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Abstract

In this thesis we analyse the Post-Compromise Security of the Trans-
port Layer Security (TLS) version 1.3 handshake protocols. The TLS
handshake protocol is used to establish shared secrets for secure com-
munication between two endpoints, as well as secrets used for session
resumption, which can allow the endpoints to re-establish previously
completed sessions in an efficient manner. In addition, TLS session re-
sumption handshakes can themselves output shared secrets for future
session resumption handshakes, and can thus be chained together to
continually re-establish previously completed sessions. First, we extend
previous multi-stage key exchange security models to capture a novel
property, which we denote passive security, and we prove the full TLS
1.3 handshake and the TLS 1.3 PSK-(EC)DHE session resumption hand-
shake secure in this model. Then, we adapt compositional frameworks
in the literature to prove that the TLS handshake protocol can be com-
posed with other instances of the TLS handshake protocol via session
resumption: thus we model TLS session resumption through composi-
tion, and prove soundness of our model. Finally, we introduce a formal-
ism to study chains of composition, and apply an adapted definition of
Post-Compromise Security to our formalism: this provides evidence that
chains of TLS handshakes established through the session resumption
mechanism (under certain restrictions) achieve Post-Compromise Secu-
rity.
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Chapter 1

Introduction

TLS does not provide security for handshakes which take place af-
ter the peer’s long-term secret (signature key or external PSK) is
compromised. It therefore does not provide post-compromise secu-
rity [...] [46]

Post-Compromise Security is a notion that concerns the security of a cryp-
tographic protocol after the exposure of a user’s state running that protocol,
including the leakage of long-term keys and any additional secure state.

It is clear that an attacker, once in possession of the complete state of a user,
can trivially impersonate that user, and thus no security can be achieved.
However, if the attacker becomes passive at some point, it should be possible to
refresh the protocol, re-establishing secrets between the users of the protocol,
and then prevent the attacker from trivially re-impersonating the user again.

This thesis studies the TLS protocol and, in particular, TLS handshake pro-
tocols, which establish shared secret keys for various cryptographic purposes.
The TLS standard, which we quote above, clearly states that TLS does not
achieve Post-Compromise Security: we take up the challenge.

1.1 Preliminaries
TLS is a channel establishment and secure communication protocol, roughly
divided into two underlying protocols: the record layer protocol and the hand-
shake protocol.

The handshake protocol of TLS is (at a high-level) a two-party authenticated
key exchange protocol. An authenticated key exchange (AKE) protocol allows
its users to verify the identity of their communication partner and to jointly
establish some shared secret key material. This key material can be later
used in some arbitrary symmetric-key protocol – that is, a protocol which
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1. Introduction

can be run by parties sharing a common symmetric key, such as a symmetric
encryption scheme.

The record layer protocol of TLS is (again, at a high-level) a symmetric-
key protocol, which instantiates a secure channel: the users of the protocol
can exchange messages over this secure channel, with some pre-determined
confidentiality and integrity guarantees.

In this work, we are interested in analysing various aspects of the TLS hand-
shake protocol, and we model the handshake protocol as an authenticated
key exchange protocol: we study the security of the established key material
when the key exchange is run in the presence of an adversary in full control
of the network. This adversary can arbitrarily observe, modify, drop, reorder
or inject messages.

We will use a particularly strong definition of security, dating back to the
seminal work of Bellare and Rogaway (who first formally studied AKEs):
indistinguishability of the established key from a random key drawn from the
same distribution [9].

To capture the security of AKEs, Bellare and Rogaway introduced a security
game, played between a challenger and an adversary: the challenger simulates
parties running instances of the protocol (commonly referred to as sessions),
and gives our network-controlling adversary access to a real-or-random key
oracle, which returns either the real key derived by the session in the AKE
or a random key sampled from the same distribution. The adversary wins
if they can distinguish the real key from the random key. The adversary is
probabilistic polynomially bounded – that is, the adversary is a probabilistic
algorithm with access to time and space bounded by a polynomial function
(commonly referred to in this work as an efficient adversary). If no efficient
adversary can win the security game with non-negligible probability, we say
that the key exchange is secure.

In the AKE setting, security of sessions of the key exchange is commonly
based on either the users sharing some secret, or each user possessing a pair
of public and private keys and access to a mapping between public keys and
corresponding users. The TLS 1.3 handshake protocol offer both variants: a
“full” handshake mode, where users authenticate themselves via public key
cryptography, and a “PSK” handshake mode, where authentication is based
on pre-shared secrets.

As the TLS design document quoted before suggests, if the adversary has
corrupted a user and knows its private key or its PSK, the handshake cannot
provide security: for instance, the adversary can simply impersonate any user
they know the secrets of, since they control the network and the user at the
other end of a session (the session partner) has no way to distinguish them
from the legitimate owner of the secret.
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1.2. Motivation

It therefore stands clear that a single TLS handshake cannot provide Post-
Compromise Security. However, the TLS 1.3 specification also defines a mech-
anism by which users can re-establish previous sessions, known as session
resumption. All TLS handshakes allow users (or endpoints, in TLS nomencla-
ture) to establish an additional secret: the resumption PSK. This resumption
PSK can then be used to run a new session of a TLS PSK-based handshake.

This resumption mechanism was designed with efficiency in mind. A client
(that is, the endpoint initiating a session) and a server (the responder end-
point) need one full round-trip time (RTT) to complete a session of the full
handshake, while PSK handshakes allow, through mechanisms that we will
later describe, to derive “early” 0-RTT keys, which allow the client to securely
communicate with the server without waiting for the server’s response.

This resumption mechanism also opens up a way to achieve PCS in certain
settings: if some corrupted endpoints can establish a resumption PSK when
the adversary is not actively interfering, they can use this PSK for future
sessions, which will recover security against active adversaries.

Our goal is therefore to formally model the security properties of TLS hand-
shake sessions established through the resumption mechanism: we study chains
of resumption – that is, serial assemblies of handshakes executions, in which
each TLS session results in the establishment of the resumption PSK for the
next.

1.2 Motivation
Post-Compromise Security is a desirable property in modern cryptographic
protocols: user devices may fall under temporary adversary control, which is
later restricted. This is the case for ‘evil-maid’ attacks [50], where the threat
actor gains short-term physical access to the physical device, or for devices
returned to a user after confiscation by the authorities.

Traditional definitions of protocol security – including the ones for authenti-
cated key exchanges – do not usually allow for post-compromise scenarios in
their threat model: as Cohn-Gordon, Cremers and Garratt discuss in their
“Post-Compromise Security” paper [18], the very question of whether any se-
curity guarantee is possible after a full-state compromise was, for long time,
up for debate.

Some instances of protocols designed to maintain security in post-compromise
settings emerged in the field of secure messaging: a highly-visible example
is the Signal protocol [17], which uses a mechanism dubbed “ratcheting” to
continuously update the keys used to protect communication.

Broadly speaking, for authenticated key exchange protocols, Post-Compromise
Security would act as a complementary of the forward secrecy property that
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1. Introduction

many protocols (including the TLS 1.3 protocol we study in this thesis) already
provide. A forward secret AKE guarantees that past sessions of the protocol
maintain security after compromise of the long-term keys: Post-Compromise
Security would extend security to sessions that take place after the compro-
mise, under certain restrictions.

Extensive security analyses for the TLS 1.3 protocol exist in the literature.
The handshake protocols have been proven secure in isolation, and in their
composition with the TLS record protocol, in numerous models and frame-
works [26, 12, 19, 32]. Nonetheless, to the best of our knowledge, post-
compromise guarantees of chains of TLS 1.3 resumption have never been
studied before. We note that achieving Post-Compromise Security was not
an intended design goal of the TLS resumption mechanism: rather, it is its
key update structure which lends itself to a post-compromise analysis.

1.3 Structure and Contributions
The aim of this thesis is to capture the (post-compromise) security of chains of
TLS session resumption: sequences of TLS 1.3 handshake sessions established
through the TLS session resumption mechanism.

We start by formally presenting a description of the TLS handshake protocol
in Chapter 2: after introducing the motivation and design of version 1.3 of
the protocol, we delve into a detailed description of both the full and the PSK
TLS handshake protocols. This chapter includes a high-level description of
the session resumption mechanism, and the precise derivation steps for all the
key outputs of the handshake, including resumption PSKs.

We then move to considering the state of the art in the security analysis of TLS
1.3 and in the Post-Compromise Security models: in Chapter 3, we present
some works this thesis builds upon, and discuss the literature surveyed in the
preliminary stages of our work. This chapter also introduces Multi-Stage Key
Exchange (MSKE) models: those represent an extension of Authenticated
Key Exchange models, and share the same strong notion of security as key
indistinguishability. MSKEs are of particular importance to us, since they
have been successfully used to capture security of TLS handshakes.

We extend existing MSKE analyses of the TLS 1.3 handshake protocols, by
presenting our own MSKE variant in Chapter 4: we capture a novel property,
passive security, which extends upon the forward secrecy already captured by
models in the literature, by allowing adversaries to win in the key indistin-
guishability game after a compromise, as long as the adversary stays passive.
We present formal proofs of security of the full TLS 1.3 handshake and the
TLS 1.3 PSK-(EC)DHE handshake in our model. The final section of this
chapter extensively discusses the relation between forward secrecy and pas-
sive security.
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1.4. Notation

Passive security is an important step towards proving PCS: a session of a pas-
sively secure protocol retains security against a passive attacker, even if that
attacker knows the long-term keys of the users before the session even begins.
In the case of TLS handshakes, such a session will allow the users to refresh
the protocol, establishing a fresh resumption PSK. Passive security of TLS
handshakes is nonetheless not sufficient to capture PCS: what remains to be
done is to provide a model for session resumption and to formally define a
notion of Post-Compromise Security. A natural way to model session resump-
tion is through composition: an instance of a TLS handshake is composed,
through the resumption key, with an instance of a TLS session resumption
handshake.

To this aim, in Chapter 5, we present a generic composition framework for
Multi-Stage key exchanges protocols, which allows us to capture the security
of the composition of the key exchange with an arbitrary symmetric protocol.
We provide a proof showing that key exchange protocols secure in our MSKE
model are amenable of generic composition. In Section 6.3.4 we will then
prove that we can soundly use the TLS resumption handshake as a symmetric
protocol.

Finally, in Chapter 6, we extend upon the generic composition framework of
Chapter 5, and introduce a formalism to study chained compositions (that is,
iterated generic compositions): this allows us to model TLS resumption chains
as chained compositions. We then provide a definition of Post-Compromise Se-
curity for chained compositions, and show that if the protocols in the chain are
passively secure, then the chained composition achieves PCS. This, combined
with our passive security results for the TLS handshakes, provides evidence
that, under certain assumptions, chains of TLS 1.3 handshake sessions estab-
lished through TLS resumption achieve Post-Compromise Security. Section
6.5 covers the limitations of our model, and the possible directions for future
work.

In the conclusive Chapter 7, we reflect on our results, and discuss some major
takeaways.

1.4 Notation
We refer to a bit as b ∈ {0, 1}, and to a bitstring as s ∈ {0, 1}∗, with |s|
denoting its length, and {0, 1}n denoting the set of bitstrings of length n.
Assignments follow the following convention: a variable x is assigned a value
v by x ← v, or it is assigned the output of an algorithm A on input y by
x $← A(y); we write instead x $← X for sampling uniformly at random the set
X, or x $← A(y) if A was a probabilistic algorithm.

This thesis spans many different topics: we leave it to each chapter to gradually
introduce more specific notation, assumptions and formalisms as they become
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1. Introduction

necessary. We therefore advise the reader to read Chapter 2 and 4 through 6
in their presentation order, since each of the latter three chapters builds upon
notions introduced in the previous ones.
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Chapter 2

Transport Layer Security

The function in question can completely and
correctly be implemented only with the knowledge

and help of the application standing at the end
points of the communication system.

J.H. Saltzer, D.P. Reed and D.D. Clark

Transport Layer Security (TLS) is a cryptographic protocol designed by the
Internet Engineering Task Force (IETF), extensively deployed over the Inter-
net to provide a secure transport for higher-level protocols. HTTPS [45], an
extension of the widely deployed Hypertext Transfer Protocol, employs TLS
to protect client-server communication; an estimated 80% of Web Pages are
loads over HTTPS as of July 2020, according to web browser telemetry [36].

The central aim of TLS is to provide a secure channel between two commu-
nicating peers. According to the standard specifying the protocol [46], this
secure channel should guarantee:

• Authentication of one, or optionally both, peers: an attacker should
not be able to impersonate the authenticated peer.

• Confidentiality of the data sent over the secure channel: an attacker
should not have access to the transmitted information.

• Integrity of the data sent over the secure channel: an attacker should
not be able to tamper with the transmitted information.

Several versions of the TLS protocol were developed since the first 1999 stan-
dard. Many weaknesses were discovered in version 1.2 of the protocol, since
its publication as a standard in 2008:
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2. Transport Layer Security

• downgrade attacks, like the 2014 POODLE attack, in which endpoints
are made to negotiate a version of the protocol (SSLv3) much older than
the minimum version supported by both [42];

• attacks on the weak “export-grade” ciphersuites, like logjam [2] and
FREAK [11], which enabled man-in-the-middle attacks;

• attacks on the underlying cryptographic primitives used in the protocol,
like the 2013 break of RC4 [5];

• attacks on side channels, like the 2013 Lucky 13 attack on CBC-mode
encryption in TLS [29].

The high volume of proposed attacks, together with modern desirable security
and performance requirements, motivated the development of a ground-up
redesign of TLS, which resulted in the current 1.3 version of the standard,
published in 2018 [46].

TLS 1.3 obsoletes many weak cryptographic primitives present in the previous
versions, overhauls key derivation to improve key separation, allows for a
low-latency 0-RTT session resumption mode, and encrypts early parts of the
handshake to increase privacy. Moreover, the development of TLS 1.3 followed
an iterative, proactive process: faults in early drafts of the standard were
individuated early and fixed before the publication, resulting also in a design
more amenable of formal analyses of security [43].

2.1 TLS 1.3 Outline
TLS is composed of:

• a handshake protocol, which authenticates peers, negotiates crypto-
graphic parameters and establishes shared key material;

• a record protocol, a symmetric key protocol which uses key and pa-
rameters from the handshake to protect the application level traffic.

TLS protects communication between two peers, also known as the endpoints:
a client, which initiates the TLS connection, and a server. The two endpoints
exchange TLS messages over a lower level reliable transport protocol (such as
TCP). Each instance of the TLS protocol executed between two endpoints is
referred to as a session.

In the handshake, a client and a server interact to authenticate each other,
and to negotiate:

• A pair of algorithms specifying an Authenticated Encryption with As-
sociated Data (AEAD) cipher, used to protect application and protocol
messages, and a cryptographic hash function, used to instantiate hash-
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2.1. TLS 1.3 Outline

based message authentication codes and key derivation functions. This
pair of primitives is referred to as the cipher suite.

• A set of master secrets, cryptographic material from which other keys
can be derived: among those the traffic secrets, used to derive directional
symmetric keys for composition with the record protocol.

• Various additional cryptographic options, such as EC(DHE) groups, sig-
nature schemes, pre-shared secrets identifiers and certificates.

The number of round trip times (RTT) needed to complete a handshake and
the security properties of the derived cryptographic material depend upon the
handshake mode of choice. TLS supports three different handshake modes:

• (EC)DHE: the full 1-RTT handshake, with a Diffie-Hellman key ex-
change over either finite fields or elliptic curves. Public keys are re-
quired for digital signature-based authentication. Very common in e.g.
HTTPS, where the web server is a TLS endpoint with public key cer-
tificates in the Internet Public Key Infrastructure.

• PSK and PSK-(EC)DHE: the Pre-Shared Key handshakes, with an
additional (possibly Elliptic Curve) ephemeral Diffie-Hellman key ex-
change in the latter. These handshake modes require the endpoints to
establish shared PSKs: this can happen either via a session resump-
tion mechanism internal to TLS (see Section 2.5), or via some arbitrary
external mechanism (e.g. offline provisioning).

Negotiated cipher suite, key material and cryptographic options are used in
the handshake itself and to instantiate the record protocol.

The record protocol implements the actual secure channel, guaranteeing confi-
dentiality and integrity of application data, and their (data-origin) authentica-
tion with respect to the negotiated symmetric keys. All TLS traffic is divided
into a series of records, typed messages which can be transmitted as plaintext,
or protected, i.e. encrypted with the negotiated AEAD cipher. These records
will then be transmitted to the other endpoint, passing them to the underly-
ing transport protocol. Upon receipt at the other endpoint, protected records
are deprotected and verified by reversing the encryption. Application data is
always transmitted protected.

The TLS 1.3 handshake can also be used alone, as a pure key establishment
primitive, for authenticated exchange of key material. This allows composi-
tion of the handshake with arbitrary symmetric key protocols: in particular,
the Exported Master Secret (EMS, one of the handshake master secrets) can
be used by the communicating peers to derive a series of context-dependant
secrets, for use in arbitrary symmetric protocols.

The following sections will cover in more detail how key material is used to
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2. Transport Layer Security

derive secrets during the handshake, and document the message flow of the
three handshake modes. The final section highlights the differences between
our high-level abstraction of TLS and the concrete protocol specification, and
motivates our modelling choices. Analyzing security of the record protocol
is out of the scope of this thesis, and we do not cover it in depth here: we
invite the reader to refer to the TLS specification [46] for details on the inner
workings of the record layer.

2.2 TLS Handshake Key Schedule

TLS handshake protocol establishes secrets keys and negotiates a series of
cryptographic parameters and primitives. All of the exchanged messages con-
tribute to the derivation of these secrets: hashes of the conversation transcripts
(transcript hashes) are included as inputs in the key schedule. In the hand-
shake modes which include a Diffie-Hellman key exchange, these values are
also included in the derivation and provide forward secrecy.

The key derivation diagram, depicted in Figure 2.1, shows how these values are
combined to obtain different secrets. The Derive-Secret(Secret, Label,
Msgs) function is defined in the RFC [46] as: HKDFexp(Secret, Label||HMsgs).
The following paragraphs describe at a high level the various components of
this expression, and the other core primitives of the TLS key schedule as
described in the diagram.

The transcript hash. The client (and respectively the server) maintains a
hash covering the concatenation of each sent and received handshake message.
Derive-Secret takes TLS messages as third parameter ClientHello refers
to the transcript hash of that message.

In this work, we will use the notation HMsgs to refer to a transcript hash cov-
ering all of the messages specified in Msgs. We will also use the shorthand
notation HMsg to refer to the transcript starting at the ClientHello and cov-
ering up to (and including) the message Msg, and Hε to indicate the constant
hash of the empty string. The shorthand notation Htr is used to indicate
the current transcript when the messages it covers can be inferred from the
context.

The Key Derivation Function: HKDF. The hash function negotiated in the
handshake is used to instantiate a HMAC-based Extract-and-Expand Key
Derivation Function, or HKDF [38]. In the Extract-and-Expand paradigm,
the KDF is split in two logical modules: the first extracts a fixed-length pseu-
dorandom key from the input key material, while the second expands the key
into several pseudorandom keys.
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0
|
v

PSK -> HKDF-Extract = Early Secret
|
+-----> Derive-Secret(., "ext binder" | "res binder", "")
| = binder_key
|
+-----> Derive-Secret(., "c e traffic", ClientHello)
| = client_early_traffic_secret
|
+-----> Derive-Secret(., "e exp master", ClientHello)
| = early_exporter_master_secret
v

Derive-Secret(., "derived", "")
|
v

(EC)DHE -> HKDF-Extract = Handshake Secret
|
+-----> Derive-Secret(., "c hs traffic",
| ClientHello...ServerHello)
| = client_handshake_traffic_secret
|
+-----> Derive-Secret(., "s hs traffic",
| ClientHello...ServerHello)
| = server_handshake_traffic_secret
v

Derive-Secret(., "derived", "")
|
v

0 -> HKDF-Extract = Master Secret
|
+-----> Derive-Secret(., "c ap traffic",
| ClientHello...server Finished)
| = client_application_traffic_secret_0
|
+-----> Derive-Secret(., "s ap traffic",
| ClientHello...server Finished)
| = server_application_traffic_secret_0
|
+-----> Derive-Secret(., "exp master",
| ClientHello...server Finished)
| = exporter_master_secret
|
+-----> Derive-Secret(., "res master",

ClientHello...client Finished)
= resumption_master_secret

Figure 2.1: The TLS 1.3 key schedule, from RFC 8446 [46]
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HKDF extracts a pseudorandom key PRK from some (possibly not uniformly
distributed) input key material and an optional salt: PRK ← HKDFextr(IKM,
salt)). It then expands the PRK under a given context string to generate
strong output key material: OKM ← HKDFexp(PRK, ctxt1||ctxt2), where the
context string is here obtained by a concatenation of the two strings ctxt1 and
ctxt2, preceded by their length.

In Figure 2.1, HKDF-Extract indicates a HKDF extraction step, with the input
key material coming from the left arrow, and the salt from the top arrow.
Derive-Secrets indicates a HKDF expansion step, with the PRK coming
from the left arrow, and the context is represented by the arguments. If a
HKDF input is not available, like the PSK in the full handshake or the DH
secret in the PSK-only mode, it is substituted by the “zero string”, a string
of 0-bytes with the hash-output length.

HMAC HMAC (Keyed-Hashing for Message Authentication), presented by
Krawczyk, Bellare and Canetti in IETF’s RFC 2104 [40] is a message authen-
tication code (MAC) based on cryptographic hash functions. In TLS, HMAC
is instantiated with hash function negotiated in the cipher suite, and used in
the key derivation process and for transcript authentication.

Diffie-Hellman Key Exchange. The influential work by Diffie and Hellman
[22] defined a public key exchange system that allows two parties, each in
possession of a public and a secret key, to establish a shared secret by mixing
one party’s secret key with the public key of the other party.

In a DH exchange, two parties A and B agree on a cyclic group G of order
n, and a generator of that group g ∈ G; A holds a secret key x ∈ N and a
public key X ← gx, and B a corresponding y ∈ N and Y ← gy. The shared
secret can be computed by both parties as Z = gxy = Y x = Xy. The group
of choice can be finite field, as well as an elliptic curve (the “EC” case). Diffie-
Hellman security is based on the hardness of computing the discrete logarithm
x = loggY in the selected group.

In TLS (EC)DHE handshake modes, the endpoints exchange the public parts,
X and Y , of their ephemeral (freshly generated and not stored for the long
term) DH keypairs. These ephemeral values are used only in a single session.
This allows the (EC)DHE handshakes to achieve forward secrecy: compromise
of one endpoint will not enable an attacker to recompute key material of
a past handshake, since only the public keys are present in the handshake
transcript and these alone (assuming the hardness of discrete logarithms) are
not sufficient to reconstruct the shared secret Z.

In short, TLS 1.3 key schedule is a tree of HKDF derivations: the handshake
establishes input secrets, which are then combined with handshake transcripts
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and DH shares (where present) to derive the actual working key material, in
the form of handshake, traffic, exporter and resumption secrets.

2.3 TLS 1.3 Full Handshake
At a high level, we can distinguish two phases of the handshake: the key
exchange, which covers cryptographic parameters negotiation and key material
generation, and the authentication phase, in which the server (and, optionally,
the client) are authenticated, and key and handshake integrity are confirmed.

Key Exchange Phase. The client initiates a session by sending a ClientHello
(CH) message, which contains a random 256-bit nonce rc, a selection of sup-
ported cipher suites CipherSuite, and a series of extensions.

The extensions always include the set of supported (EC)DH groups (SupportedGroups)
and a (possibly empty) set of (EC)DH keyshares in these groups (KeyShare);
the client may not know in advance which DH groups the server will sup-
port, but in order to complete the handshake in a single RTT, shares for
common groups and curves will be computed and included1. Note that this
is a best-effort approach: if the server only supports groups or curves for
which it did not receive shares, it will issue a HelloRetryRequest, with the
same structure as a Hello message, and a KeyShare extension indicating a
single named group among the ones proposed by the client. Upon receipt of a
HelloRetryRequest message, the client will generate another ClientHello,
containing the keyshare in the group selected by the server, and the handshake
will resume as normal.

The server responds with a ServerHello (SH), which will contain a ran-
dom 256-bit nonce rs, a single cipher suite selected among the ones in the
ClientHello, and, in the KeyShare extension, a DH named group selected
among the ones the client offered keyshares for, and the respective keyshare.

After this first flight of messages, both endpoints should agree on a cipher suite
and an (EC)DH choice of parameters. A Diffie-Hellman forward secret value Z
will be computed from the endpoint’s respective key shares, and used as a fresh
key material input in the HKDF extraction, together with a salt dES (derived
by hashing the 0 string), to generate the Handshake Secret, HS← HKDFextr(Z,
dES). They are now both able to compute Client and Server Handshake
Traffic Secrets, CHTS and SHTS, and the derived Handshake Secret dHS: HS
is expanded with the handshake transcript and a label, CHTS← HKDFexp(HS,
LabelCHTS||HCH||SH) and similarly SHTS ← HKDFexp(HS, LabelSHTS||HCH||SH),
while dHS← HKDFexp(HS, LabeldHS||Hε).

1Note that the included (EC)DH keyshares may only cover a subset of the advertised
supported groups.
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Client Server

ClientHello : rC
$← {0, 1}256

+ KeyShare : X ← gx

ServerHello : rs $← {0, 1}256

+ KeyShare : Y ← gy

handshake
secrets

+ {EncryptedExtensions}

{CertificateRequest}†
{Certificate} : SC← pkS

{CertVerify} : SCV← SIGsign(skS, LabelSCV||Htr)
{Finished} : SF← HMAC(fks, Htr)

traffic
secrets

[ApplicationData]∗

abort if SIGvfy(pkS, LabelSCV||HSC, SCV) 6= 1
abort if SF 6= HMAC(fks, HSCV)

{Certificate}† : CC← pkC
{CertVerify}† : CCV← SIGsign(skC, LabelCCV||Htr)
{Finished} : CF← HMAC(fkc, Htr)

resumption
secret[ApplicationData]

abort* if SIGvfy(pkS, LabelCCV||HCC, CCV) 6= 1
abort if CF 6= HMAC(fkc, HCCV)

[ApplicationData]

. . .. . .

[NewSessionTicket]

Client Server

ClientHello : rC
$← {0, 1}256

+ KeyShare‡ : X ← gx

+ PSK : pskid, binder

early traffic
secrets

[[EarlyApplicationData]]∗∗

ServerHello : rs $← {0, 1}256

+ KeyShare‡ : Y ← gy

+ PSK : id
handshake

secrets
+ {EncryptedExtensions}

{Finished} : SF← HMAC(fks, Htr)
traffic

secrets
[ApplicationData]∗

abort if SF 6= HMAC(fks, HSH)
{Finished} : SF← HMAC(fkc, Htr)

resumption
secret [ApplicationData]

abort if CF 6= HMAC(fkc, HSF)
[ApplicationData]

. . .. . .

[NewSessionTicket]

Protocol flow legend

MSG : Y TLS message MSG sent, containing Y
+ EXT TLS Extension of the previous message
{MSG} message sent encrypted under hand-

shake traffic keys tkchs/tkshs
[MSG] message sent encrypted under applica-

tion traffic keys tkcapp/tksapp
[[MSG]] message sent encrypted under early

traffic key tkeapp
. . . secret indicates the point in the handshake

from which the relative secrets can be
derived

MSG∗ 0.5-RTT Application Data, client not
authenticated yet

MSG∗∗ 0-RTT Application Data, replayable
MSG† message only sent if client authentica-

tion is desired
MSG‡ message only sent in the (EC)DHE PSK

handshake
Htr transcript hash covering exchanged

messages up to the current point

Figure 2.2: On the left, TLS 1.3 full 1-RTT Handshake; on the right a combined view of the
PSK handshakes.
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Handshake traffic keys are then derived from those secrets: tkchs ← HKDFexp(CHTS,
LabelCHTS||Hε) (and, symmetrically, tkshs). All subsequent handshake mes-
sages from the server (resp. from the client) will be encrypted under tkshs (resp.
tkchs). Any extensions that are not required to determine the cryptographic
parameters will be sent encrypted by the server in the EncryptedExtensions
message.

Authentication Phase. The EncryptedExtensions message concludes the
key exchange phase. The server can now optionally send a CertificateRequest
message (CR) to request client authentication. It will also send a Certificate
message, containing a digital certificate carrying its public keys, and a CertVerify
(SCV) message, containing a signed transcript hash: SCV ← SIGsign(skS,
LabelSCV||Htr) The server can now expand the SHTS to obtain its finished
key, fks ← HKDFexp(SHTS, Labelfin||Hε), and use this key to compute a
Finished message SF, containing a MAC tag over the transcript up to the
SCV: SF← HMAC(fks, Htr)

At this point, the Master Secret (MS) is derived from the HS: MS← HKDFextr(0,
dHS). The MS is then expanded with the transcript HSF to obtain the Client
and Server Application Traffic Secrets (CATS and SATS), and the Exporter
Master Secret (EMS). This allows the server to compute the server traffic key
tksapp, and start sending encrypted application data without waiting for client
response, in a 0.5-RTT handshake.

The client will verify SCV and SF, and, if client authentication was requested,
produce Certificate and CertVerify (CCV) messages, symmetric to the
respective server messages, to authenticate using its public key. Finally, the
client will compute its finished key, fkc ← HKDFexp(CHTS, Labelfin||Hε), and
use it to produce its Finished message CF, a MAC tag of the transcript up to
the eventual CCV. The client can now likewise derive CATS, SATS and EMS.
CCV and CF will be verified by the server. The Resumption Master Secret
(RMS) can now be derived by both parties by expanding MS with transcript
hash of the complete handshake HCF.

At this point, the server and (optionally) the client are authenticated. The
Certificate Verify messages bind the handshake transcripts to the endpoints
identity, and the MAC tags in Finished messages bind the endpoint’s identity
to the exchanged keys. Note that in the full handshake mode, the Finished
messages are not necessary to achieve authentication.

2.4 TLS 1.3 PSK Handshakes
As in the full handshake, we distinguish a key exchange phase and a authen-
tication phase. Unlike the full handshake, the PSK-only key exchange can be
carried out without exchanging (EC)DH keyshares, allowing for a non-forward
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secure key establishment. Authentication can also be carried out by verifying
MACs alone, without the need of public-key cryptography.

Key Exchange Phase. The ClientHello sent in the PSK handshake is the
same as in the full handshake, but this time the KeyShare extension is only
required in the PSK-(EC)DHE mode, and a PreSharedKey extension, con-
taining a list of pre-shared key labels, is included. Client’s PreSharedKey
extension also contains, for each pski, a pre-shared secret identifier and a
value binder i ← HMAC(fkb,i, H(CH)). The binder finished key fkb,i is derived
as follows: fkb,i ← HKDFexp(BKi, Labeleb/rb||Hε), where the Label is differ-
ent depending on whether the PSK was established externally (eb) or via the
resumption mechanism (rb), and the binder key BKi is derived from the PSK
as described in Figure 2.1.

This allows the client to bind each PSK to the current handshake, and, in
the case of PSKs established via session resumption, this also serves to tie the
previous handshake to the current handshake. This also allows the client to
prove early2 ownership of the respective PSK to the server: the server will
select one of the PSKs, and abort if the relative binder does not verify.

The server replies with a ServerHello, like in the full handshake. The server
can decide whether to accept the PSK handshake: if so it will choose one PSK
among those presented by the client (after verifying the relative binder value)
and include its label in a PreSharedKey extension. In the (EC)DHE case, the
KeyShare extension is included.

The derivation of the handshake secrets will proceed similarly to the full
handshake, but this time the derived Early Secret value dES will not be
static: an Early Secret (ES) will be derived by a HKDF extract with the
zero string as the salt and the PSK as the keying input, and expanded into
dES, dES ← HKDFexp(ES, LabelES||Hε). Note that the Diffie-Hellman key
will only be present in the PSK-(EC)DHE handshake, and replaced with the
zero string in the PSK-only case: it follows that PSK-only handshake secrets
can be reconstructed from the handshake messages and the PSK values alone,
making this handshake not forward secure.

Authentication Phase. Server and client will authenticate using the pre-
shared key: the Finished messages, structured exactly as in the Full Hand-
shake authentication phase, will reciprocally prove possession of the selected
PSK. It is still possible for the server to request public-key client authentica-
tion, which would proceed in the same way as in the full handshake. Derivation
of traffic, exporter and resumption secrets proceeds as in the full handshake.

2As we will see, the client will also properly authenticate to the server through the
Finished message.
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2.5 TLS 1.3 Post-Handshake messages and Session Re-
sumption

Authentication concludes the main handshake, but further post-handshake
messages are possible. The post-handshake messages allow for the issuance
of session resumption tickets (NewSessionTicket), post-handshake authenti-
cation of the client (a late CertificateRequest), and key material update
(KeyUpdate). The latter two messages outside the scope of the thesis, we will
instead focus on the ticketing and resumption mechanisms.

2.5.1 Session Tickets.

A number of NewSessionTicket messages can be sent from the server at any
time after the client’s Finished message, encrypted under the server appli-
cation traffic key. The message includes a random nonce rt and an opaque
ticket label. Upon receiving the session ticket, the client can derive a new
PSK from the Resumption Master Secret and rt, and store it under the iden-
tifier ticket: pskticket ← HKDFexp(RMS, Labelres||rt) (this derivation step
is depicted in Figure 2.3).

The server-side mechanism used to keep track of session tickets is not specified
in the RFC [46], and can be implemented arbitrarily: on resumption, the server
can perform a database lookup, or use the ticket label as a self-encrypted
and self-authenticated value. As we will see in more detail in Section 3.2.2,
the choice of resumption mechanism can have a deep impact on the security
and privacy guarantees of the handshake.

RMS

key derivation

H
K

D
F e

xp

rpsk

Labelres||rt

Figure 2.3: Derivation of a Resumption PSK rpsk from a Resumption Master Secret RMS and
the ticket nonce rt.

2.5.2 Session Resumption.

If the server supports session resumption, it will issue a NewSessionTicket
message. The client, upon receipt of the session ticket, will derive the corre-
sponding PSK. We will refer to this PSK as the resumption PSK. The client
can then use the resumption PSK in a standard PSK handshake for resuming
a session, as depicted in Figure 2.4.
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Note that that the ticket label in the NewSessionTicket message must be
appropriately chosen by the server not to collide with other ticket labels al-
ready issued to the same client. For our security analysis in Chapter 4, we will
assume that an honest server will select a unique per-client random bitstring
of hash-output length as ticket.

U V
key derivation

HKDF

HKDF

DHE

HKDF

HKDF

rpsk

U V
key derivation

HKDF

HKDF

DHE

HKDF

HKDF

rpsk

U V
key derivation

HKDF

HKDF

DHE

HKDF

HKDF

rpsk

Full Handshake PSK Handshake PSK Handshake

Figure 2.4: A TLS 1.3 resumption chain. Each box depicts a session of the TLS handshake
protocol, with U and V as the endpoints. The graph in each session represents, at a high
level, the protocol key schedule: each HKDF corresponds to an HKDFextr derivation, and DHE
highlights the presence of a Diffie-Hellman key exchange. We only show, for each session, the
establishment of a Resumption PSK rpsk, which is then used as a symmetric shared secret for
the next (EC)DHE PSK handshake.

2.5.3 0-RTT.

In the PSK modes, the ClientHello extension EarlyDataIndication will
signal that the client will send application data in the first flight of messages.
The client will expand the early secret ES into the Early Traffic Secret (ETS)
and an Early Exporter Master Secret (EEMS): an early traffic key tkeapp can
be derived from the ETS, and be used by the record protocol to protect early
application data. This key derivation step does not include a server contri-
bution, it can therefore be carried out without waiting for a ServerHello. It
also follows that those early secrets cannot be forward secure. Combining this
0-RTT data capability with session resumption, TLS 1.3 can offer a 0-RTT
session resumption.

As noted in the RFC, TLS 1.3 0-RTT session resumption does not guaran-
tee replay protection for the early application data, and the servers should
implement mitigations against replays. Nonetheless, as discussed in the 0-
RTT analysis by Fischlin and Günther [30], some classes of replay attacks are
unavoidable.
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2.6 TLS modelling notes
Some aspect of the TLS specification are not present in the high level descrip-
tion of the protocol presented in this section. We deem some aspects of the
TLS are not relevant to our security analysis, and that including them in our
modelling would unnecessarily increase the complexity of the model.

We also describe here a mistake we discovered in how some literature describe
the derivation of keys for PSK binders.

Alert protocol. TLS includes a third component, the alert protocol. Alert
messages signal that an endpoint is terminating its connection, or that an
error occurred in either the record or the handshake protocol. All the errors
are fatal and will result in the session being terminated: in the handshake, we
model this behaviour by having a peer unilaterally abort the session.

Record protocol. Both the handshake and the alert protocols do, in practice,
run on top of the record protocol. The record protocol implements a record
layer, which multiplexes handshake, alert and application records. We state
that some of the handshake messages are transmitted encrypted: concretely,
the record protocol is switched to protected mode with the handshake keys.

This overlap of handshake and record protocols could potentially void the
attempt to model them as two separate components, but the records relative to
handshake messages are independent (and differently typed) from the records
containing application data. It is therefore possible to view application data
records as being handled by a separate instance of the record protocol: in this
thesis, we will use the term “record protocol” to refer to this latter instance,
and consider the handshake messages as directly sent (encrypted) on the wire,
thus completely abstracting the record protocol.

Note that, on the light of this observation, Section 4.7.3 abstracts the record
protocol encryption of the NewSessionTicket message as an AEAD encryp-
tion. Note also that this clear separation of handshake and record protocols
allows us to consider, in in Chapter 5 and Chapter 6, a variant of the TLS
handshake where all handshake messages are transmitted as plaintexts on
wire.

Mistakes in previous analyses. We noticed that some analyses of the PSK
handshake describe the i-th PSK binder value binder i, contained in the PreSharedKey
extension of the ClientHello message as derived directly from the binder key
BKi: binder i ← HMAC(BKi, H(CH)). This is inaccurate: an intermediate
“finished” key, fkb,i, is derived from the binder key: fkb,i ← HKDFexp(BKi,
Labeleb/rb||Hε), and then used in the HMAC computation for the binder. The
correct key derivation is depicted in Figure 2.5.
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Figure 2.5: Correct derivation of the finished binder key fkb,i from a Binder Key BKi.
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Chapter 3

Literature Review

We stand today on the brink of a revolution in
cryptography.

Whitfield Diffie, Martin E. Hellman

The TLS 1.3 handshake protocol has undergone extensive analysis, including
its full and PSK-based handshakes. Furthermore, the recent advent of ratch-
eted key exchange protocols in secure messaging introduced many attempts
to formalize notions of post-compromise security.

This thesis relies heavily upon the foundations laid by the following pieces of
research:

• the Multi-Stage Key Exchange model, as described in the seminal work
by Fischlin and Günther [31] and Dowling et al. [26];

• the compositional model for Bellare-Rogaway Key Exchange Protocols,
proposed by Brzuska et al. [15];

• the seminal Post-Compromise Security work by Cohn-Gordon, Cremers
and Garratt [18].

We discuss those works, and many other important studies relevant to our
analysis of TLS, its session resumption and the relative security properties.

In particular, Section 3.1 introduces the different provable security frameworks
that could be used for the analysis of post-compromise security of TLS. We
then briefly discuss the state of the art in TLS 1.3 cryptographic analysis in
Section 3.2, and present the Multi-Stage Key Exchange model in Section 3.3.
Finally, Section 3.4 and Section 3.5 respectively cover relevant literature of
the composability of AKE protocols and Post-Compromise Security.
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3.1 Provable Security Frameworks

Proving security of a complex secure channel protocol such as TLS 1.3 can
be difficult, and numerous security frameworks exist that can help formalize
security properties under certain threat models.

When looking at these frameworks, some common approaches in the way
proofs are structured can be distinguished:

Computational security frameworks focus on game-based reduction proofs,
that closely follow each step of the protocol. Computational proofs will reduce
the security of the protocol to the hardness of some computational crypto-
graphic assumption or assumptions, in terms of the advantage of an adver-
sary playing a certain security game. Often, the aim is to reduce security of
the entire protocol to the security of some cryptographic assumptions in the
standard model.

Many Authenticated Key Exchange (AKE) models are built in a computa-
tional setting. Examples of such models include the seminal Bellare-Rogaway
AKE model [9], the Multi-Stage Key Exchange [31] and Canetti-Krawczyk [16]
frameworks. These proofs will provide either concrete (tight) or asymptotic
bounds with respect to these assumptions, e.g. bounding the AKE advantage
of an adversary against a protocol Π by the advantage of an adversary playing
the security game against some of the cryptographic primitives used in Π.

To avoid an explosion in complexity, the protocol is often split into compo-
nents, separating its key exchange component to prove them independently
and using composition theorems to extend security guarantees to the entire
composed protocol. As we will see, even considering the key exchange in isola-
tion can be difficult, and a number of computational models evolved to tackle
the complexity emerging from different protocols.

Symbolic proofs assume perfect cryptography (that is, the attacker cannot
violate security of a cryptographic primitive, unless they have access to the
underlying keys) and make abstract models of all the interactions between
parties in the model (including the adversarial ones). The security of the
protocol is then encoded as a set of lemmas that must not be violated in any
possible execution of the protocol.

These models are then analyzed with formal methods tools like the Tamarin
Prover [19], that greatly reduce the number of steps to be manually proven by
humans. This allows researchers to simultaneously prove a great number of
different protocol flows, which in computational setting would each require a
chain of reductions: for instance, the Tamarin symbolic analysis of TLS 1.3 by
Cremers et al. simultaneously captures all the security properties mandated
by the RFC, for all the TLS handshake modes [19].
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Symbolic proofs can therefore capture a wider view of the protocol than com-
putational ones, at the cost of assuming perfect cryptographic primitives, and
foregoing security bounds: for instance, after an encryption, ciphertexts will
be treated as a symbol, and the underlying plaintext can only be recovered
with access to the secret key – no bound on the probability of the adversary
breaking the particular encryption primitive is provided.

Verified implementations annotate the source code implementation of a
protocol with cryptographic and semantic security assumptions. Machine-
aided proofs then allow the verifier to capture the security of the implemen-
tation by composing the security of the single independent functions in the
code via security arguments.

Verified implementations share their modular structure with computational
proofs, allowing for concrete bounds, but come close to symbolic proofs for
how all the complexity of the protocol they can capture. On one hand, they
captures the exact behaviour of the implementation itself, preventing imple-
mentation bugs from undermining the security of the specification. On the
other hand, they are not as generic as symbolic or computational proofs (which
apply to the standard specification of the protocol rather than to a single
implementation), and they require strong cryptographic assumptions. For in-
stance, the F* implementation of TLS 1.3 Record Layer [12], discussed in
Section 3.2, is part of this line of work. To prove the security of the TLS 1.3
Record Layer, the authors introduce a multi-instance One-Time MAC assump-
tion capturing both existential unforgeability and indistinguishability of MAC
tags from random, where the adversary has the ability to generate multiple
MAC keys, only receives a single tag from each, and can win by either forging
a MAC tag, or by distinguishing a MAC tag from a tag sampled uniformly at
random.

Constructive Cryptography approach modularizes the protocol in a sim-
ilar fashion to the computational models, but proceeds to build the security
from the ground up, formalizing security guarantees and assumptions in the
form of “resources”.

Resources are akin to channels with certain properties: cryptographic proto-
cols construct desired resources from assumed resources, e.g. TLS constructs
a secure channel from a network with reliable transport. Composition theo-
rems allow for a protocol to be split into sub-protocols, each producing and
consuming some resources, that can be proven correct separately and then
assembled back together.

Constructive proofs will also produce security bounds, resulting from calcula-
tions in ad-hoc cryptographic algebra. An example of this approach can be
found in TLS 1.2 analysis by Kohlweiss et al. [37], discussed in Section 3.2.
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3.2 TLS Security Analysis
TLS 1.2 and previous versions were notoriously hard to model. Kohlweiss
et al. in their constructive analysis [37] ascribe this to non-standard use of
cryptographic primitives (such us pseudo-random function evaluations keyed
with non-uniform keys), and to the way record and handshake protocols are
interleaved: the use of the established keys both in the record protocol and
to encrypt the final messages of the handshake does not allow a clear sepa-
ration in the analysis of the two. Furthermore, TLS 1.2 included many weak
cryptographic primitives, that opened the protocol to a plethora of attacks,
ranging from timing side channels targeting the use of CBC constructions [4],
to Bleichenbacher-like leakages plaguing RSA with PKCS #1 v1.5 padding
[48].

In TLS 1.3, on the other hand, continuous feedback to the IETF from the
cryptographic community over its the many RFC drafts meant that handshake
and record protocols can be studied in isolation, and their composition proven
secure separately. TLS 1.3 also benefits from the use of ciphers that can prov-
ably provide Authenticated Encryption with Associated Data (AEAD), and
of the careful use of key derivation functions to guarantee key independence.

The following subsections cover some important security proofs for TLS 1.3
and related protocols.

3.2.1 General Security Proofs

The security of the TLS 1.3 handshake protocols was examined in many dif-
ferent models.

The Multi-Stage Key Exchange (MSKE) model, that will be used extensively
in this thesis, was introduced for the analysis of Google’s QUIC protocol ([31]),
but was subsequently often used for many of the TLS 1.3 drafts ([23, 25]) as
well as for the final RFC [26]. This made it a popular starting point in many
analyses of the handshake. For a detailed description of MSKE, we refer the
reader to Section 3.3.

The CK model [16] was also used by Krawczyk [39, 41] to prove authentication
properties of TLS 1.3 and OPTLS. Other works are based on a constructive
approach (Kohlweiss et al. also touches on an early draft of TLS 1.3 [37]),
machine proofs [12] and symbolic analysis [19].

Multi-Stage Key Exchange and Key Dependency. Fischlin and Günther
introduce the Multi-Stage Key Exchange model and provide a security proof
of the composition of key exchange in their analysis of QUIC [31] in the
style of Brzuska et al. [15]. On a high-level, a Multi-Stage Key Exchange
is an authenticated key exchange that outputs multiple keys per session, each
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associated with a single stage. In addition, each stage key should provide
key-indistinguishability in the sense of Bellare-Rogaway-style AKE protocols
[9]. Each stage can have independent security properties, including differ-
ing authentication levels (where different parties authenticate to each other),
forward-secrecy or key independence. Key independence captures the prop-
erty that revealing a session key at stage i does not affect the session keys in
stage j 6= i. Their compositional proof requires this property, which QUIC,
unlike TLS 1.3, did not provide.

Dowling, Fischlin, Günther and Stebila prove in [26] the MSKE security of
TLS 1.3 handshake in the standard model, under a variant of the PRF-ODH
assumption. This is the last publication in a line of works that analyzed
various TLS 1.3 drafts [24, 25]: it covers both the Full (EC)DHE TLS 1.3
handshake and the PSK handshake with optional (EC)DHE key exchange
and zero round-trip time key establishment. The MSKE model they present
integrates changes to account for replayability of certain stages (which first
appeared in Fischlin, Günther [30]), and for the “Selfie” Attack [28].

Their analysis captures authentication, forward secrecy, key usage and re-
playability for the stages associated with: early data keys, handshake and
application traffic secrets, and exported keys. The handshake is analyzed
as a ‘pure’ Multi-Stage Key Exchange: it does not capture security of cryp-
tographic parameters negotiation and key reuse. The hybrid security proof
provides asymptotic bound for key indistinguishability and Match security of
TLS 1.3 handshake.

Tight security. The proofs in [26] are not tight: in particular, the proof
incurs in a quadratic loss in the number of session due to the commitment
problem (discussed in [33]).

Diemert and Jager provide a tight proof of security of the TLS 1.3 Full
(EC)DHE handshake in the MSKE model, capturing authentication and for-
ward secrecy [21], and prove generic generic composition with symmetric key
protocols in the style of Fischlin and Günther [31]. The tightness of the proof
comes at the cost of stronger cryptographic assumptions: the proof is un-
der the strong Diffie-Hellman assumption in the Random Oracle Model, and
multi-user security requires the authors to forego security definitions and only
work with adversarial advantages (“human ignorance approach”). Concur-
rently, Davis and Günther analyse the SIGMA and TLS 1.3 protocols in the
Bellare-Rogaway AKE framework [20], providing a similarly tight proof of se-
curity of the TLS 1.3 full handshake and reducing to the strong Diffie-Hellman
assumption in the Random Oracle Model.

Constructive Cryptography framework. An analysis of the security of an
TLS 1.3 draft (RFC 5246 bis) is realized in the Constructive Cryptography
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framework by Kohlweiss and Mauer in [37], in parallel to the instantiation of
the model for TLS 1.2: they provide concrete bounds for the security of both
the handshake and the record protocol under the Decisional Diffie-Hellman
assumption, but they do not capture forward secrecy. Furthermore the secu-
rity of PSK handshake and 0-RTT operation of TLS 1.3 is not covered, since
neither was part of the examined draft.

Symbolic modelling. As mentioned earlier, symbolic analysis can capture
finer details of cryptographic protocols that would be very difficult to cap-
ture in pen-and-paper computational models, like downgrade protection under
many possible combinations of different security parameters, and authentica-
tion and key secrecy with an unbounded number of connections. On the flip
side, symbolic analysis considers cryptographic primitives to be perfect, and
therefore does not provide a (concrete or asymptotic) bound on the security.
Cremers, Horvat, Hoyland at al. present a symbolic model that covers all
handshake modes of TLS 1.3 draft 21 release candidate [19], capturing se-
crecy of session keys, perfect forward secrecy, peer authentication, and key
compromise impersonation resistance. They provide a fully annotated ver-
sion of the specification, and use the Tamarin Prover to verify the security
claims.

3.2.2 Session Resumption and PSK Handshakes.

In Section 2.5, we note how the TLS 1.3 session resumption tickets can be
combined with the TLS 1.3 PSK handshake mode to realise TLS 1.3 session
resumption. We also discussed how clients executing a PSK handshake can
send early application data: early records sent in the first message flight, and
are therefore 0-RTT. Those records are protected with a non-forward secret
key, and can be replayed.

Recall that each resumption ticket contains a label and a nonce: the resump-
tion PSK will be derived using the Resumption Master Secret and the nonce,
and stored as a pre-shared secret with the label as an identifier. This pre-
shared secret identifier is then included by the client in its ClientHello mes-
sage, when initiating a new PSK handshake, and allows the server to retrieve
the corresponding PSK and use it to complete the handshake.

The TLS 1.3 standard does not specify a precise mechanism for the server to
maintain the mapping between pre-shared secret identifiers and PSKs: quite
on the contrary, ticket labels are opaque values that can be chosen arbitrarily
by the server. This allows for many possible implementations of this mapping.

One trivial way to implement this mapping is for the server to maintain a dic-
tionary of issued ticket labels and PSKs: a new entry is added upon issuance
of a ticket. If each entry is also removed after a client carries out an handshake
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with the corresponding pre-shared secret, the eventual early application data
sent by the client becomes trivially non-replayable: if the first flight of hand-
shake messages and records is replayed, the server will be unable to decrypt
those record, since it no longer possess the PSK.

The downside of this trivial implementation is that it requires the server to
maintain a (possibly large) state. An alternative implementation consists
in the server generating a key, and using this key to encrypt (with an AEAD
cipher) the resumption PSKs derived during an handshake. The corresponding
ciphertext can then be used by the server as a ticket label: the client will just
store this label as a pre-shared secret identifier. On resumption, the server
can recover the PSK by decrypting the identifier in the client Hello message.

In this second scenario, the server would only store a single encryption key,
but at the cost of foregoing protection from replay attacks on early application
data: the same PSK can now be used in multiple handshakes.

Many other similar resumption protocols can be built trading off replay pro-
tection and server storage requirements. To summarize, early application data
in TLS 1.3 session resumption presents a performance advantage in terms of
latency, but opens to two security problems:

• Early application data, transmitted by the client before completing the
handshake, are inherently not protected by a perfect forward secret key:
the early application secret is derived only from the offered PSK, without
a fresh server contribution. PSK-(EC)DHE provides forward secrecy for
all non-0-RTT keys, while PSK-only keys never achieve forward secrecy.

• Early application data are subject to replay attacks. A careful imple-
mentation of the session resumption mechanism, preventing the same
PSK from being used more than once, is possible, but as Fischlin and
Günther argue in their analysis of replay attacks on 0-RTT, is difficult
in a multi-server setting and in the presence of higher-level application
protocols that ‘retry’ to send messages on failure.

Replayability for early application data was a known problem: a solution is
not attempted in the TLS specification, which leaves the requirements for
the resumption mechanism unspecified, and warns to only use 0-RTT data
in session resumption where replay protection is provided by the higher level
application protocol.

Session Resumption Protocols. Aviram, Gallert and Jager [8] explore the
gap left by the RFC around how, precisely, the “ticketing” system should work,
and the security implications of different session resumption implementations.
They formally define ‘session resumption protocols’ to describe the session
resumption mechanism, and evaluate forward secrecy and replay protection
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of different possible such protocols. The security analysis is carried out in a
computational fashion, with game-based security definitions.

The authors also propose two nontrivial ‘resumption protocols’, which make
use of puncturable encryption combined with bitmaps and tree-based PRFs
to provide lightweight, reply-resistant session resumption, and prove them
secure.

0-RTT in MSKE. Fischlin and Günther focus on extending the MSKE in
order to fully model TLS 1.3 PSK handshakes [30]: they capture an additional
stage property which they denote replayability, and include an additional stage
corresponding to the derivation of the Early Traffic Secret. They prove secu-
rity for TLS 1.3 draft-14 and draft-12 0-RTT PSK handshakes.

Selfie(s). Drucker and Gueron [28] and Akhmetzyanova et. al. [3] explore
how authentication guarantees no longer hold when more than two TLS 1.3
endpoints all share the same PSK. Note that in these handshakes the PSK
becomes the only source of authentication. The concept of identity is no longer
bound to a user, but rather it becomes linked to the owner of a PSK.

If some entity A runs both a TLS client and a server who share the same
PSK, and attempts to connect to a second entity B running a TLS server, it
is possible to have it connect to itself instead. Similarly, if three parties share
the same PSK (possible in the case PSKs are externally distributes), they can
impersonate each other in any direct connection. These attack scenarios are
hardly common (if not, maybe, for some classes of industrial devices), and
present an easy solution – never run more than two TLS endpoints with the
same PSK – but the attack remains of high academic interest, since it was not
captured by any of the TLS security proofs at the time of publication.

3.2.3 Privacy

In the light of the Snowden revelations on mass surveillance [34], privacy
became a pressing matter in Internet protocols. TLS 1.3 is the first version of
the TLS protocol in which the handshake is encrypted, protecting the client’s
identity from passive attackers.

Arfaoui et al. explore the privacy guarantees provided by TLS 1.3 handshake
[7]. They model the handshake as a Bellare-Rogaway style Authenticated
Key Exchange, and formalize privacy as a session unlinkability game. The
adversary can repeatedly query a drawing oracle, which takes as input two
parties with the same role and outputs a virtual identifier. The adversary
can use the virtual identifier to interact with one one of the parties, without
actually knowing which one: the challenger will chose the party according to
a secret bit b. The adversary wins the privacy game if it is able to to guess the
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bit b. The adversary can distinguish the parties by either identifying them or
observing their behaviour, trivial wins are forbidden by a win condition. TLS
1.3 handshake privacy is reduced to the hardness of standard cryptographic
assumptions through a game-hopping proof. For the full handshake, TLS is
shown to provide a notion of server unlinkability. Session resumption tickets
inherently degrade privacy, since their use at least leaks that a session existed
in the past: TLS does not offer additional guarantees in this setting, but it
otherwise provides an optimal degree of privacy.

3.2.4 Record Protocol Security

Unreliable Transports. DTLS and QUIC relax the traditional TLS require-
ments of an underlying reliable transport. Without TCP taking care of re-
ordered, duplicated and lost packets, those protocols can no longer abort
as soon as an unrecognized record is received, and must maintain a sliding
window of ciphertexts waiting to be decrypted. In this setting Fischlin and
Günther define the security notion of robustness for cryptographic channels. In
[32], they formally define robustness as a property orthogonal to traditional in-
tegrity and indistinguishablility under chosen-ciphertext attacks notions, they
prove relations among those and proceed to prove robustness for both DTLS
and QUIC.

Partially Specified Channels Patton and Shrimpton [44] closely analyze the
protocol details left unspecified by the TLS 1.3 standard. In order to capture
security of the parts of the TLS Record Protocol not explicitly mandated
(RFC’s MUST notation) in the standard, they formalize the notion of Partially
Specified Channel, and they proceed to model the record layer as a PSC. The
record protocol in the TLS 1.3 draft 23 is shown to be secure (ciphertext-
stream integrity) with a reduction to standard cryptographic assumptions.

A provably secure implementation. Researchers from Inria and Microsoft
Research construct a verifiable reference implementation of the TLS 1.3 record
protocol in F ∗ [12]. They reduce the security of the record layer to crypto-
graphic assumptions on its ciphers: game-based security assumption are cap-
tured by typing the F ∗ modules implementing the cryptographic primitives,
together with functional correctness guarantees.

Their security analysis results in concrete security bounds for the AES-GCM
and ChaCha20-Poly1305 ciphersuites, from which they derive recommended
limits on sent data before re-keying. The work leaves a verified implementation
of the Handshake protocol as a possible future direction of research.
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3.3 Multi-Stage Key Exchange

In this thesis we will focus on formalizing TLS 1.3 handshake protocol as an
Authenticated Key Exchange: more specifically, we will use the Multi-Stage
Key Exchange (MSKE) security model. As we saw in the previous section,
MSKE was used in many of the analyses of the TLS 1.3 handshake protocols,
and it now represents a sound choice in modelling TLS 1.3 handshakes.

The MSKE model stands in the tradition of the seminal work by Bellare and
Rogaway [9]: as we mention in Section 1.1, the original BR model captures
security of the protocol as indistinguishability of the real session keys from
keys sampled at random from the same key distribution. BR also captures
matching conversations (that is, sessions who agree on their view of the con-
versation transcript are said to be partnered, and are expected to satisfy some
conditions, like deriving the same key) and mutual authentication (that is, ses-
sions derive a key if and only if there exist another session with a matching
conversation).

MSKE extended the BR model to cover the gradual derivation of multiple
session keys with internal or external usage [31], but does not capture explicit
authentication. The model we describe here is a further extension of the
original MSKE model [31], that covers replayable stages and various levels of
authentication for each stage, as instantiated for TLS 1.3 by Dowling et al.
[26].

MSKE captures the interaction of multiple parties, the protocol participants,
running many instances of a two-party protocol Π, called sessions, with the
aim to authenticate each other and establish key material. The party who
sends the first message in the protocol is referred to as the initiator, the other
as the responder. Sessions are divided in many subsequent stages, each with
different authentication and confidentiality guarantees, and each deriving a
stage-i session key.

pMSKE/sMSKE. The public-key MSKE (pMSKE) variant of the model is
used for protocols which base authentication on public-key cryptography, while
pre-shared-secret MSKE (sMSKE) variant exists for protocols based on pre-
shared symmetric keys. In the security game for pMSKE, all parties are
assigned a pair of public and private keys (where the private keys are sampled
uniformly at random), while in sMSKE the adversary will have access to a
query that allows a new pre-shared secret to be created (again, by sampling
uniformly at random from the key distribution). Some protocols, like TLS 1.3
in its full and PSK handshakes, allow for both variants: each will be therefore
studied independently in the appropriate MSKE variant.
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3.3.1 Security Properties

The following security properties are considered for each stage:

Authentication. Stages and the relative keys have three levels of authentica-
tion: unauthenticated (no authentication for either communication partner),
unilaterally authenticated (one party is authenticated) or mutually authen-
ticated (both partners are authenticated). In the case of unilateral authen-
tication, the unauthenticated party will always be either the initiator (as in
the case of TLS handshakes) or the responder (as it is, instead, for the Noise
framework [27]). The model can impose conditions on adversarial interac-
tion in the case of unauthenticated parties, for instance by restricting the
adversary from winning in the security experiment by impersonating a party
at an unauthenticated stage. The authentication level can monotonically in-
crease (upgradable authentication) from one stage to the next, e.g. allowing
previously unauthenticated parties to gradually reach unilateral or mutual
authentication.

Forward Secrecy. A stage and the relative session key have forward secrecy
if a later compromise of a party’s long-term secrets will not affect security of
the session key derived at that stage. In a protocol run, some early stages
may not be forward secure. The model captures the notion of stage-j forward
secrecy: from a certain stage j on, all the keys are forward secret.

Key usage. Keys derived at a certain stage can have external usage if they
are used outside of the key exchange (e.g. in an instance of a symmetric-key
protocol Σ, like the TLS record protocol), or internal usage if they are only
used within the key exchange protocol itself. Key usage declaration defines
the boundaries of the protocol analyzed in the model, e.g. when MSKE is
defined for the TLS handshake protocol, traffic keys (used by the TLS record
protocol) are external.

Replayability. In the MSKE model, the adversary is in complete control of
the network, and thus can choose to deliver an honest protocol message more
than one time, mounting a so-called replay attack. Replayability, then, defines
whether a session key can be established as the result of a replay attack for
certain stages. In the context of MSKE protocols, this notion was introduced
by Fischlin and Günther [30]. Non-replayability is a desirable property for
a secure channel protocol, but in some scenarios (such as TLS 0-RTT key
establishment), it is known that some keys may be established as a result of
a replay attack, and it is necessary to model this property.
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The MSKE model for a certain protocol is described by a vector of protocol-
specific properties, which contains the number of stages, each stage’s level of
authentication, whether forward secrecy is achieved within that stage, that
stage’s session key usage and replayability. The model will maintain a list
of sessions, which contains tuples of session-specific information. Protocol
participants (or users) are modeled by the set U of identities. An independent
session is maintained for both users in that session. The sessions held by the
initiator and the responder are defined to be partnered in a certain stage if
they share a certain session identifier.

3.3.2 Security Notion

Security for a Multi-Stage key exchange protocol Π is defined by two games,
where a probabilistic polynomial-time adversary A interacts with a challenger
C :

• The Multi-Stage security game, GMulti-Stage
Π,A , captures key secrecy as

indistinguishability of session keys from keys drawn uniformly at ran-
dom from the same distribution space. To avoid trivial wins, some in-
teractions of the adversary with the protocol are restricted. This is a
Multi-Stage equivalent of the BR key-indistinguishability property.

• The Match security game, GMatch
Π,A , ensures soundness of sessions: ses-

sions with the same identifier should agree on keys, roles, authentication
levels and partial transcripts, sessions are partnered with the intended
(authenticated) participant, and session identifiers do not match across
stages or more than two sessions at non-replayable stages. This is an
equivalent of the BR conditions on matching conversations.

C maintains a simulation composed of set of parties running many instances
of Π, and A interacts with the simulation through adversarial queries. To
capture key-indistinguishability, at the start of a security experiment, the
challenger will sample uniformly at random a bit b $← {0, 1}. The adversary’s
goal will be to guess this bit b.

The adversary is in complete control of the communication between all the
parties: all messages are relayed through A by Send queries and relative
responses, enabling it to intercept, drop, modify and inject messages, and to
deliver them out of order or to unintended recipients; A can get any party to
initiate a new session through the NewSession query. We say that a session
has an honest partner if all messages in that session originate from a real party
in the simulation, rather than being forged by the adversary.

The MSKE model allows the adversary to expose long-term secrets of a party
(Corrupt query) and reveal session keys of honest parties (Reveal query).

32



3.3. Multi-Stage Key Exchange

In the Multi-Stage security game, the adversary can issue Test queries, which
will either return a real session key computed during the protocol execution
(if b = 0), or a randomly sampled key from the same distribution (if b = 1).
The adversary will then terminate and output a bit b′: we say that A wins
this security game if it can guess whether the key it received was a real key
or a random one (b′ = b).

In the match security game, the adversary will simply terminate: we say that
A win this security game if, after termination, any of the conditions on session
identifiers imposed by match security was violated.

Note that the adversary can corrupt a party, initiate an unauthenticated ses-
sion by itself (no honest partner), leak a session key, or attempt to test an
internal key after its use. The keys returned by Test must be consistent with
the execution of the protocol, and the adversary should not be able to win
trivially by testing for a key it knows: Corrupt and Reveal will set an in-
ternal session flag to indicate that keys for certain stages were compromised,
and Test will check the stage for honest partners, only allow a stage-i key to
be tested once, and eventually substitute the internal keys to maintain con-
sistency. We informally refer to the conditions under which a key can still
be successfully tested by the adversary as freshness of the key: if A tests for
a non-fresh key, a ‘lost’ flag will be set, the adversary will loose the game
independently of the correctness of it guess.

Key independence. In our model, all session keys are required to be inde-
pendent: session key reveal at one stage should never affect security for keys
in other (previous or subsequent) stages1. Key independence is important
for both key exchange and compositional soundness: informally, it guarantees
that neither the Reveal query nor the use of a key in the symmetric key pro-
tocol Σ can leak information about stage keys other than the one queried for
or used in the symmetric key protocol.

Corruption model. We note that while both long term and session secrets can
be leaked to the attacker (by Corrupt and Reveal queries), the MSKE model
(as presented here) does not offer access to ephemeral values and randomness
used in the protocol for key derivation.

Furthermore, traditional MSKE models do not allow the adversary to win by
testing stage keys in sessions created after the Corrupt query was issued: only
sessions executed before the compromise can still be tested, and then, only

1Note that this was not a requirement in the original MSKE, since QUIC does not
satisfy this property: the second stage key can be computed by an adversary who knows
the first stage key[31]. The security proof was adapted to model key-dependent stages, but,
as the authors note, key dependency makes security of QUIC composition with symmetric
protocols harder to capture.
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at forward secret stages. In this thesis we will extend this aspect of MSKEs,
and allow the adversary to test sessions created after the compromise, at the
condition of the adversary staying passive in those sessions.

A more formal description of MSKE can be found in Chapter 4, where we
present our variant of the model.

3.4 Composability of Authenticated Key Exchange Pro-
tocols

Key exchange protocols allow user to establish key material, with some de-
fined security guarantees: those keys are then used to instantiate arbitrary
symmetric key protocols. For instance, in TLS 1.3, the handshake protocol
provides keys that can be used to instantiate the record protocol.

Security analyses for authenticated key exchanges often prove very strong
notions of security, such as indistinguishability of session keys from random
[9]: nonetheless, security of the composition need to be defined, and proved,
separately.

Composability and BR. Brzuska et al. propose a first composability frame-
work for key exchange protocols and arbitrary symmetric protocols [15, 13].
Their work studies, through game-based security notions, the security of a
composition as adversarial advantage in breaking the symmetric protocol
game: they present a composition theorem, and prove that if the key ex-
change protocol is secure in a Bellare-Rogaway-like model and it allows for
a public matching (that is, an algorithm that can deduce the sessions that
are partnered together, as defined in BR, by observing all the conversation
transcripts), then its composition is also secure. They provide an asymptotic
bound on the security of the composition, based on the adversarial advantage
against security of the key exchange and of the symmetric protocol.

Composability and MSKE. Fischlin and Günther extend upon the compos-
ability results for BR-secure protocols by Brzuska et al., and prove security of
composition for key exchange protocols that are secure in their MSKE model
[31]. Dowling et al. further extend this model in order to apply it to the TLS
1.3 handshake protocol: they relax the requirement of mutual authentication,
and propose a public matching protocol that accounts for the encryption of
handshake messages in the protocol. They obtain an asymptotic bound com-
patible with the ones presented in the previous works.
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3.5 Post-Compromise Security
The notion of Post-Compromise Security was only formalized in recent years
[18]. PCS concerns the security of a protocol after a compromise: that is,
it defines the security guarantees which still hold after the secrets, or the
complete state, of a party running that protocol is known to the adversary.

A formal definition. Cohn-Gordon, Cramers and Garratt justify the need of
Post-Compromise Security notions, and give some first informal and formal
definitions of PCS [18]. They distinguish between weak compromise, where
the adversary gains temporary control of long-term key operations without
learning the actual keys, and total compromise, where the adversary is able to
access the keys. They also formally define a PCS game in the Authenticated
Key Exchange setting, by first providing a simplified AKE model of their
own, and then extending various models in the literature (among those, the
Canetti-Krawczyk model [16]) to capture PCS. They also propose two concrete
protocol constructions which satisfy their model.

The Signal protocol. Signal is a secure messaging protocol (used by the
homonymous app) which gained popularity thanks to its strong adversary
model: it provides end-to-end encryption, forward secrecy and post-compromise
security, through a technique dubbed “double ratchet”.

Cohn-Gordon et al. study two important components of Signal – the eXtended
triple Diffie-Hellman (X3DH) key exchange protocol, and the Double Ratchet
protocol [17]. In the absence of a formal specification, the authors derive a
formal description of the protocol from the implementation. They then ana-
lyze the combined X3DH and Double Ratchet protocols as a Multi-Stage key
exchange protocol, where a new stage is defined for each ratchet update. Af-
ter having identified and included in their MSKE some key security properties
(which imply secrecy and authentication of the message keys in various post-
compromise setting), and having proved the protocol secure in their model
though a game-hopping reduction, they conclude that the cryptographic core
of Signal is secure.

Continuous Key Agreement. Alwen, Coretti and Dodis give a definition of
secure messaging, and formally state the security properties that a secure mes-
saging protocol should achieve [6]. The authors identify these properties as
forward secrecy, Post-Compromise Security and novel immediate decryption
notion, which implies that the parties seamlessly recover if a message is lost
(and which, the authors argue, is satisfied by the Signal protocol). The au-
thors also introduce a Continuous Key Agreement primitive, which they use
to construct a generic asymmetric ratcheting protocol. They combine CKA
with a forward-secure AEAD primitive, and construct a “generalized Signal
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protocol”, which they prove secure in their notion of secure messaging through
a game-hopping reduction.

General ratcheting. In their Ratcheted Encryption paper, Bellare et al. for-
mally define ratcheting as a cryptographic primitive, and they use it to specify
some protocols which they then prove secure in a BR-like model that allows for
compromise [10]. Their work is limited to single, one-sided ratcheting: that is,
the parties do not locally advance the ratcheting chain (single), and only one
of the parties is secure after compromise (one-sided). Nonetheless, this work
is foundational towards formal design of ratcheting protocols: the proposed
ratcheting primitive can be readily composed to obtain ratcheted encryption,
and the authors theorize it can be extended to obtain double ratcheting.
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Chapter 4

Multi-Stage Key Exchange Security
Model

The idea of data abstraction sort of caught fire
[. . . ]

Barbara Liskov

The final objective of this thesis is to model chains of TLS handshakes. To
this aim, we first intend to analyse security properties of the TLS handshakes
in isolation.

On a high level, we want to be able to generically assert security of the keys
output by sessions of the handshake protocol in different modes, and bound
the adversarial advantage in breaking security of handshake sessions.

This problem is commonly covered by Authenticated Key Exchange mod-
els: Bellare and Rogaway present a particular stringent notion of security for
AKEs, requiring that an adversary should be unable to distinguish a real ses-
sion key from one drawn uniformly at random from the same distribution.
In particular, Multi-Stage extensions of AKE models are a natural fit for the
TLS handshakes: sessions of the handshake output several keys, and each can
be separately modeled as a stage, with different security properties.

In this chapter, we present a variant of the Multi-Stage Key Exchange model
used in the security analysis of TLS by Dowling et al. [26]. Note that we as-
sume here that the reader is familiar with Multi-Stage Key Exchange models;
an introduction to the MSKE setting can be found in Section 3.3. We extend
that model in two main directions:

• we cover derivation of the Resumption PSKs, security of which will prove
important for the generic composition studied in Chapter 5;
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• we introduce a novel property, the Passive Security, modelling security
of a session in the presence of a passive adversary who has learnt the long
term keys of the parties running that session, which we use extensively
in our Post-Compromise Security argument in Chapter 6.

We will use our MSKE model to analyse the following TLS handshakes modes:

• the full 1-RTT TLS handshake, or Initial Handshake: which can be
used as the first handshake in a chain of resumption.

• the PSK (EC)DHE handshake, or Resumption Handshake: which
is used for session resumption, and which, despite the name, can also
appear as the first handshake in a chain of resumptions (e.g. if the TLS
endpoints share an externally established PSK).

We study an abstraction of TLS in which each handshake results in the estab-
lishment by the endpoints of two keys to be used outside of the handshake: the
Exporter Master Secret (EMS) and a Resumption PSK (rpsk). We also wish to
model the security of traffic keys, which protect the resumption ticket: those
keys are derived from the Client and the Server Application Traffic Secrets
(we will refer to both as Application Traffic Secrets, or ATS).

We will therefore only need to cover three MSKE stages, the first correspond-
ing to the derivation of the Application Traffic Secrets, the second to the
derivation of the Exporter Master Secret, and the third and final stage to the
Resumption PSK. Figure 4.1 visually depicts the points in the TLS handshake
execution corresponding to the derivation of those secrets and the correspond-
ing stages.

In Section 4.1 and 4.2, we introduce the general security properties of our
MSKE model and the session-specific properties used in the model. Section
4.3 formally defines our Multi-Stage security notions.

We the independently prove the Initial Handshake and the Resumption Hand-
shake secure in our MSKE model: Sections 4.5 and 4.6 respectively cover se-
curity of full 1-RTT TLS handshakes and PSK (EC)DHE handshakes. These
sections will make extensive use of the common cryptographic assumptions
defined in Appendix A.

Finally, Section 4.7 reports some notable results on the relations between
our novel passive security property, and the traditional forward secrecy. Both
properties model security of sessions after the adversary has learnt (corrupted)
the related long term keys: forward secrecy is limited to sessions that took
place before the corruption, while passive security considers sessions of the
protocol that take place after corruption, but limits the adversary in its abil-
ity to tamper with messages (that is, it forces the adversary to remain passive).
We introduce a notion of authentication for MSKE, and show that, in authen-
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Client Server

ClientHello

ServerHello
{CertificateRequest}†

{Certificate} : SC← pkS
{CertVerify} : SCV← SIGsign(skS, LabelSCV||Htr)

{Finished} : SF← HMAC(fks, Htr)

abort if SIGvfy(pkS, LabelSCV||HSC, SCV) 6= 1
abort if SF 6= HMAC(fks, HSCV)

{Certificate}† : CC← pkC
{CertVerify}† : CCV← SIGsign(skC, LabelCCV||Htr)
{Finished} : CF← HMAC(fkc, Htr)

abort* if SIGvfy(pkS, LabelCCV||HCC, CCV) 6= 1
abort if CF 6= HMAC(fkc, HCCV)

accept CATS, SATS
Stage 1

accept EMS
Stage 2

[NewSessionTicket]

accept rpsk
Stage 3

Client Server

ClientHello

ServerHello
{Finished} : SF← HMAC(fks, Htr)

abort if SF 6= HMAC(fks, HSH)
{Finished} : SF← HMAC(fkc, Htr)

abort if CF 6= HMAC(fkc, HSF)

accept CATS, SATS
Stage 1

accept EMS
Stage 2

[NewSessionTicket]

accept rpsk
Stage 3

Stage 1 After the client sends its Finished message, server and client
accept the Application Traffic Secrets CATS and SATS

Stage 2 Immediately after the first stage, server and client accept the
EMS

Stage 3 After the server issues a NewSessionTicket message, server
and client accept the resumption PSK, rpsk

Figure 4.1: Simplified TLS protocol diagram and relevant stages in the MSKE model for the
handshake.

ticated Multi-Stage Key Exchange models, passive security implies forward
secrecy.

4.1 MSKE Security Properties
As usual in MSKE models, security is defined as a set of experiments where
a challenger C simulates multiple execution of the protocol Π, called sessions,
in the presence of an adversary A. Each session is run between two protocol
participants, an initiator and a responder. Sessions are divided into subse-
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quent stages, each deriving a single stage key. For each stage, we model the
following security properties (cf. Section 3.3):

Key Usage. We distinguish between internal and external usage for session
keys.

Internal keys will be used within the key exchange, influencing its execution:
this means that, upon derivation of these key, the protocol execution in the
simulation is paused, allowing the adversary to issue a Test query, before their
actual use in the protocol. Furthermore, to maintain consistency, if a random
key was returned to the adversary, the derived key will be substituted with
the returned random key in the current protocol run.

External keys are exposed outside of the key exchange, e.g. for composition
with higher level protocols. This simplifies modelling adversarial interaction:
these keys can be tested (once) at any time, and will never influence the
protocol execution. Applications Traffic Secrets will have internal usage. The
Exporter Master Secret and the Resumption PSK, on the other hand, are
assigned external usage: EMS will be used by the application employing TLS
as a key exchange, while the PSK is employed in the chained composition of
TLS handshakes.

Corruption model. Adversarial corruption of a party (Corrupt query) will
be modeled as:

• in the public-key (pMSKE) setting: exposing the long-term public keys
of the corrupted party;

• in the symmetric-key (sMSKE) setting: exposing a certain pre-shared
secret held by corrupted party.

The initial full (EC)DHE handshake, which involves authentication of the
server by public keys, will be modeled in the pMSKE setting, while the re-
sumption handshakes require an sMSKE approach.

Forward secrecy. A stage and the associated session key have forward secrecy
if a later compromise of a party’s long-term secrets will not affect security of
the session key derived at that stage. The model captures the notion of stage-j
forward secrecy: from a certain stage j on, all keys derived in future stages
are forward secret.

In the handshake modes we examine, we prove that forward secrecy is achieved
in stage 1: traffic secrets are derived from the Master Secret, which in turn
depends on the ephemeral Diffie-Hellman key obtained from the endpoints’
KeyShare.
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Replayability. Replayability captures the possibility of a session being estab-
lished as a result of the adversary replaying messages belonging to an earlier
session.

All the stages in the handshake modes we examine are proved to be non-
replayable, since we only consider mutual authenticated stages with per-
session freshness: random nonces present in the ClientHello and the ServerHello
messages guarantee that client (resp. server) view of the transcript can only
be consistent during a replay if the server (resp. client) nonce is repeated,
which happens with negligible probability. Note that we do not cover PSK
handshakes derivation of the Early Traffic Secret – which corresponds to a
replayable stage in other MSKE analysis of TLS (cf. Dowling et al. [26]).

Passive Security. We introduce this novel property, not covered by previous
MSKE models. We define a stage to have passive security if an earlier com-
promise of a party’s long-term secrets does not affect security of session keys
derived at that stage, as long as the session has an honest contributive part-
ner at that stage. The requirement of an honest contributive partner means
that the adversary is forced to be passive, observing but not modifying the
messages exchanged by the session partners in the relevant stage. The model
captures the notion of stage-j passive security: from a certain stage j on, all
the stages are passively secure.

Note that modelling passive security allows us to capture stronger adversaries
compared to previous MSKE models: we allow (passive) adversarial interac-
tion after a long-term secret compromise, therefore extending upon previous
security models which, by virtue of forward secrecy, only allowed adversarial
interaction before such a compromise.

In the handshake modes we examine, we prove that passive security is achieved
in stage 1: the same ephemeral Diffie-Hellman key exchange which guarantees
forward secrecy will also introduce fresh cryptographic material that a passive
probabilistic-polynomial time adversary cannot compute (under our PRF-ODH
security assumption).

Authentication. Authentication is proven implicitly in MSKE models, and
only in relation to key indistinguishability: previous models capture security
in unauthenticated stages by placing restrictions on adversarial behaviour in
those stages.

We consider TLS handshakes in a restricted setting: we always require the
client to authenticate to the server. Therefore, in comparison to other security
analyses of TLS handshakes, the complexity of authentication in our MSKE
model is greatly reduced, and we completely drop the previously mentioned
adversarial restrictions. All the stages in a session are, by definition, mutually
authenticated: before the derivation of secrets in stage 1 (corresponding to
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stage 4 and 5 in the full model [26]), the client and the server have mutually
authenticated by verifying each other’s CertVerify; the following stage are
also subsequently mutually authenticated.

Note that the MSKE notion of authentication does not align with the Bellare-
Rogaway Authentication that we will present in Section 4.7.1: this latter
captures instead the adversarial advantage in making a stage accept without
an honest partner, independently of key indistinguishability.

4.2 MSKE Protocol-Specific Properties

The model maintains a list of protocol-specific properties, represented by a
vector (M, USE):

• M ∈N: the number of stages.

• USE ∈ {external, internal}M: USEi indicates usage for each stage key

The stages in which forward secrecy and passive security are achieved (stage 1
in both cases), the replayability (no stage is replayable) and the authentication
(always mutual) are omitted from the property vector.

For the simulation to be possible, the model also needs to maintain a set of
identities U and a session list ListS. Each participant (user or endpoint) in
the protocol is identified by an identity U ∈ U .

In pMSKE, a user U is bound to an asymmetric long-term key pair (pkU , skU ),
and there exists a public mapping between users and public keys.

In sMSKE, each user U holds a series of pre-shared key identifiers pssid, each
bound for use with a certain party V in a specified role. Formally, each triple
(U ,V , pssid) maps to an endpoints-specific pre-shared secret pssU ,V ,pssid. This
pre-shared secret pssU ,V ,pssid is shared by the endpoints U and V , where U
only uses the secret in initiator role, and V in responder mode; given U and
pssid, V is uniquely determined.

Whenever a new session is created in the security experiment, two entries are
added (“administrative sessions”), describing the view of that session from
the initiator and the responder. These two administrative sessions are said to
be partnered. Note that, from this point on, we will use the term session in
place of administrative session when it is clear from the context that we are
referring to an entry of ListS.

Each administrative session in ListS has the session-specific properties listed
below. The shorthand notation label.X will indicate the element X of the
unique administrative session labeled label. Unless otherwise specified, each
value will be initialized with the default value indicated in square brackets.
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• label ∈ LABELS = U ×U ×N: the unique session label (U ,V ,n), iden-
tifying the n-th session between an owner U and the communication
partner V .

• id ∈ U : the identity of the session owner.

• pid ∈ U ∪ {∗}: the identity of the intended communication partner, or
‘∗’ if not specified (in which case it will be set at a later time by the
protocol)

• role ∈ {initiator, responder}: the role of the administrative session owner
in the current session .

• pssid ∈ {0, 1}∗ ∪⊥: in the pre-shared secret sMSKE variant, indicates
the symmetric key identifier for the session’s pre-shared secret (pssid,pid
if role = initiator, psspid,id if role = responder). [⊥]

• stexec ∈ (RUNNING ∪ ACCEPTED ∪ REJECTED ∪ {init}): the cur-
rent state of execution for a session, where RUNNING is a set of flags
RUNNING = {runningi|i ∈ {1, . . . , M}}, with runningi indicating that the
session is running stage i, and equivalent definitions hold for ACCEPTED
and REJECTED. The initial state is the special init. The state is set to
rejectedi if the i-th stage aborts, to acceptedi if it accepts the session key
for that stage, and to runningi if the session continues after accepting
the i-th stage key. [init]

• stage ∈ {0, . . . , M}: the current stage, where stage is incremented to i
when stexec reaches the acceptedi state. [0]

• sid ∈ ({0, 1}∗ ∪⊥)M: sidi is the (protocol-dependant) session identifier
in stage i, set once upon acceptance in that stage. [⊥]

• cid ∈ ({0, 1}∗ ∪⊥)M: cidi is the (protocol-dependant) contributive iden-
tifier in stage i, may be set several times until acceptance of that stage.
[⊥]

• key ∈ ({0, 1}∗ ∪⊥)M: keyi represents the session key established in stage
i, set upon acceptance in that stage. [⊥]

• stkey ∈ {fresh, revealed}M: stkey,i indicates the freshness of the i-th stage
key, as defined in the adversary model. [fresh]

• tested ∈ {true, false}M: testedi describes whether the adversary issued a
Test query for stage i. [false]

• corrupted ∈ {0, . . . , M,∞}: corrupted indicates which stage the session
was in when the adversary issued a Corrupt query to either communi-
cation partner. The value ‘0’ represents corruption before the session
started, while ‘∞’ indicates no corruption has taken place. [∞]

Finally, the model also maintains:

43



4. Multi-Stage Key Exchange Security Model

• C, the set of entities that have been corrupted by the adversary: in
pMSKE, the identity of the user (U) whose long-term secrets have been
corrupted; in sMSKE, the global identifiers (U , V , pssid) of corrupted
pre-shared keys.

• btest, the test bit, set by the challenger to answer real-or-random queries.

• lost, a flag which indicates that the adversary made an illegal query or
sequence of queries (e.g. queries that would lead to a trivial win) and
should lose the security game.

4.2.1 Honest Partners and Session Identifiers

An administrative session is said to have an honest contributive partner if there
exists a distinct corresponding session with matching contributive identifiers:
that is, session label has an honest contributive partner if there exists a session
label′ 6= label such that label.cid = label.cid.

Similarly, an administrative session is said to have an honest session partner if
there exists a distinct corresponding session with matching session identifiers:
that is, session label has an honest session partner if there exists a session
label′ 6= label such that label.sid = label.sid.

Note that we introduced two different identifiers – the contributive identifiers
cid and the session identifiers sid – that will be later used to define, respectively,
whether the session has an honest contributive partner, and which sessions are
partnered together. These two session variables cover very similar roles, and
it can be hard to see why they are both necessary. The important difference,
here, is that session identifiers can only be set upon acceptance of a stage,
while contributive identifiers can be extended multiple times over the course
of a session execution, to include messages that are sent and received by the
session.

Consider two honest partnered sessions, with labels l and l′. At some point
in the protocol, l receives a message m from l′, computes the response m′ and
derives a new session key, accepting for a certain stage, and finally sends the
response m′ 1. The session identifier for l will be updated upon acceptance
to include m′, but, until l′ receives m′ and accepts in turn, session identifiers
of l and l′ will not match, since session identifiers can only be set at upon
acceptance of a stage. Nonetheless, all the contributions to l may have come
from the honest session l′: introducing the notion of an honest contributive
partner allows us to capture whether a session received honest contributions
independently of the session identifiers.

1When we say that a session receives (1 ) or sends (2 ) messages, in the security ex-
periment: 1. the challenger has received a Send query from the adversary containing that
message, or 2. a message is included as the return value of a Send query by the challenger.
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We can therefore define contributive identifiers to cover all sent and received
message, and extend them whenever a new message is sent or received: in the
case we described before, the contributive identifier will not change when l ac-
cepts until m′ is sent, allowing to correctly identify l′ as an honest contributive
partner of l, even in the case the adversary were to drop m′.

The analysis of TLS by Dowling et al. [26] employs contributive identifiers in
order to provide a stronger security model for unauthenticated stages: they
allow testing of sessions at stages in which the partner is not authenticated as
long as the messages come from any honest session of a party.

In our analysis we do not study unauthenticated stages, but we do model
passive security: this requires us to allow an adversary to test a corrupted
session at a certain stage as long as the adversary has not tampered with the
session at that stage. Similarly to Dowling et. al, we will model this setting
by requiring the test session to have an honest contributive partner if it is
corrupted (Section 4.3).

4.3 Security and Adversary Model
Following the footsteps of Dowling et al. [26], we formalize security of the pro-
tocol using two different security experiments, where a probabilistic polynomial-
time adversary A interacts with a challenger C in a game. The Multi-Stage
game captures security of session key in terms of key-indistinguishability, while
the Match game captures session matching. Sections 4.3.1 and 4.3.2 formally
describe the experiments and the condition on adversarial victory of respec-
tively Match and Multi-Stage.

First, we define a predicate Corrupted : LABELS → {true, false}, which de-
termines whether the long term secret used in session labeled label has been
compromised. Corrupted(label) = true if and only if:

• in pMSKE: the identifier of the session owner (label.id) or the identifier
of the intended communication partner (label.pid) are in the list of the
corrupted entities C.

• in sMSKE: the pre-shared secret associated with the session is corrupted
(more formally, (id, pid, pssid) ∈ C if label.role = initiator, (pid, id, pssid) ∈
C otherwise).

Note that this predicate is different from the corrupted session property, which
is set by the challenger to indicate in which stage (if ever) corruption happened.

In each experiment, adversarial interaction with the challenger is modelled
through adversarial queries. A is in full control of all network communication
between the parties; control of the network is modelled through the following
queries:
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• NewSession(U ,V , role[, pssid]): This query creates a new session, with
U as the initiator and V as the responder, and inserts the correspond-
ing administrative session with label label into ListS. In the sMSKE
variant, it also sets label.pssid to the corresponding optional parame-
ter, having the session use the specified pre-shared key identifier; if the
corresponding secret pssU ,V ,pssid (if role = initiator, resp. pssV ,U ,pssid if
role = responder) does not exist returns ⊥ without creating the session.

If Corrupted(label) = true (e.g. if the adversary corrupted a communica-
tion partner before issuing the NewSession query), set label.corrupted←
0.

Return label.

• Send(label,m): This query sends a message m to the session with label
label. If there is no session labeled in ListS, return ⊥. Otherwise, run
the protocol on behalf of U on message m. If label.role = initiator and
m = init, the session initiates the protocol and (potentially) outputs a
response m′.

If, during the protocol execution, stexec changes to acceptedi for some
stage i, and the relative stage key keyi had internal usage (USEi =
internal), pause the execution of the protocol and return control to
the adversary. This allows A to issue a Test query before the stage key
is used in the protocol. The adversary can later resume the execution
by sending a special Send(label, resume) query.

If, during the protocol execution, stexec changes to acceptedi for some
stage i, and there exists a partnered session with label label′ in ListS, and
label′.testedi = true, set label.testedi ← true. Furthermore, if the relative
stage key keyi had internal usage, set label.key ← label′.key. This ensures
that the tested state is consistent among partnered sessions, and that an
eventual random key set in the partnered session by the Test query is
propagated to this session.

Return the response from the user U and the updated execution state
stexec.

Additionally, A can expose session keys and parties’ long term secrets, and
query for a real-or-random session key in the security game:

• Reveal(label, i): Reveal the session key label.keyi of the stage i of session
labeled label.

If there is no such session, return ⊥. Otherwise, return label.keyi and
set label.stkeyi ← revealed.

• Corrupt(U): (pMSKE) Reveal the long term secret of the user U , skU .
Add U to the set of corrupted entities C.
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Corrupt(U ,V , pssid): (sMSKE) reveal the symmetric pre-shared key
pskU ,V ,pssid. Add (U ,V , pssid) to the set of corrupted entities C.
For each session such that label.id = U or label.pid = U , set label.corrupted←
label.stage (unless label.corrupted was already set to indicate corruption
in an earlier stage).

• Test(label, i): Tests the session key of stage i for the session labeled
label.
If there is no session labeled label in ListS, or if label.stexec 6= acceptedi
or label.testedi = true, return ⊥. If stage i is internal and there is a
partnered session label′ in ListS (label′.sid = label.sid) with label′.stexec 6=
acceptedi, set the lost flag lost← true. This ensures that stage keys can
only be tested once, and, for internal keys, that they can only be tested
upon acceptance, before they are used in the protocol.
Otherwise, set label.testedi ← true. If the test bit btest = 0, sample a
key K $← D uniformly at random from the session key distribution D.
If btest = 1, let K ← label.keyi be the real session key.
If the tested key has internal use, we need to ensure the protocol execu-
tion is consistent with the real-or-random key returned to the adversary.
Therefore, we substitute the internal session key withK: label.keyi ← K.
If the tested key has, instead, external use, no change to the protocol
state is needed.
If there exists a partnered session label′ which also accepted the key
(label′.stexec = acceptedi), set label′.testedi ← true and, in the internal
key usage case, label′.keyi ← K. This propagates the tested status (and
the key consistency) to the partnered session.
If the session label is corrupted (Corrupted(label) = true), and if either
there exists no honest contributive partner (there exists label′ 6= label
such that label′.cid = label.cid) or the session was corrupted in a stage
preceding the tested stage (label.corrupted ≤ i), then set the lost flag
lost← true. Testing of corrupted sessions for which an honest contribu-
tive partner exists is allowed to model passive security, while testing
of sessions that took place before the corruption is allowed to model
forward secrecy.
Return K.

Finally, in the pre-shared secret variant, the adversary can have the parties
generate a fresh pre-shared secret under an identifier of its choice, and has
the power to insert a pre-shared secret of its choice in the list of pre-shared
secrets for a chosen party:

• NewSecret(U ,V , pssid): Generate a fresh pre-shared secret with identi-
fier pssid between an initiator endpoint U and a responder V .
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If pssU ,V ,pssid was already set, return ⊥. Otherwise, set pssU ,V ,pssid $← P
sampling uniformly at random from the pre-shared secret space P.

• Inject(U ,V , pssid, pss): Insert pss as pre-shared secret, under the iden-
tifier pssid, for use in sessions where U is an initiator and V a responder.

If pssU ,V ,pssid was already set, or if a pss with the same value already
exists, return ⊥ without inserting any pre-shared secret. Otherwise, set
pssU ,V ,pssid ← pss, and add (U ,V , pssid) to the set of corrupted entities
C.

4.3.1 Match Security
Match security ensures that session identifiers sid are sound:

1. sessions with the same session identifier for some stage hold the same
key at that stage;

2. sessions with the same session identifier for some stage have opposing
roles;

3. sessions with the same session identifier for some stage have the same
contributive identifier at that stage;

4. sessions are partnered with the intended (authenticated) participant,
and, for the symmetric key variant, they share the same key identifier;

5. session identifiers do not match across different stages;

6. at most two sessions have the same session identifier.

Definition 4.1 (Match Security) Let Π be a Multi-Stage key exchange pro-
tocol with properties (M, USE), and A a PPT adversary interacting with a
challenger simulating Π with the queries described in Section 4.3. We define
the Match security game GMatch

Π,A :

Setup. In the pMSKE variant, the challenger generates long-term asymmet-
ric key pairs for each participant U ∈ U .

Query. The adversary A has access to the queries NewSession, Send, Reveal,
Corrupt and Test. In the pMSKE variant, A receives the public part of the
key pair for each user. In the sMSKE variant, A has further access to the
queries NewSecret and Inject.

Stop. At some point, the adversary stops with no output.

The adversary A wins the game, denoted by GMulti-Stage
Π,A = 1, if at least one of

the following conditions holds:
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1. There exists two distinct labels label and label′ such that label.sidi =
label′.sidi 6= ⊥ for some stage i ∈ {1, . . . , M}, label.stexec 6= rejectedi and
label′.stexec 6= rejectedi, but label.keyi 6= label′.keyi.

2. There exists two distinct labels label and label′ such that label.sidi =
label′.sidi 6= ⊥ for some stage i ∈ {1, . . . , M}, but label.role = label′.role.

3. There exists two distinct labels label and label′ such that label.sidi =
label′.sidi 6= ⊥ for some stage i ∈ {1, . . . , M}, but label.cid 6= label′.cid.

4. There exists two distinct labels label and label′ such that label.sidi =
label′.sidi 6= ⊥ for some stage i ∈ {1, . . . , M}, but label.id 6= label′.pid.

5. There exists two labels label and label′ such that label.sidi = label′.sidj 6=
⊥ for some stages i, j ∈ {1, . . . , M}, i 6= j.

6. There exists three pairwise distinct labels label, label′ and label′′ such that
label.sidi = label′.sidi = label′′.sidi 6= ⊥ for some stage i ∈ {1, . . . , M}.

We say that Π is Match-secure if for all PPT adversaries A the advantage

AdvMatch
Π,A := Pr[GMatch

Π,A = 1]

is negligible.

4.3.2 Multi-Stage Security

Multi-Stage security captures key security as indistinguishability from a key
randomly drawn from the same distribution.

Definition 4.2 (Multi-Stage Security) Let Π be a Multi-Stage key exchange
protocol with properties (M, USE) and key distribution D, and A a PPT ad-
versary interacting with a challenger simulating Π with the queries described
in Section 4.3. We define the Multi-Stage security game GMulti-Stage

Π,A :

Setup. The challenger samples from random the test bit btest $← {0, 1}. In
the pMSKE variant, it generates long-term asymmetric key pairs for each
participant U ∈ U .

Query. The adversary A has access to the queries NewSession, Send, Reveal,
Corrupt and Test. In the pMSKE variant, A receives the public part of the
key pair for each user. In the sMSKE variant, A has further access to the
queries NewSecret and Inject.

Guess. A stops and outputs its guess for the test bit, b.
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Finalize. The challenger sets the ‘lost’ flag to true if the adversary has re-
vealed and tested the key of some stage in a session or in two partnered sessions
(formally, there exist two labels label, label′ and some stage i ∈ {1, . . . , M} such
that label.sidi = label′.sidi, label.stkeyi = revealed and label′.tested = true).

The adversary A wins the game, denoted by GMulti-Stage
Π,A = 1, if b = btest and

lost = false.

We say that Π is Multi-Stage-secure if Π is Match-secure and for all PPT
adversaries A the advantage

AdvMulti-Stage,D
Π,A := Pr[GMulti-Stage

Π,A = 1]− 1
2

is negligible.

4.4 MSKE Results and Limitations
When compared to the cryptographich analysis of TLS 1.3 handshake proto-
cols by Dowling et al. [26], our analysis includes some further restrictions on
TLS handshakes. In the Full (Initial) Handshake, only mutual authentication
of the endpoints is taken into consideration, since this is the only authenti-
cation mode we allow. In addition, since we are not interested in modelling
the privacy properties of the handshake, we also do not capture the use of
handshake keys, which are not analysed. Furthermore, we disallow external
use of the record protocol, meaning that no application record (that is, records
with an ApplicationData type) will be sent by either endpoint, and treat the
Application Traffic Secrets as internal.

Removing the parts of the model by Dowling et al. relative to varying levels
of authentication, forward secrecy and replayability resulted in:

• a reduced list of protocol and session specific properties;

• reduced list of conditions for Match security;

• simplified assumption for Multi-Stage security.

All the security definitions presented in Section 4.3 are variants of the ones
presented in the Cryptographic Analysis paper, and as such the restrictions
mentioned above result in the following divergence:

• No authentication levels: we do not model different authentication levels,
since we assume only one authentication level, the mutual authentica-
tion.

We do instead prove the following properties:
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• Forward secrecy: as in the Cryptographic Analysis paper, we allow ad-
versarial corruption of long term secrets of a party, and do not restrict
Test queries for past sessions of that party, thus implicitly proving for-
ward secrecy for all the stages. We diverge from the previous paper in
continuing to allow an adversary to interact with a corrupted session in
order to capture passive security.

• Passive security: we extend the model presented in the Cryptographic
Analysis paper: we allow adversarial corruption of long term secrets of
a party, and do not restrict Test queries for future sessions of that party
as long as the adversary stays passive during that session, thus implicitly
proving passive security for all the stages.

• Replayability: we do not capture indistinguishability of early secrets,
and we do not have any replayable stage: non-replayability is therefore
trivially implied by Match security property 5.

• Key independence: similarly to forward secrecy, this property is proven
implicitly by allowing the adversary to issue independent Test queries
to the various stages of a session.

Simplifications of TLS due to MSKE-specific restrictions. Negotiation of
cipher suites and of DH named groups in the early stages of the TLS handshake
implies that many distinct TLS 1.3 protocol variants are possible. A complete
computational study of the TLS handshake would require to separately model
each of possible execution flows: in order to simplify our proof, like in TLS
Cryptographic Analysis paper by Dowling et al. [26], we chose not to model
the negotiation of ciphersuites and EC(DH) named groups in the handshake.
We assume the endpoints have previously agreed on the ciphersuite to be
used, and that the ClientHello SupportedGroups extension will only contain
a single named group and the corresponding share, which will be supported
and used by the server will (note that this condition also excludes the entire
HelloRetryRequest message flow).

4.5 Security of the Initial Handshake

The initial handshake, depicted on the left side of Figure 4.1, will always be
carried on in full (EC)DHE mode with public-key server authentication. It is
therefore analyzed in the public-key (pMSKE) variant of the model.

Protocol Properties

• M = 3:
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• USE ∈ {internal, external, external}: usage is internal for traffic
secrets (stage 1), external for EMS and resumption PSK (stages 2 and
3).

We define session identifiers for each stage to include all the message exchanged
up to that point, as follows:

sid1 = (“ATS”, CH, SH, CR, SC, SCV, SF, CC, CCV, CF)
sid2 = (“EMS”, CH, SH, CR, SC, SCV, SF, CC, CCV, CF)
sid3 = (“rpsk”, CH, SH, CR, SC, SCV, SF, CC, CCV, CF, NST.rt)

Where NST.rt represents the ticket nonce in the NST message. All the mes-
sages in the session identifiers are included unencrypted, since we are not
modelling encryption for handshake messages. Session identifiers are set upon
session acceptance.

Contributive identifiers, in order to ensure that server sessions with honest
client contributions can be tested (for passive security), are set as follows:

cid1/cid2 = (“ATS”/“EMS”, CH, SH, CR, SC, SCV, SF)
set by the server (resp. client) upon sending and/or receiving all the
messages up to the server’s Finished message.

cid1/cid2 = (“ATS”/“EMS”, CH, SH, CR, SC, SCV, SF, CC, CCV, CF)
extended by the server (resp. client) upon receiving (resp. sending) the
client’s Certificate, CertVerify and Finished messages.

cid3 = (“rpsk”, CH, SH, CR, SC, SCV, SF, CC, CCV, CF)
set by the client (resp. server) upon sending and/or receiving all the
messages up to the client’s Finished message.

cid3 = (“rpsk”, CH, SH, CR, SC, SCV, SF, CC, CCV, CF, rt)
extended by the client (resp. server) upon receiving (resp. sending) the
rt in the NewSessionTicket message.

4.5.1 Match Security

Theorem 4.1 (Match security of the Initial Handshake) The Initial
Handshake is Match-secure with properties (M, USE) given above. For any
probabilistic polynomial-time adversary A we have:

AdvMatch
Init-Hk,A ≤ n2

s · 1/q · 2−|nonce|

Where ns is the maximum number of protocol sessions, q is the order of the
Diffie-Hellman group used in the handshake, and |nonce| is the bit length of
the random nonces.
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Proof. We need to prove the five conditions listed in Section 4.3.1:

1. Sessions with the same session identifier for some stage hold the same
key at that stage. The session identifiers cover all the input of the key
derivation steps at all stages. It follows that agreement on session iden-
tifiers implies agreement on the stage keys.

2. Sessions with the same session identifier for some stage have opposing
roles. The ClientHello and ServerHello, respectively sent in the first
flight of messages by each endpoint, are differently typed (and contain
a different set of extensions). The initiator (always a client) and the
responder (always a server) will not accept an Hello message of the
wrong type. Honest clients and servers always send correctly typed
Hello messages.

3. Sessions are partnered with the intended (authenticated) participant. All
the stages are mutually authenticated. The session identifiers cover all
the messages exchanged up to that stage. In particular, session identi-
fiers cover the server’s and client’s Certificate, which contains their
respective identities. Partnered sessions share the same session identi-
fiers: it trivially follows that they must agree on each other’s identities.

4. Sessions with the same session identifier for some stage have the same
contributive identifier at that stage. All contributive identifiers eventu-
ally converge to the same value as the session identifiers for the same
stage, making this condition trivially hold.

5. Session identifiers do not match across different stages. Each session
identifier starts with a unique per-stage label, making this condition
trivially hold.

6. At most two sessions have the same session identifier. Session identifiers
cover all messages exchanged in a session; they also contain the random
nonces included in the Hello messages. If two honest parties share a
session, their session identifiers at each stage will therefore match. For
a higher number of sessions to share session identifiers, a collision must
occur over the Hello messages. These contain a random |nonce| bits
random value (rc and rs for, respectively, the client and the server) and
a Diffie-Hellman keyshare gx. A birthday bound for the probability of
this collision to occur is n2

s · 1/q · 2−|nonce|, where ns is the maximum
number of session, q is the order of G.

4.5.2 Multi-Stage Security

Theorem 4.2 (Multi-Stage security of the Initial Handshake) The
Initial Handshake is Multi-Stage-secure with properties (M, USE) given above.
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For any probabilistic polynomial-time adversary A we have:

AdvMulti-Stage,D
Init-Hk,A ≤ 3ns ·

(
AdvCOLL

H,B1 + max
{
nu ·AdvEUF-CMA

S,B2
,

ns ·
(

Advdual-snPRF-ODH
HKDFextr,B3

+AdvPRF
HKDFexp,B4

+AdvPRF
HKDFextr,B5

+

AdvPRF
HKDFexp,B6

+AdvPRF
HKDFexp,B7

)})

Where ns is the maximum number of protocol sessions and nu is the maximum
number of protocol users.

Proof We prove the theorem above through game hopping: a sequence of
reductions of the Multi-Stage security game to absolute bounds and hardness
assumptions, in the style described by Shoup [49].

The first three game hops reduce the original Multi-Stage game to a variant
where the adversary is constrained to a single Test query, and no transcript
hash collisions are possible.

Game 0. The original Multi-Stage game:

AdvMulti-Stage,D
Init-Hk,A = AdvG0

Init-Hk,A′

Game 1. The adversary is restricted to a single Test query – that is, if the
challenger receives more than one Test query, it aborts immediately. Intu-
itively, we can see that an adversary for the modified game A′ can be built
from A by running A as a subroutine and picking at random one of the pos-
sible 3ns (where 3 is the number of stages) Test queries A could issue, thus
reducing the advantage by a factor of 1/3ns. A detailed hybrid proof can be
found in [35].

AdvG0
Init-Hk,A ≤ 3ns ·AdvG1

Init-Hk,A′

From this point on we can assume the Test session number n (and the corre-
sponding label in ListS) is known.

Game 2. We further simplify the proof by having the challenger abort if any
two honest sessions encounter a hash collision in any invocation of the hash
function H.

It is clear Game 1 and Game 2 proceed identically unless a collision event
occurs. The probability of a collision event is, by definition, bounded by
the advantage of an adversary B1 against the collision resistance of the hash
function H. Therefore, by difference lemma [49], we have the following bound:

AdvG1
Init-Hk,A ≤ AdvG2

Init-Hk,A′ +AdvCOLL
H,B1
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Remark The proof will now turn to analyzing two disjoint cases:

A. the tested session label has no honest contributive partner in the first
stage (and, therefore, in any subsequent stage): @{label′ 6= label}. label.cid =
label′.cid.

B. the tested session label has an honest contributive partner in the first
stage: ∃{label′ 6= label}. label.sid = label′.sid

This allows a trivial reduction of Game G2 to the separate games for each
case. The cases are disjoint, and the advantage is therefore bounded by the
maximum of the advantages in each case:

AdvG2
DHE-Res-Hk,A ≤ max

{
AdvG2,A

DHE-Res-Hk,A′ , AdvG2,B
DHE-Res-Hk,A′′

}
Case A. Test without Partner
In the Initial Handshake, all the stages are mutually authenticated. Case A
requires for the tested session to have no honest contributive partner in the
first stage: this means that a client session (or a server session) has accepted in
stage 1, authenticating a dishonest corresponding server (resp. client) session.

Authentication of a non-honest session can only happen if the security of the
signature scheme used for authentication has been violated: in the following
game hops, we will reduce Case A to the EUF-CMA security of the public key
signature scheme S.

Game A.0. This equals G2 with the adversary restricted to test a session
without an honest contributive partner in the first stage.

AdvG2,A
Init-Hk,A = AdvGA.0

Init-Hk,A′

Game A.1. This game has the challenger guess the peer identity U ∈ U
of the tested session label (such a peer must exist, since the Init-Hk is mu-
tually authenticated), and abort if its guess was incorrect. This adversarial
advantage will incur in a loss at most linear in the number of users:

AdvGA.0
Init-Hk,A ≤ nu ·AdvGA.1

Init-Hk,A′

Game A.2. We now make the challenger abort if the tested session receives,
in either the client’s or the server’s CertVerify messages, a signature over the
transcript hash Htr under pkU , the public key of user U , that is valid but has
not been computed by any honest session of user U . Let Z denote the event
that the challenger aborts for this reason.

If Z does not occur, games A.1 and A.2 are identical:

Pr[A wins GA.2∧ ∼ Z] = Pr[A wins GA.2∧ ∼ Z]
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Remember that Case A requires the session not to have a matching partner;
furthermore in Game 2 we disallow hash collisions.

We can bound the probability of Z by the advantage of an adversary B2
against EUF-CMA of the signature scheme S: in the reduction, B2 maintains a
simulation of Game A.2 for the corresponding adversary A. More specifically,
B2 generates long-term keypairs for all the users in U except the guessed (A.1 )
session peer U ; the public key pkU is initialized to the public key provided by
the EUF-CMA challenger O, and all private key operations involving skU are
carried out through sign queries to O. If Z occurs, B2 outputs the signature
and the transcript hash pair (σ, Htr) that triggered it.

We know that the signature σ for Htr must be valid, and not computed by
an honest session of U . The adversary cannot alter the identity of a public
key owner, since a public mapping between the users and their public keys is
maintained by the challenger. We exclude hash collisions (Game 2 ), so σ was
not produced by an honest session of U whose transcript hash collides with
the tested session transcript hash either. (σ, Htr) therefore represents a valid
forgery.

Hence, by difference lemma, we find this bound:

Pr[A wins GA.1]− Pr[A wins GA.2] ≤ Pr[Z] = AdvEUF-CMA
S,B2

AdvGA.1
Init-Hk,A ≤ AdvGA.2

Init-Hk,A′ +AdvEUF-CMA
S,B2

Finally, we can argue that the adversary cannot possibly issue a test query in
Game A.2. The session will only accept at the first stage if the adversary is
able to produce a valid CertVerify message: the test session has no matching
partner, therefore requiring the adversary to produce a forgery, and making
the challenger abort immediately. The adversary’s advantage in winning A.2
is thus 0:

AdvGA.2
Init-Hk,A = 0

Case B. Test with Partner
In this case, the adversary is restricted to testing a session with an honest
contributive partner in the first stage, practically limiting its ability to tamper
with messages. The adversary can nonetheless issue corruption queries to the
parties involved, allowing us to model the case of a passive adversary with
access to the parties’ long term secrets. Following the TLS key schedule (refer
to the diagram in Figure 2.1), we gradually replace secrets with random values,
relying on the indistinguishability properties of the underlying cryptographic
primitives.
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Game B.0. Identical to G2, with the adversary restricted to testing a session
with an honest contributive partner in the first stage.

AdvG2,B
Init-Hk,A = AdvGB.0

Init-Hk,A′

Game B.1. This game has the challenger guess the label label′ of the session
partnered with session label (label.sid = label′.sid). In Case B, this partnered
session must exist. This step incurs in a linear loss in the number of sessions:

AdvGB.0
Init-Hk,A ≤ ns ·AdvGB.1

Init-Hk,A′

Game B.2. In this game, we replace the HS with a random independent
bitstring HS∗ $← {0, 1}λ. In the key schedule for an Initial Handshake, all the
values up to and including the Derived Early Secret dES are constant.

The handshake secret HS is the first fresh secret derived by the key sched-
ule from the Diffie-Hellman shared secret DHE. The advantage of an adver-
sary capable of distinguishing between this game and the previous can be
bounded by the adversarial advantage against the dual-snPRF-ODH security
of the HS← HKDFextr(dES, DHE) key derivation step.

In fact, we can use any such distinguisher C to construct a dual-snPRF-ODH
adversary B3. Such a B3 will simulate the Multi-Stage security game for C :
it will obtain a generator g and the Diffie-Hellman shares gu and gv from
its own PRF-ODH challenger, and use them in the KeyShare extension of
ClientHello and ServerHello messages in the test session and its contribu-
tive partner (note that we know which session this will be, by B.1 ). B3 will use
its real-or-random PRF-ODF evaluation with x∗ ← dES as a label to derive
HS, providing a sound simulation of either B.1 (real case, HS← HKDFextr(x∗,
guv)) or B.2 (random case, HS∗ $← {0, 1}λ). When the distinguisher C outputs
its guess, B3 will forward the same value to its challenger.

In the case C was to change the content of either KeyShare, B3 can still provide
a sound simulation by using its PRF-ODH queries on on the label dES with
a Diffie-Hellman keyshare gv′ 6= gv.

This hybrid reduction proves the following bound:

AdvGB.1
Init-Hk,A ≤ AdvGB.2

Init-Hk,A +Advdual-snPRF-ODH
HKDFextr,B3

Game B.3. We continue to follow TLS key schedule: in this game we replace
the Derived Handshake Secret dHS, which depends on the HS, with a random
bitstring dHS∗ ← {0, 1}λ.

This game hop is possible because we replaced HS with a random HS∗ in the
previous game, making the PRF evaluation dHS← HKDFexp(HS∗, LabeldHS||
ε) indistinguishable from random.
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More formally, we can use any adversary C capable of distinguishing between
this game and the previous to construct an adversary B4 against PRF security
of HKDFexp. B4 will simulate the Multi-Stage security game for C , using its
own PRF oracle queries to derive dHS (with label L′ ← LabeldHS), providing a
sound simulation of either B.2 (real case, dHS← HKDFexp(HS∗, LabeldHS|| ε):
note that HS∗ is the random key input) or B.3 (random case, dHS← {0, 1}λ).

We can therefore bound the advantage difference in this step by the PRF
security of HKDF expansion:

AdvGB.2
Init-Hk,A ≤ AdvGB.3

Init-Hk,A +AdvPRF
HKDFexp,B4

Game B.4. In this game, we replace the master secret MS derived from dHS
with a random bitstring MS∗ ← {0, 1}λ. This game hop is possible because
we replaced dHS with a random dHS∗ in the previous game, making the PRF
evaluation MS← HKDFextr(dHS∗, 0λ) indistinguishable from random.

Using the same hybrid argument as in the last game, we can bound the ad-
vantage difference in this step by the PRF security of HKDF extraction:

AdvGB.3
Init-Hk,A ≤ AdvGB.4

Init-Hk,A +AdvPRF
HKDFextr,B5

Game B.5. In this game, we replace the Application Traffic Secrets CATS
and SATS, the exporter master secret EMS and the resumption master secret
RMS by corresponding random bitstrings CATS∗, SATS∗, EMS∗ and RMS∗. All
of these secrets are independent, and are derived from MS through HKDFexp
calls with the transcript hash and different labels as secondary inputs.

CATS and SATS are accepted in stage 1, and by assumption in Case B we have
an honest partner at this stage. We can guarantee that only honest partners
participate in the computation of EMS (second stage) and RMS (third stage),
too: 1. all the Initial Handshake messages included in the session identifier for
stage 2 also appear in the session identifier for stage 1, allowing us to assume
an honest partner the second stage; 2. when stage 2 accepts, all the messages
necessary for the computation of RMS have already been exchanged.

We now have that the adversary cannot control any HKDF input, and we
replaced MS with a random MS∗ in the previous game, making all the HKDFexp
evaluations using MS as the key input indistinguishable from random. With
the usual hybrid argument we can bound the advantage difference in this step
by the PRF security of HKDF expansion:

AdvGB.4
Init-Hk,A ≤ AdvGB.5

Init-Hk,A +AdvPRF
HKDFexp,B6

Game B.6. In this game, we replace the resumption secret rpsk with a ran-
dom bitstring rpsk∗ ← {0, 1}λ.
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From Game B.5, we have that the stage keys for both the first and the second
stage can be substituted with random strings, and no efficient adversary can
distinguish this change without breaking our cryptographic primitives. It
remains to be proven that the adversary has no advantage in distinguishing
the key accepted in stage 3, rpsk.

In Game B.5 we also replaced RMS with a random RMS∗, making the PRF
evaluation tksapp ← HKDFexp(RMS∗, Labelres||rt) indistinguishable from ran-
dom.

Using the same hybrid argument as in B.3, we can bound the advantage
difference in this step by the PRF security of HKDF expansion:

AdvGB.7
Init-Hk,A ≤ AdvGB.8

Init-Hk,A +AdvPRF
HKDFexp,B7

We now have replaced all the stage keys in the tested session with uniformly
random values. Therefore, the adversary has no advantage in this final game:

AdvGB.8
Init-Hk,A = 0 �

4.6 Security of the DHE Resumption Handshake
The resumption handshakes, depicted on the right side of Figure 4.1, will
always be carried on in PSK mode with (EC)DHE key exchange. They are
analyzed in the symmetric-key (sMSKE) variant of the model.

Protocol Properties Similarly to the initial handshake, we have

• M = 3:

• USE ∈ {internal, external, external}: usage is internal for traffic
secrets (stage 1), external for EMS and resumption PSK (stages 2 and
3).

We define session identifiers for each stage to include all the message exchanged
up to that point, as follows:

sid1 = (“ATS”, CH, SH, SF, CF)
sid2 = (“EMS”, CH, SH, SF, CF)
sid3 = (“rpsk”, CH, SH, SF, CF, rt)

Where NST.rt represents the ticket nonce in the NST message. All the mes-
sages in the session identifiers are included unencrypted, since we are not
modelling encryption for handshake messages. Session identifiers are set upon
session acceptance.
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Contributive identifiers, in order to ensure that server sessions with honest
client contributions can be tested (for passive security), are set as follows:

cid1/cid2 = (“ATS”/“EMS”, CH, SH, SF)
set by the server (resp. client) upon sending and/or receiving all the
messages up to the server’s Finished message.

cid1/cid2 = (“ATS”/“EMS”, CH, SH, SF, CF)
extended by the server (resp. client) upon receiving (resp. sending) the
client’s Finished message.

cid3 = (“rpsk”, CH, SH, SF, CF)
set by the client (resp. server) upon sending and/or receiving all the
messages up to the client’s Finished message.

cid3 = (“rpsk”, CH, SH, SF, CF, rt)
extended by the client (resp. server) upon receiving (resp. sending) the
rt in the NewSessionTicket message.

4.6.1 Match Security

Theorem 4.3 (Match security of the DHE Resumption Handshake)
The DHE Resumption Handshake is Match-secure with properties (M, USE)

given above. For any probabilistic polynomial-time adversary A we have:

AdvMatch
DHE-Res-Hk ≤ AdvCOLL

HMAC,B + np/|P|+ n2
s · 1/q · 2−|nonce|

Where ns is the maximum number of protocol sessions, np is the maximum
number of pre-shared secrets, q is the order of the Diffie-Hellman group used
in the handshake, |P| is the size of the pre-shared key space, and |nonce| is the
bit length of the random nonces.

Proof. We need to prove the five conditions listed in 4.3.1 true:

1. Sessions with the same session identifier for some stage hold the same
key at that stage. The session identifiers cover the PreSharedKey ex-
tension present in the ClientHello and ServerHello messages, which
include the pssid: the preshared key input pski is therefore fixed. The
session identifiers cover all further input of the key derivation steps at all
stages. It follows that agreement on session identifiers implies agreement
on the stage keys.

2. Sessions with the same session identifier for some stage have opposing
roles. The ClientHello and ServerHello, respectively sent in the first
flight of messages by each endpoint, are differently typed (and contain
a different set of extensions). The initiator (always a client) and the
responder (always a server) will not accept an Hello message of the
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wrong type. Honest clients and servers always send correctly typed
Hello messages.

3. Sessions are partnered with the intended (authenticated) participant and
they share the same key identifier. All session identifiers cover the pssid
and the binder values present in the ClientHello: pssid and binder are
therefore trivially agreed upon.

We know that each triple (U ,V , pssid), representing the communication
parties in a fixed role and a pre-shared secret identifier, maps uniquely
to a PSK. This map is, with overwhelming probability, bijective: PSKs
are set via NewSecret or Inject calls. In the first case, they are sampled
uniformly at random, and therefore collide with probability bounded by
a birthday estimate of n2

p/|P|, where np is the maximum number of
pre-shared keys and |P| is the size of the pre-shared key space. In the
second case, collisions are explicitly prohibited by the challenger.

Agreeing on the PSK would therefore imply that each session is partnered
with the intended participant. It only remains to be proven that the
partnered sessions hold the same PSK. To this aim, we consider the
binder value: it is the result of an HMAC computation over a partial
transcript under a finished key derived from the binder key BK. This
latter binder key is directly derived from PSK through a series of HKDF
evaluations. It follows that if there are the outputs of the HMAC do
not collide, agreement on binder implies agreement on PSK. This last
assumption can be bound by the collision resistance COLL of the hash
function used in the HMAC and for the transcript.

4. Sessions with the same session identifier for some stage have the same
contributive identifier at that stage. All contributive identifiers eventu-
ally converge to the same value as the session identifiers for the same
stage, making this condition trivially hold.

5. Session identifiers do not match across different stages. Each session
identifier starts with a unique per-stage label, making this condition
trivially hold.

6. At most two sessions have the same session identifier. Session identifiers
cover all messages exchanged in a session; they also contain the random
nonces included in the Hello messages. If two honest parties share a
session, their session identifiers at each stage will therefore match. For
a higher number of sessions to share session identifiers, a collision must
occur over the Hello messages. These contain a random |nonce| bits
random value (rc and rs for, respectively, the client and the server) and
a Diffie-Hellman keyshare gx ∈ G. A birthday bound for the probability
of this collision to occur is n2

s · 1/q · 2−|nonce|, where ns is the maximum
number of session, q is the order of G.
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4.6.2 Multi-Stage Security

Theorem 4.4 (Multi-Stage security of the DHE Resumption Hand-
shake) The DHE Resumption Handshake is Multi-Stage-secure with proper-
ties (M, USE) given above. For any probabilistic polynomial-time adversary A
we have:

AdvMulti-Stage,D
DHE-Res-Hk,A ≤ 3ns ·

(
AdvCOLL

H,B1
+ max

{
np·
(

AdvPRF
HKDFextr,B2

+AdvPRF
HKDFexp,B3

+AdvPRF
HKDFextr,B4

+AdvPRF
HKDFexp,B5

+

AdvPRF
HKDFexp,B6

+AdvPRF
HKDFexp,B7

+AdvEUF-CMA
HMAC,B8

)
,

ns·
(

Advdual-snPRF-ODH
HKDFextr,B9

+AdvPRF
HKDFexp,B10

+AdvPRF
HKDFextr,B11

+

AdvPRF
HKDFexp,B12

+AdvPRF
HKDFexp,B13

)})

Where ns is the maximum number of protocol sessions and np is the maximum
number of pre-shared secrets

Proof As in the proof for Init-Hk, we prove the theorem above through
game hopping: a sequence of reductions of the Multi-Stage security game to
absolute bounds and hardness assumptions, in the style described by Shoup
[49].

The first three game hops reduce the original Multi-Stage game to a variant
where the adversary is constrained to a single Test query, and no transcript
hash collisions are possible.

Game 0. The original Multi-Stage game:

AdvMulti-Stage,D
DHE-Res-Hk,A = AdvG0

DHE-Res-Hk,A′

Game 1. The adversary is restricted to a single Test query – that is, if the
challenger receives more than one Test query, it aborts immediately. Intu-
itively, we can see that an adversary for the modified game A′ can be built
from A by running A as a subroutine and drawing at random one of the pos-
sible 3ns (where 3 is the number of stages) Test queries A could issue, thus
reducing the advantage by a factor of 1/3ns. A detailed hybrid proof can be
found in [35].

AdvG0
DHE-Res-Hk,A ≤ 3ns ·AdvG1

DHE-Res-Hk,A′

From this point on we can assume the Test session number n (and the corre-
sponding label in ListS) is known.
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Game 2. We further simplify the proof by having the challenger abort if
any two honest sessions encounter a hash collision in any invocation of the
hash function H, allowing a reduction to the collision resistance of the hash
function (cfr. Game 2 in the Init-Hk proof):

AdvG1
DHE-Res-Hk,A ≤ AdvG2

DHE-Res-Hk,A′ +AdvCOLL
H,B1

Remark The proof will now to analyze two disjoint cases:

A. the tested session label has no honest contributive partner in the first
stage (and, therefore, in any subsequent stage): @{label′ 6= label}. label.cid =
label′.cid.

B. the tested session label has an honest contributive partner in the first
stage: ∃{label′ 6= label}. label.sid = label′.sid

This allows a trivial reduction of Game G2 to the separate games for each
case. The cases are disjoint, and the advantage is therefore bounded by the
maximum of the advantages in each case:

AdvG2
DHE-Res-Hk,A ≤ max

{
AdvG2,A

DHE-Res-Hk,A′ , AdvG2,B
DHE-Res-Hk,A′′

}
Case A. Test without Partner
In the DHE Resumption Handshake, all the stages are mutually authenticated.
Case A requires for the tested session to have no honest contributive partner
in the first stage: this means that a client session (or a server session) has
accepted in stage 1, authenticating a dishonest corresponding server (resp.
client) session.

The proof proceeds as for Init-Hk, but this time authentication derives from
the unforgeability of the MAC tags, rather then from the security of the
signature scheme. In the following game hops, we will eventually reduce Case
A to the EUF-CMA security of HMAC.

Game A.0. This equals G2 with the adversary restricted to test a session
without an honest contributive partner in the first stage.

AdvG2,A
DHE-Res-Hk,A = AdvGA.0

DHE-Res-Hk,A′

Game A.1. This game has the challenger guess which PSK, in the list of the
possible pre-shared secrets pssU ,V ,pssid, was used. This step incurs in a linear
loss in the size np of the list of possible pre-shared secrets:

AdvGA.0
DHE-Res-Hk,A ≤ np ·AdvGA.1

DHE-Res-Hk,A′

From now on we can assume that U , V and pssid are known.
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Game A.2. In this game, we make the challenger abort if the adversary issues
a Corrupt query for the pssid used in the test session, or if it similarly issues
an Inject query to set the same pre-shared key.

Remember that in our definition of Multi-Stage security, if a successful ad-
versary has corrupted or set the long term secret used in a test session, it is
forced to be passive: the lost flag will be set if the test session has no honest
contributive partner. In Case A, we require the test session not to have an
honest contributive partner: it follows that an adversary will win A.2 if and
only if it also wins A.1 :

AdvGA.1
DHE-Res-Hk,A = AdvGA.2

DHE-Res-Hk,A′

Game A.3. In this game, we make the challenger abort if the test session
accepts in the first stage without an honest contributive partner. We denote
abortGA.3

acc the occurrence of this abort event in Game A.3.

Game A.2 and Game A.3 proceed identically unless abortGA.3
acc occurs. Ap-

plying the difference lemma we can derive the following bound:

|AdvGA.2
DHE-Res-Hk,A −AdvGA.3

DHE-Res-Hk,A | ≤ Pr[abortGA.3
acc ]

We know that, since we are in Case A, the test session has no honest con-
tributive partner, and that Game A.3 aborts at stage one in this case. The
adversary cannot therefore possibly win A.3, since it aborts as soon as the
first stage is reached:

AdvGA.2
DHE-Res-Hk,A = 0

Remark The proof will now continue by bounding the probability of abortGA.3
acc .

Game A.4. In this game, we replace the pre-shared secret pssU ,V ,pssid we
guessed in Game A.1 with a value drawn at random from the same key dis-
tribution, pss∗ $← D.

No successful adversary can notice this change: they cannot have learned the
pss through a Corrupt query, or set it through a Inject query (Game A.2 ),
and the pre-shared secrets are otherwise always chosen uniformly at random
from the key distribution (NewSecret query).

Game A.3 and Game A.4 are identical, and therefore:

Pr[abortGA.3
acc ] = Pr[abortGA.4

acc ]

Game A.5. In this game, we replace the early secret ES with a uniformly
random bitstring ES∗.
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We know that ES← HKDFextr(pss, 0), and that pss was replaced by a random
pss∗ in Game A.4. The HKDF evaluations will therefore be indistinguishable
from random.

Using the same hybrid argument presented in Game B.3 of the full hand-
shake’s Multi-Stage security proof we can bound the advantage difference for
an adversary A in this step by the PRF security of HKDF extension:

Pr[abortGA.4
acc ] ≤ Pr[abortGA.5

acc ] +AdvPRF
HKDFextr,B2

Game A.6. In this game, we replace the Derived Early Secret dES and the
Binder Key BK with corresponding uniformly random bitstrings dES∗ and
BK∗.

We know that dES← HKDFexp(ES, LabeldES||Htr), BK← HKDFexp(ES, LabelBK||
Htr′), and ES was replaced by a random ES∗ in Game A.5. The HKDF evalu-
ations will therefore be indistinguishable from random.

It follows from the usual hybrid argument that:

Pr[abortGA.5
acc ] ≤ Pr[abortGA.6

acc ] +AdvPRF
HKDFexp,B3

Game A.7. In this game, we replace the Handshake Secret HS with a uni-
formly random bitstring HS∗.

We know that HS← HKDFextr(dES, DHE), and dES was replaced by a random
dES∗ in Game A.6. The HKDF evaluation will therefore be indistinguishable
from random.

This game is similar to Game B.2 in the Multi-Stage security proof for the
Initial Handshake, but this time indistinguishability of the Handshake Secret
derives from the secrecy of PSK rather than from the Diffie-Hellman key ex-
change: in Case A, the test session has no honest contributive partner, and a
(still unauthenticated) DH does not provide secrecy against an active attacker.

A hybrid argument allows us to bound the advantage difference in this step
by the PRF security of HKDF extension:

Pr[abortGA.6
acc ] ≤ Pr[abortGA.7

acc ] +AdvPRF
HKDFextr,B4

Game A.8. In this game, we replace the Client and Server Handshake Traffic
Secrets, CHTS and SHTS, with corresponding uniformly random bitstrings
CHTS∗ and SHTS∗.

We know that CHTS← HKDFexp(HS, LabelCHTS||Htr), and similarly SHTS←
HKDFexp(HS, LabelSHTS||Htr), where HS was replaced by a random HS∗ in
Game A.7. Both HKDF evaluation will therefore be indistinguishable from
random.
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An hybrid argument allows us to bound the advantage difference in this step
by the PRF security of HKDF expansion:

Pr[abortGA.7
acc ] ≤ Pr[abortGA.8

acc ] +AdvPRF
HKDFexp,B5

Game A.9. Finally, in this game we replace the Client and Server Finished
keys, fkc and fks, with corresponding uniformly random bitstrings fkc

∗ and
fks
∗.

We know that fkc ← HKDFexp(SHTS, Labelfin||Hε), and similarly fks ← HKDFexp(CHTS,
Labelfin||Hε), where CHTS and SHTS were replaced by some random CHTS∗
and SHTS∗ in Game A.8. Both HKDF evaluations will therefore be indistin-
guishable from random.

An hybrid argument allows us to bound the advantage difference in this step
by the PRF security of two different HKDF expansion evaluations:

Pr[abortGA.8
acc ] ≤ Pr[abortGA.9

acc ] +AdvPRF
HKDFexp,B6

+AdvPRF
HKDFexp,B7

Let us now consider again the event abortGA.9
acc , which occurs if the test session

accepts in the first stage without an honest contributive partner. Immediately
after exchanging the Finished messages, if the client (resp. the server) fails
to verify the received SF (resp CF), the session will abort before reaching stage
1. For an adversary to trigger abortGA.9

acc , the session has to accept at stage
1, and therefore the SF and CF tags need to both verify correctly.

We define two events, successGA.9
SF and successGA.9

CF , denoting the successful
verification of the MAC tag SF (resp. CF) in the case where the test session is
an initiator (resp. responder) session and there is no honest responder (resp.
initiator) session. We know that the tag will always verify if the session has an
honest contributive partner, but in Case A either the initiator or the responder
session is non-honest. We can now bound the probability of the abort event
by the probability of the success in each of these disjoint cases:

Pr[abortGA.9
acc ] ≤ max

{
Pr[successGA.9

SF ],Pr[successGA.9
CF ]

}
Game A.10. In this game, we bound the probability of successGA.10

SF occur-
ring. The test session has an initiator role, and it will receive a Finished
message containing a tag SF← HMAC(fks, Htr) that is valid but had not been
computed by an honest session of the responder.

We show that any adversary A capable of triggering this event can be used to
build an adversary B ′ against EUF-CMA security of the MAC scheme HMAC.
B ′ will simulate Game A.10 for A, but when a HMAC computation under the
key fks is required for the Finished message in either the test session or the
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partnered session, it will make a query to its EUF-CMA challenger. fks
∗ is a

uniformly random value (Game A.9 ), ensuring soundness of this simulation.
If successGA.10

SF is triggered, a valid MAC tag SF was received. All other
sessions hold different session identifiers (and would therefore have different
transcripts), thus no honest session will have requested a MAC tag over the
same transcript hash, and by Game 2 we exclude hash collisions. The received
SF would therefore constitute a forgery.

This hybrid reduction proves the following bound:

Pr[successGA.10
SF ] ≤ AdvEUF-CMA

HMAC,B ′

Game A.11. In this game, we bound the probability of successGA.11
CF occur-

ring. The test session has a responder role, and it will receive a Finished
message containing a tag CF← HMAC(fkc, Htr) that is valid but had not been
computed by an honest session of the initiator.

This game is symmetric to A.10, and we can similarly show that any adver-
sary A capable of triggering successGA.11

CF can be used to build an adversary
B ′′ against EUF-CMA security of the MAC scheme HMAC, resulting in the
following bound:

Pr[successGA.11
CF ] ≤ AdvEUF-CMA

HMAC,B ′′

It follows by combining Game A.9, Game A.10 and Game A.11 that:

Pr[abortGA.9
acc ] ≤ AdvEUF-CMA

HMAC,B8

Case B. Test with Partner
This part of the proof proceeds identically to the one presented in the Multi-Stage
security proof for the initial handshake. The adversary is restricted to testing
a session with an honest contributive partner, practically limiting its ability
to tamper with messages. The adversary can nonetheless issue corruption
queries to the parties involved, allowing us to model the case of a passive ad-
versary with access to the parties’ long term secrets. Following the TLS key
schedule (refer to the diagram in Figure 2.1), we gradually replace secrets with
random values, relying on the indistinguishability properties of the underlying
cryptographic primitives.

Game B.0. Identical to G2, with the adversary restricted to test a session
with an honest contributive partner in the first stage.

AdvG2,B
Init-Hk,A = AdvGB.0

Init-Hk,A′
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Game B.1. This game has the challenger guess the label label′ of the session
partnered with session label (label.sid = label′.sid). In Case B, this partnered
session must exist. This step incurs in a linear loss in the number of sessions:

AdvGB.0
Init-Hk,A ≤ ns ·AdvGB.1

Init-Hk,A′

Game B.2. In this game, we replace the HS with a random independent
bitstring HS∗ $← {0, 1}λ. In the key schedule for an Initial Handshake, all the
values up to and including the Derived Early Secret dES depend on pssU ,V ,pssid,
the PSK for the test session.

The handshake secret HS is the first secret derived by the key schedule from
the Diffie-Hellman shared secret DHE. The advantage of an adversary capable
of distinguishing between this game and the previous can be bounded by
the adversarial advantage against the dual-snPRF-ODH security of the HS ←
HKDFextr(dES, DHE) key derivation step.

In fact, we can use any such distinguisher C to construct a dual-snPRF-ODH
adversary B9. Such a B9 will simulate the Multi-Stage security game for C :
it will obtain a generator g and the Diffie-Hellman shares gu and gv from its
own PRF-ODH challenger, and use them for the KeyShare extension in the
ClientHello and ServerHello messages in the test session and its honest
contributive partner (note that we know which session this will be, by Game
B.1 ). B3 will use its real-or-random PRF-ODF evaluation with x∗ ← dES as
a label to derive HS, providing a sound simulation of either Game B.1 (real
case, HS← HKDFextr(x∗, DHE)) or Game B.2 (random case, HS∗ $← {0, 1}λ).
When the distinguisher C outputs its guess, B9 will forward the same value
to its challenger.

In the case C was to change the content of either KeyShare, B9 can still provide
a sound simulation by using its PRF-ODH queries on on the label dES with
a Diffie-Hellman keyshare gv′ 6= gv.

This hybrid reduction proves the following bound:

AdvGB.1
Init-Hk,A ≤ AdvGB.2

Init-Hk,A +Advdual-snPRF-ODH
HKDFextr,B9

Game B.3. We continue to follow TLS key schedule: in this game we replace
the Derived Handshake Secret dHS, which depends on the HS, with a random
bitstring dHS∗ ← {0, 1}λ.

This game hop is possible because we replaced HS with a random HS∗ in the
previous game, making the PRF evaluation dHS← HKDFexp(HS∗, LabeldHS||
ε) indistinguishable from random.

More formally, we can use any adversary C capable of distinguishing between
this game and the previous to construct an adversary B7 against PRF security
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of HKDFexp. B7 will simulate the Multi-Stage security game for C , using its
own PRF oracle queries to derive dHS (with label L′ ← LabeldHS), providing
a sound simulation of either Game B.2 (real case, dHS ← HKDFexp(HS∗,
LabeldHS|| ε): note that HS∗ is the random key input) or Game B.3 (random
case, dHS← {0, 1}λ).

We can therefore bound the advantage difference in this step by the PRF
security of HKDF expansion:

AdvGB.2
Init-Hk,A ≤ AdvGB.3

Init-Hk,A +AdvPRF
HKDFexp,B10

Game B.4. In this game, we replace the master secret MS derived from dHS
with a random bitstring MS∗ ← {0, 1}λ. This game hop is possible because
we replaced dHS with a random dHS∗ in the previous game, making the PRF
evaluation MS← HKDFextr(dHS∗, 0λ) indistinguishable from random.

Using the same hybrid argument as in the last game, we can bound the ad-
vantage difference in this step by the PRF security of HKDF extraction:

AdvGB.3
Init-Hk,A ≤ AdvGB.4

Init-Hk,A +AdvPRF
HKDFextr,B11

Game B.5. In this game, we replace the Application Traffic Secrets CATS
and SATS, the exporter master secret EMS and the resumption master secret
RMS by corresponding random bitstrings CATS∗, SATS∗, EMS∗ and RMS∗. All
of these secrets are independent, and are derived from MS through HKDFexp
calls with the transcript hash and different labels as secondary inputs.

CATS and SATS are accepted in stage 1, and by assumption in Case B we have
an honest partner at this stage. We can guarantee that only honest partners
participate in the computation of EMS (second stage) and RMS (third stage),
too: 1. all the Initial Handshake messages included in the session identifier for
stage 2 also appear in the session identifier for stage 1, allowing us to assume
an honest partner the second stage; 2. when stage 2 accepts, all the messages
necessary for the computation of RMS have already been exchanged.

We now have that the adversary cannot control any HKDF input, and we
replaced MS with a random MS∗ in the previous game, making all the HKDFexp
evaluations using MS as the key input indistinguishable from random. With
the usual hybrid argument we can bound the advantage difference in this step
by the PRF security of HKDF expansion:

AdvGB.4
Init-Hk,A ≤ AdvGB.5

Init-Hk,A +AdvPRF
HKDFexp,B12

Game B.6. In this game, we replace the resumption secret rpsk with a ran-
dom bitstring rpsk∗ ← {0, 1}λ.
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From Game B.5, we have that the stage keys for both the first and the second
stage can be substituted with random strings, and no efficient adversary can
distinguish this change without breaking our cryptographic primitives. It
remains to be proven that the adversary has no advantage in distinguishing
the key accepted in stage 3, rpsk.

In Game B.5 we also replaced RMS with a random RMS∗, making the PRF
evaluation tksapp ← HKDFexp(RMS∗, Labelres||rt) indistinguishable from ran-
dom.

Using the same hybrid argument as in Game B.3, we can bound the advantage
difference in this step by the PRF security of HKDF expansion:

AdvGB.5
Init-Hk,A ≤ AdvGB.6

Init-Hk,A +AdvPRF
HKDFexp,B13

We now have replaced all the stage keys in the tested session with uniformly
random values. Therefore, the adversary has no advantage in this final game:

AdvGB.6
Init-Hk,A = 0 �
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4.7 On Forward Secrecy and Passive Security in MSKE

A careful reader will probably have noticed a certain symmetry between for-
ward secrecy and passive security in our Multi-Stage security proofs: both
properties are proven implicitly, by allowing the adversary to Test session
stages that took place before corruption, and stages for which the session has
an honest contributive partner. Furthermore, it is the same Diffie-Hellman
key exchange that concretely gives the handshake both forward secrecy and
passive security.

Yet is is clear that protocols that achieve one do not automatically achieve the
other: for instance, a simple unauthenticated ephemeral Diffie-Hellman key
exchange is technically passively secret, but does not achieve forward secrecy.

A question that may now arise is what the relationship between stage-i for-
ward secrecy and stage-i passive security is: in this section we try to provide
an answer. Section 4.7.1 gives a security definition of authentication in Multi-
Stage protocols: this property emerges as necessary in our reduction proofs.
In Section 4.7.2 we show that for any Multi-Stage secure and authenticated2

protocol Π, if Π achieves passive security (PS) and mutual authentication,
it also achieves forward secrecy (FS). Finally, Section 4.7.4 speculates on the
possible reduction of passive security to forward secrecy, and exposes the ob-
stacles that stopped us short of proving equivalence of the two properties.

Remark In their “Post-Compromise Security” paper, Cohn-Gordon, Cremes
and Garratt informally state that PCS is a ‘dual’ of forward secrecy: the
former models security of sessions after a compromise, while the latter models
security of session before a compromise [18].

We believe that, in our work, passive security rather emerges as the ‘dual’
property of forward secrecy: the properties share deep ties, and are symmetric
in the inability of an adversary to actively control a protocol execution – either
because it happened in the past (in forward secrecy), or because the adversary is
explicitly forced to be passive (in passive security), as depicted in Figure 4.2. In
Chapter 6 we will show that, for some protocol constructs we introduce, passive
security plays a fundamental role in achieving Post-Compromise Security.

4.7.1 Bellare-Rogaway Authentication

We say that a Multi-Stage protocol Π provides authentication if a stage ac-
cepts if and only if the session has an honest partner for that stage. That is,
in a session of the party U with intended communication partner V , a stage

2It should be trivial to extend this proof to any protocol with a more generic Bellare-
Rogaway [9] definition of security
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li−3 li−2 li−1 li li+1 li+2 li+3

Corruption

Passive SecurityForward Secrecy

Adversary forced to be passive.Adversary cannot change past.

Figure 4.2: “Symmetry” of Forward Secrecy and Passive Security. Each box represents a session
labeled li; the sessions are shown in the order in which their execution is completed, with session
lj taking place before session lj+1.

accepts if and only if all messages contributing to that session originate from
an honest session of U .

Note that this is the same notion of authentication that Bellare and Rogaway
introduce in their seminal work defining authenticated key exchange protocols
[9]. The requirement of an honest partner corresponds to the concept of
matching conversation in the original BR model.

Formally, the authentication security game GAuth
Π,A is defined as follows:

Definition 4.3 (Auth security) Let Π be a Multi-Stage key exchange pro-
tocol and A a PPT adversary interacting with a challenger simulating Π with
the queries described in Section 4.3. We define Auth security game GAuth

Π,A as
follows:

Setup. In the pMSKE variant, the challenger generates long-term asymmet-
ric key pairs for each participant U ∈ U .

Query. The adversary A has access to the queries NewSession, Send, Reveal,
Corrupt and Test. In the pMSKE variant, A receives the public part of the
key pair for each user. In the sMSKE variant, A has further access to the
queries NewSecret and Inject.

Stop. At some point, the adversary stops with no output.

The adversary A wins the game, denoted by GAuth
Π,A = 1, if at least one of the

following conditions holds:

1. There exists two distinct labels label and label′ such that label.sidi =
label′.sidi 6= ⊥ for some stage i ∈ {1, . . . , M}, label.stexec 6= rejectedi and
label′.stexec 6= rejectedi, but label.keyi 6= label′.keyi.

2. There exists a session label label such that for some stage i ∈ {1, . . . , M},
label.stexec = acceptedi, but there exist no distinct session labels label′ 6=
label such that label.sidi = label′.sidi 6= ⊥.
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We say that Π is Auth-secure if for all PPT adversaries A the advantage

AdvAuth
Π,A := Pr[GAuth

Π,A = 1]

is negligible in the security parameter.

Note that our authentication property subtly differs from both the Match and
Multi-Stage security requirements. In Match we define soundness properties
for sessions, and in particular we require that session with matching session
identifiers should accept and hold the same key: the converse property, that
session which accept should hold the same session identifiers, is not captured.
Multi-Stage security prevents an adversary from learning anything about stage
keys, but does not capture e.g. an adversary that makes a session accept
without any honest contributive partner.

4.7.2 PS and Auth =⇒ FS

Theorem 4.5 (Reduction of forward secrecy to passive security in
authenticated Multi-Stage secure protocols.) Let Π be a Multi-Stage
key exchange protocol, AFS be a forward-secrecy-respecting adversary against
Multi-Stage security of Π, and similarly APS be a passive-security-respecting
adversary against Multi-Stage security of Π. That is, AFS and APS can only
win if they respectively abide to to usual forward secrecy and passive security
restrictions, namely: after the long term secrets of a party U have been cor-
rupted, AFS cannot test sessions in which U participates, and APS can only
test these sessions if they have an honest contributive partner. Finally, let
GAuthj

denote the authentication game for a Multi-Stage key exchange proto-
col, as defined in Section 4.7.1.

Then, for any efficient forward-secrecy-respecting adversary AFS, there exists
a passive-security-respecting adversary APS and an authentication adversary
B such that:

AdvGMulti-Stage
Π,AFS

≤ ns ·
(
AdvGAuthi

Π,B +AdvGMulti-Stage
Π,APS

)
Proof We provide and hybrid argument for the reduction of forward secrecy
to passive security: given a successful AFS, we construct a APS that wins
whenever AFS wins.

Game 0. We define this game as the standard Multi-Stage security game:

AdvGMulti-Stage
Π,AFS

= AdvG0
Π,A′FS
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Game 1. In this game, we restrict the adversary to test a single protocol
session. To this end, we guess a session number n out of the possible ns
sessions, and make the challenger abort if the adversary receives a Test query
for a different session.

AdvG0
Π,AFS

≤ ns ·AdvG1
Π,A′FS

From this point on we assume that the session label label ∈ ListS corresponding
to the session number n is known.

Game 2. In this game, we make the challenger abort if the adversary makes
the test session accepts at any forward secret stage j ≥ i without an honest
partner. Note that this is exactly equivalent to the adversary winning the
authentication game given in Section 4.7.1.

We denote by GAuthj
the authentication game up to stage j ≤M for Π, where

M is the number of stages in a session of Π. A formal description of the
authentication game is given in Section 4.7.1.

Game 1 and Game 2 proceed identically unless the abort even is triggered,
and the probability of the abort event occurring can be bounded by the adver-
sarial advantage in the authentication game GAuthj

. By applying the difference
lemma, we can now write:

AdvG1
Π,AFS

≤ AdvG2
Π,A′FS

+AdvGAuthi

Π,A′′FS

Game 3. Finally, we bound the advantage of a forward-secrecy-respecting
adversary AFS by the advantage of a passive-security-respecting adversary
APS.

We can demonstrate how to construct APS from AFS: APS simply forwards
all the Multi-Stage queries to its own Multi-Stage challenger. We observe
that since we abort in Game 2 if the test session accepts at a forward secret
stage without an honest partner, AFS will only test sessions with an honest
contributive partners for those stages: no AFS query would therefore violate
the conditions imposed by passive security. More formally, no adversary AFS
with a non-negligible advantage in Game 2. will make the passive security
challenger of APS abort.

When the adversary AFS terminates and outputs a bit b in the forward-secrecy
game, in our reduction APS will similarly terminate and return the same bit
b to the passive-security challenger.

We note that the passive-security-respecting adversary’s advantage in winning
the Multi-Stage security experiment in Game 3 is now exactly the same as
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as the advantage for the forward-secrecy-respecting adversary in the same
security experiment. We can now write:

AdvG2
Π,AFS

≤ AdvG3
Π,APS �

which concludes the hybrid argument.

4.7.3 PS and Auth =⇒ FS: TLS 1.3 Initial Handshake
The reduction in the previous section leaves the adversarial advantage in the
weak authentication game, AdvGAuthM ,Π

Π,AFS
, fundamentally unbounded. We now

give a concrete bound for this quantity in the case of the TLS 1.3 initial
handshake (cf. 4.5). This result can be adapted to prove a similar bound for
TLS 1.3 DHE resumption handshake.

Remark In the following analysis we will consider the AEAD encryption
of the NewSessionTicket message. This encryption is executed by the TLS
record protocol, under the server application traffic key: at the record layer,
each message can be coalesced with other messages in a single TLS record, or
fragmented over multiple records; those records are then encrypted and trans-
mitted3. For the purposes of our work, we will abstract away from the record
protocol, and consider a greatly simplified model where the NewSessionTicket
message is simply used as a plaintext for an AEAD encryption, and the
nonce and additional data are some opaque values tied to that particular
NewSessionTicket message. Also note that, in the previous Multi-Stage se-
curity proofs, we never relied upon this AEAD security provided by the record
layer.

Theorem 4.6 (Reduction of forward secrecy to passive security in
Init-Hk.) In a TLS 1.3 Initial Handshake, of any forward secrecy adversary
AFS, the following bound holds:

AdvGMulti-Stage
Init-Hk,AFS

≤ ns ·
(
AdvGAuthM

Init-Hk,B +AdvGMulti-Stage
Init-Hk,APS

)
where APS is a passive security adversary, and for any efficient adversary B
against the Auth game of Init-Hk, there exist efficient adversaries B1, . . . ,B3
such that:

AdvGAuthM
Init-Hk,B ≤ AdvCOLL

H,B1
+ nu ·AdvEUF-CMA

S,B2
+AdvMulti-Stage

Init-Hk,B3
+AdvINT-CTXT

AEAD,B4

Proof The first bound derives from simply applying Theorem 4.5. We are
going to prove the remaining the bound on Auth advantage by a hybrid argu-
ment.

3Some heavy restrictions still apply, cf. TLS 1.3 RFC Section 5.1, [46]
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Recall that in Section 4.5 we give an extensive proof of Multi-Stage security
of the initial handshake: in particular, Case A (in the proof of Theorem 4.2)
bounds the advantage of an adversary getting a session to accept without an
honest contributive partner in stage 1. Case A exactly matches our definition
of the weak authentication game for stage 1, which we refer to as GAuth1,Init-Hk.
We can now use that part of the proof as a starting point and extend it to
cover the full GAuthM ,Init-Hk.

Game 0. We define this game as the Case A game in the proof from Theorem
4.2.

In particular, this means that:

• we restrict the adversary to a single Test query, multiplying the adver-
sarial advantage by a factor of 3ns

• we have the challenger abort if any two honest sessions encounter a hash
collision in any invocation of the hash function H, with a distinguisher
advantage of AdvCOLL

H,B1
;

• we guess the peer identity U ∈ U of the tested session label, and abort
if its guess was incorrect, multiplying the adversarial advantage by a
factor of nu;

• we make the challenger abort if the tested session receives in the CertVerify
a signature over the transcript hash Htr that is valid but has not been
computed by any honest session of user U , with a distinguisher advan-
tage of AdvEUF-CMA

S,B2
.

And therefore:

AdvGAuth
Init-Hk,B ≤ 3ns ·

(
AdvCOLL

H,B1
+ nu ·AdvEUF-CMA

S,B2
+AdvG0

Init-Hk,B ′
)

Game 1. We extend the requirement of an honest contributive partner to the
second stage of the protocol. In order to achieve this, we make the challenger
abort if the session accepts in stage 2 without an honest contributive partner.

Remember that all of the handshake messages included in the session identifier
for stage 2 also appear in the session identifier for stage 1 (sid1 and sid2 cover,
in fact, the same exact messages, and they only differ by a label). After Game
0, we can assume the test session has an honest partner in the first stage: it
trivially follows that the session has an honest partner in the second stage,
too.

AdvG0
Init-Hk,B = AdvG1

Init-Hk,B ′
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Game 2. In this game we replace the server application traffic key tksapp,
derived from the Server Application Traffic Secret SATS during the execution
of the Init-Hk, with a random bitstring tksapp

∗ ← {0, 1}λ.

This game hop summarizes the game hops B.0 to B.6 described in the security
proof of Init-Hk, in section 4.5:

• we guess the label label′ of the session partnered with session label, mul-
tiplying the adversarial advantage by a factor of ns;

• we replace the HS with a random independent bitstring HS∗ $← {0, 1}λ,
with a distinguisher advantage of Advdual-snPRF-ODH

HKDFextr,B3
;

• we replace the Derived Handshake Secret dHS, which depends on the HS,
with a random bitstring dHS∗ ← {0, 1}λ, with a distinguisher advantage
of AdvPRF

HKDFexp,B4
;

• we replace the master secret MS, derived from dHS, with a random bit-
string MS∗ ← {0, 1}λ, with a distinguisher advantage of AdvPRF

HKDFextr,B5
;

• we replace the server Application Traffic Secret SATS, derived from
MS, with a random bitstring SATS∗, with a distinguisher advantage
of AdvPRF

HKDFexp,B6
;

• we replace the server application traffic key tksapp, derived from SATS,
with a random bitstring tksapp

∗ ← {0, 1}λ, with a distinguisher advan-
tage of AdvPRF

HKDFexp,B7
.

By combining all these steps, we bound the advantage of an adversary trying
to distinguish Game 2 from the previous game. It follows that:

AdvG1
Init-Hk,B ≤ ns ·

(
Advdual-snPRF-ODH

HKDFextr,B3
+AdvPRF

HKDFexp,B4
+AdvPRF

HKDFextr,B5
+

AdvPRF
HKDFexp,B6

+AdvPRF
HKDFexp,B7

)
+AdvG2

Init-Hk,B ′

Game 3. In this game, we make the challenger abort if the test session
accepts after receiving a NewSessionTicket message which decrypts correctly
but was not the output of an honest contributive partner of the test session.

Let Z denote the event that the challenger aborts because of the NewSessionTicket,
as defined above. If Z occurs, the challenger received valid ciphertext NewSessionTicket
not computed by an honest session. Remember that NewSessionTicket is en-
crypted under the server application traffic key tksapp: in Game 2 this key was
replaced by an uniformly random bitstring, and we proved that no efficient
adversary can distinguish this change without breaking our underlying cryp-
tographic assumptions.

We can now invoke the security of our AEAD cipher under a uniformly random
key. If the event Z is triggered, then the triple (n, NewSessionTicket, hdr)
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(where n and hdr respectively represent some certain per-NST nonce and some
additional record layer header data values 4) represents a valid forgery: Pr[Z]
is therefore bounded by the INT-CTXT advantage of an adversary B2 against
the AEAD scheme.

If Z does not occur, Game 2 and Game 3 proceed identically. By applying
the difference lemma, we can now write:

AdvG2
Init-Hk,B ≤ AdvG3

Init-Hk,B ′ +AdvINT-CTXT
AEAD,B8

Game 4. We finally extend the requirement of an honest contributive partner
to the third stage of the protocol, making the challenger abort if the session
accepts in stage 3 without an honest contributive partner.

Comparing the session identifier for the third stage, sid3, with sid2, we can see
that the former only includes only an additional message: NewSessionTicket.
In Game 2, we make the challenger abort whenever a NST message not com-
puted by an honest session partner causes the test session to accept. We can
now see that the challenger in Game 3 will abort if and only if the challenger
in Game 2 aborts:

AdvG3
Init-Hk,B ≤ AdvG4

Init-Hk,B ′

Furthermore, we have now restricted the test session from having non-honest
contributive partners at any stage. It follows that no adversary can now win
the authentication game with non-negligible probability:

AdvG4
Init-Hk,B ′ = 0 �

4.7.4 Reflections on reducing PS to FS
In the previous sections, we offered a formal proof of the reduction of Forward
Secrecy to Passive Security for authenticated protocols. We now turn to the
converse problem, albeit without offering a formal proof of our arguments:
this section gathers together a series of speculations on possible ways to prove
(or disprove) Passive Security reducibility to Forward Secrecy.

Long-term key updating protocols: a counterexample. Let us consider a
protocol structured as follows: each session consists of a non-ephemeral Diffie-
Hellman key exchange that uses the long-term key of the parties as secret keys,
the only key output is the obtained DH shared secret. After each session, the
long-term keys of the protocol are updated by the parties using an appropriate
(that is, mapping elements of the exponent group to other elements of the

4For additional details on the AEAD encryption of TLS records, please refer to Section
5.2 of the TLS 1.3 RFC [46].
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exponent group) secure PRF. If the adversary issues a Corrupt query and
learns the current long-term secret, the outputs of past Diffie-Hellman key
exchanges remain secret by security of the PRF, while the adversary can now
trivially break security of the current and all the future session even by staying
passive.

This somewhat contrived example shows that there exist a forward secret
protocol that is not passively secure: in the long-term key updating setting,
this could amount to an impossibility result.

“Static” long term keys: an open question. If we restrict the setting to
protocols where long-term keys are “static” (that is, they cannot change over
time), a reduction of forward secrecy to passive security could follow a similar
structure as the one presented in Section 4.7.2: constructing, via a series of
game hops, a forward-secrecy-respecting adversary from a passive-security-
respecting one.

First, we would need to somehow restrict the ability of the passive-security-
respecting adversary to corrupt long-term secrets in a session before testing
the same session: any adversary that behaves so after corruption would im-
mediately violate the constraints of a forward-secrecy-respecting adversary.

Remark To the best of our abilities, we were not able to prove the soundness
of the above restriction.

In the following paragraphs, we show how the proof could continue under the
assumption that the adversary cannot gain any advantage by behaving actively
in sessions that are not going to be tested, and that, for a passive adversary,
the point in a session at which a corruption query is issued is indifferent.

This assumption is strong, and it is disputable whether it does, in fact, hold.

We require the session identifiers in the protocol to be structured in such a way
that, if a session has an honest partner in stage i, it also has honest partners in
all stages j ≤ i (that is, if there exist two distinct session labels label, label′, and
label.sidi = label′.sidi, then for all j ≤ i it holds that label.sidj = label′.sidj).
We say that protocols for which this property is verified have ordered session
identifiers.

Without lost of generality, we restrict the adversary to issuing a single Test
query to a corrupted session. Let the test session label be label, and let i be
the test stage. For any session label′ in the Multi-Stage security experiment:

• if label′ = label, the adversary can only win the Multi-Stage game if the
session has an honest contributive partner for stage i. Furthermore, by
ordering of the session identifier, we know that if the session has an
honest contributive partner at stage i, it also has honest contributive
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partners for all the stages j ≤ i, that is, the adversary cannot interfere
with the session execution at any point before stage i accepts.

• if label′ 6= label, the adversary cannot win the Multi-Stage game in this
session, and, by key independence, it cannot learn about stage keys in
other protocol instances either.

The adversary has access to all the messages exchanged in the session label
(because of our security model) and to the long-term secrets of all corrupted
parties. It should be clear that any computation made by the adversary before
acceptance of stage i of label can be deferred until stage i has accepted: this
computation may take as inputs all of the protocol messages exchanged, and
all of the corrupted secrets, and the adversary can record and store all of this
data.

We can now argue that it is also possible to defer the corruption queries until
stage i has accepted: for the test session label, the adversary is passive in any
case; for sessions label′ 6= label, the adversary gains no advantage by being
active in these session.

We can therefore rewrite any passive-security-respecting adversary A which
issues corruptions queries before stage i accepts in the test session as an equiv-
alent forward-secrecy-respecting A′ that will wait until the test session accepts
in stage i before issuing these queries. This would conclude the reduction.
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Chapter 5

Multi-Stage Key Exchange
Composition

Todo modo para buscar la voluntad divina.

Ignatius of Loyola

Key exchange protocols are studied in isolation for Bellare-Rogaway-style se-
curity proofs, but, in any practical application, they are composed with other
symmetric key protocols. For instance, in many analyses of TLS in the litera-
ture, the handshake protocol (which we proved to be a secure multi-stage key
exchange) is commonly composed with the (symmetric) record protocol for
the stages deriving the Application Traffic Secrets. It is therefore necessary
to also analyse the security of this composition.

There is a long tradition of compositional security proofs for Bellare-Rogaway-
like authenticated key exchange, originating in the work by Brzuska et al.
[15, 14], followed by Fischlin and Günter for the MSKE setting, and finally
adapted to TLS 1.3 drafts by Dowling et al. [23].

This chapter introduces a compositional security model closely following the
works by Brzuska and Dowling et al. cited above, but extending those models
to treat passively secure stages, and forfeiting the parts of Dowling’s model
relative to non-mutual authentication.

5.1 (Multi-Stage) Key Exchange Protocol
Key exchange protocols allow parties to establish new keys. The parties are in
possession of some secrets (private keys in pMSKE, shared symmetric keys in
sMSKE), which are used over the course of a session of the protocol, allowing
us to define some security properties of the established keys. We give an
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extensive description of our Multi-Stage model for key exchange protocols in
Chapter 4.

When considering a Multi-Stage Key Exchange protocol Π for composition,
the following properties of the model are of fundamental importance1:

• key indistinguishability: the adversary cannot distinguish any of the
derived stage keys from random keys drawn from the same distribution
with non-negligible probability;

• key independence: adversarial knowledge of a key derived in one stage
will not affect security of keys derived in other stages in that session;

• forward secrecy and passive security (in our variant of the MSKE model):
compromise of a party’s secrets will not affect security that party’s ses-
sions at stages that accepted before the compromise (forward secrecy)
or at stages that have an honest contributive partner (passive security).

The challenger for the Multi-Stage security game of GΠ allows the following
queries:

• NewSession(U ,V , role[, pssid]): creates a new session of Π.

• Send(label,m): Allows the adversary control of the communication: ses-
sion label receives the message m, and the eventual response message is
the return value of the query. Note that protocol execution is paused
and control is returned to the adversary if the session accepts at any
stage during the execution of this query; the adversary can then resume
the execution by sending another Send query with a special m value.

• Reveal(label, i): Reveal the session key label.keyi associated with the
session labeled label in the stage i.

• Corrupt(U) and Corrupt(U ,V , pssid): Reveal the secret of a party (or a
pair of parties) in, respectively, the public key and the pre-shared secret
variant of MSKE.

• Test(label, i): Return either the session key label.keyi of the stage i
of session labeled label, or a key sampled at random from the same
distribution, according to a pre-sampled test bit.

• NewSecret(U ,V , pssid) (Only in the pre-shared secret variant of MSKE):
Generate a fresh pre-shared secret with identifier pssid between an ini-
tiator endpoint U and a responder V , returning ⊥ if a pre-shared secret
with the same identifier already exists for those parties.

1Note that these properties will often hold for many protocols proven secure in many
Bellare-Rogaway [9] based security models. The composition proof could be easily extended
to other BR-secure protocols.
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5.2 Symmetric Protocols
We define a generic class of two-party protocols, which we dub symmetric pro-
tocols, in which the parties running a session of the protocols hold a common
pre-shared secret.

All the protocols that can be described as symmetric protocol will be amenable
of generic composition with a Multi-Stage key exchange protocol: defining a
common interface, required traits and security properties will allow us to prove
the generic composition theorem in Section 5.5.

For a symmetric protocol Σ, we assume that:

• The protocol is executed by a set of users UΣ, which matches the set of
users UΠ in the key exchange protocol Π. This assumption is a natural
one in our composition setting: if |UΣ| > |UΠ|, the parties not in UΠ
cannot instantiate any session, and if the converse is true composition
is not well defined.

• In symmetric protocols which have defined roles for parties, the parties
in the protocol are assigned fixed role in each session, either as initiators
or responders, and that each symmetric key is bound to a session of two
parties in a certain role. This assumption is needed to prevent Selfie-like
attacks [28, 26].

• The distribution of the pre-shared keys in the symmetric protocol is the
same distribution D of the keys for stage-i in session of the key exchange.
This assumption guarantees soundness of the composition.

• The symmetric protocol key generation algorithm samples a key at uni-
formly at random from the distribution D. This assumption is needed
in order to define split adversary for the symmetric game, as we will see
in Section 5.2.1.

• The symmetric game GΣ maintains as part of its state: a list of the sym-
metric keys Listkeys of elements (kid,U ,V , k, stkey), where kid represent
an unique symmetric key identifier; U and V the parties associated to
this key (possibly bound to a specified role); the key k; and the key sta-
tus stkey indicates whether the key is known to the adversary (revealed)
or fresh (fresh). This assumption is needed in order to define a generic
query interface for the symmetric game.

We furthermore require that the security game GΣ matches the description
provided in Section 5.2.2, and that it provides at least the following queries:

• NewKey(U ,V ): Generate a fresh symmetric key by sampling it at ran-
dom from the key distribution, for use in session of the party U with
intended partner V (where the parties are respectively as an initiator
and a responder if the protocol has defined roles for the parties), adding
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an entry (kid,U ,V , k, fresh) in Listkeys, and return the corresponding key
identifier kid to the adversary.

• InjectKey(U ,V , k): Generate a symmetric key by setting it to the spec-
ified k, for use in session of the party U with intended partner V , adding
an entry (kid,U ,V , k, revealed) in Listkeys, and return the corresponding
key identifier kid to the adversary.

• PartnerKey(U ,V , kid): If a tuple (kid,V ,U , k, stkey) exists in Listkeys,
and the tuple t = (kid,U ,V , k, stkey) is not in Listkeys, t is added to
Listkeys and kid is returned. Otherwise, ⊥ is returned.

• NewSession(U ,V , kid): If the tuple (kid,U ,V , k, stkey) exists in Listkeys,
a new Σ session of the party U with V as the intended partner is created
under the symmetric key k. Otherwise, ⊥ is returned.

• Corrupt(kid): For all tuples (kid,U ,V , k, stkey) in Listkeys, k is returned
to the adversary and stkey ← revealed is set. If no such tuple exists, ⊥ is
returned.

GΣ should not provide key registration queries – that is, queries that set up
keys for use in the symmetric protocol – other than NewKey and PartnerKey.

5.2.1 Split Adversaries
In a Πi; Σ composition, the stage-i key of Π needs to be registered in the
symmetric protocol game for use in sessions of Σ.

In order to model this composition, we follow the work of Brzuska et al. [14]:
we extend GΣ (which is an arbitrary symmetric protocol) with a new query,
NewKey(U ,V , k), that allows the attacker to register a key of its choice.

• NewKey(U ,V , k): Generate a symmetric key by setting it to the specified
k, for use in session of the party U with intended partner V , adding an
entry (kid,U ,V , k, fresh) in Listkeys, and return the corresponding key
identifier kid to the adversary.

Note that this query is an overloaded, differently typed version of the NewKey(U ,V )
query provided by GΣ. An adversary A with access to NewKey(U ,V , k) is al-
lowed to arbitrarily set keys with stexec = fresh for the game, so security is
now impossible to guarantee: we therefore impose some restrictions on the
adversary that allow us to recover the original notions of security.

We first introduce the notion of a split adversary: an adversary which runs
two different sub-algorithms that can communicate with each other.

Definition 5.1 (Split Adversary) An adversary S against a cryptographic
game G is a split adversary if it consists of two subadversaries S = (S 1,S 2),
such that S 1 makes only certain types of queries to G, and S 2 makes other
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types of queries of queries to G. The algorithms S 1 and S 2 may communicate
as they wish. By convention we assume that S 2 is in charge of scheduling the
execution.

We then restrict each of the sub-algorithms to a subset of the available Σ
queries (query respecting adversary).

Definition 5.2 (Query-Respecting Adversary) A split adversary S =
(S 1,S 2) against a protocol game G is query-respecting if it satisfies the fol-
lowing restrictions:

• The queries NewKey(U ,V , k), NewKey(U ,V ), InjectKey(U ,V , k) and
PartnerKey(U ,V , kid) are only made by S 1.

• The query NewSession(U ,V , kid) is only made by S 2.

• Both parts S 1 and S 2 are allowed to make Corrupt queries.

• S 2 makes all other queries.

Finally, we fully specify the behaviour of the algorithm for the first split
adversary in order to recover security (key-benign adversary).

Definition 5.3 (Key-Benign Adversary) For a game GΣ of a protocol Σ
with key distribution D and a split adversary S = (S 1,S 2), we say that S is
key-benign with respect to Σ if it behaves as follows:

• Adversary (S = S 1,S 2) is query-respecting.

• All the messages from S 2 to S 1 are exclusively of the form NewKey(U ,V ),
InjectKey(U ,V , k) or PartnerKey(U ,V , kid).

• Each time S 1 receives a NewKey(U ,V ) message from S 2, it samples a
key from the key distribution D uniformly at random, and in turn makes
a NewKey(U ,V , k) query to the game GΣ. The game then returns a key
identifier, that S 1 passes to S 2.

• Each time S 1 receives a InjectKey(U ,V , k) message from S 2, it makes
a InjectKey(U ,V , k) query to the game GΣ. The game then returns a
key identifier, that S 1 passes to S 2.

• Each time S 1 receives a PartnerKey(U ,V , kid) message from S 2, it
makes a PartnerKey(U ,V , kid) to the game GΣ and returns the result
to S 2.

• No other information is passed from S 1 to S 2.

The definitions above are taken almost verbatim from [14], and adapted where
needed to conform to our notation.
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We can see that, as soon as the adversary S is restricted to be a key-benign
adversary, the original security notion is recovered2: keys are sampled uni-
formly at random from the key distribution, and we assumed that the original
GΣ game chooses the keys in the same exact way. S 2 will drive the execution,
and interact with GΣ exactly as before we extended it, with the exception of
the NewKey(U ,V ) and PartnerKey(U ,V , kid) queries, that will now have to
pass through S 1.

Remark Note that there is a slight divergence between out definition of a
key-benign adversary and the one provided by Brzuska in [14]: we forward
the keys to the symmetric protocol using a parameter of the NewKey query,
rather than a key input tape for the game. This change in notation is useful
for maintaining consistency with our Multi-Stage model in Chapter 4, and to
make the compositional argument more explicit in the following sections.

5.2.2 Security Game

Let us consider the extended3 symmetric protocol game GΣ. Much like in the
MSKE model, we assume the security Σ to be defined as a security experiment,
which sees a probabilistic polynomial-time key-benign adversary S = (S 1,S 2)
interact with a challenger C with a series of queries. The challenger will
simulate a number of sessions of the symmetric protocol, and the attacker will
be in control of all communication among parties.

Definition 5.4 (Extended Symmetric Security) Let GΣ be an arbitrary
symmetric protocol game, extended with a NewKey(U ,V , k) query as per Sec-
tion 5.2.1. We denote the event of a key-benign split adversary S = (S 1,S 2)
winning the game as:

GΣ,S = 1

We say that the symmetric protocol is secure if, for any such probabilistic
polynomial-time adversary S , the adversarial advantage

AdvGΣ
S = Pr[GΣ,S = 1]

is negligible in the security parameter.

5.3 Composed Protocol
Let Π be a Multi-Stage Key Exchange protocol, and Σ a symmetric protocol.
We will refer to the composition of the two protocols as Πi; Σ: we choose
a stage i of Π for the symmetric composition, corresponding to a stage key

2See Brzuska et al. [14] Section 2.2 for a more detailed argument
3as per Section 5.2.1
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keyi with external usage (the composition key). Whenever stage i accepts in a
session of the key exchange Π between parties U and V , keyi will be registered
as a new key for the same parties in the symmetric protocol Σ.
The security of the composition is modeled as a game between an adversary A
and a challenger C . We will refer to C as the composed challenger, and to A as
the composed adversary. We distinguish two subgames, GΠ for the Multi-Stage
security of the key exchange, and GΣ for the security of the symmetric protocol.
The composed running simultaneous simulations of the challenger of GΠ and
GΣ. We denote this game by Gcomp.
The adversary will interact with the composed challenger, and wins the com-
posed game if it succeeds in GΣ. The composed challenger will act as first
subadversary of GΣ, and expose to the composed adversary the interface of
the key exchange subgame and of the second subadversary of GΣ, as detailed
in the following paragraphs. We assume that the queries of the key exchange
and the symmetric protocol are typed differently: the composed challenger
will therefore always forward adversarial queries to the appropriate subgame.

Key Exchange Queries C will maintain a list Listkeys, mapping Π session
identifiers to Σ symmetric key identifiers kid. A has access to the entire set
of queries of GΠ, which will be forwarded unaltered to the game GΠ with the
following exceptions:

• Test queries: Not allowed in general, since they are out of scope in the
composed game (A needs to win GΣ).

• NewSession, Reveal, Corrupt, Inject queries: these queries are for-
warded to the GΠ subgame, and the responses are forwarded back to A,
with the sole exception of Reveal queries for stage-i keys.
If a Reveal query for stage-i keys is received, the query is not for-
warded to the GΠ subgame, and ⊥ is returned. Revealing the compo-
sition (stage-i) key is not allowed: we follow Brzuska’s model in this,
and we can similarly argue that Reveal queries are present to model for
key leakage in Multi-Stage key exchange protocol composition, and in
this case we are concretely instantiating a symmetric protocol. It will
be the symmetric protocol itself, therefore, to explicitly model leakage
of the keys used for composition through the Corrupt query (while pos-
sibly maintaining security, if the symmetric protocol is passively secure
itself).
The Reveal query is instead allowed unaltered for stages j, j 6= i, since
the key independence of the protocol guarantees that revealing keys for
one stage does not affect security of the composition key.

• Send query: this query is similarly forwarded to the Multi-Stage chal-
lenger, and the responses are forwarded back to A.
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The composed challenger C can inspect the state of GΠ (since it is be-
ing simulated by C), and detect if, over the course of a series of Send
queries, the session label in the changes to an accepting state acceptedi.
If this happens, C will also check whether the session label is currently
corrupted (label.corrupted ≤ i ) and, if so, whether it has an honest
contributive partner for that stage:

– If this condition holds, the resulting stage key is indistinguishable
from random, by forward secrecy and passive security of stages
j ≤ i of Π. In this case, we say that the composition key is not
corrupted (or fresh).

– If, on the contrary, it does not hold, the adversary has violated
the forward secrecy and passive security conditions of Π and is
able to distinguish the session key. In this case, we say that the
composition key is corrupted.

Let label = (U ,V ,n). If there exists a session label′ 6= label such that
label′.sid = label′.sid and label′ accepted for stage i, then C searches
the map Listkeys for the Σ key identifier corresponding to label.sid (note
that, by Match security of Π, sessions sharing the same session iden-
tifiers for a stage hold the same key for that stage), and submits a
PartnerKey(V ,U , kid) to the GΣ subgame.

If there is no such session label′, C submits a NewKey(U ,V , k) to the GΣ
subgame, and saves the returned kid in the map Listkeys under the session
identifier label.sid. If the composition key is corrupted, C additionally
submits a Corrupt(kid) query to GΣ.

Remember that GΣ security game considers a split adversary: in this case, the
composed challenger C will have access to the first subadversary queries itself,
and act as the first subadversary, using those queries to appropriately register
the composition keys in the symmetric game without revealing them to the
composed adversary, which acts as the second subadversary. As we will show
in Section 5.5, composing the keys in such a way is secure: fresh composition
keys are initialized uniformly at random, as the symmetric protocol would
expect from its own key generation algorithm.

Symmetric Queries The composed adversary will play as the second sub-
adversary in the GΣ game, and as such it will have access to all of the game
queries except for NewKey, InjectKey and PartnerKey. Those key registration
queries, which the second subadversary is normally allowed to access through
the first subadversary (and which we assume to be the only key registration
queries offered by the symmetric game), are restricted: A can only create new
sessions of Σ through the key exchange protocol.
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5.3.1 Composed Security

We now give a formal definition of the composed security, capturing security of
a composition of a key exchange and a symmetric protocol as the adversarial
advantage the symmetric protocol’s security subgame.

Definition 5.5 (Composed Security) Let Πi; Σ be the composition of a
key exchange Π and a symmetric protocol Σ using stage-i keys, with key dis-
tribution D, and A a PPT adversary interacting with a challenger simulating
Πi; Σ with access the queries described above. We define the composed security
game GComp

Πi;Σ,A as follows:

Setup. The challenger runs the setup of the key exchange: in particular, in
the pMSKE variant, the challenger generates long-term asymmetric key pairs
for each participant U ∈ U .

Query. The composed adversary interacts with the composed challenger through
the specified queries defined in Section 5.3. In particular, for each session of
parties (U ,V ) it will be possible make a high level distinction between:

• Key exchange phase: A interacts with key exchange subgame GΠ for
sessions of Π, and has access to the queries NewSession, Send, Reveal,
Corrupt. In the pMSKE variant, A receives the public part of the key
pair for each user. In the sMSKE variant, A has further access to the
query NewSecret.

Upon acceptance of stage i in the session of (U ,V ) in the key exchange,
the composed challenger plays as the first split subadversary of symmetric
subgame GΣ and calls NewKey(U ,V , keyi).

• Symmetric phase: A can initiate a new session of Σ between U and V
under the established key, and play the symmetric security subgame GΣ as
the second split subadversary. Note that A is restricted from registering
new key in the symmetric subgame directly: it can only cause a key to
be registered by making Π accept at stage i.

Note that we assume the queries for the two games are typed differently, so
that the composed challenger can always direct a query to the correct subgame.
Also note that the adversary is not required to initiate a symmetric phase after
a key exchange phase, and can interact with the subgames in any order.

Finish. At any point in the execution, the adversary can terminate, and its
eventual output be forwarded to the symmetric challenger.
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5. Multi-Stage Key Exchange Composition

The adversary A wins the composed game, denoted by G
Comp
Πi;Σ,A = 1, if, through

any symmetric phase interaction, the adversary won the symmetric security
subgame simulated by the challenger: GΣ,C = 1.

We say that Πi; Σ is Comp-secure if for all PPT adversaries A the advantage

AdvComp,D
Πi;Σ,A := Pr[GComp

Πi;Σ,A = 1]

is negligible in the security parameter.

Remark The composed game we describe considers a single instance the Σ
game, which allows us to model simultaneous interaction of an adversary with
multiple sessions of Σ.

5.4 Public Session Matching
Brzuska et al. study the conditions under which generic composition holds
[15]. They prove that, given a BR-secure authenticated key exchange, com-
position with an arbitrary symmetric key protocol is secure if and only if the
key exchange allows for a passive observer analyzing all the communication
among the parties to efficiently determine which sessions are partnered (that
is, which sessions share the same session identifiers). This property is referred
to as public session matching.

As discussed in the same piece of work [15], this property essentially corre-
sponds to the concept of “matching conversations” in the original model by
Bellare and Rogaway [9], and, in the more recent Mutli-Stage models, to Match
security itself.

We give here a formal definition of public session matching adapted to the
Multi-Stage setting, reported almost verbatim from [23]:4

Definition 5.6 (Multi-stage session matching algorithm) A Multi-Stage
session matching algorithm M for a key exchange protocol Π is an efficient
algorithm for which the following holds for any adversary A playing in the
Multi-Stage security game GMulti-Stage

Π,A of Π:

On input a stage i, the public parameters of the game, and an ordered list of
all queries made by A and responses from GMulti-Stage

Π,A at any point of the game
execution, M outputs a lists of pairs of all sessions in stage i containing exactly
those pairs sharing the same session identifier sidi (i.e., being partnered) at
this point of the game execution.

4The definition was amended to remove the references to contributive identifiers, needed
for non-mutual authentication, and more importantly, as we will argue in Section 5.4.1, the
now unnecessary requirement of revealing all stage keys for stages j ≤ i.
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If such an algorithm exists for a key exchange protocol Π, we say that Π allows
for an efficient Multi-Stage session matching.

Moreover, we similarly define a contributive matching algorithm, which allows
to efficiently determine which sessions have an honest contributive partner –
that is, which session share the same contributive identifiers, rather then the
same session identifiers. It should be evident that, since we always concretely
define the contributive identifiers as truncated versions of the session identifiers
(cf. Section 4.5 and 4.6), such an algorithm exists if a public session matching
exists.

Definition 5.7 (Multi-Stage contributive matching algorithm) A Multi-
Stage contributive matching algorithm Mc for a key exchange protocol Π is an
efficient algorithm for which the following holds for any adversary A playing
in the Multi-Stage security game GMulti-Stage

Π,A of Π:

On input a stage i, the public parameters of the game, and an ordered list of
all queries made by A and responses from GMulti-Stage

Π,A at any point of the game
execution, Mc outputs a lists of pairs of all sessions in stage i containing
exactly those pairs sharing the same contributive identifier cidi (i.e., being
contributive partners) at this point of the game execution.

If such an algorithm exists for a key exchange protocol Π, we say that Π allows
for an efficient Multi-Stage contributive matching.

5.4.1 Public Matching on Encrypted Messages

A problem arises, unfortunately, when trying to formulate Public Matching
algorithms on key exchange protocols that transmit messages after encrypting
them: the involved parties may form session and contributive identifiers using
the unencrypted messages, while an external observer, with access to only the
corresponding ciphertexts, may now be unable to efficiently deduce a session
matching.

Nonetheless, it stands clear that, given a secure composition Πi; Σ, a modified
composition Π′i; Σ where Π′ is a transformation of Π in which participants
encrypt all the messages, will remain secure. The aforementioned proof by
Brzuska guarantees that the composition is secure if and only if a public
matching exists: it follows that some efficient public matching algorithm must
exists, if only n a weaker form compared to the one we defined earlier.

In their cryptographic analysis of TLS 1.3, which does encrypt most of the
handshake messages, Dowling et al. [23] sidestep this problem by by having
the challenger leak the handshake keys to the match algorithm.
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5. Multi-Stage Key Exchange Composition

5.5 Security of a Generic MSKE Composition
Let us now analyse the security of the composition Πi; Σ of a secure Multi-
Stage key exchange protocol Π with an arbitrary symmetric protocol Σ. We
show that the composition is secure, provided that Π offers:

• Key Independence;

• Stage-j forward secrecy for j ≤ i;

• Stage-k passive security for k ≤ i;

• an efficient public session matching, and an efficient public contributive
matching.

Note that this compositional result is fully generic: no security property of Σ
is employed in the proof.

Theorem 5.1 (Generic Composition of Multi-Stage Protocols) Let
Π be a key-independent, stage-j forward secret and stage-k passively secure,
Mutli-Stage key exchange, with a stage-i key distribution D, an efficient public
session matching M and an efficient public contributive matching Mc. Let Σ
be a secure symmetric-key protocol w.r.t. some game GΣ with a key generation
algorithm that outputs keys with distribution D. Then the composition Πi; Σ
for stage i ≥ max{j, k} is secure w.r.t. the composed security game GΠi;Σ.
That is, for any probabilistic polynomial time adversary A against GΠi;Σ, there
exist efficient algorithms B1, B2, B3 such that

AdvGΠi;Σ
Πi;Σ,A ≤ AdvMatch

Π,B1
+AdvMulti-Stage

Π,B2
+AdvGΣ

Σ,B3

Proof We present a computational reduction of the composition game, in the
style of the compositional proof by Dowling et al. [23].

Game 0. We define this game, depicted in Figure 5.1, as the original com-
posed security game:

AdvGΠi;Σ
Πi;Σ,A = AdvG0

Πi;Σ,A′

Game 1. In this game, we ensure that the key exchange protocol Π in the
composed game always outputs the same key keyj for two partnered sessions
at stage j, by making the challenger abort whenever this is not the case.
Recall that this is needed because in the composed game, we assume that if
two sessions of Π share the same session identifier for stage i, they hold the
same compositional key.

This abort event is trivially bounded by the adversarial advantage against
Match security of Π. Formally, we can construct adversary B1 from A: B1
will simulate the match security game, relaying to the GMatch

Π challenger all
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Figure 5.1: The base composed security game for a composed protocol Πi; Σ.

of A queries relative to the GΠ subgame. B1 provides a sound simulation of
GMatch

Π , and wins whenever A makes two partnered sessions output different
keys for stage i.

G0 and G1 are identical unless the abort event is triggered. By applying the
difference lemma, and considering the aforementioned bound on the abort
event, we can therefore write:

AdvG0
Πi;Σ,A ≤ AdvG1

Πi;Σ,A′ +AdvMatch
Π,B1

Game 2. In this game, depicted in Figure 5.2, we replace all the derived
stage i keys for sessions of Π with keys drawn at random from the same key
distribution.

The advantage of an adversary capable of distinguishing between G1 and G2
can be bounded by the adversarial advantage against Multi-Stage security of
Π. We can in fact use any such distinguisher D to construct a Multi-Stage
adversary B2. B2 will simulate the composed game for D: it will forward all
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Figure 5.2: The composed security game G2 for a composed protocol Πi; Σ, where all the
(fresh) composition keys are replaced with values drawn u.a.r. from the key distribution.

of the GΠ subgame queries to its Multi-Stage challenger, while resolving the
GΣ queries itself.

Note the way queries are processed by B2 in this hybrid argument differs
from the normal processing of queries in the composite security game: here,
the Multi-Stage challenger is external to B2, while in the composed game
the key exchange game GΠ is being simulated by the composed challenger
itself. It follows that B2 will need to keep track of accepted composition keys
and corruption status of those keys by observing D queries. It will therefore
maintain:

• an index t, modelling the “time” in the execution of the composed pro-
tocol, incremented by one for each adversarial query.

• a list Listkeys, which maps key exchange session identifiers sid to sym-
metric key identifiers kid;

• a set of corrupted entities C, which will contain5 party identifiers U ∈ U
5Note that, similarly to the set of corrupted entities maintained by the MSKE challenger
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of corrupted parties (in pMSKE), or pre-shared secrets labels (U ,V , pssid)
for corrupted pre-shared secrets (in sMSKE), paired with the corre-
sponding corruption time t.

In order to provide a sound simulation of games G1 and G2, before being
forwarded to the Multi-Stage challenger every GΠ game query is processed by
B2 as follows:

• NewSession, Reveal, Corrupt, Inject queries: these queries are for-
warded to the Multi-Stage challenger, and the responses are forwarded
back to D, with the sole exception of Reveal queries for stage-i keys.

If a Reveal query for stage-i keys is received, the query is not forwarded
to the Multi-Stage challenger, and ⊥ is returned, thus conforming to the
standard composition behaviour.

If a Corrupt query is received, the corrupted party identifier (in pMSKE)
or the label (U ,V , pssid) (in sMSKE) is added to the list of corrupted
entities C, together with the current value of t (indicating the corruption
time). Similarly, if a Inject query is received, the pair ((U ,V , pssid), t)
is added in C.

• Send query: this query is similarly forwarded to the Multi-Stage chal-
lenger, and the responses are forwarded back to D.

If the session label in the Multi-Stage game changes to an accepting
state acceptedi (this change can be detected by the challenger, since the
Send query will return early if a stage accepts), B2 invokes the public
session matching algorithm M on the stage i, the public parameters and
all queries of the Multi-Stage game (which B2 can simply record while
relaying them to its challenger). M outputs a list of partnered sessions,
from which B recovers the label label′ of the session partnered with label.

If label′ exists then C searches the map Listkeys for the symmetric game
key identifier kid corresponding to label.sid (note that partnered sessions
share the same session identifier and, by Game 1, hold the same compo-
sition key), and submits a PartnerKey(V ,U , kid) to the GΣ subgame.

Otherwise, B2 sets the composition key by issuing a Test query: k ←
Test(label, i). C submits a NewKey(U ,V , k) to the GΣ subgame, and
saves the returned kid in the map Listkeys under the session identifier
label.sid. If the composition key is corrupted, C additionally submits a
Corrupt(kid) query to GΣ.

Furthermore, if the session label either has one endpoint in the C list
(pMSKE) or uses a pre-shared key whose label (U ,V , pssid) is in C

itself, this C will be differently typed depending on Π being pMSKE or sMSKE, in order
to account for the different definition of what the secrets are is in the two variants of the
model.
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(sMSKE), the corruption time of which is t′ ≤ t, then C invokes the
public contributive matching algorithm Mc on the stage i (in a similar
fashion to how the session matching algorithm M is invoked), and checks
whether the session label has an honest contributive partner. If label was
corrupted and has no honest contributive partner, the composition key
is corrupted: C will also submit a Corrupt(kid) query to the GΣ subgame
in this case.

• Test query: this query is not allowed, and will not be forwarded to the
Multi-Stage challenger, thus conforming to the standard composition
behaviour.

We can see that the additional queries sent by B2 do not cause the lost flag
to be set in the Multi-Stage game: session keys are never both tested and
revealed, and checking for partnered sessions in the handling of Send ensures
that only the session of the first accepting party is ever subject of a Test query
from B2.

Furthermore, the stage key used for composition is the result of a Test query
to B2’s Multi-Stage challenger: B2 will provide a sound simulation of either
G2 (if the result of the Test query for stage i was a key drawn at random from
D) or G1 (if the Test query returned the real key instead) to D.

This hybrid reduction allows us to prove the following bound:

AdvG1
Πi;Σ,A ≤ AdvG2

Πi;Σ,A′ +AdvMulti-Stage
Π,B2

Game 3. In this game, depicted in Figure 5.3, we bound the advantage of any
adversary A in the composed security game by the advantage of an adversary
B3 in the security game GΣ for the symmetric protocol.

In Game 2, the stage-i key used for composition was substituted with a ran-
dom key drawn from the same distribution in all the non-corrupted session
of the key exchange protocol Π. This allows us to factor out the game GΠ
for all honest sessions of Π: Σ will be always instantiated with a key drawn
at random in those cases, independently of the actual key exchange6. For
corrupted sessions of Π, the stage-i key known to the adversary will be reg-
istered in the symmetric protocol, but the challenger will appropriately mark
this compositional key as corrupted.

More formally, given a composed security adversary A, we can construct an
adversary B3 against the GΣ security game of the symmetric protocol. This
B3 will simulate the composed security game for A: it will answer the key
exchange queries itself, by simulating the key exchange subgame, and it will

6Note that, while we use a black-box challenger for GΠ in the hybrid proof for Game 2,
such a black-box challenger never appears in the game itself (see Figure 5.2).
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Figure 5.3: Game G3, showing that security of the composed game G2 can be reduced to the
security of Σ.

relay all the queries relative to the symmetric game unchanged to its own
symmetric game challenger.

Remember that, when GΣ is simulated internally by the composed challenger,
we extend it with an additional query NewKey(U ,V , k), and interact with this
subgame as a key-benign adversary S = (S 1,S 2), where S 1 is controlled by the
composed challenger itself, while the S 2 interface is available for the composed
adversary. In this game, B3 will interact with an external Σ challenger: the
symmetric game B3 will be playing is therefore the original, non-extended
version of GΣ.

More precisely, when simulating the composed challenger, B3 will handle the
queries for the split adversary interface of GΣ as follows:

• NewKey(U ,V , k): This query is issued by the composed challenger C
when a session of Π accepts the composition key:

– if the composition key was not corrupted, this query is dropped
and NewKey(U ,V ) is issued; the resulting kid is returned to the
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5. Multi-Stage Key Exchange Composition

simulated C .

– if the composition key was corrupted, this query and the following
Corrupt(kid) query are dropped; a InjectKey(U ,V , k) query is
instead issued; the resulting kid is returned to the simulated C as
the result of NewKey, and k is returned as the result of the Corrupt
query.

• all the other queries: B3 will forward these unchanged to the Σ chal-
lenger, and pass the return back to A.

This simulation is sound: it is clear that if A won in the simulated GΣ, it
will also win in the external Σ game. The B3 adversary resolves the extended
NewKey(U ,V , k) query in the following ways:

• when the key exchange session deriving the key was honest (and thus
the adversary does not know the composition key): a NewKey(U ,V )
query. This query will sample a symmetric key uniformly at random
from D, and in Game 2 we proved that any efficient adversary cannot
distinguish a real Π key from one drawn uniformly at random from the
same distribution. Furthermore, we assumed that the key distribution
of Π stage-i keys and Σ symmetric keys is the same.

• when the adversary knows the composition key: an InjectKey(U ,V , k)
query. This query is exactly used to model security of Σ sessions in
which the symmetric key is known to the adversary.

It follows that:
AdvG2

Πi;Σ,A′ ≤ AdvGΣ
B3

We can now combine the bounds from Game 1 through Game 3 to obtain the
bound stated in Theorem 5.1. �

Remark The advantage bound we just proved differs from the one obtained
by Brzuska et al. in their studies of generic composability of Bellare-Rogaway
key exchange [15, 14], and, consequently, from both the results of analysis of
composability of Multi-Stage protocols both by Fischlin and Günter and [31],
and the reduction of TLS 1.3 composition by Dowling et al. [25], which are
based of the generic composability result by Brzuska.

This is mainly due to two factors: differences in the key exchange model, and
a different approach to symmetric protocol games. The Multi-Stage Key Ex-
change model presented in this thesis allows the adversary to simultaneously
test multiple sessions of the key exchange: Brzuska’s study of generic compos-
ability considers, instead, Bellare-Rogaway secure key exchange protocols in
which a single session can be tested [15]. Brzuska presents an hybrid proof to
iteratively substitute all of the composition keys with keys sampled uniformly
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at random from the key distribution, leading to an explicit factor of ns (the
maximum number of key exchange session) on the BR advantage – our MSKE
already includes this factor (see Game 1 in the Multi-Stage security proof, Sec-
tion 4.5).

Furthermore, we consider a single symmetric protocol subgame in the composed
protocol, which allows us to model adversaries interacting simultaneously with
multiple sessions of the symmetric protocol: this will prove particularly useful
when we will instantiate the composition on Multi-Stage symmetric protocols
in Chapter 6. The “Less is more“ paper by Brzuska et al. models instead a
separate instance of the symmetric game for each composition key established
in the key exchange: this allows instead to more easily capture security of
composition with symmetric primitives, or other single session reducible sym-
metric protocols (that is, protocols the multi-session security of which can be
reduced to the security of the corresponding single session game).
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Chapter 6

Post-Compromise Security of a TLS
Resumption Chain
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This chapter concludes the long preparatory work clearing the road to an
analysis of Post-Compromise Security in TLS.

We now have a framework, MSKE, that allows us to model TLS handshakes
in isolation, and a composition theorem that allows us to compose them with
arbitrary symmetric protocols. We have also defined the concept of passive
security, that is, the security of a protocol when interacting with adversary
that has learnt the parties’ secrets but is forced to stay passive, and proved
the passive security of TLS initial (EC)DHE and TLS PSK-(EC)DHE session
resumption handshakes in Chapter 4.

In the setting of Key Exchange protocols, we may informally define Post-
Compromise Security as the “healing” property of a protocol, over a number of
sessions between the same two parties: after one of the parties is compromised,
and its secrets are known to the adversary, future sessions of the protocol can
still provide security guarantees as long as the parties are able to carry out
an honest execution of the protocol, the secure session, in which the keys are
refreshed.

Let us consider the security of a TLS handshake session against an adversary
that has learnt the long-term secrets of the parties involved in that session. It
is clear that a single TLS handshake does not provide strong Post-Compromise
Security guarantees: even though some stages of the protocol can be proven,
effectively, passively secure, one handshake execution alone does not provide
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any “healing” to future sessions: following a compromise, TLS does not recover
security against active attacks after a secure session in which the adversary
is forced to be passive. This is the reason why we chose instead to model
Post-Compromise Security of a resumption chain: a sequence of TLS sessions
established through the TLS session resumption mechanism.

U V
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Figure 6.1: A TLS 1.3 resumption chain: each box depicts a session (cf. Figure 2.4) of the TLS
handshake protocol. Note the presence of a Diffie-Hellman key exchange in the key derivation,
granting the resumption PSK rpsk passive security and forward secrecy.

In particular, consider the resumption chain depicted in Figure 6: after an
Initial handshake, the peers establish a resumption PSK and use that PSK
for the composition with a new Resumption PSK (EC)DHE handshake. An
adversary now breaks the security of this latter session (in red): they learn
the session key outputs, and, in particular, the next Resumption PSK.1 If the
adversary is then passive while the peers execute a new Resumption handshake
session (in blue), they will establish a fresh Resumption PSK, and, from that
point on, recover security: any successive composed resumption handshake
will be again secure against active attackers.

The Post-Compromise Security argument will develop as follows. First, we will
introduce chained compositions of Multi-Stage key exchange protocols in 6.1,
allowing us to extend our compositional results to sequences of compositions.
In Section 6.2, we will present our notion of Post-Compromise Security for
chained compositions, based on the previous works in the literature, and we
will show that a composition of passively secure Multi-Stage protocols achieves
PCS.

Finally, in Section 6.3, we will model chains TLS initial and resumption hand-
shakes as chained compositions, and formally prove that we can instantiate

1Note that such a ‘break’ may occur, in our model, by either the adversary trivially
violating one of our security assumptions (e.g. behaving actively after having learnt long
term secrets), or by a Corrupt query to the next session in the chain, which would leak the
resumption PSK to the adversary.
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our generic composition using the resumption handshake as a symmetric pro-
tocol. The TLS handshakes we consider are passively secure: this allows their
chained composition to achieve PCS. Section 6.4 contains some additional re-
sults deriving from our Post-Compromise Security model, while Section 6.5
describes what is left uncovered by our study.

6.1 Multi-Stage Key Exchange Chained Composition

Recall that, in Chapter 5, we describe the composition of a Multi-Stage key
exchange with an arbitrary symmetric protocol: we define a composed proto-
col, in which the composition keys established by the parties during the key
exchange are registered as keys in in the symmetric protocol. In the composed
security game, the adversary can interact with both the key exchange game
and the symmetric game, but is restricted from revealing and testing keys
in the key exchange, and from registering in the symmetric game: only the
composed challenger registers new keys.

Let us consider the composed protocol Π0
c0 ; Π1

c1 . We require Π0 to be a Multi-
Stage protocol, but if the symmetric game Π1 is a Multi-Stage key exchange,
too, the composition can be chained with a third symmetric protocol Π2:
Π1 will act as a key exchange for Π2, and composition keys established in
Π1 will similarly be registered in Π2. Iteratively chaining together a series of
Multi-Stage key exchange protocols yields what we dub a chained composition.

Π Σ

Π1 Π2 Π3 Π4 . . . Πn−2 Πn−1

Figure 6.2: From Composed Protocols (top) to Chained Compositions (bottom).

Definition 6.1 (MSKE Chained Composition) A chained composition
of n (possibly different) Multi-Stage key exchange protocols Π0 . . .Πn is the
protocol resulting by iteratively composing each protocol with the next, where
each composition is implemented as described in Section 5.3.

We denote this composition by Π0
c0 ; Π1

c1 ; . . . ; Πn−1
cn−1, where ci represents the

stage deriving composition keys in the i-th protocol.

We assume that Π0 satisfies the compositional constraints we impose on Multi-
Stage key exchange protocols, and that Π1 . . .Πn all satisfy both the composi-
tional MSKE constraints and the symmetric game constraints. In particular:
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• The first protocol is either a public-key MSKE (pMSKE), or a symmetric
MSKE (sMSKE).

• All the other protocols in the chain are symmetric MSKE (sMSKE).

Recall that the security of each protocol in the chain is defined in the MSKE
model (cf. Chapter 4): a challenger C simulates many sessions of the protocol
in the presence of a probabilistic polynomial-time adversary A, with access to
the Multi-Stage queries (cf. Section 4.3). For each protocol we have defined a
Multi-Stage and a Match security game. Pair of parties will establish sessions
of Πi, utilising either a shared symmetric secret (sMSKE), or an asymmetric
public keypair (pMSKE).

Πi Πi+1 Πi+2 Πi+3

l0,i l0,i+1 l0,i+2 l0,i+3

l1,i l1,i+1

l2,i l2,i+1 l2,i+2

Figure 6.3: Sessions of the various protocols in the composed chain: li,j represents the session
label; a session li,j of the j-th protocol Πj is created using the composition keys derived in
session li,j−1 of the previous protocol in the chain.

The security of the entire chain is defined as the adversarial advantage in
breaking Multi-Stage-security of the final protocol in the chain. We refer to
the chain security game as GChain.

Definition 6.2 (Chain Security of a chained composition of MSKE
protocols) Let Π0

c0 ; Π1
c1 ; . . . ; Πn−1

cn−1 be a chained composition of n Multi-
Stage key exchange protocols Π0 . . .Πn, each respecting the appropriate com-
position constraints as defined in Section 5.3. Let A be a PPT adversary
interacting with a composed challenger simulating Π0

c0 ; Π1
c1 ; . . . ; Πn−1

cn−1, with
access, for each protocol in the chain, to the queries described in 5.3. We
define the composed security game GChain

Π0
c0 ;...;Πn−1

cn−1 ,A as follows:

Setup. The challenger runs the setup of all the protocols: in particular, in
the first pMSKE protocol, the challenger generates long-term asymmetric key
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pairs for each participant U ∈ U . In the sMSKE protocols, symmetric keys are
not generated in the setup phase: they will be registered by the adversary (in
the first protocol) or by the composed challenger (in all the other protocols)
through key registration queries.

Query. The composed adversary interacts with the composed challenger. It
is possible to make a high level distinction between two phases:

• Composition phase: A interacts with the subgames for the protocols
Π0 . . .Πn−2, and has access to the queries NewSession, Send, Reveal,
Corrupt, as defined in Section 5.3. For each session of users U (with
intended communication partner V ) in Πi, upon acceptance of stage ci,
the composed challenger plays as the first split subadversary in the sub-
game for protocol Πi+1, and invokes the NewKey(U ,V , keyi) of the latter,
thus registering the composition key as a symmetric key.

For the first protocol Π0 only: in the pMSKE variant, A receives the
public part of the key pair for each user; in the sMSKE variant, A has
further access to the queries NewSecret(U ,V ) and Inject. Access to
key registration queries is otherwise restricted for all in protocols Πj

with j ∈ [1,n− 1]: new symmetric keys can only be registered by the
composed challenger.

• Final phase: A plays in the security game for the final protocol Πn−1,
which we assumed to be a valid symmetric protocol and a symmetric
MSKE.

The adversary is, as noted before, restricted from registering new keys in
the final protocol game directly, but can initiate a new session of Πn−1

between U and V under any composition key output by Πn−2, and play
the security game of the final protocol without further restrictions2.

As in the composed game, we assume the queries for each protocol are typed
differently, so that the composed challenger can always direct a query to the
correct i-th subgame.

Finish. At any point in the execution, the adversary can terminate, and its
eventual output be forwarded to the challenger for the final protocol Πn−1.

The adversary A wins the chain game, denoted by GChain
Π0

c0 ;...;Πn−1
cn−1 ,A = 1, if

the adversary won the final Multi-Stage game simulated by the challenger:
GMulti-Stage

Πn−1,C = 1.

2In particular, since this is the last symmetric MSKE in the composition, the adversary
can issue Test queries in the Multi-Stage game.
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We say that Π0
c0 ; Π1

c1 ; . . . ; Πn−1
cn−1 is Chain-secure if for all PPT adversaries A

the advantage

AdvChain
Π0

c0 ;...;Πn−1
cn−1 ,A := Pr[GChain

Π0
c0 ;...;Πn−1

cn−1 ,A = 1]

is negligible.

By iteratively applying the composition theorem (cf. Chapter 5), we can
bound this advantage by the sum of Multi-Stage- and Match-security of all of
the protocols in the chain.

Lemma 6.1 (Security of a Chained Composition of secure MSKE
protocols) Let Π0

c0 ; Π1
c1 ; . . . ; Πn−1

cn−1 be a chained composition of n Multi-
Stage key exchange protocols Π0 . . . ; Πn, each respecting the appropriate com-
position constraints. If protocol Πi is Match-secure with advantage AdvMatch

Πi

and Multi-Stage-secure with advantage AdvMulti-Stage
Πi , for any probabilistic

polynomial time adversary A against GChain security of the chained compo-
sition, there exist efficient algorithms B0,B ′0, . . . ,Bn−1,B ′n−1 such that:

AdvGChain
Π0

c0 ;...;Πn−1
cn−1 ,A ≤

n−1∑
i=0

(
AdvMatch

Πi,Bi
+AdvMulti-Stage

Πi,B ′i

)
Proof (sketch) Consider the first composition in the chain, Π0

c0 ; Π1
c1 .

• The security of this composition is bound (by the composition security
theorem, refer to Section 5.5) by AdvMatch

Π0,B0
+AdvMulti-Stage

Π0,B ′0
+AdvG1

Π
Π1,B1

.
We know that Π1 is a Multi-Stage protocol itself, therefore we can write
AdvG1

Π
Π1,B1

= AdvMatch
Π1,B ′1

+AdvMulti-Stage
Π1,B ′′1

.

• We assume that this composition can be itself considered a Multi-Stage
key exchange, with the same security properties as the symmetric game3:
in fact

– the composed game exposes the full symmetric subgame interface
(which, in this case, will be a sMSKE), with the exception of the
key registration queries;

– key registration queries can be trivially simulated through interac-
tion with the key exchange protocol subgame;

– the composition theorem proves that, if the key exchange protocol
is secure, the security of the composition can be reduced to the
security of the symmetric subgame.

3Note that a fully formal proof for the correctness of this assumption would be needed,
but it is outside of the scope of the current work.
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We can then iteratively apply the same arguments to all the handshakes in
the chain. �

In a chained composition of Multi-Stage protocols, any session of the i-th
protocol in the chain is obtained from a unique chain of sessions in the j-th
protocols, with j ∈ [0, i− 1]:

Lemma 6.2 (Unique session chain) For i > 0, any session labeli of the
parties U and V in the i-th protocol Πi originates from a unique chain of
sessions label0 . . . labeli−1 of the same parties U and V in the previous protocols
in the chain.

Proof (sketch) Consider an arbitrary composition in the chain, Π0
c0 ; Π1

c1 ;
. . . ; Πn−1

cn−1 . We refer to Πi−1 as the key exchange, and to Πi as the symmetric
protocol. The adversary can create sessions in the symmetric protocol game
using the NewSession query, but is restricted form issuing key registration
queries. The only way for an adversary to register a new key in the symmetric
game is having a session of the key exchange accept for stage ci−1: this triggers
the composed game to issue a key registration query to the symmetric game.

We can now reason by induction:

• For an adversary to create a new session labeli using a certain symmetric
key identifier in GΠi , a session labeli−1 must have accepted in stage
ci−1 of Πi−1, causing the composed game to register the corresponding
composition key. We assume symmetric key identifiers to be unique for
each composition game, and session labels to be unique for each protocol
game.

• For an adversary to create a new session label1 using a certain symmetric
key identifier in GΠ1 , a session label0 must have accepted in stage c0 of
Π0, causing the composed game to register the corresponding key. �

Notation. Recall that we model adversarial access to Multi-Stage protocols
long term secrets through the Corrupt query: this query reveals private keys
of the parties in the public-key MSKE model, and pre-shared symmetric se-
crets in the symmetric MSKE model. Throughout this chapter, we adopt the
shorthand session secrets to refer to either type of long-term secrets, relative
to a certain session of a MSKE. We will also say that that certain session is
corrupted if the relative session secrets were corrupted by the adversary. Sim-
ilarly, we say that the adversary issues a Corrupt query for a certain session
if the adversary has issued a Corrupt(U ,V , pssid) query for the pre-shared
secret used for a certain session in sMSKE, or a Corrupt(U) query for the
long-term secret of either communication partner in the session.
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6.2 Post-Compromise Security
Cohn-Gordon, Cremers and Garratt introduce the term Post-Compromise Se-
curity (PCS) in their homonymous seminal work [18], describing it as a prop-
erty of protocols which provide some security guarantees on communication
with a party whose secrets have already been compromised. They consider two
parties running multiple sessions of a protocol Π, and two different settings:

• a weak model of compromise, where the adversary, without learning the
key itself, is given limited oracle access to the cryptographic primitives
requiring a secret key input;

• the full compromise of the parties, where the adversary learns the keys.

In the weak model, PCS can be easily achieved by a protocol (for instance,
by a challenge-response signed DH protocol), as long as the oracle access is
revoked after a certain execution of the protocol (the secure session). The
full compromise model is stronger: the adversary does not lose access to the
keys, and, if the protocol is stateless, every session will accept with non-
negligible probability, as the adversary is indistinguishable from the honest
session holding the same secrets. The authors argue that PCS is unachievable
for a stateless protocol, since the adversary can perfectly impersonate the
parties whose secrets they have learnt. They show that a stateful protocol can
achieve PCS, if the parties can complete an honest execution of the protocol
(again, the secure session). An example of this is a key refreshing protocol, in
which each successive session takes as an additional secret input (referred to
as a token) established in the previous protocol execution.

We closely follow this model, but we adapt it to study chained compositions
of Multi-Stage key exchange protocols, and we define PCS exclusively in the
full compromise setting.

6.2.1 PCS for MSKE Chained Composition

In a chained composition, the composition keys established in sessions of the
i-th protocol are used as pre-shared secrets in the (i+ 1)-th protocol. This
means that, in such a chain, composition keys will can be seen as the same
time as tokens and long-term secrets: in our PCS model, we will therefore
allow limited corruption of these secrets.

In the style of the Post-Compromise Security paper [18] we first define the
conditions under which a session of a chain is said to be refreshed, that is, the
conditions under which the unique chain leading to a certain session recovers
security after a compromise.

Definition 6.3 (Refreshed chain session) Given a chained composition
Π0
c0 ; Π1

c1 ; . . . ; Πn−1
cn−1 of n Multi-Stage key exchange protocols, we say that a
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session labeled labeli of the parties U and V is refreshed when there exists an
“intermediate” session labelj (the secure session) such that:

1. labelj has an honest contributive partner of label′j, that is, label′j .cid =
labelj .cid and label′j 6= labelj.

2. The secure session labeli originates from a (unique) composition chain
(see Lemma 6.2) of sessions label0 . . . labeli−1 of the same parties U and
V , and j ∈ [0, i− 1].

3. The adversary has learnt the session secrets (via a Corrupt queries) of
any of the sessions labelk in the chain preceding labelj in the composition,
or of labelj itself (k ∈ [0, j]).

4. The adversary has not issued a Corrupt query to learn the secrets of
any session labell succeeding labelj in the composition (l ∈ [j + 1, i]).

We can now define Post-Compromise Security in the chained composition of
Multi-Stage protocols as the security of a refreshed session in the final protocol
against an active adversary.

Definition 6.4 (Post-Compromise Security in a chained composi-
tion of MSKE protocols) We say that the chained composition Π0

c0 ; Π1
c1 ;

. . . ; Πn−1
cn−1 of n Multi-Stage key exchange protocols achieves Post-Compromise

Security if the composition in secure in the Post-Compromise chain security
game PCSChain.

The PCSChain game proceeds exactly as the normal Chain game (as defined in
Definition 6.2), but, for every session of the final protocol Πn−1, the following
condition holds:

• if the session is a refreshed session labeln−1,i, the adversary can be active
in all stages of labeln−1,i without trivially losing the Multi-Stage game
for the final protocol.

That is, the PCS adversary plays in an amended Multi-Stage′ game for the
final protocol in the chain, in which the challenger will not set the lost flag if
the adversary sends a Test queries for a session stage and the session has no
honest contributive partner for that stage, as long as the session is refreshed.

As in the Chain game, the adversary A wins the chain game, denoted by
GPCSChain

Π0
c0 ;...;Πn−1

cn−1 ,A = 1, if the adversary won the final Multi-Stage game simu-

lated by the challenger: GMulti-Stage′
Πn−1,C = 1.

We say that Π0
c0 ; Π1

c1 ; . . . ; Πn−1
cn−1 is PCSChain-secure if for all PPT adversaries

A the advantage

AdvPCSChain
Π0

c0 ;...;Πn−1
cn−1 ,A := Pr[GPCSChain

Π0
c0 ;...;Πn−1

cn−1 ,A = 1]
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is negligible.

Remark In the “Post-Compromise Security” paper, the authors add formal
PCS guarantees to existing protocols in the eCK model by modifying the fresh-
ness conditions of the Test queries.

The seemingly complex requirements of our Post-Compromise Security defini-
tion accomplishes the same result in our chain security model, accounting for
the additional complexity of the protocol composition and of the (possible) pas-
sive security of the protocols in a refreshed session (see, respectively, Chapter
5 and Chapter 4).

In particular, the freshness condition we are amending is the check for an
honest contributive partner (an origin-session in eCK nomenclature) in the
Multi-Stage security game of a refreshed session. This condition usually pre-
vents an adversary who has learnt the session secrets (via Corrupt queries)
from trivially winning the Multi-Stage game by using the session secrets to
impersonate the session’s partner.

6.2.2 Passive Security and Post-Compromise Security

Recall that, in Chapter 4, we model passive security for Multi-Stage proto-
cols: a session of a passively secure protocol maintains security if the ad-
versary learns the parties’ session secrets before the protocol execution, but
remains passive during that session. The adversary has access to session se-
crets (private keys in pMSKE, shared symmetric secrets in sMSKE) through
the Corrupt query.

In this section we show that, in a chained composition of Multi-Stage proto-
cols, passive security of the protocols in the chain grants Post-Compromise
security to the composition.

Lemma 6.3 (PCSChain security of a chained composition of passively-
secure MSKE protocols) Let Π0

c0 ; Π1
c1 ; . . . ; Πn−1

cn−1 be a chained composi-
tion of n passively secure Multi-Stage key exchange protocols4.

If for every i ∈ [0,n− 1], protocol Πi is Match-secure with adversarial advan-
tage AdvMatch

Πi and Multi-Stage-secure with advantage AdvMulti-Stage
Πi , then for

any probabilistic polynomial time adversary A against PCSChain security of the
chained composition, there exist efficient algorithms B0,B ′0, . . . ,Bn−1,B ′n−1
such that:

AdvGPCSChain
Π0

c0 ;...;Πn−1
cn−1

≤
n−1∑
i=0

(
AdvMatch

Πi,Bi
+AdvMulti-Stage

Πi,B ′i

)
4Passive security for the Mutli-Stage model is defined in Section 4.1.
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Πn−4 Πn−3 Πn−2 Πn−1

l0,n−4 l0,n−3 l0,n−2 l0,n−1

l1,n−4 l1,n−3 l1,n−2 l1,n−1

l2,n−4 l2,n−3 l2,n−2 l2,n−1

Figure 6.4: Post Compromise Chain Security: sessions of the final protocol maintain security,
after a session for which the adversary can easily recompute the output session keys (e.g. by
corrupting them, in red), if they are refreshed (in green). A session is refreshed if the adversary
is passive for a previous session in the session chain (secure session, in blue), and makes does
not corrupt session after the secure session. li,j indicates an arbitrary session label; sessions li,j

for which j < n− 1 are in the unique chain of sessions leading to li,n−1.

Proof (sketch) We prove the above bound via a series of game hops. We first
show that, by the passive security of the TLS handshakes and by the definition
of refreshed sessions, the adversary can never trivially learn the session secret
for a refreshed session. We then argue that, with this restrictions in place,
the Chain game and the PCSChain games are equivalent, therefore bounding
the adversarial PCSChain advantage in the chained composition by the Chain
advantage.

Game 0. This is the original PCSChain game.

AdvG0
Π0

c0 ;...;Πn−1
cn−1 ,A = AdvGPCSChain

Π0
c0 ;...;Πn−1

cn−1 ,A′

Game 1. In this game, for any given refreshed session of Πn−1, we forbid
the adversary from trivially breaking the security of the key exchanges of

• the secure session and

• all the session following that secure session

in the unique chain leading to the refreshed session. If the adversary has
corrupted one of those sessions and is active during that protocol execution,
an abort event Z will be triggered.

Recall that, in a composed game, the adversary does not play in the secu-
rity game for the (non-final) key exchanges: in particular, corrupting session
secrets and being active in that session of the key exchange (a trivial break
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of key exchange security) will not cause the adversary to lose. The composi-
tion key will be marked as corrupted, but it will nevertheless be registered in
the next protocol in the composition. Game 1 will therefore guarantee that
no corrupted composition keys are possible in a chain leading to a refreshed
session after the secure session execution is completed.

By the difference lemma we can write:

AdvG0
Π0

c0 ;...;Πn−1
cn−1 ,A ≤ AdvG1

Π0
c0 ;...;Πn−1

cn−1 ,A′ + Pr[Z]

We can now turn to bounding the probability of the abort event Z. For any
refreshed session labeln−1, consider the unique session chain label0 . . . labeln−1

leading to it . We assume w.l.o.g. that the secure session in the chain is labeled
labelj , where j ∈ [0,n− 2]: by Definition 6.3 such a secure session must exist
for every refreshed session. We similarly assume that the adversary corrupts
the secure session: any adversary corrupting sessions that precede the secure
session in the chain is strictly weaker than one that corrupts the secure session
itself. Consider the following observations:

• The adversary cannot be active in the secure session labelj , by the defini-
tion of a refreshed session (cf. Definition 6.3), and Πj is passively secure
(by assumption). A trivial break in the security of labelj is therefore not
possible.

• The adversary can be active in the sessions following the secure session,
but cannot trivially learn their secrets:

– by Corrupt queries: those are restricted by the definition of a re-
freshed session;

– by trivially breaking the security of the composition key established
in the previous session in the chain: by induction, this would even-
tually require for a trivial break of the secure session, which we
already asserted to be impossible.

This implies that the abort event Z will never be triggered, and therefore:

AdvG0
Π0

c0 ;...;Πn−1
cn−1 ,A ≤ AdvG1

Π0
c0 ;...;Πn−1

cn−1 ,A′

Game 2. In this game, we bound the adversarial advantage in G1 by the
Chain security of the composed protocol. We forward all the PCSChain queries
received in G1 to a Chain challenger, and argue that the any G1 adversary A
is also a valid Chain adversary.

The Chain and PCSChain games only differ in their handling of refreshed ses-
sions of the final protocol Πn−1. In particular, in PCSChain, we define an
amended Multi-Stage′ game for the final protocol, in which the challenger
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does not set the lost flag if the adversary tests a stage in a refreshed session
and the refreshed session has no honest contributive partner for that stage.

Recall that, in the unamended Multi-Stage game, the lost flag is only set if the
adversary tests a stage of a corrupted session which has no honest contributive
partner for that stage. In the composition, a session is only corrupted in the
following cases:

1. The adversary issues a Corrupt query for target session in Πi security
game, or

2. The composed challenger issues a Corrupt query, independently of the
adversary, for the target session in the Πi−1

ci−1 ; Πi composed protocol.
Recall that, as defined in Section 5.3, this happens when the composition
key is corrupted, that is, the output of the key exchange stage use for
composition is known to the adversary.

For any refreshed session, we note that:

• The adversary is restricted from issuing a Corrupt query to the refreshed
session session, by the definition of a refreshed session: case 1 never
occurs.

• By Game 1, the composition key is never corrupted for a refreshed ses-
sion.

This proves that, after the restrictions in Game 1, A is a valid Chain adversary.
It follows that it is possible to reduce Game 1 to the GChain security game,
and therefore:

AdvG1
Π0

c0 ;...;Πn−1
cn−1 ,A ≤ AdvGChain

Π0
c0 ;...;Πn−1

cn−1 ,A′ ≤
n−1∑
i=0

(
AdvMatch

Πi,Bi
+AdvMulti-Stage

Πi,B ′i

)
�

Remark In the “Post-Compromise Security” paper, a property equivalent to
our notion of passive security can be found in the predicate FKR

5 for their
strong model Ω. Note that the authors do not formally define passive security
as a security property of a key exchange, but they do rely on it implicitly.
We believe one of the major contributions of this thesis is the formalization
of passive security, and the explicit analysis of its role in the construction of
Post-Compromise secure protocols.

6.3 Post-Compromise Security in TLS
Studying the Post-Compromise Security of TLS handshakes is non-trivial.
On one hand, an isolated TLS handshake, as modelled in the Multi-Stage Key
Exchange framework, is clearly a stateless protocol: each session is shown to
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be independent from other sessions of the protocol. On the other hand, TLS
allows a limited form of statefulness via the resumption mechanism: TLS
handshakes allow endpoints to establish a fresh, forward secure and (most
importantly) passively secure secret, the Resumption PSK, for use in future
sessions of the protocol.

Our MSKE model of TLS does cover establishment of Resumption PSKs, but
treats them exclusively as an external stage keys. We do not allow for these
PSKs to be used as a secret for successive sessions of the protocol in the same
Multi-Stage game. This was a limitation we were aware of when designing our
model: treating the rpsk as an internal secret and allowing for composition
would have allowed us to capture PCS of TLS in a single MSKE model, at
the cost of introducing complex dependencies between different sessions, and
forsaking the possibility to obtain a generic and reusable Post-Compromise
Security model.

In this section, we therefore model TLS session resumption as a chained com-
position: in such a composition, all the protocols are either Initial Handshakes
or Resumption handshakes, both of which were proven secure in isolation in
out MSKE model in Chapter 4. We first lay out the details of our instantiation
of the chained composition formalism with TLS session resumption. We prove
the soundness of the instantiation, and we show that our chained composition
achieves Post-Compromise Security as defined in Section 6.2.

6.3.1 TLS Resumption as a Chained Composition

TLS 1.3 handshakes allows two endpoints to establish a resumption key, which
can then be used as a pre-shared secret in another session resumption hand-
shake handshake. By repeating this process several times, the endpoints will
spawn a chain of TLS handshakes, like the one depicted in Figure 6.

Each handshake in such a chain will be a (Pre-Shared Key DHE) resump-
tion handshake, with the exception of the first one, which can be either a
PSK handshake or a (Public Key) initial handshake. Each resumption can be
modeled as a composition of an instance of the TLS handshake with the next
instance of the handshake. Note that we do not allow PSK-only handshakes
in the chain, since we did not provide a Multi-Stage model for this handshake
mode in Chapter 4.

We model these chains of TLS handshakes as chained compositions of Multi-
Stage protocols.

Lemma 6.4 (Chained composition of TLS Handshakes) A chain TLS
handshakes can be modeled as a chained composition Π3; DHE-Res-Hk3; ...; DHE-Res-Hk3,
where Π is either Init-Hk or, alternatively, DHE-Res-Hk. Each composi-
tion game in the chain will see two different instances of MSKE games for
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the TLS handshake, one in the role of the key exchange and the following as
the symmetric game: each handshake session accepting in stage 3 results in
the establishment between two endpoints of a resumption pre-shared key rpsk;
this key is used for composition in the next instance of the MSKE game, by
registering it as a pre-shared secret for the same two endpoints (and in the
same roles).

In particular, for each handshake in the chain:

• The first handshake in the chain is either:

– a TLS 1.3 handshake in the full (EC)DHE mode, described in Chap-
ter 4 as an Initial Handshake, and formally referred to as Init-Hk;

– a TLS 1.3 handshake in the PSK (EC)DHE mode, described in
Chapter 4 as a DHE Resumption Handshake, and formally referred
to as DHE-Res-Hk.

• All the successive handshakes in the chain are TLS 1.3 handshake in the
PSK (EC)DHE mode (DHE-Res-Hk).

Proof In order to prove that our model is sound, we show that we can in-
stantiate the generic composition theorem using the TLS handshake as a key-
exchange protocol and a symmetric protocol. We introduce the following two
lemmas:

Lemma 6.5 (Init-Hk and DHE-Res-Hk are valid instances of Π)
Both the Initial and the Resumption handshakes satisfy the constraints we
impose on the key exchange protocol Π.

Lemma 6.6 (DHE-Res-Hk is a valid instance of Σ) The Resumption
handshake conforms to the definition of a symmetric key protocol.

We prove Lemma 6.5 in Section 6.3.3, and Lemma 6.6 in Section 6.3.4. �

Note that this will allow us to model an adversary that creates an arbitrary
number of sessions using the same session secrets: in the first handshake, the
adversary has access to a full Multi-Stage game, while in each subsequent
composed game, the adversary can only register new keys by composition,
but it is otherwise unrestricted in the remaining Multi-Stage queries. This
will allow us to capture, in part, trees of session resumptions rather than just
chains: Section 6.4 will cover this topic in more detail. On the converse side,
the model implicitly forbids an adversary from winning by simultaneously
interacting with sessions in different layers of the composition: we refer the
reader to Section 6.5 for the limitations of our analysis.
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6.3.2 PCS Chained Composition of TLS Handshakes

We now prove that the chained composition of TLS handshakes, as defined in
the previous section, achieves Post-Compromise Security.

Lemma 6.7 (PCSChain security of a chained composition of TLS
Handshakes) Let us consider the chained compositions Init-Hk3; ...; DHE-Res-Hk3
and DHE-Res-Hk3; ...; DHE-Res-Hk3. Both these chained compositions achieve
Post-Compromise Security: the adversarial advantage in the PCSChain secu-
rity game is bounded by the Multi-Stage and Match security of the handshakes,
and is therefore negligible.

That is, for any efficient adversary A against PCSChain security of the chained
compositions, there exists efficient algorithms B0,B ′0,B1,B ′1 such that:

AdvPCSChain
Init-Hk3;...;DHE-Res-Hk3,A ≤ AdvMatch

Init-Hk,B0
+AdvMulti-Stage

Init-Hk,B ′0
+

(n− 1) ·
(
AdvMatch

DHE-Res-Hk,B1
+AdvMulti-Stage

DHE-Res-Hk,B ′1

)
AdvPCSChain

DHE-Res-Hk3;...;DHE-Res-Hk3,A ≤ n ·
(
AdvMatch

DHE-Res-Hk,B1
+AdvMulti-Stage

DHE-Res-Hk,B ′1

)
Proof (Proof (sketch)) By Lemma 6.4, the chained compositions are sound:
all the instances of TLS Initial and Resumption Handshakes respect the con-
straints we impose on the protocols in the chain.

In Section 4.5, we show that the adversarial advantage against Match and
Multi-Stage security of the Init-Hk is negligible. Similarly, in Section 4.6, we
show that the adversarial advantage against Match and Multi-Stage security
of DHE-Res-Hk is negligible.

It follows that Init-Hk and DHE-Res-Hk are, respectively, secure pMSKE
and sMSKE protocols. By Lemma 6.1, it follows that the chained compositions
is security, and bounded by the sum of the adversarial advantage against Match
and Multi-Stage security for each protocol in the chain.

Furthermore, Section 4.5 and Section 4.6 respectively prove stage-1 passive
security of Init-Hk and DHE-Res-Hk. By Lemma 6.3, it follows that the
adversarial advantage against PCSChain security of the composed chain is
bounded by the Chain security of the composed chain. �

6.3.3 Init-Hk and DHE-Res-Hk as Multi-Stage Key Exchanges

In order to be amenable of generic composition, a key exchange protocol Π
needs to satisfy some Multi-Stage security constraints, and to allow for Public
Matching algorithms.
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Figure 6.5: Detail of two sessions of the TLS handshake protocol in the chained composition:
in green, a refreshed session; in blue, the secure session (cf. l2,n−2 and l2,n−1 in Figure 6.4).

Multi-Stage Security In Section 4.5 and Section 4.6 we proved the TLS 1.3
Initial Handshake Init-Hk and the TLS 1.3 Resumption handshake DHE-Res-Hk
to be Multi-Stage secure protocols respectively. Our Multi-Stage security
proof also implicitly models key independence, stage-1 forward secrecy and
passive security. We refer the reader to Chapter 4 for a more detailed argu-
ment on how these properties are satisfied.

Public Matching TLS 1.3 encrypts all of the handshake messages after the
ServerHello message: as mentioned in Section 5.4.1, this could make the
construction of Public Matching (for both session and contributive partners)
algorithms quite complex. In our compositional analysis of TLS as a Multi-
Stage key exchange protocol, we will therefore consider functionally equiva-
lent variants of the TLS 1.3 Initial and Resumption handshakes where all of
the handshake messages are transmitted unencrypted, which allow for trivial
public matching (since the session and contributive identifiers can simply be
reconstructed from the messages themselves).

Removing encryption would impact the client and server messages sent after
the exchange of Hello messages, including the server EncryptedExtensions,
encrypted under keys derived from the handshake traffic secrets, and the
NewSessionTicket message, encrypted under the server application traffic
key tksapp (derived from the server application traffic secret). However, the
Multi-Stage security proof for the initial handshake (Section 4.5) does not
invoke the security of the AEAD symmetric encryption scheme for the com-
putation of these messages: handshake encryption binds the DH keys to the
identities of both parties and prevents unknown keyshare attacks, but as the
same DH keys are included in the transcript hash and used to generate the
Finished messages, this is not necessary for the security of the protocol itself.

It follows that, in the variant of Init-Hk/DHE-Res-Hk where handshake
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messages are not encrypted, Multi-Stage security (and, therefore, the key in-
dependence, forward secrecy and passive security properties we prove) are not
impacted. Section 6.5 outlines alternative ways to analyze the handshake with
encryption enabled, by exploiting the fact AEAD encryption is INT-CTXT (or,
to use the terminology from [15], non-rerandomizable), allowing for a weak
matching algorithm.

6.3.4 DHE-Res-Hk as a Symmetric Protocol

In this section, we show that DHE-Res-Hk conforms to the definition of a
symmetric protocol Σ (Section 5.2).

DHE-Res-Hk trivially satisfies the following constraints:

• UΣ = UΠ: this holds, since both Σ and Π are TLS handshakes, both
modelled as Multi-Stage Key Exchanges.

• The parties in the protocol are assigned fixed role in each session: in TLS
PSK handshakes, the pss binds the role of a party to either an initiator
(client) or a responder (server).

• Key distribution matches distribution D of stage-i keys of Π: both pss
and stage-i keys are bitstrings of hash-output length in the TLS hand-
shakes, and, since we are modelling single-ciphersuite versions of the
TLS handshakes, we can assume that all handshakes in the resumption
chain use an identical ciphersuite, and thus have identical distributions
for their output keys.

• Σ key generation algorithm samples a key u.a.r. from D: follows by our
definition of the NewSecret MSKE query.

However, the security game for DHE-Res-Hk does not offer the expected
query interface for a symmetric protocol game, does not easily map the key
identifiers kid to pre-shared secret identifiers, and the composition needs to
forward pre-shared secret identifiers pssid from Π to Σ. In order to satisfy
these constraints, we construct a wrapper GDHE-Res-Hkw around the resump-
tion handshake game that respects the GΣ interface, performing internal book-
keeping to ensure consistency of kids and translating the various key registra-
tion queries to the ones supported by GDHE-Res-Hk. Furthermore, we extend
the composed challenger to handle pssids.

Pre-shared secret identifiers In a TLS handshake, each pre-shared secret
pss has a corresponding identifier pssid, chosen by the server and communi-
cated to the client in the NewSessionTicket messaged. This pssid is then
included in the ClientHello message in all resumption handshakes under the
corresponding pss: we therefore need to pass the pssid, in addition to the re-
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sumption pss, from the TLS handshake instance in Π to the TLS handshake
instance in Σ.

We will therefore extend the GΣ key registration queries (NewKey, InjectKey
and PartnerKey) to include a pssid parameter. The composed challenger is ex-
tended so that, upon acceptance of the stage-3 key in Π, the NewSessionTicket
message produced by the server is inspected and the pssid is extracted. When
simulating the first split adversary for GΣ, the composed challenger will in-
clude the pssid corresponding to the composition key in the extended GΣ key
registration queries 5.

Bookkeeping for key identifiers We expect GΣ to maintain Listkeys of ele-
ments (kid,U ,V , k, stkey), where kid are unique symmetric key identifiers. We
note that the triples of the form (U ,V , pssid) are unique in GDHE-Res-Hk, but
should only be used when both parties possess the pre-shared secret: the
MSKE model in 4 only allows for pss to be set for pairs of endpoints, and not
asymmetrically for a single endpoint6. Furthermore, each pss is bound to the
endpoints in a certain role: U is restricted to be a client, and V a server.

Therefore, GDHE-Res-Hkw will maintain:

• a list Listw of tuples (U ,V , pssid, ready), where the ready flag is set to
true when in the key exchange two partnered session have both accepted
in the composition stage.

• a list Listkeys of elements (kid,U ,V , k, stkey), where kid is the index of
the corresponding tuple (U ,V , pssid, ready) in Listw. Note that Listkeys
will contain two tuples for each kid, one for each session partner, but
they will both map to the same Listw tuple (U ′,V ′, pssid, ready), which
binds the kid to the party U ′ as a client and V ′ as a server.

Handling symmetric game queries After extending the GΣ interface for pre-
shared secret identifiers and with the bookkeeping structures defined in the
previous paragraphs, GDHE-Res-Hkw will resolve GΣ queries in GDHE-Res-Hk
queries as follows:

• NewKey(U ,V , pssid): Recall that, in sessions of the TLS handshake with
honest partners, the server is always the first to accept in stage 3. There-
fore, NewKey will always be called by the composed challenger with U as

5Note that, in the compositional security proof (in Section 5.5), the hybrid argument
for Game 2 will still hold: we assume all handshake messages are not encrypted, thus B3
can inspect the NewSessionTicket message returned by the server after accepting in stage
3 and extract the pssid.

6Extending MSKE to model negotiation of pre-shared secrets could be object of future
research.
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the server, and V the client: the order of the party identifiers will there-
fore be inverted in the Listw tuples.7

If any tuple (V ,U , pssid, ∗) exists in Listw, return ⊥. Otherwise, append
a new tuple (V ,U , pssid, false) to Listw. Let kid be the index of the newly
appended tuple. Add an entry (kid,U ,V , 0, fresh) in Listkeys, and return
kid to the adversary.

• InjectKey(U ,V , pssid, k): The same remark of NewKey applies here: if
there exist an honest partner, this query is always called by the composed
challenger with U as the server.

If any tuple (V ,U , pssid, ∗) exists in Listw, return ⊥. Otherwise, append
a new tuple (V ,U , pssid, false) to Listw. Let kid be the index of the
newly appended tuple. Add an entry (kid,U ,V , k, revealed) in Listkeys,
and return kid to the adversary.

• PartnerKey(U ,V , kid): Remember that, in the TLS handshake, the client
is always the last to accept in stage 3. Therefore, PartnerKey will al-
ways be called by the composed challenger with U as the client, and V
the server, and after PartnerKey is called we can set the ready state for
the pre-shared secret.

If a tuple (kid,V ,U , k, stkey) exists in Listkeys, and the tuple t = (kid,U ,V , k, stkey)
is not in Listkeys:

– add t to Listkeys;

– retrieve the tuple (U ,V , pssid, ready) corresponding to kid from
Listw;

– for that tuple, set ready← true in Listw;

– if stkey = revealed, invoke the Inject(U ,V , pssid, k) query of GDHE-Res-Hk;

– if stkey = fresh, invoke the NewSecret(U ,V , pssid) query of GDHE-Res-Hk;

and return kid. Otherwise, return ⊥.

• NewSession(U ,V , kid): If the tuple (kid,U ,V , k, stkey) exists in Listkeys,
retrieve the tuple (U ′,V ′, pssid, ready) corresponding to kid from Listw. If
the user U is an initiator (U = U ′) and the tuple is ready (ready = true),
invoke the query NewSession(U ,V , pssid) of GDHE-Res-Hk. If any of these
conditions does not hold, return ⊥ instead.

• Corrupt(kid): For all tuples (kid,U ,V , k, stkey) in Listkeys: return k to
the adversary and set stkey ← revealed. If no such tuple exists, return

7Note that a client session would accept first if there exists no partnered server session
(that is, if the adversary is impersonating the server): this will result in the PartnerKey
query never to be called, and consequently the ready flag for the composition key never to
be set.
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⊥. Otherwise, retrieve the tuple (U ,V , pssid, ready) corresponding to kid
from Listw, and invoke the Corrupt(U ,V , pssid) query of GDHE-Res-Hk.

Furthermore, the special NewKey(U ,V , pssid, k) is implemented as follows:

• A special NewSecret(U ,V , pssid, k) query is added to the GDHE-Res-Hk
game: it will behave exactly as Inject(U ,V , pssid, k), but it will not
add the pre-shared secret to the list of corrupted entities kept by the
GDHE-Res-Hk challenger.

• A special state special is added to the possible values of the key status
flag stkey in the Listkeys tuples.

• The NewKey(U ,V , k) is handled by GDHE-Res-Hkw : Note again that, in
sessions of the TLS handshake with honest partners, the server is always
the first to accept in stage 3. Therefore, the special NewKey will also
always be called by the composed challenger with U as the server, and V
the client.

If any tuple (V ,U , pssid, ∗) exists in Listw, return ⊥. Otherwise, append
a new tuple (V ,U , pssid, false) to Listw. Let kid be the index of the
newly appended tuple. Add an entry (kid,U ,V , k, special) in Listkeys,
and return kid to the adversary.

• The PartnerKey(U ,V , kid) of game GDHE-Res-Hkw is extended: an ad-
ditional case is added to the list of actions taken by the wrapper:

– if stkey = special, invoke the special NewSecret(U ,V , pssid, k) query
of GDHE-Res-Hk;

6.4 Implications
In this section, we provide a high level summary of the results proved in
this last chapter, and we show how some of these have have strong practical
implications.

A model for TLS 1.3 session resumption. In Section 6.1, we define and
prove the security of a chained composition, an iterated version of the composed
protocol we studied in Chapter 5. As we did for the composed protocols, we
provide a security game for the chained composition, Chain, and we bound the
adversarial advantage in Chain by the Multi-Stage and Match security of the
protocols in the chain. We then show in Section 6.3 that we can model TLS
session resumption as a chained composition. Figure 6.6 depicts two possible
chained compositions instantiated with TLS handshakes.

Post-Compromise Security of TLS 1.3 session resumption. In Section 6.2.1,
we give a definition of Post-Compromise Security for chained compositions.
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Init-Hk DHE-Res-Hk . . . DHE-Res-Hk

DHE-Res-Hk DHE-Res-Hk . . . DHE-Res-Hk

Figure 6.6: TLS session resumption as a chained composition, with an Initial Handshake (dark
shade) as the first protocol (top), or a Resumption Handshake (light shade) as the first protocol.

We consider security of sessions in the final protocol of the chain (see Figure
6.7): if the adversary was passive after corruption, the chained composition
will retain security.

We show that, if the protocols in the chained composition are passively se-
cure, then the chained composition achieves PCS. This result is readily ap-
plicable to the chained composition of TLS handshakes we used to model
TLS session resumption: in Section 6.3.2 we show that our construct achieves
Post-Compromise Security.

Π1 Π2 Π3 Π4 . . . Πn−2 Πn−1

Figure 6.7: A high level view of Figure 6.4: we abuse our session color notation to mark in green
the final protocol, which achieves Post-Compromise Security; in red, an intermediate protocol
in which the adversary corrupts session secrets; in blue, a passively secure intermediate protocol
during execution of which the adversary is passive.

6.4.1 Security for Intermediate Chain Protocols.
By our definition of the chain security game, a composed chain Π0

c0 ; . . . ; Πn−1
cn−1

is secure as long as the adversary cannot win in the security game of the final
protocol Πn−1. We therefore only assess security of the keys output by sessions
of the final protocol.

An easy way to extend our model and capture the security of intermediate
protocols as well is to consider each intermediate protocol as the final protocol
of a shorter independent chained composition, as depicted in Figure 6.8. We
can then define an extended chain security game Chaine, in which the adversary
can win by “choosing” an arbitrary protocol i in the chained composition
as the final protocol, and then playing the Chain security for a truncated
chained composition Π0

c0 ; Π1
c1 ; . . . ; Πi

ci
. The adversary “chooses” the protocol

by issuing a Test query for a session of that protocol, and is restricted from
testing the resumption stages ci.

We can now turn to discussing the adversarial advantage in the proposed
extended chain game Chaine by the security of all the truncated chained com-
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positions, that is, for any efficient adversary A against Chaine security of the
composed chain, there exists efficient algorithms B0, . . . ,Bi such that:

AdvGChaine

Π0
c0 ;...;Πn−1

cn−1 ,A ≤
n−1∑
i=0

AdvGChain
Π0

c0 ;...;Πi
ci

,Bi

It is clear that the proposed bound above holds by a simple sequence of re-
ductions: first, we define an intermediate game where the challenger guesses
the protocol i that the adversary will choose to break. The challenger will
then abort if its guess was incorrect, or else provide a simulation of the Chain
game for chained composition truncated at protocol i.8

Π1 Π2 Π3 Π4 . . . Πn−2 Πn−1

Π1 Π2 Π3 . . . Πi

Figure 6.8: A Chain secure chained composition (top), and the corresponding chained compo-
sition truncated at the i-th protocol.

Intermediate Sessions in TLS 1.3 Session Resumption. Given the result
in the previous paragraph, and our modelling session resumption in TLS 1.3
as a chained composition, we can now use the keys derived in intermediate
sessions in resumption chain as key material for external protocols.

Recall that, by our Multi-Stage Key Exchange model, each TLS session out-
puts three secrets: the Application Traffic Secrets (ATS), the Exporter Master
Secret (EMS) and the Resumption PSK (rpsk). The ATS are modelled as in-
ternal keys, since they are used to protect the NewSessionTicket message:
this bars us from securely using them outside of the handshake. The rpsk is
modeled as an external key, but we already use it for composition with the
next Resumption Handshake.

This leaves us with the EMS: an external key, which we can use (we borrow the
notation from Chapter 2), as specified by the TLS standard document [46], to
derive an intermediate key though HDKF expansion: ek = HKDFexp(EMS,
Label|| ε). From this intermediate key we can finally derive a context-
dependant key for use in the external protocol k = HKDFexp(ek, Labelexp||
H(ctxt)).

In particular, note that this would allow us to compose the handshake with a
second symmetric protocol (the other being the Resumption Handshake itself,

8This is an informal, minimal proof sketch, which roughly follows the lines of the proof
presented in Section 4.5.2.
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for resumption): we could, for instance, use keys derived from the EMS for a
new instance of the Record Protocol, and construct a secure channel.

6.4.2 Post-Compromise Secure Trees of Resumption.

Consider a composition chain Π0
c0 ; . . . ; Πn−1

cn−1 , a protocol Πi in the chain, and
a session of that protocol labeled l0,i. The adversary can make session l0,i

accept in the composition stage, resulting in a new symmetric key k being
registered in Πi+1. The adversary can now create an arbitrary number of new
sessions in Πi+1, all using the same symmetric key k. In turn, these sessions
of Πi+1 can themselves be used to register symmetric keys in Πi+2, and the
process can be recursively repeated: we refer to this tree-like structure, rooted
in l0,i, as a tree of sessions.

One interesting aspect of our Post-Compromise Security definition for chained
compositions is that it implicitly captures captures trees of sessions: the defini-
tion of refreshed session (upon which the PCS formalism is built) only requires
that, for each session of the final protocol, a unique session chain leading to
it exists. It is clear that in a tree of sessions such a chain always exists: there
is an unique path from the root (sessions in Π0) to each leaf (sessions of the
final protocol).

Π0 Π1 Π2 Π3

l0,0 l0,1 l0,2 l0,3

l1,1 l1,2 l1,3

l2,3

Figure 6.9: A tree of sessions with label li,j in the chained composition. The unique chain
leading to session l2,3 is highlighted.

By applying this observation to the TLS session resumption mechanism, we
have that our model also implicitly allows trees of resumption handshakes.
Note that, as we will illustrate in more detail in Section 6.5, we do not capture
here the ability of a TLS server to issue more than one NewSessionTicket,
and, consequently, of TLS handshakes to establish multiple rpsk in the com-
position: our Multi-Stage Key Exchange model for the TLS handshake is
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restricted to exactly one NST.

6.5 Limitations
Here, we enumerate the various aspects of TLS that we abstracted away,
and some desirable aspects of security that our chained composition does not
capture. We also provide some considerations on how to deal with these issues
in future work.

6.5.1 TLS Modelling

The following paragraphs list restrictions that can be attributed to shortcom-
ings of our Multi-Stage Key Exchange models for TLS handshakes, or are
otherwise related to particular features of TLS, and presents ideas for future
developments of the current study.

Single resumption ticket. Our MSKE analysis of TLS handshakes assumes
that a single NewSessionTicket message is always issued from the server to
the client. The protocol standard allows for an arbitrary number of such mes-
sages to be issued, and consequently, for an arbitrary number of resumption
PSKs to be established. Whether the server issues any NST at all depends on
the particular server implementation.

MSKE models can capture a dynamic number of stages: one such a model was
presented in the security analysis of the Signal messaging protocol by Cohn-
Gordon et al [17], where stages were mapped to symmetric and asymmetric
ratchet updates, and an arbitrary (whilst bounded) number of stages was
allowed. An interesting direction for future work would therefore be extending
our current MSKE model, and capture each established resumption PSK as a
new stage.

As mentioned in Section 6.4, the possibility for the peers to establish many
different PSKs is still captured in our analysis by the fact that, for each pro-
tocol in the chained composition, an arbitrary (whilst bounded) number of
sessions can be created: each session of the parties U and V accepting in the
composition stage will result in a new pre-shared secret being registered for
these parties in the next symmetric protocol. That is, we allow the registra-
tion of multiple resumption PSKs by having the adversary run many sessions
under the same pre-shared secret, rather than having a single session establish
multiple resumption PSKs.

Negotiation of PSKs. Our MSKE analysis of Resumption (PSK) Hand-
shakes does not cover negotiation of PSKs: the client PreSharedKey exten-
sion is assumed to only contain a single pre-shared secret identifier and the
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corresponding binder; the server either is in possession of the corresponding
pre-shared secret or aborts upon receipt of the client Hello.

As a consequence, the query interface in our symmetric MSKE model does
not allow for a pre-shared secret to be registered unilaterally only for a client
session or a server session: each key is registered for pairs of parties, each in
a fixed role. That is, the adversary cannot register a key for use by session
of party U as a server (resp. client) with V as an intended communication
partner without also allowing for those keys to be used by sessions of party V
as a client (resp. server).

This limitation implies that, when using Resumption Handshakes as symmet-
ric protocols, we can only register the composition key in the symmetric game
if both the client and the server sessions have accepted for the composition
stage in the key exchange. This is the reason why, in Section 6.3.4, our wrapper
around GDHE-Res-Hk maintains a “ready status” for symmetric keys, and only
invokes the Multi-Stage queries NewSession and Inject after the symmetric
key is registered for both the key exchange session owner and its partner.

Exploring the ramifications and the possible impacts of allowing unilateral
registration of pre-shared secrets on Match and Multi-Stage security (and con-
sequently on the Comp and Chain security) when using TLS a symmetric
protocol, is left as future work.

Mutual Authentication. Our MSKE analysis is restricted to TLS hand-
shakes in which the endpoints perform mutual authentication. This is a
simplifying assumption that allowed us to reduce complexity of our security
proofs (cf. 4.4), but capturing different level of authentication (as the work by
Dowling et al. does [26]) is meaningful for a multitude of real-world scenarios.

Future studies of sessions resumption could explore this direction. We note
that this change may present non-trivial obstacles: for instance, an unilater-
ally authenticated Initial Handshake will result in a mutually authenticated
Resumption Handshakes, thus requiring an augmented composed chain model
to keep track of varying levels of authentication.

Public session matching over unencrypted messages. In order to construct
a public session matching algorithm for TLS handshakes, we chose to analyse
a variant of these handshakes where all the messages between the endpoints
are transmitted unencrypted. This greatly simplifies the formulation of the
matching algorithm, and, as we have argued in the previous sections, does
not influence the security properties of the handshake we are interested in
studying.

As we mention, Dowling et al. [23] instead have the composed game challenger
leak the handshake keys to the match algorithm, which will be able to then
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decrypt the relevant messages itself.

We note that a third viable alternative should exist: public matching, in prin-
ciple, remains viable even on the original handshakes with encrypted mes-
sages. In fact, we are not in the re-randomizable encryption case described
by Brzuska et al. [15], since TLS handshakes only employ AEAD encryp-
tion9. The ciphertext integrity (INT-CTXT) property of AEAD primitives
would guarantee that a session will only accept encrypted records encrypted
under the correct key, and different sessions derive the same key with negligi-
ble probability. This would allow us to build a weak matching protocol that
outputs a list of partnered sessions by observing whether the sessions abort
upon receipt of a message.

Nonetheless, we deemed our first approach – removing encryption entirely –
more straightforward: we leave exploring the feasibility of building matching
algorithms upon INT-CTXT security of AEAD encryption for future work.

Record protocol. In our analysis, we restrict the TLS handshake protocol in
its usual composition with the record protocol: we forbid application record
from being sent. This is due to the fact that the NewSessionTicket hand-
shake message, used in the derivation of resumption PSK for a resumption
handshake, is transmitted encrypted under the Server Application Traffic key.
This same key is used to protect application records, and introduces a depen-
dency which is incompatible with our MSKE security model, which require
Bellare-Rogaway style key indistinguishability.

Nonetheless, we prove security for the Exporter Master Secret, which can be
used for composition with arbitrary symmetric protocols – including the TLS
record protocol itself. We believe that this highlights the importance of clear
key separation and independence in cryptographic protocols.

6.5.2 Chained Composition
The restrictions listed here can instead be directly traced back to limitations
of our composed chain security game (in Section 6.1) and of our composed
protocol security game (in Section 5.3).

Security for Intermediate Chain Protocols. By our definition of the chain
security game, a composed chain Π0

c0 ; . . . ; Πn−1
cn−1 is secure as long as the adver-

sary cannot win in the security game of the final protocol Πn−1. Security of
the intermediate key exchanges Π0 . . .Πn−2 is required for the composition to
be secure (cf. Lemma 6.1), but the converse does not hold: composed security
does not imply security of the intermediate key exchanges.

9Even if that was not the case, the authors generically prove that a weak form of a
matching algorithm exists if the protocol is composable.
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This implies that:

• The security analysis of composed chains is greatly simplified. For
instance, we can use Multi-Stage models for the intermediate key ex-
changes which treat composition keys as external: the use of this com-
position key in the next protocol would provide an adversary against the
Multi-Stage security of those handshakes a trivial way to win.

• We only assess security of keys derived in sessions of the final protocol.
Especially when considering TLS handshake chains, this security defini-
tion can be seen as lacking: we cannot securely compose, for instance,
the Exporter Master Secret for intermediate sessions, despite proving
their security in isolation.

As we saw in Section 6.4, this limitation can be side stepped by allowing the
adversary to target an arbitrary intermediate protocol, and by applying the
chained composition security theorem to a shorter chain of protocols in which
the target protocol is final.

A stronger solution, and one we believe should be object of future research,
would be to amend the composed protocol model (cf. Chapter 5) in order to
capture security of the key exchange. This is meaningful for Multi-Stage key
exchanges: all the stage keys, except for the one used for composition, should
retain security if the protocol is key-independent, while the composition key
can be treated as an internal key.

Self-Composition of Protocols and Composed Chains. In order to model
TLS resumption, we introduce a quite powerful formalism – the chained com-
positions. Chained compositions clearly allow us to capture composition of
arbitrarily different protocols, as long they are all secure Multi-Stage proto-
cols.

Instantiating the composition with many instances of the same protocol (a
“self-composition”), as we show in Section 6.3, is sound, but incurs in a subtle
restriction on the adversarial interaction when compared to modelling resump-
tion inside a Multi-Stage Key Exchange model.

In MSKE, for instance, an adversary can win in the Match and the Multi-Stage
security games by simultaneously interacting with different sessions of the
protocol: in particular, this means that a MSKE model for TLS resumption
would capture adversaries which simultaneously interact with sessions that
result in the establishment of a Resumption PSK and sessions that are created
using that same PSK.

By contrast, in our chained composition model, the security games for each
protocol in the composed chain are separated: the adversary can still simul-
taneously interact with all the sessions resulting the i-th resumption in any
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chain of resumptions (that is, all the sessions created from Resumption PSKs
established in the (i− 1)-th resumption), but cannot mix these with sessions
that resulted from the j-th resumption if j 6= i.

This limitation is inherent to our using a generic composition construct: the
composed security notion we introduce in Chapter 5 (and, consequently, the
chained composition) considers the key exchange and the symmetric protocol
games separately. Note that, in our analysis, the Initial Handshake and the
Resumption Handshakes are two different (if closely tied) protocols: using a
generic composition is what allows us to capture their combined use in TLS
session resumption. Some possible direction worthy of future research could be
studying security of a generic MSKE self-composition construct, or studying
TLS resumption in a single, non-generic, MSKE model.

Multi-Stage Assumption on Composed Protocols. In order to bound the
adversarial advantage in the composed chain security game, we argue that a
secure composition of two Multi-Stage key exchange protocols in the chain
can itself be considered a Multi-Stage key exchange protocol with Multi-Stage
security properties equivalent to the ones of the symmetric protocol.

This assumption allows us to greatly simplify the chained composition security
proof, but, as we note in Section 6.1, we do not present a formal argument
for it. Future work may include formally proving that the composition is an
instance of a Multi-Stage key exchange protocol, and reducing its composed
security to Multi-Stage and Match security in the MSKE model.
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Chapter 7

Conclusions

Thus far be it written by me; the events after these
will perhaps be the concern of another.

Xenophon

In this thesis we provide the first analysis of Post-Compromise Security in the
TLS 1.3 protocol. We study the TLS handshake protocols, and in particu-
lar chains of sessions of the (EC)DHE PSK handshake protocol established
through the session resumption mechanism: we show that these chains of
resumption achieve PCS, under certain assumptions.

Our main contribution in the context of Multi-Stage Key Exchange framework
formalization is the introduction of a notion that we denote passive security.
This property is key to proving Post-Compromise Security: we show that a
session of a passively secure protocol can refresh the protocol, in a chained
composition. We also provide a formal proof showing that, for authenticated
Mutli-Stage Key Exchange protocols, passive security implies forward secrecy,
and therefore captures a stronger adversarial model.

We prove security of the TLS 1.3 handshake protocols in our extended MSKE
model: we present an asymptotic bound for the adversarial advantage against
Multi-Stage and Match security of the protocols, which we prove by a reduction
(via a series of game-hops) to the security of the cryptographic primitives
underlying TLS.

We survey the literature for models that allow us to capture Post-Compromise
Security for TLS resumption chains, and, in order to construct a generic model
that can readily be re-instantiated with protocols other than the TLS hand-
shake, we take a compositional approach: we model resumption handshakes as
a composition of two instances of the TLS handshake protocol, where security
is defined in the style of Brzuska et al. [15].
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7. Conclusions

We present a generic composition framework for passively secure MSKE pro-
tocols. We define the security properties required for a key exchange to be
amenable of composition, and introduce a generic definition for symmetric
protocols. We extend previous works in the literature by embedding passive
security in our composed security notion. We then formally prove security of
a composition of passively secure Multi-Stage protocols with arbitrary sym-
metric protocols, by a reduction to the security of the key exchange and the
symmetric protocol.

We observe that, in a composition between a key exchange protocol and an
arbitrary symmetric protocol, the symmetric protocol can be a key exchange
itself, and can therefore be composed with additional symmetric protocols:
by iteratively composing symmetric key exchange protocols (that is, key ex-
changes that are also symmetric protocols) we obtain a chained composition.
We study security of chained compositions, and we provide a security defini-
tion for these chains.

We then adapt the post-compromise definition by Cohn-Gordon et al. [18]
to chained compositions, and show that a chained composition achieves Post-
Compromise Security if the intermediate protocols in the chain are passively
secure. We show that TLS 1.3 (EC)DHE PSK handshake is a valid symmetric
key exchange, and model TLS session resumption as a composition. By our
MSKE security proofs for both the Full TLS handshake and the (EC)DHE
PSK handshake, we know that the TLS handshakes in a resumption chain
are passively secure. This proves that TLS resumption chains achieve Post-
Compromise Security in our model.

Our analysis additionally allows us to capture security for keys derived by
intermediate sessions of the handshakes, and implicitly accounts for trees of
TLS session resumption. In the process, we abstracted away a number of
details of the TLS protocol as specified: we believe that our analysis can
easily be extended to capture these details, allowing it to be readily composed
with previous analyses of TLS.
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Appendix A

Cryptographic Assumptions

We state here the cryptographic assumption our analysis relies upon. Some,
like the Authenticated Encryption with Associated Data of Section A.1, are
traditional textbook security definitions; others, like the Pseudo-Random Func-
tion Oracle Diffie-Hellman in A.2, are lesser know, whilst well established in
the Mutli-Stage Key Exchange literature [26, 23].

A.1 Authenticated Encryption with Associated Data

The TLS record layer employs authenticated encryption with associated data
(AEAD) cipher schemes for message authentication and encryption.

We give a Rogaway-style [47] security definition for AEAD schemes. We de-
fine a plaintext message space M, a key space K, a nonce space N , an as-
sociated data space A and a ciphertext space C. An AEAD scheme is a
triple of algorithms S = (KeyGen, Enc, Dec), where KeyGen : {} → K gen-
erates key in K; Enc : K × N ×M×A → C deterministically encrypts a
message M ∈ M under a key K ∈ K, a nonce N ∈ N , and some associated
data A ∈ A, returning a ciphertext C ∈ C; and Dec : K ×N × C × A →
M∪ {⊥} deterministically takes a ciphertext C ∈ C, a key K ∈ K, a nonce
N ∈ N , and some associated data A ∈ A, returning either a plaintext mes-
sage M ∈ M or the symbol ⊥ if the ciphertext is rejected. We require that
∀{K ∈ K,N ∈ N ,M ∈M,A ∈ A} : Dec(K,N , Enc(K,N ,M ,A),A) =M .

Definition A.1 (IND-CPA) Let C = (KeyGen, Enc, Dec) be an AEAD scheme.
We define an oracle O for the IND-CPA security game which draws a test bit
at random btest $← {0, 1} and takes queries (K,N ,M ,A), returning C ←
Enc(K,N ,M ,A)) if btest = 1 or C ′ $← {0, 1}l such that l = |C| if btest = 0.
We say that an adversary A with access to the oracle O and which outputs a

133



A. Cryptographic Assumptions

guess bit btest
′ has advantage

AdvIND-CPA
C,A =

∣∣∣∣Pr[b′ = b]− 1
2

∣∣∣∣
We say that C is semantically secure under a chosen plaintext attack (IND-CPA
secure), for every probabilistic polynomial-time adversary A, AdvIND-CPA

C,A is
negligible.

Definition A.2 (INT-CTXT) Furthermore, we define an oracle O′ for the
INT-CTXTsecurity game which draws a key at random K $← K, takes queries
(N ,M ,A) where N is fresh, returning C ← Enc(K,N ,M ,A). We say that an
adversary A, with access to the oracle O′, forges if it outputs a triple (N ,A,C)
that was not queried before, such that Dec(K,N ,C,A) 6= ⊥. We define the
advantage of A as

AdvINT-CTXT
C,A = Pr [A forges]

We say that C achieves ciphertext integrity (INT-CTXT secure) if, for every
probabilistic polynomial-time adversary A, AdvINT-CTXT

C,A is negligible.

Definition A.3 (AEAD) Finally, we define AEAD security of a scheme C =
(KeyGen, Enc, Dec). We say that C is AEAD-secure if C is both INT-CTXT
and IND-CPA.

A.2 Dual PRF Security and PRF Oracle Diffie-Hellman
The TLS key schedule (Section 2.2) makes extensive use of HKDF as a key
derivation function. As in the TLS security analysis by Dowling et al. [26],
we define security of HKDF as a pseudorandom function (PRF) in both its
inputs (Dual PRF).

Definition A.4 (PRF) We define a label space L, a key space K and an
output space O. Let f : K×L → O be a pseudorandom function which takes
a key K ∈ K and a label L ∈ L, and outputs a message o ∈ O. We define
an oracle O for the PRF security game which draws a test bit at random
btest $← {0, 1} and a key at random K $← K. O takes query labels (L′),
returning o ← f (K,L′) if btest = 1 or o′ $← O if btest = 0. We say that an
adversary A with access to the oracle O and which outputs a guess bit btest

′

has advantage
AdvPRF

f ,A =

∣∣∣∣Pr[b′ = b]− 1
2

∣∣∣∣
We say that f is a pseudo-random function (PRF secure) if, for every proba-
bilistic polynomial-time adversary A, AdvPRF

f ,A is negligible.

Definition A.5 (Dual-PRF) We define a label space L, a key space K and
an output space O, such that L = K. Let f : K×L → O be a pseudorandom
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A.2. Dual PRF Security and PRF Oracle Diffie-Hellman

function which takes a key K ∈ K and a label L ∈ L. The Dual-PRF security of
f is defined as the PRF security of f swap(K,L) = f (L,K), with the associated
adversarial advantage :

AdvDual-PRF
f ,A = AdvPRF

f swap,A

In the handshake modes that include a Diffie-Hellman key exchange, HKDF
takes a DH shared secret as an input. The behaviour of this composition can
be modeled under the Pseudorandom Function-Oracle Diffie-Hellman assump-
tion introduced by Abdalla et al. [1]: given a PRF f , the value f (guv,x∗) is
indistinguishable from random for an adversary with access to function eval-
uations of f (Su,x) and f (T v,x) for chosen values of S, T and x. Again, we
follow the security analysis paper [26] and choose to employ in our security
analysis the snPRF-ODH variant of the PRF-ODH assumption, which has been
proven to hold for HMAC (the core cryptographic primitive of HKDF) in the
random oracle model under the strong Diffie-Hellman assumption. We also
define the corresponding dual variant dual-snPRF-ODH.

Definition A.6 (snPRF-ODH) Let λ ∈ N, G be a cyclic group of prime
order q with generator g, and f : G× {0, 1}∗ → {0, 1}l be a pseudorandom
function. We define the snPRF-ODH security game as follows:

1. The challenger samples b $← {0, 1}, u, v $← Zq, and provides G, g, gu
and gv to A, who responds with a challenge label x∗.

2. The challenger computes y0 = f (guv,x∗) and samples y1 $← {0, 1}λ uni-
formly at random, providing yb to A.

3. A may query a pair (S,x), on which the challenger first ensures that
S ∈ G and (S,x) 6= (gv,x∗) and, if so, returns y ← f (Su,x).

4. Eventually, A stops and outputs a guess b′ ∈ 0, 1.

We define the snPRF-ODHadvantage function as

AdvsnPRF-ODH
f ,G,A =

∣∣∣∣Pr[b′ = b]− 1
2

∣∣∣∣
We define the dual variant of the assumption, dual-snPRF-ODH, as the snPRF-
ODH assumption when keying the pseudorandom function PRF with a group
element in the second (label) input.

We say that a PRF f is snPRF-ODH (resp. dual-snPRF-ODH) secure if, for
every probabilistic polynomial-time adversary A, AdvsnPRF-ODH

f ,G,A (resp. Advdual-snPRF-ODH
f ,G,A )

is negligible.
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A.3 Existential Unforgeability for a signature scheme
TLS employs public key signature schemes for authentication of endpoints
and of handshake messages. In particular, RSA, Elliptic Curve Digital Signa-
ture Algorithm (ECDSA) and the Edwards-Curve Digital Signature Algorithm
(EdDSA) are used.

Given a message spaceM, a public key space PK, a secret key space SK and
a signature space Σ, we define a signature scheme S as a triple of algorithms
S = (KeyGen, Sign, Verify), where: KeyGen : {1λ} → PK × SK generates
public, secret key pair (pk, sk) based on the security parameter λ; Sign :
SK ×M → Σ produces a signature σ ∈ Σ for a message m ∈ M under a
secret key sk ∈ SK; and Verify PK× Σ×M → {0, 1} outputs 1 if it accepts
the signature σ ∈ Σ for message m ∈ M under the public key pk ∈ PK, and
0 if it rejects the signature.

We require that ∀{(pk, sk) $← KeyGen,m ∈M}.Verify(pk, Sign(sk,m),m) = 1

Definition A.7 (EUF-CMA) Let S = (KeyGen, Sign, Verify) be a signature
scheme. We define an oracle O for the EUF-CMAsecurity game which gen-
erates a keypair (pk, sk) $← KeyGen and takes unique queries (m), returning
σ ← Sign(sk,m). We say that an adversary A, with access to the oracle O for
q signing queries and running in time t, forges if it outputs a pair (σ′,m∗),
where Verify(pk,σ′,m∗) = 1 and m was not queried to O. The advantage of
A is defined as:

AdvEUF-CMA
S,A = Pr [A forges]

We say that S achieves existential unforgeability under chosen message attacks
(EUF-CMA security) if, for every probabilistic polynomial-time adversary A,
AdvEUF-CMA

S,A is negligible.
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Springall, Emmanuel Thomé, Luke Valenta, Benjamin VanderSloot, Eric
Wustrow, Santiago Zanella-Béguelin, and Paul Zimmermann. Imperfect
forward secrecy: How Diffie-Hellman fails in practice. In 22nd ACM
Conference on Computer and Communications Security, October 2015.

[3] Liliya Akhmetzyanova, Evgeny Alekseev, Ekaterina Smyshlyaeva, and
Alexandr Sokolov. Continuing to reflect on TLS 1.3 with external PSK.
Technical Report 421, Cryptology ePrint Archive, 2019.

[4] Martin R. Albrecht and Kenneth G. Paterson. Lucky Microseconds: A
Timing Attack on Amazon’s s2n Implementation of TLS. In Marc Fis-
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