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Abstract

Generating and testing large prime numbers is crucial in many public-
key cryptography algorithms. A common choice of a probabilistic pri-
mality test is the strong Lucas probable prime test which is based on
the Lucas sequences. Throughout this work, we estimate bounds for
average error behaviour of this test.

To do so, let us consider a procedure that draws k-bit odd integers in-
dependently from the uniform distribution, subjects each number to
t independent iterations of the strong Lucas probable prime test with
randomly chosen bases, and outputs the first number that passes all t
tests. Let qk,t denote the probability that this procedure returns a com-
posite number. We show that qk,1 < log(k)k242.3−

√
k for k ≥ 2. We see

that slightly modifying the procedure, using trial division by the first l
odd primes, gives remarkable improvements in this error analysis. Let
qk,l,t denote the probability that the now modified procedure returns a
composite number. We show that qk,128,1 < k241.87727−

√
k for k ≥ 2. We

also give general bounds for both qk,t and qk,l,t when t ≥ 2, k ≥ 21 and
l ∈N.

In addition, we treat the numbers, that add the most to our probability
estimate differently in the analysis, and give improved bounds for large
t. With the goal of doing a similar analysis, we characterize the num-
bers with the second largest contribution to the probability estimate.

Moreover, it is known that every odd composite integer n that is not a
product of twin primes will be declared prime at most 4n/15 times. Al-
though with this result we cannot directly conclude that qk,t ≤ (4/15)t,
we indeed show that qk,t ≤ (4/15)t for k ≥ 111 .
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Chapter 1

Introduction

Most modern cryptosystems make use of large prime numbers, either as
secret or public parameters. For example, the public-key cryptosystem RSA,
which is commonly used in many commerce web sites, is based on the sim-
ple number theoretic fact that it should be easy to find and multiply large
prime numbers, but it should be very difficult to factor a large composite
into primes. Prime generation is therefore a basic cryptographic operation.
A way to generate large prime numbers is to choose integers of appropri-
ate size at random and then test them for primality, until a prime number is
found. This encourages us to search for primality testing algorithms that are
polynomial in complexity. There exist several sophisticated general-purpose
algorithms that deterministically test primality, but their efficiency is not
sufficient for most applications. In practice, one therefore resorts to probable
prime tests, and therefore allows a small probability of letting a composite
number pass as a prime. In this work, we will simply refer to both proba-
bilistic and deterministic tests as primality tests.

For a variety of applications, such as prime generation, it is important to
know how the test behaves in the average case, that is, which error probabil-
ity do we expect when it is known that the input has been chosen according
to some particular probability distribution. There are also other scenarios
where the public key parameters, such as the Diffe-Hellman key exchange
protocol, must be verified. Since these parameters may have been chosen
by an adversary, it is important that the worst-case error probability of the
primality test is small.

In the seventeenth century, Fermat came up with a theorem referred to
as Fermat’s little theorem, which is the basis of the Fermat primality test.
However, because there exist numbers, that always fail the Fermat primal-
ity test, so called Carmichael numbers, other more powerful extensions of
the test have been studied. In 1976 Miller [12] described a true primality
test that determines whether a given number is prime in runtime bounded
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1. Introduction

by polylog(n), where n is the number tested for primality. Miller’s test is
conditional, meaning that it relies on an unproven hypothesis; in this case
the extended Riemann hypothesis. This is widely believed to be true, but
mathematicians have been trying to prove it for over one hundred years,
yet unsuccessful. In the same year, Rabin [19], [20] modified Miller’s algo-
rithm to present it as an unconditional, but randomized algorithm. Rabin’s
algorithm is always correct when inputting primes, and has a non-zero er-
ror probability when the input is composite. Fortunately, this probability of
error can be made arbitrarily small. The modified algorithm is commonly
referred to as the Miller-Rabin primality test and is the most commonly
used primality test in practice today. Shortly after the discovery of Miller,
Solovay and Strassen [23] discovered an alternative probabilistic algorithm
for testing primality with properties similar to the Miller-Rabin test, which
is also employed today. The test resembles Fermat’s test, but it does not
have the drawback of having composites which are always declared prime.
Furthermore, the result is unconditional. In 1980 Baillie and Wagstaff [18]
introduced another probabilistic primality test, the Lucas test and its stricter
variant the strong Lucas test, which is based on the Lucas sequences. In
1999, Agrawal and Biswas [2] gave a new type of randomized primality
test, which exploits a different number theoretic generalization of Fermat’s
Little Theorem. In 2002 Agrawal, Kayal, and Saxena [11] described the first
known unconditional algorithm, the AKS primality test, which can provably
determine primality, but is polynomial in complexity. Their algorithm has
been a major breakthrough as they essentially showed that primality test-
ing belongs to the complexitiy class P . It proceeds by derandomizing the
algorithm proposed in 1999. However, tests like the AKS test are only of
theoretical interest because they are too inefficient to be useful in practice.
In contrast, tests that accept composite numbers with bounded probability
are typically implemented much more frequently.

When studying primality tests, one easily sees that nearly all known primal-
ity tests are built on the same basic principle: from the input number n, one
defines an Abelian group and then tests whether the group structure we ex-
pect to see in case n is prime is actually present. The Fermat, Miller-Rabin,
Solovay-Strassen and AKS primality tests all use the group (Z/nZ)× in ex-
actly this way. A natural alternative is to try a quadratic extension of Zn,
that is, we look at the ring Zn[x]/( f (x)) where f (x) is a degree 2 polyno-
mial chosen such that it is guaranteed to be irreducible if n is prime. In that
case, the ring is isomorphic to the finite field with n2 elements, GF(n2). Both
the Lucas test as well as the strong Lucas test are based on this approach.

The introduction of Lucas sequences in primality testing opens up more di-
rections in primality testing research. In Chapter 2, we introduce the main
concepts, with an emphasis on the Lucas sequences. In Chapter 3, we look
at the analog of the Rabin-Monier theorem for the strong Lucas test, which
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quantifies the worst-case error probability. The worst-case numbers is the set
of odd composite numbers that have the highest probability of being classi-
fied as prime. Then, we proceed to analyze the worst-case numbers of the
strong Lucas test. As already mentioned above, the average case error anal-
ysis is of major importance. For this, consider an algorithm that repeatedly
chooses random k-bit number and subjects each number to t iterations of the
strong Lucas test. If the chosen number passes all t tests, then the procedure
will return that number; otherwise another k-bit integer is selected and then
tested. The procedure ends when a number that passes all t tests is found.
Let qk,t denote the probability that such a number is composite. In Chapter
4, we establish numeric upper bounds for qk,t. We realize that by modifying
the procedure slightly, using trial division by small primes prior to running
the strong Lucas test, we get notable improvements of the bounds. Using
trial division is a common assumption as it is quite frequently used prior
to more expensive tests in cryptographic software. We then treat the num-
bers that add the most to our probability estimate differently, enabling us
to establish bounds that are good when t is large. In Chapter 5 we classify
the numbers that contribute the next most to our estimate. It is known that
every odd composite integer n that is not a product of twin primes will be
declared prime at most 4n/15 times. Even though with this result we cannot
directly conclude that qk,t ≤ (4/15)t, we will indeed show in Chapter 6, we
have qk,t ≤ (4/15)t for k ≥ 111.
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Chapter 2

Preliminaries

2.1 Primality Tests, Probable Prime Tests and Pseudo-
primes

Suppose S is an easily checkable arithmetic statement and we have a the-
orem ”If n is prime, then S is true about n“. If we are presented with a
large number n, and we wish to decide whether n is prime or composite,
we may try out the arithmetic statement S and see whether it actually holds
for n. If the statement is not true, we have proved that n is composite. If
the statement holds, however, it may be that n is prime, and it also may
be that n is composite. Therefore, we have the notion of an S-pseudoprime,
which is a composite integer for which S holds. Since the test using S does
not deterministically show primality of n, we cannot call it a primality test,
but a probable prime test, as it can falsely identify a composite number as
prime. However, usually the error probability of such a test is extremely
small, whereas the running time is a lot faster than the deterministic ones,
making it very applicable in practice. Therefore, such probabilistic primality
tests are often just called primality test.

One example might be the theorem, If n > 2 is prime, then n is odd. This
arithmetic property is easily checked for any given input n. However, as
one can see, this test is not very strong evidence of primality, as far more
pseudoprimes exist for this test than genuine primes. Thus, for the concept
of “pseudoprime” to be useful, it will have to be the case that there are, in
some appropriate sense, few of them.

2.2 The Fermat Primality Test

The fact that the residue ab mod n may be rapidly computed due to modular
exponentiation is fundamental to many algorithms in number theory. Not
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2. Preliminaries

least of these is the exploitation of Fermat’s Little Theorem as a means to dis-
tinguish between primes and composites. Due to its simple nature, Fermat’s
Little Theorem is among one of the most studied primality tests.

Theorem 2.1 (Fermat’s Little Theorem) Let p be a prime number. For all a
relatively prime to n, we have

ap−1 ≡ 1 mod p.

The theorem is not true for composite numbers in general, hence it is a
good tool to investigate primality. Basically, to test whether p is prime, we
can check if a randomly chosen integer a coprime to p satisfies Fermat’s
Little Theorem. This procedure is called the Fermat test. If the theorem
does not hold for a and p, we can be sure that p is composite, and thus the
test is completed. However, if a and p do satisfy the theorem, we cannot
necessarily be convinced that p is prime, as the congruence can also be true
for integers that are composite. This leads us to the following definition.

Definition 2.2 A pseudoprime base a or psp(a) is a composite number n, such
that an−1 ≡ 1 mod n, i.e. it satisfies Fermat’s Little Theorem using base a, even
though n is not prime.

One could speculate if it was enough to verify this for all a which are rel-
atively prime to n. Unfortunately, this is not the case. There are many
composite numbers, called Carmichael numbers, that pass the Fermat test
for every base a coprime to n. The smallest one is 561.

Definition 2.3 A composite integer n is called Carmichael number if it satisfies
the congruence an−1 ≡ 1 mod n for all integers a, which are relatively prime to n.

Ahlford, Granville, and Pomerance [25] proved in 1994 that there are in-
finitely many Carmichael numbers. An alternative and equivalent definition
of Carmichael numbers is given by Korselt’s criterion.

Theorem 2.4 (Korselt’s Criterion) A positive composite integer n is a Carmichael
number if and only if n is square-free, and for all prime divisors p of n, it is true
that p− 1 | n− 1.

Therefore, we are interested in the following question: Given n, how many
bases a satisfy Fermat’s Little Theorem? Let us denote the set

F (n) = {a mod n | n is a pseudoprime base a}

and its cardinality F(n) =| F (n) | . There is a precise formula for F(n), the
proof can be found in [18].
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2.3. The Miller-Rabin Primality test

Theorem 2.5 Let n = ∏s
i=1 pri

i be a positive integer. The number of bases a mod n,
for which n is a psp(a) is

F(n) =
s

∏
i=1

(n− 1, pi − 1).

Since only those a relatively prime to n are candidates and the Euler’s ϕ
function counts exactly the numbers 0 < a < n which are relatively prime
to n, this product can be at most ϕ(n). We also see that this product is largest
whenever pi− 1 | n− 1 for all i. If n is square-free, then ∏s

i=1(n− 1, pi− 1) =
ϕ(n). Thus n must be a Carmichael number.

Carmichael numbers are rare, and if a number x is chosen at random, it is
unlikely to be one. For each positive integer x, let C(x) be the number of
Carmichael numbers that are less than x. Pomerance showed in [16] and [15]
that exp(log(x)

15
37 ) ≤ C(x) ≤ x · exp

(
log(x) log(log(log(x)))

log(log(x))

)
. However, they are

not rare enough to be ignored completely.

Even though the Fermat primality test is not used in practice, let us consider
its error bound. Let n ≤ x be an odd integer which is chosen uniformly
at random, let X denote the event that n is composite and let Y be the
event that n is a probable prime base a, where 1 < a < n is also chosen
uniformly at random. It has been shown in [22] that for x ≥ 10105

, we have
P[X | Y] ≤ (log(x))−197.

2.3 The Miller-Rabin Primality test

Because of the existence of Carmichael numbers which can never be detected
as composites by the Fermat based test, slight modifications can eliminate
the possibility of Carmichael numbers. One of the most widely used primal-
ity tests is the Miller-Rabin test, which is based on the following theorem:

Theorem 2.6 Let n > 1 be an integer, and write n− 1 = 2κq, where t is odd. Then
n is a prime if and only if for every a 6≡ 0 mod n one of the following is satisfied

aq ≡ 1 mod n
or (2.1)

there exists an integer i < κ with a2iq ≡ −1 mod n.

If this should hold for some pair n, a we say n is a strong probable prime base
a. Just like pseudoprimes exist for the Fermat test, they also exist for the
Miller-Rabin test.
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2. Preliminaries

Definition 2.7 (Strong Pseudoprime) We say that n is a strong pseudoprime
base a, short spsp(a), if n is an odd composite and for the decomposition n− 1 =
2κq, with q odd, one of the congruences of (2.1) holds.

The following is often referred to as “the Miller–Rabin test”, which uses
Theorem 2.1 with a random choice of a.

Algorithm 1: Miller-Rabin probabilistic primality test

Miller-Rabin(n)

Input: An odd integer n > 9.

Result: This probabilistic algorithm attempts to find a witness for n
and thus prove that n is composite. If a is a witness, (n is
composite) is returned; otherwise, (n is a strong probable
prime base a) is returned.

Write n− 1 = 2κq with q odd.

Select a random a ∈ {1, . . . , n− 1}.

Let b = aq mod n.

if b == 1 or n− 1 then
status = n is strong probable prime base a

else if for i ∈ {1, . . . κ − 1} do
b = b2 mod n

if b == n− 1 then

then
status = n is a strong probable prime base a

else
status = n is composite

Return status

Algorithm 1 is an effective method for recognizing composite numbers and
can be used as a way to declare n as prime with sufficiently high probability.
Suppose n is a large odd number and we don’t know whether n is prime or
composite. No one is stopping us from performing the algorithm repeatedly,
say 20 times, and fail each time to produce a witness. What should be
concluded? Actually, nothing at all can be concluded concerning whether
n is prime or composite. The probability that we have failed to produce a
witness for a given odd composite is less than 4−20, which we’ll see shortly.
This is less than one chance in a trillion. So yes, it is reasonable to strongly
conjecture that n is prime. But it has not been proven prime and in fact might
not be. However, for practical applications, one may be perfectly happy to
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2.3. The Miller-Rabin Primality test

use a number that is almost certainly prime. It is with this mindset that
people refer to Algorithm 1 as a ”primality test“. For more details see [1],
Chapter 4.

Remark 2.8 The Miller-Rabin primality test is used as a probabilistic test.
It turns out that if we knew a generalization of the Riemann hypothesis,
then we could prove that if n is a strong probable prime base a for the first
2 log(n) bases then n is indeed always prime. See [10] for a proof.

Let us introduce the notion of a witness for compositeness.

Definition 2.9 (Witness for Compositeness) If n is a composite number and a
is an integer in {1, . . . , n− 1}, for which (2.1) fails, we say that a is a witness for
n using the Miller-Rabin theorem.

For an odd integer n we denote the set

S (n) = {a mod n | n is a strong pseudoprime base a}

and its cardinality S(n) =| S (n) |. The following theorem was provided
independently in 1980 by Monier and Rabin, see [14] and [20].

Theorem 2.10 (The Rabin-Monier Theorem) For each odd composite integer
n > 9 we have

S(n) ≤ 1
4

ϕ(n).

For an odd composite integer n at most one quarter of the bases declare n
as a strong probable prime. This is a tight bound; there exist odd composite
integers n that have exactly ϕ(n)/4 such bases. Before we prove Theorem
2.10, we first indicate why it is a significant result. A witness for n is the key
to a short proof that n is composite. Theorem 2.10 implies that at least 3/4
of all integers in {1, . . . , n− 1} are witnesses for n, when n is an odd com-
posite number. Since one can perform the Miller-Rabin test rapidly, it would
seem that it is quite an easy task to produce witnesses for odd composite
numbers. Indeed, the probability of Algorithm 1 failing to find a witness in
the case of an odd composite number n with t (independent) iterations is
less than (1/4)t. So clearly we can make this probability vanishingly small
by choosing t large.

The following algorithm may be used for the generation of random numbers

9



2. Preliminaries

that are likely to be prime.

Algorithm 2: Prime Generation

Input: The required bitlength k > 3 and a security parameter t ≥ 1.

Result: This probabilistic algorithm produces a random k-bit (that is,
a number in the interval [2k−1, 2k)) strong probable prime; a
number that has not been recognized as composite by t
iterations of Algorithm 1.

while Candidate not found do
Choose a random odd integer n in the interval (2k−1, 2k).

for 1 ≤ i ≤ t do
Via Algorithm 1 attempt to find a witness for n.; If a witness is

found for n, candidate not found

Return n

In order to prove Theorem 2.10, we need some results. In [14] Monier estab-
lished a formula, which counts for a given n the number of bases a such that
n is a spsp(a).

Theorem 2.11 Let pr1
1 · . . . · prs

s be the prime decomposition of an odd integer n.
We let {

n− 1 = 2κq
pi − 1 = 2ki qi for 0 ≤ i ≤ s

with q, qi are odd.

where we have ordered the pi such that k1 ≤ . . . ≤ ks. The number of bases a in
which n is a strong pseudoprime base a is given by the formula

S(n) = (1 +
k1−1

∑
j=0

2js)
s

∏
i=1

gcd(q, qi). (2.2)

With Theorem 2.11, we can easily show the following Lemma:

Lemma 2.12
S(n)
ϕ(n)

≤ 1
2s−1

s

∏
i=1

1

pri−1
i

.

Moreover if not all the ki are the same, the following inequality holds:

S(n)
ϕ(n)

≤ 1
2s

s

∏
i=1

gcd(q, qi)

qi

s

∏
i=1

1

pri−1
i

≤ 1
2s

s

∏
i=1

1

pri−1
i

.

Proof With ϕ(n) = ∏s
i=1 pri−1

i (pi − 1) = 2k1+...+ks ∏ qi ∏ pri−1
i and Theorem

2.11, we have

S(n)
ϕ(n)

≤
1 + ∑k1−1

j=0 2js

2k1+...+ks

s

∏
i=1

gcd(q, qi)

qi

s

∏
i=1

1

pri−1
i

.
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2.3. The Miller-Rabin Primality test

Since k1 ≤ ki for all i, we have that 2k1+...+ks ≥ 2k1s. Therefore we have

1 + ∑k1−1
j=0 2js

2k1+...+ks
≤

1 + ∑k1−1
j=0 2js

2k1s =
1 + 2sk1−1

2s−1

2sk1
=

1− 1
2s−1

2sk1
+

1
2s − 1

.

This shows that
1+∑

k1−1
j=0 2js

2k1+...+ks is a decreasing function in k1. So we can bound it
by its value at k1 = 1:

1 + ∑k1−1
j=0 2js

2k1+...+ks
≤

1 + ∑k1−1
j=0 2js

2k1s ≤ 2
2s =

1
2s−1 .

Since gcd(q, qi)/qi ≤ 1 for all i, we have proven the first assertion. The
second follows in the same way, using 2k1+...+ks ≥ 2sk1+1. �

We are finally ready to prove Theorem 2.10.

Proof We distinguish two cases here. Either n is a prime power or it is not.
First, let us suppose n is a prime power, meaning s = 1. As we have excluded
the case n = 9 = 32, for which the bound 1/3 holds, either p1 ≥ 5 and r1 ≥ 2
or p1 = 3 and r1 ≥ 3. With Lemma 2.12, which indicates that

S(n)
ϕ(n)

≤ 1

pr1−1
1

,

the result follows directly.

Now let us suppose that s = 2. If k1 ≤ k2, the result immediately follows
from the second assertion of Lemma 2.12, which says S(n)

ϕ(n) ≤
1
4 . If k1 = k2,

we have by the first assertion of Lemma (2.12) that

S(n)
ϕ(n)

=
1
2

gcd(q, q1)

q1

gcd(q, 22)

q2
.

At least one of gcd(q, qi)/qi is bounded by 1/3: If not, since all of q, q1, q2
are odd, we have that gcd(q, qi) = qi for i = 1, 2. This implies that q1 | q and
q2 | q. Therefore both q1 and q2 divide

2κq = p1 p2 − 1 = (2k1 q1 + 1)(2k2 q2 + 1)− 1 = 2k1(q1 + q2) + 22k1 q1q2,

this is only possible if q1 | q2 and q2 | q1, which means that q1 = q2. But this
case is already excluded. Therefore

S(n)
ϕ(n)

≤ 1
6

,

which proves the Theorem. �
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2. Preliminaries

2.3.1 Remarks on estimating pk,t

We are interested in the following question: What is the probability that a
number produced by Algorithm 2 is composite? We denote this probabil-
ity by pk,t. One might think that Theorem 2.10 immediately answers this
question, and that we have pk,t ≤ 4−t. However, the reasoning is flawed,
since it does not take into account the distribution of primes. Let’s illustrate
this by an example.Suppose k = 500 and t = 1. We know from the Prime
Number Theorem that the probability that a random odd 500-bit number is
prime is about 1 chance in 173. Since it is evidently more likely that one
will witness an event with probability 1/4 occurring before an event with
probability 1/173, it may seem that there are much better than even odds
that Algorithm 2 will produce composites.

Let X represent the event that n is composite, let Ei denote the event that
an integer chosen uniformly at random, say from the set Mk of odd k-bit
integers, passes the i-th round of the Miller-Rabin test and let Yt denote
the event that it passes t consecutive rounds, Yt = E1 ∩ E2 ∩ · · · ∩ Et, i.e.
Algorithm 2 outputs n. Theorem 2.10 states that P[Yt | X] ≤ ( 1

4 )
t. What is

relevant, however, to the estimation of pk,t is the quantity P[X | Yt]. Suppose
that candidates n are drawn uniformly and randomly from Mk. As every
prime number passes the test t times we have P[Yt] ≥ P[Xc]. Then by Bayes’
Theorem

P[X | Yt] =
P[X]P[Yt | X]

P[Yt]
≤ P[Yt | X]

P[Yt]
≤ 1

P[Yt]

(1
4

)t
≤ 1

P[Xc]

(1
4

)t
.

Thus the probability P[X | Yt] may be considerably larger than ( 1
4 )

t if P[Xc]
is small, i.e. we assume that the primes in our set of odd integers are scarce.
We could construct such an example as follows: for a fixed t ≥ 1, choose
k sufficiently large such that the density of primes in Mk is much less than
4−t. Assume also that for most composite m ∈ Mk that the probability that m
passes a random bases test is about 1/4. Then, of course, the probability of it
passing t tests is about 4−t. Suppose that we have an n from Mk that passes
t tests. Since we are assuming that the primes in Mk are scarce, it will be
much more likely that n is composite rather than prime. So P[X | Yt] would
be close to 1. However, the error-probability of Miller-Rabin is usually far
smaller than ( 1

4 )
t for all sufficiently large k and it is indeed shown by Burthe

[6] that we do have pk,t ≤ 4−t. He showed that the flawed assumption that
led us to the conclusion that the probability of m passing a test P[Ei] was
about 1/4. In actuality the probability is usually much smaller.

Further refinements for P[X | Yt] allow some explicit upper bounds on pk,t
for various values of k and t. If k is large, one gets good results even with
t = 1 using Algorithm 2. Damgård et al. [8] showed the following results:

Theorem 2.13 (i) For k ≥ 2, we have pk,1 < k242−
√

k.

12
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(ii) For k ≥ 21, 3 ≤ t ≤ k/9 or k ≥ 88.t = 2, we have pk,t < k3/2 2t
√

t
42−
√

tk.

(iii) For k ≥ 21 and t ≥ k/9, we have pk,t < 7
20 k2−5t + 1

7 k15/42−k/2−2t +

12k2−k/4−3t.

(iv) For k ≥ 21 and t ≥ k/4, we have pk,t <
1
7 k15/42−k/2−2t.

For specific large values of k, the paper has even better results, for example
p500,1 < 4−28. Thus, if a randomly chosen odd 500-bit number passes just
one iteration of a random Miller-Rabin test, the number is composite with
vanishingly small probability, and may be safely accepted as “prime” in all
but the most sensitive practical applications.

2.4 The Lucas Primality Test

Let D, P and Q be integers such that D = P2 − 4Q is non-zero and P > 0.
Let U0(P, Q) = 0, U1(P, Q) = 1, V0(P, Q) = 2 and V1(P, Q) = P. The Lucas
sequences Un(P, Q) and Vn(P, Q) associated with the parameters P, Q are
defined recursively for n ≥ 2 by

Un(P, Q) = PUn−1(P, Q)−QUn−2(P, Q) (2.3)
Vn(P, Q) = PVn−1(P, Q)−QVn−2(P, Q). (2.4)

Let α and β be the distinct roots of the polynomial X2 − PX + Q. We see
that α = P+

√
D

2 and β = P−
√

D
2 . It is also easy to see that

αβ = Q
α + β = P

α− β =
√

D.

(2.5)

Lemma 2.14 (Binet formula)

Un(P, Q) =
αn − βn

α− β

Vn(P, Q) =αn + βn ∀n ∈N0.

Proof We proceed by induction on n.
Base case n = 2: We have U2(P, Q) = PU1(P, Q)− QU0(P, Q) = P = α2−β2

α−β

and V2(P, Q) = PV1(P, Q) − QV0(P, Q) = P2 − 2Q = (α + β)2 − 2αβ =
α2 + β2.

13
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Inductive Step. Let the claim hold for all k < n. Then

Un(P, Q) =
αn − βn

α− β
=

1
α− β

(
(α + β)(αn−1 − βn−1)− αβ(αn−2 − βn−2)

)
= P(

αn−1 − βn−1

α− β
)−Q(

αn−2 − βn−2

α− β
)

= PUn−1(P, Q)−QUn−2(P, Q).

The proof for Vn(P, Q) is identical. �

2.4.1 Arithmetic in Q[
√

D]

We may generalize many of the ideas of the past sections to incorporate
finite fields. However, in order to fully grasp all the concepts, we need some
theory of quadratic fields.

Let L, K be fields, K a subfield of L and K/L be the field extension. We
define the degree of L/K to be the dimension of L as a K-vector space and
denote it by [L : K].

Example 2.15 Q[
√

D] has Q-basis 1,
√

D. Therefore [Q[
√

D] : Q] = 2.

We define a number field to be a finite extension of Q and call the degree of
a number field K the degree of [K : Q]. We call a number field of degree 2 a
quadratic field.

Lemma 2.16 Let K be a quadratic field. Then K = Q[
√

D] = {r + s
√

D | r, s ∈
Q}, where D is a square-free integer and D 6= 0, 1.

We call D square-free if it isn’t divisible by any perfect square other than 1,
equivalently, D is a product of distinct primes. When working in Q[

√
D], it

is often useful to assume that D is square-free. This is no loss of generality:
if D′ = n2D, then r + s

√
D′ = r + sn

√
D, so Q[

√
D′] = Q[

√
D].

Definition 2.17 An algebraic integer is a complex number which is the root of a
monic polynomial f (x) ∈ Z[X]. We let O be the set of algebraic integers, namely

O = {α ∈ C : ∃p(x) ∈ Z[X] monic s.t. p(α) = 0}.

Definition 2.18 If K is a number field, then let

OK = O ∩ K = {α ∈ K : ∃p(x) ∈ Z[X] monic s.t. p(α) = 0}.

We call OK the ring of integers of K. It is a known fact that it is a ring.

The most famous example is the ring of integers of Q, which is OQ = Z. For
this reason we call Z the set of rational integers.

14
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Definition 2.19 Let α ∈ Q[
√

D]. The conjugate of α = a + b
√

D is α = a−
b
√

D. We define the trace and the norm of α by

Tr(α) = α + α, N(α) = αα.

We are now looking for conditions when an α ∈ Q[
√

D] is in O
Q[
√

D]. Let

α ∈ Q[
√

D]. The conjugate of α = a +
√

Db is ᾱ = a−
√

Db. If α is a root of
a monic polynomial p(x) ∈ Z[X], then we can show that α is also a root of
p(x): Let α be the root of p(x) = ∑n

i=0 cixi, with ci ∈ Z, i.e. p(α) = ∑n
i=0 ciα

i,
then p(α) = ∑n

i=0 ciα
i = ∑n

i=0 ciαi = ∑n
i=0 ciαi = p(x) = 0 = 0, which is

what we wanted to show. Now p(x) = q(x)(x − α)(x − α) = q(x)(x2 −
(α + α)x + αα = q(x)(x2− Tr(α)x + N(α)), where Tr(α), N(α) ∈ Z. Thus we
see, if α ∈ Q[

√
D] is an algebraic integer, we must have that it is a root of

x2 − Tr(α)x + N(α)), where Tr(α), N(α) ∈ Z. Thus we can rewrite our set
of integers in the quadratic field Q[

√
D] as:

Lemma 2.20 The ring of integers of Q[
√

D] is the set

O
Q[
√

D] = {α ∈ Q | α2 + bα + c = 0; b, c ∈ Z}
= {α ∈ Q | Tr(α), N(α) ∈ Z}.

The next theorem (see [24]) shows another representation of O
Q[
√

D].

Theorem 2.21 Assume D ∈ Z is square-free. The ring of integers O
Q[
√

D] is equal
to O

Q[
√

D] = Z + δ0Z = Z[δ0], where

δ0 =

{ √
D D ≡ 2, 3 mod 4

1+
√

D
2 D ≡ 1 mod 4.

Proof It is easy to see that Z+ δ0Z ⊆ O
Q[
√

D], as in either case δ0 is in O
Q[
√

D]:
It satisfies the monic equation with coefficients in Z, namely x2 − D = 0 or
x2 − x + 1−D

4 = 0. The latter has coefficients in Z when D ≡ 1 mod 4. Now
we show the reverse inclusion, O

Q[
√

D] ⊆ Z + δ0Z. Let α = a +
√

Db ∈
O

Q[
√

D]. By Lemma 2.20 we have that Tr(α) = 2a, N(α) = a2 − Db2 ∈ Z.
We put a = s/2 for some s ∈ N, and b = m/n for some m, n ∈ Z with
gcd(m, n) = 1. Thus we get

N(α) = (
r
2
)2 − (

m
n
)2D ⇐⇒ 4N(α)n2 = r2n2 − 4m2D

⇐⇒ 4m2D = n2(r2 − 4N(α)),

so that n2 | 4m2D. But gcd(m, n) = 1, thus n2 | m2D. If p were an odd prime
factor of n, we would have p2 | D, contradicting the fact that D is square-free.
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Thus n has to be a power of 2. Since 2 can be the only even factor of D, we
must have that n2 | 8 or n2 | 4. The only n that satisfy this are n = 1, 2. In
either cases b = m

2 for some m ∈ Z.

With N(α) = a2 − Db2 = s2

4 −
Dm2

4 ∈ Z, we have r2 = m2D mod 4. Since
squares can only be 0 or 1 modulo 4, we only have to consider two cases:

1. If D 6≡ 1 mod 4, we have that r2 ≡ m2 ≡ 0 mod 4. This implies that
r and m are both even integers, hence a, b ∈ Z, so that O

Q[
√

D] ⊆
Z +
√

DZ.

2. If D ≡ 1 mod 4, then r2 ≡ m2 mod 4, which implies r ≡ m mod 2.
Writing r = m + 2k for k ∈ Z we see that

α = a + b
√

D =
r +
√

Dm
2

=
m + 2k + m

√
D

2
= k + s

1 +
√

D
2

.

Thus O
Q[
√

D] ⊆ Z + 1+
√

D
2 Z. �

This is another way of saying if D 6≡ 1 mod 4, then 1 and
√

D is an integral
basis and if D ≡ 1 mod 4, then 1 and 1+

√
D

2 is an integral basis of O
Q[
√

D].

Definition 2.22 The discriminant of α ∈ O
Q[
√

D] is disc(α) = (Tr(α))2 −
4N(α).

Corollary 2.23 Let α, β ∈ O
Q[
√

D]. If Z[α] = Z[β], then disc(α) = disc(β).

This means that disc(α) only depends on the subring Z[α] ⊆ O
Q[
√

D] that α

generates so it makes sense to write disc(Z[α]) = disc(α). This leads us to
the following definition:

Definition 2.24 We put DF = disc(O
Q[
√

D]) = disc(δ0) and call it the discrimi-

nant of the field F = Q[
√

D].

The following table summarizes the basic information about the ring of inte-
gers of F = Q[

√
D], where D is square-free:

D mod 4 δ0, where OF = Z[δ0] Eq. for δ0 DF = disc(OF)

2, 3
√

D δ2
0 − D = 0 4D

1 1+
√

D
2 δ0

2 − δ0 +
1−D

4 = 0 D

Remark 2.25 We see that we can always write F = Q[
√

DF], as
√

DF =
2
√

D,
√

D, which depends on D mod 4.

For a rational integer n, the ring O
Q[
√

D]/(n) = {x + nZ : x ∈ O
Q[
√

D]} is a
free Z/nZ-algebra of rank 2. The following results and their proofs can be
found in [13].
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Theorem 2.26 For any quadratic field Q[
√

D], (O
Q[
√

D])
× = {α ∈ O

Q[
√

D] |
N(α) = ±1}, where (O

Q[
√

D])
× is the unit group of O

Q[
√

D].

Proof Let α ∈ O
Q[
√

D]. If α is a unit, then αβ = 1 for some β ∈ O
Q[
√

D].
Taking norms on both sides, N(α)N(β) = N(1) = 1 in Z, so N(α) = ±1.
Conversely, assume N(α) = ±1. Since N(α) = αα, we get αα = ±1. There-
fore ±α, which lies in O

Q[
√

D] is an inverse for α. �

In the O
Q[
√

D]/(n)-algebra we consider the multiplicative group of norm 1 el-
ements, which we denote by (O

Q[
√

D]/(n))
∧. In other words, (O

Q[
√

D]/(n))
∧

is the image of the set

{x ∈ O
Q[
√

D] | N(x) ≡ 1 mod n}

by the canonical map O
Q[
√

D] → O
Q[
√

D]/(n).

Theorem 2.27 Let p - 2D be a prime number and r ≥ 1 an integer. The group
(O

Q[
√

D]/pr)∧ is cyclic of order pr−1(p− (D
p)).

We are now ready to connect the parameters P and Q defined through the
Lucas sequence and the norm 1 elements τ:

Proposition 2.28 Let D be an integer, which is not a perfect square and let O
Q[
√

D]

be the ring of integers of Q[
√

D]. Let n > 1 be an odd integer, relatively prime to
D. Then for every integer P, there exists an integer Q, uniquely determined modulo
n, such that P2 − 4Q ≡ D mod n. Furthermore, the set of integers P such that{

0 ≤ P < n
gcd(P2 − D, n) = 1 i.e. gcd(Q, n) = 1

is in one-to-one correspondence with the elements τ in (O
Q[
√

D]/(n))
∧, such that

τ − 1 is a unit in O
Q[
√

D]/(n). I.e.

{0 ≤ P < n : gcd(P2−D, n) =} ' {τ ∈ (O
Q[
√

D]/n)∧ : τ− 1 ∈ (O
Q[
√

D]/n)×}.

This correspondence is expressed by the following formulas{
τ ≡ (P +

√
D)(P−

√
D)−1

P ≡
√

D(τ + 1)(τ − 1)−1 mod nO
Q[
√

D].

2.4.2 Some Lucas Primality tests

In 1980, Baillie and Wagstaff (see [18]) gave a thorough treatment of the
use of Lucas sequences in primality testing. They specifically examined the
following four congruences:
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Theorem 2.29 Let Up(P, Q) and Vp(P, Q) be the Lucas sequences. If p is an odd
prime such that (p, QD) = 1, then the following congruences all hold:

Up−(D
p)
≡0 mod p, (2.6)

Up ≡
(

D
p

)
mod p, (2.7)

Vp ≡P mod p, (2.8)

Vp−(D
p)
≡2Q(1−(D

p))/2 mod p. (2.9)

Proof Let O
Q[
√

D] be the ring of integers of the field Q[
√

D]. The quotient
ring O

Q[
√

D]/(p) is isomorphic to either Fp × Fp or Fp2 , depending on the
Jacobi symbol (D

p). We then have the following congruences:{
αp ≡ α

βp ≡ β
when

(
D
p

)
= 1,

{
αp ≡ β

βp ≡ α
when

(
D
p

)
= −1, (2.10)

where the congruences are modulo p. In both cases we have

α
p−(D

p) ≡ β
p−(D

p),

so that the congruence (2.6) follows directly.
All other congruences (2.9), (2.7) and (2.8) also follow directly with (2.10).�

Sometimes it occurs that an odd positive integer n satisfies one of the con-
gruences (2.6), (2.7), (2.8) or (2.9). This leads us to the following definitions:

Definition 2.30 Let n be an odd composite integer. It is called a

– Lucas pseudoprimeof of first kind with parameters P and Q if congruence
(2.6) holds.

– Lucas pseudoprime of second kind with parameters P and Q if congruence
(2.7) holds.

– Dickson pseudoprime of first kind with parameters P and Q if congruence
(2.8) holds.

– Dickson pseudoprime of second kind with parameters P and Q if congruence
(2.9) holds.

The congruenecs (2.7) and (2.8) however, are not very useful in primality
testing (see [18]): most composite n that satisfy (2.7) have small prime fac-
tors; many composite n that satisfy (2.8) are psp(2). Most results about
Lucas pseudoprimes refer to congruence (2.6), which seems to be more ap-
proachable theoretically. For this reason, they are usually just called Lucas
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pseudoprimes with parameters P and Q, in short lpsp(P, Q). We will summarize
some results known about lpsp(P, Q).

For a fixed integer D, the number of parameter pairs (P, Q) which lead to a
pseudoprime for a given composite n are characterized by the following for-
mula (See [5]), which at first glance seems similar to the formula of Theorem
2.5.

Theorem 2.31 Let D be a fixed positive integer and let n = ∏s
i=1 pri

i be a positive
odd integer with gcd(D, n) = 1. Then the number of distinct values of P modulo
n, for which there is a Q such that P2 − 4Q ≡ D mod n and n is a lpsp(P, Q) is

L(D, n) =
s

∏
i=1

[
(n−

(
D
n

)
, pi −

(
D
pi

)
)− 1

]
.

Proof Let O
Q[
√

D] be the ring of integers in Q[
√

D]. With Proposition 2.28,
we know that we can count the elements τ of (O

Q[
√

D]/(n))
∧ through

τ − 1 ∈ (O
Q[
√

D]/(n))
× and τn−(D

n) ≡ 1 mod pri
i O

Q[
√

D] for 1 ≤ i ≤ s.

With Theorem 2.27 and Proposition 2.28, the last congruence admits

d = gcd
(
n−

(
D
n

)
, pri−1

i (pi −
(

D
pi

)
)
)

(2.11)

= gcd(n−
(

D
n

)
, pi −

(
D
pi

)
) (2.12)

many solutions. Among these solutions τ, it is convenient to withdraw
those for which τ − 1 is not invertible modulo pi. We will show that the
only solution affected by this withdrawal is 1. Let us first note thatτn−(D

n) ≡ 1

τ
p

ri−1
i (pi−(D

pi
)) ≡ 1

=⇒ τd ≡ 1 =⇒ τ
pi−(D

pi
) ≡ 1 mod pri

i O
Q[
√

D]

Let p be a prime ideal containing piOQ[
√

D]. For an integer k ≥ 1, we have

τ ≡ 1 mod pk =⇒ τpi ≡ 1 mod pk+1

=⇒ 1 ≡ τ
pi−(D

pi
) ≡ τ

−(D
pi
) mod pk+1

=⇒ τ ≡ 1 mod pk+1.

Therefore, we have τ ≡ 1 mod pri . If pi is reducible in O
Q[
√

D], we have
that τ ≡ 1 mod pri , which implies that τ ≡ τ−1. In both cases, we have
that τ ≡ 1 mod pri

i . The number of solutions of (2.11) is therefore gcd(n−
(D

n), p− (D
pi
))− 1. �
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Now, similar to how Carmichael numbers completely defeat the weaker
form of the Fermat test, we consider the numbers that completely defeat
the weak Lucas test:

Definition 2.32 (Lucas-Carmichael number) Let D be a fixed integer. A Lucas-
Carmichael number is a composite number n, relatively prime to 2D, such that for
all integers P, Q with gcd(P, Q) = 1, D = P2 − 4Q and gcd(n, QD) = 1, n is a
lpsp(P, Q).
Equivalently, for every τ that is a norm-1 element in O

Q[
√

D] where τ − 1 is a unit

in O
Q[
√

D]/n, we have τn−(D
n) ≡ 1 mod n.

Williams showed in [26] the analogous theorem to Carmichael numbers.

Theorem 2.33 Let D be a fixed integer, then n is a lpsp(P, Q) if and only if n is
square-free and pi − (D

pi
) | n− (D

n) for every prime pi | n.

The question of the existence of an infinite number of Carmichael-Lucas
numbers with respect to a fixed D is still an open question. It should be
noted that if n is a Carmichael-Lucas number with respect to either D = 1
or D a perfect square, then it is a Carmichael number. Thus, any result in
this direction would be a generalization of the result concerning Carmichael
numbers in [25], which in itself took 84 years to prove.

2.4.3 The Strong Lucas Probable Prime Test

In analogy to strong pseudoprimes, we define a stronger variant of the Lucas
probable prime test, which leads to strong Lucas pseudoprimes. Let P, Q ∈
Z such that D = P2 − 4Q, where D is not a perfect square and O

Q[
√

D] be

the ring of integers of Q[
√

D]. Let α, β ∈ be the roots of the polynomial
X2 − PX + Q in O

Q[
√

D] and for an integer n ∈ N, let (Un)n∈N and (Vn)n∈N

denote the Lucas sequences defined as in (2.3). Finally, for an integer n ∈N,
we denote ε(n) the Jacobi Symbol (D

n), when D is fixed.

Theorem 2.34 Let P and Q be integers and D = P2 − 4Q. Let p be a prime
number not dividing 2QD. Put p − ε(p) = 2κq with q odd. Then one of the
following is satisfied:

p | Uq

or (2.13)
there exists i such that 0 ≤ i < κ and p | V2iq.

As with the other tests, we also have pseudoprimes for this test.

Definition 2.35 (Strong Lucas Pseudoprimes) A composite number n relatively
prime to 2QD which satisfies (2.13) is called a strong Lucas pseudoprime with
respect to the parameters P and Q. For short we write slpsp(P, Q).
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Usually we want ε(n) = −1, because otherwise the strong Lucas test is
not independent from the Miller-Rabin test. We will discuss its reason in
Subsection 2.4.4. The next theorem is from [4]. It says how many pairs
(P, Q) with 0 ≤ P, Q < n, gcd(Q, n) = 1, P2 − 4Q ≡ D mod n exist, such
that n is a slpsp(P, Q).

Theorem 2.36 [Theorem 1.5, [4]] Let D be an integer and pr1
1 . . . prs

s be the prime
decomposition of an integer n ≥ 2 relatively prime to 2D. Put{

n− ε(n) = 2κq
pi − ε(pi) = 2ki qi for 1 ≤ i ≤ s

with q, qi odd ,

ordering the pi’s such that k1 ≤ . . . ≤ ks. The number of pairs (P, Q) with
0 ≤ P, Q < n, gcd(Q, n) = 1, P2 − 4Q ≡ D mod n and such that n is an
slpsp(P, Q) is expressed by the formula

SL(D, n) =
s

∏
i=1

(gcd(q, qi)− 1) +
k1−1

∑
j=0

2js
s

∏
i=1

gcd(q, qi). (2.14)

Using the fact that each Lucas sequence is in a one-to-one correspondence
with the norm-1 elements τ in O

Q[
√

D] where τ − 1 is a unit in O
Q[
√

D]/(n),
we get the following result:

Lemma 2.37 Let n > 1 be an integer relatively prime to QD and let τ = αβ−1 in
the ring O

Q[
√

D] (τ is well-defined as Q = αβ is relatively prime to n). For k ∈ N,
we have the equivalences

n | Uk ⇔ τk = 1

n | Vk ⇔ τk = −1.

In particular, if n is composite and relatively prime to 2QD, it is a slpsp(P, Q) if
and only if

τq ≡ 1 mod n

or

there exists i such that 0 ≤ i < κ and τ2iq ≡ −1 mod n

where n− ε(n) = 2κq with q odd.

Proof With the Binet formula (2.14) we have

n | Vk ⇔ Vk ∈ nO
Q[
√

D] since nO
Q[
√

D] ∩Z = nZ and Vk ∈ Z

⇔ αk + βk = βk(1 + τk) ∈ nO
Q[
√

D]

⇔ τk + 1 ∈ nO
Q[
√

D].
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The last equivalence holds as αβ = Q and 1 = gcd(Q, n) = gcd(αβ, n),
which holds if and only if gcd(α, n) = gcd(β, n) = 1. Thus βk 6∈ nZ. For the
other equivalence:

n | Uk ⇔ Uk ∈ O
Q[
√

D]

⇔ αk − βk

α− β
∈ nO

Q[
√

D]

⇔ βk(τk − 1)
β(τ − 1)

=
βk−1(τk − 1)

τ − 1
∈ nO

Q[
√

D]

⇔ τk − 1 ∈ nO
Q[
√

D]. �

2.4.4 The Square Root Problem

Although all theorems are true when (D
n) = 1, it is best to avoid this case,

as then Fermat/ Miller-Rabin test and the (strong) Lucas test are not inde-
pendent. Next we consider what is called the square root problem. Suppose
that P and Q lead to D such that (D

n) = 1. This does not mean that D is a
square modulo n, but it does increase the likelihood that that is so; for if D
is a square modulo n, then it is a square modulo each prime divisor of n
and so (D

n) = 1. We now analyze why is squareness bad.

When D is a perfect square

If D is a non-zero perfect square, the Lucas test reduces to the Fermat test:
Now our ring Q[

√
D] becomes Q and the ring of integers of Q becomes Z,

with this also our roots α, β of the polynomial X2− PX + Q will be in Z. We
let T = αβ−1 mod n. Therefore from Lemma 2.37, we have

n | Un−1 ⇔ Tn−1 ≡ 1 mod n,

which is just an ordinary Fermat test.

If D is a non-zero perfect square the strong Lucas test reduces to the Rabin-
Miller test: If gcd(n, 2D) = 1, we can put T = αβ−1 mod n, where again
α, β ∈ Z. Now from lemma 2.37 we get the following equivalences for
k ∈N:

n | Uk ⇔ Tk ≡ 1 mod n

n | Vk ⇔ Tk ≡ −1 mod n.

As then for all i decompositions n − 1 = n − ε(n) = 2κq, pi − 1 = pi −
ε(pi) = 2ki qi are the same, we get that n is a slpsp(P, Q) if and only if it is a
spsp(P, Q).
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2.4. The Lucas Primality Test

However, there is an easy way to make sure that our chosen D is not a perfect
square. We can perform a test for squareness using Newton’s method for
square roots.

Algorithm 3: Checking for a perfect square: Newton’s method
Result: Checks if an n-bit integer D is a perfect square, i.e. (if

x2 = D has an integer solution.)

Set m = d n
2 e and i = 0;

Select random x0 s.t. 2m > x0 ≥ 2m−1

while x2
i ≥ 2m + D do

i = i + 1;

xi =
1
2 (xi−1 +

c
xi
)

if D = bxi
2c then

status = perfect square

else
status = not a perfect square

Return status

When D is a square modulo n

Now let D not necessarily be a perfect square, but a square modulo n, which
means that (D

n) = 1. We now establish a lemma that connects ordinary
pseudoprimes and Lucas pseudoprimes.

Lemma 2.38 Let n be an odd integer which is a psp(b) and psp(c). Then, when-
ever P ≡ b + c and Q ≡ bc mod n, n is a lpsp(P, Q).

Proof Let α and β be the distinct roots of the polynomial X2− PX +Q. Then
{α, β} ≡ {b, c} mod n, because the quadratic polynomials X2− PX + Q and
X2 − (b + c)X + bc have coefficients that are congruent modulo n. Since
(D

n) = (P2−4Q
n ) = ((b−c)2

n ) = 1, we get Un−1 = bn−1−cn−1

b−c ≡ 1. This shows that
n is a lpsp(P, Q). �

Now, if P and Q are such that D = r2 mod n, then the pair of simultaneous
equations P = b + c and Q = bc can be easily solved modulo n for b and
c to get b = (P−r)(n+1)

2 and c = (P+r)(n+1)
2 . If, for example, n is a psp(2),

then it might well be a psp(b) and a psp(c) (assuming that gcd(n, bc) = 1),
because it might be a Carmichael number, or one of b and c might be ±1.
This would mean, by Lemma 2.38 that n will be a lpsp(P, Q). This is bad
because it means that the Lucas probable prime test will not be independent
of the ordinary Fermat test.
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2. Preliminaries

When the Jacobi symbol is 1

Most of the following ideas are from [18]. Let n = ∏ pri
i be the prime

decomposition, D not necessarily be a square modulo n, but (D
n) = 1. We

count the number of distinct values P modulo n for which there is a Q such
that n is a lpsp(P, Q). By Theorem 2.31 it is ∏((n− 1, pi ± 1)− 1), where
n = ∏ pri

i , and the choice of±1 depends on (D
pi
) and ri. Likewise n is a psp(a)

for ∏(n− 1, pi − 1) distinct values of a modulo n. Now, the product of the
gcds (n− 1, pi − 1) and (n− 1, pi + 1) is less than 2(p1 + 1), but whenever
(D

pi
) = +1, then the gcds are equal, so that both can be large. Thus, in

many cases we would expect that if n is a lpsp(P, Q) for many values of P
with (D

n) = +1, then n might also be a psp(a) for many values for a. The
computer calculations bear this out. See [18].

Now we do a similar analysis for the strong Lucas test. Again, n = ∏ pri
i be

the prime decomposition, D not necessarily be a square modulo n, but (D
n) =

1. Let n− 1 = 2κq, pi − (D
pi
) = 2ki qi and pi − 1 = 2li si with qi, si odd. The

number of pairs (P, Q) such 0 ≤ P, Q < n with D = P2 − 4Q, gcd(Q, n) =
1 and such that n is a slpsp(P, Q) is SL(D, n) = ∏s

i=1(gcd(q, qi) − 1) +
∑k1−1

j=0 2js ∏s
i=1 gcd(q, pi − 1). The number of bases a such that n is a spsp(a)

is equal to S(n) = (1 + ∑k1−1
j=0 2js)∏s

i=1 gcd(q, pi − 1). Again the product of
the gcds (q, pi − 1) · (q, pi + 1) ≤ cannot exceed 2(q, pi + 1), but whenever
(D

pi
) = 1, the gcds are the same, so they both can be large.

2.4.5 The Baillie-PSW Test

Baillie, Selfridge and Wagstaff [18] proposed in 1980 a probabilistic primal-
ity test that has become known as the Baillie-PSW test. Its power to find
composites lies in combining a single Miller-Rabin test with base 2 with a
(strong) Lucas test. The idea is that the two tests might be orthogonal to
each other and thus it is very unlikely that a number n will pass both parts.
That is, n being a probable prime of the first type does not affect the proba-
bility of n being a probable prime of the second type, thus if n passes both
tests, we can be more certain that it is prime than if it merely passes several
Miller-Rabin tests, or several Lucas tests. No odd composite integers n have
been reported to pass this combination of primality test if the parameters
are chosen in an appropriate way.
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2.4. The Lucas Primality Test

The Baillie-PSW Test

Let n be our odd integer, which we want to test for primality. We are going
to declare it as a probable prime number if and only if it passes each of the
following points:

1. If n is divisible by any prime less than some convenient limit,
for example 1000, then n is composite.

2. If n is not a (strong) pseudoprime base 2, then n is composite.

3. Check if n is not a perfect square and determine a pair of integers
(P, Q) through one of the following methods:

• Method A: Let D be the first element of the sequence
5,−7, 9,−11, 13, . . . for which (D

n) = −1.
Let P = 1 and Q = (1− D)/4

• Method B: Let D be the first element of the sequence
5, 9, 13, 17, 21, . . . for which (D

n) = −1.
Let P = min{m ∈N | m odd and m >

√
D} and

Q = (P2 − D)/4.

4. If n is not a (strong) Lucas pseudoprime for our choice of parameters
P, Q, then n is composite. Otherwise, n is a probable prime.

Lemma 2.39 Let n = pimi be an odd integer. Then the following holds

gcd(n− 1, pi − 1) = gcd(n− 1, mi − 1)
gcd(n + 1, pi + 1) = gcd(n + 1, mi − 1).

Proof With n− 1 = pimi− 1 = (pi− 1)mi + (mi− 1) = (mi− 1)pi + (pi− 1),
we get

gcd(n− 1, pi − 1) = gcd((mi − 1)pi + (pi − 1), pi − 1)
= gcd((mi − 1)pi, pi − 1) = gcd(mi − 1, pi − 1)

gcd(n− 1, mi − 1) = gcd((pi − 1)mi + (mi − 1), mi − 1)
= gcd((pi − 1)mi, mi − 1) = gcd(pi − 1, mi − 1),

where the second last equality follows from the fact that for all a, b we have
gcd(a + b, a) = gcd(a, b) and the last equality holds as gcd(a− 1, a) = 1. For
the second equality we use a similar argument. �

Heuristic Argument: The most interesting thing about the Lucas test is that
if we choose the parameters D, P and Q as described in the second method,
then the first 50 Carmichael numbers and several other base-2 Fermat pseu-
doprimes will never be Lucas pseudoprimes, see [18].
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2. Preliminaries

We give a heuristic argument why composite numbers rarely pass the Baillie-
PSW test:

Let P, Q and D be integers such that P2 − 4Q = D and choose n = p1 . . . p2
with gcd(n, QD) and (D

n) = 1 such that it is both a psp(b) and lpsp(P, Q).
Fermat’s Little Theorem implies:{

bgcd(n−1,pi−1) ≡ 1 in Z/nZ

τgcd(n+1,pi−ε(pi) ≡ 1 in O
Q[
√

D]/nO
Q[
√

D]

∀i,

where τ is the element associated with the pair (P, Q) in Proposition 2.28.
We let {

di = gcd(n− 1, pi − 1)
d′i = gcd(n + 1, pi − ε(pi)).

We have the equivalences

bn−1 ≡ 1 mod pi ⇔ b is a (pi − 1)/dith root mod p

τn+1 = 1 in O/piO ⇔ τ is a (pi − ε(pi))/d′ith root in (O/piO)∧.

Heuristically, these relations have a very small chance of being true when the
integers di and d′i are small compared to the order of the groups (Z/piZ)×

and (O/piO)∧.

For ε(pi) = 1, we have

did′i = gcd(n− 1, pi − 1) gcd(n + 1, p1 − 1) ≤ 2(p1 − 1),

therefore it is not possible that both gcds are large.

For ε(pi) = −1, we let n = pimi. By Lemma 2.39, we have{
gcd(n− 1, pi − 1) = gcd(n− 1, pi − 1) = gcd(n− 1, mi − 1)
gcd(n + 1, pi + 1) = gcd(n + 1, pi + 1) = gcd(n + 1, mi − 1).

We conclude that

did′i = gcd(n− 1, pi − 1) gcd(n + 1, pi + 1) ≤ 2(mi − 1),

again by the same argument as above the gcds cannot be large, making di
and d′i rather small, which results in few pseudoprimes.

This “orthogonality” leads to the general belief that a combination of a
Miller-Rabin and a (strong) Lucas test with properly chosen parameters
could in fact be a deterministic primality test. Gilchrist [9] even confirmed
that there are no Baillie-PSW pseudoprimes less than 264, when using Method
A. To date no composites have been found to pass such a combined test, it
is therefore reasonable to conjecture that:
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2.4. The Lucas Primality Test

Conjecture 2.40 If n > 1 is a positive integer which can pass the combination of
a strong pseudoprimality test and a Lucas test, then n is prime.

Pomerance, Selfridge and Wagstaff [7] issued two challenges for an example
of a composite number which passes both a strong pseudoprimality test base
2 and a Lucas test ($620), and/or a proof that no such number exists ($620).
At the moment, the prizes are unclaimed; no counter-example has been
found. Yet there is no proof that they cannot exist and in fact, Pomerance
gave a heuristic argument in [17] that there are infinitely many Baillie-PSW
pseudoprimes. The construction of a single example is a significant open
problem in number theory.
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Chapter 3

An Analog to the Rabin-Monier
Theorem for Lucas Pseudoprimes

3.1 The analog using ϕD

Rabin showed in [4] that there is an analog of Theorem 2.10 (the Rabin-
Monier theorem) for strong Lucas pseudoprimes. In this chapter we will go
through the details.

Recall that the Rabin-Monier theorem states that for all n > 9, we have
S(n)/ϕ(n) < 1/4. However, the Euler phi function ϕ(n) cannot be directly
applied to the Lucas case. Thus, we will need to define a number theoretic
function, which is a variant of ϕ(n).

Definition 3.1 (The ϕD function) Let D be an integer and for an integer n let
ε(n) denote the Jacobi symbol (D

n). We introduce the following number theoretic
function, which is defined only on integers relatively prime to 2D:{

ϕD(pr) = pr−1(p− ε(p)) for any prime p - 2D and r ∈N

ϕD(p1 · p2) = ϕD(p1) · ϕD(p2) if gcd(p1, p2) = 1.

Theorem 3.2 (The Rabin-Monier theorem for Lucas pseudoprimes) If n is
an odd composite integer not of the form n = (2k1 q1 − 1)(2k1 q1 + 1), where both
factors are prime, q1, k1 ∈ Z+ and q1 odd, then

SL(D, n) ≤ ϕD(n)/4

Also, the following inequality is always true: SL(D, n) ≤ ϕD(n)/2.

When n is of the form n = (2k1 q1 − 1)(2k1 q1 + 1), where both factors are
prime and k1 6= 1, we will see that SL(D, n) ≤ ϕD(n)/2 is quite an overesti-
mate, Subsection 3.1.1 focuses on this special case.

In order the prove Theorem 3.2 we will need the following lemma, which is
in analogy to Lemma 2.12.
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3. An Analog to the Rabin-Monier Theorem for Lucas Pseudoprimes

Lemma 3.3 Let pr1
1 . . . prs

s be the prime decomposition of an integer n relatively
prime to 2D. Using the notation of Theorem (2.36), we have the inequalities:

SL(D, n)
ϕD(n)

≤


1

2s−1 ∏s
i=1

gcd(q,qi)
qi

,
1

2s−1 ∏s
i=1

1
p

ri−1
i

,

1
2s−1+δ2+...+δs , where δi = ki − k1.

The proof of Lemma 3.3 can be found in [4]. Equipped with this lemma, we
are ready to prove Theorem 3.2.

Proof (Theorem 3.2) Let s = 1. From the second inequality of Lemma 3.3
it follows that SL(D,n)

ϕD(n)
≤ 1

pr1−1
1

. Let n 6= 9, then either p1 ≥ 5 and r1 ≥ 2 or

p1 ≥ 3 and r1 ≥ 3. Therefore, SL(D, n)/ϕD(n) ≤ 1/4 follows directly. If
n = 9, it is easy to verify using Theorem 2.36 that

p1 − ε(p1) =

{
2 ⇒ k1 = 1, q1 = 1 when ε(p1) = 1
4 ⇒ k1 = 2, q1 = 1 when ε(p1) = −1.

In both cases gcd(q, q1) = 1. For the first case we get that SL(D, n) = (1−
1) + 20 · 1 = 1 and ϕD(n) = 3(3− 1) = 6, and for the second case we get
that SL(D, n) = (1− 1) + 20 · 1+ 21 · 1 = 3 and ϕD(n) = 3(3+ 1) = 12. Thus
SL(D, n)/ϕD(n) ≤ 1/4 for both cases.

Now let s = 2. Lemma 3.3 yields the inequalities:

SL(D, n)
ϕD(n)

≤
{

1/6 if ri ≥ 2 for at least one i
1/4 if δ2 = k2 − k1 ≥ 1.

Thus we are only left with the case where r1 = r2 = 1 and k2 − k1 < 1,
meaning that k2 = k1.

Let us suppose that q1 6= q2. The first inequality of Lemma 3.3 yields

SL(D, n)
ϕD(n)

≤ 1
2

gcd(q, q1)

q1

gcd(q, q2)

q2
.

We will show by contradiction that at least one of gcd(q, qi)/qi ≤ 1/3 . For
this, let’s suppose both gcd(q,q1)

q1
, gcd(q,q2)

q2
> 1/3. Since all q, q1, q2 are odd, we

must have that gcd(q,q1)
q1

= gcd(q,q2)
q2

= 1, meaning that both q1 | q and q2 | q.
Therefore, both q1 and q2 must divide

2κq =p1 p2 − ε(p1 p2)

=(2k1 q1 + ε(p1))(2k1+δ2 q2 + ε(p2))− ε(p1 p2)

=22k1+δ2 q1q2 + 2k1 q1ε(p2) + 2k1+δ2 q2ε(p1) + ε(p1)ε(p2)− ε(p1 p2)

=22k1+δ2 q1q2 + 2k(q1ε(p2) + 2δ2 q2ε(p1))

=22k1+δ2 q1q2 ± 2k(q1 ± 2δ2 q2).
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3.1. The analog using ϕD

Therefore, we have that q1 | q2 and q2 | q1, which is only possible when
q1 = q2, which is contradictory to our hypothesis that q1 6= q2.

Now let’s suppose that r1 = r2 = 1, k1 = k2 and q1 = q2. Then p1 −
ε(p1) = 2k1 q1 and p2 − ε(p2) = 2k1 q1. If ε(p1) = ε(p2), we would have
that p1 = p2, which contradicts our hypothesis that n is a product of two
distinct primes. Thus, we must have that ε(p1) = −ε(p2). Without loss of
generality we assume that ε(p1) = −1. Thus, n = (2k1 q1 + 1)(2k1 q1 − 1) and
ϕD(n) = (2k1 q1)

2, which is the exception, where, using the first inequality
of Lemma 3.3, we have that SL(D,n)

ϕD(n)
≤ 1

2 · (
gcd(q,q1)

q1
)2 ≤ 1

2 .

Now let s ≥ 3. The theorem holds trivially for s = 3 using either of the first
two inequalities of Lemma 3.3, which finally(!) completes our proof. �

3.1.1 Analysis of the case n = (2k1q1 − 1)(2k1q1 + 1)

The Rabin-Monier Theorem for the Lucas test says that SL(D,n)
ϕD(n)

≤ 1/4 for all

odd composite n 6= 9 except when n is of the form n = (2k1 q1− 1)(2k1 q1 + 1),
where both factors are prime. Now let us analyse the case where n is of the
latter form. Thus, for this subsection, we suppose that n is always of the
form n = (2k1 q1 − 1)(2k1 q1 + 1), with both factors prime.

Corollary 3.4 For the decomposition n − ε(n) = 2κq with q odd, we have that
κ = 2k1 and q = q2

1, and therefore, n− ε(n) = n + 1 = 4k1 q2
1.

Proof With

p1 = 2k1 q1 − 1, p1 − ε(p1) = 2k1 q1 where ε(p1) = −1
p2 = 2k1 q1 + 1, p2 − ε(p2) = 2k1 q1 where ε(p2) = 1,

we get that ε(n) = ε(p1)ε(p2) = −1, and

n = p1 p2 = (2k1 q1 − 1)(2k1 q1 + 1) = 4k1 · q2
1 − 1 !

= 2κ · q− 1

⇒ κ = 2k1, q = q2
1.

Thus, n− ε(n) = 4k1 · q2
1 and gcd(q, q1) = gcd(q2

1, q1) = q1. �

Corollary 3.5 For n of the above form, we have

SL(D, n) = (q1 − 1)2 +
4k1 − 1

3
· q2

1

and
SL(D, n)

ϕD(n)
=

(q1 − 1)2 + 4k1−1
3 · q2

1

4k1 · q2
1

.
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3. An Analog to the Rabin-Monier Theorem for Lucas Pseudoprimes

Proof Using the fact that ∑k1−1
j=0 4j = 4k1−1

3 , as the sum is a geometric series
and applying Theorem 2.36, we have that

SL(D, n) =
q

∏
i=1

((q, qi)− 1) +
k1

∑
j=0

2j·2
2

∏
i=1

(q, qi) = (q1 − 1)2 +
4k1 − 1

3
· q2

1.

Also for ϕD(n) we have ϕD(n) = (p1 − ε(p1)) · (p2 − ε(p2)) = 4k1 · q2
1. Thus

αD(n) =
SL(D, n)

ϕD(n)
=

(q1 − 1)2 + 4k1−1
3 · q2

1

4k1 · q2
1

�

The only case when αD(n) ≤ 1/4 is for k1 = q1 = 1, as then αD(n) = 1/4.

Lemma 3.6

SL(D, n)
ϕD(n)

<
1
2

for all n of the form n = (2k1 q1 − 1)(2k1 q1 + 1),

where both factors are prime, k1, q1 ∈N and q1 odd.

Proof By Lemma 3.5 we have

SL(D, n)
ϕD(n)

=
(q1 − 1)2 + 4k1−1

3 · q2
1

4k1 · q2
1

<
q2

1 +
4k1−1

3 · q2
1

4k1 · q2
1

=
1 + 4k1−1

3
4k1

=
2

3 · 4k1
+

1
3

.

Since 1/4k1 is a decreasing function in k1, we can upper bound it by using
k1 = 1. Thus we get

SL(D, n)
ϕD(n)

=
2

3 · 4k1
+

1
3
≤ 1

6
+

1
3
=

1
2

. �

Unless k1 = 1, this is quite an overestimate. However when we fix k1 = 1,
we see that the larger q1 gets, the closer this ratio gets to 1/2.

Lemma 3.7 Let k1 = 1, then we have

lim
q1→∞

SL(D, n)
ϕD(n)

=
1
2

.

Proof

lim
q1→∞

SL(D, n)
ϕD(n)

= lim
q1→∞

(q1 − 1)2 + 4k1−1
3 · q2

1

4k1 · q2
1

= lim
q1→∞

1
6
− 1

2q1
+

1
4q2

1
+

1
3
=

1
2

.

�
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3.1. The analog using ϕD

When k1 is kept fixed, the ratio αD(n) converges to a specific number as q1
increases.

Lemma 3.8 Let k1 ∈N be fixed. Then

lim
q1→∞

SL(D, n)
ϕD(n)

= lim
q1→∞

1
6 · 4k1−1 +

1
3

.

Example 3.9 (a) For k1 = 2 then limq1→∞
SL(D,n)

ϕD(n)
= 9

24 = 0.375,

(b) when k1 = 3, then limq1→∞
SL(D,n)

ϕD(n)
= 33

96 = 0.34375,

(c) k1 = 19 then limq1→∞
SL(D,n)

ϕD(n)
= 45812984491

137438953472 ≈ 0.3333333333357.

It seems to be the case as as k1 increases, the ratio gets closer to 1/3.

We have now considered what happens when k1 is a fixed positive integer.
However our ratio SL(D, n)/ϕD(n) depends on both k1 and q1. Now we fix
q1, and consider what happens when k1 increases.

Lemma 3.10 Let q1 ∈N be odd and fixed, then

lim
k1→∞

SL(D, n)
ϕD(n)

=
1
3

Proof

lim
k1→∞

3(q1 − 1)2 − q2
1

3 · 4k1 · q2
1

+
1
3
= lim

k1→∞

1
4k1
− 2

4k1 q1
+

1
4k1 q2

1
− 1

3 · 4k1
+

1
3
=

1
3

. �

We can show however, that even though the ratio converges to 1/3, it is
almost always bigger than 1/3.

Lemma 3.11 For all q1, k1 ∈N with q1 odd, except when q1 = 1, we have

SL(D, n)
ϕD(n)

>
1
3

.

Proof
SL(D, n)

ϕD(n)
=

3(q1 − 1)2 − q2
1

3 · 4k1 · q1
+

1
3

Since 3 · 4k1 · q1 > 0 for all k1, q1 ∈ N, it remains to show that 3(q1 − 1)2 −
q2

1 > 0 for all q1 6= 1. Solving this quadratic equation, we get that 3(q1 −
1)2 − q2

1 ≤ 0 if and only if −( 3
2 ±

√
3

2 ) ≤ q1 ≤ 3
2 ±

√
3

2 , meaning the only
possible value in our case, since q1 is an odd positive integer is q1 = 1. �

When q1 = 1, then SL(D,n)
ϕD(n)

= 1
3 −

1
3·4k1

< 1
3 .
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3.2 An analog to the Rabin-Monier Theorem using n

For the Miller-Rabin test we can directly conclude that S(n) < n/4, which
means that at least 3/4-th of the bases 1 ≤ a ≤ n− 1 are witnesses for the
compositeness of n. However, as we will see in Lemma 4.10, ϕD(n) is not
bounded by n. Therefore, the result of Theorem 3.2 cannot be directly trans-
lated like the Rabin-Monier theorem for the Miller-Rabin test. Nevertheless,
Arnault showed in [4] the following more powerful result:

Theorem 3.12 Let D be an integer and n a composite number relaitvely prime to
2D and distinct from 9. For every integer D, we have

SL(D, n) ≤ 4n
15

,

except if n is the product if n = (2k1 q1 − 1)(2k1 q1 + 1) of twin primes with q1 odd
and such that the Legendre symbols satisfy ε(2k1 q1 − 1) = −1, ε(2k1 q1 + 1) = 1,
where we have SL(D, n) ≤ n/2.
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Chapter 4

Average case error estimate for the
strong Lucas probable prime test

We have already talked about the average case error estimate of the Miller-
Rabin test and its relation to the Rabin-Monier theorem. We have seen that
the former does not directly follow from the knowledge of the latter. How-
ever, Damgård et al. [8] showed bounds for the average case probability,
which are stated in Theorem 2.13. As such average error estimates do not
exist for the strong Lucas test, we are interested in establishing such results.
We know by Theorem 3.12 that SL(D, n) ≤ 4n/15 for every odd integer n,
which is not a product of twin primes. In this chapter, we make a thorough
analysis of this error probability, and establish results similar to Theorem
2.13. We obtain these bounds by closely following the methods used in [8].

Recall the definition of SL(D, n). Let αD(n) = SL(D,n)
ϕD(n)

for n > 1, where n

is odd. Thus αD(n) ≤ 1/4 for odd composites n 6= (2k1 q1 − 1) · (2k1 q1 + 1),
where both factors are prime. Let n − ε(n) = 2κq, with q odd. Also let
n = pr1

1 . . . prs
s be the prime decomposition of an integer relatively prime

to 2D, ordering the p′is such that k1 ≤ · · · ≤ ks in the decomposition pi −
ε(pi) = 2ki qi, where qi is odd. This implies that k1 is the largest integer such
that 2k1 | pi − ε(pi) for all i = 1, 2, . . . , s.

Let ω(n) denote the number of distinct prime factors of n and let Ω(n)
denote the number of prime factors of n counted with multiplicity. Here
we have that ω(n) = s and Ω(n) = ∑s

i=1 ri. We shall always let p denote a
prime number. We begin by first stating lemmas which will be used in later
proofs.

Lemma 4.1 In the factorization n− ε(n) = 2κq and pi − ε(pi) = 2ki qi, we have
that 2ki | 2κ, which implies ki ≤ κ for all i.
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4. Average case error estimate for the strong Lucas probable prime test

Proof Since the Jacobi symbol is completely multiplicative, the following
equation holds:

2κ · q =n− ε(n) =
s

∏
i=1

pri
i − ε(∏

i
pri

i ) =
s

∏
i=1

[ ri

∑
j=0

(2ki qi)
ri−j · ε(pi)

j
]
−

s

∏
i=1

ε(pi)
ri

=
s

∏
i=1

[
((2ki qi)

ri
+ (2ki qi)

ri−1 · ε(pi) + · · ·+ (2ki qi)
2 · ε(pi)

ri−2

+ (2ki qi) · ε(pi)
ri−1 + ε(pi)

ri
]
−

s

∏
i=1

ε(pi)
ri .

The term ∏s
i=1 ε(pi)

ri completely cancels out, thus in every term the factor
2ki appears at least once, and can thus be factored out:

2κq =
s

∏
i=1

2ki
[
((2kiri−1) · qri

i + (2ki(ri−1)−1) · qri−1
i · ε(pi) + . . .

+ (22ki−1 · q2
i · ε(pi)

ri−2 + 2ki−1 · qi · ε(pi)
ri−1
]

=2∑s
i=1 ki

s

∏
i=1

[
((2kiri−1) · qri

i + (2ki(ri−1)−1) · qri−1
i · ε(pi) + . . .

+ 22ki−1 · q2
i · ε(pi)

ri−2 + 2ki−1 · qi · ε(pi)
ri−1
]
.

Thus, we see that 2ki | 2κ for all i, therefore ki ≤ κ. �

Lemma 4.2 Let k1, j, s ∈N. Then(
1 +

k1−1

∑
j=0

2j·s
)
≤ 2 · 2(k1−1)·s.

Proof This may be proved by showing that for all m ∈ N and fixed s ∈ N

we have that 1 + ∑m
j=0 2j·s ≤ 2 · 2m·s. We do this by induction on m:

Base case: m = 1 : As 2 ≤ 2s we have 1 + ∑1
j=0 2j·s = 1 + 1 + 2s ≤ 2s + 2s =

2 · 2s. So our claim holds for m = 1.
Inductive hypothesis: Suppose the theorem holds for all m ≤ m0.
Inductive step: Then as s ≥ 1

1 +
m0+1

∑
j=0

2j·s = 1 +
m0

∑
j=0

2j·s + 2(m0+1)·s ≤ 2 · 2m0·s + 2(m0+1)·s

≤ 2s · 2m0·s + 2s · 2m0·s = 2 · 2s·(m0+1),

which is exactly what we wanted to show. �

Lemma 4.3 If n = pr1
1 . . . prs

s > 1 is odd, then

αD(n) ≤ 21−s
s

∏
i=1

p1−ri
(p− ε(p), n− ε(n))

p− ε(p)
≤ 21−Ω(n)

s

∏
i=1

(p− ε(p), n− ε(n))
p− ε(p)

.
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Proof We see that the identity ∑s
i=1(ri − 1) = Ω(n)− s trivially holds. Thus,

2(1−s) = 21−Ω(n)+∑s
i=1(ri−1) = 21−Ω(n) ∏s

i=1 2ri−1. Using the fact that 2
p ≤ 1 for

every prime p and ri ≥ 1 for all i, the second inequality follows by

21−s
s

∏
i=1

p1−ri = 21−Ω(n)
s

∏
i=1

2ri−1

pri−1 ≤ 21−Ω(n)
s

∏
i=1

(
2
p
)

ri−1
≤ 21−Ω(n).

For the first inequality we use

SL(D, n) =
s

∏
i=1

((q, qi)− 1) +
k1−1

∑
j=0

2js
s

∏
i=1

(q, qi) ≤
(

1 +
k1−1

∑
j=0

2js
) s

∏
i=1

(q, qi).

Using this upper bound and the definition of ϕD(n), we get

αD(n) =
SL(D, n)

ϕD(n)
≤
(

1 +
k1−1

∑
j=0

2j·s
)
·

s

∏
i=1

(qi, q)

pri−1
i (pi − ε(pi))

=
(

1 +
k1−1

∑
j=0

2j·s
) s

∏
i=1

(pi − ε(pi), q)

pri−1
i (pi − ε(pi))

.

For two coprime numbers a, b ∈ N and for all c ∈ N we have (c, a · b) =
(c, a) · (c, b). In the factorization n− ε(n) = 2κ · q, the two factors 2κ and q
are coprime, thus we get

s

∏
i=1

(pi − ε(pi), n− ε(n)) =
s

∏
i=1

(pi − ε(pi), q) · (pi − ε(pi), 2k) =

s

∏
i=1

(pi − ε(pi), q) · (2ki qi, 2k) =
s

∏
i=1

(pi − ε(pi), q) · (2ki , 2k).

By Lemma 4.1 we know that ki ≤ κ for all i = 1, . . . , s, and using the way we
have defined the order of the pi’s, i.e. k1 ≤ · · · ≤ ks, we have

s

∏
i=1

(pi − ε(pi), q)(2ki , 2κ) =
s

∏
i=1

2ki · (pi − ε(pi), q) ≥ 2k1·s
s

∏
i=1

(pi − ε(pi), q).

⇒
s

∏
i=1

(pi − ε(pi), q) ≤ 2−k1·s
s

∏
i=1

(pi − ε(pi), n− ε(n))

= 2−sk1
s

∏
i=1

(pi − ε(pi), n− ε(n)).

By Lemma 4.2 we know that

1 +
k1−1

∑
j=0

2j·s ≤ 2 · 2(k1−1)·s.
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4. Average case error estimate for the strong Lucas probable prime test

Therefore,

αD(n) =
SL(D, n)

ϕD(n)
≤
(

1 +
k1−1

∑
j=0

2j·s
)
·

s

∏
i=1

(pi − ε(pi), q)

pri−1
i · (pi − ε(pi))

≤
(

1 +
k1−1

∑
j=0

2j·s
)

2−k1·s
s

∏
i=1

(pi − ε(pi), n− ε(n))

pri−1
i · (pi − ε(pi))

≤ 2 · 2(k1−1)·s · 2−k1·s
s

∏
i=1

(pi − ε(pi), n− ε(n))

pri−1
i · (pi − ε(pi))

= 21−s
s

∏
i=1

1

pri−1
i

· (pi − ε(pi), n− ε(n))
pi − ε(pi)

,

which proves the assertion. �

Remark 4.4 We see that the formula for SL(D, n) looks similar to the for-
mula for S(n). However, we must keep in mind that for Lucas test we
consider the factorization of pi − ε(pi) = 2ki qi, whereas for the Miller-Rabin
test we consider the factorization pi − 1 = 2ki qi, so depending on whether
ε(pi) = −1, 1, the ki’s and qi’s could be completely different in the factoriza-
tion.

The following lemmas and corollaries are used in a later proof.

Lemma 4.5 If t ∈ R with t ≥ 1, then

∞

∑
n=btc+1

1
n(n− 1)

=
1
btc <

2
t

.

Proof

∞

∑
n=btc+1

1
n(n− 1)

= lim
k→∞

k

∑
n=btc+1

1
n− 1

− 1
n
= lim

k→∞

1
btc +

1
k
=

1
btc <

2
t

,

where we used the partial fractial decomposition of 1
n(n−1) and the fact that

∑n(
1

n−1 −
1
n ) is a telescope sum. �

Corollary 4.6 Let k, t ∈N, then

2−2
√

t(k−1) < 2
√

t
k−1−2

√
tk. (4.1)

Proof Since both sides of the inequality
√

tk <
√

t(k− 1) +
√

t
4(k−1) are

positive, we get that squaring them preserves the inequality, yielding tk <
tk + t

4(k−1) . This is trivially true when t, k ≥ 1. �

38



4.1. A simple estimate

Corollary 4.7 For all j, k ∈N, we have

jt +
k− 1

j
≥ 2

√
t(k− 1).

Proof With 0 ≤ (j
√

t−
√

k− 1)2 = j2t− 2
√

t(k− 1) + (k− 1) the corollary
directly follows for j, k > 0. �

4.1 A simple estimate

Let Cm = {n ∈ N : n odd, composite and αD(n) > 2−m}. Let Mk denote the
set of odd k-bit integers. For k ≥ 2, we have |Mk| = 2k−2. We are concerned
with the proportion in Mk of those odd integers which are also in Cm.

Theorem 4.8 If m, k are positive integers with m + 1 ≤ 2
√

k− 1, then

|Cm ∩Mk|
|Mk|

< 8
m

∑
j=2

2m−j− k−1
j .

Proof From Lemma 4.3, n ∈ Cm implies Ω(n) ≤ m, as

2−m < αD(n) ≤ 21−Ω(n) ∏
p|n

(p− ε(p), n− ε(n))
p− ε(p)

≤ 21−Ω(n) ⇒ m ≥ Ω(n).

Now let N(m, k, j) = {n ∈ Cm ∩Mk : Ω(n) = j}. Thus

|Cm ∩Mk| =
m

∑
j=2
|N(m, k, j)|.

Suppose n ∈ N(m, k, j), where 2 ≤ j ≤ m. Let p denote the largest prime
factor of n. Since 2k−1 < n < 2k, we have p > 2(k−1)/j. Let dD(p, n) =

p−ε(p)
(p−ε(p),n−ε(n)) . From Lemma 4.3 and the definition of Cm, we have

2m >
1

αD(n)
≥ 2Ω(n)−1dD(p, n) = 2j−1dD(p, n),

so that dD(p, n) < 2m+1−j.
Given p, d, where p is a prime with the property that p > 2(k−1)/j and d
is such that d | p − ε(p) and d < 2m+1−j, we want to get an upper bound
for the number n ∈ N(m, k, j) with the largest prime factor p such that and
dD(p, n) = d. Let Sk,d,p = {n ∈ Mk : p | n, d = p−ε(p)

(p−ε(p),n−ε(n)) , n composite}.
The size of the set Sk,d,p is at most the number of solutions of the system

n ≡ 0 mod p, n ≡ ±1 mod p−ε(p)
d , p < n < 2k

39



4. Average case error estimate for the strong Lucas probable prime test

i.e. at most the set Rk,d,p = {n ∈ Z : n ≡ 0 mod p, n ≡ ±1 mod p−ε(p)
d , p <

n < 2k}, via the Chinese Remainder Theorem Rk,d,p has less than 2kd
p(p−ε(p))

elements.

Let us look at the parity of (p − ε(p))/d. Let qp be the odd part of the
decomposition p− ε(p) and let ν2(p) = max{2i : 2i | p, i ∈ N}. We have
that

p− ε(p)
d

= (p− ε(p), n− ε(n)) = 2ν2(p) · l, where l is odd.

= 2ν2(p) qp

qp
= p− ε(p)

l
qp

, where
l

qp
is odd.

Therefore, (p− ε(p))/d is even.

If Sk,d,p 6= ∅, then there exists an n ∈ Sk,d,p with (n − ε(n), p − ε(p)) =
(p− ε(p))/d, and thus (p− ε(p))/d. Thus, we only need to consider d and
p, such that (p− ε(p))/d is even. We conclude that

|N(m, k, j)| ≤ ∑
p>2(k−1)/j

∑
d|p−ε(p)
d<2m+1−j

(p−ε(p))/d∈2Z

2kd
p(p− ε(p))

= 2k ∑
d<2m+1−j

∑
p>2(k−1)/j

d|p−ε(p)
(p−ε(p))/d∈2Z

d
p(p− ε(p))

.

Now, for the inner sum we have,

∑
p>2(k−1)/j

d|p−ε(p)
p−ε(p)

d ∈2Z

d
p(p− ε(p))

< ∑
2ud>2

k−1
j −ε(p)

d
(2ud + ε(p))2ud

=
1

4d ∑
2ud>2

k−1
j −ε(p)

1

(u + ε(p)
2d )u

≤ 1
4d ∑

2ud>2
k−1

j −ε(p)

1
u(u− 1

2d )

≤ 1
4d ∑

u> 2
k−1

j −ε(p)
2d

1
u(u− 1)

<
1

4d
2

2
k−1

j −ε(p)
2d

=
1

2
k−1

j − ε(p)
,

where the last inequality follows from Lemma 4. Using this estimate, we get

|N(m, k, j)| ≤ 2k ∑
d<2m+1−j

1

2
k−1

j − ε(p)
= 2k · 2m+1−j − 1

2
k−1

j − ε(p)
.

40



4.2. The average case error probability

Using the fact that ∀j, k ≥ 1, we have that j2 − 2
√

k− 1j + (k − 1) = (j −√
k− 1)2 ≥ 0, we get the inequality

j +
k− 1

j
≥ 2
√

k− 1.

Using this inequality and our hypothesis that m + 1 ≤ 2
√

k− 1, we have
m + 1 ≤ j + (k− 1)/j. Thus

2m+1−j − 1

2
k−1

j − ε(p)
≤ 2m+1−j − 1

2
k−1

j − 1
≤ 2m+1−j

2
k−1

j
= 2 · 2m−j− k−1

j .

The last inequality is true because for m + 1− j ≤ (k− 1)/j we have

2m+1−j+ k−1
j − 2

k−1
j ≤ 2m+1−j+ k−1

j − 2m+1−j

⇔(2m+1−j − 1)2
k−1

j ≤ 2m+1−j(2
k−1

j − 1)

⇔2m+1−j − 1

2
k−1

j − 1
≤ 2m+1−j

2
k−1

j
.

Therefore, N(m, k, j)| ≤ 2 · 2k+m−j− k−1
j . Combining everything and using the

fact that |Mk| = 2k−2 yields

|Cm ∩Mk|
|Mk|

=
∑m

j=2|N(m, k, j)|
2k−2 ≤ 8

m

∑
j=2

2m−j− k−1
j . �

4.2 The average case error probability

Let D be fixed. We are trying to find a numerical upper bound for the
probability that a number chosen uniformly at random from the set of k-
bit integers is composite given that it passes t independent iterations of the
strong Lucas test with randomly chosen bases (P, Q).

Let αD(n) =
SL(D,n)

n be the fraction of elements in {1, 2, . . . , n} for which the
strong Lucas probable prime test is positive. This makes sense, as SL(D, n)
is the number of pairs (P, Q), where 1 ≤ P ≤ n that satisfies some properties,
and we already know that for every P there exists exactly one Q, such that
P = D2 − 4Q. Therefore, SL(D, n) actually only counts those P’s chosen
from the set 1, . . . , n.

Let X denote the event that n is composite and let Zt denote the event that n
is chosen uniformly at random from Mk and that it has passed t consecutive
rounds of the strong Lucas test with uniformly chosen bases (P, Q(P, D)).
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4. Average case error estimate for the strong Lucas probable prime test

Also let π(x) denote the prime counting function up to x and let ∑
′

denote
the sum over composite integers. Using the law of conditional probability,
we have for

qk,t = P[X | Zt] =
P[X ∩ Zt]

P[Zt]
=

(
∑′n∈Mk

αD(n)t

∑′n∈Mk
1

)
(

∑n∈Mk
αD(n)t

∑n∈Mk
1

)

=
∑′n∈Mk

αD(n)t

∑n∈Mk
αD(n)t ≤

∑′n∈Mk
αD(n)t

∑p∈Mk
αD(p)t =

∑′n∈Mk
αD(n)t

π(2k)− π(2k−1)
, (4.2)

where p is prime.

In order to get an upper estimate for qk,t, it will suffice to find an upper
estimate for the final sum in equation (4.2) and a lower estimate for π(2k)−
π(2k−1).

The next proposition can be found in [8] as Proposition 2.

Proposition 4.9 For k an integer at least 21, we have

π(2k)− π(2k−1) > (0.71867)
2k

k
. (4.3)

We already know a lot about αD(n), but for our probability qk,t we will
need αD(n). In this thesis we look at two different approaches of bounding
αD(n) using αD(n). One approach holds for the most general case, whereas
the other approach uses trial division by small primes. Naturally, the one
not making assumptions will yield a weaker estimate, which is still good
enough for small t. However, we will see that for large t this estimate is
useless. Assuming that n is not divisible by small primes does in many
cases not impose high restrictions, as many cryptolibraries use trial division
prior to expensive primality tests in order to speed up prime generation and
primality testing.

We start to estimate ϕD(n) as follows:

ϕD(n) =
s

∏
i=1

pri−1
i (pi − ε(pi)) ≤

s

∏
i=1

pri−1
i (pi + 1) =

s

∏
i=1

(pri
i + pri−1

i ). (4.4)

Then we will use our two different approaches. However, let us first investi-
gate if this is not an overestimate, i.e. if integers n exist such that ε(pi) = −1
for all primes pi | n.

Lemma 4.10 For D = 2, there exists infinitely many integers n, such that ϕD(n) =
∏s

i=1(pri
i + pri−1

i ), where n = ∏s
i=1(pri

i is the prime decomposition.
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4.3. Treatment of the numbers with large contribution in the analysis

Proof For D = 2, we get by Gauss’ law of quadratic reciprocity that

(
2
p

)
= (−1)

p2−1
8 =

{
1 if p ≡ ±1 mod 8
−1 if p ≡ ±3 mod 8.

This is true as p only depends on p mod 8: if p ≡ a mod 8, then p =

a + 8k, k ∈ N, (2
p) = (−1)

p2−1
8 = (−1)

a2+16ak+64k2−1
8 = (−1)

a2−1
8 . Therefore we

let n to be a product of primes, such that every prime is congruent to ±3
mod 8; we have constructed an integer n such that (D

p) = −1 for all primes
p | n. Infinitely many such n’s exist, as by Dirichlet’s theorem on arithmetic
progressions, infinitely many primes p ≡ ±3 mod 8 exist. �

So we see that the bound ϕD(n) ≤ ∏s
i=1 pri−1

i (pi + 1) is tight and can in
general not be weakened.

4.3 Treatment of the numbers with large contribution
in the analysis

By equality (4.2) our goal is to upper ∑′n∈Mk
αD(n)t. However, we do not

know how to proceed using αD(n). As we will see, taking αD(n) in the
sum instead, will enable us get good estimations, thus, we must find a way
to bound αD(n) by αD(n), see Sections 4.4 and 4.5. Therefore, the numbers
that add most to our probability are the ones with largest αD(n) value. Since
αD(n) ≤ 1/2 for all n by Theorem 3.12, we see that the set C1 is empty. C2
is not empty, we have already identified them as the set of integers {n =
(2k1 q1 − 1)(2k1 q1 + 1) : each factor is prime, k1, q1 ∈ N}. Thus, if n < x, we
want to know how many tuples (k1, q1) ∈N2 of such a form exist. If we can
we find an upper bound for the number of such tuples, we can also upper
bound | C2 ∩Mk |, say | C2 ∩Mk |≤ f (k) for some function f depending on
k. Depending on if and how we treat those numbers, we get variants of our
estimates:

1. We don’t treat them separately.

2. We use an upper bound of the number of twin prime, which we will
establish shortly, and treat C2 differently in our analysis.

3. We count how many numbers of the form m(m + 2) for some m ∈ N

exist, as every product of twin primes is included in this set, and treat
them differently in our analysis.

4. We sieve them at the beginning, making sure our number n is not a
twin prime, which enables us to exclude C2 completely.
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4. Average case error estimate for the strong Lucas probable prime test

4.3.1 An upper bound of the number of twin primes

For variant 2 we want to count how many twin prime tuples up to x exist.
Let n ∈ N and let us recall the definition of Ω(n) in Section 4 counting the
number of prime factors of n counted with multiplicity. For any x ∈ N, we
define the twin prime counting function π2(x), which counts the number of
twin-prime tuples up to x as follows:

π2(x) =| {p ≤ x : Ω(p + 2) = 1} | .

It is conjectured that π2(x)→ ∞ for x → ∞.

Riesel and Vaughan [21] showed the following lemma.

Lemma 4.11 For x > e42, we have

π2(x) <
16αx

(7.5 + log(x)) log(x)
,

where α is called the Twin Prime Constant,

α = ∏
p>2

(
1− 1

(p− 2)2

)
= ∏

p>2

p(p− 2)
(p− 1)2 ≈ 0.6602 . . .

Using their estimate we obtain the following lemma:

Lemma 4.12 For k ≥ 122 we have

| Mk ∩ C2 |< 20.3
2k/2

k2 .

Proof Since n = p(p + 2) is a k-bit integer, p is a k/2-bit integer. Thus
we are considering the number of twin primes up to 2k/2. We also have

16αx
(7.5+log(x)) log(x) <

16αx
log(x)2 . With Lemma 4.11 we obtain

π2(2k/2) <
16α2k/2

(log(2k/2))2 =
2k/2

(k/2)2
16α

(log2(e))2 <
16 · 4 · 0.66017
(log2(e))2

2k/2

k2

< 20.3
2k/2

k2 .

for 2k/2 > e42, which implies that k > 84
loge(2)

≈ 121.186, thus k ≥ 122 as
k ∈N. Therefore, we get that

| Mk ∩ C2 |< 20.3
2k/2

k2 . �

The next numbers with large αD(n) values are the elements of C3, C4 and C5.
As we need them for future results, we bound | Mk ∩ Cm | for m = 3, 4, 5 by
using Lemma 4.8.
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4.3. Treatment of the numbers with large contribution in the analysis

Lemma 4.13 Let k ≥ 122, then

| Mk ∩ C3 | ≤ (2.52)2k− k
3

| Mk ∩ C4 | ≤ (2.39)2k− k
4

| Mk ∩ C5 | ≤ (2.37)2k− k
5 .

Proof Since m ≤ 5, we have that m + 1 ≤ 2
√

k− 1 for k ≥ 10, thus we may

use Theorem 4.8. Therefore, we have that |Cm∩Mk |
|Mk |

< 23 ∑m
j=2 2m−j− k−1

j and

with this | Cm ∩Mk |≤ 2k+1 ∑m
j=2 2m−j− k−1

j . Let us bound each of those sums.

We are looking for a cm ∈ R such that | Mk ∩ Cm |≤ cm2k− k
m .

| Mk ∩ C3 | ≤ 2k+1
3

∑
j=2

23−j− k−1
j = 2k+1(21− k−1

2 + 2−
k−1

3 ) ≤ c12k− k
3

⇒ 2
5
2−

k
6 + 2

4
3 ≤ c1.

With k ≥ 122 we get

2
5
2−

k
6 + 2

4
3 ≤ 2

5
2−

122
6 + 2

4
3 ≤ 2.52

⇒ c1 = 2.52.

| Mk ∩ C4 | ≤ 2k+1
4

∑
j=2

24−j− k−1
j = 2k+1(22− k−1

2 + 21− k−1
3 + 2−

k−1
4 ) ≤ c22k− k

4

⇒ 2
7
2−

k
4 + 2

7
3−

k
12 + 2

5
4 ≤ c2.

With k ≥ 122 we get

2
7
2−

k
4 + 2

7
3−

k
12 + 2

5
4 ≤ 2

7
2−

122
4 + 2

7
3−

122
12 + 2

5
4 ≤ c2

⇒ c2 = 2.39.

| Mk ∩ C5 | ≤ 2k+1
5

∑
j=2

25−j− k−1
j

= 2k+1(23− k−1
2 + 22− k−1

3 + 21− k−1
4 + 2−

k−1
5 ) ≤ c32k− k

5

⇒ 2
9
2−

3k
10 + 2

10
3 −

2k
15 + 2

9
4−

k
20 + 2

6
5 ≤ c3.

With k ≥ 122 we get

2
9
2−

3k
10 + 2

10
3 −

2k
15 + 2

9
4−

k
20 + 2

6
5 ≤ 2.37

⇒ c3 = 2.37. �

Why counting twin-numbers does not yield an improvement

As discussed earlier we can upper bound the number of twin primes by
upper bounding the number of twin numbers, namely numbers of the form
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4. Average case error estimate for the strong Lucas probable prime test

n = m(m + 2), where m ∈N.

Corollary 4.14 For m ∈N odd, there are at most
√

x
2 such n = m(m + 2) ≤ x.

Also, we have | C2 ∩Mk |≤ 1
2 2k/2.

Proof If n = m(m + 2) ≤ x, then m2 ≤ x. We use the fact that m is odd, thus
we have at most

√
x/2 such n ≤ x. We immediately get that | C2 ∩Mk |≤

1
2 2k/2 for any k ≥ 2 and x = 2k. �

We see that the estimate in Lemma 4.12 yields a tighter estimate, thus we
discard the approach counting twin numbers using Corollary 4.14.

4.4 Bounding qk,t

In this section, we establish implicit bounds for qk,t without making any
assumptions on the k-bit integer tested for primality. Let us first prove the
necessary results.

Akbary and Friggstad showed in [3] the following proposition.

Proposition 4.15

n
ϕ(n)

≤ (1.07)eγ log(log(n)) for n ≥ 278.

Using their result we obtain an explicit upper bound for ϕD-function.

Lemma 4.16 For integers k ≥ 79 and n ∈ Mk we have

ϕD(n) < n · (1.07)eγ log(k),

where γ is the Euler-Mascheroni constant:

γ = lim
n→∞

( n

∑
k=1

1
k
− ln(n)

)
< 0.58.

Proof

ϕD(n) =
s

∏
i=1

pri−1
i (pi − ε(pi)) ≤

s

∏
i=1

pri−1
i (pi + 1) = n

s

∏
i=1

pi + 1
pi

= n
s

∏
i=1

(
1 +

1
pi

)
≤ n

s

∏
i=1

(
1 +

1
pi − 1

)
= n

s

∏
i=1

pi

pi − 1
= n

s

∏
i=1

1
pi−1

pi

= n
s

∏
i=1

1
1− 1

pi

=
n

∏s
i=1
(
1− 1

pi

) .

(4.5)
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4.4. Bounding qk,t

The product ∏p|n
(
1− 1

p

)
looks familiar: for the “normal” Euler phi function

ϕ(n) we have:

ϕ(n) =
s

∏
i=1

pi
ri−1(pi − 1) =

s

∏
i=1

pri
i − pri−1

i =
s

∏
i=1

pri
i

(
1− 1

pi

)
= n

s

∏
i=1

(
1− 1

pi

)
.

Thus, we have
s

∏
i=1

(
1− 1

pi

)
=

ϕ(n)
n

.

Plugging this in (4.5), we get

ϕD(n) ≤ n · n
ϕ(n)

.

By Proposition 4.15 we have for k ≥ 79, n ∈ Mk

ϕD(n) ≤ n · n
ϕ(n)

< n · (1.07)eγ log(log(n)) < n · (1.07)eγ log(log(2k))

= n · (1.07)eγ log(k log(2)) = n · (1.07)eγ(log(k) + log(log(2)))
< n · (1.07)eγ(log(k)− 0.366) < n · (1.07)eγ log(k),

which finishes our proof. �

Therefore, we immediately get

Corollary 4.17 For k ≥ 79 and n ∈ Mk we have

αD(n) ≤ (1.07)eγ log(k)αD(n).

4.4.1 First numerical results

Now that we have obtained an estimate for αD(n) using αD(n), we can pro-
ceed with our analysis.

Proposition 4.18 For any integers k, M, t with 3 ≤ M ≤ 2
√

k− 1− 1, t ≥ 1 and
k ≥ 79 we have

∑ ′
n∈Mk αD(n)t ≤ 2k−2+t(1−M) logt(k) + 2k+1+2t logt(k)

M

∑
j=2

M

∑
m=j

2m(1−t)−j− k−1
j .

Proof Note that our hypothesis implies k ≥ 5. We know that C1 ∩Mk = ∅.
Thus by Corollary 4.17 we have

∑ ′
n∈Mk αD(n)t =

∞

∑
m=2

∑
n∈Mk∩Cm\Cm−1

αD(n)t

≤
∞

∑
m=2

∑
n∈Mk∩Cm\Cm−1

((1.07)eγ log(k))tαD(n)t.

47



4. Average case error estimate for the strong Lucas probable prime test

We have that n ∈ Cm ⇔ αD(n) > 2−m and n 6∈ Cm−1 ⇔ αD(n) ≤ 2−(m−1).
Thus, we get for n ∈ Cm \ Cm−1 that 2−m < αD(n) ≤ 2−(m−1). Using this and
the fact that 1.07eγ < 2 we get that

∞

∑
m=2

∑
n∈Mk∩Cm\Cm−1

((1.07)eγ log(k))tαD(n)t (4.6)

≤
∞

∑
m=2

((1.07)eγ log(k))t2−(m−1)t|Mk ∩ Cm \ Cm−1|

<
∞

∑
m=2

logt(k)2t−(m−1)t|Mk ∩ Cm \ Cm−1| (4.7)

≤ logt(k)
(

2t−Mt|Mk \ CM|+
M

∑
m=2

2t−(m−1)t|Mk ∩ Cm|
)

(4.8)

= logt(k)
(

2t(1−M)|Mk \ CM|+
M

∑
m=2

2(2−m)t|Mk ∩ Cm|
)

. (4.9)

Using Theorem 4.8 and the above estimate we have

∑ ′
n∈Mk αD(n)t ≤ logt(k)

(
2k−2+t(1−M) + 2k+1+2t

M

∑
m=2

m

∑
j=2

2m(1−t)−j− k−1
j
)

= logt(k)
(

2k−2+t(1−M) + 2k+1+2t
M

∑
j=2

M

∑
m=j

2m(1−t)−j− k−1
j
)

.

�

4.4.2 An estimate for qk,1

We begin with the following inequality:

Theorem 4.19 For k ≥ 2 we have qk,1 < log(k)k242.3−
√

k .

Proof From (4.2) we have for k ≥ 21 that

qk,1 ≤
∑ ′n∈Mk αD(n)

π(2k)− π(2k−1)
. (4.10)

Using Proposition 4.18 with t = 1 and k ≥ 79 we get for any integer M with
3 ≤ M ≤ 2

√
k− 1− 1

∑ ′
n∈Mk αD(n) ≤ log(k)

(
2k−1−M + 2k+3

M

∑
j=2

2−j− k−1
j

M

∑
m=j

1
)

= log(k)
(

2k−1−M + 2k+3
M

∑
j=2

(M + 1− j)2−j− k−1
j
)

.
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4.4. Bounding qk,t

Using t = 1 in Corollary 4.7, we get j + k−1
j ≥ 2

√
k− 1 for all j, k ≥ 1. Thus

we have

∑ ′
n∈Mk αD(n) ≤ log(k)

(
2k−1−M + 2k+3−2

√
k−1

M

∑
j=2

(M + 1− j)
)

. (4.11)

Evaluating the sum ∑M
j=2(M + 1− j) = M(M − 1) · 2−1, and letting M =

b2
√

k− 1− 1c, which implies that M > 2
√

k− 1− 2 and M ≤ 2
√

k− 1− 1,
we have

∑ ′
n∈Mk αD(n) ≤ log(k)

(
2k−1−M + 2k+2−2

√
k−1M(M− 1)

)
< log(k)

(
2k+1−2

√
k−1(1 + 2 · (4(k− 1)− 6

√
k− 1 + 2)

)
= log(k)

(
2k+1−2

√
k−1(8k− 3− 12

√
k− 1)

)
< log(k)k2k+4−2

√
k−1. (4.12)

By Corollary 4.6 with t = 1 we know that

2−2
√

k−1 < 2
1√
k−1
−2
√

k.

Using this we obtain from inequality (4.12) for k ≥ 100

∑ ′
n∈Mk αD(n) < log(k)k24+ 1√

99
+k−2

√
k. (4.13)

With 2
4+ 1√

99

0.71867 < 42.3 we get by Proposition 4.9 and inequality (4.13) for k ≥ 100,
that

qk,1 =
log(k)k2 · 24+ 1√

99
−2
√

k

0.71867
< log(k)k242.3−

√
k.

But for k ≤ 100 we have that log(k)k242.3−
√

k > 1 , so this upper bound is
trivially true for k ≤ 100. �

Damgård et al. established in [8] an average case error estimate for the
Miller-Rabin test, namely they obtained that pk,1 < k242−

√
k, where pk,t is the

probability that an integer chosen uniformly at random from the set Mk is
composite given that it has passed t consecutive round of the Miller-Rabin
test. To get an idea of how good the bounds are, we let k = 1024 and get:

q1024,1 < 9.6 · 10−12 using Thereom 4.19,

p1024,1 < 9.1 · 10−13 using Theorem 2 in [8].
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4. Average case error estimate for the strong Lucas probable prime test

4.4.3 An estimate for qk,t

Now we consider the average case error estimate for a number, which has
passed t consecutive rounds of the strong Lucas test with respect to ran-
domly chosen bases. We need the following lemma.

Lemma 4.20 Let f (k, t) =
√

k
t

22t

1−21−t . For fixed k0 ≥ 1, f (k0, t) is a monotoni-
cally increasing function for all t ≥ 2 and for a fixed t0 ≥, f (k, t0) is a monotoni-
cally increasing function for all k ≥ 1.

Proof Let us first fix k0 ≥ 1. If ∂ f (k0,t)
∂t ≥ 0, then our function is monotoni-

cally increasing in t.

∂ f (k0, t)
∂t

= −

√
k0
t 22t−1

(1− 21−t)t
+

22t+1 ln 2
√

k0
t

1− 21−t −
2t+1 ln 2

√
k0
t

(1− 21−t)2

=

√
k0
t0

2t

1− 21−t

(
− 2t−1

t
+ 2t+1 ln(2)− 2 ln(2)

1− 21−t

)
≥ 0.

This holds if

−2t−1

t
+ 2t+1 ln(2)− 2 ln(2)

1− 21−t ≥ 0 (4.14)

and√
k0
t0

2t

1− 21−t ≥ 0. (4.15)

(4.14) is equivalent to 2 ≥ 1
2 ln(t)t +

1
2t−1−1 , which is true for t ≥ 1.74322. Since

t ∈ N, we have ∂ f (k0,t)
∂t ≥ 0 for t ≥ 2. (4.15) holds for all t > 1. Thus, for

fixed t0, it follows directly that our function is monotonically increasing in
k. �

Theorem 4.21 For k, t integers with k ≥ 79, 3 ≤ t ≤ k/9 or k ≥ 88, t = 2 we
have

qk,t < k3/2 2t
√

t
logt(k)42.12−

√
tk.

Proof Assume k ≥ 79 and t ≥ 2. When using Proposition 4.18, which says

∑ ′n∈Mk αD(n)t ≤ logt(k)
(

2k−2+t(1−M)+ 2k+1+2t ∑M
j=2 ∑M

m=j 2m(1−t)−j− k−1
j
)

. We

want to estimate ∑M
m=j 2m(1−t). We do this by seeing that ∑M

m=j 2m(1−t) =

∑M
m=0 2m(1−t) − ∑

j−1
m=0 2m(1−t) = 21−t(2j−2M)

1−21−t ≤ 2j(1−t)

1−21−t since j ≤ M. Using this
estimate in Proposition 4.18, we get that

∑ ′
n∈Mk αD(n)t ≤ 2k−2+t(1−M) logt(k) +

2k+1+2t

1− 21−t logt(k)
M

∑
j=2

2−jt− k−1
j , (4.16)
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4.4. Bounding qk,t

for any integer M with 3 ≤ M ≤ 2
√

k− 1− 1. By Corollary 4.7 we have that

jt +
k− 1

j
≥ 2

√
t(k− 1) ∀j, k > 0.

Furthermore, we choose M = d2
√

k−1
t + 1e. In order to use Proposition

4.18, we need to make sure that 3 ≤ M = d2
√

k−1
t + 1e ≤ 2

√
k− 1 − 1.

3 ≤ d2
√

k−1
t + 1e is equivalent to 2 ≤

⌈
2
√

k−1
t

⌉
, which holds for t ≤ k− 1

when k > 1.
Now we check if M = d2

√
k−1

t + 1e ≤ 2
√

k− 1− 1. This is equivalent to

d2
√

k−1
t e ≤ 2

√
k− 1 − 2. For k ≥ 25, we have

⌈
2
√

k−1
t

⌉
≤
⌈

2
√

k−1
2

⌉
≤

2
√

k− 1− 2.

Our choice M = d2
√

k−1
t + 1e implies that 2

√
k−1

t + 1 ≤ M < 2
√

k−1
t + 2,

meaning that M − 1 < 2
√

k−1
t + 1 < 2

√
k
t + 1. Since t ≤ k − 1, we have

1 ≤
√

k
t , which yields M− 1 < 3

√
k
t < 21.6

√
k
t .

We also see that 1 − M = 1 − (
⌈

2
√

k−1
t

⌉
+ 1) = −

⌈
2
√

k−1
t

⌉
≤ −2

√
k−1

t .
Plugging our chosen value for M and the inequalities established above in
(4.16) we get

∑ ′
n∈Mk αD(n)t ≤ 2k−2+t(1−M) logt(k) +

2k+1+2t

1− 21−t logt(k)(M− 1)2−2
√

t(k−1)

< 2k−2−2
√

t(k−1) logt(k) +
2k+2.6+2t

1− 21−t logt(k)

√
k
t

2−2
√

t(k−1)

= 2k−2−2
√

t(k−1) logt(k)

(
1 + 24.6 22t

1− 21−t

√
k
t

)
.

Let f (k, t) = 22t

1−21−t

√
k
t . By Lemma 4.20 we know that for a fixed k0 ≥ 1,

f (k0, t) is a monotonically increasing function for all t ≥ 2, and that for a
fixed t0 ≥ 2, f (k, t0) is a monotonically increasing function for all k ≥ 1.
Thus, we get with k ≥ 79 and t ≥ 2

24.6 22t

1− 21−t

√
k
t
≥ 24.6 24

1− 2−1

√
79
2

= 4877.38 > 4877.

For x > 4877 we have 1 + x = x( 1
x + 1) < x 4878

4877 , which yields

∑ ′
n∈Mk αD(n)t < 2k−2−2

√
t(k−1) logt(k)

4878
4877

24.6 22t

1− 21−t

√
k
t

. (4.17)
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4. Average case error estimate for the strong Lucas probable prime test

With Corollary 4.6 we uppper bound 2−2
√

t(k−1), which says that for all

t, k ≥ 1 we have 2−2
√

t(k−1) < 2−2
√

tk2
√

t
k−1 .

For t = 2 and k ≥ 88, and using the fact that 21+
√

2
k−1 is a monotonically

decreasing function for all k ≥ 1, we have

2
√

t
k−1

1− 21−t =
2
√

2
k−1

1− 21−2 = 21+
√

2
k−1 < 2.222.

For 3 ≤ t ≤ k/9, we have

2
√

t
k−1

1− 21−t ≤
4
3

2
3

26 < 1.7.

In any case we have 2
√

t
k−1

1−21−t < 2.222. Putting these estimates in (4.17), we get

∑ ′
n∈Mk αD(n)t < 2k−2

√
tk+2t logt(k)

4878
4877

22.6 2
√

t
k−1

1− 21−t

√
k
t

< 2k−2
√

tk+2t logt(k)
4878
4877

22.62.222

√
k
t

.

for all 3 ≤ t ≤ (k− 1)/2, k ≥ 79 and for t = 2, k ≥ 88.
Now using Proposition 4.9 and (4.2), we get

qk,t <
4878
4877

2.222
0.71867

22.6 logt(k)4t−
√

tk k3/2
√

t
< logt(k)

k3/2
√

t
42.12+t−

√
tk

for 3 ≤ t ≤ k/9, k ≥ 21 and for t = 2 k ≥ 88. �

For the average case error estimate for the Miller-Rabin test we know from
[8] that pk,t < k3/2 2t

√
t
42−
√

tk. For k = 1024 and t = 16 we get:

q1024,16 < 2.49 · 10−54 using Theorem 4.21

p1024,16 < 7.42 · 10−68 using Theorem 3 in [8].

4.4.4 An estimate for qk,t treating the numbers with large contri-
bution to the estimate differently

We now establish an estimate for qk,t by treating C2, which add the most to
our estimate, differently. However, we will see that it is not an improvement
over the already established results.

Theorem 4.22 For k ≥ 122 and t ≥ 9, we have qk,t < logt(k)
(
(0.35)k2−4t +

(28.68)2−
k
2

k + (3.51)2−t− k
3 k + (3.33)2−2t− k

4 k + (3.30)2−3t− k
5 k.
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4.4. Bounding qk,t

Proof By taking M = 5 in (4.6), which says ∑ ′n∈Mk αD(n)t ≤ 2t(1−M)|Mk|+
∑M

m=2 2(2−m)t|Mk ∩ Cm| we have

∑ ′
n∈Mk αD(n)t ≤ logt(k)

[
2−4t | Mk | + | Mk ∩ C2 | +2−t | Mk ∩ C3 |

+ 2−2t | Mk ∩ C4 | +2−3t | Mk ∩ C5 |
]
.

We use the bounds | Mk ∩ Cm |≤ cm2k− k
m established in Lemmas 4.12 and

4.13, which yields in

∑ ′
n∈Mk αD(n)t ≤ logt(k)

[
2k−2−4t + 20.62 · 2k/2

k2 + 2.52 · 2k− k
3

+ 2.39 · 2k− k
4 + 2.37 · 2k− k

5 .

]
. (4.18)

Now using (4.2) and Proposition 4.9, we get

qk,t ≤
∑ ′n∈Mk αD(n)t

π(2k)− π(2k−1)

≤ k logt(k)
2k · 0.71867

· (2k−2−4t + 20.62 · 2k/2

k2 + 2.52 · 2k− k
3

+ 2.39 · 2k− k
4 + 2.37 · 2k− k

5 )

≤ logt(k)
(
(0.35)k2−4t +

(28.68)2−
k
2

k
+ (3.51)2−t− k

3 k

+ (3.33)2−2t− k
4 k + (3.30)2−3t− k

5 k
)

. �

The following result complements Theorems 4.19, 4.21 and 4.22.

Theorem 4.23 For integers k, t with k ≥ 122 and t ≥ k/9 we have

qk,t < logt(k)
(
(0.35)k2−4t +

(28.68)2−
k
2

k
+ (3.51)2−t− k

3 k + (3.35)2−2t− k
4 k
)

.

Proof We bound the last term of Theorem 4.22 (3.30)2−3t− k
5 by c · 2−2t− k

4 for
some c ∈ R.

(3.30)2−3t− k
5 = (3.30)2−2t−t− k

5−
k

20+
k

20 = (3.30)2−t+ k
20 2−

k
4−2t. (4.19)

t ≥ k/9 implies 2−t ≤ 2−
k
9 . With k ≥ 122 we get

(3.3)2−3t− k
5 = (3.3)2−t+ k

20 2−
k
4−2t ≤ (3.3)2−

k
9+

k
20 2−

k
4−2t

< 0.0.02−
k
4−2t.
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4. Average case error estimate for the strong Lucas probable prime test

Using Theorem 4.22, we get

qk,t < logt(k)
(
(0.35)k2−4t +

(28.68)2−
k
2

k
+ (3.51)2−t− k

3 k

+ (3.33)2−2t− k
4 k + (0.02)2−2t− k

4 k
)

= logt(k)
(
(0.35)k2−4t +

(28.68)2−
k
2

k
+ (3.51)2−t− k

3 k + (3.35)2−2t− k
4 k
)

.�

Using k = 1024 and t = 115, we get

qk,t < 7.7 · 10−38

pk,t < 2.9 · 10−171.

As t gets larger, the estimate becomes useless. For example for k = 1024
and t = 256, we already obtain for our estimate from Theorem 4.23 that
qk,t < 3.1 · 1012.

4.5 Bounding qk,l,t

We have seen that the estimate of qk,t in Section 4.4 is good when t is small,
however is useless for large t. Therefore, we are looking for a new bound
for αD(n). Let us first state a lemma:

Lemma 4.24 Let n be relatively prime to 2D and let p̃l be the l-th prime. If n is
not divisible by all of the first l odd primes, then

ϕD(n) ≤
(

1 +
1

p̃l+1

)ω(n)

· n,

which implies

αD(n) ≤
(

1 +
1

p̃l+1

)ω(n)

· αD(n).

Proof For n1, n2 ∈N with gcd(n1, n2) = 1, we have the relation

ϕD(n1, n2) = ϕD(n1)ϕD(n2).

It is thus sufficient to only treat the case n = pr. We have

ϕD(pr)

pr =
pr−1(p− ε(p))

pr = 1− ε(p)
p
≤ 1 +

1
p

.

With p ≥ p̃l+1, the result follows directly. �
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Example 4.25 If our odd prime n is not divisible by 3 and relatively prime to 2D,
we get

αD(n) ≤
(

6
5

)ω(n)

αD(n). (4.20)

Lemma 4.26 Let n ∈ Cm. Then

ω(n) ≤ m.

Proof We know by Lemma 4.3, that

αD(n) ≤ 21−ω(n)
ω(n)

∏
i=1

p1−ri · (p− ε(p), n− ε(n))
p− ε(p)

≤ 21−ω(n).

Also since n ∈ Cm, we have 2−m < αD(n). Combining the two inequalities
yields

2−m < αD(n) ≤ 21−ω(n),

which gives us ω(n)− 1 < m, thus ω(n) ≤ m. �

Definition 4.27 Let Mk,l denote the set of odd k-bit integers that are not divisible
by the first odd l primes. Let qk,l,t be the probability that a composite integer n,
which is chosen uniformly at random from Mk,l passes t rounds of the strong Lucas
test with randomly chosen bases (P, Q).

With Lemmas 4.24 and 4.26, we are ready for the next theorem.

Theorem 4.28 For any integers k, t, l we get

∑ ′
n∈Mk,l αD(n)t ≤

∞

∑
m=2

∑
n∈Mk,l∩Cm\Cm−1

(
1 +

1
p̃l+1

)mt
2−(m−1)t.

Proof By Lemmas 4.24 and 4.26 and the fact that when m ∈ Cm \ Cm−1 we
have that 2−m < αD(n) ≤ 2−(m−1), we get

∑ ′
n∈Mk,l αD(n)t =

∞

∑
m=2

∑
n∈Mk,l∩Cm\Cm−1

αD(n)t

≤
∞

∑
m=2

∑
n∈Mk,l∩Cm\Cm−1

(
1 +

1
p̃l+1

)ω(n)t
αD(n)t

≤
∞

∑
m=2

∑
n∈Mk,l∩Cm\Cm−1

(
1 +

1
p̃l+1

)mt
2−(m−1)t. �
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4. Average case error estimate for the strong Lucas probable prime test

Lemma 4.29 For any integers k, t, M, l with 3 ≤ M ≤ 2
√

k− 1− 1, we have

∑ ′
n∈Mk,l αD(n)t ≤ 2k−2+t

∞

∑
m=M+1

(
1 +

1
p̃l+1

)mt
2−mt

+2k+1+t
M

∑
m=2

m

∑
j=2

(
1 +

1
p̃l+1

)mt
2m(1−t)−j− k−1

j .

Proof We know by Theorem 4.28 that

∑ ′
n∈Mk,l αD(n)t ≤

∞

∑
m=2

∑
n∈Mk,l∩Cm\Cm−1

(
1 +

1
p̃l+1

)mt
2−(m−1)t

=
∞

∑
m=M+1

∑
n∈Mk,l∩Cm\Cm−1

(
1 +

1
p̃l+1

)mt
2−(m−1)t

+
M

∑
m=2

∑
n∈Mk,l∩Cm\Cm−1

(
1 +

1
p̃l+1

)mt
2−(m−1)t

≤
∞

∑
m=M+1

(
1 +

1
p̃l+1

)mt
2−(m−1)t | Mk |

+
M

∑
m=2

(
1 +

1
p̃l+1

)mt
2−(m−1)t | Mk ∩ Cm |

(4.21)

≤ 2k−2+t
∞

∑
m=M+1

(
1 +

1
p̃l+1

)mt
2−mt

+ 2k+1+t
M

∑
m=2

m

∑
j=2

(
1 +

1
p̃l+1

)mt
2m(1−t)−j− k−1

j .
(4.22)

Where the inequality (4.22) follows from Theorem 4.8. �

4.5.1 An estimate for qk,l,1

Now let us look at the case t = 1 in more depth. In order to establish a new
estimate, we need the following lemma:

Lemma 4.30 For t = 1, 3 ≤ M ≤ 2
√

k− 1− 1, we have

∑ ′
n∈Mk,l αD(n) ≤2k−1−M(1 + 1

p̃l+1

)M+1

+ 2k−2
√

k−1+1
(

1 +
1

p̃l+1

)M
M(M− 1).

56



4.5. Bounding qk,l,t

Proof For t = 1 we have from Lemma 4.29 that

∑ ′
n∈Mk,l αD(n) ≤2k−1

∞

∑
m=M+1

(
1 +

1
p̃l+1

)m
2−m

+ 2k+2
M

∑
m=2

m

∑
j=2

(
1 +

1
p̃l+1

)m
2−j− k−1

j .
(4.23)

Evaluating the first part of the sum and using that 1 + 1
p̃l+1
≥ 1 yields

∑∞
m=M+1

(
1 + 1

p̃l+1

)m
2−m =

2−M
(

1+ 1
p̃l+1

)M+1

2−(1+ 1
p̃l+1

)
≤ 2−M(1 + 1

p̃l+1

)M+1
.

For the second part of the sum in (4.23) using Corollary 4.7 with t = 1,
where we have j + k−1

j ≥ 2
√

k− 1 for all j and k, we get that

2k+2
M

∑
m=2

m

∑
j=2

(
1 +

1
p̃l+1

)m
2−j− k−1

j ≤ 2k−2
√

k−1+2
M

∑
j=2

M

∑
m=j

(
1 +

1
p̃l+1

)m
.

With m ≤ M, we get

M

∑
j=2

M

∑
m=j

(
1 +

1
p̃l+1

)m
≤
(

1 +
1

p̃l+1

)M M

∑
j=2

M

∑
m=j

1 =
(

1 +
1

p̃l+1

)M
2−1M(M− 1),

which concludes our proof. �

Theorem 4.31 For k ≥ 2, we have

qk,l,1 < k241.8−
√

k
(

1 +
1

p̃l+1

)2
√

k−1−2
.

Proof With Lemma 4.30 we get that

∑ ′
n∈Mk,l αD(n)t ≤2k−1−M(1 + 1

p̃l+1

)M+1

+ 2k−2
√

k−1+1
(

1 +
1

p̃l+1

)M
M(M− 1).

Choosing M = b2
√

k− 1− 2c, with this we have that M ≥ 2
√

k− 1− 3 and
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4. Average case error estimate for the strong Lucas probable prime test

M ≤ 2
√

k− 1− 2. Thus we get

∑ ′
n∈Mk,l αD(n) ≤ 2k−1−M(1 + 1

p̃l+1

)M+1
+ 2k−2

√
k−1+1

(
1 +

1
p̃l+1

)M
M(M− 1)

≤ 2k−2
√

k−1+2( p̃l+1 + 1
p̃l+1

)M+1

+ 2k−2
√

k−1+1
(

1 +
1

p̃l+1

)M
(4k− 10

√
k− 1 + 2)

≤ 2k−2
√

k−1+2
(

1 +
1

p̃l+1

)M+1
(1 + 2k− 5

√
k− 1 + 1)

≤ 2k−2
√

k−1+2
(

1 +
1

p̃l+1

)M+1
(2k)

≤ 2k−2
√

k−1+3
(

1 +
1

p̃l+1

)2
√

k−1−1
k.

Combined with inequality (4.2) we have

qk,l,1 =
∑ ′n∈Mk,l αD(n)t

π(2k)− π(2k−1)
≤

k22−2
√

k−1+3
(

1 + 1
p̃l+1

)2
√

k−1−1

0.71867

≤ k24−
√

k−1+1.73
(

1 +
1

p̃l+1

)2
√

k−1−1
. (4.24)

Let us simplify this expression. Corollary 4.6 says that for all k ≥ 1 it holds

that 2−2
√

k−1 < 2−2
√

k+ 1√
k−1 . Thus for k ≥ 53, we have

2−2
√

k−1 < 2−2
√

k+ 1√
52 < 4−

√
k+0.07

qk,l,1 < k241.8−
√

k
(

1 +
1

p̃s+1

)2
√

k−1−2
,

which shows that the theorem is true for k ≥ 53. However,

k241.8−
√

k
(

1 +
1

p̃l+1

)2
√

k−1−2
> k241.8−

√
k > 1

for k ≤ 59, so the theorem is trivially true for k ≤ 59. �

Let us look at the bound for qk,l,1 in Theorem 4.31 in more detail. When the

(l + 1)-th prime is fairly large,
(

1 + 1
p̃l+1

)
is approximately equal to 1. For

example for k = 1024, l = 128, we get that
(

1 + 1
p̃l+1

)2
√

k−1−1
< 1.09. When

multiplied with the dominant factor 4−
√

k, this number is almost negligible.
Thus

qk,l,1 < k241.8−
√

k
(

1 +
1

p̃l+1

)2
√

k−1−1
≈ k241.8−

√
k.
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Example 4.32 When k = 1024, the version 3.0 of OpenSSL checks if our 1024-bit
integer is divisible by the first 128 odd primes. The 129-th odd prime is 733. With
this we have

q1024,128,1 ≤ (1024)241.8−
√

1024
(734

733

)2
√

1023−1
≤ 7.6 · 10−13.

Using Theorem 3 in [8], we would get for k = 1024 with the Miller-Rabin test that

p1024,1 ≤ k242−
√

k ≤ 9.52 · 10−13.

Thus we already have an improvement over the estimate of the Miller-Rabin test.

For k = 1024 we also see that this is an improvement over Theorem 4.19, as there
we have q1024,1 < 9.6 · 10−12.

Corollary 4.33 Let n be an odd integer, not divisible by the first 128 odd primes.
Then for all k ≥ 2, we have that qk,128,1 < k241.87727−

√
k.

Proof Using (4.24) we have that

qk,128,1 ≤ k24−
√

k−1+1.73
(734

733

)(2√k−1−1)
.

We have that

log4

((734
733

)(2√k−1−1))
= (2
√

k− 1− 1) log4

(734
733

)
≤ (2
√

k− 1− 1)0.0009.

Thus

qk,128,1 ≤ k241.73−
√

k−1+0.0009(2
√

k−1−1) ≤ k241.7291−0.9982
√

k−1. (4.25)

Using the inequality
√

k < 0.9982
√

k− 1 + 1
3
√

k
, which holds for all k ≥ 2,

we get for k ≥ 5 in (4.25)

qk,128,1 ≤ k241.7291−0.9982
√

k−1 ≤ k241.7291−
√

k+ 1
3
√

k ≤ k241.7291−
√

k+ 1
3
√

5 ≤ k241.88−
√

k.

But k241.88−
√

k > 1 for all k ≤ 60, so the bound holds trivially for all k ≤ 61.�

Example 4.34 When k = 2048, the version 3.0 of OpenSSL checks if our 2048-bit
integer is divisible by the first 384 odd primes. The 385-th odd prime is 2659. With
this we have

q2048,1 ≤ (2048)241.8−
√

2048
(2660

2659

)2
√

2047−1
≤ 2.98 · 10−20.

Using Theorem 3 in [8], we would get for k = 2048 with the Miller-Rabin test that

p2048,384,1 < 2.99 · 10−20.

We again see that this estimate of the strong Lucas probable prime test is a bit better.
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4. Average case error estimate for the strong Lucas probable prime test

4.5.2 An estimate for qk,l,t

Now let let t ≥ 2. In this section we will establish bounds for qk,l,t. Theorem
4.36 is better for smaller t, whereas Theorem 4.38 yields a better estimate for
larger t.

Corollary 4.35 Let ρ = 1 + 1
p̃l+1

. Then

2t − ρt ≥ 1
2

ρt.

Proof Using the fact that ρ ≤ 4
3 < 2, we get

2t − ρt ≥ ρt(
2
ρ
− 1) ≥ ρt(

2 · 3
4
− 1) = ρt(

3
2
− 1) =

1
2

ρt.

Theorem 4.36 For any integers 2 ≤ t ≤ (k− 1)/9, k ≥ 21, l ∈N we have

qk,l,t ≤ 41.72−
√

tkk3/22t
(

1 +
1

p̃l+1

)2
√

kt+t
.

Proof By Lemma 4.29, we know that

∑ ′
n∈Mk,l αD(n)t ≤2k−2+t

∞

∑
m=M+1

(
1 +

1
p̃l+1

)mt
2−mt

+ 2k+1+t
M

∑
j=2

M

∑
m=j

(
1 +

1
p̃l+1

)mt
2m(1−t)−j− k−1

j .
(4.26)

for any integer 2 ≤ M ≤ 2
√

k− 1− 1. Let us again use the notation ρ =
1 + 1

p̃l+1
. Let us first look at the left hand side of the sum (4.26). Using

Corollary 4.35, which says 2t − ρt ≥ 1
2 ρt, we get that

2k−2+t
∞

∑
m=M+1

ρmt2−mt = 2k−2+t 2−Mtρt(M−1)

2t − ρt ≤ 2k−2+t 2−Mtρt(M−1)

2−1ρt (4.27)

= 2k−1−(M−1)tρ(M−2)t. (4.28)

Now let look at the right hand side of the sum (4.26). Using ∑M
m=j 2m(1−t) <

2j(1−t)+t

2t−2 , and m ≤ M we obtain

2k+1+t
M

∑
j=2

M

∑
m=j

ρmt2m(1−t)−j− k−1
j ≤ 2k+1+2tρMt

2t − 2

M

∑
j=2

2−jt− k−1
j . (4.29)
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Now, we shall use Corollary 4.7, which states that jt + k−1
j ≥ 2

√
t(k− 1) for

all j, k > 0. Further, we let M =
⌈

2
√

k−1
t

⌉
. Thus, to have M ≥ 3, we must

restrict t to t ≤ k− 1. Further, for k ≥ 9, we have

M =
⌈

2

√
k− 1

t

⌉
≤
⌈

2

√
k− 1

2

⌉
≤ 2
√

k− 1− 1.

Moreover, we have M ≥ 2
√

k−1
t and M − 1 < 2

√
k−1

t . From (4.26), using
(4.27) and (4.29), we get

∑ ′
n∈Mk,l αD(n)t ≤ 2k−1−(M−1)tρ(M−2)t +

2k+1+2t−2
√

t(k−1)

2t − 2
ρMt(M− 1)

≤ 2k−1+t−2
√

t(k−1)ρ2
√

(k−1)t−t (4.30)

+
2k+2+2t−2

√
t(k−1)

2t − 2
ρ2
√

(k−1)t+t

√
k
t

= 2k−1+t−2
√

t(k−1)ρ2
√

(k−1)t+t

(
ρ−2t +

23+t

2t − 2

√
k
t

)

< 2k−1+t−2
√

t(k−1)ρ2
√

(k−1)t+t

(
1 +

23+t

2t − 2

√
k
t

)
. (4.31)

The function 2t

2t−2
1√

t
is monotonically decreasing for all t > 1, thus we have

for t ≥ 2
23+t

2t − 2

√
k
t
<

25

2

√
k
2
=

24
√

2

√
k = 41.75

√
k.

We have for k ≥ 1 that 1 + 41.75
√

k <
√

k(1 + 41.75) =
√

k41.812. We also use

Corollary 4.6, which says that for all t, k ≥ 1 that 2−2
√

t(k−1) ≤ 2−2
√

tk2
√

t/(k−1).
For t ≤ (k− 1)/9, we get

2
√

t/(k−1) ≤ 2
√

1/9 = 1.25992 < 1.26.

Thus, we get from (4.30)

∑ ′
n∈Mk,l αD(n)t ≤ 2k−1+tρ2

√
(k−1)t+t41.812−

√
tk(1.26)

√
k

= 2k+tρ2
√

kt+t41.312−
√

tk(1.26)
√

k.

Using (4.2), we get

qk,l,t ≤
∑ ′n∈Mk,l αD(n)t

π(2k)− π(2k−1)
≤ 2k+tρ2

√
kt+t41.312−

√
tk(1.26)

√
kk

(0.71867)2k

= 41.72−
√

tkk3/22t
(

1 +
1

p̃s+1

)2
√

kt+t
. �
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4. Average case error estimate for the strong Lucas probable prime test

Example 4.37 Let our odd k-bit integer not be divisible by the first 128 odd primes.
Then Theorem 4.36 says that for 2 ≤ t ≤ (k− 1)/9

qk,128,t ≤ 41.72−
√

tkk3/22t
(734

733

)2
√

kt+t
.

For k = 1024 and t = 16, we get

q1024,128,16 ≤ 2.92 · 10−67.

Compared with Theorem 3 from [8], which says that pk,t < k3/2 2t
√

t
42−
√

tk, we have

p1024,16 < 7.42 · 10−68.

4.5.3 A good estimate when t is large

We are now using a different approach to bound qk,l,t, which is a lot more
powerful when t is large. In order to achieve such an estimate, we treat
the four “worst” categories separately, namely C2, C3, C4 and C5. We use
Lemmas 4.12 and 4.13, which state that for k ≥ 122, we have

| Mk ∩ C2 | < 20.62
2k/2

k2

| Mk ∩ C3 | ≤ (2.52)2k− k
3

| Mk ∩ C4 | ≤ (2.39)2k− k
4

| Mk ∩ C5 | ≤ (2.37)2k− k
5 .

Theorem 4.38 Let k ≥ 122 and ρ = 1 + 1
p̃s+1

, then

qk,l,t ≤ 2−1.52340−4t ρ6t

2t − ρt k + ρ2t24.84257− k
2−tk−1 + ρ3t21.82− k

3−2tk

+ ρ4t21.74− k
4−3tk + ρ5t21.73− k

5−4tk.

Proof Let us choose M = 5. With equation (4.21) we get

∑ ′
n∈Mk,l αD(n)t ≤ 2k−2+t

∞

∑
m=6

ρmt2−mt +
5

∑
m=2

ρmt2−(m−1)t | Mk ∩ Cm | . (4.32)

Evaluating the first sum yields

2k−2+t
∞

∑
m=6

ρmt2−mt = 2k−2+t ρ6t2−5t

2t − ρt = 2k−2−4t ρ6t

2t − ρt .
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Thus, we get

∑ ′
n∈Mk,l αD(n)t ≤2k−2−4t ρ6t

2t − ρt + ρ2t2−t | Mk ∩ C2 | +ρ3t2−2t | Mk ∩ C3 |

+ ρ4t2−3t | Mk ∩ C4 | +ρ5t2−4t | Mk ∩ C5 | .
(4.33)

Using Lemma 4.12 and 4.13, we get

∑ ′
n∈Mk,s αD(n)t ≤ 2k−2−4t ρ6t

2t − ρt + ρ2t2
k
2−t 20.62

k2 + ρ3t2k− k
3−2t(2.52)

+ρ4t2k− k
4−3t(2.39) + ρ5t2k− k

5−4t(3.37).

Using (4.9), we get

qk,l,t ≤
∑ ′n∈Mk,l αD(n)t

π(2k)− π(2k−1)

≤ 2−4t ρ6t

2t − ρt
2−2

0.71867
k + ρ2t2−

k
2−t 20.62

0.71867
k−1 + ρ3t2−

k
3−2t 2.52

0.71867
k

+ ρ4t2−
k
4−3t 2.39

0.71867
k + ρ5t2−

k
5−4t 2.37

0.71867
k

≤ 2−1.52340−4t ρ6t

2t − ρt k + ρ2t24.84257− k
2−tk−1 + ρ3t21.82− k

3−2tk

+ ρ4t21.74− k
4−3tk + ρ5t21.73− k

5−4tk. (4.34)
�

The following Corollary is useful for when t is very large.

Corollary 4.39 Let t ≥ k/9 and k ≥ 122. Also let ρ = 1 + 1
p̃s+1

. We then have

qk,l,t ≤ 2−1.52340−4t ρ6t

2t − ρt k+ ρ2t24.84257− k
2−tk−1 + ρ3t22.14326− k

3−2tk+ ρ5t2−3.98− k
4−3tk.

Proof For t ≥ k/9 and k ≥ 122 the last term of equation (4.34) can be bound
through

ρ5t21.73− k
5−4t ≤ ρ5t21.73− k

4+
k

20−3t−t

= ρ5t21.73− k
4+

k
20−3t− k

9

≤ ρ5t21.73− k
4−3t− 11k

180

≤ ρ5t21.73− k
4−3t− 11·122

180

≤ ρ5t2−5.72− k
4−3t.
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Thus we get

qk,l,t ≤ 2−1.52340−4t ρ6t

2t − ρt k + ρ2t24.84257− k
2−tk−1 + ρ3t21.82− k

3−2tk

+ ρ4t21.74− k
4−3tk + ρ5tk2−5.72− k

4−3t)

≤ 2−1.52340−4t ρ6t

2t − ρt k + ρ2t24.84257− k
2−tk−1 + ρ3t21.82− k

3−2tk

+ ρ5t2−3.98− k
4−3tk. �

4.5.4 An estimate excluding the case of twin primes

We are interested in what happens with our average case error probability
estimate when we use the fourth variant as discussed in Section 4.3. We
make sure that our n is not a product of twin primes, which can for example
be achieved using Newton’s method. However, we see that this does not
make a big difference.

Corollary 4.40 Let n be a k-bit integer, where n is not of the form n = m(m + 2)
for an m ∈N. Also let ρ = 1 + 1

p̃l+1
. Then

qk,l,t ≤ 2−1.52340−4t ρ6t

2t − ρt k + ρ3t21.82− k
3−2tk + ρ4t21.74− k

4−3tk + ρ5t21.73− k
5−4tk.

This follows directly from the proof of Theorem 4.38, where our sum in
(4.32) starts at m = 3.

Let k = 1024, t = 115, s = 128, ρ = 734
733 . We get

q1024,128,115 < 5.95 · 10−169 using Theorem 4.38

q1024,128,115 < 1.05 · 10−166 using Theorem 4.36

q1024,128,115 < 5.95 · 10−169 using Corollary 4.40

p1024,115 < 5.06 · 10−168 using Theorem 3 in [8]

p1024,115 < 2.90 · 10−171 using Theorem 6 in [8].

4.6 Outline of the average case proofs of the Miller-
Rabin test by Damg̊ard et al.

In Subsection 2.3.1 we have talked about the average case error estimate
for the Miller-Rabin test pk,t, and stated some bounds established in [8] by
Damgård, Landrock and Pomerance: They have shown that pk,1 < k242−

√
k

for all k ≥ 2, and that pk,t < k3/2 2t
√

t
42−
√

tk. We have already mentioned that
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4.6. Outline of the average case proofs of the Miller-Rabin test by Damgård et al.

the bounds we have obtained for the strong Lucas test have been proven do-
ing a similar analysis. We now give a rough sketch of the proof by Damgård
et al. Recall the result from Theorem 2.11, which enabled us to count S(n).
Let α = S(n)/ϕ(n) for n > 1, n odd and let Bm denote the set of odd com-
posite integers n with α(n) > 2−m. They have shown the following theorem:

Theorem (Theorem 1 in [8]) If m, k are positive integers with m+ 1 ≤ 2
√

k− 1,
then

| Bm ∩Mk |
| Mk |

<
8
3
(π2 − 6)

m

∑
j=2

2m−j−(k−1)/j.

Now, let us define α(n) = S(n)/(n− 1). For the average case error probabil-
ity we have

pk,t =
∑ ′n∈Mk α(n)t

∑n∈Mk
α(n)t ≤

∑′n∈Mk
α(n)t

∑p∈Mk
α(p)t =

∑′n∈Mk
α(n)t

π(2k)− π(2k−1)
. (4.35)

It is clear that ϕ(n) ≤ n − 1 for all n ∈ N. Thus, we directly see that
α(n) ≤ α(n). Using this, they have upper bound the final sum in 4.35:

∑ ′
n∈Mk α(n)t =

∞

∑
m=3

∑
n∈Mk∩Bm\Bm−1

α(n)t ≤
∞

∑
m=3

∑
n∈Mk∩Bm\Bm−1

α(n)t

≤
∞

∑
m=3

2−(m−1)t | Mk ∩ Bm \ Bm−1 |

≤ 2−Mt | Mk \ BM | +
M

∑
m=3

2−(m−1) | Mk ∩ Bm | . (4.36)

They have bound inequality (4.36) using Theorem 1 in [8] and then they have
demonstrated various inequalities in order to establish the average case error
bounds. Moreover, in inequality (4.36) they treated B3, which add the most
to the estimate for the Miller-Rabin test, differently.

The approach in this thesis broadly follows the same direction. We do nu-
merous adjustments of Theorem 1 from [8], which enabled us to proof The-
orem 4.8. As qk,t includes αD(n), we need to find a way to upper bound
ϕD(n) using n. However, we see by Lemma 4.10, that ϕD(n) ≤ n does
not hold in general, therefore we needed to find other ways to do this ap-
proximation. Using the estimate by Akbary and Friggstad (see [3]), which
says that n

ϕ(n) ≤ (1.07)eγ log(log(n)) for n ≥ 278, we obtained the bound
ϕD(n) < (1.07)n · eγ log(k). From there on we presented many mathemati-
cal inequalities, which enabled us to prove Theorem 4.19 and Theorem 4.21.
However, for large t, the theorem is useless, as logt(k) increases faster than
the rest decreases. Then, we found a way to upper bound ϕD(n), namely
doing trial division by small primes before performing the strong Lucas test.
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4. Average case error estimate for the strong Lucas probable prime test

This gave us the estimate ϕD(n) ≤
(

1 + 1
p̃l+1

)ω(n)

n, where p̃l is the l-th

prime. When l is chosen appropriately, the

(
1 + 1

p̃l+1

)ω(n)

is close to 1. We

again argumented similarly in order to find explicit upper bounds for qk,l,t.
We then used the same technique to treat the numbers with largest contribu-
tion to the estimate for the strong Lucas test differently in the proof.
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Chapter 5

Classifying C3

The numbers that comprise C2 have been characterized in [8]. In Subsec-
tions 4.4.4 and 4.5.3 we used this knowledge to get improved estimates for
qk,t when t is large, treating C2 differently in the analysis. Now in this sec-
tion, we classify the members of C3, with the goal of proceeding similarly.
However, we will see that the Lucas-Carmichael numbers, see Definition
2.32, belong to this set. Unfortunately, establishing bounds for them is still
an open question in number theory, thus we will not be able to proceed
further. Once bounds are found, the derivation is straightforward, see in-
equality (4.33) in the proof of Theorem 4.38.

For the remainder of this chapter, let D be an integer and n = pr1
1 . . . prs

s
be the prime decomposition of an integer n relatively prime to 2D. Let
n− ε(n) = 2κq and pi − ε(pi) = 2ki qi, with q, qi odd, ordering the pi’s such
that k1 ≤ · · · ≤ ks. For integers m, n, β, we mean by mβ || n that mβ | n and
mβ+1 - n.

Let us first establish all results we need to classify C3. By Lemma 3.3, we
know that we have the following inequalities:

SL(D, n)
ϕD(n)

≤


1

2s−1 ∏s
i=1

gcd(q,qi)
qi

,
1

2s−1 ∏s
i=1

1
p

ri−1
i

,

1
2s−1+δ2+...+δs , where δi = ki − k1.

(5.1)

We also need the following lemmas.

Lemma 5.1
SL(D, n))

ϕD(n)
≤ 2s+1+∑s

i=1(k1−ki)
s

∏
i=1

gcd(q, qi)

qi
.

67



5. Classifying C3

Proof From Lemma 4.2 we know that
(

1+∑k1−1
j=0 2js

)
≤ 2 · 2(k1−1)s. Thus we

get

SL(D, n) =
( s

∏
i=1

gcd(q, qi)− 1
)
+

k1−1

∑
j=0

2js
s

∏
i=1

gcd(q, qi)

≤
(

1 +
k1−1

∑
j=0

2js
) s

∏
i=1

gcd(q, qi) ≤ 21+(k1−1)s
s

∏
i=1

gcd(q, qi)

and

ϕD(n) =
s

∏
i=1

pri−1
i (pi − ε(pi)) ≥

s

∏
i=1

(pi − ε(pi)) =
s

∏
i=0

2ki qi.

Combining them we get

SL(D, n)
ϕD(n)

≤ 21+(k1−1)s
s

∏
i=1

gcd(q, qi)

2ki qi
= 2s+1+∑s

i=1(k1−ki)
s

∏
i=1

gcd(q, qi)

qi
. (5.2)

�

Lemma 5.2 Let n = p1 p2 and δ2 = k2 − k1. Then

2kq = 22k1+δ2 q1q2 ± 2k1(q1 ± 2δ2 q2).

Proof

2kq =p1 p2 − ε(p1 p2)

=(2k1 q1 + ε(p1))(2k1+δ2 q2 + ε(p2))− ε(p1 p2)

=22k1+δ2 q1q2 + 2k1 q1ε(p2) + 2k1+δ2 q2ε(p1) + ε(p1)ε(p2)− ε(p1 p2)

=22k1+δ2 q1q2 + 2k1(q1ε(p2) + 2δ2 q2ε(p1))

=22k1+δ2 q1q2 ± 2k1(q1 ± 2δ2 q2). �

Lemma 5.3

SL(D, n)
ϕD(n)

=
1

2k1+k2+···+ks

s

∏
i=1

1

pri−1
i

(
s

∏
i=1

gcd(q, qi)− 1
qi

+
2sk1 − 1
2s − 1

s

∏
i=1

gcd(q, qi)

qi

)
.

Proof We have

ϕD(n) =
s

∏
i=1

ϕD(pri
i ) =

s

∏
i=1

pri−1
i (2ki qi) = 2k1+k2+···+ks

s

∏
i=1

qi

s

∏
i=1

pri−1
i .

Together with

SL(D, n) =
( s

∏
i=1

gcd(q, qi)− 1
)
+

k1−1

∑
j=0

2js
s

∏
i=1

gcd(q, qi)

=
( s

∏
i=1

gcd(q, qi)− 1
)
+

2sk1 − 1
2s − 1

s

∏
i=1

gcd(q, qi)

we get the desired result. �
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Now we can prove the main theorem of this chapter.

Theorem 5.4 The following numbers comprise C3:

1. n = 9, 25, 49.

2. n = p1 p2 =


(2k1 q1 − 1)(2k1 q1 + 1),
(2k1 q1 + ε(p1))(3 · 2k1 q1 + ε(p2)),
(2k1 q1 + ε(p1))(2 · 2k1 q1 + ε(p2)) with (q1, k1) 6= (1, 1),

where all the q1’s are odd and k1 ∈N and each factor is prime.

3. n = 45, 63, 99, 117, 333.

4. n = p1 p2 p3 is a product of three distinct prime factors, pi − ε(pi) | n− ε(n)
and there is some integer k1 such that 2k1 || pi − ε(pi) for all i ∈ {1, 2, 3}.

Proof 1. Let s = 1. Then n is of the form n = pr1
1 , where r1 ≥ 2. By the

second inequality of (5.1), we know that αD(n) ≤ 1
p

ri−1
i

. Thus if r1 ≥ 3,

then αD(n) ≤ 1
9 and n 6∈ C3. If r1 = 2, then αD(n) ≤ 1

11 for pi > 7.
Thus the only candidates for n ∈ C3 are n = 32, 52, 72.

2. Now let s = 2 and p1, p2 ≥ 3. If p1 = 3, then r1 ≤ 2 and r2 ≤ 1,
otherwise by the second inequality of (5.1), we have that αD(n) ≤ 1

18 .
If p1, p2 ≥ 5 we again have by the second inequality of (5.1), that
ri = 1, because otherwise αD(n) ≤ 1

2 ·
1
5 = 1

10 . Thus either n = p1 p2
with p1, p2 ≥ 3 or n = 32 p2. The latter case is treated in 3.

Now let n = p1 p2 with p1 − ε(p1) = 2k1 q1 and p2 − ε(p2) = 2k2 q2. If
k2 ≥ k1 + 2 we have by the third inequality of (5.1), that αD(n) ≤ 1

8 .
Thus either k2 = k1 or k2 = k1 + 1.

If k1 = k2, we have by the first inequality of (5.1) that either both
gcd(q,q1)

q1
= gcd(q,q2)

q2
= 1 or gcd(q,qi)

qi
= 1

3 for exactly one i and gcd(q,qj)
qj

= 1

for the other j 6= i, because otherwise αD(n) ≤ 1
18 .

If k2 = k1 + 1, it must hold that gcd(q,q1)
q1

= gcd(q,q2)
q2

= 1, otherwise by

Lemma 5.2 we have that αD(n) ≤ 1
12 , which implies that n 6∈ C3.

For n = p1 p2, we are left to check the four cases: k1 = k2 and q1 6= q2,
k1 = k2 and q1 = q2, k2 = k1 + 1 and q1 6= q2 and k2 = k1 + 1 and
q1 = q2.

Now let us first assume that k1 = k2 and q1 6= q2. Either both gcd(q,q1)
q1

=
gcd(q,q2)

q2
= 1 or one of the fractions is 1

3 and the other one is 1.
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5. Classifying C3

Let gcd(q,q1)
q1

= gcd(q,q2)
q2

= 1, which is equivalent to q1, q2 | q. Thus, q1, q2

both divide by Lemma 5.2 with δ2 = 0

2κ = 22k1 q1q2 ± 2k1(q1 ± q2).

This is only possible if q1 = q2, which is contradictory to our assump-
tion that q1 6= q2.

For the other case, since the primes are ordered with respect to the
size of the ki, but here k1 = k2, the order is irrelevant, we let without
loss of generality q1 = gcd(q, q1) and q2 = 3 gcd(q, q2). The former is
equivalent to q1 | q and the latter is equivalent to 1

3 q2 | q. Thus, q1 and
1
3 q2 both divide by Lemma 5.2 with δ2 = 0

2κq = 2k1(q1 ± q2).

It follows that q1 | q2, which implies that there exists some a ∈ N

such that q1 · a = q2, and that 1
3 q2 | q2. This implies that there exists

some b ∈ N such that 1
3 q2b = q1. Solving the two equations yields in

a = 3 and b = 1, thus q2 = 3q2. Therefore, p1 − ε(p1) = 2k1 q1 and
p2 − ε(p2) = 2k13q1. Thus

n = (2k1 q1 + ε(p1))(2k13q1 + ε(p2)) with ε(p1), ε(p2) ∈ {±1}.

Now let us check if an n of such a form is actually in C3. By Lemma
5.3 we have

αD(n) =
1

4k1

(q1 − 1
q1

1
3 q2 − 1

q2
+

4k1 − 1
9

)
=

1
4k1

((q1 − 1
q1

)2
· 1

3
+

4k1 − 1
9

)
.

We consider two cases: q1 = 1 and q1 6= 1. Let q1 = 1. Since 4k1−1
4k1

< 1,

we get αD(n) = 4k1−1
4k1 ·9 < 1

8 , so n 6∈ C3. Now let q1 6= 1. Thus, αD(n) =

1
4k1

((
q1−1

q1

)2
· 1

3 + 4k1−1
9

)
≥ 1

4k1 ·3

(
1
4 + 4k1−1

3

)
= 1

3·4k1
4k1+1−1

12 ≥ 5
48 > 1

8 ,

where the inequalities follow from the fact that boht q1−1
q1

and 4k1+1−1
4k1

are monotonically increasing functions in q1 and k1 respectively. Thus
n ∈ C3.

Now let k2 = k1 and q1 = q1. Then p1− ε(p1) = 2k1 q1 and p2− ε(p2) =
2k1 q1. In order for p1 and p2 to be distinct primes, we must have that
ε(p1) 6= ε(p2). Without loss of generality we assume that ε(p1) = 1
and thus ε(p2) = −1. Therefore, n = (2k1 q1− 1)(2k1 q1 + 1). By Lemma
3.11, we know that SL(D,n)

ϕD(n)
> 1

3 for all odd q1 6= 1. When q1 = 1, then
SL(D,n)

ϕD(n)
= 1

3 −
1

3·4k1
. Since − 1

3·4k1
is monotonically increasing in k1, we

have that αD(n) = 1
3 −

1
3·4k1
≥ 1

3 −
1

3·41 = 1
4 > 1

8 . Thus, n ∈ C3.

70



Now let k2 = k1 + 1, which means that δ2 = 1, and let q1 6= q2. We
know that gcd(q,q1)

q1
= gcd(q,q2)

q2
= 1, which is equivalent to q1 | q and

q2 | q. Therefore, q1, q2 both divide by Lemma 5.2 with δ2 = 1

2kq = 22k1+1q1q2 ± 2k1(q1 ± 2q2).

Thus it must hold that q1 | 2q2 and q2 | q1. Since q1 is odd, we must
have that q1 | q2, which is only possible when q1 = q2, which is a
contradiction to our assumption that q1 6= q2.

Now let us consider the remaining possible case, namely when k2 =
k1 + 1 and q1 = q2. We again have that q1 | q and q2 | q. Therefore,
p1− ε(p1) = 2k1 q1 and p2− ε(p2) = 2k1+1q1 = 2(2k1 q1) = 2(p1− ε(p1)).
Therefore,

n = p1 p2 = (2k1 q1 + ε(p1))(2 · 2k1 q1 + ε(p2)) with ε(p1), ε(p2) ∈ {±1}.

Let us check if such an n is in C3. By Lemma 5.3, we have that

αD(n) =
(q1 − 1

q1

)2
· 1

2 · 4k1
+

4k1 − 1
6 · 4k1

.

We consider two cases: q1 = 1 and q1 6= 1. With q1 = 1, we obtain
αD(n) = 4k1−1

6·4k1
. This is > 1

8 if and only if k1 > 1. For k1 = 1, we obtain
αD(n) = 1

8 , the only possibility is n = (2 + ε1)(4 + ε2) = 3 · 5. With
q1 6= 1 and the fact that (q1 − 1)/q1 is monotonically increasing, we
obtain

αD(n) =
(q1 − 1

q1

)2
· 1

2 · 4k1
+

4k1 − 1
6 · 4k1

≥ 4
9
· 1

2 · 4k1
+

4k1 − 1
4k1 · 6 =

1
3

( 2
3 · 4k1

+
4k1 − 1
4k1 · 2

)
=

1
3

(3 · 4k1 + 1
4k1 · 6

)
=

1
6
+

1
18 · 4k1

>
1
8

.

3. Let s = 2 and this time p1 = 3 and r1 = 2, meaning n = 32 p2. Since
3− ε(3) = 2k1 q1, but ε(3) = ±1, we have that 3− ε(3) ∈ {2, 4}, which
implies that q1 = 1 and k1 ∈ {1, 2}.
By the third inequality of (5.1), we have for k2 ≥ k1 + 2 that n 6∈ C3,
thus either k1 = k2 or k2 = k1 + 1ṅewline Now let k1 = k2. Again
it must hold that either gcd(q,q1)

q1
= gcd(q,q2)

q2
= 1 or gcd(q,q1)

q1
= 1 and

gcd(q,q2)
q2

= 3, since q1 = 1.
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5. Classifying C3

We have

2κq =n− ε(n) = 32 p2 − ε(32 p2)

=(2k1 + ε(3))2(2k1+δ2 q2 + ε(p2))− ε(p2)

=(22k1 + 2k1+1ε(3) + 1)(2k1+δ2 q2 + ε(p2))− ε(p2)

=(23k1+δ2 q2 + 22k1+1+δ2 q2ε(3) + 2k1+δ2 q2 + ε(p2)(22k1 + 2k1+1ε(3))
+ ε(p2)− ε(p2)

=q2((23k1+δ2 + 22k1+1+δ2 ε(3) + 2k1+δ2)± (22k1 + ε(3)2k1+1). (5.3)

Now let us look at the case where gcd(q,q2)
q2

= 1, meaning q2 | q. With
this q2 | 2κq, thus it must also divide (5.3), which implies that q2 |
22k1 ± 2k1+1. Since k1 ∈ {1, 2}, it follows that for k1 = 1 either q2 | 8
if ε(3) = 1 or q2 | 0 if ε(3) = −1, and for k1 = 2 either q2 | 24
if ε(3) = 1 or q2 | 8 if ε(3) = −1. Since q2 must be odd, the only
possibilities are when (k1, q2, ε(3)) = (1, 1, 1), (k1, q2, ε(3)) = (2, 1,±1)
or (k1, q2, ε(3)) = (2, 3, 1). However, with k1 = 1, it must hold that
ε(3) = 11, otherwise 2k1 + ε(3) 6= 3 and for k1 = 2, it must hold
that ε(3) = −1, otherwise 2k1 + ε(3) 6= 3. Thus we are only left with
(k1, q2, ε(3)) = (1, 1, 1) and (k1, q2, ε(3)) = (2, 1,−1). This analysis
holds for both k2 = k1 and k2 = k1 + 1. Therefore, we get

p2 = 2k2 q2 + ε(p2) =
2k1 q2 ± 1 = 21 · 1± 1 = 1, 3, if k1 = k2 = 1, q2 = 1, ε(3) = 1
2k1 q2 ± 1 = 22 · 1± 1 = 3, 5, if k1 = k2 = 2, q2 = 1, ε(3) = −1
2k1+1q2 ± 1 = 22 · 1± 1 = 3, 5 if k2 = k1 + 1, k1 = 1, q2 = 1, ε(3) = 1
2k1+1q2 ± 1 = 23 · 1± 1 = 7, 9 if k2 = k1 + 1, k1 = 2, q2 = 1, ε(3) = −1.

Since p2 is a prime different from 3, we discard all other cases and are
left with p2 ∈ {5, 7}.
Now let us look at the case where gcd(q,q2)

q2
= 1

3 , meaning 1
3 q2 | q.

Here it must hold that k1 = k2. By the same reasoning as above
we have 1

3 q2 | 22k1 ± 2k1+1, which implies q2 | 3(22k1 ± 2k1+1). For
k1 = 1, we have either q2 | 24 if ε(3) = 1 or q2 | 0 if ε(3) = −1,
for k1 = 2, we have either q2 | 72 if ε(3) = 1 or q2 | 24 if ε(3) =
−1. Again since q2, must be odd, the only possible combinations are
for (k1, q2, ε(3)) = (1, 1, 1), (k1, q2, ε(3)) = (1, 3, 1) or (k1, q2, ε(3)) ∈
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{(2, 1, 1), (2, 1,±1), (2, 3,±1), (2, 9, 1)}. Thus we get

p2 = 2k2 q2 + ε(p2) =

2k1 q2 ± 1 = 2 · 1± 1 = 1, 3 if k1 = 1, q2 = 1 and ε(3) = 1
2k1 q2 ± 1 = 2 · 3± 1 = 5, 7, if k1 = 1, q2 = 3 and ε(3) = 1
2k1 q2 ± 1 = 22 · 1± 1 = 3, 5, if k1 = 2, q2 = 1 and ε(3) = ±1

2k1 q2 ± 1 = 22 · 3± 1 = 11, 13, if k1 = 2, q2 = 3 and ε(3) = ±1
2k1 q2 ± 1 = 22 · 9± 1 = 35, 37, if k1 = 2, q2 = 9 and ε(3) = 1.

Again we discard the cases where p2 = 1, composite or divisible by 3
and are left with p2 ∈ {5, 7, 11, 13, 37}.
We see that for n = 32 p2 with p2 ≥ 5 prime and n ∈ C3, n must be of
the form: n ∈ {32 · 5, 32 · 7, 32 · 11, 32 · 13, 32 · 37} = {45, 63, 99, 117, 333}.

4. Now let s = 3 with n = pr1
1 pr2

2 pr3
3 . By the second inequality of (5.1),

it must hold that ri = 1 for all i ∈ {1, 2, 3}, otherwise we would have
αD(n) ≤ 1

12 . Therefore, n = p1 p2 p3 with pi 6= pj ∀i 6= j. By the

first inequality of (5.1), we have that gcd(q,qi)
qi

= 1 for all i ∈ {1, 2, 3},
otherwise αD(n) ≤ 1

12 , in which case we would have that n 6∈ C3. Thus
we must have that qi | q ∀i ∈ {1, 2, 3}. By the third inequality of (5.1),
we must have that k1 = k2 = k3, as else αD(n) ≤ 1

8 .
Therefore, we have k1 = k2 = k3 with qi | q for all i ∈ {1, 2, 3}. It is
clear that q | 2κq, thus qi | 2κq. But we know by Lemma 4.1 that 2ki | 2κ

for every i, this implies that 2ki qi | 2κq, which is the same as saying
that pi − ε(pi) | n− ε(n).

Let us check if such an n is indeed in C3. Using Lemma 5.3 and the
fact that k1 = k2 = k3, qi | q and ri = 1 for i = 1, 2, 3 we get

αD(n) =
1

23k1

(
3

∏
i=1

qi − 1
qi

+
23k1 − 1

7

)

=
1

23k1

s

∏
i=1

qi − 1
qi

+
1
7
· 23k1 − 1

23k1
.

Since 23k1−1
3k1

is monotonically increasing in k1, we get 23k1−1
3k1
≥ 23−1

23 = 7
8 .

Thus

αD(n) =
1

23k1

s

∏
i=1

qi − 1
qi

+
1
7
· 23k1 − 1

23k1

≥ 1
23k1

s

∏
i=1

qi − 1
qi

+
1
8
>

1
8

.

With this we indeed have that n ∈ C3.
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5. Classifying C3

5. Now let s ≥ 4. By the second inequality of (5.1), we immediately have
that αD(n) ≤ 1

8 , thus n 6∈ C3. �

The numbers of the fourth form in Theorem 5.4 are by Theorem 2.33 the
Lucas-Carmichael numbers with three prime factors, that have the addi-
tional property that there exists some k1 ∈ N such that 2k1 || pi − ε(pi)
for all i = 1, 2, 3.
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Chapter 6

Further investigations on the strong
Lucas probable prime test

We know by Theorem 3.12 that SL(D, n) ≤ 4n
15 for every odd composite

integer n which is not a product of twin-primes. Therefore it is tempting to
directly conclude that qk,t ≤ ( 4

15 )
t. For the same reason as in Subsection 2.3.1,

we cannot proceed in this way. However, if we first check that n 6= p(p + 2)
for some p ∈ N and n is not divisible by the first 128 odd primes, then for
k ≥ 67, we indeed have qk,t ≤

( 4
15

)t. If we relax the assumption of not being

divisible by small primes, we can show that qk,t ≤
( 4

15

)t for each k ≥ 111.

Let X represent the event that an integer n, which is not a product of twin-
primes, is composite, let Di denote the event that an integer chosen at ran-
dom from Mk passes the i-th strong Lucas test, and let Zt denote the event
that it passes t consecutive rounds of the test, i.e. Zt = D1 ∩ D2 ∩ · · · ∩ Dt.

Thereom 3.12 states that P[Zt | X] ≤
(

4
15

)t
, and what is relevant is qk,t =

P[X | Zt]. The next lemma and its proof is based on [6] adapted for the
strong Lucas test.

Lemma 6.1 Let n be an odd integer, that is not a product of twin primes and let
j, t ∈ Z+ with 1 ≤ j ≤ t− 1. Then

qk,t ≤
( 4

15

)t−j qk,j

1− qk,j
.

Proof We let X
′

denote set of composites and αD(n) = SL(D, n)/n. Recall
that for odd composite n we will have have αD(n) ≤ 4/15. We note that
P[X ∩ Zi] = 2−(k−2) ∑n∈X′∩Mk

αD(n)i.
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6. Further investigations on the strong Lucas probable prime test

For 1 ≤ j ≤ t− 1, we have

qk,t = P[X | Zt] =
P[X ∩ Zt]

P[Zt]

=
P[X ∩ Et]

X ∩ Et−1

P[X ∩ Et−1]

X ∩ Et−2
. . .

P[X ∩ Ej+1]

X ∩ El

P[X ∩ Ej]

X ∩ Et
.

Now

P[X ∩ Ei]

X ∩ Ei−1
=

∑n∈X′∩Mk
αD(n)i

∑n∈X′∩Mk
αD(n)i−1 ≤

∑n∈X′∩Mk

4
15 αD(n)i−1

∑n∈X′∩Mk
αD(n)i−1 =

4
15

.

Let Xc denote the complement of the event X, which expresses the event that
a number is prime. Since a prime in Mk always passes each strong Lucas
test, we see that P[Xc ∩ Zt] = P[Xc] = P[Xc ∩ Zj]. Therefore,

qk,t ≤
( 4

15

)t−j P[X ∩ Zj]

P[Zj]

P[Zj]

P[Zt]
=
( 4

15

)t−l
qk,j

P[Zj]

P[Zt]
.

Thus,

P[Zj]

P[Zt]
≤

P[Zj]

P[Xc ∩ Zt]
=

P[Zj]

P[Xc ∩ Zj]
=

1
P[Xc | Zj]

=
1

1− qk,t
,

which completes the proof of the lemma. �

Theorem 6.2 Let the odd integer tested for primality not be a product of twin
primes and not be divisible by the first 128 odd primes. Then for all t ≥ 1 and
k ≥ 67 we have

qk,t ≤
( 4

15

)t
.

Proof Taking j = 1 in Lemma 6.1 we get that qk,t ≤
(

4
15

)t−1 qk,j
1−qk,j

. So to

show that qk,t ≤
(

4
15

)t
it thus suffices to show that qk,j ≤ 4/19. By Corollary

4.33 we have qk,1 < k241.87727−
√

k. With this we can easily calculate that
qk,j ≤ 4

19 for each k ≥ 91. By taking j = 2 in Lemma 6.1 we get that qk,t ≤(
4
15

)t−2 qk,2
1−qk,2

for t ≥ 3. With this it suffices to show that qk,1 ≤ 4/15 and
qk,2 ≤ 16/225. Using Theorem 4.36 with t = 2 we get for all k ≥ 21 that

qk,2 ≤ 41.68617−
√

2kk3/24 ·
(

734
733

)2
√

k2+2
, so that qk,2 ≤ 16/225 for each k ≥ 37.

By Lemmas 4.30, 4.9 and inequality (4.2) with p̃l+1 = 733 and choosing
M = 10, we get that

qk,1 ≤
∑ ′n∈Mk αD(n)

π(2k)− π(2k−1)
≤

2−1−M( 734
733 )

M+1 + 2−2
√

k−1+1 + ( 734
733 )

M M(M− 1)
0.71867

.
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With this we have qk,1 ≤ 4/15 for all k ∈ {67, . . . , 386}. So we have shown

that qk,t ≤
(

4
15

)t
for all k ≥ 67, which completes the proof. �

Theorem 6.3 Let the integer tested for primality not be a product of twin primes

Then qk,t ≤
(

4
15

)t
for each t ≥ 1 and k ≥ 111.

Proof The proof is identical as the proof from Theorem 6.2. By Theorem
4.19, we have for k ≥ 2 that qk,1 < log(k)k242.3−

√
k, so qk,1 ≤ 4/19 for each

k ≥ 136, thus by Lemma 6.1 we have that qk,t ≤
(

4
15

)t
. Now we show that

qk,1 ≤ 4/15 and qk,2 ≤ 16/225 for k ≥ 111, which again by Lemma 6.1 is

sufficient to conclude that qk,t ≤
(

4
15

)t
. By inequalty (4.11), we have that

∑ ′n∈Mk αD(n) ≤ log(k)
(

2k−1−M + 2k+3−2
√

k−1 ∑M
j=2(M + 1 − j)

)
, combined

with inequality (4.2), we have

qk,1 ≤
∑ ′n∈Mk αD(n)

π(2k)− π(2k−1)
≤

log(k) · k
(

2−1−M + 23−2
√

k−1 ∑M
j=2(M + 1− j)

)
0.71867

.

Choosing M = 13, we get that qk,1 ≤ 4/15 for k ∈ {111, . . . 504}. Now by
Theorem 4.21 we have for k ≥ 88, t = 2 that qk,2 < k3/2

√
t

logt(k)44.615−
√

2k. So
we get that qk,2 < 16/225 for k ≥ 88, which concludes the proof. �
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Chapter 7

Conclusion

In this Master’s thesis, we established the framework needed to find aver-
age case error bounds for the strong Lucas test: We considered a procedure,
which chooses randomly k-bit integers from the uniform distribution, sub-
jects each number to t iterations of the strong Lucas test and outputs the
first number that passes all t tests. Let qk,t be the probability, that this pro-
cedure outputs a composite integer. The bounds we obtained are qk,1 ≤
log(k)k242.3−

√
k for k ≥ 2 and qk,t < logt(k) k3/2

√
t

42.12+t−
√

tk for k ≥ 21 and
t ≥ 2. If the integer is divisible by a small prime it is computationally less
expensive to rule out the candidate by trial division than by using the strong
Lucas test. We saw that the bounds of the procedure improved after we im-
posed the additional requirement to check for divisibility by the first odd l-
primes in the step before running the strong Lucas test. Let qk,l,t be the prob-
ability that this updated procedure returns a composite number. Let p̃l de-

note the l-th odd prime. We showed that qk,l,1 < k241.8−
√

k
(

1 + 1
p̃l+1

)2
√

k−1−2

for all l ∈ N and k ≥ 1 and qk,l,t ≤ 41.68617−
√

tkk3/22t
(

1 + 1
p̃l+1

)2
√

kt+t
for all

k ≥ 21 and t ≥ 2.

The bounds using the second case are comparable to the bounds in [8] of
the Miller-Rabin test. Next, we did an error analysis treating the numbers
that add the most to our probability estimate differently, which resulted in
good bounds for large t.

We then classified the integers with the second largest contribution to our
estimate, hoping to do a similar analysis as we did for the numbers with
the largest contribution. Unfortunately, Lucas-Carmichael numbers belong
to this set. This is problematic as there is still the open question of bounding
the number of Lucas-Carmichael numbers less than a given integer x. Thus,
were were not able to proceed further.
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7. Conclusion

In the last chapter, we showed that for odd composite integers n, which are
not a product of twin primes, the bound qk,t ≤ (4/15)t holds for k ≥ 111.
This result is remarkable because it does not follow directly from SL(D, n) ≤
4/15, as it does not take the distribution of primes into account. Of course as
stated above, we were able to show that qk,t is, in fact, smaller than (4/15)t

for all sufficiently large k.

During the scope of this work, average case error bounds for the strong
Lucas test were found. Yet, many open questions that look promising for
future projects remain. For example, future works could be to bound the
set of odd k-bit integers, which are not divisible by the first odd s primes.
This could result in improved estimates for the strong Lucas test. Once
there exist bounds for the number of Lucas-Carmichael numbers, one could
tighten the established bounds for large t. Moreover, one could try to obtain
bounds for the average case error probability for the “normal” Lucas test
and investigate bounds using incremental search for the (strong) Lucas test.
Furthermore, one could analyse if it is possible to get improved estimates for
the Miller-Rabin test using the modified procedure that includes division by
small primes. The most interesting future work however, is to get average
case error bounds for the Baillie-PSW test.
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