
Analysis of the EDHOC Lightweight
Authenticated Key Exchange

Protocol

Master Thesis

Marc Ilunga Tshibumbu Mukendi

August 2, 2022

Advisors: Prof. Dr. Kaveh Razavi
Prof. Dr. Kenny Paterson

Dr. Felix Günther

Applied Cryptography Group
Institute of Information Security

Department of Computer Science, ETH Zürich

Abstract

A formal cryptographic analysis of the Ephemeral Diffie-Hellman Over
COSE protocol in SIG-SIG mode is presented. More specifically, we an-
alyze the protocol specification in draft 14 [SMP22a] to which we add
minor changes that will be added to the protocol specification [Mat22].
EDHOC is a lightweight key exchange protocol for constrained envi-
ronments, promising to be suitable for low-powered devices operat-
ing in restricted networks. The design of EDHOC is informed by the
SIGMA [Kra03] family of key exchange protocols. Protocol partici-
pants authenticate to their peers using either a long-term signing key
pair or a long-term Diffie-Hellman key. In this thesis, we analyze the
EDHOC SIG-SIG variant wherein both the protocol initiator and the
responder mutually authenticate with digital signatures. This protocol
variant is an instantiation of the “MAc-then-SIGn” variant of SIGMA.
We employ the Multi-Stage Key Exchange model [FG14, Gü18] to an-
alyze the EDHOC SIG-SIG protocol. We pay special attention to the
use of so-called “credential identifiers” that are short, not necessarily
unique, identifiers of a user’s long-term verification key and are used
in the protocol to limit the bandwidth overhead. To this end, we design
a tailored MSKE model for EDHOC; primarily inspired by analysis of
TLS 1.3 [DFGS21] by Dowling et al., we make use of further extensions
to the MSKE [DDGJ22, DG21] to capture multiple security properties
in a single game. Our analysis shows that EDHOC SIG-SIG is struc-
turally sound and a secure instantiation of the “MAc-then-SIGn” pro-
tocol. Our proof shows that the EDHOC SIG-SIG protocol achieves the
desired security properties including key indistinguishability, explicit
authentication, and forward secrecy. Along the way, we gain insights of
independent interest on the “MAc-then-SIGn” protocol and some of its
shortcomings in contrast to other instantiations of the SIGMA protocol.
Finally, we discuss our involvement with the LAKE working group at
the IETF and our contributions to the EDHOC’s specification resulting
from the insights of our analysis.

i

Acknowledgments

First and foremost, I thank my supervisor, Dr. Felix Günther. He patiently
guided me during my thesis project for six months, even when the project
stagnated for a long time. He was generous with his time and contributed
many ideas, and his expertise in protocol analysis and key exchange proto-
col was invaluable. He supervised my interaction with the LAKE working
group, and I cherish the freedom I had to learn and explore cryptography
beyond the scope of the thesis. Moreover, he encouraged me to maintain
a good life balance. This thesis would not have been possible without our
shared passion for trains and working in exotic places.

I thank Prof. Kenny Paterson for the opportunity to do my thesis with the
Applied Cryptography group; his applied cryptography lecture strength-
ened my existing passion for cryptography. I enjoyed my time in the group
and the friendly chats. The weekly presentation by talented students and
guests made the experience even more enjoyable.

I want to thank Prof. Kaveh Razavi for his supervision and facilitation of
the administration at the ITET department.

I am grateful for the LAKE working group at the IETF and their openness
and for welcoming our contributions.

My family has supported and encouraged me in virtually every way. My
parents arranged for seventeen-year-old me to come to Switzerland to study
science and technology. I wonder if they realized the stress my endeavor
would cause them; they supported me through it all and gracefully. I thank
my lovely partner Maya for her precious support during my studies. Thank
you for putting up with me during these many semesters (I stopped count-
ing) and accepting the inconvenient vacation schedule of ETH students. I
love you! I am thankful to Rob and Helen Fielding for supporting Maya and
me throughout my studies. My friends from C3 Zürich have been a great
source of encouragement. Thank you, Eszter and Satya, for allowing me to
take your new baby Dani with me on my thinking walks. The swing dancers
at Langstrassenkultur helped me keep my mental sanity. The list of people
I would like to thank is too large to fit on this page. Nevertheless, thank
you to everyone who took an interest in my thesis, wanting to know what I
was doing. I do, however, apologize for long rants on indifferentiability and
how it is related to chopping onions, and in the end, I would still not have
properly explained what I was working on. The opportunity to share one’s
passion sometimes comes with risks, but I shall work on improving that.

I am deeply indebted to the electrical engineering department at ETH Zürich
for giving me a second chance to complete my Master’s degree. Finally,
thank you, Felix, Maya, Giacomo, and Helen, for proofreading this thesis.

ii

Act justly, love mercy, walk humbly.

iii

Contents

Contents v

1 Introduction 1
1.1 Overview and Motivation . 1

1.1.1 Problem statement . 1
1.1.2 Existing alternative for EDHOC: TLS 1.3 2
1.1.3 Overview of EDHOC’s design 3

1.2 Contributions . 4
1.3 Related and Concurrent Work 5
1.4 Outline . 6

2 Preliminaries 7
2.1 Notation . 7
2.2 Cryptographic Primitives . 8

2.2.1 Hash function . 8
2.2.2 Pseudo-Random Functions 9
2.2.3 Key Derivation Functions 10
2.2.4 Message Authentication Codes 10
2.2.5 Digital Signatures . 11
2.2.6 Authenticated Encryption 14
2.2.7 Pseudo-Random Function Diffie–Hellman Oracle As-

sumption . 15

3 The EDHOC SIG-SIG Protocol 17
3.1 Overview . 17
3.2 Identities and Long-Term Keys 18
3.3 Details of the SIG-SIG mode . 18
3.4 Key Schedule of EDHOC SIG-SIG 21

4 Code-based Multi-stage Key Exchange Model 25

v

Contents

4.1 The Multi-stage Key Exchange Model 25
4.1.1 MSKE model for EDHOC 26

4.2 Model Syntax . 27
4.2.1 Protocol Syntax . 27
4.2.2 Protocol variables . 28
4.2.3 Session variables . 28

4.3 MSKE Security Game . 29
4.3.1 MSKE security of Key Exchange Protocols 29

5 Security Analysis of EDHOC SIG-SIG Mode 33
5.1 EDHOC SIG-SIG as an MSKE protocol 33
5.2 Protocol properties . 33
5.3 MSKE security of EDHOC SIG-SIG 36

5.3.1 Proof details . 36

6 Discussion and Conclusion 53
6.1 Comments on the design of EDHOC 53

6.1.1 Chasing a moving target 53
6.1.2 Non-unique credential identifiers 53
6.1.3 Identity protection . 54

6.2 Interactions with the IETF . 54
6.3 Contributions to the Design of EDHOC 55

6.3.1 Early comments on draft 12 55
6.3.2 Further comments on draft 14 56

6.4 Limitations . 57
6.4.1 Scope limited to the SIG-SIG mode 57
6.4.2 Loose security bounds 57
6.4.3 Out-of-scope considerations 57

6.5 Future Work . 58

A Appendix 59
A.1 Identity Mis-Binding in MAc-then-SIGn 59

Bibliography 61

vi

Chapter 1

Introduction

1.1 Overview and Motivation

1.1.1 Problem statement

The proliferation of low-powered devices. In the last decade, we have ob-
served a tremendous proliferation of low-powered computing devices. De-
vices such as smart fridges or smart lightbulbs, colloquially referred to as
“Internet of Things” (IoT), are becoming ubiquitous in many public spaces
as well as private homes. Besides computational restrictions, IoT devices
often operate in environments with network constraints. For instance, sev-
eral IoT deployments operate on Low-Power Wide Area Networks such as
LoRaWAN1. Cisco, a network equipment manufacturing company, forecasts
in their 2020 annual report2 that that by 2023 machine-to-machine commu-
nications will account for nearly half of the global internet connections.

Poor security track record. Although this increase in connectedness brings
along numerous fascinating applications and a certain level of convenience,
it also brings its share of challenges. Devices that operate in constrained en-
vironments are designed to offer a limited number of functionalities. With
computational and even bandwidth constraints, the security of IoT applica-
tions is generally out of the picture. Hence, the famous saying “the ’S’ in
IoT stands for security”. Consequently, insecure IoT devices create newer and
larger attack surfaces. For instance, applications for low-powered devices
that transfer data over an insecure channel pose great dangers to privacy.
Firmware updates over insecure channels can be exploited by network at-
tackers to take control of the device. Because of their ubiquity, compromised

1LoRaWAN specification: https://lora-alliance.org/about-lorawan/.
2Cisco, annual report 2020: https://www.cisco.com/c/en/us/solutions/collateral/

executive-perspectives/annual-internet-report/white-paper-c11-741490.html.

1

https://lora-alliance.org/about-lorawan/
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html

1. Introduction

devices give attackers access to further networks, compounding the initial
and relatively low-cost compromise of the device.

Towards securing communications in constrained environments. Provid-
ing secure communications in restricted environments comes with two main
challenges: first, the secure protocol designer is constrained to a limited set
of efficient cryptographic primitives available on low-end devices. Second,
the overhead of said protocols (bandwidth and round trips) must be kept at
a minimum. A direct implication is a potential incompatibility with exist-
ing secure protocols; such as TLS 1.3 [Res18] due to the size of the message
sent during the handshake; consequently, new tools and protocols that meet
the numerous demands of constrained environments are needed. To this ef-
fect, the IETF set out to standardize protocols and efficient communications
data formats for constrained devices. Of relevance is the Object Security
for Constrained RESTful Environments protocol, (OSCORE) [SMPS19] pro-
tocol. Similar to the TLS 1.3 record protocol, the OSCORE protocol provides
security of application data. OSCORE relies on the Concise Binary Object
Representation (CBOR) [BH20] data format to keep the bandwidth overhead
low. Moreover, the CBOR Object Signing and Encryption (COSE) [Sch17]
provides a standard way to perform cryptographic operations atop CBOR
objects. As a secure transport protocol, OSCORE requires that protocol par-
ticipants have established a so-called security context. At a high level, this
means the OSCORE requires an established session key. It stands then that
an essential missing piece in this technological chain for securing commu-
nications in constrained devices is a lightweight and secure key exchange
protocol.

EDHOC, an effort to close the gap. The Ephemeral Diffie–Hellman Over
COSE protocol, or EDHOC, is an effort toward closing the gap due to a miss-
ing key exchange protocol adequate for constrained environments. EDHOC
is a lightweight authenticated key exchange protocol (LAKE) for constrained
environments. Currently, in draft 15, as of this writing, the LAKE working
group at the Internet Engineering Task Force leads the development of ED-
HOC.

1.1.2 Existing alternative for EDHOC: TLS 1.3

A robust, battle-tested protocol. TLS 1.3 [Res18] is one of the most widely
used protocols on the internet. The TLS 1.3 protocol decomposes into two
sub-protocols: the handshake protocol is an authenticated key exchange, and
the record protocol protects application data. TLS version 1.3 is a full do-
over of previous versions plagued by several vulnerabilities. Similar to ED-
HOC, TLS 1.3 finds its foundation in the SIGMA protocol. Unlike EDHOC,
TLS 1.3 is an older protocol that underwent numerous security analyses,

2

1.1. Overview and Motivation

STATIC DH Keys Signature Keys

kid x5t kid x5t
Message 1 37 37 37 37
Message 2 45 58 102 115
Message 3 19 33 77 90

Total 101 128 216 242

Table 1.1: Sizes of protocol message in EDHOC with static Diffie–Hellman and signature keys.
CBOR Web Token credentials use its kid field as a credential identifier, whereas X.509 certificates
use the x5t hash header.

both computational and using formal methods [DFGS21, DDGJ22, KMO+14,
CHH+17]. Furthermore, the widespread nature of TLS 1.3 consequently
gave rise to many optimized implementations, keeping the overhead in-
curred by TLS.13 on latency to a minimum [LKK21].

Using TLS 1.3 in constrained environments. Besides a shared theoreti-
cal underpinning (SIGMA), TLS 1.3 also supports most primitives needed
for EDHOC, including 1) X25519 for Diffie–Hellman, 2) AES-GCM, AES-
CCM, and Chacha20/Poly1305 for authenticated encryption 3) Ed25519 and
ECDSA over NIST curves for digital signatures. The three classes of primi-
tives listed before are the most commonly used and are enough to cover all
modes of authentication in EDHOC. This begs the question, why not simply
use TLS 1.3 in EDHOC?

TLS 1.3 is not lightweight. A major drawback of TLS 1.3 in constrained
environments is its bandwidth overhead. Mattsson et al. [MPV20] compared
the bandwidth overhead of EDHOC to that of TLS 1.3 and DTLS.3. Their ex-
periments show that EDHOC with a minimum total bandwidth usage as low
as 101 bytes outperforms both competitors (D)TLS1.3. For instance, in com-
parison to DTLS 1.3, EDHOC messages can use up to six times less band-
width3. Experimental measurements of bandwidth overhead are shown in
Table 1.1.

1.1.3 Overview of EDHOC’s design

Authentication methods. As already discussed, EDHOC in SIG-SIG mode
is an instantiation of the SIGMA protocol in its “MAc-then-SIGn” incarna-
tion, similarly to the IKEv2 protocol [CH98]. Whereas the “original” SIGMA
protocol sends both a signature and a MAC tag, “MAc-then-SIGn” puts the

3EDHOC draft 15, section 1.2: https://www.ietf.org/archive/id/draft-ietf-lake-edhoc-
15.html#section-1.2.

3

https://www.ietf.org/archive/id/draft-ietf-lake-edhoc-15.html#section-1.2
https://www.ietf.org/archive/id/draft-ietf-lake-edhoc-15.html#section-1.2

1. Introduction

MAC “under” the signature, thereby saving a few bytes on the wire. Ad-
ditionally, EDHOC provides an authentication method based on long-term
Diffie–Hellman keys known as STAT-STAT. Finally, authentication methods
may be mixed, thereby giving the two additional modes STAT-SIG and SIG-
STAT.

Key usages. The primary use case is establishing a security context for the
OSCORE protocol. However, EDHOC can be used for authentication only
where no application data needs to be sent. What’s more, it provides an
exporter mechanism to derive further keys if needed in other applications. It
also provides a lightweight key update mechanism to limit the lifetime of key
material without re-running the protocol again.

Long-term secrets and credentials. Each protocol participant in EDHOC is
associated with a long-term key pair (for Diffie–Hellman or signing) called
a credential. It is a data structure containing a unique identifier and the cor-
responding DH share or verification key. In contrast to TLS 1.3, EDHOC
assumes that any device typically has local access credentials of other de-
vices. Hence, further bandwidth savings is achieved by sending a short
credential identifier rather than the entire credential itself, contrary to TLS 1.3,
where certificates are always sent by at least one protocol participant.

A close look at the specification for credential identifiers shows that such an
identifier need not be unique and may reference multiple credentials belong-
ing to potentially different users. Hence, in EDHOC, the receiver of a signa-
ture (both initiators and responders) must try all possible public keys asso-
ciated with the received credential identifier before determining the identity
of the peer. Therefore, it is reasonable to investigate the implicit assumption
that signature schemes must provide, as we did in this thesis project.

1.2 Contributions

In this thesis, we performed a cryptographic analysis of the EDHOC pro-
tocol in SIG-SIG mode for authentication. Our main contributions are as
follows:

• We study the EDHOC protocol in SIG-SIG mode and specify a suitable
abstraction of its cryptographic core.

• We design a code-based multi-stage key exchange model [FG14, Gü18]
for the EDHOC protocol. Following previous work on TLS 1.3 [DFGS21,
DDGJ22], we capture key secrecy, explicit authentication, and forward
secrecy.

• Due to non-unique credential identifiers in EDHOC, we extend the
MSKE model to capture explicit authentication in a scenario allowing

4

1.3. Related and Concurrent Work

adversarial registration of long-term secrets following by the work of
Boyd et al. [BCF+13]. Our conservative approach allows considering
additional attack scenarios that are not necessarily a concern in proto-
cols like TLS 1.3.

• We give a game-based security proof for the EDHOC protocol in SIG-
SIG mode. Our analysis shows that the EDHOC protocol in SIG-SIG
mode is structurally sound and that all protocol components con-
tribute to the protocol’s security.

• We describe our interaction with the IETF, including the findings we
shared with the Lake working group and several improvements we
suggested to the EDHOC protocol. The changes we suggested to draft
14 have an official pull request awaiting to be merged to the main
draft [Mat22]. Our suggestions strengthen explicit authentication, re-
quire minor changes, and were also independently verified by a team
performing a symbolic analysis of EDHOC. We are therefore confi-
dent that our suggestion will be soon integrated into the main protocol
specification.

1.3 Related and Concurrent Work

Krawczyk introduced the SIGMA [Kra03] family of authenticated key ex-
change protocols. SIGMA is the basis of the IKEv2 protocol [CH98], the TLS
1.3 handshake protocol [Res18] and the EDHOC SIG-SIG protocol [SMP22a].
Numerous works have analyzed the security of SIGMA protocols; in the
context of TLS 1.3, Dowling et al. [DFGS21] analyzed the TLS 1.3 handshake
protocol. Additionally, Davis and Günther [DG21] provided tighter security
proofs for both SIGMA and TLS 1.3 handshake. Concurrently, Diemert and
Jager [DJ21] also provided a tight security proof for TLS 1.3. Later, Davis
et al. [DDGJ22] extended the results to the PSK modes, thereby closing the
gaps between theoretical analysis and practical deployment of TLS 1.3.

When it comes to EDHOC, Bruni et al. [BSJGPS18] performed a formal veri-
fication of EDHOC using ProVerif; however, their analysis is only limited
to draft 8. Norman et al. [NSB21] extended the work of Bruni to cover
newly included mixed authentication modes. However, their work does not
cover the current draft version. More recently, Cheval et al. [CJKK22] used
their formal analysis tool chain, SAPIC+, to analyze all four authentication
methods in EDHOC. Concurrent to our computational analysis, Cottier and
Pointcheval [Cot22] worked on a tight computational analysis for EDHOC
STAT-STAT.

5

1. Introduction

1.4 Outline

The remaining of this document proceeds as follows. In Chapter 2, we
recap some fundamental cryptographic notions and introduce the notation
we use in this thesis. In Chapter 3, we describe the EDHOC protocol in
SIG-SIG mode. In Chapter 4 we introduce our MSKE model in preparation
for the analysis of the EDHOC protocol. Our analysis and proof is given
in Chapter 5. Finally, in Chapter 6, we discuss various aspects of the
standardization process and their interplay with this project; we conclude
by discussing limitations and proposing directions for future work.

6

Chapter 2

Preliminaries

In this chapter, we introduce the notation we will use in the rest of the
thesis; we also summarize the syntax and assumptions of the cryptographic
primitives used in EDHOC. We refer to [BS] for a detailed treatment of the
cryptographic primitives.

2.1 Notation

Pseudocode. We use the notation x ← a to indicate that the value a is
assigned to the variable x. x $←− X denotes sampling x at random from
a domain X ; Unless otherwise specified, the sampling is assumed to be
efficient and follows a uniform distribution on X .

Sequences, tuples, and arrays. We use the notation (v1, v2, . . . , vn) to de-
note a sequence of n elements each from an arbitrary domain; we use the
terms “sequence”, “tuple”, and “arrays” interchangeably. For a domain X ,
xn refers to a sequence of n elements from X ; given a sequence x, xi refers
to the i’th element of the sequence. Most cryptographic primitives, such
as hash functions, operate on bit strings, whereas the EDHOC specification
operates on sequences of objects encoded with the Concise Binary Object
Representation (CBOR [BH20]). CBOR unambiguously encode objects and
sequences into bit strings; hence for each function called on a tuple, we im-
plicitly assume that internally, the function first uses an encoding function
ξ() to map sequences or single CBOR objects to bit strings1. For a given
sequence xn, |xn| denotes the length of the bit string encoding of xn, i.e., |xn|
is the length of ξ(xn). x∥y denotes the concatenation of the bitstrings x and
y.

1In the remaining of this text, we do not explicitly show this encoding for conciseness.

7

2. Preliminaries

Groups and Diffie–Hellman. Let (G,+) be a group, we consider cyclic
groups of prime order q, i.e., G = ⟨G⟩ is the set

{
x ∗ G : x ∈ Zq

}
gener-

ated by G. Throughout this document, we use the additive notation to reflect
that EDHOC only utilizes a (sub)group of an elliptic curve over a finite field.
For x ∈ Zq and Y ∈ G, DH(x, Y) denotes the Diffie–Hellman function that
computes the shared secret S = x ∗Y.

Games, adversaries, and advantages. We carry out the analysis of EDHOC
in the code-based game-playing framework for provable security [BR06].
The security of a cryptographic scheme or protocol Π is captured via a
game G(Π) played by an adversary (or distinguisher) A that interacts with
the game through several named oracles. We will sometimes refer to the
collection of game oracles as challenger. In particular, each game provides
two oracles OInitialize and OFinalize; a winning condition is defined and the
oracle OFinalize outputs 1 if the condition is satisfied and 0 otherwise. We
restrict our adversaries to the class At,q of efficient adversaries that run in
time at most t and make at most q queries to its oracles. We do not give fully
concrete security bounds; hence, we will not explicitly state any other of the
adversary’s resources. For any adversary A ∈ At,q, the advantage of A in
winning the game G(Π), denoted by AdvG

A(Π), captures the performance
of A which is the probability that OFinalize outputs 1 i.e.:

AdvG
A(Π) = Pr[G(Π)→ 1].

When the context is unambiguous, we simply write G and AdvG
A instead

of G(Π) and AdvG
A(Π) respectively. We similarly omit the input to game

oracles. For short games, we inline the winning condition in the advantage
statement and do not explicitly show the game.

2.2 Cryptographic Primitives

The main cryptographic primitives in EDHOC are a cryptographic hash
function, a pseudo-random function, a message authentication code, a dig-
ital signature scheme, a key derivation function, and an authenticated en-
cryption scheme.

2.2.1 Hash function

A hash function deterministically computes a short fingerprint for inputs
of arbitrary length. In the context of EDHOC, the hash function’s primary
usage is to hash the communication transcript, which is used to assert the
authenticity of the key exchange and the peer. We will concern ourselves
with cryptographic hash functions only and require that they are collision-
resistant.

8

2.2. Cryptographic Primitives

The game GPRF(F)

OInitialize()

1 : b $←− {0, 1}

2 : f $←− Funcs[X ,Y]

3 : k $←− K

Opr f (x)

1 : y0 = F(k, x)

2 : y1 = f (x)

3 : return yb

OFinalize(b′)

1 : return b′ = b

Figure 2.1: The PRF security game for F

Definition 2.1 (Collision-resistant hash function) A hash function H : {0, 1}∗ →
{0, 1}λ, λ ∈ N is a deterministic mapping H(m) = hm ∈ {0, 1}λ, ∀m ∈ {0, 1}∗.
The relevant security notion is collision resistance (CR), namely the (in)feasibility
of producing values m ̸= m′ such that H(m) = H(m′) for a given adversary A.
More precisely, collision resistance is captured by a game GCR

A (H). The advantage
of A is defined as:

AdvCR
A (H) = Pr

[
(m, m′) $←− A : H(m) = H(m′) ∧m ̸= m′

]
.

Hash functions in EDHOC. Each ciphersuite specifies a hash function to
be used. We generically refer to the hash function as H. In each ciphersuite,
H is instantiated with either of SHA2, Shake128 or Shake256. Shake128 and
Shake256 are sponge-based extendable output functions (XOF [KCP16]).

2.2.2 Pseudo-Random Functions

A common task in EDHOC is to generate multiple random keys from an
assumed (pseudo)random key. This is achieved using a pseudo-random
function.

Definition 2.2 (Pseudo-Random Function) A pseudo-random function F : K ×
X → Y is a deterministic function that takes as input a key k and a value x and
outputs a value y. Intuitively, F is a PRF if for a randomly chosen key k, it is
computationally indistinguishable from a function f : X → Y chosen uniformly at
random from Funcs[X ,Y], the set of all functions from X to Y .

Throughout the document, we unashamedly use the term “PRF” to refer to
a function defined in this section and the associated security notion that we
formalize next.

Security of PRFs. Let A be any efficient distinguisher for F in the sense
of the game GPRF (Figure 2.1). We define A’s advantage against the PRF
security of F as follows:

AdvPRFA (F) = Pr
[
GPRF(F)→ 1

]
.

9

2. Preliminaries

EXPAND as a PRF in EDHOC. The Expand module in EDHOC defined
as Expand(k, (label, context, len), len) (Section 2.2.3) is a variable output length
PRF that outputs bit strings of length len when queried on the key k and
input label.

2.2.3 Key Derivation Functions

To derive the final key and other keys used during the key exchange, ED-
HOC uses a key derivation function. The key derivation in EDHOC closely
follows the design of HKDF [Kra10], it is realized via two modules. The
first Extract(s, ikm) that extracts a pseudo-random key from ikm. The second
module is the function Expand(prk, info, len) that generates from the pseudo-
random key prk another length-len pseudo-random key.

The extract module

The output of the anonymous Diffie–Hellman key exchange protocol is a
group element, and its bitstring representation is usually not a uniform ran-
dom variable. Hence, one needs a so-called extractor to extract a uniform
random key. We note that Krawczyk described assumptions required for
the function HKDF.Extract in [Kra10]. In our analysis of EDHOC, we will
rely on the PRF-ODH assumption described in Section 2.2.7.

Extract in EDHOC. Whenever the hash function is SHA2, Extract(s, ikm)
is instanciated with HKDF.Extract , i.e., Extract(s, ikm) = HMAC(s, ikm). If
the hash algorithm is either Shake128 or Shake256, then Extract(s, ikm) =
KMAC(s, ikm, len, ""). Here, s is used as the key for KMAC [KCP16].

The Expand module

Once a pseudo-random key prk is obtained from the extractor, one wishes to
use it to generate other keys. The Expand(prk, (label, context, len), len) module
is used for this purpose. We assume that Expand is a PRF as defined in
Section 2.2.2.

Expand in EDHOC. Expand(prk, info, len) = HKDF.Expand(prk, info, len) (an
iterated application of HMAC [BCK96]) whenever the hash function is SHA2.
If the hash function is any of the sponge-based XOFs, Expand(prk, info, len) =
KMAC(prk, info, len, "").

2.2.4 Message Authentication Codes

Asserting the authenticity of a received message given a shared secret key
can be accomplished using a message authentication code (MAC).

10

2.2. Cryptographic Primitives

Game GEUF-CMA(M)

OInitialize()

1 : k←M.KGen

2 :M← ∅

Omac(m)

1 : τ
$←−M.Tag(k, m)

2 :M←M∪{m}
3 : return τ

OFinalize(m, τ)

1 : return
(
M.Vf(k, m, τ) = 1
∧ m /∈ M

)

Figure 2.2: The MAC security game

Definition 2.3 A message authentication code (MAC) scheme M is a triple of
efficiently computable algorithms (KGen,Tag,Vf) where:

• KGen is a probabilistic algorithm that generates a (uniform) random MAC
key k ∈ K.

• Tag : K ×M → T is a (possibly probabilistic) algorithm that on input a
MAC key k and a message m computes a tag τ

$←− Tag(k, m).

• Vf : K ×M× T → {0, 1} is a deterministic algorithm that takes as input
a key k, a message m, a tag τ and outputs a bit b ← Vf(k, m, τ), b ∈ {0, 1}.
The output is 1 when the tag is valid and 0 otherwise.

Correctness. We demand that ∀k, m ∈ K×M : Pr[Vf(k, m,Tag(k, m))] = 1.

Security of MAC schemes. The standard security notion for MAC scheme
is Existential Unforgeability under Chosen-Message Attack (EUF-CMA); this no-
tion states that it is infeasible for an attacker A to produce a tag τ on a new
message m that was not mac’ed before, even given access to an oracle Omac
that computes and returns tags τi on adversarially chosen messages mi (See
Figure 2.2).

PRFs as MAC scheme

It is well-known that any pseudo-random function (Section 2.2.2) with a
”large” output range is a secure deterministic MAC scheme. In EDHOC,
MAC tags are computed exclusively with the Expand function, which is as-
sumed to be a PRF. Although the MAC functionality is syntactically used
in EDHOC for authentication, the MAC tag is placed ”under” the signature
(not sent) and is only implicitly verified. Therefore, the MAC in EDHOC is
mainly used as a PRF.

2.2.5 Digital Signatures

A digital signature scheme allows a message sender (and only them) to
produce publicly verifiable proof that the message is authentic. In EDHOC,

11

2. Preliminaries

Games GEUF-CMA, GSUF-CMA, GS-UEO

OInitialize()

1 : (sk, pk)← S.KGen

2 :M← ∅

3 : return pk

OFinalize((m, σ))

1 : return
(
S.Vf(pk, m, σ) = 1
∧ m /∈ M

) OSign(m)

1 :M←M∪{m}
2 : return S.Sign(sk, m)

OInitialize(m)

1 : (sk, pk)← S.KGen

2 :M← ∅

3 : return pk

OFinalize(m, σ)

1 : return
(
S.Vf(pk, m, σ) = 1
∧ (m, σ) /∈ M

) OSign(m)

1 : σ
$←− S.Sign(sk, m)

2 :M←M∪{(m, σ)}
3 : return σ

OInitialize()

1 : (sk, pk)← S.KGen

2 :M← ∅

3 : return pk

OFinalize(m, m′, σ, pk′)

1 : return

(m, σ) ∈ M
∧ pk ̸= pk′
∧ S.Vf(pk′, m′, σ) = 1


O∗Sign(m)

1 : σ
$←− S.Sign(sk, m)

2 :M←M∪{(m, σ)}
3 : return σ

Figure 2.3: The EUF-CMA game (top), the SUF-CMA game (middle) and the S-UEO game
(bottom).

signatures are used to authenticate the peers.

Definition 2.4 A digital signature scheme S is a triple of efficiently computable
algorithms (KGen,Sign,Vf) where:

• KGen is a probabilistic algorithm that generates a signature key pair (sk, pk) ∈
Ksk ×Kpk.

• Sign : Ksk ×M → Σ is a (possibly probabilistic) algorithm that on input a
signature key sk and a message m computes a signature σ

$←− Sign(sk, m).

• Vf : Kpk ×M× Σ → {0, 1} is a deterministic algorithm that takes as
input a public key pk, and a message m, and a signature σ and outputs a
bit b = Vf(pk, m, σ). The output is 1 when the signature is valid and 0
otherwise.

Correctness. ∀(sk, pk) $←− KGen, m ∈ M : Pr[Vf(pk, m, Sign(sk, m))] = 1.

Security of Digital Signatures Schemes

Definition 2.5 (Existential Unforgeability under Chosen-Message Attack)
For a signature scheme S and an efficient adversaryA, Existential Unforgeability
under Chosen Message Attack (EUF-CMA) is a security notion capturing A’s

12

2.2. Cryptographic Primitives

success in forging signatures for new messages given access to a signing oracle (See
Figure 2.3). The advantage of A is defined by:

AdvEUF-CMA
A (S) = Pr

[
GEUF-CMA(S)→ 1

]
.

Definition 2.6 (Strong Unforgeability under Chosen Message Attack) For a
signature scheme S and an efficient adversary A, Strong Unforgeability under
Chosen Message Attack (SUF-CMA) is a security notion that captures A’ suc-
cess in forging a new message-signature pair given access to a signing oracle (see
Figure 2.3). We define A’s advantage as follows:

AdvSUF-CMA
A (S) = Pr

[
GSUF-CMA(S)→ 1

]
.

Exclusive Ownership of Signatures

To analyze EDHOC, we additionally employ the Strong Universal Exclusive
Ownership security notion put forward by [BCJZ20].

Definition 2.7 (Strong Universal Exclusive Ownership) A signature scheme
S is said to provide Strong Universal Exclusive Ownership (S-UEO) against
an adversary A if: given a public key pk and access to the signing oracle with the
corresponding signing key sk, it is infeasible for an adversary to create a different
public key pk′ ̸= pk and a message m′ such that Vf(pk′, m′, σ) = 1 for σ that
was previously obtained from the signing oracle (see Figure 2.3). A’s advantage is
defined as follows:

AdvS-UEO
A (S) = Pr

[
GS-UEO(S)→ 1

]
.

The S-UEO notion implies two related and weaker notions; namely, Strong
Conservative Exclusive Ownership (S-CEO) and Strong Destructive Exclusive
Ownership (S-DEO). The former corresponds to the case where the ad-
versary must have queried the signing oracle to obtain a signature for m′.
This scenario captures, for instance, duplicate signature key selection attacks
(DSKS) [MS04]. The latter encodes that m′ must not have been queried to
the signing oracle. Conversely, S-CEO and S-DEO jointly imply S-UEO. We
refer to [CDF+21] for further details.

Digital signatures in EDHOC. The signature scheme used in EDHOC,
hereafter referred to as Sig, is instantiated with either Ed25519 [BDL+12]
or ECDSA [JMV01].

We note here that Ed25519 was studied by Brendel et al. [BCJZ20] and was
shown to be SUF-CMA and S-UEO secure. In contrast, ECDSA is only

13

2. Preliminaries

EUF-CMA secure and fails to meet either SUF-CMA2 nor S-DEO3 (hence
is not S-UEO).

2.2.6 Authenticated Encryption

An authenticated encryption scheme with associated data(AEAD) is an en-
cryption scheme in which, given a message m and additional data ad, the
scheme ensures integrity for both m and ad. Still, secrecy is guaranteed for
m only. In EDHOC, AEAD is used to encrypt part of the handshake, thereby
providing identity protection.

Throughout this document, we use the nonce-based syntax for AEAD[Rog02].

Definition 2.8 (Nonce-based Authenticated Encryption with Associated Data)
A nonce-based authenticated encryption scheme with additional data E is a triple of
efficiently computable algorithms (KGen,Enc,Dec) where:

• KGen is a probabilistic algorithm that generates a random key k.

• Enc : K ×M×Ad ×N → C = {0, 1}∗ is a deterministic function that
takes a key k ∈ K, a message m ∈ M, an additional data ad ∈ Ad, a nonce
n ∈ N and returns a ciphertext c = E.Enc(k, m, ad, n) ∈ C.

• Dec : K× C ×Ad ×N → M∪ {⊥} is a deterministic function that takes
a key k ∈ K, a ciphertext c ∈ C, an additional data ad ∈ Ad, a nonce n ∈ N
and returns a message m ∈ M or a distinguished error symbol ⊥.

Correctness We demand that

∀k, m, ad, n : Dec(k,Enc(k, m, ad, n), ad, n) = m.

Definition 2.9 (Nonce-based AE security (nAE)) Let E be an AEAD scheme
and let A be an efficient adversary, the security of E against A is captured by the
game GnAE (Figure 2.4), which is is the all-in-one game put forward in [Shr04].
The performance of A in the game is characterized by A’s advantage, which we
defined as follows :

Adv
GnAE

A (E) = Pr
[
GnAE(E)→ 1

]
.

AEADs in EDHOC. We refer to the scheme used in EDHOC by AEAD.
Depending on the ciphersuite it is instantiated by ChaCha20/Poly1305, or
AES-GCM or AES-CCM.

2For a ECDSA signature σ = (r, s) ∈ F2
q, on m, (r,−s) is also a valid signature on m.

3See https://cronokirby.com/posts/2022/02/on-the-malleability-of-ecdsa/.

14

https://cronokirby.com/posts/2022/02/on-the-malleability-of-ecdsa/

2.2. Cryptographic Primitives

Game GnAE(E)

OInitialize()

1 : k $←− KGen

2 : b $←− {0, 1}
3 :N ← ∅

OFinalize(b′)

1 : return b = b′

OEnc(m, ad, n)

1 : c0 ← E.Enc(k, m, ad, n)

2 :N ← N ∪ {n}

3 : c1
$←− C |c0 |(|c1| = |c0|)

4 : if n ∈ N : return ⊥
5 : return cb

ODec(c, ad, n)

1 : m0 ← E.Dec(k, c, ad, n)

2 : m1 ← ⊥
3 : return mb

Figure 2.4: The all-in-one nAE security game for nonce-based AEAD.

Game GsnPRF-ODH(F)

OInitialize()

1 : b $←− {0, 1}

2 : (u, v) $←− Z2
q

3 : blocked← false

OChall(x∗)

1 : y∗0 ← F(uv ∗ G, x∗)

2 : y∗1
$←− Y

3 : return y∗b

Ou(T, x)

1 : if blocked : return ⊥
2 : if T /∈ G : return ⊥
3 : if (T, x) = (v ∗ G, x∗) :

4 : return ⊥
5 : y← F(u ∗ T, x)

6 : blocked← true

7 : return y

Ov(T, x)

1 : return ⊥

OFinalize(b′)

1 : return b = b′

Figure 2.5: The snPRF-ODH game. The OChall returns either output of F or a random value.
The oracle Ov is shown to return ⊥ because no queries are allowed.

2.2.7 Pseudo-Random Function Diffie–Hellman Oracle Assump-
tion

The PRF-ODH [BFGJ17] assumption has been introduced and used to an-
alyze DH-based key exchange protocols. In DH-based protocols, partic-
ipants exchange DH shares x ∗ G, y ∗ G and compute the shared secret
ss = DH(x, y ∗ G), which is further processed into a session key k with a
key derivation function and other auxiliary inputs. The assumption arises
naturally in such protocols in the presence of an active adversary who may,
for instance, obtain one or more values ss′ = DH(v, x ∗ G) for an adversari-
ally chosen v. Therefore, by the PRF-ODH assumption, we can consider the
final session key k to be an independent pseudo-random value even though
ss and ss′ are related in a nontrivial manner. In EDHOC, we will rely on the
snPRF-ODH security of the Extract function.

Definition 2.10 (The snPRF-ODH assumption) Let G = ⟨G⟩ be a cyclic group

15

2. Preliminaries

of order q, let F : G×X → Y be a PRF (see Section 2.2.2) that takes a key k ∈ G,
an input x ∈ X and outputs a value y = F(k, x) ∈ Y . The snPRF-ODH assump-
tion essentially states that F(k, ·) is a PRF keyed with k = uv ∗G for (u, v) $←− Z2

q.
Similiarly to the usual PRF security notion, an adversary is given access to an ora-
cle OChall that returns either the output of F or a uniform random value. However,
for PRF-ODH, the adversary is additionally given u ∗ G, v ∗ G and access (with
restriction) to oracles Ov and Ou defined by Ou,v(T, x) = F(Tu,v, x). The former
allows a single query whereas Ov allows no query. The security notion is made
more formal in the game GsnPRF-ODH (Figure 2.5). The advantage of an adversary
A is defined as:

AdvsnPRF-ODH
A (F) = Pr

[
GsnPRF-ODH(F)→ 1

]
.

The PRF-ODH assumption was studied in [BFGJ17], and the authors showed
that in the random oracle model, the strongest variant of the PRF-ODH
assumption under the strong Diffie–Hellman assumption.

PRF-ODH security of Extract. Brendel et al. [BFGJ17] showed that HMAC
is snPRF-ODH-secure, i.e., it is a PRF F(k, x) = HMAC(x, k). The authors
remark that the results will likely apply if a sponge-based construction re-
places the underlying hash function. However, in EDHOC, sponge-based
hashes are not used within the HMAC construction. Instead, EDHOC uses
KMAC for MACing and Shake128 or Shake256 for hashing and as a XOFs.
Therefore, it seems to be an open question whether we can also assume the
use of KMAC in Extract snPRF-ODH-secure. In our analysis, we assume that
this is the case.

16

Chapter 3

The EDHOC SIG-SIG Protocol

In this chapter, we describe the EDHOC protocol in SIG-SIG mode as de-
scribed in draft version 14 by the IETF LAKE working group [SMP22b]. The
scope of this thesis is limited to the SIG-SIG protocol. The protocol we de-
scribe here is slightly different from the one described in draft 14. In our
description, we include a few modifications we suggested to the working
group regarding the computation of transcript hashes [Mat22]. As we dis-
cussed before, the changes are expected to be included in the upcoming
drafts. We highlight said modifications at the relevant places in this chapter.
The current draft 15 introduces minor changes, including optional message
padding, the possibility for longer messages, and changes to the key sched-
ule1. The analysis presented in the following chapter should carry over to
draft 15 with minor changes.

3.1 Overview

Overview. EDHOC protocol is a lightweight authenticated key exchange (LAKE).
It is designed to be a secure and efficient authenticated key exchange pro-
tocol for constrained environments. Namely, the envisioned beneficiaries
of the protocol are low-end devices such as Internet of Things (IoT). Ad-
ditionally, devices operating in low-bandwidth environments, such as Lo-
RaWAN2, may take advantage of small-sized protocol messages needed to
execute the protocol.

Use cases. The primary use case of the EDHOC protocol is to establish a
security context for the Object Security for Constrained RESTful Environ-

1Overview of changes in draft 15: https://datatracker.ietf.org/meeting/114/

materials/slides-114-lake-edhoc-traces-01.
2https://lora-alliance.org/about-lorawan/.

17

https://datatracker.ietf.org/meeting/114/materials/slides-114-lake-edhoc-traces-01
https://datatracker.ietf.org/meeting/114/materials/slides-114-lake-edhoc-traces-01
https://lora-alliance.org/about-lorawan/

3. The EDHOC SIG-SIG Protocol

ments (OSCORE) protocol [SMPS19]. The EDHOC protocol is also used to
exchange keys for other purposes.

Design rationale. The design of the EDHOC protocol in SIG-SIG mode
draws from the design SIGMA [Kra03]. The “SIGn-and-MAc” family of au-
thenticated key exchange protocols has been used as the basis of the widely
deployed TLS 1.3 [Res18] and the Internet Key Exchange protocol[CH98].

3.2 Identities and Long-Term Keys

Credentials. In EDHOC, long-term verification keys are stored in so-called
credentials. It is assumed that in a typical deployment, credentials will be
locally accessible and don’t need to be transmitted. Furthermore, one or
multiple certification authorities attest of the binding between a credential
and a long-term verification key.

Credential identifiers. Given that the credentials are not transmitted, ED-
HOC uses credential identifiers instead to allow retrieval of the credentials.
These identifiers are typically short-sized and hence beneficial to keep over-
head usage low. Credential identifiers need not be unique; they can typically
refer to a set of credentials. In scenarios where a credential is not locally
available, credentials may also be embedded in the credential identifier.

3.3 Details of the SIG-SIG mode

The EDHOC protocol consists of three mandatory messages exchanged be-
tween the initiator I and the responder R. We hereafter refer to these mes-
sages as msg1, msg2 and msg3. Additionally, the responder may send a fourth
message to the initiator if EDHOC is used for authentication only and no
application data is exchanged. The fourth message is optional, and we omit
it from our analysis of the EDHOC protocol. Protocol participants addi-
tionally agree on the authentication method and ciphersuite to be used by
exchanging protocol messages, aborting the protocol run if agreement can-
not be reached on the chosen authentication method or ciphersuite. We
illustrate the protocol details in Figure 3.1.

The scope of our analysis is constrained to the SIG-SIG mode, and we do not
model negotiation of ciphersuites. Therefore, in the following description of
the protocol messages, we consider the authentication method to be a fixed
value M. Similarly, the ciphersuite is the fixed value S.

18

3.3. Details of the SIG-SIG mode

EDHOC Message 1

The initiator chooses the authentication method M, the ciphersuite S, a con-
nection identifier CI and an optional external authorization data ead1. Addi-
tionally, the initiator selects an ephemeral Diffie-Hellman secret x and com-
putes the DH share Gx = x ∗ G. The initiator then composes msg1 as the
CBOR sequence (M,S, Gx,CI , ead1) and sends msg1 to the responder.

Processing of message 1 by the responder. Upon receiving msg1 from the
initiator and parsing it, the responder prepares the next protocol message. In
the first phase, the responder completes an unauthenticated3 Diffie-Hellman
key exchange and then computes elements need to authenticate themselves
to the initiator. For the unauthenticated Diffie-Hellman exchange, the re-
sponder generates an ephemeral Diffie-Hellman secret y and computes the
Diffie-Hellman share Gy = y ∗G. The responder computes the shared secret
Gxy = y ∗ Gx and the shared pseudo-random key PRK2e = Extract("", Gxy).

EDHOC Message 2

The responder proceeds to select a connection identifier CR, an optional ex-
ternal authorization data ead2. The responder computes the partial tran-
script hash th2 = H(Gy,CR,H((M,S, Gx,CI , ead1))). The responder com-
putes a MAC tag τ2 = Expand(PRK2e, (2, context2, taglen2), taglen2). Where
context2 is the string kidR∥th2∥credR∥ead2. In other words, the responder
computes a MAC tag with shared secret PRK2e over the responder’s cre-
dential identifier kidR, the transcript hash th2 and the responder’s credential
credR. Note that the info parameter used in the Expand to compute τ2 also
includes a unique label 2 and the tag length taglen2. Now the responder
computes a signature σ2 over the sequence s = (lsig, kidR, th2∥credR∥ead2, τ2)
i.e. σ2 = Sig.Sign(skR, s). In the preceding, lsig is a unique label used when
signing messages.

Finally, the responder composes ptxt2 = (kidR, σ2, ead2). It derives a key
stream K2 to encrypt ptxt2 by xoring ptxt2 with K2, creating the ciphertext
ctxt2 = ptxt2 ⊕ K2. The key stream is computed as K2 = Expand(PRK2e, (0,
th2, |ptxt2|), |ptxt2|). At last, the responder sends msg2 which is the CBOR
sequence

(
Gy, ctxt2,CR

)
.

Processing of message two by the initiator. Upon receiving and parsing
msg2, the initiator decrypts ctxt2, obtaining ptxt2, and verifies the signature
σ2. We note here that the kidR contained in ptxt2 may reference multiple
credentials. Therefore, the initiator may have to verify the signature against

3At this point, neither the initiator nor the responder has authenticated themselves to the
other party yet. Hence, the derived DH share is unauthenticated.

19

3. The EDHOC SIG-SIG Protocol

multiple public keys until at least one verifies. The draft 14 does not cur-
rently define a tie breaking mechanism in case multiple credentials would
be valid during the verification process. We assume here that a protocol
participant will always choose the first public key that verifies the signature.
A potential consequence is that the initiator may accept with a wrong or
malicious peer. We analyze the possibility of ambiguity on the responder
identity in Chapter 5.

EDHOC Message 3 If all the required verification steps of msg2 are suc-
cessful, the initiator composes msg3. To do so, the initiator first computes
the partial transcript hash4 th3 = H(th2, ptxt2, credR). Analogously to how
the responder processes msg2, the initiator then computes the MAC tag τ3 =
Expand(PRK2e, (6, context3, taglen3), taglen3). Where context3 is the string with
value kidI∥th3∥credI∥ead3. Furthermore, the initiator computes the signa-
ture σ3 over the sequence s = (lsig, kidI , th3∥credI∥ead3, τ3). More precisely,
σ3 = Sig.Sign(pk I , s).

Next, the initiator computes msg3 = (ctxt3) which is the sequence contain-
ing the ciphertext ctxt3. Using an AEAD scheme, the initiator produces
ctxt3 by encrypting ptxt3 = (kidI , σ3, ead3) with the key K3 and IV IV3. In
the preceding K3 = Expand(PRK2e, (3, th3, klen3), klen3) and, the IV is com-
puted as IV3 = Expand(PRK2e, (4, th3, ivlen3), ivlen3). Let ad3 = (laead, "", th3)
denote associated data, then ctxt3 = AEAD.Enc(K3, ptxt3, ad, IV3). At last, the
responder sends msg3 to the responder.

Processing of message 3 by the responder. Upon receiving and parsing
msg3, the responder decrypts the received ciphertext ctxt3 and verifies the
signature σ3. Similar to the initiator’s processing of msg2, the responder may
have to verify the signature against multiple public keys referenced by kidI
until at least one verifies. At this point, the responder knows the identity of
the peer. The responder aborts the protocol if any of the verification steps
fails.

Session key. Upon successful exchange of the three protocol messages,
the initiator, and the responder derive a session key PRKout as follows.
First, they both compute the partial transcript hash th4 = H(th3, ptxt3, credI).
Then, they compute PRKout = Expand(PRK2e, (9, th4, klenout), klenout).

EDHOC Message 4 If EDHOC is used for authentication only and no ap-
plication data is sent, then the responder must send a fourth message. This

4As mentioned before, the value of th3 described in this text is different from what
draft 14 currently does. We suggested to the working group this modification to strengthen
explicit authentication in EDHOC, as discussed in Chapter 5.

20

3.4. Key Schedule of EDHOC SIG-SIG

message is AEAD encrypted with the key K4 and initialization vector IV4.
This message is optional, and we do not consider it further in this thesis.
The key schedule of EDHOC SIG-SIG is shown in Figure 3.2.

3.4 Key Schedule of EDHOC SIG-SIG

We summarize the key schedule of EDHOC SIG-SIG, including all elements
that enter the key schedule and how they are computed. The computa-
tion of th3 and th4 shown is performed according to our proposed improve-
ments [Mat22].

Transcript hashes. We summarize the partial transcript hashes th2, th3 and
th4 computed throughout the protocol in the table below.

Partial transcript hash Value
th2 H(Gy,CR,H((M, S, Gx,CI , ead1)))
th3 H(th2, ptxt2, credR)
th4 H(th3, ptxt3, credI)

Table 3.1: The partial transcript hashes computed in EDHOC SIG-SIG.

Protocol keys. We summarize the keys, IVs, and MAC tags computed
throughout the protocol in the table below.

Key Value
K2 Expand(PRK2e, (0, th2, |ptxt2|), |ptxt2|)
K3 Expand(PRK2e, (3, th3, klen3), klen3)
K4 Expand(PRK2e, (8, th4, klen4), klen4)

PRKout Expand(PRK2e, (9, th4, klenout), klenout)

initialization vector Value
IV3 Expand(PRK2e, (4, th3, ivlen3), ivlen3)
IV4 Expand(PRK2e, (7, th4, ivlen4), ivlen4)

MAC tag Value
τ2 Expand(PRK2e, (2, kidR∥th2∥credR∥ead2, taglen2), taglen2)
τ3 Expand(PRK3e2m, (6, kidI∥th3∥credI∥ead3, taglen3), taglen3)

Table 3.2: The protocol (top), IVs (middle), and MAC tags (bottom) in EDHOC SIG-SIG.
|ptxt2| is the length of the second protocol message.

21

3. The EDHOC SIG-SIG Protocol

Initiator Responder

x $←− Zq, Gx ← xG
METHOD: M

+ SUITES I: SI

+ G X: Gx

+ C I: CI

+ EAD 1: ead1
msg1 = (METHOD, SUITES I, G X, C I, EAD 1)

y $←− Zq
G Y: Gy

+ C R: CR
Gxy ← y ∗ Gx

PRK2e ← Extract("", Gxy)

τ2 ← Expand(PRK2e, (2, kidR∥th2∥credR∥ead2, taglen2), taglen2)

σ2 ← Sig.Sign(skR, (lsig, kidR, th2∥credR∥ead2, τ2))

ptxt2 ← (kidR, σ2, ead2)

ctxt2 ← ptxt2 ⊕K2
+ CIPHERTEXT 2 : ctxt2

msg2 = (G Y, CIPHERTEXT 2, C R)(
Gy, ctxt2,CR

)
← msg2

Gxy ← x ∗ Gy

PRK2e ← Extract("", Gxy)

(kidR, σ2, ead2)← ctxt2 ⊕K2
pid← null
for (pk, U) in credentials[kidR] :

τ2 ← Expand(PRK2e, (2, kidU∥th2∥credU∥ead2, taglen2), taglen2)

if Sig.Vf(pkU , (lsig, kidR, th2∥credU∥ead2, τ2), σ2) = 1 :
pid← U
endfor

abort if pid is null
accept with stage key K2 stage 1

τ3 ← Expand(PRK2e, (6, kidI∥th3∥credI∥ead3, taglen3), taglen3)

σ3 ← Sig.Sign(skI , (lsig, kidI , th3∥credI∥ead3, τ3))

ptxt3 ← (kidI , σ3, ead3)

ad3 ← (laead, "", th3)

ctxt3 ← AEAD.Enc(K3, ptxt3, ad, IV3)

CIPHERTEXT 3: ctxt3
msg3 = (CIPHERTEXT 3)

ctxt3 ← msg3

ad3 ← (laead, "", th3)

(kidI , σ3, ead3)← AEAD.Dec(K3, ctxt3, ad, IV3)

pid← null
for (pk, U) in credentials[kidI] :

τ3 ← Expand(PRK2e, (6, kidU∥th3∥credU∥ead3, taglen3), taglen3)

if Sig.Vf(pkU , (lsig, kidI , th3∥credU∥ead3, τ3), σ2) = 1 :
pid← U
endfor

abort if pid is null
accept with stage key K3 stage 2

K4 ← Expand(PRK2e, (8, th4, klen4), klen4)

PRKout ← Expand(PRK2e, (9, th4, klenout), klenout)

accept with stage key K4 stage 3
accept with stage key PRKout stage 4

Figure 3.1: The EDHOC SIG-SIG protocol. The fourth optional message msg4 is omitted. The
computation of the partial transcript hashes thi and protocol keys are summarized in Table 3.1

22

3.4. Key Schedule of EDHOC SIG-SIG

Key Exporter and OSCORE context. Once the session key PRKout is estab-
lished, the initiator and responder can derive further application keys when
needed. The exporter mechanism is used to archive that. To do so, first
an exporter key PRKexp is derived using PRKout and the Expand function as
follows PRKexp = Expand(PRKout, (10, "", klenexp), klenexp).

An application key K of length klen is then derived by computing K =
Expand(PRKexp, (label, context, klen), klen). The pair (label, context) must be
unique per application.

To establish and OSCORE context, a master key and mast salt are computed
using the exporter mechanism. Namely, the exporter mechanism is queried
with the following label-context (0, "") for the master secret and (1, "") for
the master salt.

Lightweight key update. To limit the lifetime of keying material, EDHOC
specifies a lightweight key update mechanism, in the sense that it does not
require a re-run of the EDHOC protocol. Instead, the initiator and respon-
der can update the session key PRKout by computing the new key as follows:
PRKout = Expand(PRKout, (11, context, klenout), klenout). The context input is
used to bind the key update to a specific event that triggered the key up-
date.

23

3. The EDHOC SIG-SIG Protocol

Gxy Ext

K2

τ2

K3

IV3

τ3

K4

IV4

PRKout

E
x
p

E
x
p

E
x
p

E
x
p

E
x
p

E
x
p

E
x
p

E
x
p

E
x
p

E
x
p

PRKexp E
x
p APP KEY

PRK2e

""

th2

0

context2

2

th3

3

th3

4

context3

6

th4

7

th4

7

th4

9

""

11

context

10

context

label

Legend

Ext = Extract(salt, key)

E
x
p = Expand(key, label, context, len)

Gxy Shared Diffie-Hellman Secret

PRK2e Extracted Pseudo-Random Key

Ki/IVi/τi Stage Key/IV/MAC tag

Key update

Key exporter

salt

key

key

label

context

Figure 3.2: The EDHOC key schedule, including the key update and exporter mechanism. The
computation of the transcript hashes (th2, th3, th4) is shown in Table 3.1. The values of context2
and context3 are shown in Table 3.2.

24

Chapter 4

Code-based Multi-stage Key Exchange
Model

This chapter introduces the security model we use to analyze the EDHOC
protocol, namely the Multi-Stage Key Exchange model. We first describe the
MSKE model and then specify our MSKE model tailored for EDHOC.

4.1 The Multi-stage Key Exchange Model

We analyze EDHOC in the Multi-Stage Key Exchange Model [FG14, Gü18].
It is the state-of-the-art model for analyzing key exchange protocols wherein
not only one but multiple keys are derived at various stages throughout
the protocol. It is an extension of the seminal work by Bellare and Rog-
away [BR94]. Their work models the use of a key exchange protocol by
several parties; each party may run multiple concurrent protocol instances
called sessions. In BR-like models, the security of the session key derived
through a key exchange protocol is captured by the notion of indistinguisha-
bility of the session key. Namely, a key exchange protocol is shown secure
via a game played by a strong adversary with complete control over the
network; the adversary can additionally reveal session keys and long-term
secrets. Key indistinguishability states that the adversary should not be able
to differentiate a “fresh” session key from a randomly generated key.

The MSKE model is formally specified as a code-based game, also captur-
ing a strong adversary who can arbitrarily modify the communication be-
tween sessions. In the MSKE model, the adversary’s control over the net-
work is captured by providing an Send oracle. Additionally, the adversary
can create new users with the oracle NewUser, it can instantiate new ses-
sions by querying the NewSession oracle; it can reveal stage keys with the
RevSessionKey oracle and can reveal the long-term secret signing key of a
protocol participant with the RevLongTermKey oracle. The MSKE model

25

4. Code-based Multi-stage Key Exchange Model

extends the notion of indistinguishability of keys to all stage keys. Namely,
an adversary with the capabilities described by the oracles listed above is
given access to an Test oracle, where it can ask to reveal a stage key of a
chosen session and stage. The oracle returns either the real stage key or a
random one. Security then demands that the adversary cannot distinguish
which key is received, assuming that the said adversary did not perform
any action that allows winning trivially. Overall, we are interested in the
following security guarantees for each stage key:

Key indistinguishability. This notion states that stage keys should “look”
random from the adversary’s standpoint. More formally, we let the MSKE
challenger choose a random challenge bit b; then, the adversary may issue
Test queries, and at the end, the adversary outputs a guess b′. Key in-
distinguishability is captured by the adversary’s advantage in guessing the
challenge bit b. To exclude trivial winning conditions, our model specifies a
freshness condition for tested stage keys. Therefore, the guessing advantage
is only valid for adversaries who respect freshness.

Forward Secrecy. Even if the long-term secret of the session owner is com-
promised at a given time, the already established stage keys should remain
indistinguishable from random once established.

Explicit Authentication. This notion states that for a given stage, only the
intended peer has knowledge of the stage key and the peer session is guar-
anteed to exist.

Before we define our model syntax, we briefly discuss some specificities of
the EDHOC protocol that require careful treatment and justify our modifi-
cations to the MSKE model.

4.1.1 MSKE model for EDHOC

We recall the usage of credential identifiers in EDHOC during authentica-
tion. The credential identifier of user X denote ID CRED X. The responder
sends its credential identifier (ID CRED R) in the second protocol message;
the initiator sends its identifier (ID CRED I) in the third protocol message.
While these credential identifiers may contain the actual credential itself,
the primary operating mode is that each protocol participant will have local
access to the credentials of most peers. In this case, a credential identifier
is simply a small value that allows a party to retrieve the credential of the
peer. For instance, the kid parameter of a COSE key can be used as a creden-
tial identifier. However, per the COSE standard, users should not assume
that all types of credential identifiers identify a unique identity. Quoting the
EDHOC draft 14 Section 3.5.3:

26

https://www.ietf.org/archive/id/draft-ietf-lake-edhoc-14.html#section-3.5.3

4.2. Model Syntax

As stated in Section 3.1 of [I-D.ietf-cose-rfc8152bis-struct], ap-
plications MUST NOT assume that ’kid’ values are unique, and
several keys associated with a ’kid’ may need to be checked
before the correct one is found. Applications might use addi-
tional information such as ’kid context’ or lower layers to deter-
mine which key to try first. Applications should strive to make
ID CRED X as unique as possible since the recipient may other-
wise have to try many keys.

Based on this observation, we take a conservative approach and assume that
all types of credential identifiers may not necessarily identify a unique cre-
dential. Formally, we translate this fact in our MSKE model by augmenting
our game with global credential sets denoted peerpkkid that contain all cre-
dentials identified by the credential identifier kid. Furthermore, we give the
adversary full control over the choice of the credential identifiers for both
honest and compromised users. More precisely, the oracle NewUser is mod-
ified to allow the adversary to provide a credential identifier and an optional
adversarial key pair, in which case the newly created user is considered com-
prised upon creation. Our approach follows that of Boyd et al. [BCF+13].
One can consider EDHOC SIG-SIG as an ASICS protocol, where adversarial
registration of long-term keys is limited to pkregister queries.

4.2 Model Syntax

We now specify the syntax we use in our model. First, we discuss the speci-
ficities of EDHOC to justify our extension to the MSKE model, then we
describe the protocol-specific syntax, including our abstraction of key ex-
change protocols and protocol specific-variables. Finally, we describe the
session-specific syntax used in our security game.

4.2.1 Protocol Syntax

In our model, a key exchange protocol KE is abstracted as a triple of algo-
rithms (KGen,Activate,Run) that we describe below.

KGen. The KGen algorithm generates long-term public and secret key pairs
for each user. For every user U, the associated key pair is denoted by
(skU , pkU)

$←− KGen(). In the context of EDHOC, these key pairs are signing
and verification keys.

Activate. The algorithm Activate(U, skU , {pid}U , peerpk, role) $−→ (πi
U , m) start

a new session πi
U owned by the user U, with a list {pid}U of peers that the

user U is willing to engage with in the key exchage protocol. If role =
initiator, Activate returns the first protocol message m and ⊥ otherwise.

27

4. Code-based Multi-stage Key Exchange Model

Run. The algorithm Run(U, skU , πi
U , peerpk, m)

$−→ (πi
U , m′) delivers the pro-

tocol message m to the session πi
U . The message m is processed according

to the protocol specification, and πi
U is updated accordingly. Finally, Run

outputs a response message m′ or the symbol ⊥ in case of an error.

.

4.2.2 Protocol variables

For our security game, we need to extend the exchange protocol KE with
the following variables:

• KE.S ∈ N: the number of stages in the protocol. The set of all stages
is denoted by S = [1, S].

• KE.use[s] ∈ {internal, external}: indicates whether the s’th stage key
is used internally within the protocol to encrypt protocol messages,
for instance, or externally to protect application data.

• KE.eauth[r, s] ∈ S ∪ {∞}: indicates the stage at which the session in
role r receives explicit authentication for the stage s. In other words,
the session in role r considers the other peer explicitly authenticated
in stage s upon acceptance of stage auth[r, s].

• KE.fs[s] ∈ {⊥, f s}: indicates whether stage s is forward-secret, predi-
cated on acceptance of stage s.

4.2.3 Session variables

A session owned by the user U and uniquely1 identified by the label, i is
denoted by πi

U . Each session holds the following variables:

• πi
U .id ∈ U : the identity of the session owner.

• πi
U .pid ∈ U ∪ {∗}: the identity of the intended peer. πi

U .pid is initial-
ized with the value ∗, which denotes an a-priory unknown identity
that may be eventually specified later.

• πi
U .role ∈ {init, resp}: the role of the session owner.

• πi
U .stage ∈ S : the current execution stage. πi

U .stage is initialized with
the value 1. It is incremented by one after acceptance of the stage.

• πi
U .status[s] ∈ {⊥, running, accepted, rejected}: the state of execution

of stage s. πi
U .status[s] is initialized with ⊥; it is set to running once

πi
U .stage is set to s. Upon acceptance of stage s, πi

U .status[s] is set to
accepted; otherwise, it is set to rejected if the stage is rejected.

1Session labels only need to be unique for each user.

28

4.3. MSKE Security Game

• πi
U .key[s] ∈ Ks: the session key derived in stage s. The stage s key has

key space Ks. πi
U .key[s] is initialized with the value ⊥.

• πi
U .revealed[s] ∈ N ∪ {∞}: the time at which the s’th stage key was

revealed. It is initialized with the value ∞, which means that the key
has not been revealed. When used as a predicate, revealed[s] means
revealed[s] ̸= ∞.

• πi
U .accepted[s] ∈ N ∪ {∞} : the time at which the s’th stage was ac-

cepted. accepted[s] is initially set to ∞, which means that the stage
has not been accepted. When used as a predicate, accepted[s] means
accepted[s] ̸= ∞.

• πi
U .tested[s] ∈ N ∪ {∞}: time at which the s’th stage key was tested.

sessTested[s] is initially set to ∞. When used as a predicate, tested[s]
means tested[s] ̸= ∞.

Session identifiers. To be meaningful, our security notion must exclude
trivial winning conditions, in particular by disallowing the adversary to test
and reveal two partnered sessions. We use session identifiers to define when
two sessions are partnered, namely if they hold the same session identifier at
a given stage. Therefore, we augment our session objects with the following
variables:

• πi
U .sid[s] ∈ {0, 1}∗ ∪ {⊥}: the session identifier of stage s. πi

U .sid[s] is
initialized with the value ⊥.

Contributive identifiers. To exclude other trivial winning conditions, we
also keep track of contributive identifiers. These specify the values a session
must have honestly received before allowing the adversary to test a stage
where no authentication guarantees are provided. Therefore, session objects
also keep the following variables:

• πi
U .cid[r, s] ∈ {0, 1}∗ ∪ {⊥}: the contributive identifier for the session

in role r in stage s. Let r denote the role opposite to r, then cid[r, s]
contains the values that the session in role r has honestly received.
cid[r, s] is initially set to ⊥.

4.3 MSKE Security Game

Our MSKE security game is formally defined in Figure 4.1.

4.3.1 MSKE security of Key Exchange Protocols

Security properties The security properties are formally captured in the
game shown in Figure 4.2 and encoded in the predicates Sound, ExplicitAuth.

29

4. Code-based Multi-stage Key Exchange Model

Furthermore, the Fresh predicate encodes all trivial winning conditions that
must be excluded when proving key indistinguishability.

Game variables. Throughout the lifetime of the game GMSKE(KE), we track
the following game-specific variables:

• Ts = {π : π .tested[s]} : the set of all sessions that A tested at stage s.
It is initialized with the value ∅. Whenever A makes a Test query for
a session πi

U in stage s, Ts is updated with the value Ts = Ts ∪
{

πi
U
}

.
The set of all tested sessions is denoted by T =

⋃
s≤S
Ts.

• Rs = {π : π .revealed[s]}: the set of all sessions for which A revealed at
s’t stage key. The set of all revealed sessions is denoted by R =

⋃
s≤S
Rs.

• Ps = {(x, y) : x ̸= y ∧ x.sid[s] = y.sid[s] ̸= ⊥}: the set of sessions part-
nered at stage s. The Ps are not explicitly constructed (nor explicitly
updated with insertions) but are defined via the predicate on the ses-
sion identifiers. As a consequence of the definition (x, y) ∈ Ps ⇐⇒
(y, x) ∈ Ps. The multiset of all partnered sessions is P =

⋃
s≤S
Ps.

• users ∈N: the number of users in the current game.

• time ∈N: a discrete value used to order events in the game.

• revltkU : the time at which the long-term secret of U was compromised.

• peerpkkid = {(U, pkU)}: the set of all credentials (identity and public
key pairs) identified by the credential identifier kid. peerpkkid is initially
set to ∅. We demand that peerpkkid ∩ peerpkkidI

= ∅ for all kid ̸= kid′.
That is, one kid may refer to multiple key pairs, but a key pair is associ-
ated to a single kid The global list of credentials is peerpk =

⋃
kid

peerpkkid.

MSKE security definition. We now state our main definition of multi-stage
key exchange security for a protocol KE against an MSKE adversary A. At
a high level, the adversary wins the game by violating the soundness of
the session identifiers, breaking explicit authentication, or distinguishing
the challenge bit; the latter condition is available only if A is a freshness-
respecting adversary.

Definition 4.1 (Multi-stage key exchange security) Let KE be a key exchange
protocol. Let GMSKE(KE) be the MSKE game defined in Figure 4.1. We define the
advantage of an MSKE adversary A against KE is defined by:

AdvMSKE
A (KE) = Pr

[
GMSKE(KE)→ 1

]
.

30

4.3. MSKE Security Game

GMSKE
A,KE

Initialize

1 : time← 0

2 : b $←− {0, 1}
3 : peerpk← ∅

NewUser(sk, pk, kid)

1 : time← time + 1

2 : users← users + 1

3 : U ← users

4 : (pkU , skU)
$←− KGen()

5 : revltkU ← ∞

6 : if pk ̸= ⊥ and pk is valid then :

7 : // Only valid verification keys are allowed.

8 : (skU , pkU)← (sk, pk)

9 : revltkU ← time // adversarially registerd keys

10 : // are considered compromised.

11 : // Add (U, pkU) to peerpkkid
12 : peerpkkid ← peerpkkid ∪ {(U, pkU)}
13 : return pkU

NewSession(U, skU , {pid}U , peerpk, role)

1 : time← time + 1

2 : if πi
U ̸= ⊥ : return ⊥

3 : (πi
U , m)

$←− Activate(U, skU , {pid}U , peerpk, role)

4 : return m

Send(U, i, m)

1 : time← time + 1

2 : if πi
U = ⊥ : return ⊥

3 : (πi
U , m′) $←− Run(πi

U , skU , peerpk, m)

4 : i← πi
U .stage

5 : if πi
U .status[s] = accepted :

6 : πi
u.accepted[s]← time

7 : return (πi
U .status[s], m′)

Activate(U, skU , {pid}U , peerpk, role)

1 : πi
U .id← U

2 : πi
U .role← role

3 : m← Run(πi
U , peerpk, skU , {pid}U , m)

4 : return (m, πi
U)

RevSessionKey(U, s, i)

1 : time← time + 1

2 : if πi
U = ⊥or πi

U .status[s] ̸= accepted :

3 : return ⊥

4 : πi
U .revealed[s]← true

5 :Rs ← Rs ∪ {πi
U}

6 : return πi
U .key[s]

RevLongTermKey(U)

1 : time← time + 1

2 : revltkU ← time

3 : return skU

Test(U, s, i)

1 : time← time + 1

2 : if πi
U = ⊥ or

3 : πi
U .status[s] ̸= accepted or

4 : πi
U .tested[s] = true :

5 : return ⊥

6 : if ∃π
j
V : (πi

U , π
j
V) ∈ Ps and // π

j
V is partnered to πi

U and...

7 : KE.use[s] = internal and // the key is used internally and...

8 : π
j
V .status[s + 1] ̸= ⊥ : // the partnered hasn’t accepted

9 : return ⊥ // the stage s, return ⊥

10 : πi
U .tested[s]← true

11 : Ts ← Ts ∪
{

πi
U

}
12 : k0

$←− Ki

13 : k1 ← πi
Ukey[s]

14 : if KE.use[s] = internal : // If key is used internally

15 : πi
Ukey[s]← kb // copy the key in the session for consistency

16 : return kb

Finalize(b′)

1 : // The adversary wins by...

2 : if ¬Sound : return 1 // breaking soundeness or...

3 : if ¬ExplicitAuth : return 1 // explicit authentication or..

4 : if ¬Fresh : b′ ← 0 // (if it respected freshness)...

5 : return b = b′ // ...by guessing the challenge bit

Figure 4.1: The multi-stage key exchange security game for a key exchange protocol KE. The
predictates Sound, ExplicitAuth and Fresh are show in Figure 4.2

31

4. Code-based Multi-stage Key Exchange Model

Fresh

1 : // A session was tested and revealed

2 : if ∃s : Ts ∩Rs ̸= ∅ then // in stage s.

3 : return false

4 : // Parterned sessions...

5 : if ∃s : Ps ∩Rs × Ts then

6 : // one tested, one revealed in stage s

7 : return false

8 : // Parterned sessions...

9 : if ∃i, πi
U , π

j
V : (πi

U , π
j
V) ∈ Ps

10 : // one is revealed and the other tested in stage s

11 : ∧ (πi
U ∈ Ts) ∧ (π

j
V ∈ Rs) then

12 : return false

13 : // Forward secret stages are fresh...

14 : if ∃πi
U , s : KE.fs[s] = f s ∧ (πi

U ∈ Ts)∧
15 : // accepted before peer compromise or...

16 : (revltkπi
U .pid < πi

U .accepted[t])

17 : // there is a cid partnered

18 : ∧ (∀π
j
V ̸= πi

U : πi
U .cid[π j

V .role, i] ̸= π
j
V .cid[πi

U .role, i])

19 : return false

20 : // Unauthenticated stages are fresh ony if..

21 : if ∃πi
U ∈ Ts : eauth

[
πi

U .role, s
]
= ⊥ ∧

22 : ∀π
j
V : πi

U .cid
[
πi

U .role, s
]
̸= π

j
V .cid

[
πi

U .role, s
]

23 : // there’s a cid partner

24 : return false

25 : return true

ExplicitAuth

1 : // Explicit auth is true all session and stages if...

2 : // All session having accepted stage s..

3 : ∀πi
U , s : πi

U .accepted[s]∧

4 : eauth[πi
U .role, s] = s′ < ∞ // (achieving exp auth at stage s′)...

5 : ∧ πi
U .accepted[s′] < revltkπi

U .pid // and accepted stage s′

6 : // before compromise of peers’s secret,

7 : =⇒ ∃π
j
V : // The exists a session...

8 : πi
U .sid[s′] = π

j
V .sid[s′] // partnered with πi

U in stage s′ and..

9 : // if π
j
V accepts stage s before U is comprised...

10 : ∧ π
j
V .accepted[s] < revltkπi

U .id =⇒ πi
U .sid[s] = π

j
V .sid[s]

11 : // π
j
V accepts with peer identity U

Sound

1 : // More than two sessions are partnered in statge s

2 : if ∃s, πi
U , π

j
V , πk

W : (πi
U , π

j
V) ∈ Ps∧

3 : (πi
U , πk

W) ∈ Ps ∧ (π
j
V , πk

W) ∈ Ps then

4 : return false

5 : // Parterned sessions..

6 : if ∃s, πi
U , π

j
V : (πi

U , π
j
V) ∈ Ps

7 : ∧ (πi
U .accepted[s] ∧ π

j
V .accepted[s])

8 : ∧ (πi
U .key[s] ̸= π

j
V .key[s])

9 : // have different keys

10 : then return false

11 : // Condition 2

12 : if ∃s, πi
U , π

j
V : (πi

U , π
j
V) ∈ Ps∧

13 : (πi
U .role = π

j
V .role) // in the same role

14 : then return false

15 : // Parterned sessions...

16 : if ∃s, πi
U , π

j
V : (πi

U , π
j
V) ∈ Ps∧

17 : ∃r ∈ {init, resp} : // don’t agree

18 : πi
U .KE.auth[r, s] ̸= π

j
V .KE.auth[r, s]

19 : // on authentication level for r

20 : then return false

21 : // Parterned sessions...

22 : if ∃s, (πi
U , π

j
V) ∈ Ps : ∃r ∈ {init, resp}∧

23 : πi
U .cid[r, s] ̸= π

j
V .cid[r, s]

24 : // don’t agree on contributive identifiers

25 : then return false

26 : // Parterned sessions...

27 : if ∃s, πi
U , π

j
V : (πi

U , π
j
V) ∈ Ps∧

28 : πi
U .pid ̸= V ∨ π

j
V .pid ̸= V

29 : // don’t agree on peer identities

30 : return false

31 : // The session identifiers...

32 : if ∃s ̸= t, πi
U : (πi

U , π
j
V) ∈ Ps

33 : ∧ (πi
U .sid[t] = πi

U .sid[s]) then

34 : // are not different across stages

35 : return falsereturn true

Figure 4.2: The MSKE predicates The predictates Sound, ExplicitAuth and Fresh

32

Chapter 5

Security Analysis of EDHOC SIG-SIG
Mode

In this chapter, we employ the MSKE model introduced in Chapter 4 to
analyze the security of the SIG-SIG mode of the EDHOC protocol. To do
so, we cast EDHOC in SIG-SIG mode as a multi-stage key exchange proto-
col, formally modeled in pseudocode (Figure 5.1). We specify the protocol
properties of EDHOC in SIG-SIG mode, then prove its security in the MSKE
model.

5.1 EDHOC SIG-SIG as an MSKE protocol

In the following, we formalize the EDHOC protocol in SIG-SIG mode as an
MSKE protocol. More precisely, we define the stages in the protocol with
the associated stage keys; we specify whether a stage is internal or not;
we specify the stage-specific session identifiers and contributive identifiers.
We specify when and which stages are explicitly authenticated, and finally,
when and which stages are forward secret.

5.2 Protocol properties

Stages. The EDHOC protocol in SIG-SIG mode, as described in draft 14,
has four stages, hence S = 4. These correspond to the keys (and potentially
associated IVs) K2, K3/IV3, K4/IV4 and PRKout.

Key usage. The stage keys and potentially associated IVs K2, K3/IV3, and
K4/IV4 are used internally within the protocol. In contrast, PRKout is used
to protect application data; hence, its usage is external. Therefore,

use = [internal, internal, internal, external].

33

5. Security Analysis of EDHOC SIG-SIG Mode

Explicit authentication. In our model for EDHOC, an initiator session con-
siders the peer responder session as explicitly authenticated once the initia-
tor accepts stage 2. More precisely, stages 2, 3, and 4 are explicitly au-
thenticated upon acceptance of stage 2, while stage 1 receives explicit au-
thentication retroactively. For responder sessions, the peer initiator session
is explicitly authenticated upon acceptance of stage 3; stages 3 and 4 are
explicitly authenticated upon acceptance of stage 1. Stages 2 and 1 receive
explicit authentication retroactively. Therefore, for a given role r and stage s,
we define eauth[r, s] by the following matrix:

∀s ∈ [0, 4] : eauth[init, s] = 2
eauth[resp, s] = 3.

Forward secrecy. Each protocol participant samples ephemeral DH shares
for each run of the protocol, and all keys derived throughout the execution
of the protocol depend on these DH shares. Therefore, all stages are forward
secret, and we have:

fs = [f s, f s, f s, f s].

Session identifiers. The session identifier of stage s is a tuple (“s”, txs, auths),
where txs denotes the conversation transcript containing elements that enter
the key schedule, auths is a potentially empty list containing the identities
of the peers that are explicitly authenticated at stage s. Within auths, I is
a placeholder for the identity of the initiator session, and R is for the re-
sponder’s identity. For s ∈ [1, 4], the s’th session identifier is defined as
follows:

sid[1] =
(
“1”,M, S, Gx,CI , ead1, Gy,CR

)
sid[2] =

(
“2”,M, S, Gx,CI , ead1, Gy,CR, kidR, σ2, ead2, R

)
sid[3] =

(
“3”,M, S, Gx,CI , ead1, Gy,CR, kidR, σ2, ead2, kidI , σ3, ead3, R, I

)
sid[4] =

(
“4”,M, S, Gx,CI , ead1, Gy,CR, kidR, σ2, ead2, kidI , σ3, ead3, R, I

)
Contributive Identifiers. The contributive identifier for a stage s corre-
sponds to the messages that a session π must honestly receive (untampered)
from the peer session to allow testing π in the unauthenticated stage s, even
though any other message is not delivered or only partially to either party
involved in a run of the protocol. For a session π , in the role role ∈
{init, resp}, let role denote the opposite role; π .cid[role, s] captures the mes-
sages that π must have received honestly from its peer as a prerequisite to
allow testing π in stage s, if s is unauthenticated. Specifically, the initiator
(resp. responder) sets cid[init, 1] to (“1”, Gx) upon sending (resp. receiv-
ing) message 1, which captures that an initiator must have contributed a

34

5.2. Protocol properties

Run(πi
U , peerpk, skU , {pid}U , m)

1 : stage← πi
U .stage

2 : if πi
U .role = init and if stage = 1 :

3 : m′ ← RunInit1(πi
U , peerpk, skU , {pid}U , m)

4 : if πi
U .role = init and stage = 2 :

5 : m′ ← RunInit2(πi
U , peerpk, skU , {pid}U , m)

6 : if πi
U .role = resp and stage = 1 :

7 : m′ ← RunResp1(πi
U , peerpk, skU , {pid}U , m)

8 : if πi
U .role = resp and stage = 2 :

9 : m′ ← RunResp2(πi
U , peerpk, skU , {pid}U , m)

10 : return (πi
U , m′)

RunResp1(πi
U , peerpk, skU , {pid}U , m)

1 : (M,S, Gx ,CI , ead1)← m

2 : y $←− Zq

3 : Gy ← y ∗ Gy

4 : PRK2e ← Extract("", Gxy)

5 : th2 ← H(Gy,CR,H((M,S, Gx ,CI , ead1)))

6 : τ2 ← Expand(PRK2e, (2, kidR∥th2∥credR∥ead2, taglen2), taglen2)

7 : σ2 ← Sig.Sign(skR, (lsig, kidR, th2∥credR∥ead2, τ2))

8 : ptxt2 ← (kidR, σ2, ead2)

9 : K2 ← Expand(PRK2e, (0, th2, |ptxt2|), |ptxt2|)
10 : ctxt2 ← ptxt2 ⊕K2

11 : msg2 ←
(
Gy, ctxt2,CR

)
12 : return msg2

RunResp2(πi
U , peerpk, skU , {pid}U , m)

1 : ctxt3 ← msg3

2 : ad3 ← (laead, "", th3)

3 : (kidI , σ3, ead3)← AEAD.Dec(K3, ctxt3, ad, IV3)

4 : th3 ← H(th2, ptxt2, credR)

5 : pid← null

6 : for (pk, U) in credentials[kidI] :

7 : τ3 ← Expand(PRK3e2m, (6, kidI∥th3∥credI∥ead3, taglen3), taglen3)

8 : if Sig.Vf(pkU , (lsig, kidI , th3∥credI∥ead3, τ3), σ3) = 1 :

9 : pid← U

10 : endfor

11 : abort if pid is null

12 : th4 ← H(th3, ptxt3, credI)

13 : K4 ← Expand(PRK2e, (8, th4, klen4), klen4)

14 : IV4 ← Expand(PRK2e, (7, th4, ivlen4), ivlen4)

15 : PRKout ← Expand(PRK2e, (9, th4, klenout), klenout)

16 : return ⊥

RunInit1(πi
U , peerpk, skU , {pid}U , m)

1 : x $←− Zq

2 : Gx ← x ∗ G

3 : msg1 ← (M,S, Gx ,CI , ead1)

4 : return msg1

RunInit2(πi
U , peerpk, skU , {pid}U , m)

1 :
(
Gy, ctxt2,CR

)
← m

2 : Gxy ← x ∗ Gy

3 : PRK2e ← Extract("", Gxy)

4 : th2 ← H(Gy,CR,H((M,S, Gx ,CI , ead1)))

5 : K2 ← Expand(PRK2e, (0, th2, |ptxt2|), |ptxt2|)
6 : (kidR, σ2, ead2)← ctxt2 ⊕K2

7 : pid← null

8 : for (pk, U) in peerpkkidR
:

9 : τ2 ← Expand(PRK2e, (2, kidU∥th2∥credU∥ead2, taglen2), taglen2)

10 : if Sig.Vf(pkU , (lsig, kidR, th2∥credU∥ead2, τ2), σ2) = 1 :

11 : pid← U

12 : endfor

13 : abort if pid is null

14 : th3 ← H(th2, ptxt2, credR)

15 : τ3 ← Expand(PRK3e2m, (6, kidI∥th3∥credI∥ead3, taglen3), taglen3)

16 : σ3 ← Sig.Sign(skI , (lsig, kidI , th3∥credI∥ead3, τ3))

17 : ptxt3 ← (kidI , σ3, ead3)

18 : ad3 ← (laead, "", th3)

19 : K3 ← Expand(PRK2e, (3, th3, klen3), klen3)

20 : IV3 ← Expand(PRK2e, (4, th3, ivlen3), ivlen3)

21 : ctxt3 ← AEAD.Enc(K3, ptxt3, ad, IV3)

22 : th4 ← H(th3, ptxt3, credI)

23 : K4 ← Expand(PRK2e, (8, th4, klen4), klen4)

24 : IV4 ← Expand(PRK2e, (7, th4, ivlen4), ivlen4)

25 : PRKout ← Expand(PRK2e, (9, th4, klenout), klenout)

26 : msg3 ← ctxt3

27 : return msg3

Figure 5.1: Pseudocode description of EDHOC in Sig-Sig mode as an MSKE protocol. The
Run dispatches the message to the relevant session in the MSKE game. The Initator’s action
are specified in the oracles RunInit1 and RunInit2. The reponnder’s action are specified in
the oracles RunResp1 and RunResp2. 35

5. Security Analysis of EDHOC SIG-SIG Mode

DH share Gx as a prerequisite to allow testing of the responder session in
stage 1. At a later point, the initiator (resp. responder) sets cid[resp, 1] to(
“1”, Gx, Gy

)
upon receiving (resp. sending) message 2. In this case, we cap-

ture the fact that the responder also contributed a Gy before a legitimate test
query against the initiator session is allowed. For all other stages 2 ≤ s ≤ 4,
cid[init, s] = cid[resp, s] =

(
“s”, Gx, Gy

)
. We summarize the contributive iden-

tifiers for the initiator and responder here-below.

cid[init, 1] = (“1”, Gx)

cid[resp, 1] =
(
“1”, Gx, Gy

)
cid[init, s] = cid[resp, s] =

(
“s”, Gx, Gy

)
, ∀s ∈ {2, 3, 4}

5.3 MSKE security of EDHOC SIG-SIG

We now state our MSKE security result for the EDHOC protocol in SIG-SIG
mode.

Theorem 5.1 (MSKE security of EDHOC SIG-SIG) Let EDHOC-Sig-Sig de-
note the EDHOC protocol in SIG-SIG mode for authentication as defined in Chap-
ter 3. Moreover, let G be a cyclic group of order q, and H be a hash function, Sig
be a digital signature scheme, Extract be a PRF, Expand be a variable-length PRF,
nU be the total number of users and nS be the total number of sessions. Finally, let
A be an MSKE adversary against EDHOC-Sig-Sig. Then there exist adversaries
B4,BI.2,BI.4,BI I.A2,BI I.B2,BI I.B3 such that:

AdvMSKE
A (EDHOC-Sig-Sig) ≤ nS

2

q
+ AdvCR

B4
(H)

+ 4nS

(
nU · AdvSUF-CMA

BI.2
(Sig) + AdvS-UEO

BI.4
(Sig)

)
+ 4nS

(
nU · AdvSUF-CMA

BI I.A2
(Sig) + AdvsnPRF-ODH

BI I.B2
(Extract)

+ AdvPRFBI I.B3
(Expand)

)

5.3.1 Proof details

Proof overview. We proceed with our proof in phases. In the first phase,
we ensure that the adversary cannot win the game by causing the predicate
Sound to evaluate to false. Assuming soundness is unconditionally guar-
anteed in the second phase, we split the proof into two disjoint branches,
depending on whether the adversary attempts to cause the ExplicitAuth
predicate to evaluate to false. In the first branch, we show that the adversary
cannot win the game by forcing the ExplicitAuth predicate to evaluate to
false. In the second branch, we show that the adversary that respects the
freshness conditions defined in Figure 4.2 cannot win the game by guessing

36

5.3. MSKE security of EDHOC SIG-SIG

the challenge bit with a non-negligible probability. Finally, we collect the
bounds to provide an upper bound on the adversary’s advantage against
EDHOC-Sig-Sig in the MSKE game.

Proof Let A be an MSKE-adversary against EDHOC-Sig-Sig, we bound A’s
advantage, denoted by AdvMSKE

A (EDHOC-Sig-Sig), with the following sequence
of games.

Phase 1: Ensuring that Sound is true

Game G0. We start with the normal MSKE game, defined in Figure 4.2,
played by A. By definition,

AdvG0
A (EDHOC-Sig-Sig) = AdvMSKE

A (EDHOC-Sig-Sig).

Game G1. In this game, we log all Diffie-Hellman shares chosen by honest
sessions in a table Tdh. Additionally, we set the flag dhcoll to true whenever a
collision occurs in Tdh, i.e., when two honest sessions sample the same DH
key shares. These changes are not noticeable to the adversary, therefore:

AdvG1
A (EDHOC-Sig-Sig) = AdvG0

A (EDHOC-Sig-Sig).

Game G2. This game terminates whenever dhcoll is set. Before dhcoll is
set, G2 is equivalent to G1. By the identical-until-bad lemma of [BR06], the
advantage difference of A can be bounded as follows:

|AdvG2
A (EDHOC-Sig-Sig)− AdvG1

A (EDHOC-Sig-Sig)| ≤ Pr[dhcoll ← true].

We use the birthday paradox to bound Pr[dhcoll ← true]. Let q = |G| be the
order of the prime-order group used in EDHOC-Sig-Sig and assuming that
DH shares are chosen uniformly at random, we directly obtain the bound
Pr[dhcoll ← true] ≤ nS

2

q , where nS is the total number of sessions. As a con-
sequence:

|AdvG2
A (EDHOC-Sig-Sig)− AdvG1

A (EDHOC-Sig-Sig)| ≤ nS
2

q
.

Conclusion of phase 1. At this point, we argue that if G2 does not ter-
minate, then the adversary A cannot cause the Sound predicate to become
false. Recalling the definition of the predicate Sound in our MSKE model
(see Figure 4.2), there are seven events, at least one of which must occur for
Sound to be false. In the following, we argue that if G2 did not terminate,
then none of the seven events occurred.

Proposition 5.2 At any given stage, no more than two sessions share the same
session identifier.

37

5. Security Analysis of EDHOC SIG-SIG Mode

Proof. We show that there is no “triple-partnering”. Assume that ∃s, x, y, z :
(x, y) ∈ Ps, (x, z) ∈ Ps, (y, z) ∈ Ps, that is, sessions x, y, z are pair-wise part-
nered in stage s. We have three pairs of partnered sessions, but at most
two DH shares1. We recall that in G2, the challenger aborts the game if
such a situation occurs, which contradicts the assumption of triple part-
nering. Therefore, from now on, we assume that at most two sessions are
partnered. ■

Proposition 5.3 Matching session identifiers for a given stage implies matching
stage session keys.

Proof. We show that matching session identifiers imply that partnered ses-
sions derive the same shared DH secret and transcript hashes, which is
sufficient to compute the stage keys deterministically. We recall that the
key schedule of EDHOC-Sig-Sig (Figure 3.2) starts by computing the key
PRK2e = Extract("", Gxy), where Gxy is the shared Diffie-Hellman secret.
Hence, the equality of the session identifiers implies the equality of the de-
rived PRK2e. The key schedule proceeds to derive further stage keys (and
potentially associated IVs) using the Expand function keyed with PRK2e. For
each key/IV, Expand is evaluated on an input composed of the (partial) tran-
script hash and a stage-specific label value (see Section 3.4). By the definition
of transcript hashes, the equality of session identifiers implies the equality
of the transcript hash. Therefore, two partnered sessions at any stage s will
always derive the same stage key and IV if the latter is required. ■

Proposition 5.4 Matching stage session identifiers implies opposite roles.

Proof. Assume that not more than two sessions have the same session iden-
tifier for a given stage (Proposition 5.2) i.e., ∀s ∈ S : ¬∃x, y, z : (x, y) ∈
Ps ∧ (x, z) ∈ Ps ∧ (y, z) ∈ Ps. Each session includes its DH share k ∗ G in
the session identifier at a fixed position. Two sessions with the same session
identifier and the same role at a given stage imply that the sessions sampled
the same DH key shares, which contradicts the uniqueness of the DH key
shares guaranteed at this point since G2 did not terminate. ■

Proposition 5.5 Matching session identifiers for a given stage implies an agreed-
upon authentication level.

Proof. This property holds trivially, since EDHOC fixes the authentication
level for each stage. ■

Proposition 5.6 Matching session identifiers for a given stage implies agreed-upon
contributive identifiers.

1Every session identifier includes two DH shares.

38

5.3. MSKE security of EDHOC SIG-SIG

Proof. For any stage s ∈ [1, 4], the session identifier for that stage includes
the DH shares of both parties. We recall that the contributive identifiers for
EDHOC-Sig-Sig are defined as follows: cid[init, 1] = (“1”, Gx) and for all roles
r and stage s, cid[r, s] = (“s”, Gx, Gy). Therefore, matching session identifiers
means agreement on the DH shares, which in turn means agreement on the
contributive identifiers. ■

Proposition 5.7 Matching session identifiers in authenticated stages implies that
the partner session is intended.

Proof. Assuming that agreement on the session identifier (sid[s]) for an au-
thenticated stage s implies different roles (see Proposition 5.4), honest ini-
tiators and responders write their identity in the I/R placeholder in the
session identifier. If these values are both honestly set, agreement on the
session identifier implies agreement on the peer’s identity and respective
roles. ■

Proposition 5.8 Session identifiers are different across stages.

Proof. For any stage s ∈ [1, 4], the session identifier sid[s] = (“s”, . . .) is a
sequence whose first element is “s′′. For any t ̸= s, sid[t] = (“t′′, . . .) ̸=
(“s′′, . . .). Therefore, session identifiers are distinct across stages ■

Phase 2: Ensuring Explicit Authentication and Key Indistinguisha-
bility

We proceed with phase two of our proof, assuming that soundness is un-
conditionally guaranteed from now on. In this phase, we show that the
adversary cannot win by breaking explicit authentication or distinguishing
the challenge bit.

Preparing for our analysis of phase II, we introduce the following two games
to exclude collisions in the partial transcript hashes. Moreover, from now
on, we drop EDHOC-Sig-Sig from advantage expressions for the sake of read-
ability.

Game G3. In this game, we log the hash values computed by honest ses-
sions in a table Thash that provides efficient look-ups. Given an arbitrary
value m, Thash maps H(m) to m, that is, Tdh[h] ← m. Additionally, we set
the flag hashcoll if an honest session computes a hash h on a value m such
that h ∈ Thash and Thash[h] ̸= m. These changes are unobservable to the
adversary, therefore

AdvG3
A = AdvG2

A .

39

5. Security Analysis of EDHOC SIG-SIG Mode

Game G4. The G4 terminates whenever hashcoll is set. Using the identical-
until-bad lemma, we have that

|AdvG4
A − AdvG3

A | ≤ Pr[hashcoll ← true].

We bound Pr[hashcoll ← true] using a reduction B4 to the collision resistance
of H. B4 honestly, simulates G4 towards A; whenever hashcoll is set, B4
wins the collision resistance game by outputting the strings m ̸= m′ that
caused the collisions. Therefore, Pr[hashcoll ← true] ≤ AdvCR

B4
(H) and as con-

sequence:
|AdvG4

A − AdvG3
A | ≤ AdvCR

B4
(H).

Note. At this point, we split the proof into two branches 2.I and 2.II, each
starting from G4 and proceeding with the games GI and, GI I respectively.
In the first branch, the adversary attempts to break explicit authentication
for at least one session; in the second branch, explicit authentication is un-
conditionally guaranteed, and the adversary attempts to guess the challenge
bit. Since the two cases are disjoint, we have the following bound:

AdvG4
A ≤ max(AdvGI

A ,AdvGII
A) ≤ AdvGI

A + AdvGII
A .

We start with branch Branch 2.I.

Branch 2.I: The adversary Cannot Break Explicit Authentication. In this
phase, we use a hybrid argument to analyze explicit authentication. Namely,
we will zoom in on a single session for which A attempts to break explicit
authentication. We will use the term targeted session to refer to the session
for which the adversary attempts to break explicit authentication.

Game GI: Continuing from G4, in this game, we guess a session-stage
pair

(
πi

U , s
)

such that ExplicitAuth evaluates to false since the adversary
broke explicit authentication of πi

U in stage s. This restriction to a single
targeted session and stage reduces the advantage by a factor of nS×S, where
nS is the total number of sessions and S is the number of stages. We therefore
get the following:

AdvG4
A ≤ 4nS · AdvGI

A .

From now on, πi
U refers to the targeted session.

Game GI.1. In this game, we log all messages signed by honest users in
a table Tsig with efficient lookups, along with the corresponding public key
and the signature produced. More precisely, for a (honest) user U that owns
the long-term key pair (skU , pkU), let σ = Sign(skU , m) be the signature
computed on a message m, then Tsig is a list of tuples (m, σ, pkU , U). In

40

5.3. MSKE security of EDHOC SIG-SIG

concrete terms, an initiator session with identity I will sign a message of
the form m3 = (lsig, kidI , th3, credI , ead3, τ3). Whereas, the responder R will
sign a message of the form m2 = (lsig, kidR, th2, credR, ead2, τ2). Due to cre-
dential identifiers potentially referencing multiple credentials, protocol par-
ticipants may have to verify the received signatures against multiple public
keys. Upon receiving the protocol message msg2 that includes the credential
identifier kidU , initiator sessions will attempt to validate the received signa-
ture σ2 against each public key pkU referenced by kidU , adapting the a priori
signed message to the messages mU = (lsig, kidU , th2, credU , ead2, τ2). These
validation attempts are performed until for one public key Vf(pkU , σ2, mU) =
1; otherwise, the protocol is aborted. Similarly, responder sessions ver-
ify the signature σ3 received within msg3 and all possible messages mU =
(lsig, kidU , th3U , credU , ead3, τ3) against each public key pkU . Where th3U must
also be re-computed for each mU and takes the value(s) H(th2, ptxt2, pkU , U).

In addition to logging messages, we set the flag sig f orged if the targeted ses-
sion receives and validates a message signature pair (m, σ) under the public
key pkV of an honest2 user V such that (m, σ, pkV , V) /∈ Tsig. These changes
are only administrative and are not observable by the adversary. Therefore:

AdvGI.1
A = AdvGI

A .

Game GI.2. GI.2 terminates whenever sig f orged is set. We analyze the prob-
ability of the event sig f orged ← true. We bound Pr

[
sig f orged ← true

]
by a

reduction BI.2 to the SUF-CMA security of Sig. Namely, BI.2 first guesses the
identity (V) of the peer session which reduces the advantage by a factor nU
and associates pkV with the public key pk∗ from the SUF-CMA challenge i.e.
pk∗ = pkV . The reduction answers all game queries and calls its signing or-
acle whenever a query needs V to produce a signature. Upon sig f orged being
set, BI.2 outputs the message signature pair (m, σ) that caused sig f orged to be
set and terminates GI.2.

Simulation soundness. Besides RevLongTermKey queries, BI.2 can consis-
tently answer all queries. Next, we argue that RevLongTermKey queries are
of no concern. Indeed, after sig f orged is set, we do not need to answer this
query. Before the flag is set, such a query does not help the adversary either.
The ExplicitAuth predicate requires the value of revltkV designates a time
after acceptance of the stage s′, where the stage s receives explicit authenti-
cation, perhaps retroactively. Since the targeted session must have accepted
stage s′ which requires receiving and accepting a message-signature pair
under pkV ; therefore, a RevLongTermKey(V) query before sig f orged is un-
helpful for the adversary in its quest to break explicit authentication. Hence,
the reduction need not answer RevLongTermKey queries.

2More precisely, we only expect that V is honest at the time the message-signature pair
is received.

41

5. Security Analysis of EDHOC SIG-SIG Mode

Validity of the Forgery. By definition of Tsig, the flag sig f orged is set only when
the targeted session receives and accepts a message signature pair (m, σ)
under a pkV such that (m, σ, pkV , V) /∈ Tsig. This implies that (m, σ) is a new
message-signature pair that V did not previously produce. Therefore, BI.2
produces a legitimate SUF-CMA forgery, and we have the following:

Pr
[
sig f orged → 1

]
= AdvSUF-CMA

BI.2
(Sig).

And as a consequence:

|AdvGI.2
A − AdvGI.1

A | ≤ nU · AdvSUF-CMA
BI.2

(Sig).

Game GI.3. In this game, we set the flag sigambigous if there exists an
honest session π that receives and accepts a message-signature pair (m, σ)
under a public key pkU′ and, there exists a value kid such that: (pkU , U) ∈
peerpkkid and (pkU′ , U′) ∈ peerpkkid. In other words, kid identifies both pkU
and pkU′ ; and for some m′ it holds that (m′, σ, pkU , U) ∈ Tsig. We view
pkU′ as a key chosen by the adversary A and registered using the query
NewUser(skU′ , pkU′ , kid). From the standpoint of π , there is an ambiguity
about the identity of the peer that (presumably) authenticated themselves
via the received message signature pair (m, σ). These changes are unob-
servable to the adversary, therefore:

AdvGI.3
A = AdvGI.4

A .

Game GI.4. In this game, we terminate whenever sigambigous is set. We first
observe that for m and, m′ as described in the previous game, it is always
the case that the following hold: m′ ̸= m. This is because each session
signs a message that includes the user’s credentials, i.e., each user U′ signs
a message of the form (lsig, kidU′ , th∥credU′∥ead, τ). Furthermore, the creden-
tials are unique to each identity, and the CBOR encoding is unambiguous.
Consequently, we can restrict our analysis to pkU ̸= pkU′ . If pkU = pkU′ ,
the attacker knows the secret key, or they have to devise a forgery since m
is never signed by U. By definition of sigambigous, we can straightforwardly
relate Pr

[
sigambigous ← true

]
to the advantage of an S-UEO adversary BI.4.

More precisely, BI.4 associates pkU with the public key from the pk∗ received
from the challenger S-UEO, i.e. pkU = pk∗. The reduction uses the signing
oracle of its challenger whenever a query needs U to sign a message; else, it
responds to the other oracle queries in the usual manner. It terminates the
game when sigambigous is set.

Simulation soundness: We only need to consider the RevLongTermKey(U)
queries, as the reduction can answer all other queries consistently. On the
one hand, we do not need to consider what happens after sigambigous is
set. The simulation terminates and need not answer RevLongTermKey(U)

42

5.3. MSKE security of EDHOC SIG-SIG

queries. On the other hand, the predicate ExplicitAuth requires pkU is not
compromised before the session π accepts stage s. Therefore, for our reduc-
tion, the RevLongTermKey(U) queries are not a concern, and the simulation
is sound.

Validity of the attack. If the flag sigambigous is set, π accepted and verified a
message signature pair (m, σ) under a public key pkU′ and ∃t ∈ Tsig : t =
(m′, σ, pkU , U). As observed above m ̸= m′; therefore, no honest session
sought to sign m. As a consequence, the tuple (m, m′, σ, pk, pk′) is a valid
S-UEO forgery. Therefore,

Pr
[
sigambigous ← true

]
≤ AdvS-UEO

BI.4
(Sig).

Remark 5.9 Again, we note that A does not see the messages signed by honest
sessions as they contain a (random) MAC tag unknown to the adversary; however,
seeing messages would only increase the advantage. Therefore, the upper bound
above is justified.

Finally, we get:

|AdvGI.4
A − AdvGI.3

A | ≤ nS · AdvS-UEO
B7

(Sig).

Note 1. The signature schemes in EDHOC are Ed25519 and ECDSA. The
former is known to be S-UEO-secure [BCJZ20] while the latter is only se-
cure under certain conditions. However, in EDHOC, the signing algorithm
unambiguously places the public key of the message together with the ac-
tual message via the credential. Therefore, we could view the signature
scheme (Sig) in EDHOC as another scheme Ŝig that takes a message and
signs the message along with the corresponding verification key. That is, for
a key pair (sk, pk), the signing algorithm is modified and behaves as follows:
Ŝig.Sign(sk, m) = Sig.sign(sk, (m, pk)). Pornin and Stern [PS05] showed that
unambiguous inclusion of the verification key is enough to thwart S-UEO
attacks, provided there are no weak keys. This property holds for ECDSA
assuming that the concrete implementation of ECDSA performs all the nec-
essary checks to prevent ”weak keys.” Finally, we note that Destructive Own-
ership would be sufficient.

Note 2. The MAc-then-SIGn version of the SIGMA protocol [Kra03], that
informed the design of EDHOC and that we denote by SIGMA σ

τ

3, can be
vulnerable to attacks similar to those targeting the ambiguity of the message
signer. In Appendix A.1, we show that standard unforgeability alone is not
sufficient; one requires that there are no weak keys. Fortunately, the signature
schemes in EDHOC provide S-UEO security.

3SIGMA σ
τ

stands for “MAC under the Signature”.

43

5. Security Analysis of EDHOC SIG-SIG Mode

Conclusion of phase 2.I At this point, we argue that if GI.4 does not abort,
then the adversary cannot win by causing the predicate ExplicitAuth to eval-
uate to false.

We recall that the predicate ExplicitAuth is defined as follows:

∀(πi
U , s) :




πi

U .accepted[s] ∧

eauth[πi
U .role, s] = s′ < ∞ ∧

πi
U .accepted[s′] < revltkπi

U .pid

 =⇒

∃π
j
V :

πi
U .sid[s′] = π

j
V .sid[s′] ∧

π
j
V .accepted[s] < revltkπi

U .id =⇒ πi
U .sid[s] = π

j
V .sid[s]




.

Breaking explicit authentication is equivalent to a state of the game where
the following holds:

∃(πi
U , s) :




πi

U .accepted[s] ∧

eauth[πi
U .role, s] = s′ < ∞ ∧

πi
U .accepted[s′] < revltkπi

U .pid


∧

∀π
j
V :

πi
U .sid[s′] ̸= π

j
V .sid[s′] ∨

π
j
V .accepted[s] < revltkπi

U .id ∧ πi
U .sid[s] ̸= π

j
V .sid[s]




.

In other words, the following holds:

1. (1) πi
U accepted stage s (resp. s′) at time t (resp. t′). The session accepts

with a peer identifier V (one must be set).

2. V’s long-term secret was not compromised at time t′.

3. (I.a) Either, no (honest) session π
j
V is partnered with πi

U in stage s′.

4. (I.b) Or, There exists an honest session π
j
V that is partnered with πi

U
in stage s′; however, the two sessions are not partnered in stage s.

For an initiator session, stages 2, 3, and 4 are explicitly authenticated once
stage 2 is accepted; stage 1 receives authentication retroactively. For a re-
sponder session, stages 3 and 4 are explicitly authenticated once stage 3
is accepted; previous stages receive authentication retroactively. Regard-
less of the role, each session must have received a valid signature σ on

44

5.3. MSKE security of EDHOC SIG-SIG

a MAC tag before accepting the relevant s’th stage. Concretely, an ini-
tiator session with identity I, must have received from its responder peer
with identity R a valid signature σ2 within the message msg2; where σ2 is
computed over a message of the form m2 = (lsig, kidR, th2, credR, ead2, τ2).
The responder session must have received a signature σ3 over the message
m3 = (lsig, kidI , th3, credI , ead3, τ3) within the message msg3. The attacker
breaks explicit authentication if either case (I.a) or (I.b) occurs. We address
the possibility that either event occurs.

Case (I.a). The targeted session, πi
U , accepted a message signature pair

(m, σ) under the public key of V i.e. Vf(pkV , m, σ) = 1, but no session
π

j
V is partnered with πi

U in stage 2 (resp. stage 3) if πi
U is the initiator

(resp. responder). We consider two cases that we call (i) and (ii), based on
whether the message and signature received by πi

U verifies the following:
(m, σ, pkV , V) /∈ Tsig. By the definition of case (i), no honest session produced
the pair of message signatures (m, σ). Therefore, the adversary must have
forged a signature. At this point, if GI.2 did not abort, then the adversary
could not have forged a signature. If case (ii) occurs, an honest session π

j
V

produced the message signature pair received and accepted by πi
U . In par-

ticular, if πi
U is in the initiator role, the message (lsig, kidR, th2, credR, ead2, τ2)

was signed (resp. verified) by π
j
V (resp. πi

U). Hence, πi
U and π

j
V agree

on the values of σ2, kidR, ead2 in sid[2]. Additionally, they also agree on
the values of th2 = H(Gy,CR,H(msg1)). Thanks to G4, partial collisions
in transcript hashes are excluded. Therefore, πi

U must also agree on the
values of Gy, CR and and therefore agree on their respective stage-2 ses-
sion identifiers and are partnered in stage 2, contradicting the assumption
that πi

U does not have a partner session in stage 2. Analogously, if πi
U is

a responder session (π j
V is an initiator), the message signed is of the form

m3 = (lsig, kidI , th3, credI , ead3, τ3). Therefore, there is agreement on the val-
ues of σ3, kidI and ead3. Furthermore, agreement on th3 = H(th2, ptxt2, credR)
implies agreement on the remaining values of the stage 3 session identifiers,
thanks to G4.

Finally, suppose that the targeted session πi
U is in the responder role. The

attacker can cause case (ii) to occur by mounting an attack against the in-
tended initiator session π

j
V such that π

j
V would accept with a malicious peer

identity U′ while not modifying the conversation transcript. The subtlety of
this attack is that although π

j
V has been “tricked” into accepting with an un-

intended peer, the adversary does not, in fact, break explicit authentication
for π

j
V ; the adversary broke explicit authentication for the responder session

πi
U . At the end of the protocol run, πi

U ends up without a partner in stage 2
and above; hence πi

U is indeed the targeted session. We expand a bit more
on the details of this attack that exploit ambiguity about the identity of the

45

5. Security Analysis of EDHOC SIG-SIG Mode

responder πi
U . Upon receiving msg2 from πi

U , A registers a new key pair
by calling NewUser(sk′U , pkU′ , kidU). The malicious key pair is selected such
that π

j
V would accept σ2 under pkU′ when delivered via the relevant Send

query. Careful observation of the protocol specification reveals that such an
attack would not disturb the protocol run. However, the result is an identity
mis-binding attack.

Thanks to GI.4, ambiguity about the responder of the initiator is excluded.
Furthermore, if the initiator session π

j
V accepts another peer identity U′,

the value of th3 computed by πi
U (resp. π

j
V) are H(th2, ptxt2, cred) (resp.

H(th2, ptxt2, credU′)). These are different values, and since honest sessions
only sign transcript hashes corresponding to their session identifiers, the
adversary must come up with a new forgery for πi

U to later accept msg3.

We have shown that case (I.a) does not occur. Next, we analyze the case
(I.b).

Case (I.b) Let s′ be the stage a which πi
U receives explicit authentication.

Recall that s′ = 2 if πi
U is in the initiator role and s′ = 3 if πi

U is in the
responder role. For a given stage s ∈ [1, 4], we use sid[s] to denote the sub-
sequence of sid[s] that does not contain the stage label. We proceed with this
analysis stage by stage, assuming that πi

U .sid[s′] = π
j
V .sid[s′].

• Stage 1. This stage receives retroactively explicit authentication upon
acceptance of stage 2 for initiator sessions and upon acceptance of
stage 3 for responder sessions. Assuming that πi

U .sid[s′] = π
j
V .sid[s′],

we also know that sid[1] ≺ sid[s] for s ∈ {2, 3}. Therefore, case (I.b)
cannot occur for s = 1.

• Stage 2. For initiation sessions, case (I.b) is trivially impossible since
s = s′ = 2. For responder session, sid[2] ≺ sid[3] and thus case (I.b)
cannot occur.

• Stage 3. In case πi
U is in the responder role, then case (I.b) is trivially

excluded since s = s′ = 3. For an initiator session, the only pos-
sible divergences in πi

U .sid[3] and π
j
V .sid[3] are (i) different values in

the field corresponding to msg3 or (ii) different values in the initiator
placeholder position (I). Case (i) comprises modifications that would
require the adversary to forge a signature, since honest sessions only
sign messages in transcript hashes that correspond to their session
identifiers, and the predicate ExplicitAuth requires that πi

U’s long-term
secret, skU , is not comprised before π

j
V accepts stage 3. Therefore, case

(i) is prevented thanks to GI.2 where forgeries are excluded. Case (ii)
requires that the attacker can create ambiguity about the initiator’s
identity. Namely, the attacker would have to mount an attack such

46

5.3. MSKE security of EDHOC SIG-SIG

that π
j
V accepts the peer identity U′ after receiving msg3. Thanks to

GI.4, this cannot occur.

• Stage 4. We observe that sid[4] = sid[3]. Therefore, the analysis of
stag 4 is identical to the analysis of stage 3.

Since adversaries A cannot break explicit authentication, they can no longer
win in this branch of the proof. Thus,

AdvGI.4
A ≤ 0.

Conclusion of Branch II.1 We have shown that the adversary cannot break
explicit authentication. We now analyze the key secrecy properties of stage
keys in EDHOC, assuming that the predicate ExplicitAuth is always true.
We do so by showing that the challenge bit is random and independent of
the adversary’s guess.

Branch 2.II: Ensuring that the challenge bit is random and indepen-
dent of the adversary’s guess

Game GI I. Continuing from G4, in this game, we restrict the adversary
A by allowing a single Test query. From this point on, we assume that
the tested session is known in the subsequent games, and we will talk of
the tested session, πi

U . We follow the approach of Dowling et al. [DFGS21]
who presented a careful hybrid argument for their analysis of TLS 1.3 and
argued that this restriction reduces the advantage of A by a factor at most
nS×S. Here, nS is the number of sessions and S = 4 is the number of stages.
Therefore, we get the following bound:

AdvG4
A ≤ 4nS · AdvGII

A .

Note. We proceed with our analysis of phase II by considering two disjoint
cases. Namely,

• Case A: In this case, the tested session does not have a (honest) con-
tributive partner in the first stage, i.e.,

∀π ̸= πi
U : πi

U .cid
[

πi
U .role, 1

]
̸= π .cid

[
πi

U .role, 1
]

.

• Case B: The tested session has a (honest) contributive partner in the
first stage, that is,

∃π ̸= πi
U : πi

U .cid
[

πi
U .role, 1

]
= π .cid

[
πi

U .role, 1
]

.

47

5. Security Analysis of EDHOC SIG-SIG Mode

Since the two cases above are disjoint, we can bound A’s advantage as fol-
lows:

AdvGII
A ≤ AdvGII case A

A + AdvGII case B
A .

Case A: The tested session has no contributive partner.

As a first observation, the adversary cannot test for unauthenticated stages,
such a test query is considered non-fresh in the model (see Figure 4.2). In
particular, A may not test stage 1 nor stage 2 in case of a responder session.
Test queries are only allowed from stage 2 onward for an initiator session
and from stage 3 onwards for a responder. Having established the appro-
priate restrictions on Test queries, we now analyze the conditions under
which a session accepts a stage that can be legally tested. For an initia-
tor session, acceptance of stage 2 is predicated on the reception of a valid
tuple (σ2, kidR, ead2) containing of a signature and a key identifier. Analo-
gously, a responder session accepts stage 3 only if it received a valid triple
(σ3, kidI , ead3). Finally, we also observe that a Test query is allowed only
before the long-term key of πi

U’s peer is compromised, that is, Test must be
issued before RevLongTermKey(πi

U .pid). Based on the three observations
previously made, one sees that a prerequisite for A to have a chance of win-
ning the game is to be able to send valid messages and signatures to the
tested session on behalf of honest users. In the next game hops, we analyze
A’s likelihood of causing such an event.

Game GI I.A1. In this game, we set a flag sig f orged whenever the tested
session πi

U in the role of initiator (resp. Responder) receives a tuple (kidR,
σ2, ead2) (resp. (kidI , σ3, ead3)) such that the signature verifies under an hon-
est public key pkV ∈ peerpkkidR

(resp. peerpkkidI
). These changes are only

administrative and unobservable to A, therefore:

AdvGII.A1
A = AdvG4

A .

Game GI I.A2. The game GI I.A2 terminates whenever sig f orged is set. By
the identical-until-bad lemma, we have that

|AdvGII.A2
A − AdvGII.A1

A | ≤ Pr
[
sig f orged ← true

]
.

We bound Pr
[
sig f orged ← true

]
by a reduction BI I.A2, to the EUF-CMA secu-

rity of the signature scheme. BI I.A2, an EUF-CMA adversary, emulates GI I.A2
towards A. To this end, BI I.A2 first guesses the identity V of πi

U’s peer, and
associates the challenge public key pk∗ to V’s long-term verification key, i.e.
pkV = pk∗. As a consequence, A’ s advantage is reduced by a factor nU
where nU is the total number of users. For each Send query that requires V
to produce a signature, BI I.A2 queries its signing oracle with the message to

48

5.3. MSKE security of EDHOC SIG-SIG

be signed. Otherwise, BI I.A2 answers the remaining queries from GI I.A2 as
appropriate. Finally, if sig f orged is set, BI I.A2 outputs the relevant message-
signature pair (m, σ) as its forgery towards its EUF-CMA challenger. Here,
σ is the signature value received by the tested session and m is the message
for which the tested session verified the signature.

Simulation soundness. We argue that B I I.A2’s simulation of GI I.A2 is sound.
First, we observe that BI I.A2 can perfectly answer all queries in GI I.A2 but
RevLongTermKey(V) given that the secret key corresponding to pkV = pk∗

is unknown. However, BI I.A2 does not need to be able to answer such
queries. Namely, if such a query is issued before acceptance of the tested
stage, the test query is now non-fresh, and the attacker loses the game.
On the other hand, BI I.A2 cannot be bothered by RevLongTermKey(V)
queries issued after sig f orged is set. By then, BI I.A2 has a valid forgery for
the EUF-CMA game and can terminate the game. This shows that until
sig f orged is set, the GI I.A2 and GI I.A1 are equivalent, and the simulation is
sound.

Validity of the forgery. Having shown simulation soundness, it remains to
show that (m, σ) is a valid forgery, that is, when BI I.A2 outputs (m, σ), the
EUF-CMA challenger also outputs 1. In EDHOC, signatures are computed
on (amongst other things) the MAC tag (τ) and the transcript hashes (th).
More precisely, the messages to be signed is m = (lsig, kidU , th, credU , ead, τ).
credU is the credential of U that contains pkU and U’s unique identity. Recall
that for signature verification, when an initiator (resp. responder) session
receives message 2 (resp. message 3), the session may verify the signature
against multiple public keys if the received kidU refers to multiple creden-
tials. In this case, for each credX associated with kidU , the message(s) to be
verified is mX = (lsig, kidU , th, credX, ead, τ) until one verification is success-
ful. Due to the game G4, collisions in the transcript hashes are excluded
if G4 did not terminate. This implies that without a contributive partner,
no honest session signed the message that the tested session received and
accepted after a successful validation of the signature. As a result, given the
challenge (EUF-CMA) public key pk∗, BI I.A2 can verify that the pair (m, σ)
is a valid forgery; allowing BI I.A2 to terminate the game and present (m, σ)
to the challenge EUF-CMA. Therefore, we have:

Pr
[
sig f orged ← true

]
≤ nU · AdvEUF-CMA

BI I.A2
(Sig).

It follows that:

|AdvGII.A2
A − AdvGII.A1

A | ≤ nU · AdvEUF-CMA
BI I.A2

(Sig).

At this point, we remark that if sig f orged is never set, then the tested session
without a contributive partner never accepts either stage 2 or stage 3. Con-
sequently, an attacker cannot make a valid Test query, and their guess bit b′

is truly independent of the challenge bit b.

49

5. Security Analysis of EDHOC SIG-SIG Mode

Case B: The tested session has a contributive partner.

Game GI I.B1 In this game, we guess the session π
j
V that is contributive

partner of the tested session πi
U . This step reduces the advantage of A by a

factor nS and we get:

AdvG4
A (EDHOC-Sig-Sig) ≤ nS · AdvGII.B1

A (EDHOC-Sig-Sig).

From this point on, we consider the games to have a specified tested session
and its partner at the outset.

Game GI I.B2. In this game, we replace PRK2e computed by the tested

session with a uniform random value P̃RK2e
$←− KPRK2e

. where KPRK2e
is the

key space of PRK2e. We note here that the cid partner is not guaranteed to
have received the honest DH shares from the tested session; that is, if the cid
partner is in the initiator role, the adversary A could have delivered a mali-
cious share, for which A could even know the corresponding secret scalar.
Therefore, we also replace PRK2e at the contributive partner with the same

P̃RK2e only if the contributive partner holds the same DH shares as the tested
session. To justify this step, we exhibit a reduction to an snPRF-ODH ad-
versary BI I.B2 which, at a high level, receives Diffie-Hellman shares from its
challenger and encodes them in the shares Gx and Gy used by the partnered
sessions.

Simulation soundness. BI I.B2 simulates GI I.B2 towards A and must answer
all queries consistently. The queries of interest here are Send queries that
induce the computation of the PRK2e at the tested session πi

U and eventually
at its partnered session π

j
V . BI I.B2 consistently answers all other queries. We

observe that if the tested session is in the initiator role, then πi
U and π

j
V

have the same P̃RK2e. If, however, πi
U is a responder session, π

j
V may have

received a modified G′y for which the attacker knows the private scalar z
such that G′y = zG. BI I.B2 must be able to compute xzG, which is achievable
given access to the ”left” PRF-ODH oracle Ox(S, v). Finally, we observe that
in EDHOC, A is only allowed to deliver a potentially modified G′y once to

π
j
V ; this implies that the reduction only needs access to a single Ox(S, v)

query.

Details of the reduction. BI I.B2 receives DH shares u ∗ G and v ∗ G from
its snPRF-ODH challenger and simulates GI I.B2 towards A answering all
queries unrelated to PRK2e as needed. BI I.B2 encodes the received DH shares
(u ∗ G, v ∗ G) into the Diffie-Hellman shares (Gx, Gy) of the tested session
and its partner, respectively. To derive PRK2e, BI I.B2 makes a PRF query
on input the empty string "" (recall that PRK2e = Extract("", xy ∗ G)) and

50

5.3. MSKE security of EDHOC SIG-SIG

copies the result into the state of the tested session. BI I.B2 copies PRK2e into
the state of the contributive partner if it received the DH share Gy. If the
partner session receives a modified G′y, BI I.B2 calls the left oracle Ox(S, v) on
the inputs S = G′y and v = "".

As a consequence, the advantage difference between GI I.B1 and GI I.B2 can
be bounded by the advantage of the snPRF-ODH adversary BI I.B2, and we
get:

|AdvGII.B2
A − AdvGII.B1

A | ≤ AdvsnPRF-ODH
BI I.B2

(Extract).

Game GI I.B3. In this game, we replace the function Expand keyed with
P̃RK2e with a random function F at the tested session. The contributive
partner also replaces Expand with F only if it received honest DH shares. We
justify this step by relating and bounding the advantage difference of A to
the advantage of an PRF adversary BI I.B3. BI I.B3 simulates GI I.B3 towards A
answering all queries that do not trigger a call to Expand. To answer queries
that require deriving any key, IV or MAC tag derived from PRK2e, BI I.B3
queries its PRF oracle with the appropriate input. We summarized the label
used to derive each key, IV, and MAC tags in Table 3.2. By the game GI I.B2,
we have replaced PRK2e by a random value, and each key, IV or MAc tag
is computed with a unique and distinct label. Therefore, the simulation is
sound, and we get the following:

|AdvGII.B3
A − AdvGII.B3

A | ≤ AdvPRFBI I.B3
(Expand).

Having replaced Expand with a random function F, we can readily replace
all values derived by the tested session using a call to Expand with uniform
random values. Again, we replace these values in the partner session only if
it received an honest DH share. Concretely, we replace in the tested session
(and possibly in the contributing partner) the keys (K2,K3,K4,PRKout), the
initialization vectors (IV3, IV4), and the mac tags (τ2, τ3) with values drawn
at random from the corresponding domains. We call the newly sampled val-
ues K̃2, K̃3, K̃4, P̃RKout, ĨV3, ĨV4, τ̃2, τ̃3. Since all values are derived in EDHOC
by evaluating the random function F on a unique input per value, F pro-
duces independent random values. Here, one may object that the key spaces
Kk, k ∈ {K2,K3, . . . , τ3} may be different; therefore, it is not clear that F can
produce random values from each key space. We note that Kk = {0, 1}klen,
where klen is the length of k. Furthermore, we assume that F is a variable-
length random function with output space {0, 1}∗. Therefore, all keys can
be computed accordingly.

Remark. At this stage, all keys are random values independent of the chal-
lenge bit b, and it remains to argue that RevSessionKey queries do not help
the adversary. Interestingly, keys may not necessarily be independent when

51

5. Security Analysis of EDHOC SIG-SIG Mode

sessions are not partnered. The following problem may arise in EDHOC:
With credential identifiers (kid) that can refer to multiple identities and as-
sociated public keys, a session may believe they are talking to a session with
a different identity than the one involved in the protocol. By the defini-
tion of the session identifiers, the two sessions will no longer be partnered.
However, the two sessions will derive the same stage keys. Therefore, the
adversary may use RevSessionKey queries to guess the challenge bit with
high probability. This observation suggests that we must analyze the even-
tuality of ambiguous signatures.

Conclusion of phase II. Fortunately, the case of ambiguous signatures cor-
responds to the adversary breaking explicit authentication. Given that the
adversary does not break explicit authentication in this branch of the proof,
we conclude that the challenge bit is random and independent of the adver-
sary’s guess. Therefore:

AdvGII.B3
A ≤ 0.

To summarize the proof:

1. Sound. As discussed in the conclusion of phase 1, the predicate Sound
remains true.

2. ExplicitAuth. As discussed in the conclusion of phase II, the predicate
ExplicitAuth remains true.

3. Key secrecy. As discussed in the conclusion of phase II, the adver-
sary A cannot guess the challenge bit with non-negligible probability,
which proves that the stage keys are indistinguishable from uniform
random values. Therefore, we have shown that all the security proper-
ties defined in our MSKE model for EDHOC-Sig-Sig hold, which con-
cludes the proof of Theorem 5.1. □

52

Chapter 6

Discussion and Conclusion

In this final chapter, we offer closing remarks on the EDHOC protocol and
its development process. We report on our involvement with the LAKE
working group and our contributions to the protocol specification. We dis-
cuss the limitations of our work, including aspects of the protocol that we
excluded from the scope of our analysis. Finally, we conclude by offering
some direction for future work.

6.1 Comments on the design of EDHOC

In the following, we would like to offer some thoughts on the design of
the EDHOC protocol; we discuss some of its peculiarities and contrast them
with the existing TLS 1.3 handshake protocol.

6.1.1 Chasing a moving target

In the course of this thesis project, the EDHOC draft underwent numerous
modifications. Starting with draft 12, our analysis evolved along the ver-
sions and finally focused on draft 14. The evolution of the draft versions
was driven by various contributions from engineering teams and teams per-
forming security analysis, such as ours. This relatively dynamic environ-
ment required us to stay attentive to the inputs of multiple stakeholders and
identify relevant inputs from other security analyses.

6.1.2 Non-unique credential identifiers

A striking difference between EDHOC and TLS 1.3 (besides being different
instantiations of SIGMA) is the use of credential identifiers in EDHOC, sent
during authentication, in lieu of certificates commonly used in the hand-
shake messages of TLS 1.3. Small-sized credential identifiers have the ben-
efit of keeping the bandwidth footprint of protocol messages relatively low,

53

6. Discussion and Conclusion

hence their attractiveness for constrained networks. However, some imple-
mentations may not enforce uniqueness of the credential related to a cre-
dential identifier. Non-unique credential identifiers can potentially create
ambiguity about the identity of peers engaging in the protocol and open the
door for identity mis-binding attacks. This observation influenced the de-
sign of our security model to pay special attention to explicit authentication
guarantees in EDHOC, as discussed in Section 4.1.1.

6.1.3 Identity protection

In specific scenarios, it is desirable to protect the identity of the protocol par-
ticipants. The SIGMA protocol elegantly offers this feature through encryp-
tion of the key exchange messages where peers mutually authenticate. Se-
crecy of the responder’s identity is guaranteed against passive adversaries,
while an active attacker should be unable to learn the initiator’s identity.
Interestingly, the protocol message 2 is encrypted by XORing with a key
stream of the appropriate length derived from the shared Diffie-Hellman
secret. The reason for avoiding using an AEAD scheme is to mitigate the
overhead caused by the ciphertext expansion due to the additional MAC
tag. Additionally, one could argue that secrecy of the responder’s identity is
guaranteed only against passive adversaries, i.e., an adversary that faithfully
relays the first two protocol messages. From our perspective, the use of an
AEAD scheme would be preferable. Considering the noticeable bandwidth
economy achieved by EDHOC in comparison to TLS 1.3, an additional 32
bytes for the MAC tag does not seem to be unreasonable and leaves a size-
able bandwidth margin.

6.2 Interactions with the IETF

The standardization process. The Internet Engineering Task Force has es-
tablished the LAKE working group to guide the development of the EDHOC
protocol. The work on EDHOC started in early July 2020. The draft has gone
through several versions, and the current version is draft 151. The working
group is an open environment, allowing various entities to contribute ideas
and improvement suggestions freely. On the one hand, engineering teams
have reported their performance evaluation of the EDHOC protocol; mul-
tiple open-source implementations of EDHOC are available for experimen-
tation. On the other hand, many other entities have and are still working
on analyzing the security of the EDHOC protocol. In particular, Jacomme
et al. have been actively working on analyzing the security of the EDHOC
protocol in the symbolic model. They use the formal analysis tool chain
SAPIC+ [CJKK22] to analyze all authentication modes in EDHOC. They

1EDHOC draft 15: https://datatracker.ietf.org/doc/draft-ietf-lake-edhoc/15/.

54

https://datatracker.ietf.org/doc/draft-ietf-lake-edhoc/15/

6.3. Contributions to the Design of EDHOC

also suggest numerous changes to the draft. On the other hand, Cottier
and Pointcheval investigated the security of EDHOC STAT-STAT[CP22], fo-
cusing on tightness and the security of ciphersuite with 64 bits MACs. They
study the possibility of “augmenting” the security level of such ciphersuites
and recommend a few improvements to insure tight security bounds. Our
work is a humble contribution to this effort.

Our involvement with the working group. Throughout this thesis project,
we have had a handful of interactions with the working group. In the early
months of this project, we attended the IETF 113 meeting to get a feel for
the progress of the working group, to gain visibility into concurrent security
analyses, and to announce our ongoing work on EDHOC. Later on, on the
31st of March 2022, we provided some early comments on the protocol de-
sign; we suggested several improvements to the protocol, mainly targeting
the key schedule and the computation of the transcript hashes [IGb]. These
changes were positively received by the working group that integrated them
into the current draft version. We discuss these suggestions in detail below.
On the 8th of July 2022, we provided additional suggestions for improving
explicit authentication based on our security analysis[IGa]. Finally, we also
presented our final analysis and main results to the IETF 1142 meeting on
the 27th of July 2022.

Through it all, we have found the interaction with the working group very
cordial. We thank the LAKE chairs and all members for their kind reception
of our work.

6.3 Contributions to the Design of EDHOC

We describe our main contributions, starting with the early comments and
concluding with our final suggestions extracted from the insight of our fi-
nal analysis. Our suggestions on the early drafts have been integrated into
the current protocol specification. The latest contribution is expected to be
added to the next draft.

6.3.1 Early comments on draft 12

Lack of a final session key. The draft 12 [SMP] was ambiguous regarding
what should be considered the final session key. Based on the key sched-
ule, the key PRK4e3m appears in the final session key. It is used to derive
the OSCORE master secret and the OSCORE master salt; the exporter and
the key update mechanism were also keyed with PRK4e3m. In EDHOC SIG-
SIG PRK4e3m = PRK2e. We observed that PRK4e3m is also used within the

2https://datatracker.ietf.org/meeting/114/materials/agenda-114-lake-02.

55

https://datatracker.ietf.org/meeting/114/materials/agenda-114-lake-02

6. Discussion and Conclusion

key exchange to derive MAC tags, encryption keys for protocol messages,
and so on. Therefore, it is impossible to prove key indistinguishability for
this session key. Though this impossibility may not have any practical im-
pact, we suggested that a dedicated session key be defined to cleanly prove
its security. This suggestion was also brought up by Jacomme et al. who
recommended the addition of the final session key3 PRKout.

Reuse of keying material in the key schedule. The key schedule specified
in draft 12 uses the pseudo-random keys PRK2e, PRK3e2m and PRK4e3m as
keying material in both Extract and Expand. The precise usage depends on
the authentication method. We pointed out that such reuse of keying ma-
terial is generally not secure unless done with careful attention to domain
separation. We referenced the usage of derived secrets4 in the TLS 1.3 specifi-
cation to separate domains of Extract and Expand. In response, the working
group redesigned the key schedule 5; which now includes stage salts used to
separate the calls to Expand and Extract, similarly to TLS 1.3.

Transcript hashes. In draft 12, the transcript hashes are computed on the
encrypted protocol messages. More precisely, the partial transcript hashes
three and four are computed as follows: th3 = H(th2, ctxt2) and th4 =
H(th3, ctxt3). From an analysis perspective, the inclusion of ciphertext in-
troduces a dependency on the encryption method. We included this in our
previous remarks on the design of EDHOC. In response, the working group
redesigned the partial transcript hash computation; the underlying plaintext
messages are now used in computing the transcript hashes. We addition-
ally remark here that the partial hash computation diverges from how it
is performed in TLS 1.3 using a running hash. The recursive nature of the
transcript hash computation in EDHOC is due to the lack of appropriate
cryptographic APIs in low-end devices.

6.3.2 Further comments on draft 14

Towards the end of the thesis project, we offered further improvement sug-
gestions based on a complete analysis of the EDHOC protocol. Our study
of the authentication guarantee of the EDHOC protocol provided us with
insights into the MAc-then-SIGn protocol and the particular requirement
for the digital signature schemes used in EDHOC. To strengthen EDHOC
against potential attacks taking advantage of credential identifiers that iden-
tify multiple credentials, we suggested that the transcript hashes th3 (resp.
th4) should include the credentials of the responder (resp. the initiator).

3https://github.com/lake-wg/edhoc/pull/276.
4https://github.com/tlswg/tls13-spec/pull/875.
5https://openwsn.atlassian.net/wiki/spaces/LAKE/pages/1932427302/Key+

Schedule.

56

https://github.com/lake-wg/edhoc/pull/276
https://github.com/tlswg/tls13-spec/pull/875
https://openwsn.atlassian.net/wiki/spaces/LAKE/pages/1932427302/Key+Schedule
https://openwsn.atlassian.net/wiki/spaces/LAKE/pages/1932427302/Key+Schedule

6.4. Limitations

An official pull request was opened to integrate our suggestions into the
draft [Mat22]. The modification we propose has minimal impact on the per-
formance and was positively received by the working group. We expect that
the next draft version will include our suggestions.

6.4 Limitations

6.4.1 Scope limited to the SIG-SIG mode

Our analysis of the EDHOC protocol is limited to the SIG-SIG mode for
authentication, although some of our comments to the working group also
affected other authentication methods. The SIG-SIG mode and its intricacies
proved challenging enough, hence, the scope limitation. We note, however,
that the risks of ambiguous signatures are also valid for the STAT-SIG and
SIG-STAT modes.

6.4.2 Loose security bounds

In this work, we show EDHOC to be secure and provide a security proof
to this effect. Our proof follows the strategies used by Dowling et al. to
analyze the TLS 1.3 handshake protocol [DFGS21]. Due to various guessing
strategies used in our proof (see Chapter 5), our security bound is rather
loose. In particular, the security bound depends on the number of users and
sessions. Loose security bounds are problematic since they cannot mean-
ingfully inform the choice of concrete parameters to instantiate the protocol
both securely and efficiently with existing cryptographic primitives. Davis
and Günther [DG21] point out that a concrete evaluation of the bounds
in [DFGS21] results in an uncomfortably high probability that a state ad-
versary may break the TLS 1.3 key exchange if instantiated with commonly
used cryptographic primitives. We fully expect the same criticism to be
relevant when concretely evaluating our security bound.

6.4.3 Out-of-scope considerations

We restricted our analysis to the cryptographic core of the EDHOC protocol.
To carry out a security analysis, one needs to find the right abstraction level
while still capturing the essence of the protocol. Although we did our best
to find the appropriate balance between abstraction and completeness, such
an analysis cannot capture all aspects of a complex protocol. In particular,
we do not model negotiation of authentication mechanism. We assume in
our analysis that the SIG-SIG mode is used. Moreover, we also leave the
negotiation of the ciphersuite out of scope.

Furthermore, the actual real-world security of the protocol depends on far
more factors than can be captured in this thesis. Insecure programming

57

6. Discussion and Conclusion

practices and various other attack surfaces in low-powered devices may un-
dermine the security guarantee of the EDHOC protocol, despite our analy-
sis. For instance, a real-world attacker may use so-called software exploits
to bypass the security guarantees offered by the EDHOC protocol.

6.5 Future Work

SIG-STAT and STAT-SIG modes. As discussed in the previous sections,
our analysis solely focused on the SIG-SIG mode. From our interaction
with the working group, we were made aware of the work of Baptiste Cot-
tier [Cot22] on the STAT-STAT mode. The security of mixed modes such as
SIG-STAT and STAT-SIG are currently open questions worth investigating.

Tighter analysis A significant improvement to the work presented in this
thesis would be a tighter security analysis. Davis and Günther [DG21] pre-
sented a tight analysis of SIGMA and the TLS 1.3 handshake. The au-
thors concluded with optimism about the applicability of their results to
multi-stage settings. To carry out a concrete and tight analysis on PSK
modes of the TLS 1.3 handshake [DDGJ22], Davis et al. employed tech-
niques from [DG21, DJ21]. We believe that the techniques used in [DG21]
can serve as a foundation towards a tighter analysis of the EDHOC protocol.

Security analysis of OSCORE. Establishing a security context is the main
use case for EDHOC. The security of the overall deployment must normally
be analyzed, given that a protocol proven secure in a standalone manner
may not remain secure when combined arbitrarily. Brzuska et al. [BFWW11]
have shown that Bellare-Rogaway like key exchange protocols security with
other security symmetric primitives. To the best of our knowledge, the OS-
CORE protocol has not yet received a formal security analysis. Nevertheless,
a formal analysis limited to the security of the OSCORE protocol can aug-
ment our work and give further confidence in the overall protocol without
the need to analyze the OSCORE and EDHOC in conjunction.

58

Appendix A

Appendix

A.1 Identity Mis-Binding in MAc-then-SIGn

We present an identity mis-binding on the MAc-then-SIGn protocol, here-
after denoted by SIGMA σ

τ
for “MAC under the signature”. For simplicity, we

exclude identity protection from our treatment. The core issue is caused by a
lack of explicit verification of the MAC tag; instead, the tag is implicitly ver-
ified through the verification of the signature. Existing analysis of SIGMA
(SIGn-and-MAc instantiation) show that a secure instantiation must use an
unforgeable signature scheme, including the original analyze of C. We show
that for the security of SIGMA σ

τ
, it is not enough for the signature scheme to

be EUF-CMA secure; it must be unforgeable for all keys. In particular, there
cannot be any weak key, for instance one that accepts any message signature
pair.

Consider a simplified run of the MAc-then-SIGn, where we additionally
omit encryption. The initiator sends the first message (Gx, I). The re-
sponder then computes a shared session key K and a MAC key Km using
a key derivation function. It responds with the second protocol message(

R, Gy, σ = Sign(sk I ,MAC(Km, Gy, Gx, R))
)
. Assume now that the attacker

intercepts this message and modifies the message with the value
(

R′, Gy, σ
)
.

The identity R′ has a weak verification key pk such that for all message m
and signature σ, Vf(pk, m, σ) = 1. As a consequence, the attacker need not
know the MAC key and the initiator will accept the signature with peer
identity R′. Furthermore, the attack does not modify the transcript, hence
the initiator’s third message is successfully accepted by the responder.

The issue. At a high level, in MAc-then-SIGn, peers do not explicitly prove
knowledge of the key via the MAC. Instead, the MAC is only implicitly
verified once the signature is accepted. The insufficiency of the standard
EUF-CMA notion is not enough because EUF-CMA it captures unforgeabil-

59

A. Appendix

ity “on average”. While the attack described here requires unforgeability
almost everywhere. In other words, let Sig be a EUF-CMA secure signature
scheme. Now create Ŝig such that the key space of Ŝig is the key space of
Sig augmented with the special key pair (sk∗, pk∗). Furthermore, modify
signing is the same unless the signing key is sk∗ in which case a random
signature value is return. The verification algorithm is also similar to the
original signature scheme unless the verification key is pk∗ in which case the
verification algorithm always returns 1. Observe that s̃ig is still EUF-CMA
as the advantage of any EUF-CMA adversary is only increased by a negli-
gible factor, corresponding to the choice of (sk∗, pk∗) as challenge key pair.
However, the SIGMA σ

τ
protocol is vulnerable to the attack described above if

instanciated with s̃ig.

60

Bibliography

[BCF+13] Colin Boyd, Cas Cremers, Michèle Feltz, Kenneth G. Paterson,
Bertram Poettering, and Douglas Stebila. ASICS: Authenti-
cated Key Exchange Security Incorporating Certification Sys-
tems. In Jason Crampton, Sushil Jajodia, and Keith Mayes,
editors, Computer Security – ESORICS 2013, Lecture Notes in
Computer Science, pages 381–399, Berlin, Heidelberg, 2013.
Springer. doi:10.1007/978-3-642-40203-6_22.

[BCJZ20] Jacqueline Brendel, Cas Cremers, Dennis Jackson, and Mang
Zhao. The Provable Security of Ed25519: Theory and Practice.
Technical Report 823, 2020. URL: https://eprint.iacr.org/
2020/823.

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying Hash
Functions for Message Authentication. In Neal Koblitz, editor,
Advances in Cryptology — CRYPTO ’96, Lecture Notes in Com-
puter Science, pages 1–15, Berlin, Heidelberg, 1996. Springer.
doi:10.1007/3-540-68697-5_1.

[BDL+12] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and
Bo-Yin Yang. High-speed high-security signatures. Journal of
Cryptographic Engineering, 2(2):77–89, September 2012. doi:10.

1007/s13389-012-0027-1.

[BFGJ17] Jacqueline Brendel, Marc Fischlin, Felix Günther, and Christian
Janson. PRF-ODH: Relations, Instantiations, and Impossibility
Results. In Jonathan Katz and Hovav Shacham, editors, Ad-
vances in Cryptology – CRYPTO 2017, Lecture Notes in Com-
puter Science, pages 651–681, Cham, 2017. Springer Interna-
tional Publishing. doi:10.1007/978-3-319-63697-9_22.

61

https://doi.org/10.1007/978-3-642-40203-6_22
https://eprint.iacr.org/2020/823
https://eprint.iacr.org/2020/823
https://doi.org/10.1007/3-540-68697-5_1
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1007/978-3-319-63697-9_22

Bibliography

[BFWW11] Christina Brzuska, Marc Fischlin, Bogdan Warinschi, and
Stephen C. Williams. Composability of bellare-rogaway key
exchange protocols. In Proceedings of the 18th ACM conference
on Computer and communications security, CCS ’11, pages 51–62,
New York, NY, USA, October 2011. Association for Computing
Machinery. doi:10.1145/2046707.2046716.

[BH20] Carsten Bormann and Paul E. Hoffman. Concise Binary Ob-
ject Representation (CBOR). Request for Comments RFC 8949,
Internet Engineering Task Force, December 2020. Num Pages:
66. URL: https://datatracker.ietf.org/doc/rfc8949, doi:
10.17487/RFC8949.

[BR94] Mihir Bellare and Phillip Rogaway. Entity Authentication and
Key Distribution. In Douglas R. Stinson, editor, Advances in
Cryptology — CRYPTO’ 93, Lecture Notes in Computer Sci-
ence, pages 232–249, Berlin, Heidelberg, 1994. Springer. doi:

10.1007/3-540-48329-2_21.

[BR06] Mihir Bellare and Phillip Rogaway. The Security of
Triple Encryption and a Framework for Code-Based Game-
Playing Proofs. In Serge Vaudenay, editor, Advances in Cryp-
tology - EUROCRYPT 2006, Lecture Notes in Computer Sci-
ence, pages 409–426, Berlin, Heidelberg, 2006. Springer. doi:

10.1007/11761679_25.

[BS] Dan Boneh and Victor Shoup. A Graduate Course in Applied Cryp-
tography. URL: https://toc.cryptobook.us/.

[BSJGPS18] Alessandro Bruni, Thorvald Sahl Jørgensen, Theis Grønbech Pe-
tersen, and Carsten Schürmann. Formal Verification of
Ephemeral Diffie-Hellman Over COSE (EDHOC). In Cas Cre-
mers and Anja Lehmann, editors, Security Standardisation Re-
search, volume 11322, pages 21–36. Springer International Pub-
lishing, Cham, 2018. Series Title: Lecture Notes in Com-
puter Science. URL: http://link.springer.com/10.1007/

978-3-030-04762-7_2, doi:10.1007/978-3-030-04762-7_2.

[CDF+21] Cas Cremers, Samed Düzlü, Rune Fiedler, Marc Fischlin, and
Christian Janson. BUFFing signature schemes beyond unforge-
ability and the case of post-quantum signatures. In 2021 IEEE
Symposium on Security and Privacy (SP), pages 1696–1714, May
2021. ISSN: 2375-1207. doi:10.1109/SP40001.2021.00093.

[CH98] David Carrel and Dan Harkins. The Internet Key Exchange
(IKE). Request for Comments RFC 2409, Internet Engineering

62

https://doi.org/10.1145/2046707.2046716
https://datatracker.ietf.org/doc/rfc8949
https://doi.org/10.17487/RFC8949
https://doi.org/10.17487/RFC8949
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://toc.cryptobook.us/
http://link.springer.com/10.1007/978-3-030-04762-7_2
http://link.springer.com/10.1007/978-3-030-04762-7_2
https://doi.org/10.1007/978-3-030-04762-7_2
https://doi.org/10.1109/SP40001.2021.00093

Bibliography

Task Force, November 1998. Num Pages: 41. URL: https://
datatracker.ietf.org/doc/rfc2409, doi:10.17487/RFC2409.

[CHH+17] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and
Thyla van der Merwe. A Comprehensive Symbolic Analysis
of TLS 1.3. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’17, pages 1773–
1788, New York, NY, USA, October 2017. Association for Com-
puting Machinery. doi:10.1145/3133956.3134063.

[CJKK22] Vincent Cheval, Charlie Jacomme, Steve Kremer, and Robert
Künnemann. {SAPIC+}: protocol verifiers of the world,
unite! pages 3935–3952, 2022. URL: https://www.usenix.org/
conference/usenixsecurity22/presentation/cheval.

[Cot22] Baptiste Cottier. slides-113-lake-computational-
model-analysis-02.pdf, 2022. URL: https://

datatracker.ietf.org/meeting/113/materials/

slides-113-lake-computational-model-analysis-02.pdf.

[CP22] Baptiste Cottier and David Pointcheval. Security Analysis
of the EDHOC protocol. September 2022. URL: https://

arxiv-export1.library.cornell.edu/abs/2209.03599.

[DDGJ22] Hannah Davis, Denis Diemert, Felix Günther, and Tibor Jager.
On the Concrete Security of TLS 1.3 PSK Mode. Technical Re-
port 246, 2022. URL: https://eprint.iacr.org/2022/246.

[DFGS21] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas
Stebila. A Cryptographic Analysis of the TLS 1.3 Handshake
Protocol. Journal of Cryptology, 34(4):37, July 2021. doi:10.1007/
s00145-021-09384-1.

[DG21] Hannah Davis and Felix Günther. Tighter Proofs for the SIGMA
and TLS 1.3 Key Exchange Protocols. In Applied Cryptography
and Network Security: 19th International Conference, ACNS 2021,
Kamakura, Japan, June 21–24, 2021, Proceedings, Part II, pages 448–
479, Berlin, Heidelberg, June 2021. Springer-Verlag. doi:10.

1007/978-3-030-78375-4_18.

[DJ21] Denis Diemert and Tibor Jager. On the Tight Security of TLS
1.3: Theoretically Sound Cryptographic Parameters for Real-
World Deployments. Journal of Cryptology, 34(3):30, June 2021.
doi:10.1007/s00145-021-09388-x.

63

https://datatracker.ietf.org/doc/rfc2409
https://datatracker.ietf.org/doc/rfc2409
https://doi.org/10.17487/RFC2409
https://doi.org/10.1145/3133956.3134063
https://www.usenix.org/conference/usenixsecurity22/presentation/cheval
https://www.usenix.org/conference/usenixsecurity22/presentation/cheval
https://datatracker.ietf.org/meeting/113/materials/slides-113-lake-computational-model-analysis-02.pdf
https://datatracker.ietf.org/meeting/113/materials/slides-113-lake-computational-model-analysis-02.pdf
https://datatracker.ietf.org/meeting/113/materials/slides-113-lake-computational-model-analysis-02.pdf
https://arxiv-export1.library.cornell.edu/abs/2209.03599
https://arxiv-export1.library.cornell.edu/abs/2209.03599
https://eprint.iacr.org/2022/246
https://doi.org/10.1007/s00145-021-09384-1
https://doi.org/10.1007/s00145-021-09384-1
https://doi.org/10.1007/978-3-030-78375-4_18
https://doi.org/10.1007/978-3-030-78375-4_18
https://doi.org/10.1007/s00145-021-09388-x

Bibliography

[FG14] Marc Fischlin and Felix Günther. Multi-Stage Key Exchange
and the Case of Google’s QUIC Protocol. In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’14, pages 1193–1204, New York, NY,
USA, November 2014. Association for Computing Machinery.
doi:10.1145/2660267.2660308.

[Gü18] Felix Günther. Modeling Advanced Security Aspects of Key Ex-
change and Secure Channel Protocols. Ph.D. Thesis, Technische
Universität, Darmstadt, 2018. URL: https://tuprints.ulb.

tu-darmstadt.de/7162/.

[IGa] Marc Ilunga and Felix Günther. [Lake] Computational anal-
ysis of EDHOC Sig-Sig - improvement suggestions for tran-
script hashes. URL: https://mailarchive.ietf.org/arch/

msg/lake/BTxPdJl0Z8ylSe1P7i0BFx1T_0o/.

[IGb] Marc Ilunga and Felix Günther. [Lake] Computational
EDHOC analysis - Some early comments and ques-
tions. URL: https://mailarchive.ietf.org/arch/msg/lake/
i2NYxn3vchQ1jUv91frlcqQ4sP0/.

[JMV01] Don Johnson, Alfred Menezes, and Scott Vanstone. The El-
liptic Curve Digital Signature Algorithm (ECDSA). Interna-
tional Journal of Information Security, 1(1):36–63, August 2001.
doi:10.1007/s102070100002.

[KCP16] John Kelsey, Shu-jen Chang, and Ray Perlner. SHA-3 De-
rived Functions: cSHAKE, KMAC, TupleHash, and Parallel-
Hash. Technical Report NIST Special Publication (SP) 800-
185, National Institute of Standards and Technology, December
2016. URL: https://csrc.nist.gov/publications/detail/

sp/800-185/final, doi:10.6028/NIST.SP.800-185.

[KMO+14] Markulf Kohlweiss, Ueli Maurer, Cristina Onete, Bjoern Tack-
mann, and Daniele Venturi. (De-)Constructing TLS. Cryptology
ePrint Archive, 2014. URL: https://eprint.iacr.org/2014/

020.

[Kra03] Hugo Krawczyk. SIGMA: The ‘SIGn-and-MAc’ Approach to
Authenticated Diffie-Hellman and Its Use in the IKE Protocols.
In Advances in Cryptology - CRYPTO 2003, pages 400–425.
Springer, Berlin, Heidelberg, 2003. URL: https://link.

springer.com/chapter/10.1007/978-3-540-45146-4_24,
doi:10.1007/978-3-540-45146-4_24.

64

https://doi.org/10.1145/2660267.2660308
https://tuprints.ulb.tu-darmstadt.de/7162/
https://tuprints.ulb.tu-darmstadt.de/7162/
https://mailarchive.ietf.org/arch/msg/lake/BTxPdJl0Z8ylSe1P7i0BFx1T_0o/
https://mailarchive.ietf.org/arch/msg/lake/BTxPdJl0Z8ylSe1P7i0BFx1T_0o/
https://mailarchive.ietf.org/arch/msg/lake/i2NYxn3vchQ1jUv91frlcqQ4sP0/
https://mailarchive.ietf.org/arch/msg/lake/i2NYxn3vchQ1jUv91frlcqQ4sP0/
https://doi.org/10.1007/s102070100002
https://csrc.nist.gov/publications/detail/sp/800-185/final
https://csrc.nist.gov/publications/detail/sp/800-185/final
https://doi.org/10.6028/NIST.SP.800-185
https://eprint.iacr.org/2014/020
https://eprint.iacr.org/2014/020
https://link.springer.com/chapter/10.1007/978-3-540-45146-4_24
https://link.springer.com/chapter/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/978-3-540-45146-4_24

Bibliography

[Kra10] Hugo Krawczyk. Cryptographic Extraction and Key Deriva-
tion: The HKDF Scheme. In Tal Rabin, editor, Advances in
Cryptology – CRYPTO 2010, Lecture Notes in Computer Sci-
ence, pages 631–648, Berlin, Heidelberg, 2010. Springer. doi:

10.1007/978-3-642-14623-7_34.

[LKK21] Hyunwoo Lee, Doowon Kim, and Yonghwi Kwon. TLS 1.3 in
Practice:How TLS 1.3 Contributes to the Internet. In Proceedings
of the Web Conference 2021, WWW ’21, pages 70–79, New York,
NY, USA, April 2021. Association for Computing Machinery.
doi:10.1145/3442381.3450057.

[Mat22] John Preuß Mattsson. Change TH 3 and TH 4 by emanjon · Pull
Request #318 · lake-wg/edhoc, 2022. URL: https://github.
com/lake-wg/edhoc/pull/318.

[MPV20] John Preuß Mattsson, Francesca Palombini, and Mališa
Vučinić. Comparison of CoAP Security Protocols. Inter-
net Draft draft-ietf-lwig-security-protocol-comparison-05, In-
ternet Engineering Task Force, November 2020. Num
Pages: 39. URL: https://datatracker.ietf.org/doc/

draft-ietf-lwig-security-protocol-comparison-05.

[MS04] Alfred Menezes and Nigel Smart. Security of Signature
Schemes in a Multi-User Setting. Designs, Codes and Cryptog-
raphy, 33(3):261–274, November 2004. doi:10.1023/B:DESI.

0000036250.18062.3f.

[NSB21] K. Norrman, V. Sundararajan, and A. Bruni. Formal Analysis
of EDHOC Key Establishment for Constrained IoT Devices. In
SECRYPT, 2021. doi:10.5220/0010554002100221.

[PS05] Thomas Pornin and Julien P. Stern. Digital Signatures Do
Not Guarantee Exclusive Ownership. In John Ioannidis, An-
gelos Keromytis, and Moti Yung, editors, Applied Cryptography
and Network Security, pages 138–150, Berlin, Heidelberg, 2005.
Springer. doi:10.1007/11496137_10.

[Res18] Eric Rescorla. The Transport Layer Security (TLS) Protocol Ver-
sion 1.3. Request for Comments RFC 8446, Internet Engineer-
ing Task Force, August 2018. Num Pages: 160. URL: https://
datatracker.ietf.org/doc/rfc8446, doi:10.17487/RFC8446.

[Rog02] Phillip Rogaway. Authenticated-encryption with associated-
data. In Proceedings of the 9th ACM conference on Computer and

65

https://doi.org/10.1007/978-3-642-14623-7_34
https://doi.org/10.1007/978-3-642-14623-7_34
https://doi.org/10.1145/3442381.3450057
https://github.com/lake-wg/edhoc/pull/318
https://github.com/lake-wg/edhoc/pull/318
https://datatracker.ietf.org/doc/draft-ietf-lwig-security-protocol-comparison-05
https://datatracker.ietf.org/doc/draft-ietf-lwig-security-protocol-comparison-05
https://doi.org/10.1023/B:DESI.0000036250.18062.3f
https://doi.org/10.1023/B:DESI.0000036250.18062.3f
https://doi.org/10.5220/0010554002100221
https://doi.org/10.1007/11496137_10
https://datatracker.ietf.org/doc/rfc8446
https://datatracker.ietf.org/doc/rfc8446
https://doi.org/10.17487/RFC8446

Bibliography

communications security, CCS ’02, pages 98–107, New York, NY,
USA, November 2002. Association for Computing Machinery.
doi:10.1145/586110.586125.

[Sch17] Jim Schaad. CBOR Object Signing and Encryption (COSE). Re-
quest for Comments RFC 8152, Internet Engineering Task Force,
July 2017. Num Pages: 121. URL: https://datatracker.ietf.
org/doc/rfc8152, doi:10.17487/RFC8152.

[Shr04] Tom Shrimpton. A Characterization of Authenticated-
Encryption as a Form of Chosen-Ciphertext Security. Cryp-
tology ePrint Archive, 2004. URL: https://eprint.iacr.org/
2004/272.

[SMP] Göran Selander, John Preuß Mattsson, and Francesca Palom-
bini. Ephemeral Diffie-Hellman Over COSE (EDHOC). Internet
Draft draft-ietf-lake-edhoc-12, Internet Engineering Task Force.
Num Pages: 80. URL: https://datatracker.ietf.org/doc/
draft-ietf-lake-edhoc-12.

[SMP22a] Göran Selander, John Preuß Mattsson, and Francesca Palom-
bini. Ephemeral Diffie-Hellman Over COSE (EDHOC). Internet
Draft draft-ietf-lake-edhoc-15, Internet Engineering Task Force,
July 2022. Num Pages: 92. URL: https://datatracker.ietf.
org/doc/draft-ietf-lake-edhoc.

[SMP22b] Göran Selander, John Preuß Mattsson, and Francesca Palom-
bini. Ephemeral Diffie-Hellman Over COSE (EDHOC). Internet
Draft draft-ietf-lake-edhoc-14, Internet Engineering Task Force,
May 2022. Num Pages: 90. URL: https://datatracker.ietf.
org/doc/draft-ietf-lake-edhoc-14.

[SMPS19] Göran Selander, John Preuß Mattsson, Francesca Palombini,
and Ludwig Seitz. Object Security for Constrained RESTful
Environments (OSCORE). Request for Comments RFC 8613,
Internet Engineering Task Force, July 2019. Num Pages: 94.
URL: https://datatracker.ietf.org/doc/rfc8613, doi:10.

17487/RFC8613.

66

https://doi.org/10.1145/586110.586125
https://datatracker.ietf.org/doc/rfc8152
https://datatracker.ietf.org/doc/rfc8152
https://doi.org/10.17487/RFC8152
https://eprint.iacr.org/2004/272
https://eprint.iacr.org/2004/272
https://datatracker.ietf.org/doc/draft-ietf-lake-edhoc-12
https://datatracker.ietf.org/doc/draft-ietf-lake-edhoc-12
https://datatracker.ietf.org/doc/draft-ietf-lake-edhoc
https://datatracker.ietf.org/doc/draft-ietf-lake-edhoc
https://datatracker.ietf.org/doc/draft-ietf-lake-edhoc-14
https://datatracker.ietf.org/doc/draft-ietf-lake-edhoc-14
https://datatracker.ietf.org/doc/rfc8613
https://doi.org/10.17487/RFC8613
https://doi.org/10.17487/RFC8613

	Contents
	Introduction
	Overview and Motivation
	Problem statement
	Existing alternative for EDHOC: TLS 1.3
	Overview of EDHOC's design

	Contributions
	Related and Concurrent Work
	Outline

	Preliminaries
	Notation
	Cryptographic Primitives
	Hash function
	Pseudo-Random Functions
	Key Derivation Functions
	Message Authentication Codes
	Digital Signatures
	Authenticated Encryption
	Pseudo-Random Function Diffie–Hellman Oracle Assumption

	The EDHOC SIG-SIG Protocol
	Overview
	Identities and Long-Term Keys
	Details of the SIG-SIG mode
	Key Schedule of EDHOC SIG-SIG

	Code-based Multi-stage Key Exchange Model
	The Multi-stage Key Exchange Model
	MSKE model for EDHOC

	Model Syntax
	Protocol Syntax
	Protocol variables
	Session variables

	MSKE Security Game
	MSKE security of Key Exchange Protocols

	Security Analysis of EDHOC SIG-SIG Mode
	EDHOC SIG-SIG as an MSKE protocol
	Protocol properties
	MSKE security of EDHOC SIG-SIG
	Proof details

	Discussion and Conclusion
	Comments on the design of EDHOC
	Chasing a moving target
	Non-unique credential identifiers
	Identity protection

	Interactions with the IETF
	Contributions to the Design of EDHOC
	Early comments on draft 12
	Further comments on draft 14

	Limitations
	Scope limited to the SIG-SIG mode
	Loose security bounds
	Out-of-scope considerations

	Future Work

	Appendix
	Identity Mis-Binding in MAc-then-SIGn

	Bibliography

