

(
k+x

p

)
,

recover k with non-negligible probability.

Definition 2.2 (Decisional Shifted Legendre Symbol (DSLS) Problem) Let
k be chosen randomly, the oracle OLeg be defined as above and OR a random oracle
that maps elements from Zp to {−1, 1}. Distinguish between OLeg and OR with
non-negligible advantage.

The DSLS assumption is then the assumption that there is no efficient
polynomial-time algorithm that solves the DSLS problem.

Constructions based on this idea remained mostly unstudied until Grassi
et al. [30] showed that assuming the hardness of the decisional SLS prob-
lem, a PRF could be constructed from the Legendre symbol with desirable
properties in the MPC setting. This is due to the resulting PRF being very
efficient, with an evaluation having the cost of just two multiplications in
three rounds of communication.

The Legendre PRF scheme operates as follows with the fundamental idea
being that, due to the multiplicativity property of the Legendre symbol, the
group element can be masked by some random value s2. After this masking,
the only information that remains in the masked value is its Legendre sym-
bol. Therefore, the value can be revealed to the parties, who can perform
the more expensive part of computing the Legendre symbol offline. The
protocol description relies on an ”Arithmetic Black Box” FABB, also called
an arithmetic MPC functionality, which models the operations supported
by the underlying MPC protocol. This allows parties to input and reveal
values, generate random elements, and compute basic arithmetic operations
on these elements in a secure fashion [22, 30]. The notation used in this
description is that if an element is written in braces [], it is an element in-
side the MPC functionality that is secret-shared between the participating
parties. The scheme, as presented in [30], can be seen in Fig. 2.1. They also
present a version in which the output is not revealed to either party but is
again a secret-shared value.

Additionally, they show the PRF’s security and correctness. The requirement
for this is that u ̸= 0, which occurs with probability bounded by 1/p + ϵ,
where ϵ is the probability of solving the SLS problem. They also present an
expansion to a probabilistic algorithm that repeatedly samples [s2] until it is
not zero. To check if it is zero, they further sample some value y, reveal the
value [v] = [ys2], and verify that v ̸= 0. This requires, in expectation, one
round and removes the 1/p factor from the bound.

Using this method, one can create an OPRF with a single output bit by
outputting the result to only one of the parties. In a subsequent work, pub-
lished in 2022 [54], Seres, Horváth, and Burcsi modelled the Legendre PRF

8

2.2. Legendre Symbols

Protocol ΠLegendre
KeyGen: Call FABB.Random to generate a random key [k].
Eval: To evaluate FLeg(bit) on input [x].

1. Take a random square [s2]

2. u← Open
(
[s]2([k] + [x])

)
3. Compute

(
u
p

)
Figure 2.1: The Legendre PRF protocol [30].

Protocol ΠOPRF
Legendre

Participants: sender S with input k, receiver R with input x.
Preprocessing:

1. Generate a random square [s2] ∈ Zp
2. Generate multiplicative beaver triples [a], [b], [ab]

Evaluation:
1. S, R share [k], [x] with each other.
2. Compute [c]← [s]2([k] + [x])
3. S sends its share of [c] to R.
4. R computes Lp(c) = Lp(k + x)

Figure 2.2: The basic Legendre OPRF protocol [54].

as a multivariate quadratic cryptosystem and did precisely this, introducing
an OPRF based on the Legendre PRF. The OPRF uses a slightly different
functionality to model the underlying MPC behaviour and is presented in
Fig. 2.2. It works in two phases, an input-independent preprocessing phase
followed by an evaluation phase. In the preprocessing phase beaver triples,
used by the secret-sharing MPC protocol to securely do multiplication, and
a random secret-shared square are generated. In the evaluation phase, both
parties input their shares, perform the computation, and then the masked
output is revealed to only the user.

Again, the scheme can be modified to ensure that the value s is picked such
that s2 ̸= 0, adding in expectation one more round. A programmable and a
verifiable OPRF based on the Legendre symbol were also introduced in that
paper, but we do not further discuss those constructions here.

In this thesis, we will further study and analyse a variant of this construc-
tion. Furthermore, we will include a security proof for our scheme, which
was omitted for the single output bit Legendre OPRF of [54].

9

2. Background

2.2.2 Cryptanalysis of the Legendre PRF

In this section, we will briefly present an overview of the various known
attacks against the DSLS and SLS assumptions.

In the case of quantum query access to the Legendre oracle, an attack is
known that recovers the key k in a single query and in quantum-polynomial
time [56]. On the other hand, if there is no quantum query access to the ora-
cle, there is currently no known sub-exponential attack against the assump-
tions, both for classical and quantum adversaries. Therefore, the hardness
of the two problems is seen as post-quantum if there is no quantum oracle
access.

An important factor in determining the efficiency of attacks is the number
of available oracle queries, or alternatively the number of known output
bits. Spurred on by the Ethereum Challenge1, a series of bounties for both
arithmetic improvements and concrete instances to be broken, there have
been various works in recent years analysing the security of the assumptions
[9, 46, 41]. The challenge provides rewards for improved complexity key
recovery and PRF distinguishing attacks, as well as rewards for key recovery
of certain publicly provided instances. So far, for the publicly provided
instances, the largest broken size is for an 84-bit prime where 220 bits of
output are provided.

In 2019, Khovratovich presented a collision-based attack, which recovers the
key with O(√p log p) queries and computational cost of O

(√
p log p

)
[46].

This was followed by Beullens et al. [9], who found a more efficient attack in
the low-data case by using the multiplicative property of the Legendre sym-
bol. Concretely for the case where there are M available queries, the attack
works with a runtime of O

(
M + p log p

M

)
and M · log p memory, or a runtime

of O
(

M2 + p log2 p
M2

)
and M2

log p memory. A concurrent work by Kaluderović et
al. [41] further improved on these bounds, presenting an attack with com-
plexity O

(
M2

p + p log p log log p
M2

)
with a memory requirement of M2. For the

case M = 4
√

p log2 p log log p oracle queries are available this results in an
attack where the expected number of operations is O(

√
p log log p).

A different approach, used in [54], modelled the Legendre PRF as a multi-
variate quadratic cryptosystem, but this did not result in any improvements
on the above attacks.

Therefore, we conclude that under the current status of cryptanalysis of
the Legendre PRF, for a security parameter of ℓ, using a prime p such that

1https://legendreprf.org/bounties

10

https://legendreprf.org/bounties

2.2. Legendre Symbols

log2(p) is greater than 2 · ℓ suffices, as the best-known attack has complexity
bounded by O(

√
p log log p), regardless of the number of queries.

2.2.3 Higher-power residues

Using the Legendre symbol, one can recover one bit of output from a group
element. As an alternative, we also consider the generalisation to higher-
power residues, which enable getting multiple bits of outputs from any group
element, thus resulting in more efficient schemes [10].

Using the a-th power residue, each element now provides us with log2(a)
many output bits, coming at the cost of increased local computation. We
will use La

p(x) to denote the a-th power residue of the term x. If we have
some prime p and generator g of Z∗p this is defined as:

Lk
p(x) =

{
i if x/gi ≡ ha mod p for some h ∈ Z∗p
0 if x ≡ 0 mod p

Concretely, the a-th power residue of an element x is the value i such that
x = giha = gi+j·a for some j, so it is the value of the power of g that x is,
modulo a. We also observe that if we utilise a = 2 we recover the definition
of the mapped Legendre symbol.

A hardness assumption about the randomness of the generalised power
residues can be formulated analogously to the SLS and DSLS problems and
assumptions, now comparing to a random oracle that returns values from
{0, . . . , a− 1}.

For an attacker that can query the oracle M times, the best-known attack

against the higher-power residues has a computational cost of O
(

p log2 p
a·M·log2 a

)
[9]. Still, it is important to note that this pseudo-randomness is less well
studied than that of the Legendre symbol, which presents a potential down-
side of using these.

Now that we have introduced the power residues, we introduce one further
property of the power residues, which we use for the proof. We will state
this as a lemma that was proven by Beullens et al. in the paper in which they
introduced LegRoast, a signature scheme based on the Legendre symbol
[10]. We note that the lemma uses K for the key and k for the power residue
being used, as opposed to k and a in our notation.

Lemma 2.3 Let p be a prime and k|p− 1. For any K ̸= K′ ∈ Fp and a ∈ Zk, let
IK,K′,a be the set of indices i such that Lk

p(K + i) = Lk
p(K′ + i) + a. Then we have

p
k
−√p− 1 ≤ |IK,K′,a| ≤

p
k
+
√

p + 2

11

2. Background

For the proof of the lemma, we direct the reader to the LegRoast paper [10].
The lemma provides a lower bound on the number of indexes where the
power residues offset by two different keys have a constant difference a.

2.3 Universally Composable Security

Universally Composable (UC) security [15] is a framework that aims to prove
and guarantee the security of schemes in arbitrary polynomial runtime envi-
ronments, including having multiple sessions executed in parallel and con-
currently. As such, it provides very strong guarantees as any scheme build-
ing on some UC secure protocol can, for the sake of the proof, replace the
utilised UC secure protocol with an idealised functionality.

Since its introduction in 2000, the framework has undergone numerous re-
visions and adjustments, becoming widely used for security proofs. In this
thesis, we will use this framework to formalise the desired security proper-
ties and perform the security proofs.

We begin here by very briefly outlining the concepts required for a security
proof in the UC framework. A more thorough description is omitted for the
sake of brevity, and we refer the reader to the Canetti paper for a complete
introduction [15].

The way the UC framework works is that the security and functionality re-
quirements of a system are specified by the formal description of an ideal
functionality. This functionality specifies how the system functions, what
the parties input, what the adversary, denoted as A∗, learns, and what the
adversary can control. A simulation-based indistinguishably proof is per-
formed to then show the security of some protocol, where the distinguisher
is the so-called environment. The environment determines the inputs of all
the parties, learns their outputs, and controls the adversary [15]. The sim-
ulation aims to ensure that any polynomial-time environment cannot dis-
tinguish between the real-world protocol execution and an ideal world exe-
cution in which the parties are so-called dummy parties that just forward
their inputs to the ideal functionality, and the simulator plays in place of the
adversary.

Once such a security proof has been performed, this framework provides
security in any context and under general composition. Furthermore, when
proving the security of any protocol that uses the secure protocol as a sub-
protocol, the sub-protocol can be replaced by the ideal functionality that
models the desired security. In doing so, the sub-protocol can be arbitrarily
replaced with any other protocol secure according to the same functionality
without requiring any adjustments to the proof.

12

2.3. Universally Composable Security

Functionality FAUTH

• Upon invocation with input (Send, sid, R, m) from S, send backdoor
message (Sent, sid, S, R, m) to A∗

• Upon receiving backdoor message (ok, sid): If not yet generated out-
put, then output (Sent, sid, S, R, m) to R

• Upon receiving backdoor message (Corrupt, sid, m′, R′), record be-
ing corrupted. Next, if not yet generated output then output
(Sent, sid, S, R′, m′) to R′.

• On input (ReportCorrupted, sid) from S: If corrupted output Yes to
S. Else, output No.

Figure 2.3: Ideal authenticated channel functionality FAUTH [15].

We also specify the following convention we will use in this thesis. When-
ever a message is sent to an ideal functionality, but the behaviour of the
functionality in response to that message is not explicitly defined, we as-
sume that the message is ignored.

We now present some common functionalities, which we will use in our
constructions.

Authenticated Channels FAUTH, as seen in Fig. 2.3, is a functionality that
models the behaviour of authenticated channels between two parties [15].
Any party can use the Send interface to cause a message to be sent to an-
other party. Once they do so, the adversary is notified of the sender, the
content, and the recipient of the message. The content is revealed to the ad-
versary because we do not have any confidentiality as part of these channels.
The message is only forwarded to the recipient once the adversary permits it
by sending the ok message. This models the adversary as a network-level ad-
versary that can arbitrarily delay or drop messages sent between the parties.
Furthermore, the functionality can be corrupted, allowing the adversary to
make it appear like the sender sent a message of the adversary’s choosing
to an arbitrary recipient. The sender can detect this behaviour using the Re-
portCorrupted interface. While all messages sent to/from the adversary
are labelled as backdoor messages in this functionality, the backdoor word
is often omitted in functionality descriptions, and we do so as well in this
thesis.

Common Reference String Another commonly used functionality is FCRS,
which models the idealised behaviour of a common reference string [15, 34].
As can be seen in Fig. 2.4, this functionality only has a single interface:
Value. On the first invocation, the functionality samples a random value

13

2. Background

Functionality FCRS

FCRS proceeds as follows, when parameterised by a distribution D.

When activated for the first time on input (Value, sid) choose a value d←$ D
and send d back to the activating party. In each other activation return the
value d to the activating party.

Figure 2.4: Ideal Common Reference String Functionality FCRS [15, 34].

according to some distribution and responds with that value. In all later
invocations, it responds with the same value.

Arithmetic Black Box (ABB) FABB is the functionality we will be using
to model the functionalities provided by the used MPC protocol [44, 19, 32,
22, 26, 21].2 As seen in Fig. 2.5, this functionality has five interfaces. For
any command to be executed, it requires all the parties to send the com-
mand. The Init interface allows the parties to initialise it with the field
the arithmetic operations will be performed over. Then there is the Input

interface, which models a party secret-sharing a value between the other
parties. There are then two permitted operations Add and Multiply, which
allow for operations on secret shared values. Finally, there is the Output

interface, which will output the value to the adversary and, upon the ad-
versary’s choosing, will be output to all the parties. While these interfaces
only expose fairly simple operations, they can be used for more complex
computations, such as sampling random values, adding and multiplying by
constants, or outputting to only a single party. We briefly outline how each
of these operations can be performed, as our OPRF makes use of them.

• To get a random value: Have all the parties input a random value and
add them together. As long as one party is honest, then the others
cannot influence or learn the random value.

• To multiply by a constant: Repeatedly add the value to itself.

• To add by a constant: If the value is outputted, locally add the constant
after the fact. If the value is multiplied with some other value, do the
multiplication combined with the above steps to multiply by a constant
and add the two parts together.

• To output to only one party: have that party input a random value and
add that random value to the output before performing the output
operation. This hides the true value from the adversary and the other
parties.

2This is also sometimes called FOnline or FAMPC.

14

2.4. Related Work

Functionality FABB

Initialise: On input (Init, ssid, F) from all parties for sub-session ssid, store
⟨ssid, F⟩

Input:
On (Input, ssid, Pi, id, x) from Pi and (Input, ssid, Pi, id) from all other
parties, with id a fresh identifier for ssid and x ∈ F, store (ssid, id, x).

Add:
On (Add, ssid, id1, id2, id3) from all parties (where id1, id2 are present
in memory for ssid), retrieve (ssid, id1, x), (ssid, id2, y) and store
(ssid, id3, x + y).

Multiply:
On (Multiply, ssid, id1, id2, id3) from all parties (where id1, id2 are present in
memory for ssid), retrieve (ssid, id1, x), (ssid, id2, y) and store (ssid, id3, x · y).

Output:
On (Output, ssid, id) from all honest parties (where id is present in memory
for ssid), retrieve (ssid, id, y) and output it to the adversary. Wait for an
input from the adversary; if this is Deliver then output (ssid, y) to all
parties, otherwise output Abort

Figure 2.5: Ideal MPC arithmetic black box functionality FABB

We note that there are many variations of this functionality found in the
literature. The presented ABB functionality is slightly modified from one
of the variants commonly found in the literature. We modified it by aug-
menting it with subsession identifiers (ssids). We assume that these contain
the session identifier as a substring. The variant without the subsession
identifiers can be seen in Fig. 2.6 [44, 19].

2.4 Related Work

There have been various other proposals for post-quantum OPRF schemes.
In this section we aim to highlight some of them. In the benchmark section,
we will also compare the performance of our OPRF to some of these.

Some of the first post-quantum OPRFs were presented by Boneh et al. [12],
who presented two isogenies-based OPRFs. The first relies on a hardness
assumption which has since been shown to be insecure (SIDH) [6, 48]. The

15

2. Background

Functionality FABB

Initialise: On input (Init, F) from all parties, store F.

Input:
On (Input, Pi, id, x) from Pi and (Input, Pi, id) from all other parties, with id
a fresh identifier and x ∈ F, store (id, x).

Add:
On (Add, id1, id2, id3) from all parties (where id1, id2 are present in memory),
retrieve (id1, x), (id2, y) and store (id3, x + y).

Multiply:
On (Multiply, id1, id2, id3) from all parties (where id1, id2 are present in
memory), retrieve (id1, x), (id2, y) and store (id3, x · y).

Output:
On (Output, id) from all honest parties (where id is present in memory),
retrieve (id, y) and output it to the adversary. Wait for an input from the
adversary; if this is Deliver then output y to all parties, otherwise output
Abort

Figure 2.6: Ideal MPC arithmetic black box functionality FABB, as is commonly seen in the
literature [44, 19]. This does not include multiple sub-sessions.

second OPRF is based on the CSIDH assumption but no security proof in the
Universal Composability framework for it was included and it requires the
server to be semi-honest. The CSIDH-based construction has communica-
tion costs of around 424KB in 3 rounds of communication. Another CSIDH-
based OPRF, called OPUS, was introduced in a recent work [33]. OPUS has
reduced bandwidth requirements but is secure only with semi-honest client
and server.

Two lattice-based OPRFs, including one with malicious security, were in-
troduced by Albrecht et al. [3]. However, while the variant with malicious
security is practically instantiable, it requires communication of over 120GB,
limiting its potential usability.

There have also been various OPRFs based on the idea of computing a PRF
in an MPC framework. Faller et al. [27] proposed an OPRF scheme based on
garbled circuits. This is shown to be UC secure in the case of a semi-honest
server but not in the case of a malicious server. Furthermore, multiple works
have investigated using the Dark Matter weak PRF [11] in an MPC setting as

16

2.4. Related Work

an OPRF. Dinur et al. proposed doing so using secret-sharing sharing [25],
resulting in an OPRF secure in the semi-honest model which requires pre-
processing. Albrecht et al. instead used torus fully homomorphic encryp-
tion [2], resulting in a scheme that requires communication of around 70
MB for an evaluation, whereby only 3MB are required for the online phase.
However, the server utilised for their evaluation was a server with 768GB of
RAM, which may not be realistic in many real-world applications. Again,
the OPRF was only shown to be secure in the case of a semi-honest server,
although a potential extension based on heuristics to a verifiable OPRF with
malicious security was also discussed.

Finally, one of the most efficient post-quantum OPRFs offering malicious
security was introduced in a recent work by Basso [5]. It is another isogeny-
based OPRF, relying on a trusted setup and the SIDH assumption but with
countermeasures against the known attacks built in. It is round-optimal, re-
quiring only two rounds of communication for an evaluation. The required
bandwidth for it is 3MB when the verifiability property of the OPRF is not
needed and 8.7MB for the verifiable variant that offers security in case of a
malicious server, although we note that no implementation for this OPRF is
available.

17

Chapter 3

The Legendre OPRF

In Section 3.1 we introduce the Legendre OPRF and motivate the design de-
cisions. We then analyse our OPRF with two different security definitions
FOPRF in Section 3.2 and FcorOPRF in Section 3.3. We also consider the se-
curity based on a variant of FcorOPRF that includes prefixes and discuss the
required changes in Section 3.4. Finally, we introduce and discuss the Power
Residue OPRF in Section 3.5.

3.1 The Legendre OPRF

3.1.1 Ideal OPRF functionality

Before we introduce the Legendre OPRF, we first introduce and discuss
FOPRF, the UC security notion for OPRFs, which we use to analyse the se-
curity of our scheme in Section 3.2. The presented functionality FOPRF is a
slight modification of the one introduced by Jarecki et al. [39], which was
used to show the security of the OPAQUE protocol and was a revision of
a similar OPRF functionality, also introduced by Jarecki et al. [36]. For the
sake of simplicity, we modify it by removing the prefixes. The other security
notion we use, FcorOPRF, is also based on a slight modification of this one.

The ideal functionality FOPRF can be seen in Fig. 3.1. The functionality mod-
els the interaction of multiple users with a single server. The functionality
is initialised by a server sending an Init message. This is then the unique
server used for this session and the functionality stores a table FS of truly
random values representing the server’s OPRF output values. The function-
ality models adaptive compromise, which allows the adversary (with the
environment’s permission) to send a Compromise message and then arbi-
trarily query the server’s table FS. This is modelled using the OfflineEval

interface, which either allows the server to query its own function table or

19

3. The Legendre OPRF

Ideal OPRF functionality FOPRF

The OPRF function is parameterised by a public PRF output length ℓ. For every
i and x the value Fi(x) is initially undefined. The first time an undefined value
Fi(x) is referenced FOPRF sets Fi(x)←$ {0, 1}ℓ.

Initialisation:
On message (Init, sid) from party S, if this is the first Init message for sid set
tx = 0 and send (Init, sid, S) to A∗. From now on use the tag S to denote the
unique entity which sent the Init message for the session identifier sid. (Ignore
all subsequent Init messages for sid.)

Server Compromise:
On message (Compromise, sid) from A∗, declare S as Compromised.
Note: Message (Compromise, sid) requires permission from the environment.
//If S is corrupted, then it is declared Compromised as well.

Offline Evaluation:
On (OfflineEval, sid, S∗, x) from P ∈ {S,A∗} do:

• Send (OfflineEval, sid, FS∗(x)) to P if (i) P = S and S∗ = S or (ii) P = A∗
and either S∗ ̸= S or S Compromised

Online Evaluation:
• On (Eval, sid, ssid, S′, x) from P ∈ {U,A∗}, send (Eval, sid, ssid, P, S′) to
A∗. Record ⟨ssid, P, x⟩

• On (SndrComplete, sid, ssid′) from S, send (SndrComplete, sid, ssid′, S)
to A∗, set tx++

• On (RcvComplete, sid, ssid, P, S∗) from A∗, ignore this message if there is
no record ⟨ssid, P, x⟩ stored. Else:

– If S is not Compromised and S∗ = S:
If tx = 0 ignore this message. Else decrement tx

– Send (Eval, sid, ssid, FS∗(x)) to P

Figure 3.1: Ideal OPRF Functionality, based on the ideal OPRF functionality introduced in [39].

20

3.1. The Legendre OPRF

the adversary to query an arbitrary table Fi if i ̸= S or if i = S and the server
is compromised.

Finally, there is the Online Evaluation interface, which allows the user and
server together to run the OPRF protocol in some subsession ssid. It requires
the user to send an Eval message with its input and the server to send
a SndrComplete message. The adversary can then send a RcvComplete

message to cause the session to complete. The adversary learns when the
parties send their messages and, in the RcvComplete message, can specify
an alternative table S∗ from which the user will receive its output. This
models the network adversary participating in the role of the server but
using some different key.

The counter for the server tx ensures that the number of times the server’s
table is evaluated is limited by the number of times the server participated
in the protocol. Each time the server sends a SndrComplete message, it is
incremented, and each time the OPRF of the server is evaluated, it is again
decremented. Furthermore, the functionality guarantees random outputs
even in the case of malicious servers and requires that the user’s input and
output remain hidden from both the server and the adversary.

3.1.2 Legendre OPRF

In Fig. 3.2 we consider taking the single output bit Legendre OPRF, as intro-
duced in Fig. 2.2, from [54] and formulate it in the universal composability
framework with the above interfaces. We note that due to the limited inter-
faces available for FABB, to get a random value s2 we combine two shares sS

and sU . Furthermore, to have an output that we reveal to only one party, we
mask the output with a randomly chosen user value m. We do not include
the whole sequences of commands that the parties send to FABB, but they
can be summarised as follows:

1. Send sequence of Input messages to load the user and server input
into ABB.

2. Recreate the multiplicative masking value s from the two shares using
Add

3. Compute s2 using Multiply

4. Compute x + k using Add

5. Compute s2 · (x + k) using Multiply

6. Add m to the result of the above step to mask the output value using
Add

7. Send the Output message to return the value m + s2(x + k).

21

3. The Legendre OPRF

Single bit Legendre OPRF

Public Parameters: Prime number p, function to compute inside FABB:

F ((x, su, m) , (k, ss))→ (ss + su)2 (k + x) + m

Initialisation:
On input (Init, sid): S picks k ∈ Zp and stores ⟨sid, k⟩

Server Compromise:
On message (Compromise, sid) from A∗, if there is a record ⟨sid, k⟩, reveal k to
A∗.

Offline Evaluation:
On (OfflineEval, sid, x), S retrieves ⟨sid, k⟩, and outputs(

OfflineEval, sid,
(

k+x
p

))
Online Evaluation:

• On (Eval, sid, ssid, S′, x), U sends (Init, ssid, Zp) to FABB. U then sam-
ples two random elements from Zp (su and m). It then sends a sequence
of Input commands followed by a sequence of Add and Multiply com-
mands required to evaluate F to FABB, all including ssid. U then stores
⟨x, ssid, m⟩. Finally U sends the Output messages to FABB.

• On (SndrComplete, sid, ssid′), S sends (Init, ssid′, Zp) to FABB. S then
chooses ss ←$ Zp, retrieves the record ⟨sid, k⟩ and then sends a sequence
of Input commands followed by a sequence of Add and Multiply com-
mands required to evaluate F, all including ssid′. Finally S sends the
Output messages to FABB.

• Upon receiving the output c0 from FABB for some subsession identifier
ssid, U retrieves the stored ⟨x, ssid, m⟩ and computes r = c−m. Finally, U
outputs

(
Eval, sid, ssid,

(
r
p

))
.

Figure 3.2: The Legendre OPRF scheme with a single output bit. This is an adaption of the
single output bit OPRF shown in Fig. 2.2 from [54], adapted to the UC functionality FOPRF.

22

3.1. The Legendre OPRF

Unfortunately, this scheme has multiple fundamental issues if one tries to
prove its security in the UC framework.

Firstly, in case the server is compromised and the user is honest, the envi-
ronment can calculate the expected output (x+k

p) and compare that to the
user’s output. On the other hand, while the simulator knows k it does not
learn any information about the user’s input x during the evaluation. Due
to this, the simulator cannot reliably influence the output of the user to be
the correct value. This problem arises in many such UC security notions.
We will solve this by using the Random Oracle Model (ROM) and making the
user output a hash value depending on x and the Legendre symbol, as is
commonly done in the literature for this security notion [5, 27, 36].

We now discuss various possibilities for the hash inputs and their problems.

Single bit hash function. The first option we consider is to take some hash
function with an output length of one bit. The output value in this case
would be H

(
x,
(

x+k
p

))
.

Under this modification, for the environment to be able to compute the
expected output, it needs to query the random oracle with a pair (x, b). The
simulator can then verify if b =

(
x+k

p

)
and, if so, set the hash function

output to the output of FOPRF. Otherwise, the simulator can set the hash
output to a random bit or the output of some other table.

Two issues remain with this construction. Firstly, even without knowing
the key, the hash output can be queried in advance, as there are only two
possibilities for b and the simulator would need to set the value correctly.
Secondly, there will exist k1, k2 such that the OPRF evaluated with k1 at value
x is equal to the OPRF evaluated with k2 at value x, whereas for some value
x′ they are not equal. The simulator does not learn the user input, though
and thus, the environment can distinguish between these cases. This follows
directly from the fact that given some random keys k, k′ and value x, under
the DSLS assumption, we have Pr

[(
k+x

p

)
= −1

]
≈ Pr

[(
k′+x

p

)
= −1

]
≈ 1

2 .

Multi-key. One attempt to deal with these issues is to have an ℓ-bit hash
value output and model the server as having ℓ keys. So the protocol would
take k1, . . . , kℓ as input from the server, for H : {0, 1}∗ × {0, 1}ℓ → {0, 1}ℓ
the final output would be

H
(

x,
(

x + k1

p

)
,
(

x + k2

p

)
, . . . ,

(
x + kℓ

p

))
While this remedies the first problem, the second problem remains unsolved
by this. Because only a single output bit is retrieved for each key, the fol-
lowing becomes possible: the environment chooses two keys such that for

23

3. The Legendre OPRF

some values x they have the same PRF value and for other values x′ they
do not, for example, by replacing only the last key. Since it can then pass
such an x to the user without the simulator learning x and tell the server to
use one of these keys, the simulator cannot set the PRF values to maintain
consistency. Thus, the environment would be able to distinguish between
the two worlds and the scheme does not fulfil the desired security notion in
the UC framework.

Single key – multi-bit output. The third method we discuss here relies
on the DSLS assumption. Since we assume that under any key k,

(
x+k

p

)
is

distributed randomly, we can use the same key and instead offset x by one
instead of using ℓ different keys. Thus, the final output would be

H
(

x,
(

x + k + 1
p

)
,
(

x + k + 2
p

)
, . . . ,

(
x + k + ℓ

p

))
Since we assume that without knowing k, the Legendre symbol output is
pseudo-random, the sequence is indistinguishable from a random sequence
in isolation. The issue now arises from the fact that a malicious user could
evaluate the OPRF at some value x and then have only to guess a single bit
to get the OPRF evaluation at the value x + 1, because it would have learnt
all except the last bits required for the evaluation of x + 1 already, which
goes against the security definition. Even more dangerously, by querying x
and then x + ℓ, the user could learn the OPRF evaluation for all the points
between x and x + ℓ.

Hashed input Instead of x, we pass H1(x) and use that to calculate the
output. We then will show that for appropriately chosen prime value p and
evaluation length ℓ, the probability that the OPRF evaluation at some point
reveals any information about the OPRF evaluation at some other point is
small.

Another modification we make is using a list of ℓ random offsets L ←$ Zℓ
p

instead of L = [1, . . . , ℓ]. We will use this fact, together with Lemma 2.3,
to show that the existence of two keys that evaluate to the same PRF value
for some x is bounded. We will use FCRS to generate and retrieve this list.
Therefore, we define the output of the Legendre OPRF as

H2

(
x,
(

H1(x) + k + L[0]
p

)
, . . . ,

(
H1(x) + k + L[ℓ− 1]

p

))
We present the final version of the Legendre OPRF, with the above-discussed
modifications, in Fig. 3.3.

In effect, we evaluate ℓ many bits. The exact bits we determine are depen-
dent on some list L. We also have the user input ℓ random values to mask
the output.

24

3.1. The Legendre OPRF

Legendre OPRF

Public Parameters: Prime number p, output length ℓ. Distribution D for FCRS
that returns ℓ many values from Zp chosen uniformly at random.
Function to compute inside FABB for some list L known to both parties:

F
((

x, su
0 , . . . , su

ℓ−1, m0, . . . , mℓ−1
)

,
(
k, ss

0, . . . , ss
ℓ−1
))
→

(ss
0 + su

0)
2 (k + H1(x) + L[0]) + m0, . . . , (ss

ℓ−1 + su
ℓ−1)

2 (k + H1(x) + L[ℓ− 1]) + mℓ−1

Initialisation:
On input (Init, sid): S picks k←$ Zp and stores ⟨sid, k⟩

Server Compromise:
On (Compromise, sid), if there is a record ⟨sid, k⟩ reveal k to A∗

Offline Evaluation:
On (OfflineEval, sid, x), send (Value, sid) to FCRS, and re-
ceive the list L. Then the server retrieves ⟨sid, k⟩ and outputs(

OfflineEval, sid, H2

(
x,
(

H1(x)+k+L[0]
p

)
,
(

H1(x)+k+L[1]
p

)
, . . . ,

(
H1(x)+k+L[ℓ−1]

p

)))
Online Evaluation:

• On (Eval, sid, ssid, S′, x), U sends (Value, sid) to FCRS and receives the
list L. U then sends (Init, ssid, Zp) to FABB. U then samples 2 · ℓ many
elements from Zp (su

0 , . . . , su
ℓ−1 and m0, . . . , mℓ−1). It then sends a sequence

of Input commands followed by a sequence of Add and Multiply com-
mands required to evaluate the function F with list L to FABB, all including
ssid. U then stores ⟨x, ssid, m0 . . . mℓ−1⟩. Finally U sends ℓ many Output

messages to FABB.
• On (SndrComplete, sid, ssid′), S sends (Value, sid) to FCRS, and re-

ceives the list L. It then sends (Init, ssid′, Zp) to FABB. S then chooses
ss

0, . . . , ss
ℓ−1 ←$ Zp, retrieves the record ⟨sid, k⟩ and then sends a sequence

of Input commands followed by a sequence of Add and Multiply com-
mands required to evaluate the function F with list L to FABB, all including
ssid′. Finally S sends ℓ many Output messages to FABB.

• Upon having received ℓ many outputs c0, . . . , cℓ−1 from FABB
for some subsession identifier ssid, U retrieves the stored
⟨x, ssid, m0 . . . mℓ−1⟩, and computes ri = ci − mi. Then U outputs(

Eval, sid, ssid, H2

(
x,
(

r0
p

)
, . . . ,

(
rℓ−1

p

)))
.

Figure 3.3: The Legendre OPRF scheme

25

3. The Legendre OPRF

We do not describe the exact command sequence the parties send to FABB to
compute this function but note that if either party does not properly execute
the sequence, then FABB will ignore the Output messages. In essence, the
sequence of commands works as follows:

1. Send sequence of Input messages to load the user and server input
into MPC.1

2. For each i ∈ {0, . . . , ℓ− 1}: Recreate the si values from the two shares
using Add

3. For each i ∈ {0, . . . , ℓ− 1}: Compute the s2
i values using Multiply

4. Compute H1(x) + k using Add

5. For each i ∈ {0, . . . , ℓ− 1}: Compute s2
i · (H1(x) + k) using Multiply

6. For each i ∈ {0, . . . , ℓ− 1}: For L[i] iterations, add s2
i to the result of

the above step using Add.

7. For each i ∈ {0, . . . , ℓ− 1}: Add mi to the result of the above step to
mask the output value using Add

8. Send ℓ many Output messages to return the values mi + s2
i (H1(x) +

k + L[i]).

At the end of this sequence of operations, we make the user abort if it does
not get all the ℓ output values. Otherwise, if all the commands run success-
fully, and the adversary does not prevent the output of some values, we can
verify that both parties at the end of the execution will learn:

(ss
0 + su

0)
2 (k + H1(x) + L[0]) + m0, . . . , (ss

ℓ−1 + su
ℓ−1)

2 (k + H1(x) + L[ℓ− 1]) + mℓ−1

where only the user knows the values m0, . . . , mℓ−1.

3.2 Insecurity of the Legendre OPRF

In this section, we will analyse the security of the Legendre OPRF, as in-
troduced in Fig. 3.3, using the ideal functionality FOPRF introduced in Sec-
tion 3.1.1.

It can be shown that the Legendre OPRF, as described above, is not secure
according to the ideal functionality FOPRF in the universal composability
framework. This is because for a scheme to be secure according to FOPRF,
the notion requires that the simulator can tell when two inputs to the ran-
dom oracle H2 were generated using the same key, which is not the case for
the Legendre OPRF.

1Note, that the user inputs H1(x) and not x into the MPC functionality

26

3.2. Insecurity of the Legendre OPRF

We sketch a proof to show the insecurity in two parts. First, we show that
with the Legendre OPRF, the simulator cannot tell when the same key was
used for two evaluations. Then, we will show why this property is necessary
for the security notion.

For some list of random indexes L, let

PRFk(x) =
(

H1(x) + k + L[0]
p

)
, . . . ,

(
H1(x) + k + L[ℓ− 1]

p

)
We then have that the input to the random oracle H2 for the Legendre OPRF
is some pair (x, PRFk(x)).

Indistinguishability of Hash Inputs We show that under the DSLS assump-
tion, for randomly chosen x, x′, k, k′, any polynomial time simulator, which
controls the H1 random oracle, cannot distinguish between the pairs
((x, PRFk(x)), (x′, PRFk(x′))) and ((x, PRFk(x)), (x′, PRFk′(x′))) with
non-negligible advantage. Concretely, this means that it cannot tell when
the same key was used for two evaluations.

Proof sketch: Assume such a simulator B exists, we construct a polynomial-
time adversary against the DSLS problem.
The adversary begins by choosing random elements x and x′. It then queries
the random oracle, as set by B, for the values H1(x) and H1(x′). Then, the
adversary uses its DSLS oracleO to query the values H1(x)+ L[0], . . . , H1(x)+
L[ℓ− 1] and H1(x′) + L[0], . . . , H1(x′) + L[ℓ− 1]. Given the oracle responses,
it passes the two elements

(x,O(H1(x) + L[0]), . . . ,O(H1(x) + L[ℓ− 1]))(
x′,O(H1(x′) + L[0]), . . . ,O(H1(x′) + L[ℓ− 1])

)
to B and outputs the value that B outputs.

In case the adversary is interacting with a Legendre Oracle, we note that this
is exactly the first case that B distinguishes against since the two items will
be ((x, PRFk(x)), (x′, PRFk(x′))) for some key k.

On the other hand, if the oracle B is interacting with is a random oracle,
then the two sequences will, with high probability, appear to be outputs
of the PRF for different keys, which simulates the second case for B. To
formally show this, the probability of any overlap in the sequences needs
to be shown to be sufficiently small and then, using the DSLS assumption,
it can be shown that the two random sequences are indistinguishable from
PRF outputs for two different keys.

Thus, the advantage of the adversary in the DSLS game is non-negligible if B
has non-negligible advantage. Therefore, we conclude that the advantage of

27

3. The Legendre OPRF

B in distinguishing between the two sequences under the DSLS assumption
is negligible. □

Next, we sketch a proof as to why, without the simulator being able to dis-
tinguish between two such pairs with non-negligible probability, the OPRF
cannot be UC secure according to FOPRF.

Proof sketch: We construct an environment as follows: we have two users
U0 and U1 and a server S. We consider the case where the server is cor-
rupted. The environment chooses two inputs x0, x1 and two keys k0, k1.
First, the environment queries the hash function four times in a random or-
der to obtain the values xi,j ← H2

(
xj, PRFki(xj)

)
for i, j ∈ {0, 1}.

In the real world, if the environment then gives a user U ∈ {U0, U1} the
input xj and tells the server to use the key ki in the evaluation, the evalu-
ation will then output H2

(
xj, PRFki(xj)

)
. Therefore, this must also hold in

the simulated world, or the environment can trivially distinguish between
the two cases.
Let us consider how the simulator can respond to the initial hash queries.
The simulator needs to answer the hash queries with table values Fk from
the ideal functionality, as otherwise, with high probability, the users will
output different values.

The first option then is for the simulator to set

H2
(
xj, PRFk0(xj)

)
= H2

(
xj, PRFk1(xj)

)
in which case the environment can recognise with high probability that this
is the simulated world as this occurs in the real world with probability 1/2ℓ.
The second option is for the simulator to set the hash outputs for the same
input x to be different. The environment now performs two OPRF eval-
uations using the two users. It randomly assigns x0 and x1 as the user
inputs and tells the server to use the key k0 in both evaluations. Since the
simulator does not know which input the users receive, for the users to re-
ceive the correct value with high probability, the simulator must have set
H2(x0, PRFk0(x0)) to be the output of the ideal OPRF functionality Fk(x0) for
some value k and H2(x1, PRFk0(x1)) = Fk(x1) for the same k. This is required
because the simulator does not learn anything about the user’s inputs, so it
cannot know which user has received which input. Thus, it cannot consis-
tently use the correct table if they are different.
Since we know, though, that the hash outputs for the same input x dif-
fer and the fact that the simulator cannot distinguish between ((x, PRFk(x)),
(x′, PRFk(x′))) and ((x, PRFk(x)), (x′, PRFk′(x′))) with non-negligible proba-
bility, the simulator can only blindly assign the values. Thus, the probability
that the polynomial-time simulator answered both queries for the same key
k with the same table can be bounded as:

Pr [H2 (x0, PRFk0(x0)) = Fk(x0) and H2 (x1, PRFk0(x1)) = Fk(x1)] ≤
1
2
+ ϵ

28

3.3. Correlated OPRF

where ϵ is negligible. Since if this is not the case the environment can dis-
tinguish between the two worlds, the advantage of this environment is non-
negligible for any efficient simulator. Therefore showing that the scheme is
not UC secure according to FOPRF. □

This problem is avoided by two-hash Diffie-Hellman, one of the OPRFs
shown to be secure in this security notion, by embedding a trapdoor into
the scheme. In particular, by programming the H1(x) values in a particular
way, the simulator can recover gk from an input to the second hash function.
This allows the simulator to detect in which cases which key was used. As
mentioned, though, this is not possible for the Legendre OPRF due to the
DSLS assumption. So, the OPRF will not be secure unless one evaluates
additional costly checks in the MPC functionality that may reveal informa-
tion or limit which keys the server can use. We conclude that the scheme
outlined above is not secure according to FOPRF under the decisional SLS
assumption when we have a malicious server.

3.3 Correlated OPRF

An alternative UC security notion for OPRFs called Correlated OPRF was
introduced by Jarecki et al. as a weaker notion, used to show the security of
the Diffie-Hellman OPRF with multiplicative blinding [40]. While this is a
weaker notion, it still suffices for various applications, such as OPAQUE [39].
In the following, we will first present the Correlated OPRF functionality.
Then, we will present a complete proof of security for the Legendre OPRF
in the FROM,CRS,ABB-Hybrid model.

3.3.1 Ideal functionality

Again, we slightly modify the original correlated OPRF definition by remov-
ing the prefixes. That means, upon the user or server sending their input
messages for online evaluation, we no longer allow the adversary to make
the parties output some value and link a client and server session together.
In Section 3.4 we will introduce and prove security with the variant where
these prefixes are not removed.

The new definition can be found in Fig. 3.4. The main difference to FOPRF is
that for any two PRF functions F1, F2 we now allow them to be correlated on
a single value of the adversaries choosing. That means when a new function
F′ is referenced for the first time, the adversary can provide a list of pairs
(Fi, xi) and the functionality will ensure that F′(xi) = Fi(xi), assuming that
each function Fi only occurs once in this list. The ideal functionality models
this by storing this information as a graph. The instantiated functions are
saved in a set of nodes N , and we have a set of edges E that model the corre-
lations. Each edge between two nodes has a label x, indicating the value on

29

3. The Legendre OPRF

which the two nodes are correlated. When adding a new node to the graph
(i.e., the first time a function is referenced), the Correlate function models
adding the specified edges to the graph. The practical difference compared
to the previous functionality is that a new attack is permitted. In certain
cases, a corrupted server can test if a client has previously interacted with
the server with a value x. In particular, if the higher-level application allows
the server to detect if a client outputs the same output in two interactions,
then by answering the two interactions with different tables Fi, Fj where
they are correlated on a value x, with FcorOPRF the adversary can with high
probability detect if the user’s input was the value x in both interactions or
not by comparing whether the outputs were the same or not.

3.3.2 Security analysis of the Legendre OPRF

We show that under the DSLS assumption, the Legendre OPRF securely
realises FcorOPRF in the FROM,CRS,ABB-Hybrid model.

Before we get into the security proof of the Legendre OPRF, we will first
prove two supplementary theorems used in the proof.

The first theorem states that the probability of a hash collision in the eval-
uated sequences is very small. Furthermore, it will also show that the ex-
istence of a point P, such that the evaluation of the OPRF at P will reveal
information about the evaluation at more than one point, is unlikely.

Theorem 3.1 Hash Collisions. Assume H1 behaves like a truly random func-
tion mapping bitstrings to Zp and let nH1 be the number of values queried of H1.
Let L = [o0, o1, . . . , oℓ−1] be a list of ℓ many random offsets. Consider the prob-
ability pbad that there exists x and x′ ̸= x for which H1 was queried such that
the intersection between the two sequences [H1(x) + o0, . . . , H1(x) + oℓ−1] and
[H1(x′) + o0, . . . , H1(x′) + oℓ−1] is not empty.

Then we have

pbad ≤
n2

H1
· ℓ2

2 · p

Furthermore, consider the probability pNotGreat that there exists P, x, and x′ ̸= x
such that the intersection between the sequence [P+ o0, . . . , P+ oℓ−1] and [H1(x)+
o0, . . . , H1(x) + oℓ−1] is non empty, and the intersection between the sequences
[P + o0, . . . , P + oℓ−1] and [H1(x′) + o0, . . . , H1(x′) + oℓ−1] is non empty. Then
we have,

pNotGreat ≤
n2

H1
· ℓ3

2 · p

Proof Let us first prove the first statement. Assume that so far there have
been i− 1 hash queries, and consider the probability ci that in one of the pre-
vious i− 1 distinct queries, one of the evaluated points is equal to a point in

30

3.3. Correlated OPRF

Ideal Correlated OPRF functionality FcorOPRF

The OPRF function is parameterised by a public PRF output length ℓ. For every
i and x the value Fi(x) is initially undefined. The first time an undefined value
Fi(x) is referenced FcorOPRF sets Fi(x)←$ {0, 1}ℓ.

Initialisation:
On message (Init, sid) from party S, if this is the first Init message
for sid set tx = 0 and send (Init, sid, S) to A∗. From now on use
the tag S to denote the unique entity which sent the Init message for
the session identifier sid. (Ignore all subsequent Init messages for sid.)
Finally, set N ← [S], E ← {},G ← (N , E)

Server Compromise:
On message (Compromise, sid) from A∗, declare S as Compromised.
Note: Message (Compromise, sid) requires permission from the environment.
//If S is corrupted, then it is declared Compromised as well.

Offline Evaluation:
On (OfflineEval, sid , S∗, x, L) from P ∈ {S,A∗} do:

• If P = A∗ and S∗ /∈ N : append S∗ to N and run Correlate(S∗, L)

• Ignore message if P = A∗, S not Compromised, and (S∗, S, x) ∈ E
• Send (OfflineEval, sid, FS∗(x)) to P if (i) P = S and S∗ = S or (ii) P = A∗

and either S∗ ̸= S or S Compromised

Online Evaluation:
• On (Eval, sid, ssid, S′, x) from P ∈ {U,A∗}, send (Eval, sid, ssid, P, S′) to
A∗. Record ⟨ssid, P, x⟩

• On (SndrComplete, sid, ssid′) from S, send (SndrComplete, sid, ssid′, S)
to A∗, set tx++

• On (RcvComplete, sid, ssid, P, S∗, L) from A∗, ignore this message if
there is no record ⟨ssid, P, x⟩ stored. Else:

– If S∗ /∈ N : Append S∗ to N , run Correlate(S∗, L)

– If S is not Compromised and (S∗ = S [(S∗, S, x) ∈ E and P = A∗]):
If tx = 0 ignore this message. Else decrement tx

– Send (Eval, sid, ssid, FS∗(x)) to P

Correlate (S∗, L):

Reject if list L contains elements (j, x), (j′, x′) s.t. j = j′ and x ̸= x′.

Else, for all (j, x) ∈ L s.t. j ∈ N , add (S∗, j, x) to E and set FS∗(x)← Fj(x)

Figure 3.4: The Correlated OPRF functionality FcorOPRF. The changes to FOPRF are highlighted

using grey boxes .
31

3. The Legendre OPRF

the series H1(xi) + o0, . . . , H1(xi) + oℓ−1.
Consider the number of points at which the sequence H1(xi) can start with-
out causing such a collision. Initially, this is p points, and then in each of
the previous i− 1 iterations, ℓ many points are evaluated. For each of those
(i − 1) · ℓ many points, we effectively remove a set of at most ℓ many pos-
sible start-points from not having a collision. Therefore, since we assume
H1(xi) is chosen uniformly at random it follows that

ci ≤
(i− 1) · ℓ2

p

Let us visualise this for the case where we have p = 23, ℓ = 2 and L = [0, 4].
Initially, any point can be the output of our hash function without causing a
collision.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

We then hash an item x and find that H1(x) = 6. Thus, we now mark the
values 6 and 10 in red, as those are the values we have evaluated.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

H1(x) + 0 H1(x) + 4

Consider some element x′ and the possible values for H1(x′). In green, we
now mark all the values that would result in a sequence collision. We see
that there are ℓ such points for each red element, resulting in a total of
less than ℓ2 many such points, with each further evaluation adding at most
another ℓ2 more.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Therefore, consider the probability pbad that after nH1 many queries there is
a collision. Using an union bound we have:

pbad ≤
nH1

∑
i=1

ci ≤
nH1

∑
i=1

(i− 1) · ℓ2

p
≤

n2
H1
ℓ2

2 · p

from which the first statement follows.

For the second statement, all the points we previously marked as green
would be potential values of P, such that the intersection between the se-
quence starting at H1(x) and P have some overlap. Let us now consider
all the values H1(x′) in blue, such that the evaluation at one of these green
points P would reveal something about the evaluation at x′. Notice that for

32

3.3. Correlated OPRF

each point P, there are ℓ many such points H1(x′), in our example case P
and P− 4.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Therefore, if we now were to hash a second element x′, the probability that
x′ and x are such that in no evaluation we can learn information about both
x and x′ is bounded by

ℓ3

p

Furthermore, after seeing nH1 − 1 hash queries, the probability that the next
hash query does not create such a point is

(nH1 − 1) · ℓ3

p

The result then again follows directly from a union bound over the nH1 hash
queries. □

Next, we will show that the probability that there exist two keys k, k′ ̸= k
such that the sequences starting at them are equal is small. From this, we
can then conclude that the probability that there exists x, k, k′ such that the
sequences starting from H1(x) + k and H1(x) + k′ are equal is also small
because H1(x) + k and H1(x) + k′ are valid keys that could be used directly
to find a collision. This implies that it is hard for a malicious server to find
two such keys.

Theorem 3.2 Sequence Collisions. Let p be a prime and I = [o0, o1, . . . , oℓ−1]
be a list with ℓ many random elements. Then for ℓ chosen sufficiently large (ℓ ≥
c · log2(p) for some c ≈ 2.5 that depends on p) the probability that two keys k, k′
exist such that(

k + o0

p

)
,
(

k + o1

p

)
, . . . ,

(
k + oℓ−1

p

)
=

(
k′ + o0

p

)
,
(

k′ + o1

p

)
, . . . ,

(
k′ + oℓ−1

p

)
is bounded by 1

2
√

p

Proof We use Lemma 2.3 to prove this theorem. For the Legendre OPRF we
instantiate the lemma with k = 2 (k in the lemma represents what power
residue we are using, whereas K is used for the key) and a = 0 (a in the
lemma represents the difference between the two values since we want them
to be equal we set a = 0). Then the lemma states that for a prime p and any
K ̸= K′, that if IK,K′ is the set of indices i such that

(
K+i

p

)
=
(

K′+i
p

)
, the

cardinality of this set IK,K′ is bounded as follows:

p
2
−√p− 1 ≤ |IK,K′ | ≤

p
2
+
√

p + 2

33

3. The Legendre OPRF

Thus, let K, K′ ̸= K be arbitrary and I be a uniformly random set of ℓ offsets
in Zp. Then, the probability that the PRF sequences for K and K′ are equal is
the probability that on a random draw of ℓ elements from Zp all are in IK,K′ .
If we denote the binomial distribution as bin(n, p), then the probability that
the sequences are the same is bounded by

Pr

[
bin

(
ℓ,

p
2 +
√

p + 2
p

)
= ℓ

]

Therefore, we have

Pr[sequences are equal] ≤
(

1
2
+

1
√

p
+

2
p

)ℓ

We now want to analyse what requirements exist for c such that when ℓ =
c · log2(p) the probability the sequences are equal is bounded by 1

p2·√p . Once
we have such a c the desired statement follows directly by applying a union
bound over the p2/2 many key pairs.

What we require is that

1
p2 · √p

≥
(

1
2
+

1
√

p
+

2
p

)c·log2(p)

= pc·log2

(
1
2+

1√
p+

2
p

)

Which is equivalent to

p−2.5 ≥ pc·log2

(
1
2+

1√
p+

2
p

)

we can see that this holds if −2.5 ≥ c · log2

(
1
2 +

1√
p +

2
p

)
, or equivalently if

c ≥ −2.5

log2

(
1
2 +

1√
p +

2
p

)
≥ 2.5

log2

(
2p

p+2
√

p+4

)
Given that the value c fulfils this requirement, a union bound over the p2

2
possible key pairs yields the desired statement, since

p2

2
· p−2.5 =

√
p

2

with which we conclude the proof. □

34

3.3. Correlated OPRF

We also provide sample numbers for the required evaluation length for dif-
ferent prime sizes. For 64-bit primes we can choose ℓ = 161, for 128-bit
primes we can choose ℓ = 321, and for 256-bit primes we can choose ℓ = 641.

We now prove the security of the Legendre OPRF. We assume malicious se-
curity with adaptive compromise. We do not make any assumptions on our
communication channels (such as them being authenticated). For a prime
p, where we have ℓ such that it fulfils the bound given by Theorem 3.2, we
get approximately log2(

√
p) bits of security. In particular, the advantage

of a polynomial-time environment in distinguishing between the simulated
world and the ideal world is bounded by

n2
H1
· ℓ3

p
+

2 · n · ℓ
p

+
1

2 · √p
+ ϵDSLS +

nH2

2ℓ

where nH1 and nH2 are the number of hash queries made to H1 and H2
respectively, n is the number of protocol evaluations that are run, ℓ is our
output length, and ϵDSLS is the advantage of a polynomial-time adversary
in the decisional SLS game.

Theorem 3.3 Security of Legendre OPRF. The Legendre OPRF protocol of Fig. 3.3
securely realises the correlated OPRF functionality FcorOPRF in the
FROM,CRS,ABB-Hybrid model under the decision Shifted Legendre Symbol assump-
tion.

Proof We present a simulator Sim that for any efficient environment Z gen-
erates a view that is indistinguishable from Z ’s interaction with the real
world where the parties run the Legendre OPRF protocol of Fig. 3.3. With-
out loss of generality, we assume that the adversary A∗ is the dummy ad-
versary [15], who does nothing other than pass along all its messages to and
from Z . The simulator is shown in Fig. 3.4. We assume that the server iden-
tifier is some unique value such that if we choose some random k′ it will be
unequal to the server identifier.

Proof Sketch: We begin by outlining the main ideas of the proof and will
then present the exact details by describing a sequence of game hops.

The simulation strategy can be summarised as follows:

• Both parties honest: In this case Sim just needs to simulate the mes-
sages sent from FABB in the real world. Since the arithmetic black box
masks the output values, the simulator can just choose random values
and use those as the Output messages. Like this, by properly timing
the RcvComplete message, the view of the environment is unchanged
between the real and the simulated world for this case.

• Honest server: In case the server is honest but interacting with a ma-
licious user, Sim chooses a key k on behalf of the server. Whenever

35

3. The Legendre OPRF

Simulator Sim (sid, p, H1, H2)

The simulator obtains as input a session identifier sid indicating which FcorOPRF
instance it communicates with, the public parameters p, as well as the descrip-
tion of the hash functions H1 : {0, 1}∗ → Zp, H2 : {0, 1}∗ × {0, 1}ℓ → {0, 1}ℓ.
By PRFH1

k (x) we mean the sequence of ℓ Legendre symbol evaluations
with key k, value H1(x), and the randomly chosen list L ∈ Zℓ

p. So(
H1(x)+k+L[0]

p

)
, . . . ,

(
H1(x)+k+L[ℓ−1]

p

)
The simulator initially sets Tk ← [] and Tseen ← []. It chooses ℓ many random
values in Zp and stores them in L. //Tk stores the keys we know of, Tseen stores
pairs (x, PRFH1

k (x), k′) for some unknown k. The simulator uses L to simulate
FCRS.

1. On (Init, sid, S) from FcorOPRF, pick k←$ Zp. Set NSim ← [S] and add k to
Tk. From now on when we reference k we mean this key. //Honest server,
so we imitate it.

2. On (Compromise, sid) from A∗, send (Compromise, sid) to FcorOPRF and
send k to A∗. Record that S is compromised.

3. On (Eval, sid, ssid, U, S′) from FcorOPRF, record ⟨U, ssid⟩.
4. On (SndrComplete, sid, ssid′, S) from FcorOPRF, record ⟨S, ssid′⟩.
5. On messages from user U sending input to FABB, (Init, ssid, F) followed

by a series of Input commands, store all the provided input as z and store
⟨sid, ssid, z, U⟩. //Malicious user’s input to MPC.

6. On messages from P ∈ {S,A∗} sending input to FABB, (Init, ssid, F) fol-
lowed by a series of Input commands: If the input matches the form of
first containing a key k′ and then ℓ many values sS

i , then add k′ to Tk. Store
all the provided inputs as y and store ⟨sid, ssid, y, P⟩. //Malicious server’s
input to MPC.

7. [Both Honest] Upon having stored ⟨U, ssid⟩ and ⟨S, ssid⟩ for some ssid:
Choose ℓ many random elements r0, . . . , rℓ−1 ←$ Zp and send a series of
ℓ many (Output, ssid, ri) messages to A∗. If the adversary responds with
Deliver for all of them, send (RcvComplete, sid, ssid, U, S) to FcorOPRF.

8. [Honest Server]: Upon having stored ⟨S, ssid⟩ and ⟨sid, ssid, z, U⟩, pick ℓ
many values sS

0 , . . . , sS
ℓ−1 ←$ Zp and execute the code of FABB just like

FABB would for the user and a server participating honestly with key k
and random masks sS

0 , . . . , sS
ℓ−1. //That means if the user sends the correct

sequence of commands, compute the ABB function F and then send the
ℓ many output messages to A∗. If the user sends some other sequence of
commands, then just run as far as the execution with the server would.

36

3.3. Correlated OPRF

9. [Honest User] Upon having stored records ⟨U, ssid⟩ and ⟨sid, ssid, y, P⟩:
Choose a random x ∈ Zp, ℓ masking values m0, . . . , mℓ−1 ←$ Zp and ℓ s
values sU

0 , . . . , sU
ℓ−1 ←$ Zp. Then execute the code of FABB just like FABB

would for P with an user playing honestly with input H1(x) and values
m0, . . . , mℓ−1 and sU

0 , . . . , sU
ℓ−1. If the execution runs successfully, and A∗

says Deliver for all the output messages, then recover the key k∗ that P
used as input in this session and do:

• For each item (x, y, k′) stored in Tseen, if y = PRFH1
k∗ (x), add (k′, x) to

a new list L.
• Send (RcvComplete, sid, ssid, U, k∗, L) to FcorOPRF

10. [Both Malicious] If have stored ⟨sid, ssid, z, U⟩ and ⟨sid, ssid, y, P⟩ execute
the code of FABB just like FABB would for a user participating with inputs
z and a server participating with inputs y.

11. On fresh hash query H1(x): Set H1(x)←$ Zp.

12. On fresh hash query H2(x, y):

• If y = PRFH1
k (x): pick some new and unique ssid and

send (Eval, sid, ssid, S, x) and (RcvComplete, sid, ssid,A∗, S, []) to
FcorOPRF. If FcorOPRF replies (Eval, sid, ssid, r) set H2(x, y) ← r, oth-
erwise abort. //Evaluation on the key we are simulating the server
with.

• If y = PRFH1
k∗ (x) for some k∗ stored in Tk: For each item (x′, y′, k′)

stored in Tseen if y′ = PRFH1
k∗ (x′) add (k′, x′) to a new list L. Return

the output of (OfflineEval, sid, k∗, x, L). Abort if two such k∗ exist.
//In this case, an evaluation is happening on a value for a key we
already know.

• Otherwise, select some new k∗, add (x, y, k∗) to Tseen,
send (OfflineEval, sid, k∗, x, []) to FcorOPRF and on response
(OfflineEval, sid, r), set H2(x, y)← r

13. On message (Value, sid) intended for FCRS, return L.

Figure 3.4: The simulator that shows that the Legendre OPRF UC-realises FcorOPRF.

37

3. The Legendre OPRF

interacting with a malicious user U controlled by A∗, the simulator
executes FABB just as FABB would while playing the role of the server
S in it by using k and some random values si to produce the messages.
Like this, the view of the user is identical in the simulated and the real
world. Furthermore, the simulator uses the outer hash function H2 to
ensure consistency with the first case. It does so by programming the
values that arise from the PRF evaluations with the key k to be equal
to the output of the ideal functionality table for the honest server. Im-
portant here is to verify that the amount of correct PRF output values
the user receives is bounded by the number of times the server (and
by extension the simulator) participate in the MPC protocol, which is
where we utilise Theorem 3.1, and the DSLS assumption.

• Malicious server: The case in which we have a malicious server is
the most complex. In particular, to maintain consistency, we need
to answer hash function evaluations “correctly” without knowing for
what key the PRF was evaluated. This is the case in which we then
require the correlations in our ideal functionality. To be exact, the
simulator Sim , for each hash query where it does not know what key
was used, creates a new “simulated” key, which it uses to read a table
in the ideal functionality that will only be read for this value. Then, if
an honest user performs an evaluation and the server uses some key k,
the simulator checks all the previously used “simulated” keys to see in
which ones the input could have been generated by the PRF evaluation
with k. The simulator then correlates the functionality table of this key
k with all of those values. Like this, the simulator can maintain the
consistency of the simulation and ensure the users receive the right
output.

It is also in this case where we use Theorem 3.2 to make sure that when
programming the hash outputs, we only need to consider a single
possible key.

Game hops We now show a sequence of hybrid experiments G0,. . . ,G14
where, starting from the real-world execution, we make small incremental
changes until we reach the ideal-world execution with the above simulator.
We write Pr[Gi] as the probability that the environment outputs 1 in game
Gi.

Game G0: This is the real world execution of ExecLegendreOPRF,A∗,Z

Game G1: In this game we move everything the protocol parties do to the
simulator, which executes all parties. Additionally, we add an ideal
functionality that does nothing but forward every input it gets to the
simulator. We also add dummy parties that forward input they get
from Z to the functionality to prevent the environment from detecting

38

3.3. Correlated OPRF

the difference. Furthermore, we modify the functionality with dummy
interfaces that allow the simulator to let any party produce any output
chosen by the simulator. Since these are only syntactical changes, we
have

Pr[G1] = Pr[G0]

Game G2: We now modify the simulator to abort on any hash collisions or
near-collisions of H1. That means, we abort in case values x and x′ ̸= x
have been queried such that a value S exists where H1(x) + L[i] =
S + L[j] and H1(x′) + L[i′] = S + L[j′] for any i, i′, j, j′ ∈ [0, . . . , ℓ− 1].
If we let nH1 be the number of times hash function H1 is queried, then
we know from the second statement of Theorem 3.1 that the probabil-

ity of this occurring is bounded by
n2

H1
·ℓ3

2·p . If this event does not occur,
then the view of the environment is identical to the previous game.
Thus, applying the difference lemma, we get

|Pr[G2]− Pr[G1]| ≤
n2

H1
· ℓ3

2 · p

Game G3: We now augment the functionality with tables Fi(x), which are
initially uninitialised and on the first reference, are set to a random
element in {0, 1}ℓ. Furthermore, we add the OfflineEval interface.
The OfflineEval interface, given a message (OfflineEval, sid, S∗, x)
from an entity P ∈ {A∗, S}, responds with (OfflineEval, sid, FS∗(x))
if i) P = S and S∗ = S or ii) P = A∗ and S∗ ̸= S or S is Compro-
mised (although there is no way to mark S as compromised yet). Note
that for now, we assume that in case a server is given the OfflineE-
val command as an input, this is still forwarded to the simulator and
then answered by the simulator. For now, the functionality still only
forwards the input instead of answering directly to the server.

Since currently no one uses these functionality tables or the new inter-
faces, we have that

Pr[G3] = Pr[G2]

Game G4: The simulator now uses the OfflineEval interface to answer
any H2 hash queries. On any hash query H2(x, y) instead of answering
with a random value, the simulator now instead answers the request
by choosing a brand new key k′ and responding with r = Fk′(x). The
simulator stores all such pairs (x, y, k′) in a table Tseen. Importantly, we
assume that the server identifier S is such that it is not an element of
Zp, and we pick our random k′ to be distinct from S as well.
Since the hash output is still chosen uniformly at random (the tables

39

3. The Legendre OPRF

are instantiated with random values), the view of the environment is
the same as it was in the previous game, thus we get

Pr[G4] = Pr[G3]

Game G5: For each server evaluation with some key k′, the simulator now
stores k′ in a table Tk. In particular, it does this in the case of an honest
server where it stores the key k it uses to simulate the server, in case of
a malicious server being told to play a round with some key, or when
A∗ passes some pair (k′, s) as its own input to FABB. Furthermore,
when simulating the honest server with some key k, on a hash query
H2(x, y) where y = PRFH1

k (x) instead of answering it with Fk′(x) for
some new k′ the simulator now answers it with Fk(x), it continues to
use the OfflineEval interface to learn the table value.
The view of the environment remains unchanged by this, as the output
values are still set randomly. Therefore,

Pr[G5] = Pr[G4]

Game G6: We now add correlations to our ideal functionality. On initiali-
sation, a node-set N is set to the set containing only the server S, and
an empty edge set E is initialised. Another argument, L, is added to
the OfflineEval interface. If we have that P = A∗ and S∗ /∈ N on
a OfflineEval query S∗ is added to the node set and the Correlate

function as described in FcorOPRF is run. That means the functionality
rejects the message if the list L contains (i, x) and (i′, x′) such that i = i′

and x ̸= x′. Otherwise, for all (i, x) in the list L, it adds (S∗, i, x) to the
edge set, and sets the functionality table for S∗ on the value x to be
equal to Fi(x), so it sets FS∗(x) ← Fi(x). Additionally, there now is an
additional check that if S∗ and S are correlated on x, then A∗ can no
longer use the OfflineEval interface to evaluate that point unless S
is compromised. The environment’s view remains the same since the
simulator does not use these correlations to answer any queries. Thus,

Pr[G6] = Pr[G5]

Game G7: We now add the the Compromise interface to the ideal func-
tionality. This operates as described in FcorOPRF. When receiving a
server compromise message, the simulator now forwards the compro-
mise message to the ideal functionality in addition to revealing k to
A∗.
Since whether a server is compromised or not has no effect on the
ideal functionality because we never call OfflineEval with the server
identity, we get that

Pr[G7] = Pr[G6]

40

3.3. Correlated OPRF

Game G8: We now modify our simulator such that whenever it simulates
FABB for two parties where at least one of them is honest, it now aborts
if it occurs that one of the si values is zero. Note that for each of those
values this will occur with probability 1/p since one of the parties is
honest. If we let n be the number of evaluations of the Legendre OPRF,
then applying the union bound we have

|Pr[G8]− Pr[G7]| ≤
n · ℓ

p

Game G9: In case of a hash function evaluation (x, y) where y = PRFH1
k (x)

for the key k which we are using to simulate the server, we now re-
spond with FS(x) to the hash query instead of Fk(x). To do this, we
add the OnlineEvaluation interface to the ideal functionality. We
add this exactly as it was in FcorOPRF, with the only change being that
we allow the simulator to also send the SndrComplete message on
behalf of the server. We assume that on a SndrComplete message
from the server the ideal functionality increments the counter while
also continuing to forward the message to the simulator. Similarly,
for an Eval message, we assume that the ideal functionality forwards
the full message to the simulator. To answer a hash query H2(x, y)
where y = PRFH1

k (x) the simulator sends a (Eval, sid, ssid, S, x) and
a (RcvComplete, sid, ssid, Sim, S, []) message to the ideal functionality
in rapid succession for some uniquely chosen ssid. It aborts if it does
not receive a response to the RcvComplete message. If it receives a
response (Eval, sid, ssid, r) it sets H2(x, y)← r

The provision that the simulator is allowed to send the SndrComplete

message is required in case of an OfflineEval input to the server. This
is still answered by the simulator, who will, before sending the above
two messages to the ideal functionality, first send a SndrComplete

message. We will remove this in a later game hop.

Let ϵ be the advantage of the environment in distinguishing between
G9 and G8. We will perform a reduction showing that if ϵ is not
negligible, then we can construct an efficient adversary against the
DSLS problem.

Let us first analyse how the view of the environment might have
changed due to these modifications. First, for OfflineEval server
inputs, the outputs are always answered, so all that has changed is
that a different random table is used. This difference is not detectable
by the environment. Secondly, if the server is marked compromised,
the simulator will always respond to hash queries and the output val-
ues will again be set consistently. Therefore, the only case in which

41

3. The Legendre OPRF

a difference is detectable to the environment is when the ideal func-
tionality ignores the RcvComplete message sent from the simulator.
This can occur if the server is not compromised and the number of
hash queries for values corresponding to the PRF evaluated at the key
k the simulator uses to simulate the honest server is smaller than the
number of SndrComplete messages sent. Concretely, this can occur in
case the environment (or a user) makes a hash query H2(x, PRFH1

k (x))
where the simulator did not evaluate PRFH1

k (x) or any of the Legendre
symbols that occur in that PRF during the executions of FABB.

We will now perform our reduction to show that this probability is
small. Consider an environment C that can distinguish between G9
and G8. As described above, that means that in G9 C made a hash
query H2(x, PRFH1

k (x)), where the simulator did not evaluate any of
the bits of PRFH1

k (x), while the server was not compromised. We will
construct an adversary B against the DSLS problem.

We consider a separate game-hop from the above sequence. In this
game, the simulation will be aborted once the key k is revealed (so
the server is Compromised). But we know that if C can distinguish
between G9 and G8 that C then makes such a hash query before the
server is Compromised. Thus, we will use the fact that C can make
such a hash query to build a distinguisher for the DSLS game.

Let us consider the game G9’, which we modify as follows: The simu-
lator no longer picks a key k for the server. Instead, it has access to a
truly random oracle OR.
Whenever the simulator needs to evaluate

(
k+H1(x)+L[i]

p

)
it instead just

queries its own oracle with the value OR(H1(x) + L[i]). The simulator
aborts on a message Compromise that would require revealing the key
k. Furthermore, whenever the simulator needs to provide some value
s2(k + H1(x) + L[i]), as it might in case of a malicious user, it proceeds
as follows: It gets a value b ← OR(H1(x) + L[i]). Then, depending
on the bit b, it randomly samples elements e from the set of quadratic
residues modulo Zp or from the set of non-quadratic residues modulo

Zp. Thus, it finds an element e such that b =
(

e
p

)
.

Now let us denote with ζ the probability that the environment makes
a hash query that causes the simulation to abort in G9 and with ζ ′

the probability that the environment makes such a hash query in G9’.
Clearly, we have |Pr[G9]−Pr[G8]| ≤ ζ because if no such query occurs,
then the environment’s view remains the same.

Let us consider ζ ′, the probability that the environment makes a hash
query, resulting in an abort in G9’. Concretely, this occurring means

42

3.3. Correlated OPRF

that for some x′ that was never used as a user input, the adversary can
learn y = OR(H1(x) + L[0]), . . . ,OR(H1(x) + L[ℓ− 1]), where none of
those bits was previously evaluated. Recall that due to G2 we know
each evaluation will only give information about the OPRF evaluation
at a single point. Therefore, this requires the environment to correctly
guess ℓ truly random bits. Let nH2 be the number of queries made to
the hash function H2, from the union bound it then follows that this
occurs with probability bounded by

nH2
2ℓ . Therefore, we know that

ζ ′ ≤ nH2

2ℓ

We now aim to show that the difference between ζ and ζ ′ can be
bounded by the advantage of an adversary against the DSLS problem.

To do this, we assume the existence of an efficient environment C such
that C can distinguish between G9 and G9’ without compromising the
server. Using C as a subroutine, we construct an efficient adversary B
against the DSLS problem.

B operates as follows: It runs C with the simulator in the game G9’
but relays the simulator queries to the truly random oracle to its own
oracle provided by the DSLS game. When adversary C outputs a bit
b, B also outputs the same b. Clearly, B has an expected polynomial
runtime if C has.2 Thus, what remains is to show how the advan-
tage of C relates to the advantage of B. The essential observation here
is that since the value s2 is chosen uniformly at random and we as-
sume that as long as the parties are honest, they will not be zero (G8),
it encodes a random permutation from all quadratic residues to all
quadratic residues in Zp and the same for all quadratic non-residues.
Thus, given s2(H1(x) + k + L[i]), the only information one can learn
about (H1(x) + k + L[i]) is if it is a quadratic residue or not. There-
fore, in the case that B’s oracle is computing the Legendre symbol, B
perfectly mimics how the simulator in G9 operates, as any information
given to C is the same as if B was playing the simulator in G9. If B’s
oracle is a truly random function, then it simulates the view of C in
G9’.

Therefore, we conclude that the advantage of B in the DSLS problem
is equal to that of C in differentiating between the games. Thus, for
any environment that does not compromise the server key, we have
the following:

|Pr[G9]− Pr[G′9]| ≤ ϵDSLS

2Finding a random element in Zp with a specific quadratic residue value requires on
average under two attempts.

43

3. The Legendre OPRF

which also yields that |ζ ′ − ζ| ≤ ϵDSLS.

Combining our insights, we have ζ ′ ≤ nH2
2ℓ , |ζ ′ − ζ| ≤ ϵDSLS and

|Pr[G9]− Pr[G8]| ≤ ζ. Therefore, we conclude that

|Pr[G9]− Pr[G8]| ≤ ϵDSLS +
nH2

2ℓ

Game G10: Next, we modify how a hash function request H2(x, y) is an-
swered for some y = PRFH1

k′ (x) where k′ ̸= k and k′ ∈ Tk. Instead
of choosing some brand new k∗ and answering the hash query with
the ideal functionality evaluation of that value, the simulator instead
proceeds as follows:

• If there exist two such keys k′ and k′′ such that y = PRFH1
k′ (x) =

PRFH1
k′′ (x) then abort.

• For all values (x′, y′, k∗) in Tseen, if y′ = PRFH1
k′ (x), add ([k∗, x′]) to

a list L.
• Set the hash value to be equal to the OfflineEval evaluation of x

for the key k′, where L is passed as the correlation list.

The correlate aspect does not modify our output for the evaluated x.
(Since if (x, y, k∗) would have already been added to Tseen for some k∗,
then we would have responded to the hash query already). We can also
verify that each k∗ will occur at most once in the list L because any k∗

will only be used once and thus only occur in Tseen once. Additionally,
each x′ will also occur at most once, as the PRF is deterministic.
So all this change does is that instead of answering the query with
the ideal functionality on some new key k∗, we now instead answer it
on the evaluation of some known key k′. The only case in which the
view of the environment changes is if there exist k′, k′′ in Tk such that
y = PRFH1

k′ (x) = PRFH1
k′′ (x). From Theorem 3.2 we can conclude that

the probability of this occurring is small. This follows from the fact that
if two such keys k and k′ and value x would exist, then we could find
a collision as defined in Theorem 3.2 by setting k1 = H1(x) + k, k2 =
H1(x) + k′. Thus, we have

|Pr[G10]− Pr[G9]| ≤
1

2 · √p

Game G11: For an honest user, instead of the simulator giving it its output
via the dummy interface, the simulator now uses the OnlineEval in-
terface. To do this, we first modify the ideal functionality to no longer
pass the user input x to the simulator. Upon receiving an Eval mes-
sage, the simulator now instead chooses some brand new x∗ and uses

44

3.3. Correlated OPRF

that to simulate the user’s role in the MPC protocol. The simulator
now stores records ⟨U, ssid⟩ and ⟨S, ssid⟩ when receiving those from
the ideal functionality. Furthermore, if both the user and the server for
a ssid are honest, the simulator instead directly just chooses r0, ..., rℓ
and sends those as ABB output messages for ssid to A∗, instead of
simulating the entire FABB computation.

Once the adversary has said Deliver for the ℓ output messages:

• In case the simulator used the key k for the server in the corre-
sponding ssid, then the simulator sends (RcvComplete, sid, ssid,
U, S, []) to the ideal functionality.

• Otherwise, if the server of ssid participated in the protocol with
some key k′ and value s then for all values (x′, y′, k∗) in Tseen,
if y′ = PRFH1

k′ (x) add ([k∗, x′]) to a list L. Send (RcvComplete,
sid, ssid, U, k′, L) to the functionality.

The view of the environment is unchanged by this since the randomly
chosen masking values perfectly mask the MPC output values from
it. Therefore, the environment cannot distinguish between whether
the simulated Output messages from FABB result from an execution
where the input used is the actual user input or some randomly chosen
value. Additionally, the environment cannot tell if the simulator uses
randomly chosen values in the Output messages instead.

Furthermore, we observe that the user’s output messages are still set
identically. Due to how we set the hash values, they corresponded to
exactly the values that the ideal functionality will now directly output
to the user. Important to note here is that with how we set the list L
we pass to the ideal functionality to add our correlations in both G11

and G10 if the environment evaluates a hash query H2(x, PRFH1
k′ (x)) in

advance, the simulator will answer that with Fk∗(x), and then include
[k∗, x] in L when a user runs the evaluation with a corrupted server
playing with the key k′. Therefore,

Pr[G11] = Pr[G10]

Game G12: We now modify how an OfflineEval request is handled in case
the server is honest. The ideal functionality no longer forwards the re-
quest to the simulator but instead responds directly to the server as it
should according to the OfflineEval interface of FcorOPRF. This also
means the simulator no longer sends SndrComplete messages to the
ideal functionality on behalf of the server, so we remove the modifi-
cation that enabled the simulator to do so. Currently, the way such

45

3. The Legendre OPRF

a request is responded to is by evaluation FS(x) by sending an Eval

and SndrComplete message, followed by a RcvComplete message. If
we instead directly allow the server to use the OfflineEval interface,
it will similarly be answered by the same table. Therefore, since the
output value is still set to the same table, we have

Pr[G12] = Pr[G11]

Game G13: We now remove the abort upon a collision in H1, first introduced
in G2. Furthermore, we remove the aborts in case one of the s values
happens to be 0, introduced in G8. By the same argument as there we
have

|Pr[G13]− Pr[G12]| ≤
n2

H1
· ℓ3

2 · p +
n · ℓ

p
We now describe the world we find ourselves in. The ideal functional-
ity Sim interacts with is exactly FcorOPRF, except for the fact that it still
possesses the dummy interfaces that let the simulator control the out-
put of the parties. H1 operates exactly as it would in the ideal world, as
it just assigns random values to the requested input. H2 was modified
in multiple steps. First, in game G9, we set it in case y is the evaluation
of PRFH1

k (x). This corresponds to the first case of how the simulator
sets H2. The second case in the simulation of H2 corresponds exactly
to what we now have, after the modifications in G10. Finally, by how
we set the hash output in all other cases, as defined in G3, our simula-
tor now simulates H2 as it would in the ideal world execution.
Furthermore, the responses of the simulator to the Init and Compro-
mise are now also the same. We can also see that the evaluation pro-
ceeds exactly as it would in the simulated world. Therefore, we can see
that this is exactly equivalent to the ideal world when running with
simulator Sim, just that the simulator still receives additional input
from the ideal functionality, which it does not use, and the presence of
the dummy output interfaces of the ideal functionality, which also are
unused.

Game G14: In this game we take away the additional information about the
inputs the simulator still gets from the functionality. We also remove
the dummy interfaces that allowed the simulator to make any party
output whatever the simulator wanted. As the simulator did not use
either anymore, the distribution of the experiment does not change
when the simulator does not get this information. Thus, we have

Pr[G14] = Pr[G13]

With that, our proof is complete and we have shown the security of the
Legendre OPRF. □

46

3.4. Correlated OPRF with Prefixes

3.3.3 Strengthening of the notion

There are two ways in which the correlated OPRF security notion could be
modified to provide slightly stronger security guarantees without requiring
modifications to the scheme and proof strategy.

Firstly, the current version of FcorOPRF allows A∗ to let any honest party P
compute Fi(x) where Fi may be correlated with FS on the point x without
decrementing the ticket counter. This was used in the security proof for
the multiplicative-blinded two-hash Diffie-Hellman and this weaker notion
suffices for OPAQUE. We observe, though, that our simulator will never
correlate any function with FS; thus, using the same scheme, simulator, and
proof as above, the security in this slightly modified security notion could
be shown.

Secondly, the current functionality is for a single server with a single key.
Concretely, this implies that we require domain separation between all our
hash functions in case multiple servers run the protocol. As it turns out,
this is actually not required in our proof. The fact that for H1 this does not
matter follows from the fact that we do not program that random oracle.
For H2, the key insight is that we assume that no two keys exist such that
the PRF evaluation at a point x is the same with both of them. Let us now
consider the three cases in which we program this random oracle. The first
two will not cause any collisions due to the above-stated property that given
some value (x, y), there is a unique key for which those would be equal, so
unless two honest servers end up using the same key (which occurs with
negligible probability), there will be no collisions in this programming. We
then observe that the third case is also independent of what servers or keys
we are considering. Due to this, we believe our scheme is also secure in
a multi-server and multi-key variant of FcorOPRF, where domain separation
for hash functions is no longer required.

3.4 Correlated OPRF with Prefixes

The security proof uses a slightly modified version of the correlated OPRF
functionality in which we removed the prefixes. We did this because, for the
majority of OPRF applications the prefixes are not used. In this section, we
will argue how our scheme can be modified to work with the original un-
modified definition required for OPAQUE. The role the prefixes play is that
if for some sid both the server and the user output the same prefix prfx af-
ter sending their Eval or SndrComplete message then the SndrComplete

message can only be used to evaluate the OPRF at the input provided in the
Eval message with the corresponding prefix. So, while the adversary can
still make the user evaluate a different table, that specific SndrComplete

can no longer be used for a different evaluation. In Fig. 3.4 we present the

47

3. The Legendre OPRF

correlated OPRF security notion with prefixes. One easy way of bridging a
protocol from the previous definition to this one is by just making the par-
ties output a random prefix. By doing so, honest users and servers in the
real world will, with high probability, never use the same prefixes and the
simulator can just use random values in the simulation. The applicability
of this is limited, though, because for OPAQUE, one of the higher-level ap-
plications that uses these prefixes, the protocol aborts if the user and server
receive different prefixes.

Therefore, we will instead use the sub-session identifiers (ssids) passed as
inputs to FABB as our prefixes. In Fig. 3.5 we show the modified Legendre
OPRF scheme that is secure according to the correlated OPRF with prefixes
security notion. We note one thing that needs to be monitored carefully is
that when a user and the server run the session together with some ssid,
we want the server to output the ssid as a prefix only after the user has
done so because in the ideal functionality it is not possible for the user to
output a prefix after the server has done so. We can ensure this is the case
by having the user output the ssid upon receiving it while having the server
wait until it has received some output from FABB. That way, we can enforce
a strict ordering on the fact that the user will always output the ssid before
the server does so.

Finally, we show the scheme’s security, as stated by Theorem 3.4. Again, we
assume malicious security with adaptive compromise.

Theorem 3.4 Security of Legendre OPRF. The Legendre OPRF protocol with pre-
fixes of Fig. 3.5 securely realises the correlated OPRF functionality FcorOPRF with
prefixes in the FROM,CRS,ABB-Hybrid model under the DSLS assumption.

Proof In Fig. 3.4 we present the updated simulator. Instead of restating all
the individual game hops, we describe the modifications that need to be
made to the sequence of game hops used in the proof of Theorem 3.3.

We add one additional game and slightly modify two of the games. With
those modifications, we observe that the rest of the proof works completely
analogously.

1. Game G9b The game we additionally add occurs after G9. In this
game, we further augment the OnlineEval interface of the function-
ality by adding the prefixes as described in Fig. 3.4. Furthermore,
when the simulator now sends an Eval request to set the hash out-
put, it chooses some new and unique ssid and uses that as the prefix
(first case of 12. in the simulator). When simulating the OfflineEval

interface on behalf of the server by sending the sequence of three mes-
sages, we assume that it again uses some new and unique ssid in the
Eval message and uses that as the prefix there, and does the same for
the SndrComplete where it uses a different fresh ssid as the prefix.

48

3.4. Correlated OPRF with Prefixes

Ideal Correlated OPRF functionality FcorOPRF with prefixes

The OPRF function is parameterised by a public PRF output length ℓ.
For every i and x the value Fi(x) is initially undefined. The first time an
undefined value Fi(x) is referenced FcorOPRF sets Fi(x)←$ {0, 1}ℓ.

Initialisation:
On message (Init, sid) from party S, if this is the first Init message for
sid set tx = 0 and send (Init, sid, S) to A∗. From now on use the tag S
to denote the unique entity which sent the Init message for the session
identifier sid. (Ignore all subsequent Init messages for sid.) Finally, set
N ← [S], E ← {},G ← (N , E)

Server Compromise:
On message (Compromise, sid) from A∗, declare S as Compromised.
Note: Message (Compromise, sid) requires permission from the environ-
ment. //If S is corrupted, then it is declared Compromised as well.

Offline Evaluation:
On (OfflineEval, sid , S∗, x, L) from P ∈ {S,A∗} do:

• If P = A∗ and S∗ /∈ N : append S∗ to N and run Correlate(S∗, L)
• Ignore message if P = A∗, S not Compromised, and (S∗, S, x) ∈ E
• Send (OfflineEval, sid, FS∗(x)) to P if (i) P = S and S∗ = S or (ii)

P = A∗ and either S∗ ̸= S or S Compromised

Online Evaluation:
• On (Eval, sid, ssid, S′, x) from P ∈ {U,A∗}, send (Eval, sid, ssid,

P, S′) to A∗. On prfx from A∗, reject it if prfx was used before. Else

record ⟨ssid, P, x, prfx, 0 ⟩ and send (Prefix, ssid, prfx) to P.
• On (SndrComplete, sid, ssid′) from S,

send (SndrComplete, sid, ssid′, S) to A∗.
On prfx’ from A∗ send (Prefix, ssid, prfx’) to S. If there is a record

⟨ssid, P, x, prfx’, 0⟩ s.t. prfx = prfx’ change it to ⟨ssid, P, x, prfx’, 1⟩, else
set tx++

• On (RcvComplete, sid, ssid, P, S∗, L) from A∗, ignore this message if
there is no record ⟨ssid, P, x, prfx, ok? ⟩ stored. Else:

– If S∗ /∈ N : Append S∗ to N , run Correlate(S∗, L)
– If S is not Compromised and ok? = 0 do:

If (S∗ = S or [(S∗, S, x) ∈ E and P = A∗]):
If tx = 0 ignore this message. Else decrement tx

– Send (Eval, sid, ssid, FS∗(x)) to P

49

3. The Legendre OPRF

Correlate (S∗, L):
Reject if list L contains elements (j, x), (j′, x′) s.t. j = j′ and x ̸= x′.
Else, for all (j, x) ∈ L s.t. j ∈ N , add (S∗, j, x) to E and set FS∗(x)← Fj(x)

Figure 3.4: The Correlated OPRF functionality FcorOPRF with prefixes from [40]. The changes

to FcorOPRF without prefixes are highlighted using grey boxes .

Note that in both these cases, only the simulator receives the prefix
from the ideal functionality. Therefore, the view of the environment is
unchanged by whether that prefix is output. Furthermore, because no
prefix is ever repeated, each interaction continues to first increase and
decrease the counter.

For the honest server, instead of having the simulator use the dummy
interface to make the server output the prefix ssid, it now instead sends
the prefix as a reply to the SndrComplete message from the ideal
functionality. It still does this at the same point in time (once the first
output message is delivered). This corresponds to the modifications to
cases 7. and 8. in the simulator. We observe that the server’s output is
the same as before because, in both cases, the ideal functionality will
give the server the output ssid once the first output value is available.
Finally, we note that the ok? value of a record will never change in
this game because, for the Eval messages, we choose some fresh ssid,
so we will never have the case that a SndrComplete message will
receive a prefix from the simulator that had been used already in an
Eval message. Therefore, we have

Pr[G9b] = Pr[G9]

2. Game G11’ We replace Game G11 with the following game instead:
For an honest user, instead of the simulator giving it its output via the
dummy interface, the simulator now uses the OnlineEval interface.
To do this, we modify the ideal functionality to no longer pass the
user input x to the simulator. Upon receiving an Eval message, the
simulator now instead chooses some brand new x∗ and uses that to
simulate the user’s role in the ABB protocol. For the prefix, upon
receiving the (Eval, sid, ssid, U, S′) message, the simulator responds
by sending ssid to the ideal functionality.

When receiving those from the ideal functionality, the simulator now
stores records ⟨U, ssid⟩ and ⟨S, ssid⟩. Furthermore, if both the user and
the server for some ssid are honest, the simulator instead directly just
chooses r0, ..., rℓ and sends those as ABB output messages for ssid to
A∗ instead of simulating the entire FABB computation.

Once the adversary has said Deliver for the ℓ output messages:

50

3.4. Correlated OPRF with Prefixes

Legendre OPRF with prefixes

Public Parameters: Prime number p, output length ℓ. Distribution D for FCRS
that returns ℓ many values from Zp chosen uniformly at random.
Function to compute inside FABB for some list L known to both parties:

F
((

x, su
0 , . . . , su

ℓ−1, m0, . . . , mℓ−1
)

,
(
k, ss

0, . . . , ss
ℓ−1
))
→

(ss
0 + su

0)
2 (k + H1(x) + L[0]) + m0, . . . , (ss

ℓ−1 + su
ℓ−1)

2 (k + H1(x) + L[ℓ− 1]) + mℓ−1

Initialisation:
On input (Init, sid): S picks k←$ Zp and stores ⟨sid, k⟩

Server Compromise:
On (Compromise, sid), if there is a record ⟨sid, k⟩ reveal k to A∗

Offline Evaluation:
On (OfflineEval, sid, x), send (Value, sid) to FCRS, and re-
ceive the list L. Then the server retrieves ⟨sid, k⟩ and outputs(

OfflineEval, sid, H2

(
x,
(

H1(x)+k+L[0]
p

)
,
(

H1(x)+k+L[1]
p

)
, . . . ,

(
H1(x)+k+L[ℓ−1]

p

)))
Online Evaluation:

• On (Eval, sid, ssid, S′, x), U Outputs (Prefix, ssid, ssid), U then sends
(Value, sid) to FCRS and receives the list L. U then sends (Init, ssid, Zp)
to FABB. U then samples 2 · ℓ many elements from Zp (su

0 , . . . , su
ℓ−1 and

m0, . . . , mℓ−1). It then sends a sequence of Input commands followed
by a sequence of Add and Multiply commands required to evaluate
the function F with list L to FABB, all including ssid. U then stores
⟨x, ssid, m0 . . . mℓ−1⟩. Finally U sends ℓ many Output messages to FABB.

• On (SndrComplete, sid, ssid′), S sends (Value, sid) to FCRS, and re-
ceives the list L. It then sends (Init, ssid′, Zp) to FABB. S then chooses
ss

0, . . . , ss
ℓ−1 ←$ Zp, retrieves the record ⟨sid, k⟩ and then sends a sequence

of Input commands followed by a sequence of Add and Multiply com-
mands required to evaluate the function F with list L to FABB, all including
ssid′. Finally S sends ℓ many Output messages to FABB.

• Upon receiving the first output from FABB, S outputs (Prefix, ssid, ssid).
• Upon having received ℓ many outputs c0, . . . , cℓ−1 from FABB

for some subsession identifier ssid, U retrieves the stored
⟨x, ssid, m0 . . . mℓ−1⟩, and computes ri = ci − mi. Then U outputs(

Eval, sid, ssid, H2

(
x,
(

r0
p

)
, . . . ,

(
rℓ−1

p

)))
.

Figure 3.5: The Legendre OPRF scheme with prefixes. Changes to the prefix-less version are
marked in grey boxes .

51

3. The Legendre OPRF

Simulator Sim (sid, p, H1, H2)

The simulator obtains as input a session identifier sid indicating which FcorOPRF
instance it communicates with, the public parameters p, as well as the descrip-
tion of the hash functions H1 : {0, 1}∗ → Zp, H2 : {0, 1}∗ × {0, 1}ℓ → {0, 1}ℓ.
By PRFH1

k (x) we mean the sequence of ℓ Legendre symbol evaluations
with key k, value H1(x), and the randomly chosen list L ∈ Zℓ

p. So(
H1(x)+k+L[0]

p

)
, . . . ,

(
H1(x)+k+L[ℓ−1]

p

)
The simulator initially sets Tk ← [] and Tseen ← []. It chooses ℓ many random
values in Zp and stores them in L. //Tk stores the keys we know of, Tseen stores
pairs (x, PRFH1

k (x), k′) for some unknown k. The simulator uses L to simulate
FCRS.

1. On (Init, sid, S) from FcorOPRF, pick k←$ Zp. Set NSim ← [S] and add k to
Tk. From now on when we reference k we mean this key. //Honest server,
so we imitate it.

2. On (Compromise, sid) from A∗, send (Compromise, sid) to FcorOPRF and
send k to A∗. Record that S is compromised.

3. On (Eval, sid, ssid, U, S′) from FcorOPRF, record ⟨U, ssid⟩.
Send ssid to FcorOPRF as U’s prefix.

4. On (SndrComplete, sid, ssid′, S) from FcorOPRF, record ⟨S, ssid′⟩.
5. On messages from user U sending input to FABB, (Init, ssid, F) followed

by a series of Input commands, store all the provided input as z and store
⟨sid, ssid, z, U⟩. //Malicious user’s input to MPC.

6. On messages from P ∈ {S,A∗} sending input to FABB, (Init, ssid, F) fol-
lowed by a series of Input commands: If the input matches the form of
first containing a key k′ and then ℓ many values sS

i , then add k′ to Tk. Store
all the provided inputs as y and store ⟨sid, ssid, y, P⟩. //Malicious server’s
input to MPC.

7. [Both Honest] Upon having stored ⟨U, ssid⟩ and ⟨S, ssid⟩ for
some ssid: Choose ℓ many random elements r0, . . . , rℓ−1 ←$ Zp
and send a series of ℓ many (Output, ssid, ri) messages to A∗.
Once the adversary responds with Deliver to one of them, send ssid to

FcorOPRF as the server’s prefix. If the adversary responds with Deliver

for all of them, send (RcvComplete, sid, ssid, U, S) to FcorOPRF.

52

3.4. Correlated OPRF with Prefixes

8. [Honest Server]: Upon having stored ⟨S, ssid⟩ and ⟨sid, ssid, z, U⟩,
pick ℓ many values sS

0 , . . . , sS
ℓ−1 ←$ Zp and execute the code

of FABB just like FABB would for the user and a server par-
ticipating honestly with key k and random masks sS

0 , . . . , sS
ℓ−1.

Upon receiving Deliver for the first time for an output message, send

ssid to FcorOPRF as the server’s prefix. //That means if the user sends
the correct sequence of commands, compute the MPC function F and
then send the ℓ many output messages to A∗. If the user sends some
other sequence of commands, then just run as far as the execution with
the server would.

9. [Honest User] Upon having stored records ⟨U, ssid⟩ and ⟨sid, ssid, y, P⟩:
Choose a random x ∈ Zp, ℓ masking values m0, . . . , mℓ−1 ←$ Zp and ℓ s
values sU

0 , . . . , sU
ℓ−1 ←$ Zp. Then execute the code of FABB just like FABB

would for P with an user playing honestly with input H1(x) and values
m0, . . . , mℓ−1 and sU

0 , . . . , sU
ℓ−1. If the execution runs successfully, and A∗

says Deliver for all the output messages, then recover the key k∗ that P
used as input in this session and do:

• For each item (x, y, k′) stored in Tseen, if y = PRFH1
k∗ (x), add (k′, x) to

a new list L.
• Send (RcvComplete, sid, ssid, U, k∗, L) to FcorOPRF

10. [Both Malicious] If have stored ⟨sid, ssid, z, U⟩ and ⟨sid, ssid, y, P⟩ execute
the code of FABB just like FABB would for a user participating with inputs
z and a server participating with inputs y.

11. On fresh hash query H1(x): Set H1(x)←$ Zp.

12. On fresh hash query H2(x, y):

• If y = PRFH1
k (x) pick some new and unique ssid and send

(Eval, sid, ssid, S, x) to FcorOPRF, upon receiving the corresponding

Eval message from FcorOPRF send ssid as prefix. Then send
(RcvComplete, sid, ssid,A∗, S, []) to FcorOPRF. If FcorOPRF replies
(Eval, sid, ssid, r) set H2(x, y) ← r, otherwise abort. //Evaluation on
the key we are simulating the server with.

53

3. The Legendre OPRF

• If y = PRFH1
k∗ (x) for some k∗ stored in Tk: For each item (x′, y′, k′)

stored in Tseen if y′ = PRFH1
k∗ (x′) add (k′, x′) to a new list L. Return

the output of (OfflineEval, sid, k∗, x, L). Abort if two such k∗ exist.
//In this case, an evaluation is happening on a value for a key we
already know.

• Otherwise, select some new k∗, add (x, y, k∗) to Tseen,
send (OfflineEval, sid, k∗, x, []) to FcorOPRF and on response
(OfflineEval, sid, r), set H2(x, y)← r

13. On message (Value, sid) intended for FCRS, return L.

Figure 3.4: The simulator that demonstrated that the Legendre OPRF with prefixes UC-realises
FcorOPRF with prefixes. Modifications to the variant without prefixes are given in grey boxes .

• In case the simulator used the key k for the server in the corre-
sponding ssid, then the simulator sends (RcvComplete, sid, ssid,
U, S, []) to the ideal functionality.

• Otherwise, if the server of ssid participated in the protocol with
some key k′ and value s then for all values (x′, y′, k∗) in Tseen, if
y′ = PRFH1

k′ (x), add ([k∗, x′]) to a list L. Send (RcvComplete,
sid, ssid, U, k′, L) to the functionality.

To summarise the three changes

a) The user now receives output from the ideal functionality, no
longer via the dummy interface

b) Simulator now simulates FABB with random input for honest
users. If both parties are honest, then it just uses some random
values as the FABB output

c) Eval messages are now answered with ssid as the prefix.

Let us now discuss what advantage the environment has in distin-
guishing between this and the previous game based on these three
modifications.

a) The user’s output messages are still set in the same way. The pre-
fix is now output via the Eval-prefix interface instead of the dummy
interface, but it is still set to the same value. For the output, due to
how we set the hash values, they corresponded to exactly the values
that the ideal functionality will now directly output to the user. Im-
portant to note here is that with how we set the list L we pass to the
ideal functionality to add our correlations in both G11’ and G10, if the
environment evaluates a hash query H2(x, PRFH1

k′ (x)) in advance, the
simulator will answer that with Fk∗(x), and then include [k∗, x] in L

54

3.4. Correlated OPRF with Prefixes

when a user runs the evaluation with a corrupted server playing with
the key k′.

b) The view of the environment is unchanged by this as well. We note
that the randomly chosen masking values perfectly mask the MPC out-
put values from it. Therefore, if the user is honest, the environment
cannot distinguish between whether the simulated Output messages
from FABB result from an execution where the input used is the actual
user input or some randomly chosen value. Additionally, the environ-
ment cannot tell if the simulator uses randomly chosen values in the
Output messages instead.

c) This is the only modification that may be noticeable for the environ-
ment. In particular, if later in the execution a server uses the same ssid
as a prefix on the SndrComplete message and we then end up in a
situation where the tx value causes a RcvComplete to fail. This can
occur if no RcvComplete is sent for ssid since then the counter would
have been incremented by one in the previous game but not in this
game.

Assume an environment Z exists, which causes this case to occur. We
construct an alternative environment Z ′ that can distinguish between
G10 and G0 and show that the probability of Z causing such a change
to occur is bounded by the probability of Z ′ distinguishing between
the two games.

Z ′ operates as follows: It internally runs Z and forwards all messages
from Z to the corresponding parties and all inputs it receives to Z
while maintaining a counter as is done by the functionality in G11’.
Once Z manages to cause the sending of a RcvComplete that would
be ignored due to the tx value by the ideal functionality of G11’, Z ′
first completes any remaining open sessions by sending Output com-
mands to FABB. It then sends the message that Z sent that caused an
ignored RcvComplete message.

By sending all the Output messages, we can see that any time the
counter was incremented in G10 but not in G11’ (due to the user and
server using the same ssid), we would now have caused all those ses-
sions to complete. Therefore, in G10 the counter would have been
decremented for each of those sessions again, and the counter would
now be equivalent in both cases. If the subsequent request failed in
G11’ then it would also fail in G10. The environment Z ′ can detect if
this occurs as either finishing an evaluation does not output anything
or the simulator aborts, since the two cases in which the simulator of
G10 sends a RcvComplete message to the ideal functionality, are ei-
ther when someone performs a hash query of H2 or when finalising

55

3. The Legendre OPRF

the output for an honest user. Because in G0 no aborts will occur, Z ′
can distinguish between the two games.

Therefore, we conclude that

|Pr[G11
′]− Pr[G10]| ≤ |Pr[G10]− Pr[G0]|

3. The final modification required for the proof is in Game G13. There,
we need to replace any references to FcorOPRF with the variant with
prefixes. So, where before it would have been said that the ideal func-
tionality now operates exactly like FcorOPRF, the proof would now need
to say that it operates exactly like FcorOPRF with prefixes. The rest re-
mains the same.

We observe that with the above modifications, the remaining game-hops
remain valid. Therefore, we conclude the proof. □

With that, we have shown how the Legendre OPRF can be utilised as part
of OPAQUE in place of two-hash Diffie Hellman.

3.5 Higher-Power Residue OPRF

One method of increasing the efficiency of schemes that rely on the Legen-
dre symbol is to use higher-power residues instead, as introduced in Sec-
tion 2.2.3. Using the a-th power residue, each element now provides us with
log2(a) many output bits instead of 1 when using the Legendre symbol.
This reduces the amount of exchanged data at the cost of increased local
computation.

We now discuss the modifications that need to be made to our scheme if the
generalised power residue is used in place of the Legendre symbol.

1. Wherever we evaluated the Legendre symbol, we now use the a-th
power power residue instead.

2. Instead of the decisional SLS assumption, we now need a variant for
the higher-power residue. I.e. that for some unknown k, an oracle
that returns La

p(x + k) is indistinguishable from an oracle that returns
random values in {0, . . . , a− 1}.

3. Instead of using s2 as a masking value, we now instead utilise sa

4. We can adjust Theorem 3.2, to consider the a-th power residue. Since
Lemma 2.3 also applies to higher-power residues, we then get the fol-
lowing requirement for the value c

c ≥ 2.5
log2(

a·p
p+a
√

p+2·a)

56

3.5. Higher-Power Residue OPRF

This means that if we, for example, have a 128-bit prime and a = 128
then we can use ℓ = 46 instead of 321, or if we have a 256-bit prime
and a = 256 then we can use ℓ = 81 instead of 641.

We present the Power Residue OPRF in Fig. 3.5. We recall that for a = 2 we
recover the Legendre OPRF, so when we mention the Higher-Power Residue
OPRF, we are considering the cases where a is greater than two. The Power
Residue OPRF arises from applying the above-discussed modifications to
the Legendre OPRF. For the sake of brevity, we will not include the full secu-
rity proof of the scheme, but we observe that with the above steps, it works
completely analogously to the security proof for the Legendre OPRF. We
will consider using both the Legendre symbol and higher-power residues in
our benchmarks. The main performance trade-off will be the fact that we
require fewer elements when using a larger a, resulting in reduced band-
width requirements, but needing more communication rounds to compute
the masking values sa, which requires log2(a) communication rounds. Fi-
nally, we also note that the extension to an OPRF with prefixes works com-
pletely analogously to the Legendre OPRF.

57

3. The Legendre OPRF

Power Residue OPRF

Public Parameters: Prime number p, output length ℓ. Power residue being used a.
Distribution D for FCRS that returns ℓ many values from Zp chosen uniformly
at random.
Function to compute inside FABB for some list L known to both parties:

F
((

x, su
0 , . . . , su

ℓ−1, m0, . . . , mℓ−1
)

,
(
k, ss

0, . . . , ss
ℓ−1
))
→

(ss
0 + su

0)
a (k + H1(x) + L[0]) + m0, . . . , (ss

ℓ−1 + su
ℓ−1)

a (k + H1(x) + L[ℓ− 1]) + mℓ−1

Initialisation:
On input (Init, sid): S picks k←$ Zp and stores ⟨sid, k⟩

Server Compromise:
On (Compromise, sid), if there is a record ⟨sid, k⟩ reveal k to A∗

Offline Evaluation:
On (OfflineEval, sid, x), send (Value, sid) to FCRS, and re-
ceive the list L. Then the server retrieves ⟨sid, k⟩ and outputs(

OfflineEval, sid, H2

(
x,La

p(H1(x) + k + L[0]), . . . ,La
p(H1(x) + k + L[ℓ− 1])

))
Online Evaluation:

• On (Eval, sid, ssid, S′, x), U sends (Value, sid) to FCRS and receives the
list L. U then sends (Init, ssid, Zp) to FABB. U then samples 2 · ℓ many
elements from Zp (su

0 , . . . , su
ℓ−1 and m0, . . . , mℓ−1). It then sends a sequence

of Input commands followed by a sequence of Add and Multiply com-
mands required to evaluate F with list L to FABB, all including ssid. U then
stores ⟨x, ssid, m0 . . . mℓ−1⟩. Finally U sends ℓ many Output messages to
FABB.

• On (SndrComplete, sid, ssid′), S sends (Value, sid) to FCRS, and re-
ceives the list L. It then sends (Init, ssid′, Zp) to FABB. S then chooses
ss

0, . . . , ss
ℓ−1 ←$ Zp, retrieves the record ⟨sid, k⟩ and then sends a sequence

of Input commands followed by a sequence of Add and Multiply com-
mands required to evaluate F with list L to FABB, all including ssid′. Fi-
nally S sends ℓ many Output messages to FABB.

• Upon having received ℓ many outputs c0, . . . , cℓ−1 from FABB
for some subsession identifier ssid, U retrieves the stored
⟨x, ssid, m0 . . . mℓ−1⟩, and computes ri = ci − mi. Then U outputs(

Eval, sid, ssid, H2

(
x,La

p(r0), . . . ,La
p(rℓ−1)

))
.

Figure 3.5: The Power Residue OPRF, which arises from generalising the Legendre symbols to
higher powers.

58

Chapter 4

Alternative Uses of Correlated OPRFs

While we have shown that the Legendre OPRF fulfils the security notion
FcorOPRF, it remains an open question what further applications this secu-
rity notion may have. Jarecki, Krawczyk, and Xu [40] provided brief argu-
ments for why certain previous constructions for Device-enhanced PAKE,
a variant of OPAQUE with outsourced envelope, and threshold OPRFs are
not UC secure when a correlated OPRF is used in place of an OPRF. Here,
we formally investigate the security of an OPRF-based construction for a
Password-Protected Secret Sharing (PPSS) protocol when it is initialised
with a correlated OPRF.

4.1 Password-Protected Secret Sharing based on Cor-
related OPRF

We consider the scheme introduced by Jarecki et al. [36], which enables a
user, using some password, to share a secret among n servers such that the
compromise of any t of them leaks no information about the secret or the
password. Knowing the password, it is then possible to recover the same
secret by communicating with t + 1 such servers. This scheme uses a UC
secure OPRF and we will show that if this is replaced by a correlated OPRF,
the PPSS scheme is no longer UC secure.

First, in Fig. 4.1 we present the ideal functionality for password-protected se-
cret sharing taken from [36]. We slightly modify it to better fit how FcorOPRF
works, as the OPRF functionality that FcorOPRF is based on is a modification
of the one used originally for the PPSS scheme. In particular, we now as-
sume that the server inputs (SInit and SRec messages) are given as inputs
to the servers, which then pass them along to the ideal functionality. In the
original functionality, the adversary sent these to the ideal functionality and
they were then sent as messages to the servers. The proof below works anal-

59

4. Alternative Uses of Correlated OPRFs

ogously for the original definition, as either the environment determines the
number of such messages sent or learns how many such messages are sent.
Additionally, the sid the servers now receive includes some index i, which
denotes their identity.

Effectively, there are three interfaces to the ideal functionality. Using some
password, the Initialisation interface allows a user to obtain a random secret
value by secret sharing it between a set SI of n servers. This requires all
the servers to participate in the session as well (by sending their SInit mes-
sages). Upon completion, the user receives the secret value K.
If, at a later point in time, someone with the same password wants to recover
K, they can use the Reconstruction interface. For this, a subset of t+1 servers
SR is specified. All those servers again need to participate in the proto-
col, this time by sending a corresponding SRec message, which causes the
counter for that server to be incremented. The adversary can then complete
the evaluation. In case all the t + 1 servers are corrupted (i.e., members of
CorrSrv) then the adversary can choose a K∗ and pw so that if the user uses
the password pw it receives the output K∗. Otherwise, if the user uses the
correct password, the adversary can either let the session work or, if at least
one of the t + 1 servers is corrupted, can make the recovery fail.

The final interface allows the adversary to perform a Password Test, which
lets the adversary test if a specific password was used in a session. This
requires the adversary to decrement at least t + 1 counters of servers in the
session though, so if less than t + 1 servers are corrupted the adversary only
has a limited amount of times it can test passwords.

The counters in this scheme serve a similar purpose to the counters in the
OPRF functionalities. They ensure that the number of completed sessions a
server is part of is bounded by the number of times the server participated
in the protocol.

Finally, in Fig. 4.2 we present the scheme shown to be secure when ini-
tialised with an OPRF [36], initialised with a correlated OPRF. Again, we
make the required modifications for the differences between the two OPRF
functionalities, in particular with FcorOPRF for any sid we now have only a
single server, we have subsession identifiers, and it is now the server that
sends the SndrComplete message. The idea of the scheme is that to hide
a secret, the user evaluates the OPRF with all the servers using the input
password and then uses the outputs to mask the secret shares. Those secret
shares are then stored on all the servers.
To recover the secret, the user just needs to recover t+ 1 secret shares, which
can be done by communicating with t + 1 servers, unmasking those shares,
and then recovering the entire secret. An additional commitment value is
used and stored on all the servers to make sure that a single malicious server
cannot just change one of the secret shares and then make the recovery out-

60

4.1. Password-Protected Secret Sharing based on Correlated OPRF

Functionality FPPSS

Initialise tested(pw) to ∅ and tx(S) to 0 for all S.

Initialisation:
• Upon receiving (Init, sid,SI , pw) for |SI| = n from U, record
⟨Init, sid,SI , pw⟩ and send (Init, U, sid,SI) to A∗. (Ignore other Init

commands.) Pick K ← {0, 1}ℓ, and if |SI ∩CorrSrv| ≥ t + 1 then send (K,
pw) to A∗.

• Upon receiving (SInit, (sid, i)) from S, if record ⟨Init, U, sid,SI , pw⟩ ex-
ists and S ∈ SI then mark S as active and send (SInit, (sid, i), S) to A∗.

• Upon receiving (UInit, sid) from A∗, if record ⟨Init, U, sid,SI , pw⟩
exists and all servers in SI are marked active then add K to
⟨Init, U, sid,SI , pw⟩ and send (UInit, sid, K) to U

Reconstruction:
• Upon receiving (Rec, sid, ssid,SR, pw′) for |SR| = t + 1

from U′, retrieve record ⟨Init, U, sid,SI , pw, K⟩, record
⟨Rec, U′, sid, ssid,SI ,SR, pw, pw’⟩, and send (Rec, U′, sid, ssid,SR)
to A∗. Ignore future Rec commands involving the same ssid.

• Upon receiving (SRec, (sid, i), ssid) from S, if S is marked active then
increment tx(S) and send (SRec, (sid, i), ssid, S) to A∗.

• Upon receiving (URec, sid, ssid,SC, flag, pw∗, K∗) for |SC| = t + 1 from
A∗, if a record ⟨Rec, U′, sid, ssid,SI ,SR, pw, pw′, K⟩ exists s.t. SR \
CorrSrv ⊆ SC and tx(S) > 0 for all S in SC then decrement tx(S) for
all such S and send (URec, sid, ssid, Res) to U′ where Res is:

– K if (pw’=pw) ∧(SR ⊂ SI) ∧ [(flag = 1) ∨ (SR ∩CorrSrv = ∅)]
– K∗ if (pw’=pw∗) ∧ (SC ⊆ CorrSrv) ∧ (flag = 2)
– Fail otherwise.

Password Test:
• Upon receiving (TestPwd, sid, Si, pw∗) from A∗, if tx(Si) > 0 then

set tested(pw∗) := tested(pw∗) ∪ {Si} and decrement tx(Si). Retrieve
⟨Init, U,SI , pw, K⟩, and if |SI ∩ (tested(pw∗) ∪CorrSrv)| ≥ t + 1, then
return K to A∗ if pw∗ = pw, else return Fail.

Figure 4.1: Ideal (t, n)-Threshold Password-Protected Secret Sharing Functionality [36].

61

4. Alternative Uses of Correlated OPRFs

put some different key.

There is one further difference in the OPRF functionalities. The correlated
OPRF functionality FcorOPRF does not utilise authenticated channels, which
results in the fact that in the RcvComplete message, the adversary can influ-
ence the return value even if the server is honest. In the following, though,
we will not use that and only specify some S∗ ̸= S in our RcvComplete

messages for corrupted servers. Therefore, the following proof would work
completely analogously for a variant of the correlated OPRF functionality
where the adversary can only influence the output of sessions occurring
with a malicious server.

Theorem 4.1 Security of PPSS scheme with correlated OPRF. The OPRF-based
Password-Protected Secret Sharing scheme introduced in [36] and presented in
Fig. 4.2 is no longer secure in the UC framework when the OPRF is replaced by
a correlated OPRF.

Proof The key idea is that if one of the servers correlates Fi and Fj on some
value x and then uses Fi when the user initialises/stores their secret on
the servers and Fj in a later evaluation with the same user, the simulator
would need to be able to know if the user uses password x as input or
not to simulate this case correctly. If the user input is x, then the later
evaluation/retrieval by the user will work as intended, whereas if the user
input is not x then this will fail with high probability. What then remains to
be shown is that the simulator does not have a way to test whether the user
input is x in the constructed case.

We present an environment Z that will, with high probability, be able to
distinguish between the real and simulated world for all efficient simulators
when the threshold t is greater than one. Z works as follows for some set of
n servers SI . Assume one of these servers S∗ is compromised and all others
are honest, and there is some honest user U. With ℓ we denote the length of
the secret or key, which is protected by the PPSS scheme.

• Send (SInit, (sid, i)) messages as input to all the servers, where the
value of i is set to be the position of the server in SI . Make the
malicious server S∗ participate in the protocol normally.

• Send (Init, sid,SI , x0) for some randomly chosen x0 as input to U.
• Send (RcvComplete, (sid, i), ssidi, U, Si, []) to all the OPRF sessions,

where ssidi comes from the Eval message outputs. The only excep-
tion is for S∗ where we replace Si by some randomly chosen FcorOPRF
table label F.

• Wait for output (UInit, sid, K) from U. If no such output occurs, return
1 and abort (simulated world).

• Choose some x1 ̸= x0 uniformly at random and some unique ssid.

62

4.1. Password-Protected Secret Sharing based on Correlated OPRF

Password-Protected Secret Sharing scheme

Public Parameters: Security parameter ℓ, threshold parameters t, n ∈ N, t ≤ n,
field F := GF(2ℓ), instance of commitment scheme COM, hash function H with
range {0, 1}2ℓ.
Init for user U:

1. On input (Init, sid, {S1, . . . , Sn}, pw), pick s←$ F and parse H(s) as [r||K].
2. Generate (s1, . . . , sn) as a (t, n) Shamir’s secret-sharing of s over F and set

s := (s1, . . . , sn).
3. Send (Eval, (sid, i), ssid, Si, pw) to FcorOPRF where ssid is some uniquely

chosen subsession identifier, and wait for response (Eval, (sid, i), ssid, pi)
for all i ∈ [n].

4. Compute ei := si ⊕ pi for i ∈ [n], set e := (e1, . . . , en) and compute C :=
COM ((pw, e, s); r).

5. Set ω := (e, C) and send (Send, (sid, i, 0), Si, ω) to FAUTH for i ∈ [n].
6. If FAUTH returns (Sent, (sid, i, 1), Si, U, ack) for all i ∈ [n], output

(UInit, sid, K).
Init for server S:

1. On input (SInit, (sid, i)), create a record ⟨sid, i⟩, send (Init, (sid, i)) to
FcorOPRF, followed by (SndrComplete, (sid, i), ssid) for some uniquely
chosen subsession identifier ssid.

2. On message (Sent, (sid, i, 0), U, S, ω) from FAUTH for some existing record
⟨sid, i⟩, append ω to the record and send (Send, (sid, i, 1), U, ack) to
FAUTH.

Rec for user U:
1. On input (Rec, sid, ssid,SR, pw′), send (Eval, (sid, j), ssid, S′j, pw′) to
FcorOPRF for all S′j ∈ SR

2. If FcorOPRF returns
(
Eval, (sid, j), ssid, σj

)
and FAUTH returns(

Sent, (sid, ssid, j, 1), S′j, U, (ij, ωj)
)

for all S′j ∈ SR, then if ij1 = ij2

or if ωj1 ̸= ωj2 for any j1 ̸= j2 then output (URec, sid, ssid, Fail) and stop.
Otherwise set p′ij

:= σj for all j and set I := {ij}.
3. Parse any ωj as (e′, C′), parse e′ as (e′1, . . . , e′n), and set s′i := e′i ⊕ p′i for all

i ∈ I.
4. Recover s′ and the shares s′i for i /∈ I by interpolating points (i, s′i) for i ∈ I.
5. Set s′ = (s′1, . . . , s′n), parse H(s′) as [r′||K′], and output

(URec, sid, ssid, Res) for Res = K′ if C′ = COM((pw′, e′, s′); r′) and
Res = Fail otherwise.

Rec for server S:
1. On input (SRec, (sid, i), ssid), send (SndrComplete, (sid, i), ssid)

to FcorOPRF. If hold a record ⟨sid, i, ω⟩ then send
(Send, (sid, ssid, i, 1), U, (i, ω)) to FAUTH.

Figure 4.2: The Password-Protected Secret Sharing scheme from [36], initialised with a corre-
lated OPRF.

63

4. Alternative Uses of Correlated OPRFs

• Send (Rec, sid, ssid,SR, x0) to U, causing U to start the reconstruction
phase. SR consists of t honest servers and the corrupted server Si.

• For all servers in SR other than S∗, send them a (SRec, (sid, i), ssid)
message to make them send SndrComplete to the correlated OPRF.
Then send RcvComplete messages to FcorOPRF. For S∗ instead send
SndrComplete as for the others, and then for the RcvComplete mes-
sage send (RcvComplete, sid, ssid, U, F∗, [F, xb]) for b a bit chosen uni-
formly at random and F∗ chosen arbitrarily such that F∗ ̸= F.

• If the user does not output anything, then output 1 (simulated world).
• If b = 0 and the user outputs some value K, then output 0 (real world).
• If b = 1 and the user outputs Fail, then output 0 (real world).
• Else: Output 1 (simulated world).

First, let us analyse what occurs in the execution with the real world using
this environment.
In the real world, the protocol will run to completion. The user will output
(UInit, sid, K) in the first phase. The second phase will work successfully
in case b = 0 because all the OPRF output values sent to the user will be
the same as in the initialisation. Therefore, the user will output some value
K. On the other hand, if b = 1 then, with probability 1− 1/2ℓ, the user will
return Fail as the restored s will be different, causing the commitment to
change.

Therefore, the simulator must simulate things such that the user’s output
is set analogously in the simulated world. Let us analyse what information
the simulator can learn about the value of x0 in the execution. From the
initialisation phase, since only one server is compromised and we assume t
is greater than one, all the simulator learns is that the Init takes place, but
nothing further about the value x0. Similarly, in the reconstruction phase,
the simulator does not learn any further information about the value x0.

The only opportunity the simulator has for performing a check on the con-
tent of the value of x0 is by using the TestPwd interface. We observe that the
only way for the simulator to do this is by causing the counter in t honest
servers to be decremented. However, the environment can ensure that these
counters are only incremented t times in total (once for each of the t honest
servers) by only sending the above sequence of messages and nothing else.
We know these same counters need to be decremented t times for the user to
receive its output. Therefore, the simulator cannot make use of this interface
in the above case, as otherwise, the counters would have been decremented
beyond 0 leading to no output.

The idea of the proof now lies in the fact that since the simulator cannot
learn any information about x0, it can only guess what the value of b is
because without knowing what x0 is, it cannot distinguish between x0 and
x1. Therefore, the simulator needs to guess with probability 1/2 if it wants

64

4.1. Password-Protected Secret Sharing based on Correlated OPRF

the user to output K or Fail.

Let us now analyse the advantage of the environment. In the real world, it
will always output 0 except if the two OPRF tables are equal on the value
x0 by pure chance, which occurs with probability 1/2ℓ. In the ideal world,
the environment will correctly identify that it is in the ideal world with
probability at least 1/2. Therefore, the advantage of the environment is
1− 1

2ℓ −
1
2 , which is non-negligible for ℓ > 1. □

65

Chapter 5

Performance

5.1 Overview

To benchmark our OPRFs’ efficiency, we implement them using the MP-
SPDZ framework [43]. This allows us to run the OPRFs with the UC secure
Mascot MPC protocol [44] and measure their concrete performance. The
Mascot MPC protocol provides security in the presence of malicious adver-
saries, although only with static corruptions. We also note that this library
does not offer any security guarantees in regard to quantum adversaries, so
the results should be taken with a grain of salt. However, since the security
of the Mascot protocol is based on oblivious transfer and symmetric primi-
tives, it is possible to instantiate it based on post-quantum hardness assump-
tions. While certain post-quantum MPC libraries exist, to our knowledge,
none offer security in the malicious model or include security proofs in the
UC framework [13], which is why we use the MP-SPDZ framework for our
implementation. Another advantage of this framework is that it allows us
to benchmark our OPRFs with different underlying MPC protocols. Thus,
we will also consider the performance of our schemes in a semi-honest en-
vironment. This means both parties are expected to execute the protocol as
specified, and the MPC protocol ensures that they do not learn any informa-
tion they should not have during the evaluation [31]. We will use both the
Semi and Hemi MPC protocols for this setting. Semi is a variant of Mascot
where the parts required for malicious security are removed [43]. Similarly,
Hemi denotes a modified version of LowGear [45], where again, the parts
required for malicious security are removed [43].

Our implementations are available on GitHub.1.

Phases Many MPC protocols, including Mascot, can be split into two phases,
an offline (also commonly called preprocessing) phase and an online phase.

1https://github.com/lucasdodgson/MP-SPDZ

67

https://github.com/lucasdodgson/MP-SPDZ

5. Performance

The offline phase can occur between the parties before either of the parties’
input is known and generates values, which are then used, in combination
with the parties’ input, in the online phase. In general, the offline phase
is much more expensive, in computation and required communication, than
the online phase. Thus, for our comparison, we will consider the cost of only
the online phase and the combined cost of both the offline and online phases.
Furthermore, we note that for the offline phase, there are hyperparameters
which have a noticeable effect on the performance. We will focus mainly on
the batch size, which specifies how much preprocessing data is generated in
a round of communication. Using a large batch size reduces the number of
communication rounds but may require more data to be exchanged between
the two parties. Therefore, we consider a variety of potential batch sizes for
the evaluation, except for the Hemi MPC protocol where the batch size does
not have any influence.

Security Parameters We perform our evaluations using a 128-bit prime,
which offers 64 bits of security, and a 256-bit prime, which offers 128 bits of
computational security. In both cases, the MPC library provides 64 bits of
statistical security. Note that if in a table we have a column called prime the
entries of this column will be the bit-length of the prime, not the value of
the prime itself.

Performance Metrics To evaluate the performance of our OPRFs, we mea-
sure and report the amount of bandwidth that needs to be sent between the
two parties, the number of communication rounds, as well as the amount
of time an execution takes in a simulated WAN environment. The timing
measurements are taken with both parties running on the same host, with
the tc command being used to add a latency of 100ms and a bandwidth lim-
itation of 50 megabits per second. The machine used to run both parties has
an Intel i7-1185G7 @ 3.00 GHz × 8 CPU and 32 GB of RAM. We also verify
that certain configurations have a significantly smaller RAM requirement.
Finally, we also include the performance of our schemes when ten evalua-
tions are performed in parallel to analyse what performance benefits can be
gained in those cases. We round all our values to at least two decimal digits.

One final comment is regarding what exactly we denote by “rounds”. In
this case, we mean the number of concrete rounds the protocol implemen-
tation requires for the execution. This depends strongly on the underlying
MPC protocol and the concrete implementation. An alternative approach
would be to analyse only the number of actual MPC protocol calls that re-
quire communication, each of which the implementation may use multiple
rounds for. In our case, that would be four rounds for the online phases of
our OPRFs. Another reason to be cautious with the reported rounds is that,
in some cases, the number of reported rounds does not correspond to the

68

5.2. Legendre OPRF

Protocol Performance – Rounds, Data (MB)

1 parallel 10 parallel 100 parallel

Legendre OPRF, batch size 65 290, 28.33 2352, 273.34 22982, 2726.18
Legendre OPRF, batch size 185 158, 36.63 872, 276.36 8134, 2721.86
Legendre OPRF, batch size 325 114, 38.82 518, 274.26 4650, 2716.51
Legendre OPRF, batch size 645 92, 51.71 290, 278.56 2374, 2718.83
Legendre OPRF, batch size 1285 92, 102.85 180, 303.71 1226, 2746.79
Legendre OPRF, batch size 3250 92, 259.86 114, 387.05 518, 2738.21
Legendre OPRF, batch size 6500 92, 519.56 92, 520.15 290, 2804.57
Legendre OPRF, online phase 14, 0.067 14, 0.668 14, 6.68
Legendre OPRF improved, online phase 14, 0.031 14, 0.309 14, 3.085

Table 5.1: Bandwidth and communication rounds requirements of the Legendre OPRF using
the Mascot MPC protocol and a 128-bit prime.

number of sequential communication rounds. For example, a protocol with
44 rounds of communication, which for a network delay of 100ms means
the evaluation should take at least 4.4 seconds to run, may run in under 4.4
seconds. This comes from the fact that certain rounds can take place in par-
allel. Nevertheless, the reported rounds still provide a decent approximation
of the number of sequential rounds.

5.2 Legendre OPRF

In the following, the scheme denoted as “Legendre OPRF” functions exactly
like the scheme we presented and proved secure in Chapter 3. We note
that if we only measure the online phase, we can improve the performance
by performing certain computations in the preprocessing phase. In partic-
ular, the multiplicative masking values, s2, and the user’s output masking
values are independent of the parties’ actual inputs. They thus can be gen-
erated and squared as part of the preprocessing phase.2 Therefore, we also
implement a variation of the Legendre OPRF, denoted as “Legendre OPRF
improved” where this is done. For the online phase results, we will include
both variants’ performance.

5.2.1 128-bit prime

First, we consider the case where we have a 128-bit prime and use an evalu-
ation length of 321. In Table 5.1 we present the number of rounds required
for the evaluation and the required bandwidth in megabytes, considering
the cases where 1, 10, and 100 parallel evaluations are taking place.

2FABB does not differentiate between the online and offline phases and therefore does
not support any interfaces for modelling such behaviour as part of the UC-proof.

69

5. Performance

Protocol Time (s)

1 parallel 10 parallel

Legendre OPRF, batch size 65 33.68± 0.01 268.90± 0.86
Legendre OPRF, batch size 185 18.88± 0.04 119.70± 0.03
Legendre OPRF, batch size 325 15.49± 0.00 88.21± 0.02
Legendre OPRF, batch size 645 16.37± 0.01 70.95± 0.03
Legendre OPRF, batch size 1285 25.50± 0.01 68.02± 0.03
Legendre OPRF, batch size 3250 53.02± 0.03 76.97± 0.04
Legendre OPRF, batch size 6500 98.67± 0.21 98.15± 0.05
Legendre OPRF, online phase only 1.61± 0.01 2.42± 0.01
Legendre OPRF improved, online phase only 1.41± 0.00 1.85± 0.00

Table 5.2: Runtime of the Legendre OPRF in a simulated WAN setting, evaluated using the
Mascot MPC protocol and a 128-bit prime.

Furthermore, in Table 5.2 we include the running times for the protocol in
our simulated WAN environment. The reported value is the mean measure-
ment over 100 executions. For this, we consider only the case where we run
1 or 10 sessions in parallel.

When we measure the cost of both the online and offline phases, we observe
that at least 92 rounds of communication and over 28MB of bandwidth are
required. From the timing information, we can see that for a single eval-
uation, the batch size of 325 is optimal, with the protocol requiring under
16 seconds for the evaluation. When we consider the case where we do ten
evaluations in parallel, the best performing of the evaluated batch sizes is
1285, with the required time being just under 68 seconds.

When evaluating multiple values in parallel, the evaluation time, number of
rounds, and bandwidth grow at a lower rate than the number of evaluations
being performed. For example, the required time to evaluate ten elements
only takes around 4.4 times as long as to evaluate a single element. We
attribute this to the fact that some constant overheads remain the same if
1, 10 or 100 functions are being evaluated and because the rounds can take
place simultaneously.

If we consider only the cost of the online phase, we observe that our band-
width requirement drops to 67KB, and the required number of communi-
cation rounds is now only 14 for all considered evaluations. Furthermore,
this yields a drastically reduced execution time and the cost increase from
parallel evaluations is even smaller. The improved variant further reduces
the bandwidth requirements by a factor of over two.

70

5.2. Legendre OPRF

Protocol Performance – Rounds, Data (MB)

1 parallel 10 parallel 100 parallel
Legendre OPRF, batch size 65 518, 203.20 4650, 2012.58 45836, 20043.6
Legendre OPRF, batch size 185 224, 216.55 1682, 2028.29 16140, 20020.5
Legendre OPRF, batch size 325 158, 240.15 982, 2027.86 9924, 20044.5
Legendre OPRF, batch size 645 114, 291.10 518, 2011.86 4672, 20025.3
Legendre OPRF, batch size 1285 92, 395.22 290, 2056.50 2374, 20037.9
Legendre OPRF, batch size 3250 92, 999.00 158, 2399.84 982, 20270.2
Legendre OPRF, batch size 6500 92, 1997.61 114, 2932.28 518, 20269.7
Legendre OPRF, online phase 14, 0.267 14, 2.667 14, 26.67
Legendre OPRF improved, online phase 14, 0.124 14, 1.23 14, 12.31

Table 5.3: Bandwidth and communication rounds requirements of the Legendre OPRF using
the Mascot MPC protocol and a 256-bit prime.

5.2.2 256-bit prime

Using a 256-bit prime, our scheme has 128-bit computational security, for
which we use an evaluation length of 641. Intuitively, the bandwidth re-
quirements should increase by approximately four when compared to using
a 128-bit prime. This is because the evaluation length increases by a factor of
two, and all the elements are twice the size. As we can see in Table 5.3 this
is approximately the increase we observe. The increase is smaller when we
use a large batch size because we already generate enough preprocessing to
cover parts of the increased evaluation length. When we consider the online
phase only, we again observe an increase in bandwidth by a factor close to
four while the number of required rounds remains the same. In Table 5.4
we can see the runtimes in the simulated WAN environment. The change in
runtime is much harder to predict since it depends on whether the number
of rounds or the bandwidth contributed a more significant part to the run-
times. For example, if we are measuring only the online phase, we can see
that for a single evaluation, there is almost no increase. In contrast, there is
a significantly more substantial increase for other configurations.

5.2.3 Semi-honest security

As already stated, the weaker security notion of semi-honest security also
suffices for some use cases. Hence, it is of interest to also know the perfor-
mance of the OPRFs in that setting. Here, we limit ourselves to considering
the replacement of Mascot by a semi-honest OPRF protocol. We note that a
more thorough treatment of semi-honest security would also revisit specific
aspects of the security proof to optimise the scheme further. In particular,
we recall that the evaluation length is larger than the number of output bits
because we needed to show that a malicious server cannot find two keys
for which the output is equal. This is no longer required in the semi-honest
setting, so a shorter evaluation length would also suffice. For example, for

71

5. Performance

Protocol Time (s)

1 parallel 10 parallel

Legendre OPRF, batch size 65 76.93± 0.02 722.12± 0.02
Legendre OPRF, batch size 185 55.17± 0.01 485.86± 0.03
Legendre OPRF, batch size 325 53.91± 0.03 425.47± 0.07
Legendre OPRF, batch size 645 59.84± 0.03 395.22± 0.09
Legendre OPRF, batch size 1285 75.52± 0.04 375.99± 0.13
Legendre OPRF, batch size 3250 178.68± 0.11 418.28± 0.17
Legendre OPRF, batch size 6500 349.02± 0.22 506.63± 0.25
Legendre OPRF, online phase 1.64± 0.01 3.39± 0.00
Legendre OPRF improved, online phase 1.42± 0.00 2.25± 0.01

Table 5.4: Runtime of the Legendre OPRF in a simulated WAN setting, evaluated using the
Mascot MPC protocol and a 256-bit prime.

Prime All Phases Protocol Batch Size Rounds Data (MB) Time (s)

128 ✓ Semi 645 44 4.09 3.14± 0.00
128 ✓ Hemi — 15 3.22 3.56± 0.02
256 ✓ Semi 1285 44 26.60 7.29± 0.00
256 ✓ Hemi — 15 10.71 5.79± 0.01
128 ✗ Semi — 3 0.03 0.21± 0.00
128 ✗ Hemi — 3 0.03 0.21± 0.00
256 ✗ Semi — 3 0.12 0.22± 0.00
256 ✗ Hemi — 3 0.12 0.22± 0.00

Table 5.5: Best performing variants of the Legendre OPRF in the semi-honest model. All phases
indicates whether the measurements are for all the phases or only the online phase.

a 256-bit prime, we believe one could also use an evaluation length of 256
instead of 641. Nevertheless, we leave this to potential future works.

For the complete benchmark results in the semi-honest model, we refer to
Appendix A.1.1. In Table 5.5, we present the best-performing variants for
both the Hemi and Semi MPC protocols. We recall here that the batch size
did not affect the performance of the Hemi MPC protocol. We can see that
the online performance for both MPC protocols is almost the same, requiring
0.12MB of communication for 256-bit primes with three rounds of commu-
nication taking around 0.22 seconds.3 In case we consider both the online
and offline costs, we can see that for a 128-bit prime, the protocol can run
in just over 3 seconds and for a 256-bit prime in 5.8 seconds. For a 128-bit
prime, we can see that while Hemi has both lower bandwidth and round re-

3Note that this is the performance of the improved variant. An additional round of
communication can be saved because the s2 values are available from the beginning.

72

5.3. Higher-Power Residue OPRF

quirements, its execution takes longer than Semi, while for a 256-bit prime,
its execution is faster. This, we attribute to certain constant overheads with
Hemi that are larger than they are for Semi. In both cases, the Legendre
OPRF can gain significant performance improvements by changing the un-
derlying MPC protocol if the stronger property of malicious security is not
required.

5.3 Higher-Power Residue OPRF

As introduced in Section 3.5, the generalisation of the Legendre symbol
to higher-power residues can also be used as an OPRF. This results in a
reduced evaluation length ℓ, reducing the amount of data that needs to be
communicated. The downside is that using the a-th power residue requires
us to compute sa instead of s2, which increases the number of required
rounds of communication. Here, we consider the powers of two between
four and 256 as values for a.

For the online phase benchmarks, similarly to s2, the computation of sa could
be done as part of the offline phase. Unfortunately, the used library does not
directly support this, so we perform that computation as part of the online
phase.

While the full results can be found in Appendix A.1.2, we present here the
results of the optimal configurations in terms of the required time for the
various powers and a single parallel session. One thing that is important to
note is that for the timing estimate, we now use the mean of 5 runs instead
of 100 as was done previously. This is due to the increased number of
parameters we test with the Power Residue OPRF.

When considering malicious security, the results for the online and offline
phases can be seen in Table 5.6. As expected, the amount of data that needs
to be sent is reduced compared to the Legendre OPRF at the cost of in-
creased communication rounds. Nevertheless, there is a noticeable perfor-
mance benefit, with the optimal time being reduced from around 54s to
under 38 for a 256-bit prime.

The performance of just the online phase can be seen in Table 5.7. For the
online phase, the increased rounds have a more significant effect than the
reduced data requirements, leading to an overall slower evaluation than the
Legendre OPRF. We expect that if the computation of the masking values
sa is performed as part of the offline phase, then the Power Residue OPRF
would also offer an advantage compared to the Legendre OPRF for this case.
However, this advantage would only be minor because the amount of data
that needs to be sent for this configuration is already very small, with the
communication rounds presenting the most significant performance bottle-
neck.

73

5. Performance

Prime Power Residue Batch Size Rounds Data (MB) Time (s)

128 4 250 115 29.88 14.72± 0.03
128 8 450 94 36.10 14.17± 0.01
128 16 450 95 36.10 14.18± 0.01
128 32 450 96 36.09 14.32± 0.01
128 64 450 97 36.09 14.38± 0.01
128 128 185 120 22.14 13.83± 0.03
128 256 185 121 22.14 13.86± 0.00
256 4 250 159 184.74 44.81± 0.04
256 8 250 160 184.71 44.79± 0.05
256 16 185 183 163.31 42.87± 0.03
256 32 185 184 163.30 43.12± 0.04
256 64 250 141 148.80 37.77± 0.05
256 128 185 164 136.74 37.63± 0.03
256 256 185 165 136.73 37.64± 0.02

Table 5.6: Evaluation of the Power Residue OPRF with the Mascot MPC protocol when mea-
suring all phases.

Prime Power Residue Rounds Data (MB) Time (s)

128 4 15 0.03 1.63± 0.02
128 8 16 0.02 1.65± 0.09
128 16 17 0.02 1.87± 0.14
128 32 18 0.02 1.86± 0.05
128 64 19 0.02 2.09± 0.01
128 128 20 0.02 2.1± 0.07
128 256 21 0.02 2.38± 0.07
256 4 15 0.10 1.64± 0.00
256 8 16 0.10 1.64± 0.00
256 16 17 0.09 1.86± 0.00
256 32 18 0.09 1.88± 0.00
256 64 19 0.09 2.12± 0.01
256 128 20 0.09 2.21± 0.01
256 256 21 0.09 2.51± 0.01

Table 5.7: Evaluation of the Power Residue OPRF online phase using the Mascot MPC protocol.

74

5.4. Ram Usage

Prime All Phases Protocol Power Batch Size Rounds Data (MB) Time (s)

128 ✓ Semi 8 450 46 2.87 3.13± 0.00
128 ✓ Hemi 4 — 16 3.20 3.55± 0.00
256 ✓ Semi 8 1000 46 20.68 6.37± 0.00
256 ✓ Hemi 4 — 16 10.65 5.83± 0.05
128 ✗ Semi 8 — 5 0.02 0.41± 0.00
128 ✗ Hemi 4 — 4 0.03 0.41± 0.00
256 ✗ Semi 4 — 4 0.10 0.45± 0.00
256 ✗ Hemi 4 — 4 0.10 0.45± 0.00

Table 5.8: Best performing variants of the Higher-Power Residue OPRF in the semi-honest
model. All phases indicates whether the measurements are for all the phases or only the online
phase.

5.3.1 Semi-honest performance

We also run our benchmarks using Hemi and Semi as the underlying MPC
protocols. Again, we note that we do not include a thorough treatment of
the semi-honest model and use the same evaluation length as we did for
malicious security. The best-performing variants can be seen in Table 5.8,
whereas the full results are again available in Appendix A.1.2. For the sake
of brevity, we only list the best-performing powers. Again, we observe that
the additional rounds of communication for the online phase only cause
the execution to be slower despite the slightly lower data requirements. In
case the performance of both phases is considered for semi-honest secu-
rity, the Power Residue OPRF performs marginally better for 128-bit primes,
whereas the Legendre OPRF outperforms the Power Residue OPRF for 256-
bit primes.

5.4 Ram Usage

The amount of RAM the evaluation requires is another critical consideration
for the real-world usability of a protocol. Many systems only have limited
available RAM, so the number of entities that can run a protocol requiring
hundreds of Gigabytes of RAM is very limited.

To get a better estimate on the estimated RAM usage of our OPRFs, we
reproduced the benchmarks on a system limited to 4GB and on a system
limited to 2GB of RAM.4 These represent configurations where there are
under 2GB and 1GB, respectively, of RAM available to each party during
the execution.5

For the Legendre OPRF, we can reproduce all our results on the system
with 4GB of RAM with batch sizes up to and including 1285 and 10 parallel

4Swap was disabled for both cases.
5A part of the available RAM is also utilised by the running Operating System.

75

5. Performance

Protocol Rounds Data (MB) Time (s)

Legendre OPRF online phase 14 0.12 1.42± 0.00
Legendre OPRF all phases 158 240.15 53.91± 0.03
Higher-Power Residue OPRF online phase 15 0.10 1.64± 0.00
Higher-Power Residue OPRF all phases 164 136.74 37.63± 0.03
Round-Optimal LWE VOPRF [3] 2 131072.00 > 20971
Round-Optimal SIDH VOPRF [5] 2 8.70 > 1.39

Table 5.9: Comparison of post-quantum OPRF protocols that offer malicious security.

evaluations when using the Mascot MPC protocol. Similarly, all presented
evaluations with both Semi and Hemi run successfully. On the other hand,
for the system with 2GB of RAM, the protocol no longer successfully runs
when using the Mascot protocol with a batch size of 1285 and a 256-bit
prime. For smaller batch sizes, as well as when using a 128-bit prime or a
semi-honest MPC protocol, the execution is still successful. Notably, based
on the timing measurements, the configuration offering the optimal runtime
in the simulated WAN environment for Mascot and a 256-bit prime is still
successful on the 2GB system. If a system with even more strict memory
requirements is used, we also note that a valid option is to utilise smaller
batch sizes.

For the higher-power residues, the actual execution has a smaller RAM re-
quirement than for the Legendre OPRF, so once compiled, the batch sizes
that worked with the Legendre OPRF will also work with the Power Residue
OPRF. However, one consideration for this setting is that the compilation is
more RAM intensive when higher powers are used. For example, without
further tweaking the compilation parameters on the 2GB system, the com-
pilation will fail once powers of 32 and above are used. Assuming, though,
that the compilation is done on a system with sufficient RAM, the execution
works as expected.

5.5 Comparison

Finally, we include a comparison to existing post-quantum OPRF protocols,
both for malicious and semi-honest security. For malicious security, we use
the table from [5] as a baseline, keeping only the maliciously secure schemes.
In Table 5.9 we can see the comparison. It is important to note that the other
OPRFs we are comparing are verifiable OPRFs, which is a stronger security
notion. Even though this property is required for their malicious security,
the comparison should be taken with a grain of salt.

We note that, to our knowledge, no complete implementations are available
for the other two maliciously secure OPRFs. The bandwidth requirements

76

5.5. Comparison

Protocol Rounds Data (MB) Time (s) Malicious Client Verifiable

Legendre OPRF on-
line phase

3 0.12 0.22± 0.00 ✗ ✗

Legendre OPRF all
phases

15 10.71 5.79± 0.01 ✗ ✗

Higher-Power
Residue OPRF on-
line phase

4 0.10 0.45± 0.00 ✗ ✗

Higher-Power
Residue OPRF all
phases

16 10.65 5.83± 0.05 ✗ ✗

Garbled Circuits
OPRF [27]

— 6.79 2.07± 0.02 ✓ ✗

Garbled Circuits
OPRF – non post-
quantum instantia-
tion [27]

— 0.30 0.28± 0.02 ✓ ✗

OPUS [33] — 0.02 35.29± 0.04 ✗ ✗

CSIDH-based OPRF
[12]

3 >0.42 — ✓ ✗

Round-Optimal
SIDH OPRF [5]

2 3.00 — ✓ ✗

Round-Optimal
SIDH VOPRF [5]

2 8.70 — ✓ ✓

Table 5.10: Comparison of post-quantum OPRF protocols that offer semi-honest security.

are estimated on element sizes and do not account for various overheads.
The provided runtime is a lower bound derived from the amount of data
that needs to be communicated between the parties. We also recall that the
SIDH VOPRF [5] relies on a trusted setup being available.

We can see that our OPRFs have significantly increased round complex-
ity. At the same time, when we allow for a preprocessing phase, they have
a significantly lower bandwidth requirement. Still, when compared to a
quantum-insecure OPRF, such as two-hash Diffie Hellman that requires two
rounds of communication and 70 bytes of communication, there remains a
significant performance gap [36, 27].

For semi-honest security, we use the table from [27] as our baseline. The
comparison can be seen in Table 5.10. We use a “—” when a value is not
available. The Legendre OPRF offers the best performance regarding the
required time when we allow for a preprocessing phase. Again, though, it
is important to note that the concrete instantiation of the Legendre OPRF
does not offer post-quantum security, which the other OPRFs in the list do,
except for the second Garbled Circuit variant.

For the semi-honest model, again, the caveat with verifiability applies, and
additionally that various models are secure even in the presence of a mali-

77

5. Performance

cious client, which this specific instantiation of our scheme is not.

For both cases, it is important to note that due to the used MPC protocol not
being post-quantum, the performance of our scheme should be taken with
a grain of salt. Still, our scheme brings significant performance benefits for
malicious security when looking at the required amount of data. In the
semi-honest model, if we look at the online phase, the Legendre and Power
Residue OPRFs have the best time and close to the lowest required data.

78

Chapter 6

Conclusion

In this thesis, we introduced and analysed the Legendre OPRF. We studied
its security using three variations of OPRF security notions in the Universal
Composability framework and proved it secure according to two of those
in the malicious setting, thereby showing the security of various protocols,
including OPAQUE, when instantiated with the Legendre OPRF. Addition-
ally, we considered the generalisation of the Legendre OPRF to higher-power
residues and discussed the performance tradeoff that arises in doing so.

Our performance results show that both OPRFs can offer a performance ben-
efit over alternative post-quantum OPRFs if we allow for a separate prepro-
cessing phase. We also provide implementations of our OPRFs, which we
could not find for the alternative maliciously-secure post-quantum OPRFs.
The OPRFs also offer the advantage of parallelising well, yielding further
performance advantages for some use cases. Depending on the configura-
tion, the cost increase for performing ten evaluations in parallel was between
a factor of two and seven. Furthermore, the OPRFs will benefit from any im-
provements to the underlying MPC protocol, as most of the cost is due to
the MPC protocol and its communication requirements. Our results also
show the performance advantages in case a weaker security notion, such as
semi-honest security, suffices for an application.

We also examined the security properties of correlated OPRFs, proving that
one password-protected secret sharing protocol is no longer secure when the
used OPRF is a correlated OPRF. This highlights an important limitation of
the Legendre and Power Residue OPRFs and their achieved security notion.

While the Legendre OPRF offers competitive performance compared to al-
ternative post-quantum OPRFs, there remains a significant performance gap
when compared to maliciously secure OPRF protocols, such as two-hash
Diffie Hellman [40], which are insecure against quantum adversaries. We
believe further improvements to be required for a broader applicability of

79

6. Conclusion

post-quantum OPRFs.

6.1 Future Work

We list here some of the avenues of potential future work we identified
during the thesis. Firstly, we would have liked to explore some of the poten-
tial extensions of the Legendre OPRF. In particular, modifying the scheme
to have the verifiability property would be of interest. We believe that in-
cluding a hashed commitment of the key, which is verified as part of the
MPC protocol, would suffice for this but this requires a separate security
proof. Similarly, it would also be of significant interest to show the Leg-
endre OPRF’s security in the case of a semi-honest server according to the
non-correlated OPRF security notion [39]. We believe this to be possible be-
cause the proof only uses correlations for the case where the server uses a
different key than it started with. Showing this security would further open
the applications for which the Legendre OPRF is a valid candidate.

Additionally, while we analysed one further use case of OPRFs (PPSS) when
instantiated with a correlated OPRF, there remain open questions about the
applicability of the security notion to other applications, which would be of
great interest to analyse further.

Finally, in the implementation, there are various potential extensions we
identified. In particular, implementing and evaluating the scheme in a
post-quantum MPC library would be of great interest once those become
available. The same applies to an implementation where the masking value
is completely calculated as part of the preprocessing for the higher-power
residues, in which case we expect them to be the better-performing variant
in the online phase.

80

Appendix A

Appendix

A.1 Additional Benchmarks

In this section, we include further benchmark results, which we did not
include in Chapter 5. It contains the full benchmark results in the semi-
honest model and for the higher-power residues. We also present the results
for 10 parallel evaluations here, which were omitted from the main part for
the sake of brevity.

A.1.1 Complete results for the semi-honest model

Semi First, we present the full benchmarks for the Legendre OPRF in the
Semi MPC protocol. The results for both the offline and online phases can
be seen in Table A.1 and Table A.2 for 128 and 256-bit primes respectively.
In Table A.3 the results for only the online phase are shown.

Hemi Next, we present the results for the Hemi MPC protocol. Table A.4
contains the results for both the online and offline phases for both 128-bit
and 256-bit primes, whereas Table A.5 contains the results for both the of-
fline and online phases.

A.1.2 Complete results for the Power Residue OPRF

Here, we include further results on the performance of the Power Residue
OPRF, when the considered power is greater than two. For these, the timing
measurements are based on 5 repetitions instead of 100. We evaluate the
batch sizes of 65, 150, 185, 250, 300, 350, 450, 600, 645, and 1000. However,
in the tables, we will only include the best-performing batch sizes in terms
of rounds, bandwidth requirement, or time.

81

A. Appendix

Parallel Batch Size Rounds Bandwidth (MB) Time (s)

1 65 143 4.30 11.69± 0.10
1 185 77 4.74 6.69± 0.05
1 325 55 4.14 4.45± 0.00
1 645 44 4.09 3.14± 0.00
1 1285 44 8.03 4.16± 0.00
1 3250 44 20.10 6.42± 0.00
1 6500 44 40.07 10.12± 0.01
10 65 1122 42.06 105.73± 0.28
10 185 418 41.04 44.57± 0.40
10 325 253 40.90 27.01± 0.01
10 645 143 40.40 19.68± 0.01
10 1285 88 40.15 13.38± 0.00
10 3250 55 40.55 11.08± 0.00
10 6500 44 40.53 10.2± 0.01

Table A.1: Benchmarks results for the Legendre OPRF using the Semi MPC protocol and a
128-bit prime. Both online and offline phases.

Parallel Batch Size Rounds Bandwidth (MB) Time (s)

1 65 253 27.28 24.59± 0.01
1 185 110 26.92 13.43± 0.03
1 325 77 26.97 9.92± 0.03
1 645 55 26.72 8.37± 0.01
1 1285 44 26.60 7.29± 0.00
1 3250 44 66.84 14.66± 0.02
1 6500 44 133.40 26.35± 0.03
10 65 2211 269.58 228.3± 0.05
10 185 803 268.70 110.79± 0.08
10 325 473 269.14 83.4± 0.09
10 645 253 266.69 66.43± 0.03
10 1285 143 265.48 57.8± 0.02
10 3250 77 268.43 53.73± 0.03
10 6500 55 268.39 51.02± 0.05

Table A.2: Benchmarks results for the Legendre OPRF using the Semi MPC protocol and a
256-bit prime. Both online and offline phases.

82

A.1. Additional Benchmarks

Prime Improved Parallel Rounds Bandwidth (MB) Time (s)

128 ✗ 1 3 0.05 0.41± 0.00
128 ✓ 1 3 0.03 0.21± 0.00
128 ✗ 10 3 0.51 0.87± 0.00
128 ✓ 10 3 0.31 0.72± 0.01
256 ✗ 1 3 0.20 0.44± 0.00
256 ✓ 1 3 0.12 0.22± 0.00
256 ✗ 10 3 2.05 1.23± 0.01
256 ✓ 10 3 1.23 0.99± 0.01

Table A.3: Benchmark results for the Legendre OPRF using the Semi MPC protocol, when
considering only the cost of the online phase.

Prime Size Parallel Rounds Bandwidth (MB) Time (s)

128 1 15 3.22 3.56± 0.02
128 10 15 3.68 3.63± 0.02
256 1 15 10.71 5.79± 0.01
256 10 15 12.56 6.05± 0.03

Table A.4: Benchmark results for the Legendre OPRF using the Hemi MPC protocol, when
there is not a separate preprocessing phase.

Prime Size Improved Parallel Rounds Bandwidth (MB) Time (s)

128 ✗ 1 3 0.05 0.40± 0.00
128 ✓ 1 3 0.03 0.21± 0.00
128 ✗ 10 3 0.51 0.86± 0.00
128 ✓ 10 3 0.31 0.68± 0.01
256 ✗ 1 3 0.20 0.43± 0.00
256 ✓ 1 3 0.12 0.22± 0.00
256 ✗ 10 3 2.05 1.20± 0.00
256 ✓ 10 3 1.23 1.01± 0.02

Table A.5: Benchmark results for the Legendre OPRF using the Hemi MPC protocol, when
considering only the cost of the online phase

83

A. Appendix

All phases

First, we present the results for all phases, so the measurements are for both
the online and offline phases.

Mascot The results for the Power Residue OPRF with the Mascot MPC
protocol can be seen in Table A.6 for a 128-bit prime and in Table A.7 for a
256-bit prime.

Semi For the Semi MPC protocol, the results can be seen in Table A.6 for
a 128-bit prime and Table A.7 for a 256-bit prime.

Hemi In Table A.10 and Table A.11 the results for the Hemi MPC protocol
with a 128-bit and 256-bit prime, respectively, are shown.

Online Phase For the online phase results, we consider both 128 and 256-
bit primes and both the basic variant and the variant with improved prepro-
cessing. The powers we consider for the OPRF are powers of two between 4
and 256. The cost of the Mascot online phase for the Power Residue OPRF
can be seen in Table A.12. The results for Semi in Table A.13 and for Hemi
in Table A.14

84

A.1. Additional Benchmarks

Parallel Power Residue Batch Size Rounds Bandwidth (MB) Time (s)

1 4 65 247 23.20 28.08± 0.01
1 4 250 115 29.88 14.72± 0.03
1 4 600 93 48.09 16.14± 0.01
1 8 65 226 20.65 25.17± 0.00
1 8 450 94 36.10 14.17± 0.01
1 16 65 227 20.64 25.2± 0.01
1 16 450 95 36.10 14.18± 0.01
1 32 65 206 18.09 22.32± 0.01
1 32 450 96 36.09 14.32± 0.01
1 64 65 207 18.09 22.55± 0.02
1 64 450 97 36.09 14.38± 0.01
1 128 65 208 18.09 22.76± 0.02
1 128 185 120 22.14 13.83± 0.03
1 128 450 98 36.09 14.61± 0.01
1 256 65 209 18.08 22.99± 0.04
1 256 185 121 22.14 13.86± 0.00
1 256 450 99 36.09 14.64± 0.02
10 4 185 651 199.73 88.85± 0.16
10 4 1000 181 236.30 56.3± 0.07
10 8 65 1556 176.83 194.54± 3.30
10 8 645 226 202.84 53.81± 0.03
10 8 1000 182 236.23 56.22± 0.06
10 16 65 1461 165.25 186.57± 0.05
10 16 600 227 188.69 51.49± 0.11
10 16 1000 161 197.22 47.96± 0.06
10 32 65 1402 157.46 176.21± 2.65
10 32 645 206 177.64 47.82± 0.03
10 32 1000 162 197.20 48.13± 0.03
10 64 65 1381 154.90 176.2± 0.02
10 64 645 207 177.63 47.99± 0.06
10 64 1000 163 197.19 48.43± 0.06
10 128 65 1338 149.78 170.47± 0.02
10 128 645 208 177.61 48.33± 0.06
10 128 1000 164 197.18 49.24± 0.26
10 256 150 605 147.17 80.64± 1.73
10 256 600 209 165.25 46.51± 0.10
10 256 1000 165 197.17 48.94± 0.02

Table A.6: Benchmark results for the Power Residue OPRF using the Mascot MPC protocol
and a 128-bit prime, considering the cost of both the online and offline phases.

85

A. Appendix

Parallel Power Residue Batch Size Rounds Bandwidth (MB) Time (s)

1 4 65 401 151.06 58.56± 0.02
1 4 250 159 184.74 44.81± 0.04
1 4 1000 93 307.56 63.46± 0.17
1 8 65 380 141.69 55.19± 0.01
1 8 250 160 184.71 44.79± 0.05
1 8 1000 94 307.53 63.88± 0.22
1 16 65 359 132.33 51.8± 0.03
1 16 185 183 163.31 42.87± 0.03
1 16 1000 95 307.51 63.87± 0.28
1 32 65 338 122.98 48.45± 0.01
1 32 185 184 163.30 43.12± 0.04
1 32 1000 96 307.50 63.76± 0.20
1 64 65 339 122.98 48.75± 0.15
1 64 250 141 148.80 37.77± 0.02
1 64 1000 97 307.50 63.79± 0.12
1 128 65 340 122.97 48.7± 0.02
1 128 185 164 136.74 37.63± 0.03
1 128 1000 98 307.50 64.28± 0.24
1 256 65 341 122.97 48.98± 0.02
1 256 185 165 136.73 37.64± 0.02
1 256 1000 99 307.49 64.35± 0.16
10 4 65 3431 1464.53 531.08± 0.10
10 4 645 401 1495.45 304.66± 0.55
10 4 1000 291 1600.12 311.65± 0.31
10 8 65 3048 1293.41 469.54± 0.09
10 8 1000 270 1456.38 282.63± 0.41
10 16 65 2849 1202.51 437.89± 0.22
10 16 1000 249 1312.78 256.11± 0.46
10 32 65 2724 1145.04 417.3± 0.05
10 32 645 338 1217.31 248.93± 0.22
10 32 1000 250 1312.68 256.54± 0.51
10 64 150 1183 1114.79 288.38± 0.33
10 64 450 449 1172.49 247.45± 0.33
10 64 1000 251 1312.63 256.24± 0.78
10 128 65 2608 1092.89 400.0± 0.04
10 128 450 450 1172.45 248.05± 0.37
10 128 1000 252 1312.58 257.75± 0.35
10 256 65 2543 1064.83 391.54± 0.11
10 256 600 341 1132.35 235.34± 0.35
10 256 1000 253 1312.54 258.72± 0.44

Table A.7: Benchmark results for the Power Residue OPRF using the Mascot MPC protocol
and a 256-bit prime, considering the cost of both the online and offline phases.

86

A.1. Additional Benchmarks

Parallel Power Residue Batch Size Rounds Bandwidth (MB) Time (s)

1 4 250 56 3.21 4.0± 0.04
1 4 600 45 3.80 3.29± 0.00
1 8 450 46 2.87 3.13± 0.00
1 16 150 69 2.91 5.54± 0.00
1 16 450 47 2.87 3.34± 0.00
1 32 65 103 2.60 7.09± 0.04
1 32 450 48 2.87 3.34± 0.00
1 64 65 104 2.60 7.78± 0.44
1 64 450 49 2.87 3.55± 0.00
1 128 185 61 2.40 4.45± 0.10
1 128 450 50 2.87 3.57± 0.00
1 256 185 62 2.40 4.75± 0.04
1 256 450 51 2.87 3.78± 0.00
10 4 600 122 30.07 16.54± 0.06
10 4 1000 89 31.24 12.16± 0.02
10 8 150 354 27.66 35.48± 0.91
10 8 1000 90 31.19 12.19± 0.01
10 16 250 212 25.23 21.98± 0.93
10 16 1000 80 25.00 10.1± 0.02
10 32 350 158 24.20 15.97± 0.00
10 32 1000 81 24.98 10.29± 0.01
10 64 350 159 24.19 15.99± 0.00
10 64 1000 82 24.97 10.53± 0.01
10 128 185 259 23.44 25.8± 0.59
10 128 1000 83 24.96 10.84± 0.05
10 256 600 106 22.54 13.44± 0.01
10 256 1000 84 24.96 10.95± 0.03

Table A.8: Benchmark results for the Power Residue OPRF using the Semi MPC protocol and
a 128-bit prime, considering the cost of both the online and offline phases.

87

A. Appendix

Parallel Power Residue Batch Size Rounds Bandwidth (MB) Time (s)

1 4 65 199 20.46 18.90.0± 0.00
1 4 1000 45 20.70 6.39± 0.02
1 8 450 57 18.65 7.06± 0.00
1 8 1000 46 20.68 6.37± 0.00
1 16 65 179 17.73 16.64± 0.01
1 16 1000 47 20.67 6.57± 0.00
1 32 65 169 16.38 15.43± 0.01
1 32 1000 48 20.67 6.58± 0.00
1 64 150 93 15.62 10.48± 0.01
1 64 1000 49 20.66 6.87± 0.01
1 128 250 72 15.58 8.07± 0.00
1 128 1000 50 20.66 6.97± 0.01
1 256 185 84 15.39 9.61± 0.00
1 256 1000 51 20.66 7.28± 0.00
10 8 65 1487 179.61 152.76± 0.00
10 8 1000 134 185.79 42.78± 0.00
10 16 1000 124 165.18 38.46± 0.00
10 32 350 279 159.25 48.58± 0.01
10 32 1000 125 165.12 38.72± 0.00
10 64 300 313 155.18 51.03± 0.01
10 64 1000 126 165.08 39.23± 0.00
10 128 185 479 153.40 65.66± 0.14
10 128 1000 127 165.06 39.80± 0.00
10 256 600 172 148.72 41.58± 0.00
10 256 1000 128 165.02 40.79± 0.01

Table A.9: Benchmark results for the Power Residue OPRF using the Semi MPC protocol and
a 256-bit prime, considering the cost of both the online and offline phases.

88

A.1. Additional Benchmarks

Parallel Power Residue Rounds Bandwidth (MB) Time (s)

1 4 16 3.20 3.55± 0.03
1 8 17 3.20 3.75± 0.03
1 16 18 3.19 3.88± 0.06
1 32 19 3.19 3.92± 0.01
1 64 20 3.19 3.98± 0.04
1 128 21 3.19 4.14± 0.00
1 256 22 3.19 4.16± 0.01
10 4 16 3.52 3.68± 0.06
10 8 17 3.47 3.82± 0.04
10 16 18 3.45 3.81± 0.02
10 32 19 3.43 4.0± 0.01
10 64 20 3.43 4.06± 0.01
10 128 21 3.42 4.32± 0.01
10 256 22 3.41 4.5± 0.08

Table A.10: Benchmark results for the Power Residue OPRF using the Hemi MPC protocol and
a 128-bit prime, considering the cost of both the online and offline phases.

Parallel Power Residue Rounds Bandwidth (MB) Time (s)
1 4 16 10.65 5.83± 0.05
1 8 17 10.63 5.98± 0.04
1 16 18 10.62 6.2± 0.07
1 32 19 10.61 6.29± 0.06
1 64 20 10.61 6.36± 0.06
1 128 21 10.61 6.6± 0.02
1 256 22 10.60 6.78± 0.03
10 4 16 11.94 6.17± 0.05
10 8 17 11.74 6.3± 0.04
10 16 18 11.63 6.41± 0.03
10 32 19 11.57 6.69± 0.06
10 64 20 11.53 7.14± 0.04
10 128 21 11.51 7.85± 0.05
10 256 22 11.48 8.87± 0.03

Table A.11: Benchmark results for the Power Residue OPRF using the Hemi MPC protocol and
a 256-bit prime, considering the cost of both the online and offline phases.

89

A. Appendix

Prime Size Improved Parallel Power Residue Rounds Bandwidth (MB) Time (s)

128 ✗ 1 4 15 0.04 1.62± 0.00
128 ✗ 1 8 16 0.04 1.82± 0.00
128 ✗ 1 16 17 0.03 1.84± 0.01
128 ✗ 1 32 18 0.03 2.03± 0.00
128 ✗ 1 64 19 0.03 2.04± 0.00
128 ✗ 1 128 20 0.03 2.26± 0.00
128 ✗ 1 256 21 0.03 2.32± 0.01
128 ✓ 1 4 15 0.03 1.63± 0.02
128 ✓ 1 8 16 0.02 1.65± 0.09
128 ✓ 1 16 17 0.02 1.87± 0.14
128 ✓ 1 32 18 0.02 1.86± 0.05
128 ✓ 1 64 19 0.02 2.09± 0.01
128 ✓ 1 128 20 0.02 2.1± 0.07
128 ✓ 1 256 21 0.02 2.38± 0.07
128 ✗ 10 4 15 0.44 2.01± 0.05
128 ✗ 10 8 16 0.36 1.9± 0.00
128 ✗ 10 16 17 0.32 1.91± 0.00
128 ✗ 10 32 18 0.30 2.13± 0.01
128 ✗ 10 64 19 0.29 2.23± 0.01
128 ✗ 10 128 20 0.27 2.52± 0.03
128 ✗ 10 256 21 0.26 2.7± 0.03
128 ✓ 10 4 15 0.26 1.7± 0.07
128 ✓ 10 8 16 0.24 1.92± 0.11
128 ✓ 10 16 17 0.23 1.96± 0.10
128 ✓ 10 32 18 0.23 2.01± 0.12
128 ✓ 10 64 19 0.23 2.26± 0.19
128 ✓ 10 128 20 0.22 2.45± 0.05
128 ✓ 10 256 21 0.22 2.88± 0.07
256 ✗ 1 4 15 0.17 1.65± 0.00
256 ✗ 1 8 16 0.14 1.84± 0.00
256 ✗ 1 16 17 0.13 1.87± 0.01
256 ✗ 1 32 18 0.12 2.08± 0.00
256 ✗ 1 64 19 0.11 2.14± 0.01
256 ✗ 1 128 20 0.11 2.39± 0.01
256 ✗ 1 256 21 0.11 2.52± 0.01
256 ✓ 1 4 15 0.10 1.64± 0.00
256 ✓ 1 8 16 0.10 1.64± 0.00
256 ✓ 1 16 17 0.09 1.86± 0.00
256 ✓ 1 32 18 0.09 1.88± 0.00
256 ✓ 1 64 19 0.09 2.12± 0.01
256 ✓ 1 128 20 0.09 2.21± 0.01
256 ✓ 1 256 21 0.09 2.51± 0.01
256 ✗ 10 4 15 1.74 3.29± 0.00
256 ✗ 10 8 16 1.44 3.29± 0.00
256 ✗ 10 16 17 1.28 3.22± 0.01
256 ✗ 10 32 18 1.19 3.36± 0.01
256 ✗ 10 64 19 1.13 3.52± 0.01
256 ✗ 10 128 20 1.09 3.84± 0.03
256 ✗ 10 256 21 1.05 4.81± 0.04
256 ✓ 10 4 15 1.03 2.33± 0.04
256 ✓ 10 8 16 0.96 2.4± 0.05
256 ✓ 10 16 17 0.92 2.6± 0.01
256 ✓ 10 32 18 0.90 2.91± 0.05
256 ✓ 10 64 19 0.89 3.1± 0.02
256 ✓ 10 128 20 0.88 3.6± 0.03
256 ✓ 10 256 21 0.97 4.73± 0.03

Table A.12: Benchmark results for the Power Residue OPRF using the Mascot MPC protocol,
considering only the online phase.

90

A.1. Additional Benchmarks

Prime Size Improved Parallel Power Residue Rounds Bandwidth (MB) Time (s)

128 ✗ 1 4 4 0.04 0.42± 0.00
128 ✗ 1 8 5 0.03 0.62± 0.00
128 ✗ 1 16 6 0.03 0.63± 0.00
128 ✗ 1 32 7 0.03 0.84± 0.01
128 ✗ 1 64 8 0.03 0.86± 0.00
128 ✗ 1 128 9 0.03 1.07± 0.00
128 ✗ 1 256 10 0.02 1.11± 0.00
128 ✓ 1 4 4 0.03 0.42± 0.00
128 ✓ 1 8 5 0.02 0.41± 0.00
128 ✓ 1 16 6 0.02 0.62± 0.00
128 ✓ 1 32 7 0.02 0.62± 0.00
128 ✓ 1 64 8 0.02 0.84± 0.00
128 ✓ 1 128 9 0.02 0.84± 0.00
128 ✓ 1 256 10 0.02 1.08± 0.01
128 ✗ 10 4 4 0.36 0.73± 0.04
128 ✗ 10 8 5 0.31 0.89± 0.01
128 ✗ 10 16 6 0.28 0.72± 0.00
128 ✗ 10 32 7 0.27 0.96± 0.00
128 ✗ 10 64 8 0.26 1.04± 0.00
128 ✗ 10 128 9 0.25 1.39± 0.01
128 ✗ 10 256 10 0.24 1.59± 0.01
128 ✓ 10 4 4 0.26 0.65± 0.00
128 ✓ 10 8 5 0.24 0.66± 0.00
128 ✓ 10 16 6 0.23 0.67± 0.00
128 ✓ 10 32 7 0.23 0.69± 0.00
128 ✓ 10 64 8 0.22 0.95± 0.00
128 ✓ 10 128 9 0.22 1.08± 0.01
128 ✓ 10 256 10 0.22 1.54± 0.01
256 ✗ 1 4 4 0.14 0.46± 0.00
256 ✗ 1 8 5 0.12 0.68± 0.00
256 ✗ 1 16 6 0.11 0.69± 0.00
256 ✗ 1 32 7 0.11 0.94± 0.00
256 ✗ 1 64 8 0.10 1.04± 0.02
256 ✗ 1 128 9 0.10 1.39± 0.02
256 ✗ 1 256 10 0.10 1.59± 0.02
256 ✓ 1 4 4 0.10 0.44± 0.00
256 ✓ 1 8 5 0.10 0.44± 0.00
256 ✓ 1 16 6 0.09 0.66± 0.00
256 ✓ 1 32 7 0.09 0.68± 0.00
256 ✓ 1 64 8 0.09 0.96± 0.02
256 ✓ 1 128 9 0.09 1.07± 0.01
256 ✓ 1 256 10 0.09 1.52± 0.00
256 ✗ 10 4 4 1.43 1.44± 0.04
256 ✗ 10 8 5 1.23 1.54± 0.05
256 ✗ 10 16 6 1.13 1.79± 0.04
256 ✗ 10 32 7 1.06 2.1± 0.06
256 ✗ 10 64 8 1.03 2.82± 0.05
256 ✗ 10 128 9 1.00 3.87± 0.02
256 ✗ 10 256 10 0.97 5.72± 0.04
256 ✓ 10 4 4 1.02 1.13± 0.04
256 ✓ 10 8 5 0.96 1.27± 0.06
256 ✓ 10 16 6 0.92 1.57± 0.01
256 ✓ 10 32 7 0.90 2.09± 0.04
256 ✓ 10 64 8 0.89 2.61± 0.07
256 ✓ 10 128 9 0.88 3.64± 0.07
256 ✓ 10 256 10 0.87 5.62± 0.02

Table A.13: Benchmark results for the Power Residue OPRF using the Semi MPC protocol,
considering only the online phase.

91

A. Appendix

Prime Size Improved Parallel Power Residue Rounds Bandwidth (MB) Time (s)

128 ✗ 1 4 4 0.04 0.41± 0.00
128 ✗ 1 8 5 0.03 0.61± 0.00
128 ✗ 1 16 6 0.03 0.62± 0.00
128 ✗ 1 32 7 0.03 0.83± 0.00
128 ✗ 1 64 8 0.03 0.84± 0.00
128 ✗ 1 128 9 0.03 1.07± 0.01
128 ✗ 1 256 10 0.02 1.1± 0.01
128 ✓ 1 4 4 0.03 0.41± 0.00
128 ✓ 1 8 5 0.02 0.41± 0.00
128 ✓ 1 16 6 0.02 0.62± 0.00
128 ✓ 1 32 7 0.02 0.62± 0.00
128 ✓ 1 64 8 0.02 0.84± 0.00
128 ✓ 1 128 9 0.02 0.85± 0.00
128 ✓ 1 256 10 0.02 1.08± 0.00
128 ✗ 10 4 4 0.36 0.67± 0.01
128 ✗ 10 8 5 0.31 0.87± 0.00
128 ✗ 10 16 6 0.28 0.7± 0.00
128 ✗ 10 32 7 0.27 0.94± 0.01
128 ✗ 10 64 8 0.26 1.02± 0.01
128 ✗ 10 128 9 0.25 1.3± 0.02
128 ✗ 10 256 10 0.24 1.53± 0.04
128 ✓ 10 4 4 0.26 0.65± 0.00
128 ✓ 10 8 5 0.24 0.66± 0.00
128 ✓ 10 16 6 0.23 0.68± 0.00
128 ✓ 10 32 7 0.23 0.7± 0.00
128 ✓ 10 64 8 0.22 0.96± 0.00
128 ✓ 10 128 9 0.22 1.05± 0.01
128 ✓ 10 256 10 0.22 1.41± 0.01
256 ✗ 1 4 4 0.14336 0.45± 0.00
256 ✗ 1 8 5 0.123264 0.66± 0.00
256 ✗ 1 16 6 0.11264 0.68± 0.01
256 ✗ 1 32 7 0.106496 0.92± 0.01
256 ✗ 1 64 8 0.10272 0.99± 0.01
256 ✗ 1 128 9 0.100096 1.32± 0.01
256 ✗ 1 256 10 0.09728 1.53± 0.01
256 ✓ 1 4 4 0.10 0.45± 0.00
256 ✓ 1 8 5 0.10 0.45± 0.00
256 ✓ 1 16 6 0.09 0.67± 0.00
256 ✓ 1 32 7 0.09 0.7± 0.00
256 ✓ 1 64 8 0.09 0.97± 0.01
256 ✓ 1 128 9 0.09 1.09± 0.01
256 ✓ 1 256 10 0.09 1.46± 0.01
256 ✗ 10 4 4 1.4336 1.31± 0.01
256 ✗ 10 8 5 1.23264 1.43± 0.04
256 ✗ 10 16 6 1.1264 1.58± 0.02
256 ✗ 10 32 7 1.06496 1.78± 0.11
256 ✗ 10 64 8 1.0272 2.32± 0.04
256 ✗ 10 128 9 1.00096 3.11± 0.07
256 ✗ 10 256 10 0.9728 4.31± 0.03
256 ✓ 10 4 4 1.02 1.19± 0.04
256 ✓ 10 8 5 0.96 1.21± 0.05
256 ✓ 10 16 6 0.92 1.45± 0.01
256 ✓ 10 32 7 0.90 1.68± 0.04
256 ✓ 10 64 8 0.89 2.02± 0.01
256 ✓ 10 128 9 0.88 2.7± 0.02
256 ✓ 10 256 10 0.87 3.93± 0.09

Table A.14: Benchmark results for the Power Residue OPRF using the Hemi MPC protocol,
considering only the online phase.

92

Bibliography

[1] Michel Abdalla, Mario Cornejo, Anca Nitulescu, and David
Pointcheval. Robust password-protected secret sharing. In Ioannis G.
Askoxylakis, Sotiris Ioannidis, Sokratis K. Katsikas, and Catherine A.
Meadows, editors, ESORICS 2016: 21st European Symposium on Research
in Computer Security, Part II, volume 9879 of Lecture Notes in Com-
puter Science, pages 61–79, Heraklion, Greece, September 26–30, 2016.
Springer, Heidelberg, Germany.

[2] Martin R. Albrecht, Alex Davidson, Amit Deo, and Daniel Gardham.
Crypto dark matter on the torus: Oblivious PRFs from shallow PRFs
and FHE. Cryptology ePrint Archive, 2023.

[3] Martin R. Albrecht, Alex Davidson, Amit Deo, and Nigel P. Smart.
Round-optimal verifiable oblivious pseudorandom functions from
ideal lattices. In Juan Garay, editor, PKC 2021: 24th International Con-
ference on Theory and Practice of Public Key Cryptography, Part II, volume
12711 of Lecture Notes in Computer Science, pages 261–289, Virtual Event,
May 10–13, 2021. Springer, Heidelberg, Germany.

[4] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin,
Rami Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao,
David A Buell, et al. Quantum supremacy using a programmable su-
perconducting processor. Nature, 574(7779):505–510, 2019.

[5] Andrea Basso. A post-quantum round-optimal oblivious PRF from iso-
genies. 2023. https://eprint.iacr.org/2023/225.

[6] Andrea Basso, Péter Kutas, Simon-Philipp Merz, Christophe Petit, and
Antonio Sanso. Cryptanalysis of an oblivious prf from supersingular
isogenies. In Advances in Cryptology–ASIACRYPT 2021: 27th Interna-
tional Conference on the Theory and Application of Cryptology and Informa-

93

https://eprint.iacr.org/2023/225

Bibliography

tion Security, Singapore, December 6–10, 2021, Proceedings, Part I 27, pages
160–184. Springer, 2021.

[7] Carsten Baum, Tore Frederiksen, Julia Hesse, Anja Lehmann, and
Avishay Yanai. Pesto: proactively secure distributed single sign-on,
or how to trust a hacked server. In 2020 IEEE European Symposium on
Security and Privacy (EuroS&P), pages 587–606. IEEE, 2020.

[8] Daniel J Bernstein and Tanja Lange. Post-quantum cryptography. Na-
ture, 549(7671):188–194, 2017.

[9] Ward Beullens, Tim Beyne, Aleksei Udovenko, and Giuseppe Vitto.
Cryptanalysis of the Legendre PRF and generalizations. IACR Trans-
actions on Symmetric Cryptology, 2020(1):313–330, 2020.

[10] Ward Beullens and Cyprien Delpech de Saint Guilhem. LegRoast:
Efficient post-quantum signatures from the Legendre PRF. In Jintai
Ding and Jean-Pierre Tillich, editors, Post-Quantum Cryptography - 11th
International Conference, PQCrypto 2020, pages 130–150, Paris, France,
April 15–17, 2020. Springer, Heidelberg, Germany.

[11] Dan Boneh, Yuval Ishai, Alain Passelègue, Amit Sahai, and David J.
Wu. Exploring crypto dark matter: New simple PRF candidates and
their applications. In Theory of Cryptography Conference, pages 699–729.
Springer, 2018.

[12] Dan Boneh, Dmitry Kogan, and Katharine Woo. Oblivious pseudo-
random functions from isogenies. In Shiho Moriai and Huaxiong
Wang, editors, Advances in Cryptology – ASIACRYPT 2020, Part II, vol-
ume 12492 of Lecture Notes in Computer Science, pages 520–550, Daejeon,
South Korea, December 7–11, 2020. Springer, Heidelberg, Germany.

[13] Niklas Büscher, Daniel Demmler, Nikolaos P. Karvelas, Stefan Katzen-
beisser, Juliane Krämer, Deevashwer Rathee, Thomas Schneider, and
Patrick Struck. Secure two-party computation in a quantum world. In
Mauro Conti, Jianying Zhou, Emiliano Casalicchio, and Angelo Spog-
nardi, editors, ACNS 20: 18th International Conference on Applied Cryptog-
raphy and Network Security, Part I, volume 12146 of Lecture Notes in Com-
puter Science, pages 461–480, Rome, Italy, October 19–22, 2020. Springer,
Heidelberg, Germany.

[14] Jan Camenisch and Anja Lehmann. Privacy-preserving user-auditable
pseudonym systems. In 2017 IEEE European Symposium on Security and
Privacy (EuroS&P), pages 269–284. IEEE, 2017.

94

Bibliography

[15] Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In 42nd Annual Symposium on Foundations of
Computer Science, pages 136–145, Las Vegas, NV, USA, October 14–17,
2001. IEEE Computer Society Press.

[16] Sı́lvia Casacuberta, Julia Hesse, and Anja Lehmann. SoK: Oblivious
pseudorandom functions. In 2022 IEEE 7th European Symposium on Se-
curity and Privacy (EuroS&P), pages 625–646. IEEE, 2022.

[17] Dario Catalano, Ronald Cramer, Giovanni Di Crescenzo, Ivan
Darmgård, David Pointcheval, Tsuyoshi Takagi, Ronald Cramer, and
Ivan Damgård. Multiparty computation, an introduction. Contemporary
cryptology, pages 41–87, 2005.

[18] Melissa Chase and Peihan Miao. Private set intersection in the inter-
net setting from lightweight oblivious PRF. In Daniele Micciancio and
Thomas Ristenpart, editors, Advances in Cryptology – CRYPTO 2020,
Part III, volume 12172 of Lecture Notes in Computer Science, pages 34–
63, Santa Barbara, CA, USA, August 17–21, 2020. Springer, Heidelberg,
Germany.

[19] Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter Scholl, and
Chaoping Xing. SPDZ2k: Efficient MPC mod 2k for dishonest ma-
jority. Cryptology ePrint Archive, Report 2018/482, 2018. https:

//eprint.iacr.org/2018/482.

[20] Ivan Damgård. On the randomness of Legendre and Jacobi sequences.
In Shafi Goldwasser, editor, Advances in Cryptology – CRYPTO’88, vol-
ume 403 of Lecture Notes in Computer Science, pages 163–172, Santa Bar-
bara, CA, USA, August 21–25, 1990. Springer, Heidelberg, Germany.

[21] Ivan Damgård and Jesper Buus Nielsen. Universally composable ef-
ficient multiparty computation from threshold homomorphic encryp-
tion. In Dan Boneh, editor, Advances in Cryptology – CRYPTO 2003,
volume 2729 of Lecture Notes in Computer Science, pages 247–264, Santa
Barbara, CA, USA, August 17–21, 2003. Springer, Heidelberg, Germany.

[22] Ivan Damgård and Claudio Orlandi. Multiparty computation for dis-
honest majority: From passive to active security at low cost. In Tal
Rabin, editor, Advances in Cryptology – CRYPTO 2010, volume 6223 of
Lecture Notes in Computer Science, pages 558–576, Santa Barbara, CA,
USA, August 15–19, 2010. Springer, Heidelberg, Germany.

[23] Gareth T Davies, Sebastian Faller, Kai Gellert, Tobias Handirk, Julia
Hesse, Máté Horvárth, and Tibor Jager. Security analysis of the what-

95

https://eprint.iacr.org/2018/482
https://eprint.iacr.org/2018/482

Bibliography

sapp end-to-end encrypted backup protocol. Cryptology ePrint Archive,
2023.

[24] Emiliano De Cristofaro and Gene Tsudik. Experimenting with fast pri-
vate set intersection. In International Conference on Trust and Trustworthy
Computing, pages 55–73. Springer, 2012.

[25] Itai Dinur, Steven Goldfeder, Tzipora Halevi, Yuval Ishai, Mahimna
Kelkar, Vivek Sharma, and Greg Zaverucha. MPC-friendly symmet-
ric cryptography from alternating moduli: Candidates, protocols, and
applications. In Advances in Cryptology–CRYPTO 2021: 41st Annual In-
ternational Cryptology Conference, CRYPTO 2021, Virtual Event, August
16–20, 2021, Proceedings, Part IV 41, pages 517–547. Springer, 2021.

[26] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Pe-
ter Scholl. Improved primitives for MPC over mixed arithmetic-binary
circuits. In Daniele Micciancio and Thomas Ristenpart, editors, Ad-
vances in Cryptology – CRYPTO 2020, Part II, volume 12171 of Lecture
Notes in Computer Science, pages 823–852, Santa Barbara, CA, USA, Au-
gust 17–21, 2020. Springer, Heidelberg, Germany.

[27] Sebastian Faller, Astrid Ottenhues, and Johannes Ernst. Composable
oblivious pseudo-random functions via garbled circuits. Cryptology
ePrint Archive, 2023.

[28] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold.
Keyword search and oblivious pseudorandom functions. In Joe Kilian,
editor, TCC 2005: 2nd Theory of Cryptography Conference, volume 3378 of
Lecture Notes in Computer Science, pages 303–324, Cambridge, MA, USA,
February 10–12, 2005. Springer, Heidelberg, Germany.

[29] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. Journal of the ACM, 33(4):792–807, October 1986.

[30] Lorenzo Grassi, Christian Rechberger, Dragos Rotaru, Peter Scholl, and
Nigel P. Smart. MPC-friendly symmetric key primitives. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. My-
ers, and Shai Halevi, editors, ACM CCS 2016: 23rd Conference on Com-
puter and Communications Security, pages 430–443, Vienna, Austria, Oc-
tober 24–28, 2016. ACM Press.

[31] Carmit Hazay and Yehuda Lindell. A note on the relation between
the definitions of security for semi-honest and malicious adversaries.
Cryptology ePrint Archive, 2010.

96

Bibliography

[32] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost con-
stant round MPC combining BMR and oblivious transfer. Journal of
Cryptology, 33(4):1732–1786, 2020.

[33] Lena Heimberger, Fredrik Meisingseth, and Christian Rechberger.
Oprfs from isogenies: Designs and analysis. Cryptology ePrint Archive,
2023.

[34] Dennis Hofheinz and Jörn Müller-Quade. Universally composable
commitments using random oracles. In Moni Naor, editor, TCC 2004:
1st Theory of Cryptography Conference, volume 2951 of Lecture Notes in
Computer Science, pages 58–76, Cambridge, MA, USA, February 19–21,
2004. Springer, Heidelberg, Germany.

[35] Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. Round-
optimal password-protected secret sharing and T-PAKE in the
password-only model. In Palash Sarkar and Tetsu Iwata, editors, Ad-
vances in Cryptology – ASIACRYPT 2014, Part II, volume 8874 of Lecture
Notes in Computer Science, pages 233–253, Kaoshiung, Taiwan, R.O.C.,
December 7–11, 2014. Springer, Heidelberg, Germany.

[36] Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu.
Highly-efficient and composable password-protected secret sharing (or:
How to protect your bitcoin wallet online). In 2016 IEEE European Sym-
posium on Security and Privacy (EuroS&P), pages 276–291. IEEE, 2016.

[37] Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu.
TOPPSS: Cost-minimal password-protected secret sharing based on
threshold OPRF. In Dieter Gollmann, Atsuko Miyaji, and Hiroaki
Kikuchi, editors, ACNS 17: 15th International Conference on Applied Cryp-
tography and Network Security, volume 10355 of Lecture Notes in Computer
Science, pages 39–58, Kanazawa, Japan, July 10–12, 2017. Springer, Hei-
delberg, Germany.

[38] Stanislaw Jarecki, Hugo Krawczyk, and Jason Resch. Updatable obliv-
ious key management for storage systems. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security,
pages 379–393, 2019.

[39] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. OPAQUE: An asym-
metric PAKE protocol secure against pre-computation attacks. In Jes-
per Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology –
EUROCRYPT 2018, Part III, volume 10822 of Lecture Notes in Computer
Science, pages 456–486, Tel Aviv, Israel, April 29 – May 3, 2018. Springer,
Heidelberg, Germany.

97

Bibliography

[40] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. On the (in)security
of the diffie-hellman oblivious PRF with multiplicative blinding. In
Juan Garay, editor, PKC 2021: 24th International Conference on Theory and
Practice of Public Key Cryptography, Part II, volume 12711 of Lecture Notes
in Computer Science, pages 380–409, Virtual Event, May 10–13, 2021.
Springer, Heidelberg, Germany.

[41] Novak Kaluderović, Thorsten Kleinjung, and Dusan Kostic. Improved
key recovery on the legendre PRF. Cryptology ePrint Archive, 2020.

[42] Panos Kampanakis and Tancrède Lepoint. Do we need to change some
things? open questions posed by the upcoming post-quantum migra-
tion to existing standards and deployments. Cryptology ePrint Archive,
2023.

[43] Marcel Keller. MP-SPDZ: A versatile framework for multi-party com-
putation. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, 2020.

[44] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster
malicious arithmetic secure computation with oblivious transfer. In
Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, An-
drew C. Myers, and Shai Halevi, editors, ACM CCS 2016: 23rd Confer-
ence on Computer and Communications Security, pages 830–842, Vienna,
Austria, October 24–28, 2016. ACM Press.

[45] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making
SPDZ great again. In Jesper Buus Nielsen and Vincent Rijmen, edi-
tors, Advances in Cryptology – EUROCRYPT 2018, Part III, volume 10822
of Lecture Notes in Computer Science, pages 158–189, Tel Aviv, Israel,
April 29 – May 3, 2018. Springer, Heidelberg, Germany.

[46] Dmitry Khovratovich. Key recovery attacks on the Legendre PRFs
within the birthday bound. Cryptology ePrint Archive, 2019.

[47] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu.
Efficient batched oblivious PRF with applications to private set inter-
section. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel,
Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016: 23rd Con-
ference on Computer and Communications Security, pages 818–829, Vienna,
Austria, October 24–28, 2016. ACM Press.

[48] Luciano Maino and Chloe Martindale. An attack on sidh with arbitrary
starting curve. Cryptology ePrint Archive, 2022.

98

Bibliography

[49] Vasileios Mavroeidis, Kamer Vishi, Mateusz D Zych, and Audun
Jøsang. The impact of quantum computing on present cryptography.
arXiv preprint arXiv:1804.00200, 2018.

[50] Omid Mir, Michael Roland, and René Mayrhofer. Decentralized,
privacy-preserving, single sign-on. Security and Communication Net-
works, 2022:1–18, 2022.

[51] Moni Naor and Omer Reingold. On the construction of pseudo-random
permutations: Luby-Rackoff revisited (extended abstract). In 29th An-
nual ACM Symposium on Theory of Computing, pages 189–199, El Paso,
TX, USA, May 4–6, 1997. ACM Press.

[52] Moni Naor and Omer Reingold. Number-theoretic constructions of
efficient pseudo-random functions. Journal of the ACM, 51(2):231–262,
2004.

[53] National Institute of Standards and Technology. NIST three draft
fips for post-quantum cryptography. 2023. https://csrc.nist.gov/

news/2023/three-draft-fips-for-post-quantum-cryptography,
Accessed: 2023-08-29.

[54] István András Seres, Máté Horváth, and Péter Burcsi. The legendre
pseudorandom function as a multivariate quadratic cryptosystem: se-
curity and applications. Applicable Algebra in Engineering, Communica-
tion and Computing, pages 1–31, 2023.

[55] Peter W Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM review, 41(2):303–
332, 1999.

[56] Wim van Dam and Sean Hallgren. Efficient quantum algorithms for
shifted quadratic character problems. arXiv preprint quant-ph/0011067,
2000.

[57] Xiaoyi Yang, Yanqi Zhao, Sufang Zhou, and Lianhai Wang. A
lightweight delegated private set intersection cardinality protocol. Com-
puter Standards & Interfaces, 87:103760, 2024.

99

https://csrc.nist.gov/news/2023/three-draft-fips-for-post-quantum-cryptography
https://csrc.nist.gov/news/2023/three-draft-fips-for-post-quantum-cryptography

	Contents
	Introduction
	Motivation
	Contributions
	Organisation

	Background
	Oblivious Pseudo-Random Functions
	Legendre Symbols
	The Legendre PRF
	Cryptanalysis of the Legendre PRF
	Higher-power residues

	Universally Composable Security
	Related Work

	The Legendre OPRF
	The Legendre OPRF
	Ideal OPRF functionality
	Legendre OPRF

	Insecurity of the Legendre OPRF
	Correlated OPRF
	Ideal functionality
	Security analysis of the Legendre OPRF
	Strengthening of the notion

	Correlated OPRF with Prefixes
	Higher-Power Residue OPRF

	Alternative Uses of Correlated OPRFs
	Password-Protected Secret Sharing based on Correlated OPRF

	Performance
	Overview
	Legendre OPRF
	128-bit prime
	256-bit prime
	Semi-honest security

	Higher-Power Residue OPRF
	Semi-honest performance

	Ram Usage
	Comparison

	Conclusion
	Future Work

	Appendix
	Additional Benchmarks
	Complete results for the semi-honest model
	Complete results for the Power Residue OPRF

	Bibliography

