
Characterizing Notions For Secure
Cryptographic Channels

Master Thesis

Nicolas Klose

March 18, 2021

Advisors: Prof. Dr. Kenny Paterson, Dr. Felix Günther

Applied Cryptography Group
Institute of Information Security

Department of Computer Science, ETH Zürich

Abstract

Symmetric encryption schemes, which allow encryption and decryp-
tion of messages using a shared secret key, are used today in a mul-
titude of applications. Stateless schemes, which can provide privacy
and integrity, are not sufficient for many scenarios. Adding state al-
lows schemes to provide protection against replay, reorder and drop-
ping attacks. In this thesis we extend some of the analysis on stateless
schemes to the stateful scenario, introducing a security notion for chan-
nels which provides a stronger levels of privacy than existing notions.
We also introduce a new security goal that we call progress-hiding,
which ensures that an adversary cannot learn anything about the state
of a channel which it was not observing for the entire duration of the
communication. These ideas are extended to general correctness no-
tions, allowing us to analyse schemes which use unreliable network
protocols. Finally, we show that the record layers of TLS and DTLS 1.3
fulfil these new strong notions.

i

Contents

Contents ii

1 Introduction 1
1.1 Notation . 2
1.2 Symmetric encryption schemes 3
1.3 Security notions . 4
1.4 Relations between notions . 5

2 Stateless chosen-plaintext and chosen-ciphertext security 7
2.1 Chosen-plaintext notions . 7
2.2 Relations between stateless chosen-plaintext notions 10
2.3 Properties of chosen-plaintext-secure schemes 21
2.4 Chosen-ciphertext notions . 22

3 Stateful chosen-ciphertext notions 26
3.1 Stateful chosen-ciphertext security 26
3.2 Relations of stateful chosen-ciphertext notions 28
3.3 Relations between stateful notions 30

4 Integrity and authenticated encryption 31
4.1 Integrity . 31
4.2 Authenticated encryption . 36
4.3 Relation between AE-security and integrity 41

5 Progress-hiding encryption schemes 46
5.1 Progress-hiding chosen-plaintext security 46
5.2 Progress-hiding chosen-ciphertext security 50

6 Analysis of TLS 58
6.1 Nonce-based schemes with additional data 58
6.2 TLS 1.3 . 59

ii

Contents

6.3 TLS 1.2 . 63

7 General notions of correctness 65
7.1 Predicates . 65
7.2 Concrete correctness notions 69
7.3 Security notions using predicates 72

7.3.1 The fulfilment notion 72
7.3.2 The privacy notion . 73
7.3.3 The combined notion 74

7.4 Relations between predicate notions 76

8 Progress hiding with predicates 83
8.1 Suppressing functions for common predicates 89

9 Analysis of DTLS 95

10 Conclusion 102

Bibliography 104

iii

Chapter 1

Introduction

A central property of encryption schemes is privacy, which ensures that ci-
phertexts do not leak information about the messages they encrypt. There
are many different formalizations of privacy, especially for stateless schemes.
In Chapter 2 we will introduce some of these privacy notions for stateless
schemes and analyse the relations between them.

Privacy is not the only requirement we have for encryption schemes. In
many applications, we do not wish to send a single ciphertext, but instead a
sequence of multiple ciphertexts. Encryption schemes which enable this are
often referred to as channels. The sequence of ciphertexts and the possibil-
ity of decrypting multiple messages give us additional security requirement
for channels. For example, we might wish to prevent replays, where a ci-
phertext is decrypted twice; reordering, where the order of decryption does
not match the order of encryptions; or dropping, where ciphertexts are left
out. All of this can be combined by requiring that the order of decryptions
is exactly the same as the order of encryptions. Stateless schemes cannot
prevent these sorts of attacks, instead we requite stateful schemes. Chapter
3 introduces privacy notion for stateful channels, including some new ones
based on the stateless notions.

Another important feature of encryption schemes is integrity, which ensures
that it is hard to forge ciphertexts. In Chapter 4 we will introduce integrity
for stateless and stateful schemes, and show how to combine it with pri-
vacy. We will also define a new security notion $-sfAE for channels which is
stronger than the notions commonly used.

In order to motivate the use of $-sfAE we will introduce progress-hiding in
Chapter 5,. This new security notion ensures that the state of a channel is
hidden from an adversary which is absent for some period of time. This
notion is guaranteed by $-sfAE but not by the notions commonly used for
channels.

1

1.1. Notation

In Chapter 6 we will apply the notions defined so far to the real-world
protocol TLS and show that the record layer of TLS 1.3 achieves $-sfAE but
TLS 1.2 does not.

On unreliable network protocols it is necessary to relax the strict correctness
requirements of stateful encryption. Depending on the use-case there are a
variety of desired behaviours. In order to extend our results to all of these,
we introduce predicates in Chapter 7. This will allow us to define and relate
notions for privacy, integrity and correctness abstractly for any correctness
notion. These ideas are applied to progress-hiding in Chapter 8.

Finally, we will show in Chapter 9 that the record protocol of DTLS 1.3
achieves the notion corresponding to $-sfAE for an appropriate predicate.

1.1 Notation

Let s, t ∈ {0, 1}∗ be bitstrings. The length of s in bits is denoted |s|. The
concatenation of strings s and t is denoted s‖t and their (bit-wise) XOR is
denoted s⊕ t.

Integers (mostly used as counters) are always encoded as bitstings in binary,
so we can apply the operation above as well as performing basic integer
operations like addition.

For a distribution Ũ over a set U, let u←$ Ũ represents sampling an element
u randomly from Ũ. We also write u←$ U to mean sampling an element
uniformly at random from U.

We require multiple data structures. We assume that there exist unique
encodings of these as bitstrings which allow the operations defined below
to be executed in constant time.

We let ∅ denote an empty instance of each data structure. We will ensure
that the further usage uniquely determines which data structure is meant.

Sets are unordered collection of elements and are denoted by curly brackets,
so {s, t} is the set containing s and t. The union S ∪ T of two sets S and
T is defined to be the set which contains all of the elements contained in
S or T. We will sometimes write S ∪ c to mean S ∪ {c} for a string c. The
membership checks c ∈ S returns true if c is contained in S and otherwise
false.

Arrays are ordered collections and are denoted by round brackets, so (s, t) is
the array containing s and t. Adding the element c to A (as the last element)
is denoted by A‖c. The length of an array, so the number of its elements, is
denoted by |A|. Next to membership checks arrays also allow for look-ups.
For an index 0 ≤ i < |A|, A[i] returns the (i + 1)-th element contained in A.

2

1.2. Symmetric encryption schemes

Look-up tables are sets where each element is a key-value pair of the form
{c : m} with the additional requirement that each key is unique. Unions are
defined as above, but return an error if the union would add a repeated key.
A look-up table E also (surprisingly) offers a look-up operation. For a pair
{c : m} contained in E the operation E[c] returns the message m.

We assume that all of the operation defined above can be performed in
constant time. This is of course a very non-trivial (as in false) assumption,
but it greatly simplifies the analysis of runtimes, which is not the core topic
of this thesis.

1.2 Symmetric encryption schemes

A stateless symmetric encryption scheme SE := (KGen,Enc,Dec) := (KGen,
Enc,Dec, l) for K,M, C ⊂ {0, 1}∗ consists of four algorithms. The algorithm
KGen takes a security parameter k and returns a key K ∈ K. The algorithm
Enc takes a key K and a plaintext m ∈ M and returns a ciphertext c ∈ C.
The algorithm Dec takes a key and a ciphertext and returns a plaintext. We
generally write EncK(m) := Enc(K, m) and DecK(c) := Dec(K, c). The length
function l takes a the length of a plaintext and returns an integer. The algo-
rithms KGen and Enc can be randomized, the other two are deterministic.

A stateful encryption scheme consists of the same algorithms, except that the
encryption and decryption algorithm have an additional state input. This
state is usually different for encryption and decryption and is updated in-
dependently. Each algorithm returns the updated state along with its usual
output. The key generation algorithm outputs the initial states. Unless the
state is important for an argument we generally assume that the state is im-
plicitly handled correctly and omit it in security games. In particular, when
we assign the return value of an algorithm, we actually mean assigning the
return value without the state, so just the portion that a stateless algorithm
would also return.

In [BDJR97] the authors use the term stateful encryption scheme to mean
schemes with stateful encryption, but not stateful decryption. This is mostly
equivalent to stateless schemes in terms of security. The notion of stateful
encryption schemes used here was introduced in [BKN02] and relies on
stateful decryption. This can actually provide more security than stateless
schemes and is necessary to model channels, which ensure protection from
replay, reorder and dropping of ciphertexts.

In order for schemes to be useful, we need them to be correct. Here we dif-
ferentiate between correctness for stateless and stateful encryption schemes.
For stateless schemes, we require that if we encrypt a plaintext and then de-
crypt the resulting ciphertext with the same key, then the plaintext output
by the decryption algorithm is the same as the initial plaintext. For stateful

3

1.3. Security notions

schemes we relax this and only require a correct decryption if the ciphertexts
are decrypted in exactly the order they were encrypted.

Definition 1.1
Let SE be an encryption scheme. We say SE fulfils stateless correctness if

∀K ∈ K, m ∈ M : DecK(EncK(m)) = m.

Now let m1, . . . , mn be a sequence of messages and let s0 and s′0 be the initial states
of the encryption and decryption algorithms. For i ∈ [1, n] calculate (ci, si) =
EncK(mi, si−1) and (m′i, s′i) = DecK(ci, s′i−1). Then we say that SE fulfils stateful
correctness if ∀1 ≤ i ≤ n : mi = m′i.

Note that a stateful encryption scheme can fulfil the stateless correctness no-
tion and that a scheme which fulfils stateless correctness automatically fulfils
stateful correctness (we can apply the definition to a stateless algorithm by
defining its state to be an empty vector). So this definition is to some degree
independent of whether the scheme SE itself is stateful or stateless.

1.3 Security notions

Next to schemes being correct it is of course important to ensure that they
are secure[citation needed]. Based on different kinds of real-world attacks we can
define security notions, in which a theoretical adversary tries to succeed at
such an attack in an idealized game. These idealized games often increase
the capabilities of the adversary in comparison with real-world scenarios,
yielding more secure notions.

Every notion has a ”security goal”, which represent the attacks we are trying
to protect from and lead to different assumptions about the capabilities and
goals of the adversaries. The privacy notions we define also have a ”flavor”,
which represent different ways to check whether the adversary can break
privacy. These notions therefore use the naming scheme FLAVOR-GOAL.

We use the code-based game-playing framework introduced in [BR06] to de-
fine security notions. A notion N is defined by a security game NSE (k, b),
where SE is an encryption scheme, k is a security parameter and b is a bit.
Every game begins with an initialization procedure Init(). This query usu-
ally contains at least the generation of a key K. We assume that all variables
defined in a procedure are global, so that K (and any other variables) can
be used in the remaining procedures. After the initialization the adversary
can interact with the encryption scheme using the other procedures of the
game. At the end of the game, the adversary calls the finalization query Fin.
This query returns a bit d, which is the output of the game. The adversary
is trying to ensure that b = d.

4

1.4. Relations between notions

Let NASE (k, b) be the output of the game NSE (k, b) played by adversary A.
We define the advantage of A against SE as

AdvNSE ,A(k) = Pr[NASE (k, 1) = 1]− Pr[NASE (k, 0) = 1].

The advantage of an adversary depends greatly on its resources. For exam-
ple an adversary with unlimited resources could brute-force many security
games by trying every possible key or ciphertext. So we need to quantify
the resources an adversary has at its disposal. Let AN

(t,q,µ) be the set of all ad-
versaries for NSE (k, b) with running time at most t using q queries totalling
µ bits.

The runtime t represents the runtime of the entire game, which includes the
runtime of the adversary itself and of the queries made by the adversary.
When a query requires two plaintexts as an input, we define the bit-length
of the query to be the length of the longer plaintext. Finally, the number of
queries q and their bitsize µ do not include the initialization and finalization
query. These queries represent setting up the attack scenario and checking
the result of the attack and are out of the control of the adversary. Excluding
them also allows us to ignore some constant factors in relations.

We define the (k, t, q, µ)-security of SE as

SecNSE (k, t, q, µ) = max
A∈AN

(t,q,µ)

{AdvNSE ,A(k)}.

1.4 Relations between notions

For an ordered pair of notion N1,N2 there four kinds of relations we can
prove: reductions and separations, which can either be loose or tight.

Reductions are used to show that N1 implies N2. Formally this means that

SecN2
SE (k2, t2, q2, µ2) ≤ c · SecN1

SE (k1, t1, q1, µ1).

Usually c, k1, t1, q1, µ1 depend on k2, t2, q2 and µ2 in some way. If c is
constant we call the reduction tight, if it depends on k2, t2, q2 or µ2 loose. To
prove a reduction, we usually assume to have an adversary A2 ∈ AN2

(t2,q2,µ2)

and construct an adversary A1 for the game N1SE (k, b). This adversary runs
A2, and react to its queries. This can involve queries in the N1 game and
other operations. We then show that A1 uses the resources claimed (so that
A1 ∈ AN1

(t1,q1,µ1)
) and argue that

AdvN2
SE ,A2

(k) ≤ c · AdvN1
SE ,A1

(k).

As we started with an arbitrary adversary A2, the bound also holds for the
maximum over all adversaries, which is exactly the definition of security.

5

1.4. Relations between notions

In the last step, we often want to argue thatA1 simulates the game N2SE (k, b′)
for A2. This means that the answers to A2’s queries are distributed the same
way as they would be if it were playing the game N2SE (k, b′). This then al-
lows us to replace output probabilities of A1 with output probabilities of
A2. A common case is where the value of b′ is equal to b. In this case the
advantage of the constructed adversary is equal to that of the adversary it is
running.

Separations are used to show a notion N1 does not imply another notion N2.
We do this by showing that there exists an encryption scheme SE ′ so that
SecN1

SE ′(k1, t1, q1, µ1) is small and SecN2

SE ′(k2, t2, q2, µ2) is large. We usually start
by assuming we have an encryption scheme SE for which SecN1

SE (k1, t1, q1, µ1)
is small. We then construct a new scheme SE ′ based on SE so that

SecN1

SE ′(k1, t1, q1, µ1) ≤ SecN1
SE (k1, t1, q1, µ1).

Finally, we construct an adversary A2 ∈ AN2

(t2,q2,µ2)
so that AdvN2

SE ,A2
(k) ≥ c.

If c is a (reasonably large) constant, the separation is tight. If it depends
on k, t2, q2 or µ2, it is loose. Note that this proof strategy depends on the
assumption that there is a scheme which is secure for N1. This assumption
is actually not very strong, as we will see that all the notions defined in this
thesis can be efficiently instantiated. Note that we could theoretically also
assume that the scheme SE is secure for some other notion and use that
notion to bound SecN1

SE ′(k1, t1, q1, µ1).

Note that a tight relation implies a loose relation of the same type and that
no relation of the other type holds. A loose relation only implies that the
tight relation of the other type does not hold. So we are generally trying to
prove one of three things:

• a tight reduction, which we write as N1 ⇒ N2

• a tight seperation, which we write as N1 6⇒ N2, or

• a loose reduction and a loose seperation, which we write as N1 → N2.

If we consider both orderings for a pair of notions there four combinations
we are interested in proving:

• They are equivalent, so N1 ⇒ N2 and N2 ⇒ N1

• One is loosely stronger, so N1 ⇒ N2, N2 → N1

• One is strictly stronger, so N1 ⇒ N2 and N2 6⇒ N1

• They are incomparable, so N1 6⇒ N2 and N2 6⇒ N1

6

Chapter 2

Stateless chosen-plaintext and
chosen-ciphertext security

2.1 Chosen-plaintext notions

The first security goal we consider is privacy under chosen-plaintext attacks
(CPA), which ensures that ciphertexts do not leak any information about
their corresponding plaintexts. This is supposed to prevent attacks from
passive adversaries, which observe communication going over a network,
but do not tamper with the messages. In real-world scenarios, attackers
usually cannot choose which messages are encrypted, but they might know
the content of some message or of parts of messages. So we allow the adver-
sary to choose the messages which are encrypted. We define five different
CPA notions, which we call flavors. These flavors differ in how an adversary
can encrypt messages and how the adversary attempts to extract informa-
tion from a ciphertext.

The adversary always has access to a challenge oracle, which somehow chal-
lenges the adversary to break the privacy of the scheme. The challenge ora-
cle always returns a ciphertext, which we refer to as a challenge ciphertext.
In some notions, the challenge oracle is the only way for the adversary to en-
crypt messages, so the oracle is called a combined encryption and challenge
oracle. In other notions the adversary has access to a separate encryption
oracle, which returns true encryption of single plaintexts. In these notions,
the challenge query can only called once. We now present the origin and
basic ideas of five flavors.

Semantic (SEM) security

Semantic security was introduced by Goldwasser and Micali in [GM84] for
asymmetric encryption. We use the adaption for symmetric encryption in-
troduced in [BDJR97]. The idea of semantic security is the following: con-

7

2.1. Chosen-plaintext notions

sider the information an adversary can extract from a ciphertext about the
encrypted plaintext. We say a scheme is semantically secure if this infor-
mation is equal to the information the adversary could extract without the
ciphertext. We model this as follows: the adversary has a true encryption
oracle and a challenge oracle. In the single call of the challenge oracle, the
adversary provides a distribution over the message space. The challenge
procedure samples two messages and returns the encryption of the second
one. In the finalisation query, the adversary provides a function f , which
represents the information the adversary is trying to guess, and a guess for
value of f for the b-th message. If the guess is correct and b = 1, the ad-
versary has successfully extracted the information from the ciphertext. On
the other hand, if b = 0, then the adversary was able to get the information
without the ciphertext (as it only had encryption of the other message), so
the scheme is secure and the adversary loses.

Definition 2.1 (SEM-CPA)
The semantic chosen-plaintext security of an encryption scheme SE is defined by
SecSEM-CPA
SE (k, t, q, µ) using the game SEM-CPASE (k, b) depicted in Figure 2.1.

The input for encryption queries is a plaintext m ∈ M. The input for the chal-
lenge query M̃ is a distribution over the message space with the restriction that all
messages contained in the distribution must have the same length. The input to the
finalization query consists of a function f which maps from the message space M
to an arbitrary space X and an element y ∈ X .

Find-then-guess (FtG) security

Find-then-guess security was introduced in [BDJR97] as an adaptation of
polynomial security from [GM84] for symmetric encryption. The idea of
find-then-guess security is that the adversary cannot tell which one of two
ciphertexts were encrypted. Specifically, the adversary has access to a true
encryption oracle and a challenge oracle. In the challenge query the adver-
sary provides two plaintexts m0 and m1. The oracle returns the encryption of
mb. In the finalisation query, the adversary provides a bit which represents
a guess on the value of b.

Definition 2.2 (FtG-CPA)
The find-then-guess chosen-plaintext security of an encryption scheme SE with
security parameter k against adversaries with runtime t using q queries totalling
µ bits is defined by SecFtG-CPA

SE (k, t, q, µ) using the game FtG-CPASE (k, b) depicted
in Figure 2.1. The input for the encryption and challenge queries are plaintexts
m, m0, m1 ∈ M. The input to the finalization query is a bit d.

8

2.1. Chosen-plaintext notions

Left-or-right (LoR) security

Left-or-right security was introduced in [BDJR97]. It is similar to find-then-
guess security, but the adversary is allowed multiple attempts to guess
which one of two plaintexts is encrypted. The true encryption oracle is
removed. Instead, the adversary has access to a combined encryption and
challenge oracle, which function just like the challenge oracle in find-then-
guess security but can be called multiple times. The finalisation query is
again a guess for b.

Definition 2.3 (LoR-CPA)
The left-or-right chosen-plaintext security of an encryption scheme SE with security
parameter k against adversaries with runtime t using q queries totalling µ bits
is defined by SecLoR-CPA

SE (k, t, q, µ) using the game LoR-CPASE (k, b) depicted in
Figure 2.1. The input for encryption queries are plaintexts m0, m1 ∈ M. The input
to the finalization query is a bit d.

Real-or-random-message (RoR) security

Real-or-random security was also introduced in [BDJR97]. Here, the adver-
sary is trying to tell whether a provided message or a random message was
encrypted. The adversary has access to a combined encryption and chal-
lenge oracle, which takes a message and either returns the encryption of
the message or the encryption of a random message, depending on b. The
finalisation query is again a guess for b.

Definition 2.4 (RoR-CPA)
The real-or-random-message chosen-plaintext security of an encryption scheme SE
with security parameter k against adversaries with runtime t using q queries to-
talling µ bits is defined by SecRoR-CPA

SE (k, t, q, µ) using the game RoR-CPASE (k, b)
depicted in Figure 2.1. The input for encryption queries are plaintexts m ∈ M.
The input to the finalization query is a bit d.

Real-or-random-ciphertext ($) security

Real-or-random-ciphertext security was introduced in [Rog02] as IND$. As
we will define security goals using this flavor which provide integrity in
addition to indistinguishability, we drop the IND to avoid confusion. The
idea of this notion is similar to real-or-random-message security. Instead of
sampling a random message when b = 0, a random ciphertext is sampled.
The length of this random ciphertext is determined by the length function
of the encryption scheme.

Definition 2.5 ($-CPA)
The real-or-random-ciphertext chosen-plaintext security of an encryption scheme
SE with security parameter k against adversaries with runtime t using q queries

9

2.2. Relations between stateless chosen-plaintext notions

totalling µ bits is defined by Sec$-CPA
SE (k, t, q, µ) using the game $-CPASE (k, b) de-

picted in Figure 2.1. The input for encryption queries are plaintexts m ∈ M. The
input to the finalization query is a bit d.

2.2 Relations between stateless chosen-plaintext no-
tions

We now examine the relations between the CPA notions. The following
results are adapted from [BDJR97] and its updated full version [BDJR00],
except for the relations concerning $-CPA, which are (implicitly) stated in
[Rog02]. We begin by showing that the notions LoR-CPA and RoR-CPA are
equivalent.

Theorem 2.6 (RoR-CPA ⇒ LoR-CPA, Theorem 1 from [BDJR00])
Let SE be a symmetric encryption scheme. There exists a constant c so that for any
k, t, q and µ we have

SecLoR-CPA
SE (k, t, q, µ) ≤ 2 · SecRoR-CPA

SE (k, t + cµ, q, µ)

Proof Assume ALoR-CPA ∈ ALoR-CPA
(t,q,µ) is an adversary. We construct an adver-

sary ARoR-CPA ∈ ARoR-CPA
(t+cµ,q,µ) for an appropriate c. The new adversary runs

ALoR-CPA and reacts to its queries with the following procedures:

ARoR-CPA

1 : proc InitLoR-CPA()

2 : b′←$ {0, 1}
3 : return InitRoR-CPA()

4 : proc EncLoR-CPA(m0, m1)

5 : c← EncRoR-CPA(mb′)

6 : return c

7 : proc FinLoR-CPA(d)
8 : return FinRoR-CPA(d = b′)

We first show that ARoR-CPA actually uses the resources claimed and then
argue that AdvRoR-CPA

SE ,ARoR-CPA
(k) = 1

2Adv
LoR-CPA
SE ,ARoR-CPA

(k). Note that ARoR-CPA sends
exactly one query for each query of ALoR-CPA with the same bitsize, so the
number of queries and their total bitsize are the same.

Now consider runtimes of ALoR-CPA and ARoR-CPA. As both of them contain
the runtime of ALoR-CPA without its queries, the difference between their

10

2.2. Relations between stateless chosen-plaintext notions

Game LoR-CPASE (k, b)

1 : proc InitLoR-CPA()

2 : K←$ KGen(k)
3 : return k

4 : proc EncLoR-CPA(m0, m1)

5 : if |m0| 6= |m1|
6 : c← ⊥
7 : else
8 : c← EncK(mb)

9 : return c

10 : proc FinLoR-CPA(d)
11 : return d

Game RoR-CPASE (k, b)

1 : proc InitRoR-CPA()

2 : K←$ KGen(k)
3 : return k

4 : proc EncRoR-CPA(m1)

5 :
6 :

7 : m0←$ {0, 1}|m1|

8 : c← EncK(mb)

9 : return c

10 : proc FinRoR-CPA(d)
11 : return d

Game $-CPASE (k, b)

1 : proc Init$-CPA()

2 : K←$ KGen(k)
3 : return k

4 : proc Enc$-CPA(m)

5 :
6 :

7 : c0←$ {0, 1}l(|m|)

8 : c1 ← EncK(m)

9 : return cb

10 : proc Fin$-CPA(d)
11 : return d

Game SEM-CPASE (k, b)

1 : proc InitSEM-CPA()

2 : K←$ KGen(k)
3 : f lag← 0
4 : return k

5 : proc EncSEM-CPA(m)

6 : c← EncK(m)

7 : return c

8 : proc ChalSEM-CPA(M̃)

9 : if f lag = 1
10 : c← ⊥
11 : else
12 : f lag← 1
13 : m0←$ M̃
14 : m1←$ M̃
15 : c← EncK(m1)

16 : return c

17 : proc FinSEM-CPA(y, f)
18 : return y = f (mb)

Game FtG-CPASE (k, b)

1 : proc InitFtG-CPA()

2 : K←$ KGen(k)
3 : f lag← 0
4 : return k

5 : proc EncFtG-CPA(m)

6 : c← EncK(m)

7 : return c

8 : proc ChalFtG-CPA(m0, m1)

9 : if f lag = 1 or |m0| 6= |m1|
10 : c← ⊥
11 : else
12 : f lag← 1
13 :
14 :
15 : c← EncK(mb)

16 : return c

17 : proc FinFtG-CPA(d)
18 : return d

Figure 2.1: The games for the chosen-plaintext notions

11

2.2. Relations between stateless chosen-plaintext notions

runtimes is equal to the difference between the runtime of ARoR-CPA (includ-
ing the runtime of its queries in the RoR-CPA game) and the runtime of the
queries of ALoR-CPA in the LoR-CPA game. In the game played by ARoR-CPA
we are missing an if-statement from the LoR-CPA game to check if two mes-
sages are the same length. Instead, we have to the initialise b′ and generate
a random bit for each bit queried in an encryption query. As this last factor
dominates the other two, we can bound the runtime for RoR-CPA by t + cµ
as desired, where c represent the time to sample a random bit.

In the game RoR-CPASE (k, 0), the result of each EncLoR-CPA(m0, m1) is the
encryption of a random ciphertext and therefore independent of b′. So we
have

Pr[RoR-CPAARoR-CPA
SE (k, 0) = 1] =

1
2

.

On the other hand, in the game RoR-CPASE (k, 1) each encryption query of
ALoR-CPA is answered with the encryption of mb′ . So the LoR-CPA game is
simulated with bit b′. If ALoR-CPA successfully guesses b′, then ARoR-CPA
outputs 1, so

Pr[RoR-CPAARoR-CPA
SE (k, 1) = 1] = Pr[LoR-CPAALoR-CPA

SE (k, b′) = 1]

=
1
2

Pr[LoR-CPAALoR-CPA
SE (k, 1) = 1] +

1
2

Pr[LoR-CPAALoR-CPA
SE (k, 0) = 0]

=
1
2

Pr[LoR-CPAALoR-CPA
SE (k, 1) = 1] +

1
2
− 1

2
Pr[LoR-CPAALoR-CPA

SE (k, 0) = 1]

All together we have

AdvRoR-CPA
SE ,ARoR-CPA

(k)

=
1
2

Pr[LoR-CPAALoR-CPA
SE (k, 1) = 1]− 1

2
Pr[LoR-CPAALoR-CPA

SE (k, 0) = 1]

=
1
2
AdvLoR-CPA

SE ,ALoR-CPA
(k),

as desired. �

Theorem 2.7 (LoR-CPA ⇒ RoR-CPA, Theorem 2 from [BDJR00])
Let SE be a symmetric encryption scheme. There exists a constant c so that for any
k, t, q and µ we have

SecRoR-CPA
SE (k, t, q, µ) ≤ SecLoR-CPA

SE (k, t + cq, q, µ).

Proof Assume ARoR-CPA ∈ ARoR-CPA
(t,q,µ) is an adversary. We construct an ad-

versary ALoR-CPA ∈ ALoR-CPA
(t+cq,q,µ) for an appropriate c. The new adversary runs

ARoR-CPA and reacts to its queries with the following procedures:

12

2.2. Relations between stateless chosen-plaintext notions

ALoR-CPA

1 : proc InitRoR-CPA()

2 : return InitLoR-CPA()

3 : proc EncRoR-CPA(m1)

4 : m0←$ {0, 1}|m0|

5 : c← EncLoR-CPA(m0, m1)

6 : return c

7 : proc FinRoR-CPA(d)
8 : return FinLoR-CPA(d)

The number of queries and their total bitsize are clearly the same. The dif-
ference in runtimes is exactly the difference between the encryption queries.
For both adversaries a second random message m1 is sampled, either by the
adversary or by the oracle, and one message is encrypted. The only differ-
ence is therefore the if-statement checking whether m0 and m1 are the same
length in the LoR-CPA game. So we can define c to be the runtime of this
if-statement. This gives us the claimed runtime. Otherwise we would get a
bound which also depends on µ.

Note that ALoR-CPA simulates the game RoR-CPASE (k, b) for the same value
of b as in the actual game LoR-CPASE (k, b). So the output probabilties are
equal and we have AdvLoR-CPA

SE ,ALoR-CPA
(k) = AdvRoR-CPA

SE ,ARoR-CPA
(k). �

We now show that LoR-CPA is loosely stronger than FtG-CPA.

Theorem 2.8 (LoR-CPA ⇒ FtG-CPA, Theorem 3 from [BDJR00])
Let SE be a symmetric encryption scheme. There exists a constant c so that for any
k, t, q and µ we have

SecFtG-CPA
SE (k, t, q, µ) ≤ SecLoR-CPA

SE (k, t + cq, q, µ).

Proof Assume AFtG-CPA ∈ AFtG-CPA
(t,q,µ) is an adversary. We construct an adver-

sary ALoR-CPA ∈ ALoR-CPA
(t+cq,q,µ) for an appropriate c. The new adversary runs

AFtG-CPA and reacts to its queries with the following procedures:

13

2.2. Relations between stateless chosen-plaintext notions

ALoR-CPA

1 : proc InitFtG-CPA()

2 : f lag← 0
3 : return InitLoR-CPA()

4 : proc EncFtG-CPA(m)

5 : c← EncLoR-CPA(m, m)

6 : return c

7 : proc ChalFtG-CPA(m0, m1)

8 : if f lag = 1
9 : c← ⊥

10 : else
11 : f lag← 1
12 : c← EncLoR-CPA(m0, m1)

13 : return c

14 : proc FinFtG-CPA(d)
15 : return FinLoR-CPA(d)

The number of queries and their total bitsize are clearly the same. The
only difference in runtimes is that each EncLoR-CPA query contains an if-
statement to compare the lengths of the two plaintexts, which is missing in
the EncFtG-CPA queires. So we can bound the runtime of ALoR-CPA by t + cq
as desired, where c is the runtime of the if-statement.

Note that ALoR-CPA simulates the game FtG-CPASE (k, b) with the same value
b as in the actual LoR-CPASE (k, b) game. So the output probabilities are
equal and we have AdvLoR-CPA

SE ,ALoR-CPA
(k) = AdvFtG-CPA

SE ,AFtG-CPA
(k). �

Theorem 2.9 (FtG-CPA → LoR-CPA, Theorem 4 from [BDJR00])
Let SE be a symmetric encryption scheme. There exists a constant c so that for any
k, t, q and µ we have

SecLoR-CPA
SE (k, t, q, µ) ≤ q · SecFtG-CPA

SE (k, t + cq, q, µ).

Proof Assume ALoR-CPA ∈ ALoR-CPA
(t,q,µ) is an adversary. We construct an ad-

versary AFtG-CPA ∈ AFtG-CPA
(t+cq,q,µ) for an appropriate c. The new adversary runs

ALoR-CPA and is defined on the left-hand side of Figure 2.2.

The number of queries and their total bitsize are clearly the same. The
runtime is increased by the two variables in the initialisation query and the
if-statements in each encryption query. This is clearly bounded by a constant
c for each query. Now consider the advantage of this adversary. We bound
it using a hybrid argument. For i ∈ [0, q] consider the game Gi defined on
the right-hand side of Figure 2.2.

Note that given the choice of i by AFtG-CPA, FtG-CPAAFtG-CPA
SE (k, b) is either

equal to Gi−1
AFtG-CPA
SE (k) or Gi

AFtG-CPA
SE (k), depending on b. Also,

Pr[G0
AFtG-CPA
SE (k) = 1] = Pr[LoR-CPAALoR-CPA

SE (k, 0) = 1]

14

2.2. Relations between stateless chosen-plaintext notions

AFtG-CPA

1 : proc InitLoR-CPA()

2 : i←$ {1, . . . , q}
3 : j← 1
4 : return InitFtG-CPA()

5 : proc EncLoR-CPA(m0, m1)

6 : if j < i
7 : c← EncFtG-CPA(m0)

8 : elseif j = i
9 : c← ChalFtG-CPA(m0, m1)

10 : else
11 : c← EncFtG-CPA(m1)

12 : j← j + 1
13 : return c

14 : proc FinLoR-CPA(d)
15 : return FinFtG-CPA(d)

Game Gi

1 : proc Initi

2 : j← 0
3 : K←$ KGen(k)

4 : proc Enci(m0, m1)

5 : if j ≤ i
6 : c← EncK(m0)

7 : else
8 : c← EncK(m1)

9 : j← j + 1
10 : return c

11 : proc Fini(d)
12 : return d

Figure 2.2: The adversary and hybrid game used in the proof of Theorem 2.9.

and
Pr[Gq

AFtG-CPA
SE (k) = 1] = Pr[LoR-CPAALoR-CPA

SE (k, 1) = 1].

So summing over each possible choice of i gives us

AdvFtG-CPA
SE ,AFtG-CPA

(k) =
1
q

q

∑
i=1

(
Pr[Gi−1

AFtG-CPA
SE (k) = 1]− Pr[Gi

AFtG-CPA
SE (k) = 1]

)
=

1
q

(
Pr[G0

AFtG-CPA
SE (k) = 1]− Pr[Gq

AFtG-CPA
SE (k) = 1]

)
=

1
q
AdvLoR-CPA

SE ,ALoR-CPA
(k),

as desired. �

Theorem 2.10 (FtG-CPA 6⇒ LoR-CPA, Theorem 5 from [BDJR00])
Let SE = (KGen,Enc,Dec) be an encryption scheme and q ∈ N. There exists an
encryption scheme SE ′ (depending on q) and a constant c so that for every k, t and
µ we have

SecFtG-CPA
SE ′ (k, t, q, µ) ≤ SecFtG-CPA

SE (k, t + cq, q, µ) +
1
q

SecLoR-CPA
SE ′ (k, t, q, µ) = 1

15

2.2. Relations between stateless chosen-plaintext notions

Proof The idea behind SE ′ is that for one randomly chosen encryption
query it outputs the plaintext instead of the ciphertext. This is insecure
in the LoR-CPA game but only very rarely in the FtG-CPA game, as the ran-
dom query has to line up with the challenge query. The scheme SE ′ uses
stateful encryption. The state consists of a counter i and a fixed value j. The
scheme works as follows:

Scheme SE ′

1 : proc KGenSE ′(k)
2 : K←$ KGenSE (k)
3 : i← 0
4 : j←$ {1, . . . , q}
5 : return (K, (i, j))

6 : proc EncSE ′(K, m, (i, j))
7 : i← i + 1
8 : if j = i
9 : c← 1 ‖m

10 : else
11 : c← 0 ‖ EncSE (K, m)

12 : return (c, (i, j))

12 : proc DecSE ′(K, c)

13 : b ‖ c′ ← c
14 : if b = 1

15 : m← c′

16 : else

17 : m← DecSE (K, c′)
18 : return m

Now consider an adversary for the FtG-CPA game against SE ′. We can con-
struct an adversary for the FtG-CPA game against SE that chooses j and
updates i itself. Every query can be forwarded except the j-th encryption or
challenge query, which is returned as in SE ′. As long the j-th encryption
query is not the challenge query, this simulates the game against SE ′ with
the same value b as in the actual game against SE , so it has the same ad-
vantage. If the j-th query is the challenge query, we choose one of the two
messages at random to return. In this case the adversary can achieve advan-
tage 1. This adversary has a constant increase in runtime for each query, so
it uses the claimed resources. Also, we have

SecFtG-CPA
SE ′ (k, t, q, µ) =

q− 1
q

SecFtG-CPA
SE (k, t, q, µ) +

1
q

≤ SecFtG-CPA
SE (k, t, q, µ) +

1
q

.

For the LoR-CPA game against SE ′ consider an adversary that chooses two
distinct messages and sends them in each of the q encryption queries. This
adversary uses the claimed resources. The j-th query reveals which one was
encrypted, allowing the adversary to win every game. �

16

2.2. Relations between stateless chosen-plaintext notions

Note that if there exists a scheme SE so that SecFtG-CPA
SE (k, t, q, µ) is very

small, the above theorem tell us that

q · SecFtG-CPA
SE ′ (k, t, q, µ) ≈ 1 = SecLoR-CPA

SE ′ (k, t, q, µ),

so the bound in Theorem 2.9 is tight.

Before moving on, we make small remark on the scheme SE ′. Note that its
ciphertexts are vectors instead of bitstrings. As we defined ciphertext spaces
to be a subset of {0, 1}∗, we actually mean the encoding of a vector as a
bitstring. This encoding is in general distinguishable from random bits. So
if we were to define a scheme which returns vectors as ciphertexts and try
to show that it achieves $-CPA we would have to argue how the encoding
works.

We now show that FtG-CPA and SEM-CPA are equivalent.

Theorem 2.11 (SEM-CPA ⇒ FtG-CPA, Theorem 6 from [BDJR00])
Let SE be a symmetric encryption scheme. There exists a constants c1 and c2 so
that for any k, t, q and µ we have

SecFtG-CPA
SE (k, t, q, µ) ≤ 2 · SecSEM-CPA

SE (k, t + c1, q, 2µ + c2).

Proof Assume AFtG-CPA ∈ AFtG-CPA
(t,q,µ) is an adversary. We construct an ad-

versary ASEM-CPA ∈ ASEM-CPA
(t+c1,q,2µ+c2)

for an appropriate c. The new adversary
runs AFtG-CPA and reacts to its queries with the following procedures where
unif{m0, m1} is the uniform distribution over {m0, m1} and idM is the iden-
tity function.

ASEM-CPA

1 : proc InitFtG-CPA()

2 : return InitSEM-CPA()

3 : proc EncFtG-CPA(m)

4 : c← EncSEM-CPA(m)

5 : return c

6 : proc ChalFtG-CPA(m0, m1)

7 : M̃ ← unif{m0, m1}
8 : c← ChalSEM-CPA(M̃)

9 : return c

10 : proc FinFtG-CPA(d)
11 : return FinSEM-CPA(idM, md)

The number of queries is the same. The bitsize of the challenge query is in-
creased by sending the distribution of two messages instead of the messages.
We assume this is a constant increase, as we only need to add the probability
1
2 to each message. The finalisation query is increased by sending a message
and the identity function instead of a single bit. As the challenge query
contained the message, we can (very generously) bound this by doubling

17

2.2. Relations between stateless chosen-plaintext notions

µ. We also assume that the identity function can be bounded by a constant
bitsize. The remaining queries have the same bitsize, so the claimed bitsize
is correct. The runtime is only increased by the sampling of two messages
in the ChalSEM-CPA query, so we can take c1 to be that time.

The ChalSEM-CPA query samples two messages m′0, m′1 and returns encryption
the of m′1. Note that

Pr[SEM-CPAASEM-CPA
SE (k, b) = 1] = Pr[md = m′b].

Now consider the value of b in the SEM-CPA game. For b = 1, the game
FtG-CPASE (k, d) is simulated with d such that that md = m′1. So considering
the two possible values of m′1 gives us

Pr[SEM-CPAASEM-CPA
SE (k, 1) = 1]

=
1
2

Pr[FtG-CPAAFtG-CPA
SE (k, 1) = 1] +

1
2

Pr[FtG-CPAAFtG-CPA
SE (k, 0) = 0]

For b = 0 we need to consider two cases. If m′0 = m′1, then Pr[md = m′0] =
Pr[md = m′1]. On the other hand if m′0 6= m′1, then

Pr[md = m′0] = Pr[md 6= m′1]
= 1− Pr[md = m′1].

As each of these scenarios happens with probability 1
2 , we have

Pr[SEM-CPAASEM-CPA
SE (k, 0) = 1] =

1
2

Combining the results for each value of b gives the desired bound on the
advantage of ASEM-CPA. �

Theorem 2.12 (FtG-CPA ⇒ SEM-CPA, Theorem 7 from [BDJR00])
Let SE be a symmetric encryption scheme. There exists a constant c so that for any
k, t, q and µ we have

SecSEM-CPA
SE (k, t, q, µ) ≤ 2 · SecFtG-CPA

SE (k, t + cq, q, µ).

Proof Assume ASEM-CPA ∈ ASEM-CPA
(t,q,µ) is an adversary. We construct an ad-

versary AFtG-CPA ∈ AFtG-CPA
(t+c,q,µ) for an appropriate c. The new adversary runs

ASEM-CPA and reacts to its queries with the following procedures:

18

2.2. Relations between stateless chosen-plaintext notions

AFtG-CPA

1 : proc InitSEM-CPA()

2 : return InitFtG-CPA()

3 : proc EncSEM-CPA(m)

4 : c← EncFtG-CPA(m)

5 : return c

6 : proc ChalSEM-CPA(M̃)

7 : m0←$ M̃
8 : m1←$ M̃
9 : c← ChalFtG-CPA(m0, m1)

10 : return c

11 : proc FinSEM-CPA(f , y)
12 : if f (m1) = y
13 : d = 1
14 : else
15 : d←$ {0, 1}
16 : return FinFtG-CPA(d)

The number of queries and their bitsize are the same. The runtime is in-
creased by the length comparison in ChalFtG-CPA and possibly by the random
sampling of d, which we can clearly bound by a constant c. Note that the
value (y, f) returned by FinSEM-CPA does not depend on b

Now consider that value of b in the FtG-CPA game. For b = 1, AFtG-CPA
simulates the game SEM-CPASE (k, 1). So we have

Pr[FtG-CPAASEM-CPA
SE (k, 1) = 1]

= Pr[SEM-CPAASEM-CPA
SE (k, 1) = 1] +

1
2
(1− Pr[SEM-CPAASEM-CPA

SE (k, 1) = 1])

=
1
2
(Pr[SEM-CPAASEM-CPA

SE (k, 1) = 1] + 1)

For b = 0, AFtG-CPA simulates the game SEM-CPASE (k, 1) except that in
the query ChalSEM-CPA, m0 and m1 are switched. So the encryption of m0
is returned and the game outputs 1 if y = f (m1). This switch makes no
difference for the probabilities, as both messages are sampled from the same
distribution. So we have

Pr[FtG-CPAASEM-CPA
SE (k, 0) = 1]

= Pr[SEM-CPAASEM-CPA
SE (k, 0) = 1] +

1
2
(1− Pr[SEM-CPAASEM-CPA

SE (k, 0) = 1])

=
1
2
(Pr[SEM-CPAASEM-CPA

SE (k, 0) = 1] + 1)

Combining the results for each value of b gives the stated advantage. �

Finally, we show that $-CPA is a strictly stronger notion than LoR-CPA.

19

2.2. Relations between stateless chosen-plaintext notions

Theorem 2.13 ($-CPA ⇒ LoR-CPA)
Let SE be a symmetric encryption scheme such that l(|m|) ≤ a|m| for a constant
a. There exists a constant c so that for any k, t, q and µ we have

SecLoR-CPA
SE (k, t, q, µ) ≤ 2 · Sec$-CPA

SE (k, t + cµ, q, µ).

Proof Assume ALoR-CPA ∈ ALoR-CPA
(t,q,µ) is an adversary. We construct an ad-

versary A$-CPA ∈ A$-CPA
(t+cq,q,µ) for an appropriate c. The new adversary runs

ALoR-CPA and reacts to its queries with the following procedures:

A$-CPA

1 : proc InitLoR-CPA()

2 : b′←$ {0, 1}
3 : return Init$-CPA()

4 : proc EncLoR-CPA(m0, m1)

5 : c← Enc$-CPA(mb′)

6 : return c

7 : proc FinLoR-CPA(d)
8 : return Fin$-CPA(d = b′)

The number of queries and their bitsize are the same. The difference in
runtime is dominated by the sampling of a random string in the $-CPA
game. By the requirement on the length function, we have to sample at
most aµ bits, so we can bound this time by cµ for a c which also includes
the time to sample a bit.

The argument to prove the stated advantage is identical to the argument in
Theorem 2.6, so we omit it. �

Theorem 2.14 (LoR-CPA 6⇒ $-CPA)
Let SE = (KGen,Enc,Dec) be an encryption scheme and take n ∈ N. Then there
exists an encryption scheme SE ′ and a constant c so that for any k, t, q and µ we
have

SecLoR-CPA
SE ′ (k, t, q, µ) = SecLoR-CPA

SE (k, t + cq, q, µ)

Sec$-CPA
SE ′ (k, t, 1, µ) = 1− 1

2n+1

Proof Let 0n be the string consisting of n 0-bits. We define the encryption
algorithm Enc′ of SE ′ by Enc′K(m) = 0n ‖ EncK(m). The key generation
algorithm is the same and the decryption algorithm works by first removing
the prefix and then decrypting normally. We define the length function of
SE ′ by l′(|m|) = l(|m|) + n.

20

2.3. Properties of chosen-plaintext-secure schemes

Assuming we have adversary in the LoR-CPA game against SE ′, we can eas-
ily construct an adversary against SE that forwards all queries after adding
or removing 0n to ciphertexts appropriately. This adversary clearly has the
same advantage as the original one and uses the claimed resources, so the
first equality holds. For the second, consider an adversary in the $-CPA
game which sends a single query with an arbitrary message. If the returned
string starts with 0n, then it returns 0, otherwise 1. This adversary uses the
claimed resources and only loses if the bit b in the $-CPA game is 1 and the
first n bits chosen at random are all 0. This happens with probability 1

2n+1 .�

2.3 Properties of chosen-plaintext-secure schemes

We now state some fairly basic attributes that a scheme must fulfil in order
to be CPA secure for different flavors.

A scheme which is not randomized is not secure for any flavor. By the re-
lations above, it suffices to show this for FtG-CPA security. So consider an
adversary for the FtG-CPA game which first sends two encryption queries
for two distinct messages, and then sends its challenge query with the two
messages. If the scheme is not randomized, the challenge ciphertext is equal
to one of the previous ciphertexts, allowing the adversary to learn the value
of b. Indeed the probability that two encryptions of the same message are
the same is a lower bound on the security of a scheme. This means not
only do schemes need to be randomized, the amount of randomness needs
to be large enough. Real-world schemes often use nonces instead of ran-
domization. Nonce-based schemes are deterministic, but encryption and
decryption receive an additional input which ensures that the encrypted ci-
phertexts are distinct as long as nonces are not repeated. We will formalize
this in Chapter 6 for our analysis of TLS.

A scheme for a message space which is not closed under message length
may not be secure for RoR-CPA notion (and therefore also for the LoR-CPA
and $-CPA). By closed under message length we mean that if the message
space contains a string of specific bit length, then it contains every message
of this length. In the encryption query of the RoR-CPA game, a random
string is sampled with the length of the provided message. If the message
space is not closed under message length, then it is possible for this string
to be outside of the message space, resulting in undefined behaviour from
the encryption scheme, which may leak information about b.

If the length of a ciphertext does not only depend on the length of the mes-
sage, then the adversary might be able to learn something about the plain-
text based on the length of its ciphertext, making it insecure for every flavor.
In particular, the length function of the scheme should return the length
of the ciphertext for messages of the input length, otherwise the scheme is

21

2.4. Chosen-ciphertext notions

insecure for $-CPA. Note that every flavor allows the ciphertext to leak the
length of its plaintext without breaking the game. So these notions do not
ensure that a scheme hides the length of plaintexts.

The next attribute is useful for proving separations, so we state it as a lemma.

Lemma 2.15
Let SE be an encryption scheme and let A be an adversary for a notion N which
gives access to an ChalFtG-CPA oracle. Consider a ciphertext c which was returned
from such a query. If the adversary can somehow gain knowledge of DecK(c), then
SecNSE = 1.

Proof By sending a challenge query with two distinct messages and com-
paring them with DecK(c), the adversary can learn the value of b immedi-
ately. �

When we consider other security goals we will see that the relations be-
tween the flavors are the same. This lemma therefore allows us show that
a scheme is insecure for all of the flavors at the same time by showing that
an adversary with access to an ChalFtG-CPA oracle can learn the decryption of
a challenge ciphertext. Unsurprisingly, every flavor is trivially insecure for
adversary which can learn the decryption of challenge ciphertexts.

2.4 Chosen-ciphertext notions

The notions so far provided security against passive adversaries. We now
wish to extend this to active adversaries, which can tamper with the cipher-
texts. In real-world scenarios, the adversary usually cannot see the output
of the decryption algorithm. But analysing responses and timing can leak
some information about the decryption. So we would like to give the ad-
versary access to a decryption oracle. As we just saw in Lemma 2.15, we
cannot define meaningful games which give the adversary the capability to
decrypt challenge ciphertexts. We can however give it the ability to decrypt
any other ciphertext. This gives us a notion called security under chosen-
ciphertext attacks (CCA). The CCA notions for the flavors LoR,RoR, FtG and
SEM were first defined in [BDJR00], for $ in [Rog04].

For FL ∈ {SEM,FtG, LoR,RoR, $}we define a CCA game where the adversary
has access to the oracles of the CPA games and an additional decryption
oracle, which takes a string as an input and outputs its decryption under the
key generated in the initialization query. Note that we do not require that
the adversary sends an actual ciphertext, unlike in the encryption queries,
where we require that the adversary sends a valid plaintext. In order to
prevent the decryption of challenge ciphertexts we maintain a set S of the
challenge ciphertexts and reject decryption queries for ciphertexts contained
in S.

22

2.4. Chosen-ciphertext notions

Game FL-CCASE (k, b)

1 : proc InitFL-CCA()

2 : S← ∅
3 :
4 : return InitFL-CPA()

5 : proc EncFL-CCA(m)

6 : c← EncFL-CPA(m)

7 :
8 : S← S ∪ {c}
9 : return c

10 : proc ChalFL-CCA(m)

11 : c← ChalFL-CPA(m)

12 : S← S ∪ {c}
13 : return c

14 : proc DecFL-CCA(c)
15 : if c ∈ S
16 : m← ⊥
17 : else
18 : m← DecK(c)
19 : return m

20 : proc FinFL-CCA(d)

21 : return FinFL-CPA(d)

Game $-CCASE (k, b)

1 : proc Init$-CCA()

2 : S← ∅
3 : K←$ KGen(k)
4 : return k

5 : proc Enc$-CCA(m)

6 : c0←$ {0, 1}l(|m|)

7 : c1 ← EncK(m)

8 : S← S ∪ {cb}
9 : return cb

10 :
11 :
12 :
13 :

14 : proc Dec$-CCA(c)
15 : if c ∈ S
16 : m← ⊥
17 : else
18 : m← DecK(c)
19 : return m

20 : proc Fin$-CCA(d)
21 : return d

Figure 2.3: The generic chosen-ciphertext game for FL ∈ {SEM, FtG, LoR, RoR, $} and the
game for $-CCA.

Definition 2.16 (FL-CCA)
For FL ∈ {SEM,FtG, LoR,RoR, $} the chosen-ciphertext security of an encryp-
tion scheme SE with security parameter k against adversaries with runtime t us-
ing q queries totalling µ bits is defined by SecFL-CCA

SE (k, t, q, µ) using the game
FL-CCASE (k, b) depicted in Figure 2.3. The input for encryption, challenge and fi-
nalisation queries are the same as in the corresponding FL-CPA game. The input to
the decryption query is an arbitrary string c. The challenge queries are only defined
if they exist in the corresponding FL-CPA game.

The next theorem shows that the relations between the CPA notions also
hold for the corresponding CCA notions. These results (excluding the flavor
$) are also shown in [BDJR00].

23

2.4. Chosen-ciphertext notions

Theorem 2.17
The Theorems 2.6, 2.7, 2.8, 2.9, 2.10 and 2.11, 2.12, 2.13 and 2.14 all hold if we
replace CPA with CCA. In addition we have LoR-CCA 6⇒ $-CPA and FtG-CCA→
LoR-CPA.

Proof Note first that the decryption queries are the same in each notion. So
we can extend each reduction by forwarding the decryption queries from
the adversary we are reducing from to the oracle we are reducing to. The
returned messages are distributed the same as in the original game and the
bounds on stated advantages and consumed resources still hold.

The counterexample in Theorem 2.10 also holds if we allow decryption
queries and also holds if we replace FtG-CPA with FtG-CCA, but do not
change LoR-CPA. So we have FtG-CCA→ LoR-CPA.

The counterexample in the proof of Theorem 2.14 cannot be applied directly,
as the scheme constructed there is insecure for any CCA game. We therefore
construct a slightly different scheme. The encryption remains the same,
adding n zero bits to the ciphertext. The decryption oracle now checks the
first n bits and returns ⊥ if they are not zero. If they are, then the remaining
message is decrypted and returned. For an adversary in the LoR-CCA game
against this new scheme we can construct an adversary against the original
scheme. This adversary forwards encryption queries and adds 0n to the
ciphertext before returning them. Before forwarding decryption queries, it
checks if the prefix 0n is present. If it is, it is removed and the remaining
ciphertext is forwarded. If it is not, ⊥ is returned. This adversary simulates
the game for the assumed adversary and has the same advantage. We can
use the same adversary as in the proof of Theorem 2.14 to show that the
new scheme not $-CCA-secure. This construction also to shows LoR-CCA 6⇒
$-CPA. �

We now show that the CCA notions games are indeed stronger than the CPA
notions.

Theorem 2.18
Let FL ∈ {SEM,FtG, LoR,RoR, $} . We have

FL-CCA⇒ FL-CPA and $-CPA 6⇒ FtG-CCA.

Note that by the relations proved above, the second statement implies that
for F1, F2 ∈ {LoR,RoR, $,SEM,FtG} we have F1-CPA 6⇒ F2-CCA, so the CCA
notions provide security in a way that no CPA notion can.

Proof Given an adversary for the FL-CPA game, we can clearly construct an
adversary with equal advantage for the FL-CCA game by simply forwarding
the queries.

24

2.4. Chosen-ciphertext notions

For the second statement, consider a new encryption scheme which adds
a random bit to the front of each ciphertext, which is ignored during de-
cryption. For an adversary in the $-CPA game against this new scheme we
can construct an adversary against the old scheme by simply adding and
removing the random bit appropriately. This new adversary simulates the
game for the assumed adversary and therefore has the same advantage.

On the other hand, this new scheme does not achieve FtG-CCA. For any
challenge ciphertext we can construct a new ciphertext that decrypts to the
same plaintext by flipping the first bit of a returned ciphertext. By Lemma
2.15 this allows the adversary to achieve advantage 1. �

An overview containing the notions and relations of this chapter can be
found in Figure 4.7.

25

Chapter 3

Stateful chosen-ciphertext notions

3.1 Stateful chosen-ciphertext security

Schemes which fulfil stateless correctness cannot prevent replay, reorder or
dropping attacks, as the decryption algorithm must always output correct
decryption for previously encrypted ciphertexts. So it important to analyse
schemes which fulfil stateful correctness instead. Recall that such schemes
only need to decrypt correctly if the sequence of decrypted ciphertexts is
a subsequence of the sequence output by the encryption algorithm. This
allows us to define stateful chosen-ciphertext privacy notions, which are
stronger than the stateless notions. The original definition of stateful chosen-
ciphertext security was proposed in [BKN02] using the flavor LoR. Many
extensions on secure channels also use a LoR oracle, see for example [GM17]
and [BDPS12]. A similar notion using the flavor $ has also been defined, for
example in [BDPS13].

For FL ∈ {SEM,FtG, LoR,RoR} it is fairly straightforward to define the no-
tion FL-sfCCA. Instead of the set S, we initialise two counters i and j, which
count the encryption and decryption queries, and a bit sync. The counters
are used to notice when a mistake in the sequence of decrypted ciphertexts
occurs. If such a mistake occurs, then the scheme is no longer bound by
correctness, so we no longer need to suppress decryption queries. As long
as there was no mistake we say the game is in-sync, after a mistake has
occurred we call it out-of-sync. The bit sync to keeps track of this. In par-
ticular, a decryption query (and the ciphertext sent in this query) is called
in-sync if at the end of the query sync = 0 and out-of-sync otherwise.

The encryption and challenge queries generally work the same as in the cor-
responding FL-CPA games, except that for each query where an encryption
takes place we increase i and save the returned ciphertext as ci. The decryp-
tion queries are somewhat different. First the input c is decrypted. We then
update sync by checking if j > i, so if the adversary has decrypted more

26

3.1. Stateful chosen-ciphertext security

Game FL-sfCCASE (k, b)

1 : proc InitFL-sfCCA()

2 : i← 0
3 : j← 0
4 : sync← 1
5 : k← InitFL-CPA()

6 : return k

7 : proc EncFL-sfCCA(m)

8 : c← EncFL-CPA(m)

9 : if c 6= ⊥
10 : i← i + 1
11 : ci ← c
12 : return c

13 : proc DecFL-sfCCA(c)
14 : j← j + 1
15 : m← DecK(c)
16 : if j > i or c 6= cj

17 : sync← 0
18 : if sync = 1
19 : m← ⊥
20 : return m
21 :
22 :

23 : proc FinFL-sfCCA(d)

24 : return FinFL-CPA(d)

49 : proc Init$-sfCCA()

50 : i← 0
51 : j← 0
52 : sync← 1
53 : K ← KGenSE (k)
54 : return k

55 : proc Enc$-sfCCA(m)

56 : i← i + 1

57 : c(0)i ← {0, 1}l(|m|)

58 : c(1)i ← EncK(m)

59 : return c(b)i

60 : proc Dec$-sfCCA(c)
61 : j← j + 1

62 : if j > i or c 6= c(b)j

63 : sync← 0
64 : if sync = 1
65 : m← ⊥

66 : DecK(c
(1)
i)

67 : else
68 : m← DecK(c)
69 : return m

70 : proc Fin$-sfCCA(d)
71 : return d

Figure 3.1: The game FL-sfCCA for FL ∈ {SEM, FtG, LoR, RoR, $} .

27

3.2. Relations of stateful chosen-ciphertext notions

than encrypted, or if c 6= cj, so the ciphertext is not the next ciphertext in
the order of encrypted ciphertexts. Note that once a game is out-of-sync it
remains so. If the game is in-sync, then we return ⊥. If it is out-of-sync, the
actual output of the decryption is returned. In particular, an adversary can
now decrypt a challenge ciphertexts as long as it is out-of-sync.

The decryption described above does not quite work for the flavor $. If
b = 0, then a random string is returned in encryption queries. If this ran-
dom string is sent in an in-sync decryption query, passing it to the decryp-
tion algorithm would result in undetermined and out-of-sync behaviour. So
for in-sync decryption queries we have to decrypt the ciphertext that was
encrypted in the corresponding encryption query instead.

Definition 3.1 (FL-sfCCA)
For FL ∈ {SEM,FtG, LoR,RoR, $} the chosen-ciphertext security of an encryp-
tion scheme SE with security parameter k against adversaries with runtime t us-
ing q queries totalling µ bits is defined by SecFL-sfCCA

SE (k, t, q, µ) using the game
FL-sfCCASE (k, b) depicted in Figure 3.1. The input for the queries are the same as
in the corresponding FL-CCA game. The challenge queries are only defined if they
exists in the corresponding FL-CPA game.

Note that we could also define stateful chosen-plaintext notions. They are
however equivalent to the stateless chosen-plaintext notions: If there are
no decryption queries, then keeping track of the order of the encrypted
messages does not change the game from the adversary’s perspective.

3.2 Relations of stateful chosen-ciphertext notions

The following two theorems show that the stateful chosen-ciphertext notion
is stronger than the normal chosen-ciphertext notion.

Theorem 3.2 (FL-sfCCA ⇒ FL-CCA)
Let SE be a symmetric encryption scheme and FL ∈ {SEM,FtG, LoR,RoR, $} .
There exists a constant c so that for any k, t, q and µ we have

SecFL-CCA
SE (k, t, q, µ) ≤ SecFL-sfCCA

SE (k, t + cq, q, µ).

Proof Assume AFL-CCA ∈ AFL-CCA
(t,q,µ) is an adversary. We construct an adver-

sary AFL-sfCCA ∈ AFL-sfCCA
(t+cq,q,µ) for an appropriate c. The new adversary runs

AFL-CCA and is defined as follows, where m and d depend on the flavor and
the challenge queries only apply to the appropriate flavors.

28

3.2. Relations of stateful chosen-ciphertext notions

AFL-sfCCA

1 : proc InitFL-CCA()

2 : S← ∅
3 : return InitFL-sfCCA()

4 : proc EncFL-CCA(m)

5 : c← EncFL-sfCCA(m)

6 : S← S
⋃

c

7 : return c

8 : proc ChalFL-CCA(m)

9 : c← ChalFL-sfCCA(m)

10 : S← S
⋃

c

11 : return c

12 : proc DecFL-CCA(c)
13 : if c ∈ S
14 : m← ⊥
15 : else
16 : m← DecFL-sfCCA(c)
17 : return m

18 : proc FinFL-CCA(d)

19 : return FinFL-sfCCA(d)

The number of queries and their bitsize are the same. The difference in
runtime consists of the updating and checking of S in AFL-sfCCA and of i and
j in EncFL-sfCCA and DecFL-sfCCA. This can be bounded by a constant c for
each query.

As all in-sync decryption queries are contained in S, any decryption query
that is sent to the decryption oracle is out-of-sync, and therefore the decryp-
tion is returned. Any decryption of a ciphertext not contained in S would
be out-of-sync in a FL-CCA game as well, so AFL-sfCCA simulates the game
FL-CCASE (k, b) for the value of b as in the actual FL-sfCCA game and there-
fore has the same advantage as AFL-CCA, as desired. �

For the converse statement we prove a stronger result, namely that the state-
ful notions are not attainable by schemes which fulfil the stateless correct-
ness notion. This implies that F1-CCA 6⇒ F2-sfCCA for any two flavors F1
and F2, under the assumption that there exists a scheme SE which fulfils
stateless correctness so that SecF1-CCA

SE is small.

Theorem 3.3
Let SE be a scheme which fulfils the stateless correctness notion. There exist t and
µ so that

SecFtG-sfCCA
SE (k, t, 3, µ) = 1.

Proof Consider an adversary that sends a challenge query with two dif-
ferent messages and then sends two decryption queries with the returned
ciphertext. The message space and the runtime of these queries determine
the values of t and µ, but they are fairly small. The first decryption query

29

3.3. Relations between stateful notions

is in-sync, so ⊥ is returned. The second query is out-of-sync, so its decryp-
tion is returned. As the scheme fulfils stateless correctness, this is the actual
decryption. By Lemma 2.15, this allows the adversary to achieve advantage
1. �

We actually do not need to assume stateless correctness to prove this the-
orem. It suffices to assume that there exists some sequence of encryptions
and decryptions so that an out-of-sync decryption query leaks information
about the plaintext. We will take a closer look at interplay of correctness
and privacy in Chapter 7.

3.3 Relations between stateful notions

Theorem 3.4 (Relations of LoR-, RoR-, FtG-, SEM- and $-sfCCA)
The Theorems 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13 and 2.14 hold if we replace
CPA with sfCCA. Also we have FtG-sfCCA → LoR-CCA and LoR-sfCCA 6⇒
$-CCA.

Proof Similar to the proof of Theorem 2.17, we can forward the decryption
queries in each reduction to create a reduction for the sfCCA-notions of each
flavor. The claimed resources and bounds on advantage are not affected by
this. The schemes used as counterexamples in Theorem 2.17 can also be
applied to stateful schemes and also show the last two statements. �

An overview of the notion and relations of this chapter can be found in
Figure 4.7.

30

Chapter 4

Integrity and authenticated encryption

4.1 Integrity

The notions defined so far only ensure the privacy of encryption schemes.
We now wish to also consider their integrity. Integrity ensures that an ad-
versary cannot forge ciphertexts. To model attacks on the integrity of en-
cryption schemes we define games in which an adversary with access to a
truthful encryption oracle attempts to forge a valid ciphertext.

For schemes which fulfil stateless correctness we define two notions of in-
tegrity, plaintext integrity INT-CTXT and ciphertext integrity INT-PTXT, fol-
lowing the definitions from [BN00]. For ciphertext integrity, the adversary
simply has to forge a new ciphertext, for plaintext integrity it has to forge a
ciphertext for a message which was not encrypted yet. Similarly, we define
two notions for the stateful correctness, INT-sfCTXT and INT-sfPTXT. In the
first, originally defined in [BKN02], the adversary has to send an out-of-sync
decryption query with a valid ciphertext. In the second, originally defined
for a somewhat different scenario in [BSWW13], the adversary has to send
a ciphertext that decrypts to an out-of-sync plaintext. These games do not
have a bit b, so the advantage of adversaries is defined slightly differently.
Also these games do not have flavors of encryption, so they do not fit in to
the naming scheme used so far. Instead we use their classical names.

Definition 4.1 (INT-(sf)CTXT/(sf)PTXT)
For X ∈ {CTXT,PTXT, sfCTXT, sfPTXT} let

AdvINT-X
SE ,A (k) = Pr[INT-XASE (k) = 1]

where INT-XASE (k)k is the outcome of the game INT-XSE (k) depicted in Figure 4.1.
The input for encryption queries are messages m ∈ M and for decryption queries
strings c.

31

4.1. Integrity

Game INT-CTXTSE (k)

1 : proc InitINT-CTXT()

2 : K←$ KGen(k)
3 : win← 0
4 : S← ∅
5 : return k

6 : proc EncINT-CTXT(m)

7 : c← EncK(m)

8 : S← S ∪ {c}
9 : return c

10 : proc DecINT-CTXT(c)
11 : m← DecK(c)
12 : if m 6= ⊥ and c /∈ S
13 : win← 1
14 : return m 6= ⊥

15 : proc FinINT-CTXT()

16 : return win

Game INT-sfCTXTSE (k)

1 : proc InitINT-sfCTXT()

2 : K←$ KGen(k)
3 : win← 0
4 : i← 0
5 : j← 0
6 : sync← 1
7 : return k

8 : proc EncINT-sfCTXT(m)

9 : i← i + 1
10 : mi ← m
11 : ci ← EncK(m)

12 : return ci

13 : proc DecINT-sfCTXT(c)
14 : j← j + 1
15 : m← DecK(c)
16 : if j > i or c 6= cj

17 : sync← 0
18 : if m 6= ⊥ and sync = 0
19 : win← 1
20 : return m 6= ⊥

21 : proc FinINT-sfCTXT()

22 : return win

Figure 4.1: The games for the notions INT-CTXT and INT-sfCTXT. The game for INT-PTXT is
defined by replacing the line 12 of the INT-CTXT game with if m 6= ⊥ and m /∈ S. The game for
INT-sfPTXT is defined by replacing the line 16 of the INT-sfCTXT game with if j > i or m 6= mj.

The integrity of an encryption scheme SE with security parameter k against adver-
saries with runtime t using q queries totalling µ bits is defined by SecINT-X

SE (k, t, q, µ).

Similarly to the privacy notions, the stateful integrity notions imply the
stateless version.

Theorem 4.2 (INT-sfPTXT ⇒ INT-PTXT, INT-sfCTXT ⇒ INT-CTXT)
Let SE be a symmetric encryption scheme. There exists a constant c so that for any
k, t, q and µ we have

SecINT-PTXT
SE (k, t, q, µ) ≤ SecINT-sfPTXT

SE (k, t + cq, q, µ).

SecINT-CTXT
SE (k, t, q, µ) ≤ SecINT-sfCTXT

SE (k, t + cq, q, µ).

32

4.1. Integrity

Proof For the first statement assume we have an adversaryAINT-PTXT for the
INT-PTXT game. We define an adversary AINT-sfPTXT for the INT-sfPTXT
game that runs AINT-PTXT and simply forwards its queries. This simulates
the INT-PTXT game. Consider the query (if any) which would set win to 1
in the simulated INT-PTXT game. The decryption of the ciphertext sent in
this query was never encrypted. In particular, it was not the j-th message
encrypted, so sync is set to 0 and win is set to true in the INT-sfPTXT game
as well. The switch in games results in a constant runtime increase per
query.

The same argument holds for the INT-CTXT and INT-sfCTXT games. �

Next we show that ciphertext integrity is stronger than plaintext integrity.

Theorem 4.3 (INT-(sf)CTXT ⇒ INT-(sf)PTXT)
Let SE be a symmetric encryption scheme. For any k, t, q and µ we have

Sec
INT-(sf)PTXT
SE (k, t, q, µ) ≤ Sec

INT-(sf)CTXT
SE (k, t, q, µ).

On the other hand we have INT-sfPTXT 6⇒ INT-CTXT, so there exists an encryp-
tion scheme SE ′ and a constant c so that

SecINT-sfPTXT
SE ′ (k, t, q, µ) = SecINT-sfPTXT

SE (k, t + cq, q, µ)

SecINT-CTXT
SE ′ (k, t, 2, µ) = 1

Proof Assume AINT-(sf)PTXT ∈ A
INT-(sf)PTXT
(t,q,µ) is an adversary and define an

adversary AINT-(sf)CTXT ∈ A
INT-(sf)CTXT
(t,q,µ) that runs AINT-(sf)PTXT and simply

forwards its queries. This adversary uses the stated resources and simulates
the INT-(sf)PTXT game. Now consider the query (if any) which would set
win to 1 in the simulated INT-(sf)PTXT game. We now differentiate between
the stateless and stateful scenario. In the stateless scenario the ciphertext
sent in this query must be new, as otherwise (by stateless correctness) it
would not decrypt to a new message. So this query also sets win to 1 in the
INT-CTXT game. In the stateful scenario, note that (by stateful correctness)
m 6= mj implies that c 6= cj, so this query is out-of-sync and win is also set
to 1 in the INT-(sf)CTXT game. So we have

AdvINT-PTXT
SE ,AINT-PTXT

(k) ≤ AdvINT-CTXT
SE ,AINT-CTXT

(k),

as desired. For the separation consider the scheme SE ′ defined in Theorem
2.18 which adds a random bit to the front of each ciphertext. For an adver-
sary in the INT-sfPTXT against SE ′ we can construct an adversary against
SE in the same game, which adds and removes this bit appropriately. This
simulates the game against SE ′ and uses the stated resources, so the first
statement holds. For the second consider an adversary for the INT-CTXT

33

4.1. Integrity

game which encrypts an arbitrary message and then decrypts the same ci-
phertext with the first bit flipped. This ciphertext is new and decrypts to
original message, so the adversary wins. The adversary uses the claimed
resources. Note that this argument combined with Theorem 4.2 also shows
that INT-sfPTXT 6⇒ INT-sfCTXT and INT-PTXT 6⇒ INT-sfCTXT. �

Similarly to Theorem 3.3, the stateful notions of integrity cannot be achieved
by schemes which fulfil stateless correctness.

Theorem 4.4
Let SE be an encryption scheme which fulfils stateless correctness. There exist t
and µ so that

SecINT-sfPTXT
SE (k, t, 5, µ) = 1.

Proof Consider an adversary which encrypts an arbitrary message and then
decrypts the returned ciphertext twice. The second decryption query sets
win to 1. The message space and the runtime of these queries determine the
values of t and µ. �

This theorem also implies (under the assumption that a scheme with state-
less integrity exist) that stateful integrity does not only imply stateless in-
tegrity as we saw above, but is indeed stronger. Specifically, the following
relation holds:

INT-PTXT 6⇒ INT-sfPTXT
INT-CTXT 6⇒ INT-sfCTXT
INT-CTXT 6⇒ INT-sfPTXT.

As the next two theorems show, the notions of integrity are not comparable
with the notion defined so far.

Theorem 4.5 ($-sfCCA 6⇒ INT-PTXT)
Let SE be a symmetric encryption scheme. There exists an encryption scheme SE ′
so that for any k, t, q and µ we have

Sec$-sfCCA
SE ′ (k, t, q, µ) = Sec$-sfCCA

SE (k, t, q, µ)

SecINT-PTXT
SE ′ (k, t, 1, µ) = 1

Proof Consider the following scheme SE ′

34

4.1. Integrity

Scheme SE ′

1 : proc KGenSE ′(k)
2 : K ← KGenSE (k)
3 : return K

4 : proc EncSE ′(K, m)

5 : c← EncSE (K, m)

6 : return c

7 : proc DecSE ′(K, c)
8 : m = DecSE (K, c)
9 : if m = ⊥

10 : m← 0
11 : return m

An adversary in the INT-PTXT game can simply query an arbitrary string
for decryption. As the decryption algorithm of SE ′ never outputs ⊥, this
adversary always wins. On the other hand consider an adversary in the
$-sfCCA game against SE ′. We can construct an adversary against SE by
forwarding encryption queries and replacing ⊥ with 0 in the answers to
decryption queries. This simulates the game against SE ′ with the same
value of b, so the advantage is preserved. �

Theorem 4.6 (INT-sfCTXT 6⇒ FtG-CPA)
Let SE be a symmetric encryption scheme and FL ∈ {SEM,FtG, LoR,RoR, $} .
There exists an encryption scheme SE ′ so that for any k, t, q and µ we have

SecINT-sfCTXT
SE ′ (k, t, q, µ) = SecINT-sfCTXT

SE (k, t + cq, q, µ)

SecFL-CPA
SE ′ (k, t, q, µ) = 1

Proof Consider the following scheme:

Scheme SE ′

1 : proc KGenSE ′(k)
2 : K←$ KGenSE (k)
3 : return K

4 : proc EncSE ′(K, m)

5 : c← EncSE (K, m)

6 : c′ ← (c, m)

7 : return c′

8 : proc DecSE ′(K, c′)

9 : (c, m)← c′

10 : m′ ← DecSE (K, c)

11 : if m′ 6= m

12 : m′ ← ⊥
13 : return m′

Assuming we have an adversary for the INT-(sf)CTXT game against SE ′
we can construct an adversary against SE which uses the claimed resources
that adds, removes and checks the message itself. This simulates the game
against SE ′, so the first statement holds. By Lemma 2.15 we have

SecFtG-CPA
SE ′ (k, t, q, µ) = 1,

implying the second statement. �

35

4.2. Authenticated encryption

INT-CTXT

INT-PTXT

INT-sfCTXT

INT-sfPTXT

\ \

\

\

\

$′-sfCCA

FtG-CPA

\

\

Figure 4.2: An overview of the relations between notions of integrity.

4.2 Authenticated encryption

We have now established privacy and integrity as two separate goals for
encryption schemes. Of course we are actually interested in schemes which
provide both. Such schemes are often denoted authenticated encryption
schemes, first introduced in [BN00] as the combination of LoR-CPA and
INT-CTXT. This combination is shown there to imply LoR-CCA, a result
known as generic composition. Similarly, authenticated encryption for state-
ful schemes was originally introduced as the combination of LoR-CPA and
INT-sfCTXT and shown to imply LoR-sfCCA in [BKN02].

In [Shr04] a combined notion IND-CCA3 is introduced and shown to be
equivalent to the combination of RoR-CPA and a version of INT-CTXT. In
[RS06] a combined game was defined using a $-type oracle. For stateful
schemes a combined game using a LoR oracle was defined in [BHMS15].
Interestingly, to our knowledge no stateful authenticated encryption notion
has been defined using a $-type oracle. This is probably due to the fact
that most stateful schemes defined in the past have contained some sort of
header information which is distinguishable from random noise. We now
define such a notion and will see in Chapter 6 that TLS 1.3 actually achieves
it.

The idea behind this combined notion is that the adversary can win the
game if it breaks either the integrity or the privacy of the scheme. This is
achieved by taking the FL-(sf)CCA game and replacing the truthful decryp-
tion oracle with a challenge decryption oracle, which returns ⊥ if b = 0. If
the adversary can forge a valid ciphertext, than it can distinguish whether
decryption queries are being suppressed.

Definition 4.7 (FL-(sf)AE)
For FL ∈ {SEM,FtG, LoR,RoR, $} the authenticated encryption security of an
encryption scheme SE with security parameter k against adversaries with runtime
t using q queries totalling µ bits is defined by Sec

FL-(sf)AE
SE (k, t, q, µ) using the game

FL-(sf)AESE (k, b) depicted in Figure 4.3. The input for the queries are the same as
in the corresponding FL-CCA game. The challenge queries are only defined if they
exists in the corresponding FL-CPA game.

36

4.2. Authenticated encryption

Game FL-(sf)AESE (k, b)

1 : proc InitFL-(sf)AE()

2 :
3 :
4 : return InitFL-(sf)CCA()

5 : proc EncFL-(sf)AE(m)

6 : c← EncFL-(sf)CCA(m)

7 : return c

8 : proc ChalFL-(sf)AE(m)

9 : c← ChalFL-(sf)CCA(m)

10 : return c

11 : proc DecFL-(sf)AE(c)

12 : if b = 0
13 : m← ⊥
14 : else
15 : m← DecFL-(sf)CCA(c)

16 : return m

17 : proc FinFL-(sf)AE(d)

18 : return FinFL-(sf)CCA(d)

Game $-AESE (k, b)

1 : proc Init$-AE()

2 : S← ∅
3 : K←$ KGen(k)
4 : return k

5 : proc Enc$-AE(m)

6 : c0←$ {0, 1}l(|m|)

7 : c1 ← EncK(m)

8 : S← S ∪ {cb}
9 : return cb

10 :

11 : proc Dec$-AE(c)
12 : if b = 0 or c ∈ S
13 : m← ⊥
14 : else
15 : m← DecK(c)

16 : return m

17 : proc Fin$-AE(d)

18 : return d

Figure 4.3: The games for the notions FL-(sf)AE and $-AE.

Our first question is whether the relations between the different flavors are
the same. Indeed, the following theorem shows that they are.

Theorem 4.8 (Relations of LoR-, RoR-, FtG-, SEM- and $-(sf)AE)
The Theorems 2.6 (RoR-CPA ⇒ LoR-CPA), 2.7 (LoR-CPA ⇒ RoR-CPA), 2.8
(LoR-CPA ⇒ FtG-CPA), 2.9 + 2.10 (FtG-CPA → LoR-CPA), 2.11 (SEM-CPA ⇒
FtG-CPA), 2.12 (FtG-CPA ⇒ SEM-CPA), 2.13 ($-CPA ⇒ LoR-CPA) and 2.14
(LoR-CPA 6⇒ $-CPA) hold if we replace CPA with AE or with sfAE.

Also we have FtG-(sf)AE→ LoR-(sf)CCA, FtG-sfAE→ LoR-AE, LoR-(sf)AE 6⇒
$-(sf)CCA and LoR-sfAE 6⇒ $-AE.

Proof As in Theorem 2.17 and Theorem 3.4, we can forward the decryption
queries to prove the reductions. The counterexample of Theorem 2.14 holds
if we use the scheme constructed in Theorem 2.17. The counterexample of
Theorem 2.10 however does not hold any more, as for any message m the

37

4.2. Authenticated encryption

ciphertext 0 ‖m is now a valid ciphertext. This allows an adversary to easily
check whether the decryption oracle is actually decrypting messages or just
returning ⊥.

Instead we define a new scheme SE ′. This scheme still leaks the encrypted
message for one randomly chosen encryption query, but does it in a way that
preserves integrity. Specifically, the scheme now appends a bit b to the mes-
sage before encrypting using the encryption of SE . For the random query
that leaks the encrypted message b = 1, otherwise b = 0. The ciphertexts in
this scheme consists of b, the ciphertext and possibly the message. The de-
cryption algorithm checks that the bit matches the first bit of the decrypted
ciphertext. This ensures that an adversary cannot generate a valid new ci-
phertext by flipping the bit, as it would have to generate the appropriate
ciphertext for the message with first bit flipped.

Scheme SE ′

1 : proc KGenSE ′(k)
2 : K←$ KGenSE (k)
3 : i← 0
4 : j←$ {1, . . . , q}
5 : return (K, (i, j))

6 : proc EncSE ′(K, m, (i, j))
7 : i← i + 1
8 : if j = i
9 : c← EncSE (K, 1 ‖m)

10 : c′ ← (1, c, m)

11 : else
12 : c← EncSE (K, 0 ‖m)

13 : c′ ← (0, c, 0)
14 : return (c′, (i, j))

14 : proc DecSE ′(K, c′)

15 : (b, c, m)← c′

16 : m′ ← DecSE (K, c)

17 : if b = 1 and m′ 6= m

18 : m′ ← ⊥
19 : return m′

An adversary in the LoR-(sf)AE game which queries two different messages
q times can achieve advantage 1, as the j-th query leaks which message was
encoded.

On the other hand, assume we have an adversary for the FtG-(sf)AE game
against SE ′. We can construct an adversary against SE that chooses j it-
self and simulates SE ′. This only fails if the j-th encryption query is the
challenge query. This is now the same scenario as in Theorem 2.10 and the
remaining proof follows the same way. �

Next we show that the AE notions imply the CCA notions of the same flavor.

38

4.2. Authenticated encryption

Theorem 4.9 (FL-(sf)AE ⇒ FL-(sf)CCA)
Let SE be a symmetric encryption scheme and FL ∈ {SEM,FtG, LoR,RoR, $} .
There exists a constant c so that for any k, t, q and µ we have

Sec
FL-(sf)CCA
SE (k, t, q, µ) ≤ 2 · SecFL-(sf)AE

SE (k, t + cq, q, µ).

Proof This proof is based on the ideas from Theorem 3.1 [BN00], which
considers the stateless case and the flavor LoR and Proposition 6.4 from
[BKN02], which considers the stateful version of LoR. Note that because
of Theorem 2.17, Theorem 3.4 and Theorem 4.8, it suffices to prove the
statement for FL ∈ {LoR,FtG, $}. Consider an adversary AFL-(sf)CCA ∈
A
FL-(sf)CCA
(t,q,µ) . Note that the games FL-(sf)AESE (k, 1) and FL-(sf)CCASE (k, 1)

are the same. We now define a game FL0-(sf)AE, which has the same queries
as FL-(sf)AE. Encryption and challenge queries however do not depend on
the value of b, instead they are always answered as if b = 0. Additionally,
decryption queries are reversed, so for b = 0 they are answered, for b = 1
⊥ is returned. Note that the game FL0-(sf)AESE (k, 1) is equal to the game
FL-(sf)AESE (k, 0) and similarly the game FL0-(sf)AESE (k, 0) is equal to the
game FL-(sf)CCASE (k, 0). So we have

Adv
FL-(sf)CCA
SE ,AFL-(sf)CCA

(k)

= Pr[FL-(sf)CCA
AFL-(sf)CCA
SE (k, 1) = 1]− Pr[FL-(sf)CCA

AFL-(sf)CCA
SE (k, 0) = 1]

= Adv
FL-(sf)AE
SE ,AFL-(sf)CCA

(k) + Adv
FL0-(sf)AE
SE ,AFL-(sf)CCA

(k).

We now construct an adversary AFL-(sf)AE which runs AFL-(sf)CCA and sim-
ulates the FL0-(sf)AE game. The goal of this adversary is to always simu-
late encryption queries for b = 0. This is fairly straightforward for FL ∈
{LoR,FtG}, as the adversary can send (m0, m0) to ensure that m0 is en-
crypted. For $ we have to be somewhat more careful. To ensure that a
random ciphertext is returned, the adversary samples one itself. For the
stateless version, the adversary does not even have to call Enc$-AE. Decryp-
tion queries containing these random strings are ignored, as expected by
A$-CCA. For the stateful version, the adversary has to call Enc$-sfAE to ensure
that the state is progressed. It still samples an additional random string to
return to A$-sfCCA and ensures that the correct ciphertext is decrypted for
in-sync decryption queries. Finally, the output of AFL-(sf)CCA is reversed to
capture the reversed decryption oracle in the FL0-(sf)AE game. The adver-
saries for each flavor can be found in Figure 4.4. They use the same number
of queries with the same size. The runtime of each query is only increased
by constant operations, note in particular that the random sampling of a
message in the Enc$-(sf)CCA queries happens in AFL-(sf)AE instead of, not in
addition to, in the $-(sf)CCA game. So the claimed resources are used.

39

4.2. Authenticated encryption

ALoR-(sf)AE

1 : proc InitLoR-(sf)CCA()

2 : return InitLoR-(sf)AE()

3 : proc EncLoR-(sf)CCA(m0, m1)

4 : c← EncLoR-(sf)AE(m0, m0)

5 : return c

6 : proc DecLoR-(sf)CCA(c)

7 : m← DecLoR-(sf)AE(c)

8 : return m

9 : proc FinLoR-(sf)CCA(d)

10 : return FinLoR-(sf)AE(1− d)

AFtG-(sf)AE

1 : proc InitFtG-(sf)CCA()

2 : return InitFtG-(sf)AE()

3 : proc EncFtG-(sf)CCA(m)

4 : c← EncFtG-(sf)AE(m)

5 : return c

6 : proc ChalFtG-(sf)CCA(m0, m1)

7 : c← EncFtG-(sf)AE(m0, m0)

8 : return c

9 : proc DecFtG-(sf)CCA(c)

10 : m← DecFtG-(sf)AE(c)

11 : return m

12 : proc FinFtG-(sf)CCA(d)

13 : return FinFtG-(sf)AE(1− d)

A$-AE

1 : proc Init$-CCA()

2 : S← ∅
3 : return Init$-AE()

4 : proc Enc$-CCA(m)

5 : c←$ {0, 1}l(|m|)

6 : S← S ∪ c
7 : return c′

8 : proc Dec$-CCA(c)
9 : if c ∈ S

10 : m← ⊥
11 : else
12 : m← Dec$-AE(c)
13 : return m

14 : proc Fin$-CCA(d)
15 : return Fin$-AE(1− d)

A$-sfAE

1 : proc Init$-sfCCA()

2 : i← 0
3 : j← 0
4 : sync← 1
5 : return Init$-sfAE()

6 : proc Enc$-sfCCA(m)

7 : i← i + 1

8 : ci←$ {0, 1}l(|m|)

9 : c′i ← Enc$-sfAE(m)

10 : return ci

11 : proc Dec$-sfCCA(c)
12 : j← j + 1
13 : if j > i or c 6= cj

14 : sync← 0
15 : if sync = 1
16 : Dec$-sfAE(c

′
j)

17 : m← ⊥
18 : else
19 : m← Dec$-sfAE(c)
20 : return m

21 : proc Fin$-(sf)CCA(d)

22 : return Fin$-(sf)AE(1− d)

Figure 4.4: The adversaries constructed in the proof of Theorem 4.9

40

4.3. Relation between AE-security and integrity

These adversaries simulate the respective FL0-(sf)AE game with the same
bit b as in the FL-(sf)AE and therefore have the same advantage, so we have

Adv
FL0-(sf)AE
SE ,AFL-(sf)CCA

(k) ≤ Adv
FL-(sf)AE
SE ,AFL-(sf)AE

(k),

proving the statement. �

This theorem combined with Theorem 4.6 shows that the AE notions are
not implied by integrity. Also we see below in Theorem 4.13 that AE notions
imply integrity. This together with Theorem 4.5 and Theorem 4.3 shows that
$-sfCCA 6⇒ FtG-AE, so AE notions are indeed stronger than CCA notions.

The next two theorems are the equivalent of Theorem 3.2 and Theorem 3.3
and show that the sfAE notions are stronger than the AE notions. Their
proofs can be applied directly and are therefore omitted.

Theorem 4.10 (FL-sfAE ⇒ FL-AE)
Let SE be a symmetric encryption scheme. There exists a constant c so that for any
k, t, q and µ we have

SecFL-AE
SE (k, t, q, µ) ≤ SecFL-sfAE

SE (k, t + cq, q, µ).

Theorem 4.11
Let SE be a stateless encryption scheme and take FL ∈ {SEM,FtG, LoR,RoR, $} .
Then SecFL-sfAE

SE (k, t, 3, µ) = 1.

The same argument used here also can be used to show that $-AE 6⇒
FtG-sfCCA, so the sfCCA and AE notions are incomparable.

4.3 Relation between AE-security and integrity

The following results are based on Theorem 1 and 2 from [Shr04], which
consider the stateless scenario and the flavor RoR.

To prove the relations between AE-security and integrity we use two other
games to bound advantages. The first we call FL1-(sf)AE. It has the same
queries as FL-(sf)AE, however the encryption and challenge queries always
return the values of the game FL-(sf)AESE (k, 1), even if actually b = 0. The
initialisation, finalisation and decryption queries work normally.

The second, FL⊥-(sf)AE, also has the same queries as FL-(sf)AE. Here the
decryption queries always return the value of FL-(sf)AE with b = 0 (so
always ⊥). The initialisation, finalisation, encryption and challenge queries
work normally.

Note that for an adversary A we have

Pr[FL-(sf)AEASE (k, 1) = 1] = Pr[FL1-(sf)AEASE (k, 1) = 1],

41

4.3. Relation between AE-security and integrity

Pr[FL1-(sf)AEASE (k, 0) = 1] = Pr[FL⊥-(sf)AE
A
SE (k, 1) = 1]

and
Pr[FL-AEASE (k, 0) = 1] = Pr[FL⊥-(sf)AE

A
SE (k, 0) = 1]

Theorem 4.12 (FL-CPA + INT-(sf)CTXT ⇒ FL-(sf)AE)
Let FL ∈ {SEM,FtG, LoR,RoR, $} and let SE be a symmetric encryption scheme.
For any k, t, q and µ we have

Sec
FL-(sf)AE
SE (k, t, q, µ) ≤ SecFL-CPA

SE (k, t, q, µ) + Sec
INT-(sf)CTXT
SE (k, t, q, µ).

Proof Let AFL-(sf)AE ∈ A
FL-(sf)AE
(t,q,µ) be an adversary. We have

Adv
FL-(sf)AE
SE ,AFL-(sf)AE

(k)

= Pr[FL-(sf)AE
AFL-(sf)AE
SE (k, 1) = 1]− Pr[FL-(sf)AE

AFL-(sf)AE
SE (k, 0) = 1]

= Pr[FL-(sf)AE
AFL-(sf)AE
SE (k, 1) = 1]− Pr[FL1-(sf)AE

AFL-(sf)AE
SE (k, 0) = 1]

+ Pr[FL⊥-(sf)AE
AFL-(sf)AE
SE (k, 1) = 1]− Pr[FL-(sf)AE

AFL-(sf)AE
SE (k, 0) = 1]

= Adv
FL1-(sf)AE
SE ,AFL-AE

(k) + Adv
FL⊥-(sf)AE
SE ,AFL-(sf)AE

(k)

Note first that it is easy to construct an adversary AFL-CPA with

AdvFL-CPA
SE ,AFL-CPA

(k) = Adv
FL⊥-(sf)AE
SE ,AFL-(sf)AE

(k).

Simply run AFL-(sf)AE and respond to its decryption queries with ⊥. This
simulates the FL⊥-(sf)AE game with the same value of b.

Now consider the adversary AINT-(sf)CTXT for the INT-(sf)CTXT game which
runs AFL-(sf)AE (as an adversary for the FL1-(sf)AE game) defined in Figure
4.5. This adversary uses the stated resources and simulates the FL1-(sf)AE
game up until the first time something other than ⊥ is returned to AFL-(sf)AE
for a decryption query. In stateless case this happens if b = 1 and AFL-AE
queries a new ciphertext c so that DecK(c) 6= ⊥. In the stateful case this
ciphertext must only be out-of-sync, not new. So consider the event W that
AFL-AE at some point queries a new (or out-of-sync) valid ciphertext. If this
does not occur, then the values returned to AFL-(sf)AE in the entire game do
not depend on b. So we have

Pr[FL1-(sf)AE
AFL-(sf)AE
SE (k, 1) = 1 |W] = Pr[FL1-(sf)AE

AFL-(sf)AE
SE (k, 0) = 1]

So

Adv
FL1-(sf)AE
SE ,AFL-(sf)AE

(k) = Pr[W]Pr[FL1-(sf)AE
AFL-(sf)AE
SE (k, 1) = 1 |W]

+ Pr[W]Pr[FL1-(sf)AE
AFL-(sf)AE
SE (k, 0) = 1]

− Pr[FL1-(sf)AE
AFL-(sf)AE
SE (k, 0) = 1]

≤ Pr[W]

42

4.3. Relation between AE-security and integrity

AINT-(sf)CTXT

1 : proc InitFL-(sf)AE()

2 : return InitINT-(sf)CTXT()

3 : proc EncLoR-(sf)AE(m0, m1)

4 : c← EncINT-(sf)CTXT(m1)

5 : return c

6 : proc EncRoR-(sf)AE(m1)

7 : c← EncINT-(sf)CTXT(m1)

8 : return c

9 : proc Enc$-(sf)AE(m)

10 : c← EncINT-(sf)CTXT(m)

11 : return c

12 : proc EncFtG-(sf)AE(m)

13 : c← EncINT-(sf)CTXT(m)

14 : return c

18 : proc ChalFtG-(sf)AE(m0, m1)

19 : c← EncINT-(sf)CTXT(m1)

20 : return c

21 : proc EncSEM-(sf)AE(m)

22 : c← EncINT-(sf)CTXT(m)

23 : return c

24 : proc ChalSEM-(sf)AE(M̃)

25 : m1←$ M̃
26 : c← EncINT-(sf)CTXT(m1)

27 : return c

28 : proc DecFL-(sf)AE(c)

29 : DecINT-(sf)CTXT(c)
30 : return ⊥

31 : proc FinFL-(sf)AE(d)

32 : return FinINT-(sf)CTXT()

Figure 4.5: The adversary used in the proof of Theorem 4.12.

But if W occurs, then AINT-(sf)CTXT wins its game, so

Adv
FL1-(sf)AE
SE ,AFL-(sf)AE

(k) ≤ Adv
INT-(sf)CTXT
SE ,AINT-(sf)CTXT

(k).

All together we have

AdvFL-AE
SE ,AFL-AE

(k) = AdvINT-CTXT
SE ,AINT-CTXT

(k) + AdvFL-CPA
SE ,AFL-CPA

(k),

proving the claim. �

Theorem 4.13 (FL-(sf)AE ⇒ FL-CPA + INT-(sf)CTXT)
Let FL ∈ {SEM,FtG, LoR,RoR, $} and let SE be a symmetric encryption scheme.
There exists a constant c so that for any k, t, q and µ we have

SecFL-CPA
SE (k, t, q, µ) ≤ Sec

FL-(sf)AE
SE (k, t, q, µ)

Sec
INT-(sf)CTXT
SE (k, t, q, µ) ≤ 2 · SecFL-(sf)AE

SE (k, t + cq, q, µ).

Proof For an FL-CPA adversary we can construct an FL-(sf)AE adversary
with equal advantage by simply forwarding its queries. To prove the second
statement let AINT-(sf)CTXT be an adversary for the INT-(sf)CTXT game. We
begin by constructing an adversary AFL1-(sf)AE for the FL1-(sf)AE game.

43

4.3. Relation between AE-security and integrity

AFL1-(sf)AE

1 : proc InitINT-CTXT()

2 : d← 0
3 : return InitA

FL1-(sf)AE
()

4 : proc EncINT-CTXT(m)

5 : c← EncFL1-(sf)AE(m)

6 : return c

7 : proc DecINT-CTXT(c)
8 : m← DecFL1-(sf)AE(c)

9 : if m 6= ⊥
10 : d← 1
11 : return m 6= ⊥

12 : proc FinINT-CTXT()

13 : return FinFL1-(sf)AE(d)

This adversary uses the stated resources. Note that if b = 0 in the FL1-(sf)AE

game then d is always 0, so Pr[FL1-(sf)AE
AFL1-(sf)AE
SE (k, 0) = 1] = 0. For b =

1, AFL1-(sf)AE simulates the INT-CTXT game and if AINT-(sf)CTXT wins the
simulated game then d is set to 1.

Adv
INT-(sf)CTXT
SE ,AINT-(sf)CTXT

(k) = Adv
FL1-(sf)AE
SE ,AFL1-(sf)AE

(k)

Now note that

Adv
FL1-(sf)AE
SE ,AFL1-(sf)AE

(k)

= Pr[FL1-(sf)AE
AFL1-(sf)AE
SE (k, 1) = 1]− Pr[FL-(sf)AE

AFL1-(sf)AE
SE (k, 0) = 1]

+ Pr[FL-(sf)AE
AFL1-(sf)AE
SE (k, 0) = 1]− Pr[FL1-(sf)AE

AFL-(sf)AE
SE (k, 0) = 1]

= Adv
FL-(sf)AE
SE ,AFL1-(sf)AE

(k) + Pr[FL⊥-(sf)AE
AFL1-(sf)AE
SE (k, 0) = 1]

− Pr[FL⊥-(sf)AE
AFL-(sf)AE
SE (k, 1) = 1]

Now consider an FL-(sf)AE adversary A which runs AFL1-(sf)AE and for-
wards its queries except for the decryption queries, which are answered
with ⊥. The bit in the finalisation query is flipped before being forwarded.
This simulates the AFL1-(sf)AE game with the same value of b, so

Pr[FL⊥-(sf)AE
AFL1-(sf)AE
SE (k, 0) = 1]− Pr[FL⊥-(sf)AE

AFL-(sf)AE
SE (k, 1) = 1]

≤ Adv
FL-(sf)AE
SE ,A (k)

This concludes the proof. �

We finish this chapter by giving an overview of the notions and relation so
far. Figure 4.6 depicts all of the notions for a single flavor along with the

44

4.3. Relation between AE-security and integrity

FL-CPA

FL-CCA

FL-AE

FL-sfCCA

FL-sfAE

INT-CTXT INT-sfCTXT

\
\ \

\

\

\ \

\

Figure 4.6: An overview of the relations between different notions for a flavor FL ∈
{SEM, FtG, LoR, RoR, $} .

LoR-CPA
RoR-CPA

$-CPA

FtG-CPA
SEM-CPA

LoR-CCA
RoR-CCA

$-CCA

FtG-CCA
SEM-CCA

$-sfCCA

LoR-sfCCA
RoR-sfCCA

FtG-sfCCA
SEM-sfCCA

$-sfAE

LoR-sfAE
RoR-sfAE

FtG-sfAE
SEM-sfAE

\

\

\

\

\ \

\

\

\

\ \
\

\

\

\ \

Figure 4.7: An overview over most of the notions defined so far. Notions in the same field are
equivalent, notions defined for the first time are in blue.

ciphertext integrity notions. Figure 4.7 depicts an overview over most of the
notions defined so far. The notions of integrity and stateless authenticated
encryption are omitted for readability. The sfCCA notions could be replaced
by the corresponding AE notions without changing any arrows.

45

Chapter 5

Progress-hiding encryption schemes

Consider an adversary which does not have access to a channel for the en-
tire communication. For example, the adversary could miss the beginning of
communication. It could also have access at the beginning, then not observe
the channel for while and then return. We wish to hide from such an ad-
versary the progress of the channel, so it should not be able to tell whether
messages were sent in its absence. We call this goal ”progress-hiding”.

The most obvious way that this information can be leaked is through se-
quence numbers which are used as nonces and sent along with the cipher-
text. This issue has been recognized, for example in [BNT19], where the
authors construct schemes which ensure that nonces are not visible. There
are however other ways progress can be leaked. In particular, an adversary
can abuse the correctness and integrity of a channel to learn things about
its progress. To properly analyse these attacks, we now formalize notions of
progress-hiding for active and passive adversaries, and show the relations
between these notions and the other notions defined so far.

5.1 Progress-hiding chosen-plaintext security

We begin with a passive adversary. We wish to ensure that ciphertexts do
not leak the number of messages that have been encrypted so far. We in
fact introduce two notions which provide progress-hiding encryption. Both
follow a similar idea. The adversary has access to a progress oracle, which
takes a plaintext and encrypts it if b = 1. This oracle represents messages
which might be sent when the adversary is absent. The adversary also has
access to a truthful encryption oracle, which allows it to examine ciphertexts.
This oracle represents the messages sent when the adversary is observing
the channel.

In the first notion, prePH-CPA, the adversary has access to these oracles in

46

5.1. Progress-hiding chosen-plaintext security

Game prePH-CPASE (k, b)

1 : proc InitprePH-CPA()

2 : K←$ KGen(k)
3 : phase← 0
4 : return k

5 : proc ProgprePH-CPA(m)

6 : if b = 1 and phase = 0
7 : EncK(m)

8 : return ⊥

9 : proc EncprePH-CPA(m)

10 : phase← 1
11 : c← EncK(m)

12 : return c

13 : proc FinprePH-CPA(d)
14 : return d

Game PH-CPASE (k, b)

1 : proc InitPH-CPA()

2 : K←$ KGen(k)
3 :
4 : return k

5 : proc ProgPH-CPA(m)

6 : if b = 1
7 : EncK(m)

8 : return ⊥

9 : proc EncPH-CPA(m)

10 :
11 : c← EncK(m)

12 : return c

13 : proc FinPH-CPA(d)
14 : return d

Figure 5.1: The games for prePH-CPA and PH-CPA.

two phases, first only to the progress oracle and then only to the encryption
oracle. This models an attack where the adversary misses the beginning
of the communication over a channel. In the second notion, PH-CPA, the
adversary has access to both oracles the entire game. This therefore addi-
tionally covers scenarios where the adversary is absent in the middle of the
communication.

Definition 5.1 ((pre)PH-CPA)
The progress-hiding chosen-plaintext security of an encryption scheme SE with se-
curity parameter k against adversaries with runtime t using q queries totalling µ

bits is defined by Sec
(pre)PH-CPA
SE (k, t, q, µ) using the game (pre)PH-CPASE (k, b) de-

picted in Figure 5.1. The input for the progress and encryption queries are messages
m ∈ M, the input for the finalization query is a bit d.

Clearly PH-CPA implies prePH-CPA, as we can forward all the the queries
of an adversary for prePH-CPA in a PH-CPA game. The following theorem
shows that PH-CPA is in fact stronger than prePH-CPA. This shows that it
may easier for adversary to learn something about the progress of a channel
if it saw some messages before it was absent.

Theorem 5.2
Let SE = (KGen,Enc,Dec) be an encryption scheme and fix q. Then there exists

47

5.1. Progress-hiding chosen-plaintext security

an encryption scheme SE ′ and a constant c so that for any k, t and µ we have

SecprePH-CPA
SE ′ (k, t, q, µ) = SecprePH-CPA

SE (k, t + cq, q, µ)

SecPH-CPA
SE ′ (k, t, 3, µ) = 1

Proof Let l be the length of q in a binary representation. Consider the
following scheme SE ′ which adds a counter i to each ciphertext, but XORs
the counter with a random string beforehand:

Scheme SE ′

1 : proc KGenSE ′(k)
2 : K←$ KGenSE (k)
3 : i← 0

4 : κ ← {0, 1}l

5 : return (K, (i, κ))

6 : proc EncSE ′(K, m, (i, κ))

7 : i← i + 1
8 : c← (κ ⊕ i,EncSE (K, m))

9 : return (c, (i, κ))

12 : proc DecSE ′(K, c)

13 : (κ′, c′)← c

14 : m← DecSE (K, c′)
15 : return m

The counter i is encoded here as a bitstring of length l, so that the κ ⊕ i is
well-defined. We can construct an adversary for the prePH-CPA game against
SE that runs an adversary against SE ′. In the first phase the new adversary
forwards the progress queries. In the second it samples κ itself, sets i to
1 and updates accordingly. As κ is sampled randomly, the distribution of
the returned ciphertexts is the same independently of the value of b in the
game against SE . So we simulate the game against SE ′, proving the first
statement.

For the second consider an adversary for the PH-CPA game against SE ′
which sends an encryption query, then a progress query and finally another
encryption query. By XORing the prefixes of the result of the encryption
queries the adversary removes κ, so the result it either 1⊕ 2 or 1⊕ 3 depend-
ing on the value of b, so the adversary can achieve the claimed advantage.�

The scheme SE′ has a real-world inspiration: TLS 1.3 uses a counter XORed
with a key as a nonce input for its encryption algorithm. However, as this
nonce is not sent as part of the ciphertext, TLS 1.3 can achieve progress-
hiding. We will analyse this in more detail in Chapter 6.

Having established that there is a reason to consider PH-CPA instead of
prePH-CPA, we only use the stronger notion in the following. Let us now
examine the relations of PH-CPA with the notions defined so far.

48

5.1. Progress-hiding chosen-plaintext security

Theorem 5.3 (LoR-sfAE 6⇒ PH-CPA)
Let SE = (KGen,Enc,Dec) be an encryption scheme. Then there exists an encryp-
tion scheme SE ′ and a constant c so that for any k, t, q and µ we have

SecLoR-sfAE
SE ′ (k, t, q, µ) = SecLoR-sfCCA

SE (k, t + cq, q, µ)

SecPH-CPA
SE ′ (k, t, q, µ) = 1

Proof For a scheme SE consider the following scheme SE ′, which adds a
counter to the message before encrypting using EncSE and also adds the
counter to the resulting ciphertext.

Scheme SE ′

1 : proc KGenSE ′(k)
2 : K←$ KGenSE (k)
3 : i← 0
4 : return (K, i)

5 : proc EncSE ′(K, m, i)
6 : i← i + 1
7 : c← (i,EncSE (K, i‖m))

8 : return (c, i)

12 : proc DecSE ′(K, c)

13 : (i, c′)← c

14 : i′‖m← DecSE (K, c′)

15 : if i 6= i′

16 : m← ⊥
17 : return m

For an adversary ALoR-sfAE against SE ′ in the LoR-sfAE game we can con-
struct an adversary against SE that keeps track of i. It can then add i to
every messages and ciphertext in encryption queries and remove it from ev-
ery ciphertext and message in decryption queries (with a check to ensure
that they have the same value). This simulates the game against SE ′ with
the same value b as in the actual game against SE .

Now consider an adversary for the PH-CPA game against SE ′ which sends
first a progress query and then an encryption query. Depending on the
value of b, the counter will either be 1 or 2, allowing the adversary to achieve
advantage 1. �

So LoR-sfAE does not ensure progress-hiding. We now see that $-CPA does.
This means that ensuring progress-hiding is a reason why channels should
try to achieve privacy using $-type encryption oracle instead of LoR ones.

Theorem 5.4 ($-CPA ⇒ PH-CPA)
Let SE be a symmetric encryption scheme. There exists a constant c so that for any
k, t, q and µ we have

SecPH-CPA
SE (k, t, q, µ) ≤ 2 · Sec$-CPA

SE (k, t + cq, q, µ).

Proof Consider the following adversary

49

5.2. Progress-hiding chosen-ciphertext security

A$-CPA

1 : proc InitPH-CPA()

2 : b′←$ {0, 1}
3 : return Init$-CPA()

4 : proc ProgPH-CPA(m)

5 : if b′ = 1
6 : Enc$-CPA(m)

7 : return ⊥

8 : proc EncPH-CPA(m)

9 : c← Enc$-CPA(m)

10 : return c

11 : proc FinPH-CPA(d)

12 : return Fin$-CPA(d = b′)

In the game $-CPASE (k, 0), the ciphertexts returned for EncPH-CPA queries
are sampled randomly and are therefore independent of b′. In the game
$-CPASE (k, 1), A$-CPA simulates the game PH-CPASE (k, b′). Using the same
argument as in Theorem 2.6 gives the stated result. �

5.2 Progress-hiding chosen-ciphertext security

We now turn to active adversaries. To model this we give the adversary a
decryption oracle. In addition, the progress query not only encrypts mes-
sages if b = 1, but also decrypts the resulting ciphertext. We present three
notions which formalize this idea. The first naive attempt PH-CCA makes
only these changes.

Definition 5.5 (PH-CCA)
The progress-hiding chosen-ciphertext security of an encryption scheme SE with
security parameter k against adversaries with runtime t using q queries totalling µ
bits is defined by SecPH-CCA

SE (k, t, q, µ) using the game PH-CCASE (k, b) depicted on
the left-hand side of Figure 5.2. The input for the progress and encryption queries
are messages m ∈ M, the input for the decryption queries are strings c and the
input for the finalization query is a bit d.

The next theorem shows that this notion can not be achieved by schemes
which fulfil the stateful correctness and ciphertext integrity notions. As
progress-hiding is a property desired for channels, this notion is therefore
not very useful.

Theorem 5.6
Let SE be a scheme which fulfils the stateful correctness and ciphertext integrity
notions. Then there exist t and µ so that for every k we have SecPH-CCA

SE (k, t, 3, µ) =
1.

Proof Consider an adversary which sends an encryption query, then sends
a progress query and finally sends a decryption query with the ciphertext

50

5.2. Progress-hiding chosen-ciphertext security

Game PH-CCASE (k, b)

1 : proc InitPH-CCA()

2 : K←$ KGen(k)
3 : return k

4 : proc ProgPH-CCA(m)

5 : if b = 1
6 : c← EncK(m)

7 : DecK(c)
8 : return ⊥

9 : proc EncPH-CCA(m)

10 : c← EncK(m)

11 : return c

12 : proc DecPH-CCA(c)
13 : m← DecK(c)
14 : return m

15 : proc FinPH-CCA(d)
16 : return d

Game PH-sfCCASE (k, b)

1 : proc InitPH-sfCCA()

2 : K←$ KGen(k)
3 : i← 0
4 : j← 0
5 : sync← 1
6 : return k

7 : proc ProgPH-sfCCA(m)

8 : if b = 1 and (sync = 0 or i = j)
9 : c← EncK(m)

10 : DecK(c)
11 : return ⊥

12 : proc EncPH-sfCCA(m)

13 : i← i + 1
14 : ci ← EncK(m)

15 : return c

16 : proc DecPH-sfCCA(c)
17 : j← j + 1
18 : m← DecK(c)
19 : if j > i or c 6= cj

20 : sync← 0
21 : return m

22 : proc FinPH-sfCCA(d)
23 : return d

Figure 5.2: The games for the notions PH-CCA and PH-sfCCA. The notion prePH-sfCCA is
identical to PH-sfCCA except replacing line 8 with ”if b = 1 and sync = 1 and i = j”.

51

5.2. Progress-hiding chosen-ciphertext security

returned from the encryption query. Depending on the value of b, this query
is either in-sync or out-of-sync and by assumption the scheme returns some-
thing different for each of these options, allowing the adversary to achieve
advantage 1. �

The problem with the notion above is that the adversary can change whether
the scheme is in-sync with a progress query. So to define a meaningful no-
tion of progress-hiding for channels, we need to ensure that progress queries
cannot alter sync. Adding this restriction does not contradict the attacks we
are trying to protect against: The progress queries model messages sent
while the adversary is absent. As these messages represent normal com-
munication, they should never break sync. Formally, we can do this by
requiring that i = j for progress queries while the game is still in-sync.

We actually present two notions that capture this idea. In the first notion
prePH-sfCCA, we assume that the adversary does not tamper with the mes-
sages before being absent. Formally, this means we only allow progress
queries while the game is in-sync. In the second notion, PH-sfCCA, we allow
out-of-sync progress queries. Clearly PH-sfCCA implies prePH-sfCCA. We
see below that PH-sfCCA is indeed stronger, meaning that a scheme could
(in theory) leak more progress information if the adversary is allowed to
tamper with the messages before it is absent. This is of course mostly a
theoretical difference, as for actual schemes, having integrity should already
cause the channel to close if tampering occurs.

Definition 5.7 ((pre)PH-sfCCA)
The stateful progress-hiding chosen-ciphertext security of an encryption scheme SE
with security parameter k against adversaries with runtime t using q queries to-
talling µ bits is defined by SecPH-sfCCA

SE (k, t, q, µ) using the game PH-sfCCASE (k, b)
depicted on the right-hand side of Figure 5.2. The input for the progress and encryp-
tion queries are messages m ∈ M, the input for the decryption queries are strings
c and the input for the finalization query is a bit d.

Similarly we define SecprePH-sfCCA
SE (k, t, q, µ) using the game prePH-sfCCASE (k, b)

also depicted on the right-hand side of Figure 5.2.

We begin our analysis with some trivial implications: we have

PH-CCA⇒ PH-sfCCA⇒ prePH-sfCCA⇒ PH-CPA

and PH-sfCCA 6⇒ PH-CCA.

The separation prePH-sfCCA 6⇒ PH-sfCCA is the subject of the next theorem.
The separation PH-CPA 6⇒ prePH-sfCCA is a corollary of Theorem 5.9 below.

Theorem 5.8 (prePH-sfCCA 6⇒ PH-sfCCA)
Let SE = (KGen,Enc,Dec) be an encryption scheme which fulfils INT-sfCTXT.
Then there exists an encryption scheme SE ′ and a constant c so that for any k, t, q

52

5.2. Progress-hiding chosen-ciphertext security

and µ we have

SecprePH-sfCCA
SE ′ (k, t, q, µ) = SecprePH-sfCCA

SE (k, t + cq, q, µ)

SecPH-sfCCA
SE ′ (k, t, q, µ) = 1

We could also prove this theorem with a weaker assumption on SE . In-
stead of requiring INT-sfCTXT, it would suffice to require that the output
of the first out-of-sync call to the decryption algorithm of SE is somehow
recognizable to SE ′. This is somewhat tedious to formalize, so we use the
stronger assumption instead.

Proof Consider the scheme SE ′ below which counts the number of out-of-
sync queries and prepends the counter to the output of each out-of-sync
decryption query.

Scheme SE ′

1 : proc KGenSE ′(k)
2 : i← 0
3 : sync← 1
4 : K ← KGenSE (k)
5 : return (K, (i, sync))

6 : proc EncSE ′(K, m)

7 : c← EncSE (K, m)

8 : return c

9 : proc DecSE ′(K, c, (i, sync))
10 : m← DecSE (K, c)
11 : if m = ⊥
12 : sync← 0
13 : if sync = 0
14 : i← i + 1
15 : m← i‖m
16 : return (m, (i, sync))

For an adversary against SE ′ in the prePH-sfCCA we can construct an adver-
sary against SE which forwards all queries and keeps track of sync. If sync
is broken, then it initialises a counter and adds it when it returns cipher-
texts. As the adversary cannot send progress queries after sync is broken,
this simulates the game against SE ′ with the same value of b.

Now consider an adversary A for the PH-sfCCA game which sends a de-
cryption query, then a progress query and then another decryption query.
As all decryption queries are out-of-sync, the counter will either be equal
to 2 or 3, depending on the value of b. This allows an adversary to achieve
advantage 1. �

Now let us examine whether any of the notions defined so far imply this
stronger notion of progress-hiding. To achieve PH-CPA it was enough to
assume $-CPA. As the next theorem shows, privacy is not enough to provide
progress-hiding against an active adversary.

53

5.2. Progress-hiding chosen-ciphertext security

Theorem 5.9 ($-sfCCA 6⇒ prePH-sfCCA)
Let SE = (KGen,Enc,Dec) be an encryption scheme which fulfils INT-sfCTXT.
Then there exists an encryption scheme SE ′ and a constant c so that for any k, t, q
and µ we have

Sec$-sfCCA
SE ′ (k, t, q, µ) = Sec$-sfCCA

SE (k, t + cq, q, µ)

SecprePH-sfCCA
SE ′ (k, t, q, µ) = 1

Again the assumption that SE fulfils INT-sfCTXT is stronger than necessary,
but allows for an easier proof.

Proof Consider the following scheme SE ′, which adds the total number
of decryption queries (including in-sync ones) to the output of out-of-sync
decryption queries.

Scheme SE ′

1 : proc KGenSE ′(k)
2 : i← 0
3 : K ← KGenSE (k)
4 : return (K, i)

5 : proc EncSE ′(K, m)

6 : c← EncSE (K, m)

7 : return c

8 : proc DecSE ′(K, c, i)
9 : i← i + 1

10 : m← DecSE (K, c)
11 : if m = ⊥
12 : m← i‖m
13 : return (m, i)

For an adversary against SE ′ in the $-sfCCA game we can construct an ad-
versary against SE which updates and adds i. As every Dec$-sfCCA query
causes a call to the decryption algorithm, this simulates the game against
SE with the same value of b.

On the other hand we can construct an adversary for the prePH-sfCCA game
which sends one progress query and then an arbitrary decryption query. As
this query is out-of-sync, the adversary learns if 1 or 2 calls to the decryption
algorithm have been made and can therefore achieve advantage 1. �

The schemes constructed in the last two proofs give some additional in-
tuition about what the notion PH-sfCCA protects against. Clearly in-sync
decryption queries cannot leak progress information, as they must return
the plaintext by correctness. Insecurity can arise when out-of-sync queries
leak progress messages. Intuitively, assuming that a scheme has integrity
should solve this problem, as schemes with integrity always return ⊥ for
out-of-sync queries. Indeed, the two schemes constructed above did not
have integrity. The next theorem shows that integrity (along with PH-CPA)
indeed implies PH-sfCCA, a sort of generic composition for progress-hiding.

54

5.2. Progress-hiding chosen-ciphertext security

Theorem 5.10 (PH-CPA + INT-sfCTXT ⇒ PH-sfCCA)
Let SE be a symmetric encryption scheme which fulfils stateful correctness. For any
k, t, q and µ we have

SecPH-sfCCA
SE (k, t, q, µ) ≤ SecPH-CPA

SE (k, t + c1q, q, µ) + 2 · SecINT-sfCTXT
SE (k, t, q, µ).

A direct corollary of this theorem is that $-sfAE implies PH-sfCCA.

Before we start the proof we make a remark on the correctness assump-
tion. For the privacy and integrity notions we have defined it does not
matter whether the scheme is actually correct. Queries given by correct-
ness are suppressed in the privacy games and do not matter in the integrity
games. Here we do not suppresses these queries, so a scheme could leak
progress-information by decrypting incorrectly. Ensuring correctness will
be an important part of Chapter 7.

Proof Consider the following game:

Game GSE (k, b, b′)

1 : proc InitG()

2 : K←$ KGen(k)
3 : i← 0
4 : j← 0
5 : sync← 1
6 : return k

7 : proc ProgG(m)

8 : if b = 1 and (sync = 0 or i = j)
9 : c← EncK(m)

10 : DecK(c)
11 : return ⊥

12 : proc EncG(m)

13 : i← i + 1
14 : ci ← EncK(m)

15 : return c

16 : proc DecG(c)
17 : j← j + 1
18 : m← DecK(c)
19 : if j > i or c 6= cj

20 : sync← 0

21 : if sync = 0 and b′ = 0
22 : m← ⊥
23 : return m

24 : proc FinG(d)
25 : return d

This game is almost the same as the PH-sfCCA. The only difference is that
for b′ = 0 only the decryption of in-sync decryption query is returned, for
out-of-sync queries the oracle returns ⊥. So the adversary can learn noth-
ing from decryption queries if b′ = 0, as the answer to in-sync decryption
queries is given by correctness. Now let APH-sfCCA be an adversary for the
PH-sfCCA game. As the games are the same for b′ = 1 we have

AdvPH-sfCCA
SE ,APH-sfCCA

(k) = Pr[GAPH-sfCCA
SE (k, 1, 1) = 1]− Pr[GAPH-sfCCA

SE (k, 0, 1) = 1]

55

5.2. Progress-hiding chosen-ciphertext security

APH-CPA

1 : proc InitPH-sfCCA()

2 : K←$ InitPH-CPA()

3 : i← 0
4 : j← 0
5 : sync← 1
6 : return k

7 : proc ProgPH-sfCCA(m)

8 : if sync = 0 or i = j
9 : ProgPH-CPA(m)

10 : return ⊥

11 : proc EncPH-sfCCA(m)

12 : i← i + 1
13 : mi ← m
14 : ci ← EncPH-CPA(m)

15 : return c

16 : proc DecPH-sfCCA(c)
17 : j← j + 1
18 : if j > i or c 6= cj

19 : sync← 0
20 : if sync = 1
21 : m← mj

22 : else
23 : m← ⊥
24 : return m

25 : proc FinPH-sfCCA(d)
26 : return FinPH-CPA(d)

AINT-sfCTXT

1 : proc InitPH-sfCCA()

2 : k← InitINT-sfCTXT()

3 : i← 0
4 : j← 0
5 : sync← 1
6 : return k

7 : proc ProgPH-sfCCA(m)

8 : if sync = 0 or i = j
9 : c← EncINT-sfCTXT(m)

10 : DecINT-sfCTXT(c)
11 : return ⊥

12 : proc EncPH-sfCCA(m)

13 : i← i + 1
14 : ci ← EncINT-sfCTXT(m)

15 : return ci

16 : proc DecPH-sfCCA(c)
17 : j← j + 1
18 : DecINT-sfCTXT(c)
19 : if j > i or c 6= cj

20 : sync← 0
21 : if sync = 1
22 : m← mj

23 : else
24 : m← ⊥
25 : return m

26 : proc FinPH-sfCCA(d)
27 : return FinINT-sfCTXT()

Figure 5.3: The adversaries used in the proof of Theorem 5.10.

56

5.2. Progress-hiding chosen-ciphertext security

$-CPA

PH-CPA

$-sfCCA

PH-sfCCA

$-sfAE

LoR-sfAE

INT-sfCTXT

\ \\ \

\ \

\ \

\

\\

Figure 5.4: Relations between notions of progress-hiding.

Now we add and subtract the term Pr[GAPH-sfCCA
SE (k, 0, 0) = 1] and the term

Pr[GAPH-sfCCA
SE (k, 1, 0) = 1] and bound the advantage of APH-sfCCA by the sum

of its advantage in three different games:

AdvG1
SE ,APH-sfCCA

(k) = Pr[GAPH-sfCCA
SE (k, 1, 1) = 1]− Pr[GAPH-sfCCA

SE (k, 1, 0) = 1]

AdvG2
SE ,APH-sfCCA

(k) = Pr[GAPH-sfCCA
SE (k, 1, 0) = 1]− Pr[GAPH-sfCCA

SE (k, 0, 0) = 1]

AdvG3
SE ,APH-sfCCA

(k) = Pr[GAPH-sfCCA
SE (k, 0, 0) = 1]− Pr[GAPH-sfCCA

SE (k, 0, 1) = 1]

We will bound G1 and G3 by an adversary in the INT-sfCTXT game and
G2 by an adversary in the PH-CPA game. We begin with G2. Consider the
following adversary APH-CPA defined in the upper half of Figure 5.3.

This adversary simulates the game G2 with the same value of b and uses the
claimed resources. Note that the correctness of the scheme is required here
as otherwise the messages returned by APH-CPA might be different from the
ones an incorrect scheme might return.

To bound the advantage in G1 consider the adversary AINT-sfCTXT defined in
the lower half of Figure 5.3. This adversary simulates the game G1 up until
the first time PH-sfCCA sends an out-of-sync decryption query that would
decrypt to something other than ⊥, again under the assumption that the
scheme is correct. This is the same scenario as in the proof of 4.12: if such
a query occurs, than the constructed adversary wins the integrity game. So
it does not matter what happens after such a query and the stated bound
holds. Similarly, we can define an adversary for the game G3, which is
identical to the adversary above except that lines 8, 9 and 10 are deleted. �

Figure 5.4 shows an overview of the most important relations regarding
progress-hiding. The important take-away from this chapter is that the no-
tion often used for secure channels, LoR-sfAE, does not provide progress-
hiding and therefore is not sufficient for schemes where this is a desired
property. Instead, $-sfAE should be the goal of such schemes.

57

Chapter 6

Analysis of TLS

Having established the new notion $-sfAE and progress-hiding as a reason
why channels might want to achieve it, let us take a look at some real-world
protocols so see if they succeed at this goal. Specifically, we analyse the pro-
tocols TLS 1.3 and 1.2. These protocols use a stateless scheme as an underly-
ing primitive and construct a channel using this scheme. The requirements
on this underlying scheme are a little different from the schemes we have
considered so far, so we begin by introducing them.

6.1 Nonce-based schemes with additional data

A problem with randomized schemes is that it is hard to create good ran-
domness. Bad randomness can lead to insecure implementation of encryp-
tion schemes, see for example [GM05]. One way to avoid this problem is to
introduce nonces, first formalized in [RBBK01]. In nonce-based encryption
schemes, the encryption and decryption algorithms take a nonce as an addi-
tional input. These schemes should provide security under the assumption
that nonces are never reused. So implementations only have to ensure that
nonces are never repeated, instead of producing randomness. Channels will
often use a sequence number as (part of) the nonce, simultaneously ensuring
stateful correctness and providing unique nonces.

Another problem that comes up in real-world schemes is the need for plain-
text information sent along with the ciphertext to ensure transmission and
parsing of the ciphertext. We do not require privacy for this information but
we wish to provide integrity. So we want a scheme which provides integrity
for an additional input its for encryption and decryption algorithms. This
was first formalized in [Rog02].

Combining these extensions give us nonce-based encryption schemes with
additional data.

58

6.2. TLS 1.3

Definition 6.1
A nonce-based symmetric encryption scheme with additional data AEAD := (KGen,
Enc,Dec) := (KGen,Enc,Dec, l) for K,M, C,N ,H ⊂ {0, 1}∗ consists of four
algorithms. The algorithm KGen takes a security parameter k and returns a key
K ∈ K. The algorithm Enc takes a key K, a nonce n ∈ N , a plaintext m ∈ M and
additional data h ∈ H and returns a ciphertext c ∈ C. The algorithm Dec takes a
key, a nonce, a ciphertext and a header and returns a plaintext. The length function
l takes a the length of a plaintext and returns an integer. We call such a scheme
correct if the decryption of a ciphertext using the same nonce and header that were
used for encryption results in the original message.

We wish to require $-AE security from the underlying scheme. The original
definition of $-AE however does not include nonces and additional data. So
we now present a slightly adjusted definition. The adversary gets to provide
the nonce and the additional data in all encryption and decryption queries.
Checks on a ciphertexts are replaced by checks on nonce, ciphertext and
additional data. We also add the restriction that each nonce can only be use
once in an encryption query. This is commonly referred to as AEAD security.

Definition 6.2
The $-AE security of a nonce-based encryption scheme with additional data AEAD
with security parameter k against adversaries with runtime t using q queries to-
talling µ bits is defined by Sec$-AE

AEAD(k, t, q, µ) using the game $-AEAEAD(k, b) de-
picted in Figure 6.1. The input for encryption queries is a nonce n ∈ N , a plaintext
m ∈ M and additional data h ∈ H. The input to the decryption query is the same
except the message is replaced by an arbitrary string c. The input to the finalization
query is a bit d.

6.2 TLS 1.3

TLS 1.3, introduced in 2018 and defined in [Res18], is the latest version of
the TLS protocol. We prove that the record layer of TLS 1.3 (with some
restrictions) fulfils $-sfAE provided that the underlying scheme fulfils $-AE,
a further indication that TLS 1.3 is correctly considered to be very secure.

Next to the symmetric record layer, TLS 1.3 also includes a handshake pro-
tocol to establish and refresh symmetric key material. As this thesis is only
concerned with symmetric schemes, we assume that the necessary symmet-
ric key material has been shared between the two parties. This means that
the handshake to begin the session or to update the key has taken place and
our analysis does not cover vulnerabilities that result from attacks against
the handshake or the key generation. It is possible to formalize symmetric
encryption schemes which can update their keys and define security no-
tions which protect against attacks which go over multiple key phases, see

59

6.2. TLS 1.3

Game $-AEAEAD(k, b)

1 : proc Init$-AE()

2 : S← ∅
3 : N ← ∅
4 : K←$ KGen(k)
5 : return k

6 : proc Enc$-AE(n, m, h)
7 : if n ∈ N
8 : cb ← ⊥
9 : else

10 : c0←$ {0, 1}l(|m|)

11 : c1 ← EncK(n, m, h)
12 : N ← N ∪ {n}
13 : S← S ∪ {(n, cb, h)}
14 : return cb

14 : proc Dec$-AE(n, c, h)
15 : if b = 0 or (n, c, h) ∈ S
16 : m← ⊥
17 : else
18 : m← DecK(n, c, h)
19 : return m

20 : proc Fin$-AE(d)
21 : return d

Figure 6.1: The game for $-AE

[GM17]. Their ideas could presumably be combined with $-security to give
a better formal approximation of TLS.

We also assume that the keys (in particular the nonce key described below)
are sampled randomly from all possible strings of a specific length. We
therefore ignore attacks which attack the key generation algorithms.

The final caveat is in regards to the headers of the records. A TLS 1.3 record
is defined by

s t r u c t {
ContentType opaque type= a p p l i c a t i o n d a t a ;
ProtocolVers ion l e g a c y r e c o r d v e r s i o n =0x0303 ;
uint16 length ;
opaque encrypted record [TLSCiphertext . length] ;

} TLSCiphertext ;

As the headers are not encrypted, an adversary can trivially distinguish
them from random strings generated by a $-type encryption oracle. How-
ever the headers do not really leak any information to the adversary: the
headers opaque type and legacy record version are constant and only neces-
sary for legacy reasons to ensure that the record looks like a TLS 1.2 record.
The header length gives the length of encrypted record. This is necessary as
in reality, the ciphertext is delivered as a stream of bits. Our formalization of

60

6.2. TLS 1.3

Scheme SE

1 : proc KGenSE (k)
2 : K←$ KGenAEAD(k)

3 : κ←$ {0, 1}N

4 : i← 0
5 : j← 0
6 : sync← 1
7 : return ((K, κ), i, (j, sync))

8 : proc EncSE ((K, κ), m, i)
9 : i← i + 1

10 : n← κ ⊕ i
11 : ad← h‖l(|m|)
12 : c← EncAEAD(K, n, m, ad)
13 : return (c, i)

12 : proc DecSE ((K, κ), m, (j, sync)
13 : if sync = 0
14 : m← ⊥
15 : else
16 : j← j + 1
17 : n← κ ⊕ j
18 : ad← h‖|c|
19 : m← DecAEAD(K, n, c, ad)
20 : if m = ⊥
21 : sync← 0
22 : return (m, j, sync)

Figure 6.2: The abstract scheme capturing the record layer of TLS 1.3

security does not make any attempt to hide the length of ciphertexts, so this
header does also not leak any new information to the adversary. Note how-
ever that the discrepancy between atomic security definitions and stream-
based real-world schemes can lead to problems, see for example [FGMP15].
We ignore these issues. All together we therefore assume the headers are a
part of the transmission, not to be part of the ciphertext and analyse just the
security of an encrypted record.

So the scheme SE we are actually analysing is the scheme which trans-
forms a TLSInnerPlaintext into a TLSCiphertext.encrypted record using the
underlying scheme AEAD as described in [Res18]. This scheme, defined in
Figure 6.2, works as follows: it maintains counters i and j for the number
of messages encrypted and decrypted. A key actually consists of two keys:
a key K for AEAD and a random string κ which has the length N of the
nonce input to AEAD. The encryption of SE is defined as the encryption
of AEAD using κ ⊕ i as the nonce and h‖l(|m|) as the additional data for
h = application data‖0x0303. The decryption is the inverse of this. If a de-
cryption ever fails (so returns ⊥), then the connection is ended. We model
this with a flag sync. If a decryption ever outputs ⊥, then sync is set to 0
and all future decryption queries are answered with ⊥.

We now prove that SE fulfils $-sfAE given that the underlying scheme AEAD
fulfils $-AE.

61

6.2. TLS 1.3

Theorem 6.3
Let SE be the scheme defined in Figure 6.2. There exists a constant c so that for any
k, t, q and µ we have

Sec$-sfAE
SE (k, t, q, µ) ≤ Sec$-AE

AEAD(k, t + cq, q, µ).

Proof Let A be an adversary against SE in the $-sfAE game and N be
the length of the nonce input for AEAD. We construct an adversary A$-AE
against AEAD in the $-AE game follows the construction of SE but replaces
encryptions and decryptions by calls to its $-AE game.

A$-AE

1 : proc Init$-sfAE()

2 : κ ← {0, 1}N

3 : i← 0
4 : j← 0
5 : sync← 1

6 : d′ ← 0
7 : return Init$-AE()

8 : proc Enc$-sfAE(m)

9 : i← i + 1
10 : n← κ ⊕ i
11 : ad← h‖l(|m|)
12 : ci ← Enc$-AE(n, m, ad)
13 : return ci

14 : proc Dec$-sfAE(c)
15 : if sync = 0
16 : m← ⊥
17 : else
18 : j← j + 1
19 : n← κ ⊕ j
20 : ad← h‖|c|
21 : m← Dec$-AE(n, m, ad)
22 : if j > i or c 6= cj

23 : sync← 0
24 : if m 6= ⊥
25 : d′ ← 1
26 : return m

27 : proc Fin$-sfAE(d)

28 : return Fin$-AE(d or d′)

This adversary uses the stated resources. We claim that it simulates the
$-sfAE game for A with the same value of b up until the second out-of-sync
query and if the simulation fails, then it wins the $-AE game. The return
value of encryption queries sent by A are distributed the same in an $-sfAE
game and in the game simulated by A$-AE for the same value of b, as the
encryption queries are the same for stateful and stateless AE games.

In-sync decryption queries from A become decryption queries which are
contained in S for the $-AE game, so they are suppressed correctly. Now
consider the first out-of-sync query made by A. We claim that the combi-
nation of nonce and ciphertext is new in the $-AE game, so the query is
not suppressed. Indeed, if the ciphertext is entirely new, then this certainly
holds. If the ciphertext is not new, then the value of j used by A$-AE to create

62

6.3. TLS 1.2

the nonce in the decryption query will not match the value of i used for the
encryption of the ciphertext.

If b = 0 or if the underlying scheme fulfils integrity for this query, then the
return value of this query will be ⊥. This means that every query after this
will be suppressed in both an $-sfAE game and by A$-AE. So in this case the
game is simulated in its entirety with the same value of b, and (since d′ is
never set), the output is also the same. So the stated bound holds.

Now assume that the return-value to the first out-of-sync decryption query
is not ⊥. This can only occur if b = 1 and the underlying scheme fails to
have integrity. In this case, the simulation may be wrong, as every query is
suppressed by A$-AE even though A might expect queries to be answered in
the $-sfAE game. But in this case d′ is set to 1 and A$-AE will always correctly
output 1. So in this case the stated bound also holds. �

Applying Theorem 5.10 we see that the record layer of TLS 1.3 succeeds at
providing progress-hiding.

6.3 TLS 1.2

We now turn to TLS 1.2, which was introduced in 2008 and is defined in
[DR08]. Specifically, we show that it in general does not fulfil PH-sfCCA,
and therefore also does not fulfil $-sfAE, even when using an underlying
$-AE scheme. Note that TLS 1.2 has known vulnerabilities which are far
more severe than the lack of progress-hiding, but it is interesting to see that
the improvements made in TLS 1.3 have the positive side-effect of ensuring
progress-hiding.

We can mostly make similar assumptions to above, namely that we only
consider the record layer and assume that keys are generated sufficiently
randomly. We cannot however make the same assumptions for the headers.
The headers of TLS 1.2 are mostly the same (with a different version num-
ber) with one important difference: the field opaque type is used. It can
contain the following values:

enum {
change c ipher spec (2 0) , a l e r t (2 1) , handshake (2 2) ,
a p p l i c a t i o n d a t a (2 3) , (2 5 5)

} ContentType ;

The values change cipher spec and handshake are not relevant for the record
layer. The values alert and application data can however both occur. So an
adversary can possibly learn something about the communication from the
header, namely it can tell alert messages from real messages. While this leak
does not seem like a huge issue, it is certainly not as justifiable to ignore the

63

6.3. TLS 1.2

headers in the analysis. Including these headers would of course make it
impossible to achieve $-sfAE. It turns out however that there are even bigger
issues relating to the use of nonces.

TLS 1.2 supports three types of underlying schemes: stream ciphers, block
ciphers and AEAD ciphers. Block and stream ciphers require the combina-
tion of an encryption scheme and a MAC. The analysis of this combination
is outside the scope of this thesis. We will only make one small remark: the
results on combining encryption schemes and MAC algorithms mostly use
LoR oracles. They do not necessarily hold if we use $-type oracles. For exam-
ple the Encrypt-then-Mac paradigm will not preserve $-CPA security from
the encryption scheme unless the MAC outputs are distributed randomly,
something not automatically required from a MAC scheme.

Instead, we will concentrate on AEAD ciphers, which are considered more
secure for other reasons as well. The input to these is similar to the underly-
ing schemes used for TLS 1.3 with one important exception: the generation
of nonces is not specified. Instead each cipher has to specify this itself. This
can involve a fixed value, which is generated during the handshake and an
explicit value which is prepended to the ciphertext. The prepended explicit
value can therefore leak information. Depending on the cipher, this can
prevent the scheme from achieving PH-sfCCA.

There are three recommended AEAD ciphers for TLS 1.2: AES-GCM, AES-
CCM and ChaCha20. AES-GCM and AES-CCM handle their nonce in the
same way: Each nonce is 12 bytes long. The first 4 bytes are fixed and
generated during the handshake. The only requirement on the remaining
8 bytes, which are sent along with the ciphertext, is that they are unique
over a session. The specification explicitly states the sequence number as an
option for this. Doing this of course implies that the channel cannot achieve
PH-CPA: an adversary for progress-hiding can simply check the value of
this counter by sending an encryption query after sending a progress query.
Presumably one could however prove that TLS 1.2 fulfils LoR-sfAE assuming
the same restrictions and using the same ideas as for above for TLS 1.3.

Note that sending the sequence number along with the ciphertext is not only
insecure, but also unnecessary, as the receiver is maintaining a matching
counter anyway. So it fairly easy (as it is done in TLS 1.3) to just leave it
out. Indeed, the other ciphersuite recommended for TLS 1.2 does this. In
ChaCha20, the length of the explicit part of the nonce is zero, so nothing
is sent along with the ciphertext. Instead, just as in TLS 1.3, the sequence
number is XORed with a key agreed upon during the handshake. Following
the analysis of TLS 1.3, one could show that (up to additional problems with
ignoring the headers) the $-sfAE security of TLS 1.2 is bounded by the $-AE
security of ChaCha20. Of course, as we saw above, ignoring the headers is
not as valid as it is for TLS 1.3.

64

Chapter 7

General notions of correctness

7.1 Predicates

So far we have assumed that our encryption scheme is running over a reli-
able network protocol like TCP. This allowed us to assume that the messages
arrive in the order they were sent. There are however schemes which run
over network protocols where such assumption do not hold, like UDP. This
means that messages can be reordered, duplicated or dropped by the net-
work instead of by an adversary. So we cannot just abort the channel when
this occurs. Instead we need to decide when this should be viewed as harm-
less networks effects, and therefore decrypt correctly, and when it should be
attributed to tampering and therefore be rejected. There is no single correct
answer for this question, instead the answer depends on the network, the
scheme and the use-case. For example, in [KPB03] and [BHMS15] a hierar-
chy of authentication notions are defined, which provide increasing levels
of protection.

Instead of defining specific levels and analysing these individually, we now
introduce predicates, which can encode many different notions of correct-
ness and integrity. We then define generic security notions based on pred-
icates and prove relations for these notions. Specifying a predicate then
immediately gives us the appropriate security notions and relations.

This idea of such predicates is not new. In [RZ18] ”indistinguishability up
to correctness” is defined. Correctness is defined there using a predicate,
which is an efficiently computable function which takes as input the tran-
script of inputs and outputs to the privacy game and decides whether the
result of query is fixed, e.g. required by correctness. While very general,
we run in to some problems if we try to use the same definition for our
predicates.

We namely wish to define not only a privacy game but also a correctness

65

7.1. Predicates

game. The notions of stateless and stateful correctness used so far are gener-
ally fairly easy to prove, so it is not necessary to define a correctness game.
If we consider more complex correctness notions, it can however be useful to
define a security notion which ensures that a scheme is correct. This also al-
lows us to quantize schemes which do not fulfil correctness perfectly, but for
which it is very hard for an efficient adversary cause a false decryption to oc-
cur. Next to the correctness game, we also wish to define a progress-hiding
game and a combined correctness/privacy game. We see in a moment why
we do not need a separate integrity game. The same predicate should be
used to define each of these games. This means however that we cannot
use predicates which see the transcript of the game (so the queries sent by
the adversary and the returned values), as the possible queries and their
answers are different for each of these games. Instead we define predicates
which use the transcript of the encryption scheme, so the inputs and out-
puts of the encryption and decryption algorithms. This actually matches the
intuition behind most concrete correctness notions. For many notions, like
$-CPA, this is equivalent. There can however be subtle differences, which
lead us to the next issue with defining predicates.

Imagine a notion of correctness where the encryption of a specific message
m causes all remaining queries to not be bound by correctness and a cor-
responding privacy game using a LoR oracle. If the adversary sends m as
one of the messages in a LoR query, then later messages are either bound
by correctness or not depending on which messages was encrypted. As the
privacy game should suppress queries which are bound by correctness, this
could allow the adversary to win the privacy game by checking whether a
later query is suppressed or not. So a scheme which fulfils this correctness
notion might inherently not be able to achieve privacy. Note that this issue
only arises because the predicate is defined on the transcript of the scheme.
If the predicate used the transcript of the game instead, it would not be
possible to define this correctness notion.

So how do we deal with this issue? One could attempt to define a more
general privacy game, which can account for these issues. This is however
fairly complicated and it turns out that this issue does not occur for real-
world correctness notions. So we instead use an idea from [FGJ20] and
restrict the predicate to only see the ciphertext portions of the transcript,
so the ciphertexts output by the encryption algorithm and the ciphertexts
input to the decryption algorithm. This ensures that for the privacy game,
the adversary has access to the entire transcript and can therefore calculate
the predicate itself. This ensures that for schemes which provide privacy, the
predicate cannot depend on the value of b in the privacy game. Following
another idea from [FGJ20] we also include the output of the predicate in the
transcript for decryption queries. This makes it easy (and efficient) to define
some concrete correctness notions.

66

7.1. Predicates

The idea of the correctness game is simple. The adversary has access to
an encryption and decryption oracle and wins the game if it can input a
ciphertext which does not decrypt the way that the predicate says it should.
There is however still a problem. The predicate only determines whether
the decryption is bound by correctness and does not provide the result of
the correct decryption. To fix this we make an additional assumption on our
predicate, namely that only ciphertexts which were output by the encryption
algorithm can be correct. Such ciphertexts have a natural correct decryption,
namely the plaintext which was input to the encryption algorithm. In other
words, no predicate can be ”more correct” than stateless correctness.

There is another important restriction we need to make, namely ciphertext
uniqueness. This means that no two ciphertexts output by the encryption
algorithm can ever be equal. Syntactical, this is required to ensure that
operations of look-up tables and arrays are well-defined. But intuitively
this restriction also makes sense: If two different messages encrypt to the
same ciphertext, it is not clear which of the two messages is the ”correct”
decryption. Even if the same plaintext is encrypted twice, it needs to result
in different ciphertexts. Otherwise the behaviour of for example replay-
protection is unclear. We refer again to [FGJ20] for further discussion of
how to handle these issues. From here on we implicitly assume that all of
the schemes fulfil ciphertext uniqueness.

Both of these restriction could be relaxed in exchange for some extra formal-
ism. One could extend the predicates to include a second function, which
takes as input a ciphertext which the original predicate deemed to be correct
and outputs the value of the correct decryption. This second function would
also receive as input the entire transcript of the encryption scheme. All the
results of this and the next chapters could presumably be extended for such
predicates, but the added syntactical overhead would make it fairly tedious.

Having sufficiently restricted our predicates, we now present an extension
that allows them to ensure not only correctness but also integrity. This is
possible by letting the predicate output three possible values: The output 1
means the decryption should be correct, the output 0 means it should be ⊥
and the output E means that the predicate does not specify the output. This
will allow us to define a single game which can ensure correctness, integrity
or a combination of both and will give some interesting insights into the
relation between the two.

Definition 7.1
A transcript T is an array with entries of the form (enc, c) and (dec, c, p), where c
is a string and p ∈ {1, 0, E}. Let T be the set of all transcripts. A predicate is an
efficiently computable function

ϕ : T × C → {1, 0, E}

67

7.1. Predicates

with the property that if ϕ(T, c) = 1 then (enc, c) ∈ T.

A predicate which only outputs 1 and E is called a correctness predicate,
one which only outputs 0 and E an integrity predicate. A predicate which
only outputs 0 and 1 is called fully-specified. For a correctness predicate,
we can define the corresponding ciphertext integrity predicate by replacing
every output of 1 with E and every E with 0. For any predicate ϕ define its
correctness portion ϕcor to be the predicate where we replace every 0 with E.
Similarly, for the integrity portion ϕint replace every 1 with E.

The transcript T represents a series of ciphertexts which were either an out-
put of the encryption algorithm or an input to the decryption algorithm,
along with the previous decisions of a predicate ϕ. For a ciphertext c, ϕ
decides what the output of the decryption of c should be given the current
transcript.

In order to prove relations between security notions defined using predi-
cates, we need to understand how predicates can relate to each other.

Definition 7.2
Let ϕ and ψ be predicates. We say that ϕ and ψ contradict each other if there exists
an input so that they specify different values, so

∃T, c : E 6= ϕ(T, c) 6= ψ(T, c) 6= E

If they do not contradict each other, then we define the union ϕ ∪ ψ by

ϕ ∪ ψ(T, c) =

{
ϕ(T, c) if ϕ(T, c) 6= E

ψ(T, c) else
.

Finally, if ψ is equal to ϕ for all values for which it is specified, so if

∀T : ψ(T, c) 6= E⇒ ψ(T, c) = ϕ(T, c),

then we say that ϕ implies ψ and write ψ ⊂ ϕ.

A correctness notion can always be combined with its corresponding cipher-
text integrity predicate, which results in a fully-specified predicate.

We make a final remark on the capabilities of our predicates. For most prac-
tical applications, it would suffice to only consider correctness predicates
and define an integrity game which ensures the corresponding ciphertext
integrity. Next to the interesting generalizations and perspectives on the
interplay of correctness, integrity and privacy, there are some practical ad-
vantages to our approach. One advantage is the possibility of combining
integrity and correctness into a single game. We will see in Chapter 9 how
this helps with the analysis of DTLS.

68

7.2. Concrete correctness notions

Another interesting feature is being able to define predicates which have
some correctness, some integrity but also some unspecified values. In prac-
tice, it is not clear if this is desirable, as we generally wish every output of
a scheme to be correct or suppressed by integrity. One problem which one
could try to overcome with this flexibility, is the desire to extend the error
set beyond just ⊥. Instead of allowing unspecified behaviour it is however
certainly better to specifically formalise error sets, which has been done for
example in [BDPS14].

7.2 Concrete correctness notions

We now show how our predicates can be used to define common correctness
and integrity notions. In particular, we define predicates corresponding
to the hierarchy from [KPB03] and [BHMS15]. This hierarchy starts with
stateless integrity and adds replay, reorder and dropping protection one by
one to finally end up with stateful integrity. We also define predicates which
rely on windows, similar to those used in [FGJ20] to analyse QUIC and
DTLS. An overview of the predicates defined here can be found in Figure
7.1.

We define these predicates as fully-specified predicates which provide cor-
rectness and integrity. Instead of an increasing heirarchy, we define individ-
ual predicates for each security goal. Using the results below, we can then
combine these primitives to create predicates for multiple goals. This will
allow us to define the commonly used correctness notions, but also allows
us to look at different goals separately or create exciting new combinations!

Before we start defining predicates we introduce some helpful syntax. Let
Tenc and Tdec be the arrays containing only the encryption or decryption
entries of the transcript and let indenc(c) be the index of c in Tenc. We will be
careful to only use this if we know that that (enc, c) is indeed contained in T
to avoid defining what the output should be for elements not contained in
T. Finally, let

latest(T) := max{indenc(c) | (enc, c) ∈ T and (dec, c, 1) ∈ T},

be the index of the latest ciphertext which was accepted. Latest here refers
to the order the ciphertexts were encrypted, so this is not necessarily the
last ciphertext decrypted. Note all of these operations can be performed
efficiently given a transcript.

69

7.2. Concrete correctness notions

Stateless and stateful integrity

The stateless predicate ϕsl rejects ciphertexts which were not encrypted and
is defined as

ϕsl(T, c) =

{
1 if (enc, c) ∈ T
0 else

The stateful predicate rejects ciphertexts if the sequence of ciphertexts de-
crypted is not a subsequence of encrypted ones. For this let j = |Tdec| be the
number of decrypted ciphertexts and define

ϕs f (T, c) =

{
1 if j ≤ |Tenc| and ∀i < j : Tdec[i] = Tenc[i] and c = Tenc[j]
0 else

Acceptance windows

An acceptance-window rejects ciphertexts if they are outside a window wp
before and w f after the latest ciphertext accepted. The values wp and w f
can be constant, but they can also be function which decide dynamically for
each ciphertext how large the window should be. The predicate is defined
as

ϕ(wp,w f)(T, c) =

1 if (enc, c) ∈ T

and − wp(c) ≤ indenc(c)− latest(T) ≤ w f (c)
0 else

If we set wp = w f = ∞ then we have the stateless ciphertext integrity predi-
cate.

Replay protections

The replay protection predicate ϕrep rejects ciphertext that have been ac-
cepted before. It is defined as

ϕrep(T, c) =

{
1 if (enc, c) ∈ T and (dec, c, 1) /∈ T
0 else

Reorder protection

The reorder protection predicate ϕord rejects a ciphertext if its index is not
strictly greater than latest(T). This means that the indexes of the decrypted
ciphertexts will be strictly increasing. It is defined as

ϕord(T, c) =

{
1 if (enc, c) ∈ T and indenc(c) > latest(T)
0 else

.

70

7.2. Concrete correctness notions

Dropping protection

The dropping protection predicate ϕdrop rejects a ciphertext c if every cipher-
text which was encrypted before c has not been decrypted yet and is defined
as

ϕdrop(T, c) =

1 if (enc, c) ∈ T

and ∀(enc, c′) ∈ T : indenc(c′) ≤ indenc(c)⇒ (dec, c′, 1) ∈ T
0 else

Note that all of the predicates defined above (except for ϕs f) are forgiving, so
a rejected query does not cause all future queries to be rejected. One could
also define strict versions of each predicate, where a single rejected query
causes all further queries to be rejected. To do this formally, one would
simply add a check 6 ∃c : (dec, c, 0) ∈ T to a predicate.

One can also define predicates somewhere in between forgiving and strict.
For example, one could allow a certain number of errors before rejecting
every query. Another example is the notion of robustness defined in [FGJ20],
which ensures that the output of correct queries is not changed by the fact
that there are forgery attempts. The behaviour for previously encrypted
ciphertexts is then defined by their notion of correctness, which allows strict
notions. So their schemes can be forgiving for forgeries but strict for other
attacks. Their notions of correctness, robustness and integrity can all be
defined using predicates.

Theorems 7.6 and 7.11 below show that fulfilling the union of two predicates
is equivalent to fulfilling both of the predicates individually. This allows
us to take the union of predicates to achieve multiple types of protection.
We cannot however take the union of fully-specified predicates directly, as
they are either equal or contradict each other. Instead, the way to combine
predicates is to take the union of their integrity portions. One can then turn
the combined integrity predicate back into a fully-specified one by replacing
the remaining E’s with 1’s.

Note that it is important to do this with the integrity portion, not the cor-
rectness portion. While we can take the union of correctness portions, the
resulting notions are not useful. For example, combining the replay correct-
ness and dropping correctness predicate results in a predicate which causes
queries which are a replay or a drop to be correct and only suppresses
queries which are simultaneously a replay and a dropping attack.

We now list some relations between the predicates defined above. We have
ϕint

rep ⊂ ϕint
ord, so (by Theorem 7.6) a scheme which protects against reorder

attacks automatically protects against replay attacks. Also for any predi-
cate ϕ we have ϕint

sl ⊂ ϕint, or in words every predicate provides protection

71

7.3. Security notions using predicates

ϕint
sl ϕint

rep ϕint
ord ϕint

ord
⋃

ϕint
drop ϕint

s f

ϕint
(wp,w f)

ϕint
(wp,w f)

⋃
ϕint

rep TLS 1.3DTLS 1.3

⊂ ⊂ ⊂ ⊂

⊂

⊂ ⊂

Figure 7.1: Relations between common predicates. The upper row represents the classical
hierarchy from stateless to stateful notions defined in [KPB03]. Replacing the integrity predicates
with the corresponding correctness predicates would reverse the implications.

against forgeries. This is a direct consequence of the assumption that only
encrypted ciphertexts can be correct.

Another interesting example of this is the combination of ϕord and ϕdrop. A
ciphertext is only accepted if every ciphertext encrypted before it has been
decrypted. This is equivalent to ϕ(0,1) and is the forgiving version of ϕs f .
One can view this as a formal confirmation that stateful security indeed
protects against replay, reorder and dropping attacks.

In Chapter 9 we will use the combination of replay-protection and an accep-
tance window in order to analyse DTLS.

7.3 Security notions using predicates

We define three notions using predicates. We start with the fulfilment no-
tion, which ensures that a scheme fulfils a predicate. Next we define a
privacy notion which ensures privacy ”up to a predicate”, which means
that decryption queries which are specified by the predicate are suppressed.
Finally, we define a combined notion, which ensures both fulfilment and
privacy.

7.3.1 The fulfilment notion

An adversary wins this game if it can send a decryption query which is spec-
ified by the predicate and decrypts to the wrong value. To check whether a
decryption is correct, we save each message encrypted along with the result-
ing ciphertext. By the assumption that only such ciphertexts can be correct,
we can use this to check the decryption.

Definition 7.3 (ϕ-FUL)
For a predicate ϕ the predicate fulfilment of an encryption scheme SE with security
parameter k against adversaries with runtime t using q queries totalling µ bits

72

7.3. Security notions using predicates

Game ϕ-FULSE (k)

1 : proc Initϕ-FUL()

2 : K←$ KGen(k)
3 : T ← ∅
4 : E← ∅
5 : win← 0
6 : return k

7 : proc Encϕ-FUL(m)

8 : c← EncK(m)

9 : T ← T‖(enc, c)
10 : E← E‖{c : m}
11 : return c

12 : proc Decϕ-FUL(c)

13 : m← DecK(c)
14 : p← ϕ(T, c)
15 : T ← T‖(dec, c, p)
16 : if p = 0 and m 6= ⊥
17 : win← 1
18 : if p = 1 and m 6= E[c]
19 : win← 1
20 : return m

21 : proc Finϕ-FUL()

22 : return win

Figure 7.2: The game for ϕ-FUL

is defined by Sec
ϕ-FUL
SE (k, t, q, µ) using the game ϕ-FULSE (k) depicted in Figure

7.2. The input for encryption queries are messages m ∈ M and the input for the
decryption queries are strings c.

For a correctness predicate this game ensures that the scheme is correct. In
particular, a scheme fulfils the original stateless or stateful correctness notion
if and only if it has perfect security in the fulfilment game for ϕcor

sl or ϕcor
s f .

For the corresponding ciphertext integrity predicate, this game is equivalent
to the appropriate ciphertext integrity game. For example, ϕint

sl -FUL is equiv-
alent to INT-CTXT. With a combined predicate this game provides correct-
ness and integrity. Note that formally, this last statement requires Theorem
7.11, which shows that the game for a combined predicate is equivalent to
the combination of the games for each individual predicate.

An interesting observation is that we cannot define a predicate for plaintext
integrity, as this depends on the output of the decryption, which is not
known to the predicate. We could however define specific forms of plaintext
integrity, for example not forcing integrity for ciphertexts where exactly one
bit has been flipped from an original ciphertext. It is not clear whether there
is much use for such definitions.

7.3.2 The privacy notion

These games are based on the privacy notions defined in Chapter 2 and 3.
The flavors remain the same as before and any decryption query which is
specified by predicate is suppressed.

73

7.3. Security notions using predicates

Game FL-ϕCCASE (k, b)

1 : proc InitFL-ϕCCA()

2 : T ← ∅
3 : return InitFL-CPA()

4 : proc EncFL-ϕCCA(m)

5 : c← EncFL-CPA(m)

6 : T ← T‖(enc, c)
7 : return c

8 : proc ChalFL-ϕCCA(m)

9 : c← ChalFL-CPA(m)

10 : T ← T‖(enc, c)
11 : return c

12 : proc DecFL-ϕCCA(c)

13 : m← DecK(c)
14 : p← ϕ(T, c)
15 : T ← T‖(dec, c, p)
16 : if p 6= E

17 : m← ⊥
18 : return m

19 : proc FinFL-ϕCCA(d)

20 : return FinFL-CPA(d)

Figure 7.3: The game for FL-ϕCCA

Definition 7.4 (FL-ϕCCA)
For a predicate ϕ the privacy of an encryption scheme SE up to ϕ with security
parameter k against adversaries with runtime t using q queries totalling µ bits
is defined by Sec

FL-ϕCCA
SE (k, t, q, µ) using the game FL-ϕCCASE (k, b) depicted in

Figure 7.3. The input for the decryption queries are strings c. For the remaining
queries the inputs are the same as in the FL-CPA game.

For a correctness predicate this game is equivalent to the expected privacy
notion, so using ϕcor

sl gives us FL-CCA and using ϕcor
s f gives us FL-sfCCA.

Using an integrity predicate does not really result in a meaningful game.
Indeed, if the scheme is correct (for some correctness notion) and we do
not suppress correct decryptions, then an adversary can usually achieve a
trivial win, following the strategy from Theorem 2.15. Since every useful
scheme fulfils some sort of correctness, this game is not very interesting.
Note however that for fully-specified predicate every decryption query is
suppressed. So in this case the CCA privacy game reduces to the CPA privacy
game. This fact is important for the generic composition result below.

7.3.3 The combined notion

This notion provides both privacy up to a predicate ϕ and the fulfilment
of ϕ. This makes it a little different from the AE games from Chapter 4.
Those games provided privacy up to correctness predicate and ensured the
fulfilment of the corresponding integrity predicate. Our games use a sin-
gle predicate, which can be any combination of correctness and integrity,

74

7.3. Security notions using predicates

Game FL-ϕAESE (k, b)

1 : proc InitFL-ϕAE()

2 : T ← ∅
3 : E← ∅
4 : return InitFL-CPA()

5 : proc EncFL-ϕAE(m)

6 : c← EncFL-CPA(m)

7 : T ← T‖(enc, c)
8 : E← E‖{c : m}
9 : return c

10 : proc ChalFL-ϕAE(m)

11 : c← ChalFL-CPA(m)

12 : T ← T‖(enc, c)
13 : E← E‖{c : m}
14 : return c

15 : proc DecFL-ϕAE(c)

16 : m← DecK(c)
17 : p← ϕ(T, c)
18 : T ← T‖(dec, c, p)
19 : if (p 6= E and b = 0)
20 : or (p = 1 and m = E[c])
21 : or (p = 0 and m = ⊥)
22 : m← ε

23 : return m

24 : proc FinFL-ϕAE(d)

25 : return FinFL-CPA(d)

Figure 7.4: The game for FL-ϕAE

but provides privacy up to and fulfilment of the same predicate, not two
different predicates. This means that this notion cannot capture the combi-
nation of privacy and integrity without also ensuring correctness. One could
also define a combined game which takes as input two predicates, one for
privacy and and one for fulfilment, allowing us to define arbitrary combi-
nations. We see below however that this definition allows us to achieve the
combination of correctness, integrity and privacy up to correctness, so we
just use this simpler game.

Theorem 7.9 states that this combined game is indeed equivalent to the com-
bination of ϕ-FUL and FL-ϕCCA. So for a correctness predicate this game
is ensures correctness and privacy. For a fully-specified predicate this game
ensures correctness, integrity and CPA-privacy. Combining this with The-
orem 7.10, generic composition for predicates, shows that this combination
actually also ensures CCA-privacy. By Theorem 7.8 taking FL = $ gives the
strongest version of this notion.

As before, much of the previous analysis of channels uses LoR oracles. So
the notion $-ϕAE is new for most predicates. One exception can be found
in [DFP+20], where the authors define a very specific notion for the analysis
of QUIC which uses $-type oracles. We will see the advantage of using our
very general notion in Chapter 9 when analyse the scheme DTLS.

75

7.4. Relations between predicate notions

The idea of the combined game is as follows: encryption is the same as in
the privacy game. Specified decryption queries are suppressed if b = 0 or if
the output of the decryption is incorrect, allowing an adversary to win if it
can cause the scheme to decrypt incorrectly. Unspecified decryption queries
are always returned. In this game we have to make a distinction between
decryption queries suppressed by the scheme, so decryptions which output
⊥, and queries suppressed by the game, which we will represent by ε. If we
did not make this distinction, an adversary would not be able to distinguish
whether a decryption query bound by correctness was decrypted correctly
(resulting in ε) or if the scheme incorrectly returned ⊥.

Definition 7.5 (FL-ϕAE)
For a predicate ϕ the ϕ-authenticated encryption security of an encryption scheme
SE with security parameter k against adversaries with runtime t using q queries
totalling µ bits is defined by Sec

FL-ϕAE
SE (k, t, q, µ) using the game FL-ϕAESE (k, b)

depicted in Figure 7.4. The input for the decryption queries are strings c. For the
remaining queries the inputs are the same as in the FL-CPA game.

7.4 Relations between predicate notions

We now prove relations between the notions defined using predicates. These
results imply practically all of the theorems proved so far in this thesis and
allow us to quickly prove similar results for additional correctness notions.
Instead of constructing adversaries and analysing simulations for each new
predicate, it suffices to define and compare the relevant predicates. In par-
ticular, if we show that one predicate implies another, then almost all of the
results we showed in Chapters 3 and 4 about the relation between stateless
and stateful correctness hold for these two predicates as well.

We begin by showing that implication of predicates ensures the implication
of the corresponding fulfilment notions.

Theorem 7.6
Let ϕ and ψ be correctness predicates. If ψ ⊂ ϕ then for any k, t, q and µ we have

Sec
ψ-FUL
SE (k, t, q, µ) ≤ Sec

ϕ-FUL
SE (k, t, q, µ)

As the ϕcor
sl implies every other correctness predicate, this theorem shows

that stateless correctness implies every other correctness notion. This impli-
cation is reversed for the integrity notions, so every integrity notion implies
ϕint

sl .

Proof LetA be an adversary for the ψ-FUL game and consider the adversary
for the ϕ-FUL game which runs A and forwards its queries. This simulates
the ψ-FUL game. Now consider the a query where win is set to 1 in the

76

7.4. Relations between predicate notions

simulated game. This is decryption query for ciphertext c so that ψ(T, c) 6= E
and the actual decryption DecSE (c) is not the value specified by ψ. But as
ψ ⊂ ϕ and ψ(T, c) 6= E, we know that ψ(T, c) = ϕ(T, c). So the decryption
also does not match the value given by ϕ and win is also set to 1 in the actual
ϕ-FUL game. �

Note that the converse of this theorem is not quite true. Ideally we would
like to prove that if ψ 6⊂ ψ, so if there exists an input so that ψ(T, c) 6= E
and ϕ(T, c) 6= ψ(T, c) either specifies differently or not at all, then ϕ-FUL 6⇔
ψ-FUL. If an adversary can cause such an input to occur, then sending it will
indeed give an attack against the ϕ-FUL game. Just because such a transcript
exists it is however not given that an efficient adversary can cause this tran-
script to occur. So instead of demanding ψ ⊂ ϕ above, it would suffice to
demand that no adversary can cause a transcript to occur which contradicts
ψ ⊂ ϕ, even if such a transcript may exist. This would requires some effort
to formalize and for all of the concrete correctness notions defined above,
contradictions can always be found efficiently. For example, an out-of-sync
ciphertext will create a contradiction between ϕsl and ϕs f .

We now show that for privacy notions, the implication between predicates is
reversed. This is not surprising, as a predicate which specifies more makes it
”easier” to win the fulfilment game, but ”harder” to win the privacy game.

Theorem 7.7
Let ϕ and ψ be correctness predicates so that ψ ⊂ ϕ. There exists a constant c so
that for any k, t, q and µ we have

Sec
FL-ϕCCA
SE (k, t, q, µ) ≤ Sec

FL-ψCCA
SE (k, t + cq, q, µ)

Applying this theorem to the ϕcor
sl and ϕcor

s f shows Theorem 3.2, which stated
that FL-sfCCA ⇒ FL-CCA. Recall that if we choose ϕ to be a fully-specified
predicate, then every decryption query is suppressed, so this theorem also
shows that FL-ϕCCA⇒ FL-CPA for any predicate.

Proof Let Aϕ be an adversary for the FL-ϕCCA game and let Aψ be the
following adversary for the FL-ψCCA game:

77

7.4. Relations between predicate notions

Aψ

1 : proc InitFL-ϕCCA()

2 : T ← ∅
3 : return InitFL-ψCCA()

4 : proc EncFL-ϕCCA(m)

5 : c← EncFL-ψCCA(m)

6 : T ← T‖(enc, c)
7 : return c

8 : proc EncFL-ϕCCA(m)

9 : c← EncFL-ψCCA(m)

10 : T ← T‖(enc, c)
11 : return c

12 : proc DecFL-ϕCCA(c)

13 : m← DecFL-ψCCA(c)

14 : p← ϕ(T, c)
15 : T ← T‖(dec, c, p)
16 : if p 6= E

17 : m← ⊥
18 : return m

19 : proc FinFL-ϕCCA(d)

20 : return FinLoR-(sf)AE(d)

Note that because ψ ⊂ ϕ, any query for which ϕ(T, c) = E also satisfies
ψ(T, c) = E. So every query which should not be suppressed in the FL-ϕCCA
game is also not suppressed in the FL-ψCCA game. So Aψ simulates the
FL-ϕCCA game with the same value of b and therefore has the same advan-
tage. �

In order to prove a converse it would again be necessary to introduce some
way of measuring whether an efficient adversary can cause a specific tran-
script to occur. The adversary needs an input where ψ(T, c) 6= E = ϕ(T, c),
which would not be suppressed in the ϕ-FUL game, so an attack which uses
the value of that decryption would work for ϕ but not for ψ.

Note that as the implications are reversed for privacy and correctness no-
tions the games FL-ϕAE and FL-ψAE are in general incomparable for ψ ⊂ ϕ.
This is a change from the AE game defined in Chapter 4 due to the fact that
the new combined game also ensures correctness.

The next theorem shows that the relations between the different flavors of
privacy are the same for every predicate.

Theorem 7.8
Let ϕ be a predicate. The Theorems 2.6 (RoR-CPA⇒ LoR-CPA), 2.7 (LoR-CPA⇒
RoR-CPA), 2.8 (LoR-CPA ⇒ FtG-CPA), 2.9 + 2.10 (FtG-CPA → LoR-CPA),
2.11 (SEM-CPA ⇒ FtG-CPA), 2.12 (FtG-CPA ⇒ SEM-CPA), 2.13 ($-CPA ⇒
LoR-CPA) and 2.14 (LoR-CPA 6⇒ $-CPA) hold if we replace CPA with ϕAE or
with ϕCCA.

Also we have FtG-ϕAE → LoR-ϕCCA and LoR-ϕAE 6⇒ $-ϕCCA. If ψ is a sec-
ond predicate so that ψ ⊂ ϕ, then we also have FtG-ψCCA → LoR-ϕCCA and

78

7.4. Relations between predicate notions

LoR-ψCCA 6⇒ $-ϕCCA.

Proof As with all iterations of this theorem so far, the decryption queries are
the same every flavor, so the reductions (which only rely on the encryption
and challenge queries) can be applied immediately.

The separation used in 2.17 to show LoR-CCA 6⇒ $-CCA also works for an
arbitrary predicate. Indeed the scheme which adds and remove 0n remains
LoR-ϕAE secure for any predicate ϕ.

Similarly, the separation used in Theorem 4.8 to show that FtG-AE→ LoR-AE
also holds for an arbitrary predicate. �

We now show that combining predicates results in a predicate which ensures
the fulfilment of both individual predicates. Among other things, this shows
that a fully-specified predicate indeed is equivalent to the combination of
privacy and fulfilment.

Theorem 7.9 (ϕ-FUL + FL-ϕCCA ⇔ FL-ϕAE)
Let ϕ be a correctness notion. There exists a constant c so that for any k, t, q and µ
we have

Sec
FL-ϕCCA
SE (k, t, q, µ) ≤ Sec

FL-ϕAE
SE (k, t + cq, q, µ),

Sec
ϕ-FUL
SE (k, t, q, µ) ≤ 2 · SecFL-ϕAE

SE (k, t + cq, q, µ) and

Sec
FL-ϕAE
SE (k, t, q, µ) ≤ Sec

FL-ϕCCA
SE (k, t + cq, q, µ) + Sec

ϕ-FUL
SE (k, t, q, µ).

Proof The first statement is fairly simple: we can simulate the FL-ϕCCA
game by forwarding queries and always suppressing specified queries, in-
dependently of whether they are actually suppressed in the FL-ϕAE game.

For the second statement we use the same idea as in the proof of Theo-
rem 4.13: Let A be an adversary for the ϕ-FUL game and consider a game
FL1-ϕAE where encryption queries are always answered as if b = 1 (and the
other queries are normal). We define an adversary A′ in Figure 7.5 which
forwards the queries from A, restores queries which return ε (as if they de-
crypted correctly, they can be restored) and finalizes with 1 if any specified
decryption query returns something other than ε.

This adversary simulates the ϕ-FUL up until the first time A sends a query
which would decrypt incorrectly. So it has the same advantage as A. Then
we can bound the advantage in the FL1-ϕAE game by adding and subtract-
ing the term Pr[FL-ϕAEASE (k, 0) = 1]. This gives one term which is exactly
the definition advantage in the FL-ϕAE game and one term which is equiv-
alent to the FL-ϕCCA (which we bounded above).

For the final statement we can proceed as in the proof of Theorem 4.12. Let
A be an adversary for the FL-ϕAE game. Now add and subtract the term

79

7.4. Relations between predicate notions

A’

1 : proc Initϕ-FUL()

2 : T ← ∅
3 : E← ∅
4 : d← 0
5 : return InitFL1-ϕAE()(d)

6 : proc Encϕ-FUL(m)

7 : c← EncFL1-ϕAE(m)

8 : T ← T‖(enc, c)
9 : E← E‖{c : m}

10 : return c

11 : proc Decϕ-FUL(c)

12 : m← DecFL1-ϕAE(c)

13 : p← ϕ(T, c)
14 : T ← T‖(dec, c, p)
15 : if p 6= E and m 6= ε

16 : d← 1
17 : if p = 0 and m = ε

18 : m← ⊥
19 : if p = 1 and m = ε

20 : m← E[c]
21 : return m

22 : proc Finϕ-FUL()

23 : return FinFL1-ϕAE(d)

Figure 7.5: The adversary used in the proof of Theorem 7.9.

Pr[FL1-ϕAE
A
SE (k, 0) = 1] to the advantage of A. This gives an advantage

term for the FL1-ϕAE game and an advantage for the FL-ϕCCA game. So
we just need to construct an adversary for the ϕ-FUL game which simu-
lates the FL1-ϕAE game. We can do this by forwarding every query and
suppressing specified queries. This is a correct simulates up until the first
specified query which would not be suppressed, but if this occurs then the
constructed adversary wins the ϕ-FUL game. �

As noted before, this theorem does not yet show that we can ensure cor-
rectness, integrity and privacy up to correctness with a single game, as a
predicate which ensures integrity will suppress every query in the privacy
game. The next theorem, generic composition for predicates, solves this
problem.

Theorem 7.10 (Generic composition for predicates)
Let ψ be an integrity predicate and ϕ be another predicate which does not contradict
ψ. There exists a constant c so that for any k, t, q and µ we have

Sec
FL-ϕCCA
SE (k, t, q, µ) ≤ Sec

FL-(ϕ∪ψ)CCA
SE (k, t, q, µ) + 2 · Secψ-FUL

SE (k, t + cq, q, µ)

The intuition behind this theorem is fairly clear: for queries which fulfil
integrity (so output ⊥), it does not matter if we suppress them (which also
sets them to ⊥) in the privacy game. The traditional generic composition
result follows from this: let ϕ be a fully-specified predicate and apply the

80

7.4. Relations between predicate notions

theorem to ϕcor and ϕint. As FL-ϕCCA is equivalent to FL-CPA, this shows
that

Sec
FL-ϕcorCCA
SE (k, t, q, µ) ≤ SecFL-CPA

SE (k, t, q, µ) + 2 · Secϕint-FUL
SE (k, t + cq, q, µ).

Proof This proof again follows the proof idea for generic composition from
[BN00], but extends it to predicates. Let A be an adversary for the FL-ϕCCA
game. We have

Adv
FL-ϕCCA
SE ,A (k) = Pr[FL-ϕCCAASE (k, 1) = 1]− Pr[FL-ϕCCAASE (k, 0) = 1]

= Pr[FL-ϕCCAASE (k, 1) = 1]− Pr[FL-(ϕ ∪ ψ)CCAASE (k, 1) = 1] (7.1)

+ Pr[FL-(ϕ ∪ ψ)CCAASE (k, 1) = 1]− Pr[FL-(ϕ ∪ ψ)CCAASE (k, 0) = 1] (7.2)

+ Pr[FL-(ϕ ∪ ψ)CCAASE (k, 0) = 1]− Pr[FL-ϕCCAASE (k, 0) = 1] (7.3)

The term 7.2 is exactly the definition of AdvFL-(ϕ∪ψ)CCA
SE ,A (k). So it suffices to

bound the terms 7.1 and 7.3 by Sec
ψ-FUL
SE (k, t, q, µ). This means we need to

construct an adversary for the ψ-FUL game which simulates a privacy game
where the encryption is independent of b (either always 1 for 7.1 or 0 for 7.3)
and either suppresses queries for ϕ or for ϕ ∪ ψ. We saw in the proofs of
Theorems 4.9 and 4.12 that we can simulate the encryption queries for b = 1
or b = 0 using a truthful encryption oracle for any flavor, so we omit stating
this in detail. Instead consider an adversary which maintains a transcript,
simulates encryption accordingly and handles decryption as follows:

1 : proc DecFL-ϕCCA(c)

2 : p← (ϕ ∪ ψ)(T, c)
3 : T ← T‖(dec, c, p)
4 : m← Decψ-FUL(c)

5 : if p 6= E

6 : m← ⊥
7 : return m

This adversary simulates the game up until the first query where a query
would be suppressed by ϕ ∪ ψ but not by ϕ and the response to this query
is not ⊥. But if this occurs, then the adversary has won the ψ-FUL game, as
it has sent a query specified by ψ to be ⊥ which did not decrypt to ⊥. So
following the calculation from Theorem 4.12 gives us the desired result. �

Note that this proof only holds if ψ is an integrity predicate. Intuitively this
makes sense: just because a scheme is correct we cannot stop suppressing
queries which are bound by correctness in the privacy game. The proof
above would fail when we try to bound against the fulfilment game with

81

7.4. Relations between predicate notions

a correctness predicate. If an adversary sends a decryption query which
is bound to be correct by ϕ ∪ ψ but not by ψ, it can tell which queries are
being suppressed even if the scheme decrypts correctly, so the constructed
adversary does not necessarily win the fulfilment game.

There is still a (fairly technical) step missing to argue that the combined
game for a fully-specified predicate is equivalent to the combination of cor-
rectness, integrity and privacy. It is namely not yet clear that the fulfilment
of a fully-specified predicate is equivalent to the fulfilment of the separate
correctness and integrity predicates. One direction of the equivalence is
given by Theorem 7.6, the other direction we prove now.

Theorem 7.11
Let ϕ and ψ be predicates which do not contradict each other. There for any k, t, q
and µ we have

Sec
(ϕ∪ψ)-FUL
SE (k, t, q, µ) ≤ Sec

ϕ-FUL
SE (k, t, q, µ) + Sec

ψ-FUL
SE (k, t, q, µ)

Proof Let A be an adversary for the (ϕ ∪ ψ)-FUL game. Consider the first
decryption query from A so that win is set to 1. This decryption is specified
either by ϕ or by ψ, so it would set win to 1 in one of the games. Let W be
the event that this query is specified by ϕ and note that W implies that the
query is specified by ψ. So we have

Adv
(ϕ∪ψ)-FUL
SE ,A (k)

= Pr[(ϕ ∪ ψ)-FULASE (k, 1) = 1 |W] + Pr[(ϕ ∪ ψ)-FULASE (k, 1) = 1 |W]

− Pr[(ϕ ∪ ψ)-FULASE (k, 0) = 1 |W]− Pr[(ϕ ∪ ψ)-FULASE (k, 0) = 1 |W]

= Adv
ϕ-FUL
SE ,A (k) + Adv

ψ-FUL
SE ,A (k),

as desired. �

This theorem has some interesting real-world applications. If we are try-
ing to prove correctness and/or integrity for a scheme, it allows us to split
the predicate up into arbitrary pieces and prove fulfilment for each piece
individually. This could simplify the proof. It could also allow us to prove
stronger bounds on some portions, giving insights into which parts of the
predicate have a greater or lesser impact on bounds.

Note that this equivalence does not holds for the privacy notions. While one
direction is given by Theorem 7.7, the other direction is clearly impossible,
as it would show that CPA implies CCA security. Thankfully, due to generic
composition it is enough to prove CPA-privacy in most scenarios.

82

Chapter 8

Progress hiding with predicates

We now wish to define a notion of progress-hiding based on predicates. Re-
call that in Definition 5.7 we defined a notion of progress-hiding for stateful
security which ensured that the adversary could not win trivially by break-
ing sync in a progress query. Ideally we would like to define such a notion
for an arbitrary predicate, which suppresses progress queries which would
allow an adversary to win by using properties of the predicate. This can
occur if any later output of the predicate differs depending on the value of
b, so on whether progress queries occur or not. It is however not necessarily
possible to efficiently determine which progress queries need to be sup-
pressed for arbitrary predicates, as the worst-case scenario would require
calculating every possible transcript.

So, instead of trying to suppress queries depending on a predicate ϕ, we
define a notion of progress-hiding which depends not only on ϕ but also
on a so-called suppression function F , which takes as input a transcript
T and outputs 1 if a progress query should be allowed and 0 it should be
suppressed. We then define a notion which measures whether a suppression
function successfully suppresses the correct queries.

Definition 8.1 (PH-(ϕ,F)CCA)
Let F be a suppression function and ϕ a predicate. The progress-hiding chosen-
ciphertext security up to ϕ of an encryption scheme SE up to F with security
parameter k against adversaries with runtime t using q queries totalling µ bits
is defined by Sec

PH-(ϕ,F)CCA
SE (k, t, q, µ) using the game PH-(ϕ,F)CCASE (k, b) de-

picted in Figure 8.1. The input for encryption and progress queries are messages
m ∈ M, the input for the decryption queries are strings c and the input for the
finalization query is a bit d.

Note that the variable pre ensures that we always allow progress queries if
no encryption or decryption have taken place, so even if we take the sup-
pression function which always outputs 0, we still cover the scenario where

83

Game PH-(ϕ,F)CCASE (k, b)

1 : proc InitPH-(ϕ,F)CCA()

2 : K←$ KGen(k)
3 : T ← ∅
4 : pre← 1
5 : return k

6 : proc ProgPH-(ϕ,F)CCA(m)

7 : if b = 1 and (F (T) = 1 or pre = 1)
8 : c← EncK(m)

9 : DecK(c)
10 : T ← T‖(enc, c)
11 : T ← T‖(dec, c, ϕ(T, c))
12 : return ⊥

13 : proc EncPH-(ϕ,F)CCA(m)

14 : pre← 0
15 : c← EncK(m)

16 : T ← T‖(enc, c)
17 : return c

18 : proc DecPH-(ϕ,F)CCA(c)

19 : pre← 0
20 : m← DecK(c)
21 : p← ϕ(T, c)
22 : T ← T‖(dec, c, p)
23 : return m

24 : proc FinPH-(ϕ,F)CCA(d)

25 : return d

Figure 8.1: The game for PH-(ϕ,F)CCA

an adversary misses the beginning of communication. This property cannot
be expressed using only suppression functions, as the transcript does not
contain the information whether queries were part of progress queries or
part of encryption/decryption queries. Note that we can define predicates
which cannot provide even this level of progress-hiding, for example a pred-
icate which only allows performing a fixed number of encryptions. For such
predicates we would have to suppress every progress query.

We now define a notion called suppression consistency which ensures that
a suppression function suppresses the correct progress queries for a spe-
cific predicate. In the game for this notion two transcripts T0 and T1 are
maintained. Both contain the encryption and decryption queries sent by an
adversary. Progress queries however are only contained in T1. An adversary
wins if it can cause the output of ϕ or F to differ for the two transcripts.
Intuitively, if an adversary cannot win this game, then F ensures that all of
the queries we wish to suppress for ϕ are indeed suppressed.

Definition 8.2 (PH-(ϕ,F)CON)
Let ϕ be a predicate and F be a suppressing function. The progress-hiding consis-
tency of F for ϕ and an encryption scheme SE with security parameter k against ad-
versaries with runtime t using q queries totalling µ bits is defined by Sec

PH-(ϕ,F)CON
SE

(k, t, q, µ) using the game PH-(ϕ,F)CONSE (k, b) depicted in Figure 8.2. The in-
put for encryption and progress queries are messages m ∈ M and the input for the

84

Game PH-(ϕ,F)CONSE (k)

1 : proc InitPH-(ϕ,F)CON()

2 : K←$ KGen(k)
3 : T0 ← ∅
4 : T1 ← ∅
5 : win← 0
6 : pre← 1
7 : return k

8 : proc ProgPH-(ϕ,F)CON(m)

9 : if F (T0) = 1 or pre = 1
10 : c← EncK(m)

11 : T1 ← T1‖(enc, c)
12 : T1 ← T1‖(dec, c, ϕ(T1, c))
13 : if F (T0) 6= F (T1)

14 : win← 1
15 : return ⊥

13 : proc EncPH-(ϕ,F)CON(m)

14 : pre← 0
15 : c← EncK(m)

16 : T0 ← T0‖(enc, c)
17 : T1 ← T1‖(enc, c)
18 : if F (T0) 6= F (T1)

19 : win← 1
20 : return c

21 : proc DecPH-(ϕ,F)CON(c)

22 : pre← 0
23 : m← DecK(c)
24 : p0 ← ϕ(T0, c)
25 : p1 ← ϕ(T1, c)
26 : T0 ← T0‖(dec, c, p0)

27 : T1 ← T1‖(dec, c, p1)

28 : if p0 6= p1 or F (T0) 6= F (T1)

29 : win← 1
30 : return m

31 : proc FinPH-(ϕ,F)CON()

32 : return win

Figure 8.2: The game for PH-(ϕ,F)CON

decryption queries are strings c.

We can now prove a sufficient condition to achieve progress-hiding, namely
that under the assumption that F correctly suppresses progress queries for
ϕ, then the combination of PH-CPA and the fulfilment of ϕ imply progress-
hiding up to F .

Theorem 8.3
Let ϕ be a fully-specified predicate and F be a suppressing function. There exists a
constant c so that for any k, t, q and µ we have

Sec
PH-(ϕ,F)CCA
SE (k, t, q, µ) ≤ SecPH-CPA

SE (k, t + cq, q, µ)

+ 2 · Secϕ-FUL
SE (k, t + cq, q, µ) + 2 · SecPH-(ϕ,F)CON

SE (k, t + cq, q, µ)

We make two remarks before we prove this theorem. First of all note that
$-ϕAE ⇒ PH-CPA+ ϕ-FUL, so if we assume privacy, integrity and correct-

85

ness for a predicate then to obtain progress-hiding it suffices to find an
appropriate suppression function. Secondly, note that there is nothing forc-
ing the suppression function to be minimal, e.g. to suppress as few queries
as possible. Taking F to always be 0 gives a valid definition, but results in
a weaker result. So when we consider suppression functions for concrete
predicates, we ideally not only need to argue that the suppression function
is consistent, but also that it suppresses as few queries as possible.

Proof This proof is similar to the proof of Theorem 5.10, but now has to
account for general predicates and suppression functions. The main diffi-
culty results from having to maintain the correct transcript, which can differ
depending on progress queries. For arbitrary predicates, these differences
in the transcript could cause ϕ or F to output different things, which makes
it harder to jump to the games we wish to bound by. We proceed using
a series of game hops: for n ∈ {1, . . . 6} consider the games Gn defined in
Figure 8.3. All of these games share the same initialization, encryption and
finalization queries:

1 : proc InitGn()

2 : K←$ KGen(k)
3 : T0 ← ∅
4 : T1 ← ∅
5 : E← ∅
6 : pre← 1
7 : return k

8 : proc EncGn(m)

9 : pre← 0
10 : c← EncK(m)

11 : T0 ← T‖(enc, c)

12 : T1 ← T′‖(enc, c)
13 : E← {c : m}
14 : return c

15 : proc FinGn(d)
16 : return d

Not every game needs every variable defined here, but for simplicity we
state them here once with every variable.

We begin by transforming an adversary A for the PH-(ϕ,F)CCA game into
one which distinguishes G1 from G6. Note that the only difference between
these games is that in G1 and G6 some decryption queries are suppressed.
Specifically, queries which return the value specified by ϕ applied to a tran-
script which does not contain progress queries are suppressed. Note that we
again suppress queries with ε instead of ⊥ so that we can distinguish queries
which correctly decrypted from those which falsely returned ⊥. We can
construct an adversary which runs A, forwards its queries and maintains
a transcript (without progress queries). This adversary can then ”restore”
suppressed decryption queries to their correct value and thus correctly sim-
ulate the PH-(ϕ,F)CCA game.

86

G1

1 : proc ProgG1
(m)

2 :
3 :
4 :
5 : return ⊥

6 : proc DecG1(c)
7 : m← DecK(c)
8 : p← ϕ(T0, c)
9 : T0 ← T0‖(dec, c, p)

10 : if (p = 1 and m = E[c])
11 : or (p = 0 and m = ⊥)
12 : m← ε

13 : return m

G2

1 : proc ProgG2
(m)

2 :
3 :
4 :
5 : return ⊥

6 : proc DecG2(c)
7 :
8 :
9 :

10 :
11 :
12 :
13 : return ε

G3

1 : proc ProgG3
(m)

2 : if F (T0) = 1 or pre = 1
3 : c← EncK(m)

4 : DecK(c)
5 : return ⊥

6 : proc DecG3(c)
7 : pre← 0
8 : p← ϕ(T0, c)
9 : T0 ← T0‖(dec, c, p)

10 :
11 :
12 :
13 : return ε

G4

1 : proc ProgG4
(m)

2 : if F (T1) = 1 or pre = 1
3 : c← EncK(m)

4 : p← ϕ(T1, c)
5 : DecK(c)
6 : E← E‖{c : m}
7 : T1 ← T1‖(enc, c)
8 : T1 ← T1‖(dec, c, p)
9 : return ⊥

10 : proc DecG4(c)
11 : pre← 0
12 :
13 :
14 :
15 : p1 ← ϕ(T1, c)
16 : T1 ← T1‖(dec, c, p1)

17 :
18 :
19 :
20 : return ε

G5

1 : proc ProgG5
(m)

2 : if F (T1) = 1 or pre = 1
3 : c← EncK(m)

4 : p← ϕ(T1, c)
5 : DecK(c)
6 : E← E‖{c : m}
7 : T1 ← T1‖(enc, c)
8 : T1 ← T1‖(dec, c, p)
9 : return ⊥

10 : proc DecG5(c)
11 : pre← 0
12 : m← DecK(c)
13 :
14 :
15 : p1 ← ϕ(T1, c)
16 : T1 ← T1‖(dec, c, p1)

17 : if (p1 = 1 and m = E[c])
18 : or (p1 = 0 and m = ⊥)
19 : m← ε

20 : return m

G6

1 : proc ProgG6
(m)

2 : if F (T1) = 1 or pre = 1
3 : c← EncK(m)

4 : p← ϕ(T1, c)
5 : DecK(c)
6 : E← E‖{c : m}
7 : T1 ← T1‖(enc, c)
8 : T1 ← T1‖(dec, c, p)
9 : return ⊥

10 : proc DecG6(c)
11 : pre← 0
12 : m← DecK(c)
13 : p0 ← ϕ(T0, c)
14 : T0 ← T0‖(dec, c, p0)

15 : p1 ← ϕ(T1, c)
16 : T1 ← T1‖(dec, c, p1)

17 : if (p0 = 1 and m = E[c])
18 : or (p0 = 0 and m = ⊥)
19 : m← ε

20 : return m

Figure 8.3: The games used in the proof of Theorem 8.3.

87

Next we show that for any adversary A the following statements hold:

Pr[G2
A
SE = 1]− Pr[G1

A
SE = 1] ≤ Sec

ϕ-FUL
SE (k, t + cq, q, µ) (8.1)

Pr[G3
A
SE = 1]− Pr[G2

A
SE = 1] ≤ SecPH-CPA

SE (k, t + cq, q, µ) (8.2)

Pr[G4
A
SE = 1]− Pr[G3

A
SE = 1] ≤ Sec

PH-(ϕ,F)CON
SE (k, t + cq, q, µ) (8.3)

Pr[G5
A
SE = 1]− Pr[G4

A
SE = 1] ≤ Sec

ϕ-FUL
SE (k, t + cq, q, µ) (8.4)

Pr[G6
A
SE = 1]− Pr[G5

A
SE = 1] ≤ Sec

PH-(ϕ,F)CON
SE (k, t + cq, q, µ) (8.5)

Consider first (8.1). In both G1 and G2, progress queries are suppressed.
For G2 all decryption queries are suppressed and for G1 only queries which
decrypt correctly according to ϕ. Intuitively, an adversary which can dis-
tinguish these games can make the scheme decrypt a ciphertext incorrectly.
Formally, we can construct an adversary which forwards encryption and de-
cryption queries to the ϕ-FUL game and maintains a transcript as input for
ϕ. Progress queries are always answered with ⊥, decryption queries with ε.
This simulates the games G2 and simulates the games G1 up until the first
query which would decrypt incorrectly. If this occurs, then the constructed
adversary wins the ϕ-FUL game.

The argument for (8.4) is almost the same. The only difference is that now
progress queries are allowed. But we can simulate progress queries with an
encryption and decryption query in the ϕ-FUL game. Note this allows us to
maintain the transcript correctly, as we see the ciphertext in the simulated
progress query. The rest of the argument is the same.

Next consider (8.2). In G2 and G3, all decryption queries are suppressed. In
G2 progress queries are also suppressed. In G3 they are not, but the progress
queries are never added to the transcript. So an adversary which can dis-
tinguish this game can tell whether progress queries are occurring. This
is almost the PH-CPA game, with the small difference that some progress
queries are suppressed by F . We can however construct an adversary for
the PH-CPA game which maintains a transcript and forwards encryption
queries. Decryption queries are added to the transcript, but otherwise ig-
nored. Progress queries are also forwarded, unless they are prohibited by
F . Note that it is important that the transcript does not contain progress
queries, as otherwise the constructed adversary could not maintain the cor-
rect transcript. Since this is the case in G3, this simulation is correct.

Now we argue why (8.3) holds. In G3 and G4, decryption queries are still
suppressed. Progress queries always occur, but in G4 they are included in
the transcript, in G3 they are not. These games return identical outputs
unless the adversary can send a progress query for which the value of F
differs depending on whether previous progress queries were included in
the transcript. Denote such a query a distinguishing query. A distinguishing

88

8.1. Suppressing functions for common predicates

query will cause a progress query to occur in one game, but not in the other.
This does not immediately allow the adversary to win the game, but it might
cause encryption queries to output different values. However, if we forward
every query of the adversary to the PH-(ϕ,F)CON game, then we simulate
G3 and G4 at least until a distinguishing query occurs and if such a query
occurs, then we win the consistency game. So the stated bound holds.

Finally, consider (8.5). In G5 and G6, progress queries are allowed and
contained in the transcript. Decryption queries are suppressed if the de-
cryption is correct. In G5 we check this using the transcript including the
progress queries. In G6 we maintain a separate transcript which does not in-
clude progress queries. So an adversary which can distinguish these games
can send a query which causes ϕ to output something different depending
on whether progress queries are contained in the transcript. So consider
an adversary which maintains a transcript (which cannot contain progress
queries) and forwards queries to the PH-(ϕ,F)CON game, suppressing de-
cryption queries which decrypted correctly. This simulates G6 and simulates
G5 up until the first distinguishing query, which causes a victory in the con-
sistency game. �

The assumption that ϕ is fully-specified is not necessary for most of this
proof, in most of the steps one could suppress or check specified queries
instead of all queries without any issue. The one step where we have an
issue is where we try to construct an adversary for the PH-CPA game. Here
it is necessary that all decryption queries are suppressed. One could define
a notion of ”progress-hiding up to correctness” where specified queries are
suppressed instead of all queries, being careful to still account for suppres-
sion functions. Then one could presumably prove this theorem for general
predicates. Since we argued in the last chapter that the practical use of non-
fully-specified predicates is fairly limited and this proof is already fairly
complex, we refrain from doing this.

8.1 Suppressing functions for common predicates

We now take a look what progress-hiding means for the concrete correctness
predicates defined in the previous chapters. By Theorem 8.3, this means
finding an appropriate suppression function, so an F so that PH-(ϕ,F)CON
is small but F suppresses as few queries as possible. We will see that the
most minimal suppression function F1, which always outputs 1, works for
some, but not all of the common predicates.

Replay protection

We begin with the replay-protection predicate ϕrep. Here F1 can be used:
clearly F1(T0) = 1 = F1(T1) always holds. Now consider ϕrep(T0, c) and

89

8.1. Suppressing functions for common predicates

ϕrep(T1, c). The output of these are independent of other ciphertexts, so they
will always be equal for ciphertexts which we not generated in progress
queries. For ciphertexts generated in progress queries, ϕrep will always re-
turn 0, either because the ciphertext has not been encrypted or because it
has already been decrypted. So we have PH-(ϕrep,F1)CON = 0.

Stateless correctness and dropping protection

Now let us consider the stateless predicate ϕsl . Recalling PH-CCA, one
would expect that no queries need to be suppressed. However, unlike for
the replay predicate, for ciphertexts generated in progress queries we have
ϕsl(T0, c) = 0 6= 1 = ϕsl(T1, c). So if an adversary could guess this cipher-
text, it would win the consistency game. If the scheme provides privacy,
we would expect the probability of guessing this correctly to be equal to
the probability of guessing a random string. We prove this in the following
theorem.
Theorem 8.4
Let F1 be the suppressing function which always outputs 1. Let cmin = min{|c| |
c ∈ C} and fix q. There exists a constant d so that for any k, t and µ we have

Sec
PH-(ϕsl ,F1)CON
SE (k, t, q, µ) ≤ Sec

$-ϕslAE
SE (k, t + dq, q, µ) +

q2

2cmin+2 .

Proof Let A be an adversary for the PH-(ϕsl ,F1)CON game. Note that we
always have F1(T0) = 1 = F1(T1), so the only way this adversary can win is if
ϕsl(T0, c) 6= ϕsl(T1, c) for some c. By the definition of ϕsl , the only ciphertexts
for which this can happen are the ciphertexts generated in a progress query.

So consider the adversary A$ for the $-ϕslAE game defined in Figure 8.4.
Encryption queries are forwarded and saved so that decryption queries can
be restored. Progress queries are encrypted and the resulting ciphertexts are
saved. Decryption queries are forwarded and restored if they are suppressed
by the PH-(ϕsl ,F1)CON game. If A$ ever sends one of the ciphertexts from
a progress query in a decryption query, then A$ finalizes with 1, otherwise
with 0.

Consider first b = 1 in the $-ϕslAE game. This game only suppresses decryp-
tion queries if they decrypt correctly, soA$ restores them to the correctly and
therefore simulates the PH-(ϕsl ,F1)CON. Now consider a decryption query
where A sends a decryption query with ciphertext c which was generated
in a progress query. As c ∈ P, A$ will output 1. As this is the only way an
adversary can win the PH-(ϕsl ,F1)CON game we have

Pr[PH-(ϕsl ,F1)CON
A
SE (k) = 1] = Pr[$-ϕslAE

A$
SE (k, 1) = 1].

For b = 0 the strings in P were sampled randomly in the $-ϕslAE game. The
only way that A$ will output 1 is if one of these random strings generated

90

8.1. Suppressing functions for common predicates

A$

1 : proc InitPH-ϕslSUP()

2 : P← ∅
3 : S← ∅
4 : E← ∅
5 : d← 0
6 : return Init$-ϕslAE()

7 : proc ProgPH-ϕslSUP
(m)

8 : c← Enc$-ϕslAE(m)

9 : P← P ∪ c
10 : return ⊥

11 : proc EncPH-ϕslSUP(m)

12 : c← Enc$-ϕslAE(m)

13 : S← S ∪ {c}
14 : E← E ∪ {c : m}
15 : return c

16 : proc DecPH-ϕslSUP(c)

17 : if c ∈ P
18 : d← 1
19 : m← Dec$-ϕslAE(m)

20 : if m = ε

21 : m← ⊥
22 : if c ∈ S
23 : m← E[c]
24 : return m

25 : proc Fin
PH-phislSUP

F ()

26 : return Fin$-ϕslAE(d)

Figure 8.4: The adversary used in the proof of Theorem 8.4.

in a progress query is equal to one of the ciphertexts sent in a decryption
query. There are at most q2

4 pairs of progress query and decryption query
and each pair has a probability of at most 2−cmin of being equal. So the stated
bound holds. �

Similarly, for the dropping predicate ϕdrop progress queries make no differ-
ence for future queries. As the progress query performs both an encryption
and a decryption, it has no impact on the question whether all previous
ciphertexts have been decrypted. The only exception are again ciphertexts
generated in progress queries, so using the same argument above we can
bound PH-(ϕdrop,F1)CON.

Reorder protection

For the reorder predicate ϕord we need a more complex suppression func-
tion. Let Flatest be the suppression function which allows progress queries as
long as the encryption and decryption algorithms are at the same point in
the sequence of messages. Formally, define Flatest as

Flatest(T) =

{
1 if latest(T) = |Tenc| − 1
0 else

91

8.1. Suppressing functions for common predicates

We first argue why this suppression function is indeed minimal. Assume
that we have a suppression function F which allows a progress query when
the last encrypted ciphertext has not been decrypted. Now consider an
adversary which causes this progress query to occur and then sends a de-
cryption query with one of the previous ciphertexts which have not been de-
crypted. If the progress query occurred, then the decryption is out-of-order,
otherwise it is not, so ϕrep will output different values. So this adversary
would always win the PH-(ϕrep,F)CON game.

Note that this example gives us a real-world progress attack that will always
succeed against a scheme with reorder protection: if an adversary knows
when it will lose access to the channel, it can suppress the last message
beforehand, and upon returning send this message. If progress occurred,
then the message will be rejected, otherwise it will be accepted. Theorem
8.3 tells us that if our scheme achieves $-ϕordAE, then this is the only type of
attack that can succeed.

Now we argue that this suppression function is indeed sufficient, so we
wish to bound Sec

PH-(ϕord,Flatest)CON
SE (k, t, q, µ). We will actually argue that it is

impossible for an adversary to cause ϕord or Flatest to output different values
using an inductive argument. We consider each type of query and show that
if Flatest(T0) = Flatest(T1) before a query, then this also holds after the query.
For decryption queries, we also need argue that ϕord(T0, c) = ϕord(T1, c).

We begin with progress queries. If a progress query is suppressed, then
clearly no change occurs. If it is not suppressed, then Flatest(T0) = Flatest(T1) =
1 before the query. Adding an encryption and a decryption to T1 does not
change this, as the ciphertext encrypted becomes latest ciphertext and it is
decrypted.

For encryption queries note that independent of the values before the query,
afterwards we have Flatest(T0) = Flatest(T1) = 0, as a new ciphertext was
encrypted but not decrypted yet.

For decryption queries consider first if Flatest(T0) = Flatest(T1) = 1. Then
adding a further decryption cannot undo the decryption of the latest ci-
phertext. So afterwards we still have Flatest(T0) = Flatest(T1) = 1. Also, the
ciphertext c sent in the decryption query cannot have a greater index than
latest(T), so we have ϕord(T0, c) = ϕord(T1, c) = 0.

On the other hand, if Flatest(T0) = Flatest(T1) = 0 then the latest ciphertext
c′ was not yet decrypted. If c = c′, then Flatest(T0) = Flatest(T1) = 1 after-
wards, otherwise Flatest(T0) = Flatest(T1) = 0. Finally, consider the output
of ϕrep and note that the encryption of c′ must have occurred in an en-
cryption query, not a progress query. So for every ciphertext not generated
in a progress query, indenc(c) > latest(T) will evaluate to the same value.
For ciphertext generated in progress queries, ϕord will output 0 for both

92

8.1. Suppressing functions for common predicates

transcripts, as for T0 this ciphertext is a forgery and for T1 its index is not
increasing.

So all together we have Sec
PH-(ϕord,Flatest)CON
SE (k, t, q, µ) = 0.

One could also define a ”strict” version of Flatest(T) which allows all progress
queries once a ciphertext has been rejected. The progress-hiding game
for this function and the predicate ϕs f is indeed equivalent to the original
progress-hiding notion PH-sfCCA.

Acceptance windows

Finally, let us consider the acceptance-window predicate ϕ(wp,w f) with wp >

0. This predicate requires a fairly strict suppression function. We begin with
some examples to illustrate this.

Consider an adversary which encrypts a message and then sends wp progress
queries. Depending on whether these occur, the first ciphertext c1 is either
still in the acceptance-window or just outside of it, resulting in a differ-
ent output from ϕ(wp,w f). So after wp messages have been encrypted, every
progress query has to be suppressed. Note that we could also replace all but
the last progress queries with encryption queries.

Similarly, consider an adversary which encrypts w f + 1 messages and sends
a progress query. The last ciphertext cw f +1 is either just outside of the fu-
ture window or contained in the past window, again resulting in different
outputs for ϕ(wp,w f).

So simply the existence of an acceptance-window makes it possible for an
adversary to tell if progress occurred by testing whether ciphertexts are still
contained in the window. A consistent suppression function can therefore
only allow progress queries until min{wp, w f } encryption have occurred. If
wp and w f are functions then the minimum needs to taken over the possible
outputs. Specifically, let Fwp,w f be defined by

Fwp,w f =

{
1 if |Tenc| < min{wp, w f }
0 else

By the same argument as above, we can argue that the chance of guessing
a ciphertext from a progress query is small. For all other ciphertexts, note
that they are guaranteed to be contained in the acceptance window inde-
pendently of whether progress queries occur. So this function is sufficient.

This suppression function is not quite minimal. One could ignore progress
queries which are sent while pre = 1 when determining the length of the
transcript. As it is not possible to tell from the transcript whether a query

93

8.1. Suppressing functions for common predicates

was a progress query or a encryption/decryption query, the syntax pre-
sented here cannot express this. One could presumably fix this by defining
the suppression function to take as input a transcript which takes as in-
put the queries of the progress hiding game instead of the transcript of the
encryption scheme. If wp and w f are functions one could also try to dynam-
ically change the number depending on the ciphertexts sent. This is also
somewhat tedious, so we omit it and instead just present this simpler, but
not perfectly minimal suppression function.

94

Chapter 9

Analysis of DTLS

The Datagram Transport Layer Security Protocol (DTLS) is based on the TLS
protocol, but is meant to used on unreliable network protocols, like UDP.
This makes it impossible to provide complete replay and reorder protection.
It also makes it impossible to use implicit nonces, which allowed TLS 1.3 to
achieve $-sfAE. To solve this, DTLS 1.3 uses a construction based on [BNT19]
where the nonce is XORed with a mask generated by applying a pseudo-
random function (PRF) to a portion of the ciphertext. As we see in this
chapter, this allows DTLS 1.3 to achieve privacy using $-type oracles.

Before analysing DTLS, we need to define what a PRF is and what it means
for one to be secure. Consider a function which maps from a keyspace
KPRF and a domain D to a range R. The pseudo-random security of such
a function is defined as the advantage of an adversary trying to distinguish
such a function for a fixed but secret key from a function sampled randomly
from the set Fun(D,R) of all function from D to R.

PRF-SECF(k, b)

1 : proc InitPRF-SEC()

2 : K←$ mathcalKPRF

3 : F̃←$ Fun(D,R)
4 : return k

7 : proc EvalPRF-SEC(x)

8 : y0 ← F̃(x)
9 : y1 ← F(K, x)

10 : return yb

11 : proc FinPRF-SEC(d)
12 : return d

We also need to slightly extend some notions for the underlying scheme
to allow for nonces and additional data as we did in Chapter 6. Instead
of just a combined notion, we adjust the two notions ϕsl-FUL and $-CPA.
The adjustments are similar as for $-AE: The encryption and decryption
queries take nonce and additional data as extra inputs and nonces can only
be used once for encrypting. The transcript to which we apply ϕsl includes

95

the nonce and additional data, so ϕsl(T, (n, c, ad)) = 1 if (enc, (n, c, ad)) ∈ T
and 0 otherwise.

Unlike for TLS, we also need to adjust the notions we wish to apply to
DTLS itself. This is because a dynamic acceptance window can be defined
for every ciphertext individually. The size of this window ws is therefore
an additional input for the encryption algorithm. We allow adversaries to
choose this size for each encryption queries.

Next, let us define the correctness predicate ϕdtls for DTLS. It combines an
acceptance window and replay protection. Ciphertext are only accepted in
a window of size 28 or 216 around the latest decrypted ciphertext. This
size is determined dynamically for each ciphertext. Additionally, there is
a replay-window of size wr. Ciphertexts inside this window are checked
for replays and ciphertexts outside of this window are rejected. So the
past boundary of the acceptance window is in fact the minimum of wr
and the value given by the ciphertext. Formally, let ws(c) ∈ {8, 16} be
the bitlength of the dynamic acceptance window given by a ciphertext c and
define (wp(c) = min{wr, 2ws(c)−1} and w f (c) = 2ws(c)−1 and define

ϕDTLS(T, c) =

1 if (enc, c) ∈ T and (dec, c, 1) /∈ T

and − wp(c) ≤ indenc(c)− latest(T) ≤ w f (c)
0 else

As for TLS, we analyse an abstract version of the DTLS 1.3 protocol, shown
in Figure 9.1. This abstraction mostly involves ignoring header fields and
replacing the underlying primitives with idealized versions. A DTLS 1.3
headers consists of the following fields:

• An optional connection ID, which can be used when it is hard to iden-
tify the target of the record.

• An optional length field, which is used if multiple records are sent in
a single datagram.

• An epoch number, which starts at 0 and increases whenever keys are
renegotiated.

• A (masked) partial sequence number which is either 8 or 16 bits long.

• A series of bits which indicate whether the optional fields are present
and what the length of the sequence number is.

We assume the first two fields (and their bit indicators) are a part of the
transmission and therefore ignore them. We also only consider the scenario
for a single set of keys, so we ignore the epoch number. We also ignore the
bit which indicates the length of the partial sequence number. Similarly to

96

TLS, DTLS does not attempt to hide length information and this extends to
the length of the sequence number. So it is clearly impossible for DTLS to
achieve $-privacy if we include this bit.

Note the protocol QUIC, which in many aspects is very similar to DTLS,
masks not only the sequence number but also the bit which indicates its
length. A formal analysis of this construction can be found in [DFP+20].
The authors there show that QUIC ciphertexts including the protection of
the length of the sequence number achieve privacy using $-type encryption
oracles. It is difficult to express this construction with our predicates, as
if the length of the dynamic acceptance window is masked, the predicate
would require the PRF key to parse the size of the window. One could pre-
sumably extend the transcript to include additional information, specifically
one could add the window size to each encryption entry. This is outside the
scope of this analysis.

So the ciphertext we are analysing consists of the partial sequence number
and the AEAD output, which we assume to be encoded in a vector. We also
assume that this encoding does not allow an adversary to distinguish the
ciphertext from random strings. In the actual DTLS protocol, the encoding
is simply the concatenation of two values and the single bit indicating the
length of the first. While this bit does allow an adversary to distinguish
from random strings, all it really leaks it the length of the partial sequence
number, which we are not trying to hide. So while the assumption that the
encoding looks perfectly random is not quite correct, the information gained
through this mistake is explicitly omitted from this analysis.

The encryption of a message is almost the same as for TLS 1.3. The sequence
number is XORed with a fixed value agreed upon during the key exchange
to produce a nonce. The message is than encrypted using the AEAD scheme,
using the nonce and additional data consisting of the header, which in this
case is only the (unmasked) 8 or 16 least significant bits of the sequence
number. Finally, we mask the partial sequence number by applying a PRF
to the first 16 bytes of the AEAD output and XORing its leading bits with
the partial sequence number. Note that this means that the ciphertext must
be at least 16 bytes long. The final output is the masked segment and the
AEAD output.

Decryption reverses this process: first the masked segment is unmasked by
applying the PRF to the ciphertext. Then the sequence number is restored
to be the value which is closest to the most recently received ciphertext se-
quence number latest and whose lowest bits correspond to the unmasked
segment. We denote this operation by closest(latest, seqpartial). Then the
nonce can be calculated and the AEAD decryption can be performed. If the
AEAD scheme rejects the decryption or the sequence number is outside of
the replay window wr or the sequence number is repeated, then the de-

97

Scheme SE
1 : proc KGenSE (k)
2 : KAEAD←$ KGenAEAD(k)
3 : KF←$ KGenF(k)

4 : κ←$ {0, 1}N

5 : seq← 0
6 : latest← 0
7 : S← ∅
8 : return ((KAEAD, KF, κ), seq, (latest, S))

9 : proc EncSE ((KAEAD, KF, κ), m, (seq, ws))
10 : if ws /∈ {8, 16} or l(|m|) < 128
11 : return (⊥, seq)
12 : else
13 : seq← seq + 1
14 : n← κ ⊕ seq
15 : seqpartial ← seq[N − ws + 1, N]

16 : c← EncAEAD(KAEAD, n, m, seqpartial)

17 : mask← F(KF, c[0, 127])
18 : ñ← seqpartial ⊕mask[0, ws− 1]

19 : return ((ñ, c), seq)

20 : proc DecSE ((KAEAD, KF, κ), (ñ, c), (latest, S))
21 : mask← F(KF, c[0, 127])
22 : seqpartial ← ñ⊕mask[0, |ñ| − 1]

23 : seq← closest(latest, seqpartial)

24 : n← κ ⊕ seq
25 : m← DecAEAD(KAEAD, n, c, seqpartial)

26 : if latest− seq > wr or seq ∈ S
27 : m← ⊥
28 : if m 6= ⊥
29 : S← S ∪ seq
30 : if seq > latest
31 : latest← seq
32 : return (m, (latest, S))

Figure 9.1: The abstract scheme representing DTLS 1.3 with a replay window of size wr.

cryption is rejected. Otherwise the received sequence numbers and latest is
updated and the AEAD decryption is returned. Note that our abstraction
saves all of the received indexes for the replay protection, while DTLS only
saves those in the replay window. This is of course more space-efficient in
real-world application, but makes no difference from a security perspective,
as all of ciphertexts outside of this window are rejected anyway.

Theorem 9.1
Let SE be the scheme described above with a window size of wr. There exists a
constant c so that for any k, t, q and µ we have

Sec
$-ϕDTLSAE
SE (k, t, q, µ) ≤ Sec

ϕsl-FUL
AEAD (k, t + cq, q, µ) + Sec$-CPA

SE (k, t, q + cq, µ)

+ SecPRF-SEC
F (k, t, q, µ) +

q(q− 1)
2128 .

Proof Note that because ϕDTLS is fully-specified, the $-ϕDTLSCCA game is
equivalent to the $-CPA game. So by Theorem 7.9 we have for a constant c̃

Sec
$-ϕDTLSAE
SE (k, t, q, µ) ≤ Sec

ϕDTLS-FUL
SE (k, t + c̃q, q, µ) + Sec$-CPA

SE (k, t + c̃q, q, µ).

98

A′

1 : proc InitϕDTLS()

2 : k← Initϕsl ()

3 : KF←$ KGenF(k)

4 : κ←$ {0, 1}N

5 : seq← 0
6 : latest← 0
7 : S← ∅
8 : return k

9 : proc EncϕDTLS(m, ws)
10 : if ws /∈ {8, 16} or l(|m|) < 128
11 : return ⊥
12 : else
13 : seq← seq + 1
14 : n← κ ⊕ seq
15 : seqpartial ← seq[N − ws + 1, N]

16 : c← Encϕsl (n, m, seqpartial)

17 : mask← F(KF, c[0, 127])
18 : ñ← seqpartial ⊕mask[0, ws− 1]

19 : return (ñ, c)

20 : proc DecϕDTLS(ñ, c)

21 : mask← F(KF, c[0, 127])
22 : seqpartial ← ñ⊕mask[0, |ñ| − 1]

23 : seq← closest(latest, seqpartial)

24 : n← κ ⊕ seq
25 : m← Decϕsl (n, c, seqpartial)

26 : if latest− seq > wr or seq ∈ S
27 : m← ⊥
28 : if m 6= ⊥
29 : S← S ∪ seq
30 : if seq > latest
31 : latest← seq
32 : return m

33 : proc FinϕDTLS(d)

34 : Finϕsl (d)

Figure 9.2: The adversary used in the proof of Theorem 9.1.

We prove the following two statements:

Sec
ϕDTLS-FUL
SE (k, t, q, µ) ≤ Sec

ϕsl-FUL
AEAD (k, t + cq, q, µ)

Sec$-CPA
SE (k, t, q, µ) ≤ Sec$-CPA

SE (k, t, q + cq, µ) + SecPRF-SEC
F (k, t, q, µ) +

q(q− 1)
2128 .

For the first statement let A be an adversary for the ϕDTLS-FUL game and
consider the adversary A′ defined in Figure 9.2. This adversary copies the
construction of SE but replaces the encryptions and decryption with calls
to the ϕsl-FUL game. As the return values of encryption and decryption
queries in this game are exactly the output of the encryption and decryption
algorithms, this adversary simulates the ϕDTLS-FUL game. So it remains
to argue that for any query which would sets win to 1 in the simulated
ϕDTLS-FUL game, win is also set in the actual ϕsl-FUL game.

Consider a forgery attempt, so a decryption query (ñ, c) so that (enc, (ñ, c)) /∈
T. If c was never the output of the underlying scheme, then this is clearly

99

a successful forgery in the ϕsl-FUL game. Similarly, if the nonce n restored
from ñ is not equal to the nonce originally used during encryption, then this
also results in a successful forgery for the ϕsl-FUL game. Finally, since mask
is uniquely determined by the ciphertext and ñ must be the lowest bits of n,
there can be no ñ′ 6= ñ which also restores to n.

So we can assume that no forgery attempts were successful. Now consider
a decryption query for a ciphertext (ñ, c) which was previously encrypted,
but is outside of its window but does not decrypt to ⊥. Note that the nonce
n constructed will be different from the one used in encryption, so such
a query results in a forgery in the ϕsl-FUL game. Note that we require
ciphertext uniqueness here, as otherwise the same ciphertext could have
been encrypted with a different nonce that has the same lowest digits.

Next consider a decryption query (ñ, c) for a ciphertext which is sent in-
side its acceptance window and assume that is has been accepted before,
so that (dec, (ñ, c), 1) ∈ T. Because it is in the acceptance window, its se-
quence number will be restored correctly, so the replay check will cause the
decryption to output ⊥.

Finally, consider the remaining queries, so queries which are inside their
window and not replays. For these the nonce will be restored correctly,
so the input to the ϕsl-FUL game is the same as the original input for the
encryption. An incorrect decryption in the ϕDTLS-FUL game therefore can
only happen if the decryption in the ϕsl-FUL game is incorrect.

The second statement is mostly a direct application of Theorem 6.1 from
[BNT19], so we omit most of the details. We start from the $-CPASE (k, 1)
game and replace F with an actual random function. This gives the term
SecPRF-SEC

F (k, t, q, µ). Then we replace the ciphertext c output by AEAD with
a random string. Finally, we replace the random function output by random
bits. These last two games are only distinguishable if the leading 128 bits
of the c are equal, as if this occurs the masks will be equal and the masked
sequence numbers can be XORed to get the XOR of the unmasked sequence
numbers. This occurs with probability q(q−1)

2128 .

For the second step we need to add an extra reduction. The construction
of [BNT19] does not reduce to the underlying AEAD scheme, but instead
to another scheme SE ′ where nonces are not assumed to be part of the
ciphertext. So we still need to bound the privacy of SE ′ by the privacy
of AEAD. As the ciphertexts of SE ′ only consist of the AEAD output, we
can easily construct an adversary which simulates the encryption of SE ,
forwards its queries to the AEAD game, but only returns the AEAD output.
This simulates the game against SE ′ with the same value of b, concluding
the proof. �

We finish this chapter with some remarks on how the tools from the previous

100

chapters helped in analysing DTLS. First of all, note that simply by defining
the predicate ϕDTLS, we immediately have a definition for the security notion
we should try to achieve, namely $-ϕDTLSAE. By Theorems 7.9 and 7.10, this
notion implies the correctness, integrity and privacy up to correctness.

In the proof that our abstraction of DTLS indeed satisfies $-ϕDTLSAE, the
use of Theorem 7.9 allowed us to prove the tight bound of correctness and
integrity in a single step and to separate out the privacy reduction which
incurs the additional collision term.

By Theorem 8.3 we also immediately see that DTLS ensures progress-hiding
up to an appropriate suppression function. This suppression function has to
be fairly strict, but as we argued at the end of Chapter 8, this is not a failing
of DTLS, but an inherent property of acceptance windows.

101

Chapter 10

Conclusion

We began this thesis analysing stateless and stateful encryption schemes.
We introduced a variety of notions, including a new notion $-sfAE, which
captures privacy using $-type encryption oracles and stateful ciphertext in-
tegrity. To motivate this new notion, we also established progress-hiding,
another new notion which ensures that an adversary which loses access to
a channel for some time cannot tell whether messages were sent during this
time. The notions often used for channels, which use LoR encryption ora-
cles, do not ensure progress-hiding, $-sfAE however does. We then showed
that the record layer of TLS 1.3 fulfils $-sfAE.

We then introduced predicates, which capture the intended behaviour of a
channel in regards to correctness and integrity. This allowed us to extend
these ideas to schemes running on unreliable network protocols. For a pred-
icate ϕ we defined a new notion $-ϕAE which ensures correctness, integrity
and privacy using $-type oracles for any channel characterized by ϕ. We
also established tools which can be used to prove that schemes fulfil this no-
tion and used these tools to show that the record layer of DTLS 1.3 achieves
it for an appropriate predicate.

A key take-away is therefore that indistinguishability of ciphertexts from
random bits instead of left-or-right indistinguishability is not only desirable
in theory, but also yields stronger practical guarantees and is achievable for
real-world protocols.

We would like conclude by highlighting some existing research which we
believe could be extended by using $-type encryption oracles, giving slightly
stronger results, and predicates, allowing easy analysis of schemes like DTLS.

Many channels offer ways to renegotiate keys during communication. Sym-
metric stateful encryption schemes which offer key updates are formalized
in [GM17] using LoR oracles.

102

The assumption that the error output of encryption schemes is always ⊥
does not hold in practice. Encryption schemes with multiple error messages
are formalized in [BDPS13] using $-type oracles, but only for stateless and
stateful schemes.

Another assumption which can lead to real-world attacks is that ciphertexts
are delivered atomically instead of as a stream. This has been studied var-
iously for stateful schemes using LoR oracles, for example in [FGMP15],
[BDPS12] and [ADHP16].

Finally, for some use-cases it may be desirable to hide the plaintext length
by allowing the encryption algorithm encrypt plaintext to ciphertexts of a
variable length. This is formalized in [PRS11] for stateful schemes using LoR
oracles.

103

Bibliography

[ADHP16] Martin R. Albrecht, Jean Paul Degabriele, Torben Brandt
Hansen, and Kenneth G. Paterson. A surfeit of SSH cipher
suites. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS
2016: 23rd Conference on Computer and Communications Security,
pages 1480–1491. ACM Press, October 2016.

[BDJR97] Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway.
A concrete security treatment of symmetric encryption. In 38th
Annual Symposium on Foundations of Computer Science, pages 394–
403. IEEE Computer Society Press, October 1997.

[BDJR00] Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway.
A concrete security treatment of symmetric encryption. https:
//web.cs.ucdavis.edu/~rogaway/papers/sym-enc.pdf, 2000.

[BDPS12] Alexandra Boldyreva, Jean Paul Degabriele, Kenneth G. Pater-
son, and Martijn Stam. Security of symmetric encryption in
the presence of ciphertext fragmentation. In David Pointcheval
and Thomas Johansson, editors, Advances in Cryptology – EURO-
CRYPT 2012, volume 7237 of Lecture Notes in Computer Science,
pages 682–699. Springer, Heidelberg, April 2012.

[BDPS13] Alexandra Boldyreva, Jean Paul Degabriele, Kenneth G. Pater-
son, and Martijn Stam. On symmetric encryption with distin-
guishable decryption failures. Cryptology ePrint Archive, Re-
port 2013/433, 2013. http://eprint.iacr.org/2013/433.

[BDPS14] Alexandra Boldyreva, Jean Paul Degabriele, Kenneth G. Pater-
son, and Martijn Stam. On symmetric encryption with distin-
guishable decryption failures. In Shiho Moriai, editor, Fast Soft-

104

https://web.cs.ucdavis.edu/~rogaway/papers/sym-enc.pdf
https://web.cs.ucdavis.edu/~rogaway/papers/sym-enc.pdf
http://eprint.iacr.org/2013/433

Bibliography

ware Encryption – FSE 2013, volume 8424 of Lecture Notes in Com-
puter Science, pages 367–390. Springer, Heidelberg, March 2014.

[BHMS15] Colin Boyd, Britta Hale, Stig Frode Mjølsnes, and Douglas Ste-
bila. From stateless to stateful: Generic authentication and au-
thenticated encryption constructions with application to TLS.
Cryptology ePrint Archive, Report 2015/1150, 2015. http:

//eprint.iacr.org/2015/1150.

[BKN02] Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre.
Breaking and provably repairing the SSH authenticated encryp-
tion scheme: A case study of the Encode-then-Encrypt-and-
MAC paradigm. Cryptology ePrint Archive, Report 2002/078,
2002. http://eprint.iacr.org/2002/078.

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated en-
cryption: Relations among notions and analysis of the generic
composition paradigm. In Tatsuaki Okamoto, editor, Advances
in Cryptology – ASIACRYPT 2000, volume 1976 of Lecture Notes in
Computer Science, pages 531–545. Springer, Heidelberg, Decem-
ber 2000.

[BNT19] Mihir Bellare, Ruth Ng, and Björn Tackmann. Nonces are no-
ticed: AEAD revisited. In Alexandra Boldyreva and Daniele
Micciancio, editors, Advances in Cryptology – CRYPTO 2019,
Part I, volume 11692 of Lecture Notes in Computer Science, pages
235–265. Springer, Heidelberg, August 2019.

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple en-
cryption and a framework for code-based game-playing proofs.
In Serge Vaudenay, editor, Advances in Cryptology – EURO-
CRYPT 2006, volume 4004 of Lecture Notes in Computer Science,
pages 409–426. Springer, Heidelberg, May / June 2006.

[BSWW13] Christina Brzuska, Nigel P. Smart, Bogdan Warinschi, and
Gaven J. Watson. An analysis of the EMV channel establish-
ment protocol. Cryptology ePrint Archive, Report 2013/031,
2013. http://eprint.iacr.org/2013/031.

[DFP+20] Antoine Delignat-Lavaud, Cédric Fournet, Bryan Parno,
Jonathan Protzenko, Tahina Ramananandro, Jay Bosamiya,
Joseph Lallemand, Itsaka Rakotonirina, and Yi Zhou. A secu-
rity model and fully verified implementation for the IETF QUIC
record layer. Cryptology ePrint Archive, Report 2020/114, 2020.
https://eprint.iacr.org/2020/114.

105

http://eprint.iacr.org/2015/1150
http://eprint.iacr.org/2015/1150
http://eprint.iacr.org/2002/078
http://eprint.iacr.org/2013/031
https://eprint.iacr.org/2020/114

Bibliography

[DR08] Tim Dierks and Eric Rescoria. RFC 5246: The Transport Layer Se-
curity (TLS) Protocol Version 1.2. Internet Engineering Task Force
(IETF), August 2008. https://tools.ietf.org/html/rfc5246.

[FGJ20] Marc Fischlin, Felix Günther, and Christian Janson. Robust
channels: Handling unreliable networks in the record layers
of QUIC and DTLS 1.3. Cryptology ePrint Archive, Report
2020/718, 2020. https://eprint.iacr.org/2020/718.

[FGMP15] Marc Fischlin, Felix Günther, Giorgia Azzurra Marson, and Ken-
neth G. Paterson. Data is a stream: Security of stream-based
channels. In Rosario Gennaro and Matthew J. B. Robshaw, edi-
tors, Advances in Cryptology – CRYPTO 2015, Part II, volume 9216
of Lecture Notes in Computer Science, pages 545–564. Springer,
Heidelberg, August 2015.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption.
Journal of Computer and System Sciences, 28(2):270–299, 1984.

[GM05] Zvi Gutterman and Dahlia Malkhi. Hold your sessions: An
attack on Java session-id generation. In Alfred Menezes, editor,
Topics in Cryptology – CT-RSA 2005, volume 3376 of Lecture Notes
in Computer Science, pages 44–57. Springer, Heidelberg, February
2005.

[GM17] Felix Günther and Sogol Mazaheri. A formal treatment of multi-
key channels. In Jonathan Katz and Hovav Shacham, editors,
Advances in Cryptology – CRYPTO 2017, Part III, volume 10403 of
Lecture Notes in Computer Science, pages 587–618. Springer, Hei-
delberg, August 2017.

[KPB03] Tadayoshi Kohno, Adriana Palacio, and John Black. Build-
ing secure cryptographic transforms, or how to encrypt and
MAC. Cryptology ePrint Archive, Report 2003/177, 2003. http:
//eprint.iacr.org/2003/177.

[PRS11] Kenneth G. Paterson, Thomas Ristenpart, and Thomas Shrimp-
ton. Tag size does matter: Attacks and proofs for the TLS record
protocol. In Dong Hoon Lee and Xiaoyun Wang, editors, Ad-
vances in Cryptology – ASIACRYPT 2011, volume 7073 of Lecture
Notes in Computer Science, pages 372–389. Springer, Heidelberg,
December 2011.

[RBBK01] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz.
OCB: A block-cipher mode of operation for efficient authenti-
cated encryption. In Michael K. Reiter and Pierangela Samarati,

106

https://tools.ietf.org/html/rfc5246
https://eprint.iacr.org/2020/718
http://eprint.iacr.org/2003/177
http://eprint.iacr.org/2003/177

Bibliography

editors, ACM CCS 2001: 8th Conference on Computer and Commu-
nications Security, pages 196–205. ACM Press, November 2001.

[Res18] Eric Rescoria. RFC 8446: The Transport Layer Security (TLS) Pro-
tocol Version 1.3. Internet Engineering Task Force (IETF), August
2018. https://tools.ietf.org/html/rfc8446.

[Rog02] Phillip Rogaway. Authenticated-encryption with associated-
data. In Vijayalakshmi Atluri, editor, ACM CCS 2002: 9th Con-
ference on Computer and Communications Security, pages 98–107.
ACM Press, November 2002.

[Rog04] Phillip Rogaway. Nonce-based symmetric encryption. In Bi-
mal K. Roy and Willi Meier, editors, Fast Software Encryption
– FSE 2004, volume 3017 of Lecture Notes in Computer Science,
pages 348–359. Springer, Heidelberg, February 2004.

[RS06] Phillip Rogaway and Thomas Shrimpton. Deterministic
authenticated-encryption: A provable-security treatment of
the key-wrap problem. Cryptology ePrint Archive, Report
2006/221, 2006. http://eprint.iacr.org/2006/221.

[RZ18] Phillip Rogaway and Yusi Zhang. Simplifying game-based def-
initions: Indistinguishability up to correctness and its applica-
tion to stateful AE. Cryptology ePrint Archive, Report 2018/558,
2018. https://eprint.iacr.org/2018/558.

[Shr04] Tom Shrimpton. A characterization of authenticated-encryption
as a form of chosen-ciphertext security. Cryptology ePrint
Archive, Report 2004/272, 2004. http://eprint.iacr.org/

2004/272.

107

https://tools.ietf.org/html/rfc8446
http://eprint.iacr.org/2006/221
https://eprint.iacr.org/2018/558
http://eprint.iacr.org/2004/272
http://eprint.iacr.org/2004/272

	Contents
	Introduction
	Notation
	Symmetric encryption schemes
	Security notions
	Relations between notions

	Stateless chosen-plaintext and chosen-ciphertext security
	Chosen-plaintext notions
	Relations between stateless chosen-plaintext notions
	Properties of chosen-plaintext-secure schemes
	Chosen-ciphertext notions

	Stateful chosen-ciphertext notions
	Stateful chosen-ciphertext security
	Relations of stateful chosen-ciphertext notions
	Relations between stateful notions

	Integrity and authenticated encryption
	Integrity
	Authenticated encryption
	Relation between AE-security and integrity

	Progress-hiding encryption schemes
	Progress-hiding chosen-plaintext security
	Progress-hiding chosen-ciphertext security

	Analysis of TLS
	Nonce-based schemes with additional data
	TLS 1.3
	TLS 1.2

	General notions of correctness
	Predicates
	Concrete correctness notions
	Security notions using predicates
	The fulfilment notion
	The privacy notion
	The combined notion

	Relations between predicate notions

	Progress hiding with predicates
	Suppressing functions for common predicates

	Analysis of DTLS
	Conclusion
	Bibliography

