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Abstract

The KEMTLS protocol was introduced in 2020 as a post-quantum,
signature-free alternative to TLS 1.3’s full, Diffie–Hellman-based hand-
shake. In this thesis, we present KEMTLS-PSK, a resumption hand-
shake for KEMTLS, which aims to replace the PSK-(EC)DHE resump-
tion handshake in TLS 1.3 while providing similar security guarantees
and optimizing for the number of round-trip times (RTTs) spent in the
handshake. Our design of KEMTLS-PSK depends on a pre-shared key
(PSK) established in a previous full handshake or through some out-
of-band mechanism. It allows for 0-RTT keys to be established so that
the initiator (client) can send encrypted application data with its first
flight of messages. It relies on an ephemeral key encapsulation mech-
anism (KEM) to provide forward secrecy for non-0-RTT stages of the
protocol. In addition, we design a multi-stage security model which
captures security properties such as implicit/explicit authentication,
forward secrecy and replayability for every stage key established in
the face of an adversary in full control of communication between par-
ties. We prove our proposed protocol secure and show that it provides
security guarantees comparable to that of the TLS 1.3 PSK-(EC)DHE
handshake.
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Chapter 1

Introduction

The Transport Layer Security (TLS) protocol is one of the most widely-
deployed cryptographic protocols. It is perhaps best known for being the
security layer in the HTTPS protocol which is used to secure web commu-
nications, though it is also used in other applications such as in securing
email communications in the STARTTLS [1] and MTA-STS [2] protocols, or
alongside SRTP [3] in securing voice over IP.

The TLS protocol consists of a handshake protocol, which negotiates crypto-
graphic algorithms and parameters, establishes symmetric session keys and
(mutually) authenticates the communicating parties, and a record protocol,
which uses the established session keys to provide confidentiality and in-
tegrity for application data. TLS 1.3 [4], the latest version of TLS, relies
on ephemeral (elliptic-curve) Diffie-Hellman key exchange ((EC)DHE) to es-
tablish symmetric session keys and on RSA or elliptic-curve signatures for
authentication.

TLS in a post-quantum world. The potential widespread use of quantum
computers poses a threat to the TLS protocol. The cryptographic algorithms
used in the TLS handshake rely on the intractability of some computational
problems, which are not efficiently solvable via conventional computers,
but are efficiently solvable by quantum computers using Shor’s algorithm
[5]. For instance, the Diffie-Hellman key exchange relies on the discrete
logarithm problem, while RSA relies on the factorization of large primes.

There has been a concentrated effort in the past five years to design quantum-
resistant variants of the TLS protocol. These effort were mainly focused on
finding quantum-resistant alternatives to the Diffie-Hellman key exchange.
One example is the TLS 1.2 variant designed by Bos et al. [6] which in-
troduces a key exchange mechanism based on the ring learning with errors
(R-LWE) problem combined with traditional authentication using RSA or el-
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1. Introduction

liptic curve signatures. Based on this work, Alkim et al. [7] developed New
Hope, a R-LWE-based key exchange mechanism.

In 2016, Google ran an experiment [8] on their Canary Chrome browser
where they initialized the TLS 1.2 protocol using the Combined Elliptic
Curve and Post-Quantum 1 (CECPQ1) cipher suite. New Hope was used as
the post-quantum algorithm, while the elliptic curve X25519 key exchange
algorithm is used as a fallback in case New Hope turns out to have security
faults. This was followed by CECPQ2 [9] in 2018 which still used X25519 as
a traditional algorithm but combined it with NTRU-HRSS another lattice-
based post-quantum key exchange algorithm.

Another example is the Open Quantum Safe (OQS) initiative [10], which in-
cludes contributions research from AWS, Microsoft and IBM. It aims, among
other goals, to integrate quantum-resistant cryptography into the TLS ecosys-
tem by modifying the widely-used OpenSSL library.

KEM-basedTLS. The aforementioned efforts to transition TLS to post-quantum
cryptography were mainly concerned with finding quantum-resistant key
exchange mechanisms to replace (EC)DHE, less so with quantum-resistant
authentication. This is because the confidentiality of recorded past sessions
can be compromised in the future if a powerful enough quantum computer
is built, whereas authentication is a time-limited property which cannot be
broken retroactively. However, in a post-quantum future, finding quantum-
resistant authentication mechanisms for TLS would be imperative.

In 2017, the National Institute of Standards and Technology of the U.S. De-
partment of Commerce (NIST) started a process of collecting and standard-
izing quantum-resistant cryptographic algorithms. Their goal is to add one
or more digital signatures, public-key encryption algorithms or key encap-
sulation mechanisms to their cryptographic standards. The status report [11]
on the algorithms which made the second round of the standardization pro-
cess shows that 16 out of the 26 algorithms were key encapsulation mecha-
nisms (KEMs).

In addition, analyzing the performance of these algorithms [12] shows that
quantum-resistant signatures have significantly larger public key and sig-
nature sizes than the public key and ciphertext sizes of key encapsulation
mechanisms (KEMs). Therefore, while it might seem intuitive to replace the
RSA or elliptic-curve signatures in TLS 1.3 with post-quantum signatures,
in practice this would seriously harm the efficiency of the communication.

With this perspective in mind, Schwabe, Stebila and Wiggers introduce a
signature-free, KEM-based variant of TLS, which they call KEMTLS [13].
Their design draws from the OPTLS handshake which aims to rid the TLS
handshake of signatures. They note, however, that OPTLS relies on non-
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interactive key exchange (NIKE) algorithms and that efficient quantum-
resistant NIKE’s are a rarity while post-quantum KEMs are relatively more
efficient. Therefore, they opt for a KEM-based design at the cost of an extra
RTT. The KEMTLS handshake relies on KEMs both for authentication and
key exchange. Their results show that post-quantum KEMTLS outperforms
TLS 1.3 initialized with post-quantum signature algorithms in terms of both
bandwidth consumption and computation time.

Resumption and 0-RTT in TLS 1.3. Recent optimizations in the implemen-
tation of cryptographic primitives has lead to network latency being the
bottleneck of key exchange protocols over the internet. The speed of light
will remain a definitive lower bound on the time required for a message to
travel back and forth between two parties, the so-called round-trip time or
RTT for short.

Therefore, reducing the number of round trips required before the first ap-
plication message can be sent has become a major goal in key exchange
protocol design in recent years. One notable example is Google’s QUIC
protocol [14] which allows for the establishment of a zero round-trip time
(0-RTT) key. This key is then used to send encrypted “early” application
data sent with the very first key exchange message.

This adoption of 0-RTT keys by QUIC encouraged a similar design decision
in the TLS 1.3 protocol. The TLS 1.3 protocol has a resumption handshake
which assumes that the client and server have established a pre-shared key
(PSK) either in a prior full handshake or through an out-of-band mechanism.
This PSK is used to derive a 0-RTT key to encrypt early application data.
The TLS 1.3 resumption handshake comes in two variants: PSK-only, which
relies solely on the PSK to derive session keys, and PSK-(EC)DHE, which
uses (EC)DHE key shares to provide forward secrecy for non-0-RTT stages.
The introduction of 0-RTT speeds up connections in cases where a client
is communicating to a server it has previously connected to, which is the
case in a significant percentage of TLS connections. For example, in 2017
Cloudfare estimated that about 40% of their TLS connections are resumed
connections and, thus, would benefit significantly from 0-RTT mode [15].

Contribution. The KEMTLS design in [13] focuses on specifying and prov-
ing the security of a full 1-RTT handshake without specifying a resumption
handshake. It is obvious that, in a post-quantum setting, the TLS 1.3 re-
sumption handshake cannot be combined with KEMTLS as is since it de-
pends on the non-quantum-resistant (EC)DHE for forward secrecy. There-
fore, if the ultimate goal is to widely deploy KEMTLS on the Internet to
replace TLS 1.3 with minimal disruption to the current TLS ecosystem, and
while providing similar security guarantees, a KEMTLS resumption hand-

3



1. Introduction

shake analogous to the PSK/PSK-(EC)DHE handshake must be designed
and proven secure.

This thesis aims to fill this gap by providing a resumption handshake for
KEMTLS. Our three main contributions are as follows:

• We design a resumption handshake for the KEMTLS protocol which,
analogously to the TLS 1.3 resumption handshake, relies on the ex-
istence of a pre-shared key established in a previous communication
or out of band. Our proposed handshake aims to remain faithful to
the full 1-RTT KEMTLS handshake in that it relies solely on KEMs for
ephemeral key exchange in order to provide forward secrecy. We also
aim to make use of the pre-shared key to derive 0-RTT keys which
enable the client to send encrypted early data with the first flight of
messages. We call our proposed handshake KEMTLS-PSK and treat it
as a separate protocol throughout this text for clarity.

• We propose a multi-stage key exchange security model [16], based on
prior models for TLS 1.3 [17] and KEMTLS [13], to analyze the security
of KEMTLS-PSK. Our model captures security properties such as key
indistinguishability, implicit and explicit authentication, two different
levels of forward secrecy and replayability. We define the security
game of our model in pseudo-code to avoid ambiguity.

• We analyze the security of KEMTLS-PSK via a game-playing secu-
rity proof and we show that it provides security guarantees which are
comparable to the TLS 1.3 PSK-(EC)DHE handshake. In particular, we
show that all non-0-RTT stages enjoy some level of forward secrecy
and implicit, as well as retroactive explicit, authentication.

Organization. In the next chapter, we introduce some basic notions which
we refer to throughout the text. In Chapter 3, we discuss the TLS 1.3 and
KEMTLS protocols in detail. The main contribution of the thesis starts from
Chapter 4 where we introduce our KEMTLS-PSK handshake. Then we lay
out the security model we use to analyze the protocol in Chapter 5. The
security analysis itself is detailed in Chapter 6. We conclude and propose
future work in Chapter 7.
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Chapter 2

Preliminaries

In this chapter, we present a summary of the main cryptographic primi-
tives used in this thesis as well as the security notions associated with each
primitive.

2.1 Key Encapsulation Mechanism (KEM)

A Key Encapsulation Mechanism (KEM) is an asymmetric cryptographic
primitive used to derive a shared secret between two parties. It consists
of a triplet of algorithms (KGen, Encap,Decap), defined as follows:

• (pk, sk) $←− KGen(). A probabilistic algorithm that generates a public
key and secret key.

• (ss, ct) $←− Encap(pk). A probabilistic algorithm that takes as input the
public key and outputs and a shared secret ss and a ciphertext ct that
encapsulates the shared secret.

• ss′/⊥ ← Decap(ct, sk). An algorithm that takes as input a ciphertext
and a secret key and outputs a shared secret or ⊥.

Correctness. A KEM is δ-correct if for all key pairs (pk, sk): if (ss, ct) $←−
Encap(pk) and ss′ ← Decap(ct, sk) then ss = ss′ with probability 1-δ.

Security. The main security notion for KEMs is indistinguishability, either
under chosen plaintext attack (IND-CPA), or under chosen ciphertext attack
(IND-CCA), which gives the adversary access to a decapsulation oracle. A
special variant of IND-CCA is IND-1CCA in which the adversary is allowed
to make only one decapsulation query. Figure 2.1 shows the security exper-
iment in detail.
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2. Preliminaries

GIND-CPA/IND-CCA
KEM,A

1 (pk⋆, sk⋆) $←− KEM.KGen()
2 b $←− {0, 1}
3 (ss⋆0 , ct⋆) $←− KEM.Encap(pk⋆)
4 ss⋆1

$←− K
5 b′ $←− AOb (pk⋆, sk⋆, ss⋆b )
6 return b′ == b

Oracle O(ct) for IND-CPA

7 return ⊥

Oracle O(ct) for IND-CCA

8 if ct ≠ ct⋆:
9 return KEM.Decap(sk⋆, ct)

10 else:
11 return ⊥

Figure 2.1: Security game for IND-CPA and IND-CCA for KEMs.

2.2 (H)MAC

A message authentication code (MAC) is a symmetric cryptographic primi-
tive that attests the authenticity of a message using a private key. It consists
of a triplet of algorithms = (KGen, Tag, Vfy), defined as follows:

• k $←− KGen(): a probabilistic algorithm that generates a cryptographic
key.

• t ← Tag(k, m): a deterministic algorithm that takes as input a cryp-
tographic key and a message of arbitrary length and outputs a fixed-
length tag on the message.

• v $←− Vfy(k, m, t): a deterministic algorithm which takes as input a
cryptographic key, a message and a tag outputs a value v ∈ {0, 1}
indicating whether t is the correct tag for message m under key k.

Correctness. A MAC is correct if for all keys k and all messages m: if
t← Tag(k, m), then Vfy(k, m, t) = 1.

Security. The security notion we adopt for MAC schemes in this thesis is
that of existential unforgeability under chosen message attack (EUF-CMA).
An adversary without access to the secret key cannot forge a MAC tag on a
new message of its choosing, even if it is given access to a tag oracle. The
detailed security game is presented in Figure 2.2.

GEUF-CMA
MAC,A

12 k $←− KGen()

13 M← {}
14 (m, t) $←− AO

15 return (m ∉ M ∧ Vfy(k, m, t) == 1)

Oracle O(m)

16 M← M ∪ {m}
17 return MAC(k, m)

Figure 2.2: EUF-CMA security game for MAC schemes.
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2.3. HKDF

In this text, we will concern ourselves with a specific type of MACs, namely
HMACs. An HMAC [18] is based on a cryptographic hash function H :
{0, 1}∗ → {0, 1}λ and a cryptographic key k ∈ {0, 1}λ. The computation is
defined as HMAC(k, m) := H((k⊕ opad)||H((k⊕ ipad)||m)) where opad and
ipad are two λ-bit padding values.

2.3 HKDF

A key derivation function (KDF) is a cryptographic algorithm which derives
a pseudo-random secret key from some input keying material. This input
keying material usually has high, non-uniformly distributed entropy and is
not necessarily secret, meaning the adversary could have partial knowledge
about it.

The HKDF scheme [19] is an extract-then-expand HMAC-based key derivation
function. The HKDF.Extract(salt, IKM) takes as input a non-secret random
salt and some input keying material IKM. It extracts entropy from the IKM
and outputs a short cryptographically strong pseudo-random key (PRK).
The HKDF.Expand(PRK, in f o, length) takes as input the PRK, some optional
context in f o and the length of the output in octets. It expands the PRK to
the desired length.

2.4 PRF and Dual PRF Security

Pseudo-random function (PRF) security is a property which indicates that
the output of a keyed cryptographic function is indistinguishable from ran-
dom. In our security analysis we rely on the HKDF.Expand function being
PRF-secure.

Let F : K × X → Y be a cryptographic function with key space K, input
space X and output space Y and let Funcs[X ,Y ] be the set of all truly
random functions mapping from X to Y . Figure 2.3 shows the PRF security
game in detail.

GPRF
F,A

18 b $←− {0, 1}
19 K $←− K
20 f $←− Funcs[X ,Y ]
21 b′ $←− AOb

22 return b == b′

Oracle Ob(x)

23 if b == 0:
24 return F(K, x)
25 else:
26 return f (x)

Figure 2.3: PRF security game.
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2. Preliminaries

The advantage of the adversary A against the PRF security game is defined
as follows:

AdvPRFF,A :=
∣∣∣∣Pr [GPRF

F,A = 1
]
− 1

2

∣∣∣∣ .

Dual PRF security. In our analysis, we rely on the dual-PRF security of the
HKDF.Extract function. We define a function Fswap(K, x) := F(x, K). The
dual-PRF security of F is the PRF security of Fswap.

Advdual-PRFF,A := AdvPRFFswap,A.
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Chapter 3

Background

The two main protocols from which we draw in our design of KEMTLS-PSK
are the TLS 1.3 protocol as specified in RFC 8446 [4] and the KEMTLS pro-
tocol by Schwabe, Stebila and Wiggers [13]. In this chapter, we discuss these
two protocols in detail and highlight the aspects which are most relevant to
our work.

3.1 TLS 1.3

In this section, we lay out the TLS 1.3 handshake in detail. Figure 3.1 shows
the full 1-RTT handshake in detail and Figure 3.2 shows the resumption
handshake in its two variants: PSK-only, in which all keys are derived solely
from the pre-shared key, and PSK-(EC)DHE, in which ephemeral key shares
are mixed into the key schedule to provide forward secrecy.

The handshake consists of two main phases: the key exchange phase and the
authentication phase. The key exchange phase establishes a number of shared
secrets between client and server which are used to encrypt early data (in
PSK-only and PSK-(EC)DHE modes), subsequent handshake messages or
application data. In the authentication phase in the full 1-RTT mode, the
server (and optionally the client) authenticates itself to its peer by sending
its certificate signed by a trusted certificate authority (CA) and a signature
over the transcript using its long-term secret key. In both mdoes, the client
and server also exchange MACs over the protocol transcript to ensure they
have an identical view of the protocol.

3.1.1 The Key Exchange Phase

This phase of the protocol negotiates cryptographic parameters used by both
client and server for the rest of the protocol. It also establishes an ephemeral

9



3. Background

Client Server

ClientHello :rC
$←− {0, 1}256

+ClientKeyShare :X ← gx

ES← HKDF.Extract(0, 0)
dES← HKDF.Expand(ES, “derived”, H(“”))

ServerHello :rS
$←− {0, 1}256

+ServerKeyShare :Y ← gy

DHE← Yx DHE← Xy

HS← HKDF.Extract(dES, DHE)
CHTS← HKDF.Expand(HS, “c hs traffic”, H(CH . . . SH))
SHTS← HKDF.Expand(HS, “s hs traffic”, H(CH . . . SH))

dHS← HKDF.Expand(HS, “derived”, H( “” ))
accept tkchs ← DeriveTK(CHTS) stage 1
accept tkshs ← DeriveTK(SHTS) stage 2

{EncryptedExtensions} :extS
{CertificateRequest}∗

{ServerCertificate} : pkS
{ServerCertVfy} :SCV← SIG.Sign(skS, Lscv||H(CH . . . SC))

fkS ← HKDF.Expand(SHTS,“finished”,“”)
{ServerFinished} : SF← HMAC(fkS,H(CH . . . SCV))

abort if SIG.Vfy(pkS, Lscv||H(CH . . . SC), SCV) ≠ 1
abort if SF ≠ HMAC(fkS, H(CH . . . SCV))

MS← HKDF.Extract(dHS, 0)
accept CATS← HKDF.Expand(MS, “c ap traffic”,H(CH . . . SF)) stage 3
accept SATS← HKDF.Expand(MS, “s ap traffic”,H(CH . . . SF)) stage 4
accept EMS← HKDF.Expand(MS, “exp master”,H(CH . . . SF)) stage 5

record layer, AEAD-encrypted with tksapp (optional)

{ClientCertificate}∗ : pkC
{ClientCertVfy}∗ : CCV← SIG.Sign(skC, Lccv||H(CH . . . CC))

fkC ← HKDF.Expand(CHTS,“finished”,“”)
{ClientFinished} : CF← HMAC(fkC,H(CH . . . CCV))

abort if SIG.Vfy(pkC, Lccv||H(CH . . . CC), CCV) ≠ 1
abort if CF ≠ HMAC(fkC, H(CH . . . CCV))

accept RMS← HKDF.Expand(MS, “res master”,H(CH . . . CF)) stage 6
record layer, AEAD-encrypted with tkcapp

record layer, AEAD-encrypted with tksapp

Labels:
Lscv = “TLS 1.3, server CertificateVerify”, Lccv = “TLS 1.3, client CertificateVerify”
DeriveTK:
DeriveTK(Secret) = (HKDF.Expand(Secret, “key”, H(“”), Lk), HKDF.Expand(Secret,
“iv”, H(“”), Liv)) = (key, iv)

Figure 3.1: TLS 1.3 Full 1-RTT Handshake. Legend in Table 3.1
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3.1. TLS 1.3

Client Server

ClientHello :rC
$←− {0, 1}256

[+ClientKeyShare :]†X ← gx

ES← HKDF.Extract(0, PSK)
dES← HKDF.Expand(ES, “derived”,H(“”))

BK← HKDF.Expand(ES, “ext binder”,H(“”))
fkB ← HKDF.Expand(BK, “finished”, “”)

binder ← HMAC(fkB,H(CH))
+ClientPreSharedKey :binder, pskid

abort if binder ≠ HMAC(fkB,H(CH))
accept ETS← HKDF.Expand(ES, “c e traffic”, H(CH)) stage 1

accept EEMS← HKDF.Expand(ES, “e exp master”, H(CH)) stage 2
record layer, AEAD-encrypted with tkeapp

ServerHello :rS
$←− {0, 1}256

[+ServerKeyShare :]† Y ← gy

+ServerPreSharedKey : pskid

[DHE← Yx]† [DHE← Xy]†[DHE← 0]⋄
HS← HKDF.Extract(dES, DHE)

CHTS← HKDF.Expand(HS, “c hs traffic”, H(CH . . . SH))
SHTS← HKDF.Expand(HS, “s hs traffic”, H(CH . . . SH))

dHS← HKDF.Expand(HS, “derived”, H( “” ))
accept tkchs ← DeriveTK(CHTS) stage 3
accept tkshs ← DeriveTK(SHTS) stage 4

{EncryptedExtensions} :extS
fkS ← HKDF.Expand(SHTS,“finished”,“”)
{ServerFinished} : SF← HMAC(fkS, H(CH . . . SCV))

abort if SF ≠ HMAC(fkS, H(CH . . . SCV))
MS← HKDF.Extract(dHS, 0)

accept CATS← HKDF.Expand(MS, “c ap traffic”, H(CH . . . SF)) stage 5
accept SATS← HKDF.Expand(MS, “s ap traffic”, H(CH . . . SF)) stage 6
accept EMS← HKDF.Expand(MS, “exp master”, H(CH . . . SF)) stage 7

record layer, AEAD-encrypted with tksapp (optional)

fkC ← HKDF.Expand(CHTS,“finished”,“”)
{ClientFinished} :CF← HMAC(fkC, H(CH . . . CCV))

abort if CF ≠ HMAC(fkC, H(CH . . . CCV))
accept RMS← HKDF.Expand(MS, “res master”, H(CH . . . CF)) stage 8

record layer, AEAD-encrypted with tkcapp

record layer, AEAD-encrypted with tksapp

Figure 3.2: TLS 1.3 Pre-Shared Key Mode. Legend in Table 3.1
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shared secret called the handshake secret (HS), which is used to derive the
traffic keys used to encrypt the rest of the handshake.

ClientHello. The key exchange phase starts with the ClientHello message
which contains a random nonce rC and a list of cryptographic algorithms
and parameters supported by the client. In the full 1-RTT and PSK-(EC)DHE
modes, it contains a list of (EC)DHE groups supported by the client and
(EC)DHE ephemeral key shares for some or all of them.

Optionally, if both parties have previously established pre-shared keys, the
ClientHello also contains a PreSharedKey extension with a list of pre-shared
key identities that the client is willing to negotiate with the server and a list
of binder values which authenticate every PSK to the server. To compute
each binder value the key schedule derives a binder key BK from each PSK
and another key fkB from BK. Then the binder value is computed as an
HMAC using fkB over the ClientHello message up until the PreSharedKey
extension pre-shared key identities field. Along with this extension the client
must provide a PreSharedKeyExchangeModes extension indicating the PSK
handshake modes it supports: PSK-only or PSK-(EC)DHE.

In a PSK handshake the client is also allowed to send early application data
with the ClientHello message. For that is must add the EarlyDataIndication
extension. In order to encrypt the early data, it derives an early secret ES
from the PSK corresponding to the first identity in the list of PSK identities
and from that an early traffic secret ETS from which the encryption keys are
derived.

ServerHello. When the server receives a ClientHello message, it responds
with its ServerHello message, which contains a nonce rS and the server’s
choice among the cryptographic algorithms and parameters offered by the
client.

If the client offers a PSK handshake, the server could choose to accept it and
must then choose among the offered PSK identities and modes and send its
choice with the ServerHello. In case it declines the PSK handshake or it
chooses the PSK-(EC)DHE mode, it must also send an ephemeral (EC)DHE
key share for the (EC)DHE group it selected.

At the end of this phase, both parties can compute handshake secret HS
which is derived via a series of HKDF computations from the ephemeral
(EC)DHE shared secret (in full 1-RTT mode), the PSK (in PSK-only mode)
or both (in PSK-(EC)DHE) mode. From HS we get the client and server
handshake traffic secrets, CHTS and SHTS respectively, and then the client
and server handshake traffic keys, tkchs and tkshs respectively , which are
used to encrypt the rest of the handshake.
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3.1.2 Authentication Phase

This phase authenticates the server to the client and (optionally) also au-
thenticates the client to the server. All client and server messages of this
phase are encrypted under tkchs and tkshs respectively.

ServerCertificate. In the full 1-RTT handshake, the server authenticates
itself to the client by sending the ServerCertificate containing its public
key in the same flight as the ServerHello. To demonstrate knowledge of
its secret key, it signs a hash of the protocol transcript up to this point and
sends this signature as the ServerCertVfy message. The server could also
ask the client to authenticate itself by sending its own certificate via the
CertificateRequest message.

ServerFinished. Regardless of the handshake mode, the server sends a
ServerFinished message to the client. It derives the server finished key fkS
from SHTS and uses it to compute the ServerFinished message as a MAC
tag over the transcript of the protocol. Thus the server explicitly demon-
strates to the client its knowledge of the shared secrets established in the
key exchange phase and ensures that both parties have an identical view of
the protocol so far.

TheMaster Secret. Now the server can compute the master secret MS and,
from that, the client and server application traffic secrets, CATS and SATS
respectively. The server can already derive the server application traffic key
tksapp and send encrypted application data with its first flight of messages,
thus achieving a 0.5-RTT handshake.

ClientCertificate and ClientFinished. When the client receives the server’s
first flight of messages, it verifies the signature and MAC tag, then it mir-
rors the server’s behavior. It sends its ClientCertificate if the server had
requested it and a ClientCertVfy which is a signature over a hash of the
transcript. It derives the client finished key fkC from CHTS and uses it to
compute a MAC tag over the transcript hash which it sends to the server as
the ClientFinished message.

After the server verifies the signature and MAC, both parties can compute a
resumption master secret RMS which they use to derive a new PSK.

3.1.3 The New Session Ticket Message

After the handshake, the server can send one or more NewSessionTicket
messages. Each message contains a unique ticket nonce which can be
used to derive a new PSK from the resumption master secret as follows:
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MSG: Y message MSG containing Y
+MSG message sent as an extension to the previous message
{MSG} message sent encrypted with tkchs/tkshs
MSG∗ message sent only in the case of client authentication
[. . . ]† in PSK-(EC)DHE mode
[. . . ]⋄ in PSK-only mode

Table 3.1: Legend for TLS 1.3 diagrams

PSK ← HKDF.Expand(RMS, “resumption” ||ticket nonce). It also contains
an opaque ticket value to be used as a PSK identity.

3.2 KEMTLS

In this section, we discuss the KEMTLS handshake in detail and, when ap-
propriate, note analogies to the TLS 1.3 handshake. The handshake consists
of three main phases: the ephemeral key exchange phase, the implicitly au-
thenticated key exchange phase and the key confirmation/explicit authentication
phase.

3.2.1 The Ephemeral Key Exchange Phase

This phase is analogous to the key exchange phase in TLS 1.3. The client and
server negotiate cryptographic algorithms and parameters to be used for the
rest of the handshake and establish a shared handshake secret HS, which is
used to encrypt subsequent handshake messages. The main difference from
the TLS 1.3 handshake is that, instead of (EC)DHE, the KEMTLS handshake
uses a KEM encapsulation-decapsulation sequence to establish the shared
secret.

ClientHello. The handshake starts with the ClientHello message which
contains a random nonce rC and a list of cryptographic algorithms and pa-
rameters supported by the client. It also sends one or more ephemeral KEM
public keys pke.

ServerHello. The server responds with the ServerHello message contain-
ing its own random nonce rS and its choice among the algorithms and pa-
rameters offered by the client. It performs an encapsulation against pke
which outputs an ephemeral shared secret sse and a ciphertext cte. It sends
cte as part of the ServerHello.

Once the client decapsulates cte, both parties have now established an unau-
thenticated ephemeral shared secret sse analogous to the ephemeral (EC)DHE
secret in the TLS 1.3 handshake. Both parties can now derive the handshake
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secret HS via a series of HKDF computations from sse. Then both parties
derive the client and server handshake traffic secrets, CHTS and SHTS re-
spectively, from HS and, from those, the client and server handshake traf-
fic keys, tkchs and tkshs respectively, which are used to encrypt subsequent
handshake messages.

3.2.2 The Implicitly Authenticated Key Exchange Phase

Similar to the TLS 1.3 handshake, the goal of this phase is for the server
to authenticate itself to the client (and possibly the reverse) by sending a
certificate containing its public key. However, instead of sending a signa-
ture over the transcript to prove knowledge of the secret key, the server
decapsulates an encapsulation made against its public key. Hence, the au-
thentication in this phase is implicit, which means that the client is certain
that only the intended server knows the derived keys, but the server has not
actively demonstrated knowledge of these keys.

ServerCertificate and ClientKemCiphertext. The server sends the
ServerCertificate containing its long-term KEM public key pkS in the same
flight as the ServerHello. The client encapsulates against pkS outputting
a shared secret ssS and a ciphertext ctS. It sends the ciphertext in the
ClientKemCiphertext.

The server uses its secret key skS to decapsulate ctS and retrieve ssS. Now
both parties have established an implicitly authenticated shared secret ssS.
Both parties can now derive from ssS the authenticated handshake secret
AHS and from that the client and server authenticated handshake traffic
secrets, CAHTS and SAHTS respectively, which are used to encrypt subse-
quent handshake messages.

ClientFinished. The client derives the client finished key fkC from CHTS
and uses it to compute the ClientFinished message as a MAC tag over the
transcript so far for key confirmation. It sends it to the server in the same
flight as the ClientKemCiphertext.

The Master Secret. Through a series of HKDF derivations from AHS, both
parties derive the master secret MS. At this point, the client can derive the
client application traffic secret CATS and, from that, the client application
traffic key tkcapp and use it to encrypt application data and send it to the
server. Thus, the client achieves a 1-RTT handshake.

3.2.3 The Key Confirmation/Explicit Authentication Phase

So far the server is implicitly authenticated to the client, meaning that the
client is certain that only the intended peer could know the established
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shared secret. The aim of this phase, however, is for the server to actively
demonstrate that it is live and participating in the handshake.

ServerFinished. The server derives the server finished key fkS from SHTS
and uses it to compute a MAC tag over the hash of the transcript so far. The
client verifies that MAC to explicitly authenticate the server. The server can
also derive the server application traffic secret SATS and, from that, a server
application traffic key tksapp and use it to encrypt and send application data
in the same message flight, thus, achieving a 1.5-RTT handshake for the
server.
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Client Server

(pke, ske)← KEMe.KGen()
ClientHello : pke, rC

$←− {0, 1}256, supported algs.
ES← HKDF.Extract(0, 0)

dES← HKDF.Expand(ES, “derived”,H(“”))

(sse, cte)← KEM.Encap(pke)
ServerHello : cte, rS

$←− {0, 1}256, selected algs.

sse ← KEMe.Decap(cte, ske)
HS← HKDF.Extract(dES, sse)

accept CHTS← HKDF.Expand(HS, “c hs traffic”, H(CH . . . SH)) stage 1
accept SHTS← HKDF.Expand(HS, “s hs traffic”, H(CH . . . SH)) stage 2

dHS← HKDF.Expand(HS, “derived”,H(“”))
{EncryptedExtensions}stage2 :extS
{ServerCertificate}stage2 :pkS

(ssS, ctS)← KEMS.Encap(pkS)
{ClientKemCiphertext}stage1 :ctS

ssS ← KEMS.Decap(ctS, skS)
AHS← HKDF.Extract(dHS, ssS)

accept CAHTS← HKDF.Expand(MS, “c ap traffic”,H(CH . . . CKC)) stage 3
accept SAHTS← HKDF.Expand(MS, “s ap traffic”,H(CH . . . CKC)) stage 4

dAHS← HKDF.Expand(AHS, “derived”,H(“”))
MS← HKDF.Extract(dAHS, 0)

fkC ← HKDF.Expand(CHTS,“c finished”,H(“”))
fkS ← HKDF.Expand(SHTS,“s finished”,H(“”))

{ClientFinished}stage3 :CF← HMAC(fkC,H(CH . . . CKC))

abort if CF ≠ HMAC(fkC, H(CH . . . CKC))
accept CATS← HKDF.Expand(MS, “c ap tr”,H(CH . . . CF)) stage 5

record layer, AEAD-encrypted with tkcapp

{ServerFinished}stage4 : SF← HMAC(fkS,H(CH . . . CF))

abort if SF ≠ HMAC(fkS, H(CH . . . CF))
accept SATS← HKDF.Expand(MS, “s ap tr”,H(CH . . . SF))) stage 6

record layer, AEAD-encrypted with tksapp

Figure 3.3: KEMTLS Full Handshake
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Chapter 4

KEMTLS-PSK

From the previous chapter we note that KEMTLS does not specify a re-
sumption handshake. Therefore, in this chapter, we introduce a resumption
handshake for the KEMTLS protocol which depends on a PSK established
in a previous handshake or using some out-of-band mechanism.

Our goals is to design a handshake which is analogous to the TLS 1.3 hand-
shake in PSK-(EC)DHE mode and offers similar features such as forward
secrecy, authentication and the possibility to send early data encrypted with
0-RTT keys. We depart from the TLS 1.3 key schedule, also used by KEMTLS
in its full handshake mode, in favor or a more key compact schedule. To
avoid confusion, we therefore treat our handshake as a separate protocol
which we call KEMTLS-PSK throughout this text. Figure 4.1 shows the
KEMTLS-PSK handshake in detail.

The handshake has two phases: the implicitly authenticated ephemeral key ex-
change phase and the key confirmation/explicit authentication phase. We detail
both of them below.

4.1 The ImplicitlyAuthenticatedEphemeralKeyExchange
Phase

The aim of this phase is to establish a (implicitly authenticated) shared secret
between the communicating parties while also including an ephemeral value
in the exchange to ensure forward secrecy.

ClientHello. The handshake starts with the ClientHello message which
includes a nonce rC, a list of cryptographic algorithms and parameters sup-
ported by the client and a list of ephemeral KEM public keys pke. The
PSK negotiation is similar to that of the TLS 1.3 PSK/PSK-(EC)DHE hand-
shake. The client sends a list of pre-shared key identities that it is willing
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to negotiate with the server in the PreSharedKey extension. It derives, via
a series of HKDF computations, a binder key BK from each PSK and, from
that, a finished key fkB. It computes a binder value as a MAC tag over
the ClientHello up until the identities list in the PreSharedKey extension.
We omit the PreSharedKeyExchangeModes extension and, therefore, offer no
PSK-only mode in our handshake.

The client could send an EarlyDataIndication extension and send 0-RTT
data with the ClientHello. This data is encrypted using the early applica-
tion traffic key tkeapp, which is derived via a series of HKDF computations
from the PSK corresponding to the first identity in the PreSharedKey exten-
sion. tkeapp is implicitly authenticated but offers no forward secrecy since
its derivation involves PSK and no ephemeral value.

ServerHello. The server verifies the binder value then responds with the
ServerHello message which contains a nonce rS, its choice among the cryp-
tographic algorithms and parameters offered by the client and its choice of
PSK. It computes an encapsulation against pke which outputs the ephemeral
shared secret sse and a ciphertext cte. It sends cte with the ServerHello.
From the server’s perspective, sse is implicitly authenticated since the binder
value ensures that pke originated from the peer which knows PSK. From
the client’s perspective, however, sse is unauthenticated until it receives the
ServerFinished since, until then, it has no guarantees about the identity of
the party which computed cte.

The Master Secret. Both parties can now compute the master secret MS.
From MS they derive the client and server handshake traffic secrets, CHTS
and SHTS respectively, which are used to derive encryption keys for subse-
quent handshake messages. Note that all subsequent secrets in the protocol
are also derived via HKDF computations from MS. Since PSK and sse are the
only two sources of randomness in the protocol, we do not derive the hand-
shake secret HS or the authenticated handshake secret AHS present in the
full KEMTLS handshake. Since it is derived from PSK and the ephemeral
shared secret sse, MS and all subsequent secrets derived from it are at least
implicitly authenticated and offer some level of forward secrecy (we detail
level of forward secrecy in Chapter 5), which is analogous to TLS 1.3 PSK-
(EC)DHE where non-0-RTT stages are forward secret.

4.2 Key Confirmation/Explicit Authentication Phase

The aim of this phase is to explicitly authenticate each party to its peer, mean-
ing that both client and server would be certain that they are communicating
with an honest and live partner. This is achieved by exchanging MAC tags
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over the protocol transcript computed using keys derived from their shared
master secret MS.

ServerFinished. From MS the server derives the server finished key fkS
which it uses to compute the ServerFinished as a MAC tag over the tran-
script of the protocol so far. It sends it in the same flight as the ServerHello.
Once the client verifies the ServerHello, the server, which had been unau-
thenticated in stages 3 and 4, is explicitly authenticated.

The server can now derive the server application traffic secret SATS from
MS and, from that, the server application traffic key tksapp. It can now send
application data encrypted with tksapp in the same flight.

ClientFinished. The client computes the ClientFinished in the same man-
ner that the server computed the ServerFinished. It derives the client fin-
ished key fkC from MS and uses it to compute a MAC tag over the pro-
tocol transcript. Once the server verified the ClientFinished, the client,
which had previously been only implicitly authenticated, is explicitly au-
thenticated. The client can now send application data by deriving the client
application traffic secret CATS then the client application traffic key tkcapp
which it uses to encrypt application data.

Both parties then compute the resumption master secret RMS which can be
used to derive pre-shared keys associated with this handshake in a manner
similar to the TLS 1.3 handshake. We refer the reader to Section 3.1.3 for
more details on how this derivation process takes place.
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Client Server

(pke, ske)← KEMe.KGen()
ClientHello : rC

$←− {0, 1}256

+ClientKemCiphertext : pke
ES← HKDF.Extract(0, PSK)

dES← HKDF.Expand(ES, “derived”, H(“”))
BK← HKDF.Expand(ES, “ext binder”, H(“”))

fkB ← HKDF.Expand(BK, “finished”, “”)
binder ← HMAC(fkB,H(CH))
+ClientPreSharedKey : binder, pskid

abort if binder ≠ HMAC(fkB,H(CH))
accept ETS← HKDF.Expand(ES, “c e traffic”, H(CH)) stage 1

accept EEMS← HKDF.Expand(ES, “e exp master”, H(CH)) stage 2
record layer, AEAD-encrypted with tkeapp

(sse, cte)← KEM.Encap(pke)
ServerHello : rS

$←− {0, 1}256

+ServerKemCiphertext : cte
+ServerPreSharedKey : pskid

sse ← KEMe.Decap(cte, ske)
MS← HKDF.Extract(dES, sse)

accept CHTS← HKDF.Expand(MS, “c hs traffic”, H(CH . . . SH)) stage 3
accept SHTS← HKDF.Expand(MS, “s hs traffic”, H(CH . . . SH)) stage 4

{EncryptedExtensions} : extS
fkS ← HKDF.Expand(MS,“s finished”,H(CH . . . SH))

{ServerFinished} : SF← HMAC(fkS,H(CH . . . EE))

abort if SF ≠ HMAC(fkS, H(CH . . . EE))
accept CATS← HKDF.Expand(MS, “c ap traffic”,H(CH . . . SF)) stage 5
accept SATS← HKDF.Expand(MS, “s ap traffic”,H(CH . . . SF)) stage 6
accept EMS← HKDF.Expand(MS, “exp master”,H(CH . . . SF)) stage 7

record layer, AEAD-encrypted with tksapp (optional)

fkC ← HKDF.Expand(MS,“c finished”,H(CH . . . SH))
{ClientFinished} : CF← HMAC(fkC,H(CH . . . SF)))

abort if CF ≠ HMAC(fkC, H(CH . . . SF)))
accept RMS← HKDF.Expand(MS, “res master”,H(CH . . . CF)) stage 8

record layer, AEAD-encrypted with tkcapp

record layer, AEAD-encrypted with tksapp

Figure 4.1: KEMTLS in Pre-Shared Key Mode
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Chapter 5

Security Model

We have now designed a pre-shared key variant of the KEMTLS protocol
(KEMTLS-PSK). In this chapter, we aim to analyze the security of this pro-
tocol. In order to achieve this goal, we must, intuitively, know which type
of adversary we would like to defend against.

Bellare and Rogaway [20] introduce a model to analyze the security of key
exchange protocols. They describe a powerful adversary that is in complete
control of the communication between the communicating parties. It can
modify protocol messages, learn the long-term keys of the communicating
parties, as well as intermediate keys derived at various stages of the key
exchange protocol.

The Bellare–Rogaway model assumes that the key exchange protocol is exe-
cuted once to establish a shared symmetric key, which is then used to secure
the actual communication. It analyzes the security of this final key while
overlooking the possibility of intermediate keys being derived then used
immediately before the key exchange is complete, for example, to secure
subsequent protocol messages or encrypt early application data. This alter-
nation between key derivation and key usage steps is addressed by Fischlin
and Günther in [16]. They introduce a Bellare–Rogaway-style multi-stage
security model which they use to analyze the security of Google’s QUIC
protocol. This model analyzes the security properties of, not just the final
key, but of individual stage keys.

The security model we define for KEMTLS-PSK in this section draws mainly
from the work of Dowling et al. [17], which adapts the Fischlin–Günther
multi-stage security model for the TLS 1.3 protocol, and from the work of
Schwabe, Stebila and Wiggers [13] which does the same for the full KEMTLS
handshake.
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5.1 Multi-Stage Security Model

In this section, we introduce the multi-stage model we use to analyze the
security of the KEMTLS-PSK protocol. We assume a powerful adversary
in the Bellare–Rogaway sense. This adversary has full control over the
communication between parties. It can initialize new sessions using the
NewSession oracle and establish new pre-shared secrets between parties
using the NewSecret oracle. The adversary can also use the Reveal oracle
to learn a certain stage key or the Corrupt oracle to learn the pre-shared
secret between two communicating parties. Through the Send oracle, the
adversary can choose to passively pass the message to the intended party or
arbitrarily modify it.

The Test oracle gives the adversary a value and challenges it to guess
whether this value is the real stage key or a random value. Our security
goals, intuitively speaking, is to ensure that the adversary cannot guess this
correctly. That is, it cannot distinguish stage keys from random values.

5.1.1 Security Notions for Stage Keys

Our model addresses the following security notions for every derived stage
key. These notions are used to define properties such as “freshness”, which
we later use to impose limits on adversarial behavior.

Key indistinguishability. The key derived in every stage should be indis-
tinguishable from random to the adversary. More formally, an adversary
can issue a Test query to the model. Depending on a randomly sampled
bit b, the model gives the adversary either the real stage key or a randomly
sampled key. Key indistinguishabilty is achieved if the adversary’s ability
to guess the bit b is negligible.

Forward secrecy. The stage key should remain indistinguishable from ran-
dom even if the long-term secret of the communicating party is compro-
mised. We distinguish two levels of forward secrecy:

• Weak forward secrecy level 2 (wfs2): The stage key is indistinguish-
able from random if the adversary is passive or the adversary never
corrupted the pre-shared key.

• Forward secrecy (fs): The stage key is indistinguishable from random
if the adversary is passive or the adversary never corrupted the pre-
shared key before the tested stages achieved forward secrecy.

Note that [13] defines weak forward secrecy level 1 (wfs1), which we exclude
here since it is not needed in our analysis.
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Implicit authentication. The stage key could only be known by the in-
tended peer. This is achieved if the adversary did not corrupt the pre-shared
key. Note that our formalization forward secrecy implies implicit authenti-
cation.

Explicit authentication. The stage key could only be known by the in-
tended peer (implicit authentication) and the intended peer actively demon-
strates knowledge of the key. In our formalization, we capture this property
using the notion of malicious acceptance. If an adversary succeeds in caus-
ing a party to maliciously accept, that is accept without the presence of an
honest partner which knows the secret key, then it has successfully violated
explicit authentication.

Replayability. A stage is replayable if the adversary can replay the same
client messages to multiple servers causing them to have identical session
identifiers and keys at this stage. Both TLS 1.3 in resumption mode and
our proposed KEMTLS-PSK do not offer replay protection for their 0-RTT
stages.

5.1.2 Key exchange protocol

We would like to model the ability of the security model to run the key
exchange protocol on behalf of honest parties. Therefore we define the key
exchange protocol as consisting of two algorithms Activate and Run which
we describe below:

• Activate(u, pssid, v, pss, role) $−→ (st′, m′).
Initializes a session owned by u with v as an intended partner, u acting
as role, pss as the chosen pre-shared key and pssid as the pre-shared
key identifier. It outputs an initial state st′ and an initial response
message m′.

• Run(u, pssid, st, pss, m) $−→ (st′, m′).
Takes as input the current state st, an input message m, a pre-shared
key identifier pssid and pre-shared key pss and runs the protocol on
m in the session owned by u. It outputs an updated state st′ and a
response message m′.

5.1.3 Model Syntax

We define the syntax of our security model. We distinguish protocol-specific
properties and session states used to track information about individual
sessions.
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Protocol-specific variables. We define object P which represents protocol-
specific values as follows:

• P.M ∈N: the number of stages in the protocol.

• P.iauth[i] ∈ {0, 1, . . . ,M, ∞}: the stage upon whose acceptance stage
key i is implicitly authenticated.

• P.eauth initiator[i] ∈ {0, 1, . . . ,M, ∞}: the stage upon whose accep-
tance stage key i in an initiator session is explicitly authenticated.

• P.eauth responder[i] ∈ {0, 1, . . . ,M, ∞}: the stage upon whose accep-
tance stage key i in a responder session is explicitly authenticated.

• P.FS initiator[i][j] ∈ {⊥, wfs2, fs}: the level of forward secrecy ex-
pected for stage key i in an initiator session assuming stage j has ac-
cepted.

• P.FS responder[i][j] ∈ {⊥, wfs2, fs}: the level of forward secrecy ex-
pected for stage key i in a responder session assuming stage j has
accepted.

• P.use[i] ∈ {internal, external}: whether the key derived in stage i is
used internally (e.g. to encrypt subsequent handshake messages or as
a MAC key) or externally (e.g. to encrypt application data).

• P.replay[i] ∈ {replayable, non-replayable}: whether stage i is replayable
or not.

Session state. We denote a session by π. Assuming K is the set of all pos-
sible session keys. define a session state as containing at least the following
information:

• π.id ∈N: identity of session owner.

• π.pid ∈N: identity of intended peer session.

• π.pssid ∈ {0, 1}∗: the identifier of the pre-shared key used in this
session.

• π.role ∈ {initiator, responder}: whether this session is an initiator
(client) or responder (server) session.

• π.status[i] ∈ {⊥, running, accepted, rejected}. Initially set to ⊥.

• π.stage ∈ {1, . . . ,M}: the current stage at which the session is execut-
ing.

• π.sid[i]: the session identifier at stage i. Initially set to ⊥. Set once
upon stage acceptance.
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• π.cid initiator[i]: the contributive session identifier checked by an ini-
tiator session for contributive partnering at stage i. Initially set to ⊥.
Set once before or upon stage acceptance.

• π.cid responder[i]: the contributive session identifier checked by a re-
sponder session for contributive partnering at stage i. Initially set to
⊥. Set once before or upon stage acceptance.

• π.key[i] ∈ K: key derived at stage i. Initially set to ⊥.

• π.revealed[i] ∈ {true, false}. Whether π.key[i] has been revealed via a
call to the Reveal oracle. Initially set to false.

• π.tested[i] ∈ {true, false}. Whether π.key[i] has been tested via a call
to the Test oracle. Initially set to false.

5.1.4 Security Game

Our security mode consists of an adversary A playing the Multi-Stage secu-
rity game defined in Figure 5.0. We define the security game in pseudo-code
in a manner similar to [21] for brevity and clarity. We denote session s of
user u by πs

u throughout.

Game-specific variables. These are variable that the game keeps track of
to maintain consistency among its oracles.

• pssu,v,pssid ∈ P : the pre-shared key used by u in initiator role and
v in responder role, identified by pssid. We assume P is the set of
all possible pre-shared keys. The global list of all pre-shared keys is
denoted by pss.

• revltpu,v,pssid: the time at which the pre-shared key pssu,v,pssid is revealed
to the adversary.

• T ∈N×N×{0, 1, . . . ,M}: A set of user-session-stage tuples. It stores
all the stages that have been tested.

• πs
u.tacc[i] ∈N: the time at which stage i of session s of user u accepted.

Initially set to ∞.

The Multi-Stage game starts when adversary A calls Initialize which sam-
ples the random bit b. A then has access to different oracles: NewUser

creates a new user, NewSecret establishes a new pre-shared secret between
two users of the adversary’s choosing and NewSession starts a new session
between two users (by calling Activate) and using a pre-shared key identifier
of the adversary’s choosing.

Furthermore, the Send oracle allows the adversary to send arbitrary mes-
sages of its choosing to any session. It checks if the session exists and runs
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GMulti-Stage
KE,A

Initialize

1 time← 0; users← 0
2 b $←− {0, 1}
3 T ← {} // set of tested sessions

NewUser

4 users← users+ 1

NewSecret(u, v, pssid)

5 // check pre-shared secret is not already de-
fined for u, v and pssid...
if pssu,v,pssid ≠ ⊥:

6 return ⊥
7 pssu,v,pssid

$←− P // .....otherwise sam-
ple new pre-shared secret and store it in
the corresponding entry in the global pre-
shared secret list...

8 revltpu,v,pssid ← ∞ // set the corruption
time to infinity, i.e. this pss has not been
corrupted

NewSession(u, v, role, pssid)

9 // initialize session with owner u, intended
peer v and PSK identified by pssid

10 (πs
u, m′) $←−
Activate(u, pssid, v, pss, role)

11 return m′

Send(u, s, m)

12 if πs
u = ⊥:

13 return ⊥
14 (πs

u, m′) $←−
Run(u, πs

u.pssid, πs
u, pss, πs

u.role)
15 if πs

u.status[i] == accepted: // special
handling of acceptance

16 πs
u.tacc[i] ← time // record acceptance

time

17 time← time+ 1

18 if ∃(v,l)≠(u,s)(π
l
v.sid[i] = πs

u.sid[i]): // if
partnered session...

19 if πl
v.tested[i] = true: // ..is tested..

20 πs
u[i].tested ← true // ..set current

session to tested

21 if P.use[i] = internal: // .. and if ac-
cepted key used internally..

22 πs
u[i].key ← πl

v[i].key // ..set ac-
cepted key to partnered session’s key for consis-
tency

23 return m′

Reveal(u, s, i)

24 // check that session exists and desired stage has
accepted

25 if πs
u = ⊥ or πs

u.status[i] ≠ accepted:
26 return ⊥
27 πs

u.revealed[i]← true // set revealed to true

28 return πs
u.key[i] // return stage key to the ad-

versary

Corrupt(u, v, pssid)

29 // arguments given in the following order (initia-
tor, responder, pssid)

30 revltpu,v,pssid ← time // record corruption time

31 time← time+ 1 // increment time

32 return pssu,v,pssid // return PSK to the adver-
sary

Test(u, s, i)

33 if πs
u.status[i] ≠ accepted or πs

u.tested[i] =
true:

34 return ⊥
35 if ∃(v,l)≠(u,s)(π

l
v.sid[i] = πs

u.sid[i])
and πl

v.status[i + 1] ≠ ⊥
and P.use[i] = internal: // if the stage key

is internal and the key has been used in a part-
nered session, i.e. next stage has started execut-
ing

36 return ⊥
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37 πs
u.tested[i]← true // set tested to true

38 T ← T ∪ {(u, s, i)} // record the tested
stage

39 k0
$←− K // sample random key

40 k1 ← πs
u.key[i]

41 if P.use[i] = internal: // if key is internal..

42 πs
u.key[i] ← kb // ..set current key to

the key returned to the adversary, to avoid
trivial distinguisability

43 return kb

Finalize

44 if ∃(u,s,i)∈T(¬Fresh(u, s, i)) : // if a tested
stage is not fresh..

45 b′ $←− {0, 1} // ..adversary loses..

46 if ∃(u,s,i)(MalAccept(u, s, i)):
// ..otherwise if there is a maliciously ac-
cepted stage

47 b′ ← b // adversary wins

48 return b == b′ // did adversary guess
correctly?

Fresh(u, s, i)

49 if πs
u.revealed[i] = true // if stage key is

revealed
or ∃(v,l)≠(u,s)(π

l
v.sid[i] = πs

u.sid[i] // ..or
stage key of partnered session is revealed

and πl
v.revealed[i] = true)

50 return false // then stage is not fresh

51 cont partner =
∃(v,l)≠(u,s)(π

l
v.cid[i] ⟨πs

u.role⟩
= πs

u.cid[i] ⟨πs
u.role⟩) // is there a con-

tributive partner?

52 revlt← getRevlt(u, s)
53 // The definition of freshness:

54 if ∃i,j(j ≥ i and πs
u.FS ⟨πs

u.role⟩[i][j] =
⊥

and revlt = ∞): // no forward secrecy
and PSK never corrupted

55 return true

56 if ∃i,j(j ≥ i and πs
u.FS ⟨πs

u.role⟩[i][j] =
wfs2

and πs
u.status[j] = accepted

and (cont partner or revlt = ∞)) :
// wfs2 and either there is a contributive
partner or PSK never corrupted

57 return true

58 if ∃i,j(j ≥ i and πs
u.FS ⟨πs

u.role⟩[i][j] = fs
and πs

u.status[j] = accepted
and (cont partner or revlt > πs

u.tacc[j])) :
// full forward secrecy and either there is a con-
tributive partner or PSK was not corrupted be-
fore stage acceptance

59 return true

60 return false

MalAccept(u, s, i)

61 revlt← getRevlt(u, s)
62 auth stage ← P.eauth ⟨πs

u.role⟩[i] // the
stage at which stage i of πs

u becomes explicitly
authenticated

63 return πs
u.status[auth stage] == accepted

// the stage is explicitly authenticated...
and ¬∃(v,l)≠(u,s)(π

l
v.sid[i] = πs

u.sid[i])
// ..without a partnered session..

and revlt > πs
u.tacc[auth stage] // ..and

PSK was not corrupted before explicit authenti-
cation happened

getRevlt(u, s)

64 // helper function, not part of protocol. Returns
the revelation time of the PSK

65 v← πs
u.pid // ID of partner session

66 revlt← ⊥
67 pssid← πs

u.pssid
68 if πs

u.role = initiator

69 revlt← revltpu,v,pssid

70 else:
71 revlt← revltpv,u,pssid

72 return revlt

Figure 5.0: Key exchange security game.
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the protocol on the input message using Run and returns the output mes-
sage and the updated session state. If this execution causes the session to
accept a new stage i, special care must be taken to ensure consistency and
prevent the adversary from trivially winning the game. First, if stage i in
a partnered session has been tested, the Send oracle marks the newly ac-
cepted stage as tested and, in case key i is used internally, sets the newly
accepted key to the partnered session’s key i. This procedure is shown in
our pseudo-code in Figure 5.0. Second, the game should pause its execution
to allow the adversary to test the newly accepted key before it is used in
the protocol. We do not explicitly show this in the pseudo-code and assume
that it is handled by the Run algorithm using special messages agreed upon
with the adversary.

The Test oracle provides the adversary with a stage key of its choosing (if
b = 1) or a random value (if b = 0). If the tested key is used internally in the
protocol, the oracle sets this key to whichever value given to the adversary.
That is, if b is 0, the key is set to the random value provided to the adversary,
otherwise it remains the same. This is to prevent the adversary from trivially
winning the game.

Finally, Reveal gives the adversary any stage key of its choosing and Corrupt

gives the adversary any pre-shared secret of its choosing.

When the adversary calls Finalize it outputs its guessed bit b′. The adver-
sary wins if it guessed b correctly and has not tested an unfresh stage or if it
has caused a stage to maliciously accept. This is defined through the Fresh
and MalAccept predicates:

• Fresh: A stage which has been revealed or whose partner stage has
been revealed is, by definition, unfresh. Otherwise, freshness relies
on the forward secrecy definitions of Section 5.1.1. A stage is deemed
fresh at some point in time if it satisfies the conditions of the forward
secrecy level it has (possibly retroactively) reached.

• MalAccept: A stage has maliciously accepted if it has (possibly retroac-
tively) achieved explicit authentication (as defined in Section 5.1.1)
without an honest partner and without the pre-shared key having been
corrupted by the adversary prior to acceptance.

5.2 Security Notions for Key Exchange Protocols

There are two main notions of security which we analyze (in accordance
with the distinction introduced by Brzuska et al. [22]) regarding key ex-
change protocols. The first is match security which ensures proper session
partnering with respect to the session identifiers (sid’s) and the second is
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the classical notion of key indistinguishability which we augment with the
multi-stage features of the Fischlin-Günther model.

5.2.1 Match Security

Definition 5.1 (Match security) Let KE be a key exchange protocol and A be a
probabilistic adversary interacting with KE. A aims to win the following game
GMatch
KE,A :

Setup. The adversary starts the game.

Query. The adversaryA has access to the queries NewSecret, NewSecret,
Reveal, Corrupt and Test as described in Figure 5.0.

Stop. At some point, the adversary stop with no output.

Let π, π′ be distinct partnered sessions with π.sid[i] = π′.sid[i] ≠ ⊥ for some
stage i ∈ {1, . . . ,M}. The adversary A is said to win the game, denoted by
GMatch
KE,A = 1, if it succeeds in falsifying at least one of the following conditions:

1. ∀j≤i

(
π.keyj = π′.keyj

)
: π, π′ agree on the established key for every

stage j ≤ i.

2. π.role = π′.role → P.replay[i] = replayable ∧ π.role = responder: π, π′

have opposite roles, except for replayable stages where two responder
sessions could be partnered.

3. π.cid initiator[i] = π′.cid initiator[i] ≠ ⊥ and π.cid responder[i]
= π′.cid responder[i] ≠ ⊥: π, π′ have set their contributive identifiers
for each role to the same value.

4. ∀j≤i(π.status[i] = accepted∧ i ≥ π.eauth ⟨role⟩[j]→ π.pid = π′.id
∧ π.pssid = π′.pssid): for every non-replayable stage in π that has
been (retroactively) explicitly authenticated, the intended peer identity
matches the identity of π′ and both sessions agree on the pre-shared
key identifier.

5. ∀π,π′′,i,j (π.sid[i] = π′′.sid[j]→ i = j): no two distinct stages (including
in the same session, i.e. if π = π′′) share the same session identifier.

6. P.replay[i] = non-replayable∧ ∃π′′ (π.sid[i] = π′.sid[i] = π′′.sid[i])
→ (π′ = π′′ ∨ π = π′′): if i is non-replayable π, π′ do not have a third
partnered session.

The advantage of the adversary A against the match security game is de-
fined as follows:

AdvMatch
KE,A := Pr

[
GMatch
KE,A = 1

]
.
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5.2.2 Multi-stage Security

Definition 5.2 (Multi-stage security) Let KE be a key exchange protocol and A be
a probabilistic adversary interacting with KE. A aims to win the game GMulti-Stage

KE,A
(described in more detail in Figure 5.0) as follows:

Setup. The game starts when A calls Initialize.

Query. A has access to the query oracles defined in Figure 5.0.

Stop. The game stops when A calls Finalize and A outputs its guess bit
b′. The Finalize oracle determines the output of the game: the wins if it
correctly guesses b without testing an unfresh stage or if it causes a stage to
malicious accept.

The advantage of the adversary A against the multi-stage security game is
defined as follows:

AdvMulti-Stage
KE,A :=

∣∣∣∣Pr [GMulti-Stage
KE,A = 1

]
− 1

2

∣∣∣∣ .
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Chapter 6

Security Analysis

In this chapter, we aim to analyze how the KEMTLS-PSK protocol fares with
respect to the key exchange security model defined in Chapter 5. In Section
6.1, we instantiate the model for KEMTLS-PSK, including defining session
and contributive identifiers. In Section 6.2, we analyze the match security
of the protocol and in Section 6.3, we analyze its multi-stage security. In
Section 6.4, we give a brief comparison of our analysis of KEMTLS-PSK to
that of TLS 1.3 PSK-(EC)DHE in [17].

6.1 Instantiating the Security Model for KEMTLS-PSK

Before we proceed to prove the security of the protocol, we define the
protocol-specific values for the KEMTLS-PSK protocol as follows:

• P.M = 8: KEMTLS in pre-shared key mode has 8 stages.

• P.iauth = (1, 2, 3, 4, 5, 6, 7, 8): since PSK is mixed into all key
derivations, all stage keys are immediately implicitly authenticated.

• P.eauth initiator = (5, 5, 5, 5, 5, 6, 7, 8): in an initiator session,
explicit authentication is (retroactively) achieved when stage 5 is ac-
cepted. That is, when the client verifies the ServerFinished by which
the server actively demonstrates its knowledge of the derived shared
secrets.

• P.eauth responder = (8, 8, 8, 8, 8, 8, 8, 8): in a responder session, ex-
plicit authentication is (retroactively) achieved when stage 8 accepts.
We note here that, due to the presence of the binder value in the
ClientHello message, stages 1 and 2 could be considered explicitly
authenticated. In this case, we would require our analysis to handle a
non-monotonous explicit authentication property, where stages 1 and
2 would be explicitly authenticated, while stages 3 through 7 would
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only be implicitly authenticated until stage 8 accepts. To avoid over-
complicating the analysis, we assume that explicit authentication is
monotonous and that stages 1 and 2 are only implicitly authenticated.

• In an initiator session, stages 1 and 2 have no forward secrecy, stages 3
and 4 have weak forward secrecy level 2 upon acceptance and retroac-
tive full forward secrecy upon acceptance of stage 5 and stages 5-8
have full forward secrecy on acceptance.

P.FS initiator =



⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

wfs2 wfs2 fs fs fs fs
wfs2 fs fs fs fs

fs fs fs fs
fs fs fs

fs fs
fs



• In a responder session, stages 1 and 2 have no forward secrecy, stages
3-8 have full forward secrecy upon acceptance.

P.FS responder =



⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

fs fs fs fs fs fs
fs fs fs fs fs

fs fs fs fs
fs fs fs

fs fs
fs



We note that, unlike in an initiator session where stages 3 and 4 get
wfs2 on acceptance, they get full forward secrecy fs in a responder ses-
sion. This is due to the presence of the binder value in the ClientHello
message. An adversary that attempts to learn the keys of stages 3 and
4 in a tested responder session would have to send its own ephemeral
public key with the ClientHello and corrupt PSK before stage 1 ac-
cepts in order to forge the binder value.

• P.use = (internal : {3, 4}, external : {1, 2, 5, 6, 7, 8})

Session identifiers. The session identifier of every stage consists of a label
and the transcript of messages up to this stage. We define session identifiers
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in more detail below:

sid[1] = (“ETS′′, ClientHello)

sid[2] = (“EEMS”, ClientHello)

sid[3] = (“CHTS”, ClientHello . . . ServerHello)
sid[4] = (“SHTS”, ClientHello . . . ServerHello)
sid[5] = (“CATS”, ClientHello . . . ServerFinished)
sid[6] = (“SATS”, ClientHello . . . ServerFinished)
sid[7] = (“EMS”, ClientHello . . . ServerFinished)
sid[8] = (“RMS”, ClientHello . . . ClientFinished)

Contributive idenifiers. Every stage has two contributive identifiers: cid initiator[i]
is the identifier checked by the initiator (i.e. client) for contributive partner-
ing at stage i and cid responder[i] is the identifier checked by the responder
(i.e. server) for contributive partnering at stage i.

For stages 1 and 2, both contributive identifiers are set to the values of the
session identifiers upon acceptance.

Upon sending (resp. receiving) the ClientHello message, the client (resp.
server) sets cid responder[3] to (“ETS”, ClientHello). For all stages i > 3,
cid responder[i] = cid responder[3].

Upon sending (resp. receiving) the ServerHello message, the server (resp.
client) sets cid initiator[3] to (“CHTS”, ClientHello . . . ServerHello). For all
stages i > 3, cid initiator[i] = cid initiator[3].

6.2 Match Security Analysis for KEMTLS-PSK

Theorem 6.1 Let A be an adversary and let nS be the number of sessions and npsk
be the number of pre-shared keys and P be the pre-shared key space. The advantage
AdvMatch

KEMTLS-PSK,A as defined in Definition 5.1 is bound as follows:

AdvMatch
KEMTLS-PSK,A ≤ nS · δe +

n2
psk

|P| + AdvCOLL
HMAC,B +

n2
S

|nonce|
.

Proof Let π, π′ be two distinct partnered sessions with π.sid[i] = π′.sid[i] ≠
⊥ for some stage i ∈ {1, . . . ,M}. We show that KEMTLS-PSK satisfies every
property of match security as described in Definition 5.1:

1. π, π′ agree on the established key for every stage j ≤ i.
The session identifier sid[i] contains all the messages of the handshake
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up to stage i. The key schedule takes the hash of these messages as
input. For stages 1 and 2, the input to the key schedule is the hash
of the ClientHello message which contains the ephemeral public key
of KEMe, the pre-shared key identifier pskid and the binder value. For
all subsequent stages, the input to the key schedule is the ephemeral
shared secret sse established by KEMe and the hash of messages up to
that stage: for stages 3 and 4, up to ServerHello, for stages 5 through 7,
up to ServerFinished and for stage 8 up to ClientFinished. The only
case in which the keys of π and π′ can differ is if the KEMe correctness
condition fails. Since KEMe is δe-correct and we have nS session, this
failure event can happen with a probability of nS · δe.

2. π, π′ have opposite roles, except for replayable stages where two responder
sessions could be partnered.
By definition of the KEMTLS-PSK handshake, no initiator or respon-
der session will accept a wrong-role incoming message. Therefore,
assuming that at most two sessions share the same session identifier
at non-replayable stages (which we show below), π and π′ must have
opposite roles. For replayable stages 1 and 2, two initiator sessions can
only have matching session identifiers on nonce repetition (which we
rule out below), while multiple responder sessions might be partnered
if the ClientHello is forwarded to multiple servers.

3. π, π′ have set their contributive identifiers for each role to the same value.
By definition of contributive identifiers, cid[i] is set to sid[i] when stage
i has accepted.

4. For every non-replayable stage in π that has been (retroactively) explicitly
authenticated, the intended peer identity matches the identity of π′ and both
sessions agree on the pre-shared key identifier.
The tuple (session owner, peer, pssid) uniquely determines a PSK, un-
less there is a collision in the NewSecret oracle, which can happen
with a birthday-bound probability of n2

psk/|P|. It remains to show that
by agreeing on the binder value and pssid, which are included in the
session identifiers, π and π′ agree on the PSK and π.pid = π′.id and
π′.pid = π.id. The binder value is computed from the PSK using a
series of HKDF/HMAC computations. After ruling out PSK collisions,
the only way that π and π′ can agree on the binder value without
agreeing on PSK is if there is an HMAC collision, which can be bound
by the advantage of an adversary B against the collision-resistence of
HMAC, AdvCOLL

HMAC,B .

5. No two distinct stages (including in the same session, i.e. if π = π′′) share
the same session identifier.
Each stage has a unique label, therefore it trivially holds that no two
stages have the same session identifier.
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6. If i is non-replayable π, π′ do not have a third partnered session.
The session identifiers include the nonce values. In non-replayable
stages, in order to have three-way partnering, there needs to be a colli-
sion in any of these values. We can bound the probability of this event
by a birthday bound over the nonces: n2

S/2|nonce|. This argument need
only hold for stage 3 and above since stages 1 and 2 are replayable
and, hence, allow for three-way partnering. □

6.3 Multi-Stage Security Analysis for KEMTLS-PSK

The aim of this analysis is to prove that any adversary acting within the
bounds of the freshness conditions defined in Figure 5.0 can win the security
game with a negligible probability. This is done by deriving an upper bound
on the advantage of the adversary against the multi-stage security game
AdvMulti-Stage

KEMTLS-PSK,A. More formally, we aim to prove the following theorem:

Theorem 6.2 Let A be an adversary, and let nS be the number of sessions and
npsk be the number of pre-shared keys used in the game. There exist algorithms
B1, . . . ,B9, as described in the proof, such that AdvMulti-Stage

KEMTLS-PSK,A as defined in Defi-
nition 5.2 is bound as follows:

AdvMulti-Stage
KEMTLS-PSK,A ≤

n2
S

2|nonce| + AdvCOLLH, B1

+ 8nS


npsk


3 · Advdual-PRFHKDF.Extract,B2

+ 3 · AdvPRFHKDF.Expand,B3

+ 3 · AdvPRFHKDF.Extract, B4
+ 3 · AdvPRFHKDF.Expand, B5

+ AdvPRFHKDF.Expand,B7
+ AdvEUF-CMA

HMAC, B8


+ nS

(
AdvIND-1CCA

KEMe, B6
+ Advdual-PRFHKDF.Extract,B4

AdvPRFHKDF.Expand, B5

)


.

By examining the Finalize oracle in Figure 5.0, we observe that the adver-
sary can win either by winning an indistinguishability game against a fresh
stage or by causing any stage to maliciously accept. Therefore, we can com-
pute an upper bound on the advantage of the adversary against the game
won by breaking indistinguishability AdvMulti-Stage.IND

KEMTLS-PSK,A and the game won by

malicious acceptance AdvMulti-Stage.MAL
KEMTLS-PSK,A and bound the overall advantage by

the maximum of the two as follows:

AdvMulti-Stage
KEMTLS-PSK,A ≤ max

{
AdvMulti-Stage.IND

KEMTLS-PSK,A ,AdvMulti-Stage.MAL
KEMTLS-PSK,A

}
.
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In the following subsections, we first proceed to first prove key indistin-
guishability then the absence of malicious acceptance.

6.3.1 Proving Key Indistinguishability

Case A
Testing stages 1-2 and
PSK never corrupted

Testing stages 3-8

Case B
Honest contributive partner

at stage stage 3

No honest contributive
partner at stage 3

Case C
PSK never corrupted

(tested client)

Case D
PSK not corrupted before

stage 1 accepts (tested server)
or stage 5 (tested client)

Figure 6.1: Division of proof cases

In Figure 6.1, we show the different proof cases as a tree. The conjunction
of a leaf node and all its ancestors up to the root represents one proof case.
It remains to explain how we arrived at these conditions.

The first criteria for dividing proof cases is whether the adversary tested a
stage that possesses some level of forward secrecy or not. Since stages 1 and
2 have no forward secrecy, we will rely only on the security of the PSK to
prove key indistinguishabilty in case the adversary tests one of these two
stages. This yield Case A.

In case the adversary tests one of stages 3 through 8, we need another criteria
of division. This is because the definitions of both wfs2 and fs include two
conditions. One is the absence of an active adversary and the other restricts
the corruption of the pre-shared key. The second criteria for dividing proof
cases is, therefore, whether there is an honest contributive partner (i.e. the
adversary is passive) at stage 3. If there is an honest contributive partner at
stage 3, we can rely on the security of the ephemeral shared secret sse in our
proof. This yields Case B.

In case there is no honest contributive partner, we must make one last di-
vision based on when the adversary is allowed to corrupt the pre-shared
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key. In Case C, the adversary is never allowed to corrupt the pre-shared key.
This case only applies to when the tested session is a client session due to
the fact that stages 3 and 4 are wfs2 in the tested client case whereas in the
tested server case full fs is activated immediately on acceptance of stage 3.
The proof for Case C employs a proof strategy similar to Case A where we
rely on the security of pre-shared key. In Case D, the adversary is forbidden
from corrupting the pre-shared key only before stage 1 in case of a tested
server session or stage 5 in case of a tested client session.

Proof The proof proceeds via a series of games. Games 0 through 3 are com-
mon to all the cases. After Game 3, we branch into the four cases discussed
above.

Game 0. The original Multi-Stage.IND game. That is, the multi-stage game
that can only be won by breaking indistinguishability:

AdvMulti-Stage.IND
KEMTLS-PSK,A = AdvG0

A .

Game 1 (no nonce repetition). We abort if any two sessions sample the
same nonce. The probability of this event is computed via a birthday bound.
Since there are nS session and 2|nonce| possible nonce values, this gives the
following bound:

AdvG0
A ≤ AdvG1

A +
n2

S

2|nonce| .

Game 2 (no hash collisions). We abort if any two sessions compute the
same hash value on two different input values. We can construct a reduc-
tion adversary B1 against the hash collision resistance of the hash function
H which will output the two input values as its collision. This yields the
following bound:

AdvG1
A ≤ AdvG2

A + AdvCOLLH, B1
.

Game 3 (single Test query). We restrict A to make a single Test query. Us-
ing the hybrid argument in [17], this reduces the advantage of the adversary
by 1/8nS where nS is the number of sessions. We, thus, get the following
bound:

AdvG2
A ≤ 8nS · AdvG3

A .

We then branch into the four cases discussed above and bound the advan-
tage AdvG3

A as follows:

AdvG3
A ≤ max

{
AdvGA

A ,AdvGB
A ,AdvGC

A

}
≤ AdvGA

A + AdvGB
A + AdvGC

A .
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Case A: Testing stages 1-2 and PSK is never corrupted.
This case depends on the indistinguishability of PSK which is never cor-
rupted by the adversary.

Game A.1 (guess PSK). We guess the pre-shared key that will be used in
the tested session. Assuming that npsk is the number of pre-shared key used
in the entire experiment, we get the following bound:

AdvGA
A ≤ npsk · AdvGA.1

A .

Game A.2 (random ES). We replace ES with a uniformly random value ES
in the tested session and all other sessions which use the same PSK guessed
in Game A.1. An adversary A that can distinguish these two values can
be used to construct an adversary B2 against the dual-PRF security of the
HKDF.Extract function.

The dual-PRF adversary B2 simulates the Multi-Stage challenger to adversary
A. Whenever B2 needs to compute ES, it queries the dual-PRF challenger
with PSK and forwards the response to A. If the dual-PRF game is in the
real case, then ES = HKDF.Extract(0, PSK) and B2 is simulating Game A.1
to A. If it is in the random case, then B2 is simulating Game A.2 to A. This
yields the following bound:

AdvGA.1
A ≤ AdvGA.2

A + Advdual-PRFHKDF.Extract,B2
.

Game A.3 (random dES, BK, ETS, EEMS). We replace dES, BK, ETS and
EEMS in the tested session and all other session using the guessed PSK with
uniformly random values dES, BK, ETS and EEMS. An adversary A that can
distinguish the real and random value can be used to construct an adversary
B3 against the PRF security of the HKDF.Expand function.

The PRF adversary B3 simulates the Multi-Stage challenger to A. Whenever
B3 needs to compute any of these values, it queries the PRF challenger on
ES and forwards the response to A. If the PRF game is in the real case, then
response is HKDF.Expand(ES, . . . ) and B3 is simulating Game A.2 to A. If it
is in the random case, then B3 is simulating Game A.3 to A. This yields the
following bound:

AdvGA.2
A ≤ AdvGA.3

A + AdvPRFHKDF.Expand,B3
.

We also argue that the keys ETS and EEMS are independent of their coun-
terparts in any non-partnered session. This is because any non-partnered
session will have a different transcript, since we excluded nonce collisions
in Game 1 and because the HKDF uses the hash of the transcript to compute
stage keys and we excluded hash collisions in Game 2.
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Game A.4 (random MS). We replace MS with a random value MS in the
tested session and all other sessions using the PSK guessed in Game A.1.
Distinguishing this game from the previous game is reducible to the PRF se-
curity of the HKDF.Extract function using a reduction adversary B4. Similar
to Game A.3, this yield the following bound:

AdvGA.3
A ≤ AdvGA.4

A + AdvPRFHKDF.Extract, B4
.

Game A.5 (random CHTS, SHTS, CATS, SATS, EMS, RMS, fkC, fkS). We re-
place CHTS, SHTS, CATS, SATS, EMS, RMS, fkC and fkS with random val-
ues in the tested session and all other sessions using the same PSK guessed
in Game A.1. Similar to previous game hops, we get the following bound:

AdvGA.4
A ≤ AdvGA.5

A + AdvPRFHKDF.Expand, B5
.

Case B: Testing stages 3-8 and there is an honest contribu-
tive partner at stage 3 . Since there is an honest contributive partner
at stage 3 which computes the ephemeral shared secret sse, we depend on
the indistinguishability of sse to bound the advantage of the adversary in
this case.

Game B.1 (guess contributive session). We guess the identity of the honest
contributive partner session. This reduces the advantage of the adversary
by a factor of the number of sessions nS.

AdvGB
A ≤ nS · AdvGB.1

A .

Game B.2 (KEMe security). We replace the ephemeral secret value sse with
a uniformly random value sse in the tested session and any session that
received the same cte that the tested session sent.

An adversary that can detect this replacement of the real shared secret
with a random value can be used to construct an adversary B6 against the
IND-1CCA security of KEMeas follows:

B6 receives the challenge tuple (pk∗, ct∗, ss∗) from the IND-1CCA challenger.
It uses pk∗ as the ephemeral public key in the ClientHello message, ct∗ as
the ephemeral ciphertext in ServerHello and ss∗ as the ephemeral shared
secret.

In case the tested session is a client session, since the cid initiator[3]’s match,
then the client received the same ct∗ from the server and both parties share
the same ephemeral shared secret ss∗. If ss∗ is the real value, then B6 has
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simulated Game B.1 to A. If it is the random value, then B6 has simulated
Game B.2 to A. Therefore, strictly speaking, in this case the reduction can
play against an IND-CPA challenger since we do not issue decapsulation
queries.

However, in case the tested session is a server session, matching
cid responder[3]’s do not guarantee that the client received the ServerHello
message unmodified. The adversary could send it’s own ct′ ≠ ct∗ to the
client and hence the client would compute ss′ ≠ ss∗. To stop the adversary
from trivially winning the game by revealing a client stage key derived from
ss′, we need the reduction to be able to compute ss∗ to use it as the clients
ephemeral shared secret. Therefore, we need to allow the reduction to issue
one decapsulation query to the IND-1CCA challenger.

This yields the following bound:

AdvGB.1
A ≤ AdvGB.2

A + AdvIND-1CCA
KEMe, B6

.

Game B.3 (random MS). We replace the master secret MS with a random
value MS in the tested session and all the sessions that received the same
cte that it sent. Distinguishing this game from the previous one is reducible
to the dual-PRF security of the HKDF.Expand function via a reduction B4 (see
Game A.2). Thus, we get the following bound:

AdvGB.2
A ≤ AdvGB.3

A + Advdual-PRFHKDF.Extract,B4
.

GameB.4 (randomCHTS, SHTS, CATS, SATS, EMS, RMS, fkC, fkS). Similar
to Game A.5. We get the following bound:

AdvGB.3
A ≤ AdvGB.4

A + AdvPRFHKDF.Expand, B5
.

Case C: Testing stages 3-8, there is no honest contributive
partner and PSK is never corrupted (tested client). This
case roughly corresponds to weak forward secrecy level 2 and is, therefore,
relevant only for tested client sessions. Similar to Case A, it depends on the
fact that PSK is never corrupted to prove the indistinguishability of stage
keys.

Games C.1-C.5. Similar to Games A.1-A.5.

Case D: Testing stages 3-8, there is no honest contributive
partner and PSK is not corrupted before stage 1 (tested
server) or stage 5 (tested client). In this case, as in Case A, we
would like to rely on the indistinguishability of the PSK for security. We
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cannot, however, use exactly the same proof steps since in the current case
the adversary is allowed to corrupt PSK after a certain stage accepts. The
reduction algorithms in Case A, especially the reduction for the hop to Game
A.2, is unable to respond to Corrupt queries from the adversary.

Since the game in this case proceeds in a similar manner to Case A unless
the tested stage accepts without an honest contributive partner while PSK
is not corrupted before stage 1 (in the tested server case) or stage 5 (in the
tested client case), we designate this event as a bad event. Then we use
the identical-until-bad formulation introduced by Bellare and Rogaway (see
Section 3 in [23]) to bound the probability of the bad event.

Game D.1 (guess PSK). Similar to Game A.1 where we guess the identity
of the PSK used in the tested session. We get the following bound:

AdvGD
A ≤ npsk · AdvGD.1

A .

Game D.2 (identical-until-bad). This game is identical to the previous one,
except that it aborts when the bad event occurs. Using the fundamental
lemma of game-playing (see Section 3 in [23]), we can bound the advantages
as follows:

AdvGD.1
A − AdvGD.2

A ≤ Pr[D.2 reaches bad].

Trivially, the adversary cannot win in Game D.2. In order to win, the ad-
versary must cause the tested stage to accept without an honest contributive
partner while its PSK is not corrupted (before stage 1 in the tested server
case or stage 5 in the tested server case). This, however, is the bad event
upon which Game D.2 aborts. Therefore, we get:

AdvGD.2
A = 0.

What remains is to bound the probability Pr[D.2 reaches bad], which we do
via the subsequent game hops.

GameD.3 (randomES). This game is similar to Game A.2 where we replace
ES with a random value, except that it aborts when bad is reached. This
yields the following bound:

Pr[D.2 reaches bad] ≤ Pr[D.3 reaches bad] + Advdual-PRFHKDF.Extract,B2
.

GameD.4 (randomdES, BK, ETS, EEMS). This game is similar to Game A.3
where dES, BK, ETS and EEMS with the additional condition of aborting
when bad occurs. This yields the following bound:

Pr[D.3 reaches bad] ≤ Pr[D.4 reaches bad] + AdvPRFHKDF.Expand,B3
.
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Game D.5 (random MS). This game is similar to Game A.4 where MS is
replaced with a random value, with the additional condition that is aborts
when bad occurs. This yields the following bound:

Pr[D.4 reaches bad] ≤ Pr[D.5 reaches bad] + AdvPRFHKDF.Extract, B4
.

Game D.6 (random CHTS, SHTS, CATS, SATS, EMS, RMS, fkC, fkS). This
game is similar to Game A.5 where we replace CHTS, SHTS, CATS, SATS,
EMS, RMS, fkC and fkS with random values. Similar to previous game hops,
we get the following bound:

Pr[D.5 reaches bad] ≤ Pr[D.6 reaches bad] + AdvPRFHKDF.Expand, B5
.

Game D.7 (random fkB). We replace fkB with a random value fkB in the
tested session. Distinguishing this game from the previous one is reducible,
via a reduction B7 to the PRF security of the HKDF.Expand function. Thus,
we get the following bound:

Pr[D.6 reaches bad] ≤ Pr[D.7 reaches bad] + AdvPRFHKDF.Expand,B7
.

Note that a similar game hope does not exist in Case A since we do not
depend on the binder value for proving security.

Game D.8 (HMAC forgery). In case the tested session is a client session,
the client rejects the ServerFinished message. In case the tested session is a
server session, the server rejects the binder value. We argue that distinguish-
ing this game from the previous one is reducible to the EUF-CMA security of
the HMAC algorithm. Since there is no honest contributive partner, we know
that no honest session output the MAC contained in the ServerFinished
(resp. binder value). The only way that this game can differ from the pre-
vious one is if the client (resp. server) was supposed to accept, because
the adversary successfully forged a MAC over the transcript, but it actually
rejected.

We can build a reduction B8 against the EUF-CMA of the HMAC. Whenever
B8 wants to compute an HMAC tag, it queries the Tag oracle of the challenger.
Upon receiving the ServerFinished (resp. binder value), since there is no
honest contributive partner and this value has never been queried to the Tag
oracle before, the reduction outputs it as its forgery.

This gives us the following bound:

Pr[D.7 reaches bad] ≤ Pr[D.8 reaches bad] + AdvEUF-CMA
HMAC, B8

.

Since Game D.8 always rejects the binder value or ServerFinished, it never
reaches the bad event. Therefore, Pr[D.8 reaches bad] = 0.
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We can now derive the following bound:

AdvMulti-Stage.IND
KEMTLS-PSK,A ≤

n2
S

2|nonce| + AdvCOLLH, B1

+ 8nS


npsk


3 · Advdual-PRFHKDF.Extract,B2

+ 3 · AdvPRFHKDF.Expand,B3

+ 3 · AdvPRFHKDF.Extract, B4
+ 3 · AdvPRFHKDF.Expand, B5

+ AdvPRFHKDF.Expand,B7
+ AdvEUF-CMA

HMAC, B8


+ nS

(
AdvIND-1CCA

KEMe, B6
+ Advdual-PRFHKDF.Extract,B4

AdvPRFHKDF.Expand, B5

)


.

□

6.3.2 Proving the Absence of Malicious Acceptance

We aim to bound the adversary’s ability to cause a stage in the multi-stage
game in Figure 5.0 to maliciously accept. We start from the assumption that
at least one stage has maliciously accepted. According to the definition of
malicious acceptance in Figure 5.0, this means that a) the said stage is (pos-
sibly retroactively) explicitly authenticated, b) it does not have a partnered
session and c) the pre-shared key was not corrupted before the said stage
was explicitly authenticated.

Proof We designate the malicious acceptance event as a bad event. The
proof proceeds via a series of game hops similar to Case D in the key indis-
tinguishability proof where we bound the probability of the bad event.

Game 0. The original Multi-Stage.MAL game. That is, the multi-stage game
that can only be won by malicious acceptance:

AdvMulti-Stage.MAL
KEMTLS-PSK,A = AdvG0

A .

Game 1 (no nonce repetition). We abort if any two honest sessions com-
pute the same nonce. The probability of such a repetition is computed via a
birthday bound. Since there are nS session and 2|nonce| possible nonce values,
this gives the following bound:

AdvG0
A ≤

n2
S

2|nonce| + AdvG1
A .
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Game 2 (no hash collisions). We abort if any two honest sessions compute
the same hash value on two different input values. We can construct a
reduction adversary B1 against the hash collision resistance of hash function
H which will output the two input values as its collision. This yields the
following bound:

AdvG1
A ≤ AdvG2

A + AdvCOLLH, B1
.

Game 3 (guessing the maliciously accepted stage). We guess the identity
of the maliciously accepted session. Since there are nS each with 8 stages,
the advantage is reduced by a factor of 1/8nS. We, thus, get the following
bound:

AdvG2
A ≤ 8nS · AdvG3

A .

Games 4-10. Similar to Games D.1-D.7 in the key indistinguishability proof.

Game 11 (HMAC forgery). This game is similar to the previous game, ex-
cept that it rejects the finished message it receives. That is, if the tested ses-
sion is a client session, it rejects the ServerFinished message and if the tested
session is a server session, it rejects the ClientFinished message. We know
that the guessed session has maliciously accepted in the previous game.
That is, it has accepted a finished message without a partner session. We
show that this is reducible to forging an HMAC tag.

We construct reduction adversary B9 as a EUF-CMA adversary to the HMAC
scheme with key fkS in case we are rejecting the ServerFinished message
or fkC in case we are rejecting the ClientFinished message. When the
tested client (resp. server) receives a ServerFinished (resp. ClientHello),
we know that no honest contributive partner computed the MAC tag over
the transcript contained in this message. Therefore the reduction B9 can
output this MAC tag as its forgery and if it is accepted, then it has won
the EUF-CMA game. We note that this reduction is similar to reduction B8
in Game D.8, except that it rejects the ClientFinished when the tested ses-
sion is a server session, whereas B8 rejects the binder value. Since both
reductions are similar and run in essentially the same time, we can say that
AdvEUF-CMA

HMAC, B8
≈ AdvEUF-CMA

HMAC, B9
and we can use the advantage term AdvEUF-CMA

HMAC, B8
in the bound for this game hop:

Thus, we get the following bound:

AdvG8
A ≤ AdvG9

A + AdvEUF-CMA
HMAC, B8

.
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We can now derive the following bound:

AdvMulti-Stage.MAL
KEMTLS-PSK,A ≤

n2
S

2|nonce| + AdvCOLLH, B1

+ 8nS · npsk


Advdual-PRFHKDF.Extract,B2

+ AdvPRFHKDF.Expand,B3

+ AdvPRFHKDF.Extract, B4
+ AdvPRFHKDF.Expand, B5

+ AdvPRFHKDF.Expand,B7
+ AdvEUF-CMA

HMAC, B8

 .

We have now proven the statement of Theorem 6.2. □

6.4 Comparison to theAnalysis of TLS 1.3 in PSK-(EC)DHE
Mode

In this section, we give a brief comparison of our analysis of KEMTLS-
PSK and the analysis of the TLS 1.3 PSK-(EC)DHE handshake performed
by Dowling et al. in [17].

Security properties. Our model, drawing from the full 1-RTT KEMTLS
model in [13], considers both implicit and explicit authentication, while the
model of Dowling et al. considers only implicit authentication. They differ-
entiate unilateral (server-only) and mutual authentication, while we define
authentication separately for client and server roles. The notion of retroac-
tive authentication exists in both models.

Both protocols provide forward secrecy and non-replayability for non-0-RTT
stages. However, our formulation of forward secrecy, which also draws
from full 1-RTT KEMTLS model, is slightly more granular with two different
levels of forward secrecy depending on when the adversary is allowed to
corrupt the PSK.

Cryptographic assumptions. The main difference in the cryptographic as-
sumptions used by both analyses is that KEMTLS-PSK depends on the
IND-1CCA security of the ephemeral KEMe to prove the security of the ephemeral
secret sse, while TLS 1.3 PSK-(EC)DHE depends on a variant of the pseudorandom-
function oracle-Diffie–Hellman (PRF-ODH) security of the HKDF.Extract along
with the ephemeral Diffie–Hellman key shares to prove the security of its
handshake secret. While PRF-ODH is an assumption tailored for Diffie–
Hellman key exchange and, therefore, breaks down in a post-quantum set-
ting, IND-CCA is a generic notion that is independent of the different hard-
ness assumptions used to build KEMs.
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Otherwise, both analyses depend on the PRF and dual-PRF security of the
HKDF.Extract and HKDF.Expand functions for key indistinguishability as well
as the EUF-CMA security of the HMAC scheme for authentication.
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Chapter 7

Conclusion

In this thesis, we introduced KEMTLS-PSK, a resumption handshake for
the KEMTLS protocol whose full 1-RTT handshake is designed by Schwabe,
Stebila and Wiggers [13] as a signature-free, quantum-resistant replacement
for TLS 1.3. KEMTLS-PSK relies on an existing pre-shared key established
by client and server in a previous full 1-RTT handshake or through an out-
of-band mechanism. It also allows for 0-RTT key derivation which enables
the client to send early data to the server with the first flight of messages.
Thus, we aim to aid future efforts of deploying KEMTLS instead of TLS 1.3
on the Internet with minimal disruption to existing infrastructure and with
comparable efficiency and security guarantees.

We then designed a multi-stage security model in order to analyze the secu-
rity of KEMTLS-PSK. Our security model assigns security properties such as
implicit/explicit authentication, forward secrecy and replayability for each
stage of the protocol. For our design, we draw from the work of Dowl-
ing et al. [17], which adapts the multi-stage security model of Fischlin and
Günther [16] to analyze TLS 1.3 in full 1-RTT and resumption modes, and
from the multi-stage model introduced by Schwabe, Stebila and Wiggers
to analyze the full KEMTLS handshake in [13]. We define our Multi-Stage
security game in pseudo-code, instead of the textual format used in these
previous works, to avoid ambiguity.

Given the security properties captured by our model, we proceeded to an-
alyze the security of KEMTLS-PSK in detail. We provided a game-playing
proof which shows that for every possible scenario of valid adversarial be-
havior, our protocol preserves the Bellare–Rogaway key indistinguishabil-
ity property so long as its is instantiated with secure cryptographic primi-
tives. That is, we bound the advantage of an adversary playing against our
Multi-Stage security game in terms of the advantages of reduction algorithms
playing against adversaries of standard security games of the different cryp-
tographic primitives used in our protocol. We also derive a bound for the
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advantage of an adversary attempting to cause a session to maliciously accept
i.e., complete the handshake without an honest partner.

We, thus, showed that our proposed protocol provides security guarantees
which are comparable to those proved by Dowling et al. for TLS 1.3 in
PSK-(EC)DHE mode. It provides some level of authentication and forward
secrecy to non-0-RTT stages. In addition, we proved the explicit authentica-
tion property which is not discussed for TLS 1.3.

Future work. There are various areas of improvement and development
that can be addressed in future work. For instance, in some game hops
in our proof, we guess the tested session, the used PSK or the identity of
the partner session. These “guessing” game hops can be avoided in favor
of existing or novel proof techniques that derive tighter security bounds (
for example, tighter security bounds are derived for SIGMA and TLS 1.3
in [21]).

Future work can also implement KEMTLS-PSK, perhaps by incorporating
it into the full 1-RTT KEMTLS implementation of [13], and benchmark its
performance against that of TLS 1.3 in PSK-(EC)DHE mode.

Furthermore, our KEMTLS-PSK design (and also that of the full KEMTLS
handshake), can be augmented to a hybrid design which composes multi-
ple KEMs in the same handshake and mixes their share secrets into the key
schedule. This way, the handshake could resort to using one or more post-
quantum KEMs to defend against quantum-enabled adversaries and one
or more pre-quantum KEMs as a fallback in case security faults are later
discovered in the post-quantum ones. This hybrid approach has been ex-
perimented with for TLS 1.2 in the past, most notably by Google through its
CECPQ cipher suites [8, 9] and by Amazon Web Services (AWS) [24] which
allowed three KEMs from the second round of the NIST post-quantum stan-
dardization process to be combined with traditional Diffie–Hellman.
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Post-quantum key exchange - A new hope. In Thorsten Holz and Ste-
fan Savage, editors, USENIX Security 2016: 25th USENIX Security Sym-
posium, pages 327–343, Austin, TX, USA, August 10–12, 2016. USENIX
Association.

[8] Adam Langley. CECPQ1 results, 2016. https://www.imperialviolet.
org/2016/11/28/cecpq1.html.

51

https://dmarcian.com/mta-sts/
https://www.imperialviolet.org/2016/11/28/cecpq1.html
https://www.imperialviolet.org/2016/11/28/cecpq1.html


Bibliography

[9] Adam Langley. CECPQ2 results, 2018. https://www.imperialviolet.
org/2018/12/12/cecpq2.html.

[10] Douglas Stebila and Michele Mosca. Post-quantum key exchange for
the internet and the open quantum safe project. In Roberto Avanzi and
Howard Heys, editors, Selected Areas in Cryptography – SAC 2016, pages
14–37, Cham, 2017. Springer International Publishing.

[11] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper,
Quynh Dang, John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene
Peralta, et al. Status report on the second round of the nist post-
quantum cryptography standardization process. US Department of Com-
merce, NIST, 2020.

[12] Dustin Moody. The 2nd Round of the NIST PQC
Standardization Process-Opening Remarks at PQC
2019. https://csrc.nist.gov/Presentations/2019/
the-2nd-round-of-the-nist-pqc-standardization-proc.

[13] Peter Schwabe, Douglas Stebila, and Thom Wiggers. Post-quantum
TLS without handshake signatures. Cryptology ePrint Archive, Report
2020/534, 2020. https://ia.cr/2020/534.

[14] Jim Roskind. Quick udp internet connections: Multi-
plexed stream transport over udp. Adresse: https://docs.
google. com/document/d/1RNHkx\ VvKWyWg6Lr8SZ-saqsQx7rFV-
ev2jRFUoVD34/edit (besucht am 05. 07. 2017), 2012.

[15] Nick Sullivan. Introducing Zero Round Trip Time Resumption (0-RTT),
2017. https://blog.cloudflare.com/introducing-0-rtt/.

[16] Marc Fischlin and Felix Günther. Multi-stage key exchange and the case
of google’s quic protocol. In Proceedings of the 2014 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS ’14, page 1193–1204,
New York, NY, USA, 2014. Association for Computing Machinery.

[17] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila.
A cryptographic analysis of the tls 1.3 handshake protocol. Cryptology
ePrint Archive, Report 2020/1044, 2020. https://ia.cr/2020/1044.

[18] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions
for message authentication. In Neal Koblitz, editor, Advances in Cryp-
tology – CRYPTO’96, volume 1109 of Lecture Notes in Computer Science,
pages 1–15, Santa Barbara, CA, USA, August 18–22, 1996. Springer,
Heidelberg, Germany.

52

https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://csrc.nist.gov/Presentations/2019/the-2nd-round-of-the-nist-pqc-standardization-proc
https://csrc.nist.gov/Presentations/2019/the-2nd-round-of-the-nist-pqc-standardization-proc
https://ia.cr/2020/534
https://blog.cloudflare.com/introducing-0-rtt/
https://ia.cr/2020/1044


Bibliography

[19] Hugo Krawczyk. Cryptographic extraction and key derivation: The
HKDF scheme. In Tal Rabin, editor, Advances in Cryptology –
CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science, pages
631–648, Santa Barbara, CA, USA, August 15–19, 2010. Springer, Hei-
delberg, Germany.

[20] Mihir Bellare and Phillip Rogaway. Entity authentication and key dis-
tribution. In Douglas R. Stinson, editor, Advances in Cryptology —
CRYPTO’ 93, pages 232–249, Berlin, Heidelberg, 1994. Springer Berlin
Heidelberg.

[21] Hannah Davis and Felix Günther. Tighter proofs for the sigma and
tls 1.3 key exchange protocols. In International Conference on Applied
Cryptography and Network Security, pages 448–479. Springer, 2021.

[22] Christina Brzuska, Marc Fischlin, Bogdan Warinschi, and Stephen C.
Williams. Composability of Bellare-Rogaway key exchange protocols.
In Yan Chen, George Danezis, and Vitaly Shmatikov, editors, ACM CCS
2011: 18th Conference on Computer and Communications Security, pages
51–62, Chicago, Illinois, USA, October 17–21, 2011. ACM Press.

[23] Mihir Bellare and Phillip Rogaway. Code-based game-playing proofs
and the security of triple encryption. Cryptology ePrint Archive, Report
2004/331, 2004. https://eprint.iacr.org/2004/331.

[24] Alex Weibel. Round 2 post-quantum TLS is now supported
in AWS KMS, 2020. https://aws.amazon.com/blogs/security/
round-2-post-quantum-tls-is-now-supported-in-aws-kms/.

53

https://eprint.iacr.org/2004/331
https://aws.amazon.com/blogs/security/round-2-post-quantum-tls-is-now-supported-in-aws-kms/
https://aws.amazon.com/blogs/security/round-2-post-quantum-tls-is-now-supported-in-aws-kms/

	Contents
	Introduction
	Preliminaries
	Key Encapsulation Mechanism (KEM)
	(H)MAC
	HKDF
	PRF and Dual PRF Security

	Background
	TLS 1.3
	The Key Exchange Phase
	Authentication Phase
	The New Session Ticket Message

	KEMTLS
	The Ephemeral Key Exchange Phase
	The Implicitly Authenticated Key Exchange Phase
	The Key Confirmation/Explicit Authentication Phase


	KEMTLS-PSK
	The Implicitly Authenticated Ephemeral Key Exchange Phase
	Key Confirmation/Explicit Authentication Phase

	Security Model
	Multi-Stage Security Model
	Security Notions for Stage Keys
	Key exchange protocol
	Model Syntax
	Security Game

	Security Notions for Key Exchange Protocols
	Match Security
	Multi-stage Security


	Security Analysis
	Instantiating the Security Model for KEMTLS-PSK
	Match Security Analysis for KEMTLS-PSK
	Multi-Stage Security Analysis for KEMTLS-PSK
	Proving Key Indistinguishability
	Proving the Absence of Malicious Acceptance

	Comparison to the Analysis of TLS 1.3 in PSK-(EC)DHE Mode

	Conclusion
	Bibliography

