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Abstract

Cryptography is a tool to turn any problem into a key management problem.
More often than not, the answer to the question “How can I obtain keys authentic-
ally?” is “Trust the key server.” This makes the key server a single-point-of-failure
for end-to-end encrypted communication systems. Previous approaches such as
PGP’s Web of Trust or Signal’s Safety Number don’t scale to millions of users.

Key Transparency (KT) addresses this problem by making server actions trans-
parent. KT logs all public keys in a Merkle hash tree, producing a consistent,
verifiable key directory. Clients can check that what they believe to be their con-
tacts’ keys is consistent with the tree, and clients can monitor their own keys to be
correctly included in the tree. KT removes the need to trust the key server (and
moves it to the need to trust one of the auditors who check that the tree is correctly
constructed).

ProtonKT is Proton’s design of a KT scheme. It is being rolled out not only in
their email service but also across their product suite. In this thesis, we analyse
ProtonKT. We start by giving a specification of how ProtonKT works, providing
high-level intuition as well as detailed algorithm descriptions. We also define the
security property that ProtonKT should provide: Query-to-SelfAudit Consistency.
We analyse the protocol manually and argue why this property holds. Finally,
we formally model ProtonKT with the Tamarin Prover, making use of the recently
introduced subterms and natural numbers. Unfortunately, we did not manage to
find a formal proof because we encountered a limitation in Tamarin’s induction
mechanism.
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Chapter 1

Introduction

End-to-end encrypted (E2EE) communication systems have become ubiquitous. In-
stant messaging apps like Signal or WhatsApp which offer E2EE through the Signal
Protocol have millions or even billions of users. Email providers like Proton Mail offer
easy-to-use E2EE email using PGP.

However, the Achilles’ heel of E2EE is key management: How do users get an authentic
copy of their contacts’ public keys? A malicious key server colluding with the message
transport server could launch a MITM attack by serving fake public keys, breaking
E2EE. For example, a key server could be hacked or legally coerced.

To detect such attacks, users currently need to verify public keys manually out-of-
band. Mobile messengers make this relatively easy. Signal and WhatsApp users can
compare their Safety Number by scanning a QR code. Threema gamified public key
verification by prominently displaying coloured dots in the chat view: red for untrus-
ted keys, green after scanning a QR code with the public key. 1 In email and PGP,
however, even out-of-band verification is often not available in a user-friendly fash-
ion. For example, mainstream PGP-based services like Proton Mail offer no way to
compare fingerprints in their mobile app.

Unfortunately, out-of-band verification has usability and scalability problems. First, it
is one-to-one, meaning that every pair of contacts needs to scan their QR codes. In a
large group of friends this quickly becomes tedious and time-consuming. Anecdot-
ally2, not even cryptographers compare Safety Numbers very often. Second, public
keys change, especially in mobile messengers when users switch phones. Every key
change results in a notification in Signal. The noise of these key change notifications
can lead to users ignoring the warnings over time. Third, out-of-band comparison is
impossible when users have no prior communication channel (e.g. a whistleblower
contacting a journalist).

1https://threema.ch/en/faq/levels_expl
2https://twitter.com/matthew_d_green/status/1646532201948012545

1

https://threema.ch/en/faq/levels_expl
https://twitter.com/matthew_d_green/status/1646532201948012545


1. Introduction

Key Transparency Key Transparency (KT) promises to address the problem of ob-
taining authentic public keys with a more scalable solution. The idea of KT is to build
a verifiable key directory. When clients look up keys in the directory, the response will
contain both the value and a proof that this value is consistent with the directory state.
This ensures that all users of the system can have the same view of the directory. It
also makes server actions transparent: If Alice looks up her own keys, she can be sure
that when Bob looks them up Bob will see the same keys. Then Alice can simply mon-
itor the directory regularly to check that her correct keys are still there. Alice can also
see the history of her keys. This allows Alice to detect when the server is temporarily
inserting a bad key and then swapping it back for her real keys.

The beauty of KT is that it requires no user interaction in normal usage. When Bob
first communicates with Alice, he does not need to scan the Safety Number. Bob can
rely on Alice to make sure her keys are correct, which works thanks to the consistency
of the directory. Similarly, Alice’s client can monitor her keys in the background, thus
ensuring her keys are correct. The only point of user interaction is when Alice’s client
detects some unexpected keys. Then the client raises a warning to inform Alice.

Another beauty of KT is that it shifts the burden of monitoring for correct public keys
from the contacts to the owner of the key. Consider the warning you get when you log
in to your Google account from a new device. The pop-up “Recent log-in on a new
device at IP 195.176.110.112” is only useful to yourself. If it was you, you ignore the
pop-up. If it wasn’t, you investigate. But if every time your friend Alice logged in on
a new device you would get a pop-up “Alice just logged in on a new device”, what
would you do? This is exactly what is happening with Signal’s Safety Number: your
contacts receive a warning, yet the only person who can audit whether the key change
is legitimate is yourself. In KT, Bob does not get a warning when Alice changes her
keys. Only Alice is notified, and it is up to her to verify that the change is legitimate.

Proton Proton is a tech company offering a suite of products consisting of Mail, Cal-
endar, Drive (cloud storage), Pass (a password manager), and VPN. Its primary selling
point is privacy. Using end-to-end encryption Proton wants to ensure that only users
themselves can access their data, but not the company or anyone with access to their
servers. Proton runs a public key server, which is used both to look up keys when
emailing someone, but also when sharing a file or a calendar invite. Thus Proton is
naturally interested in KT: in Proton’s overall threat model its own servers are untrus-
ted, including its key server. KT would allow Proton users to automatically verify each
others’ keys, removing the need to trust the server or do out-of-band verification.

1.1 Organisation

In this thesis, we describe and analyse Proton’s Key Transparency design. Chapter
1 surveys related work, and chapter 2 introduces some preliminaries. After that,
chapter 3 provides a specification of Proton’s Key Transparency scheme. We then
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1.2. Certificate Transparency

define security properties and analyse the scheme in chapter 4. Chapter 5 provides
recommendations for improving the scheme. Finally we conclude in chapter 6.

For the rest of this chapter, we first discuss the related work, then look at KT in the
real world, and end by stating our contributions with this thesis.

1.2 Certificate Transparency

Before we discuss Key Transparency in more detail, let us look at a related scheme
that inspired KT: Certificate Transparency (CT). This will allow us to draw parallels
and analyse the differences between CT and KT.

CT was introduced by Google in 2013 [16] and updated in 2021 [17]. Google wanted
to address the problem of malicious Certificate Authorities (CAs) issuing certificates
for someone other than the real domain owner, which allowed MITM attacks. CT
makes the actions of CAs “transparent” by having append-only logs of (nearly) all the
certificates ever issued by CAs. 3 Append-only means that entries can only be added
but not modified or deleted. The logs are operated by CAs themselves but also by
other organisations such as Cloudflare. The log entries are what we call non-repudiable
proof of a CAs’ behaviour: If a certificate is logged, the CA cannot later claim that
it didn’t issue that certificate. Importantly, CT does not prevent CAs from wrongly
issuing certificates, but it does make it transparent and publicly detectable.

Concretely, CAs insert the certificates that they issue into a Merkle tree (the “log”).
To distribute trust, CAs must insert the certificate into at least two logs operated by
two different entities. During a TLS handshake, browsers can require that the server
presents both a certificate and a proof of inclusion of the certificate in the two logs.
Third-party monitors continuously scan the logs, a) checking that the Merkle tree is
consistent (i.e. correctly constructed and append-only), and b) scanning for unexpec-
ted certificates on behalf of domain owners and notifying them.

However, in CT there is no relationship between a certificate and its leaf index in the
tree. It is up to the log operator to place certificates, usually in the order that they
come in. Thus everytime example.com requests a new certificate, this will create a
new leaf somewhere in the tree. Therefore, any third-party monitor who wants to find
all certificates for example.com needs to scan the entire tree and look at every single
leaf, which is expensive.

A second downside of CT is that there is no privacy. The certificates in the tree are
public and the certificates contain the domain name in the Subject Alternative Name
field. Because of that, CT leaks basically the entire list of domain names that are using

3Nearly all because CAs can still issue certificates without including them in a log. However, these
certificates won’t be accepted by Google Chrome and Apple Safari.
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1. Introduction

certificates on the web. This can reveal the existence of a websites that would like to
stay hidden such as secretcorporateportal.com.

Finally, CT relies on inclusion proofs with respect to a tree and the fact that this tree
is append-only. What if the log operator secretly creates two trees, and e.g. inserts a
certificate only into one of them? Depending on who is querying the log, the operator
could either use one or the other tree. This is a split-world-view attack, also called
equivocation. To ensure the server is not equivocating and creating multiple trees,
monitors need to communicate and compare their views of the tree. This can be done
by comparing the root hash of the Merkle tree. However, as the RFC itself admits:
“This technique, known as ‘gossip’, is an active area of research and not defined here.”
[17, Section 11.3]

1.3 Related Work

In this section we discuss the history of Key Transparency designs. The most relevant
papers are CONIKS [21], SEEMless [7], and Parakeet [19]. CONIKS is the first aca-
demic KT design. SEEMless formalises the concepts behind KT, and makes privacy
and efficiency improvements over CONIKS. Parakeet makes further storage improve-
ments over SEEMless and introduces a consistency protocol to prevent split-world
view attacks.

1.3.1 CONIKS

Melara et al. published CONIKS in 2014 [21]. CONIKS is considered the first Key
Transparency design. It was inspired by Certificate Transparency, taking the idea of
making CA behaviour transparent and mapping it to key servers 4. CONIKS creates
authenticated bindings from usernames to public keys.

Design Like CT, CONIKS is based on a Merkle tree. The leaf nodes are not hashed
certificates but instead hashed public keys. The index of a leaf node is not chosen
arbitrarily but instead derived from the username. Given a leaf, an inclusion proof is
the path from the leaf to the root. The key server signs and publishes the tree root
(Signed Tree Root (STR)). Key changes are incorporated in batches, and a new STR is
published every epoch.

Consistency CONIKS’ functional goal is to achieve consistency. That is, every user
sees the same username–key bindings [21, Section 1]. The bindings might not be
correct (a stronger property), i.e. there might be a key bound to user Alice which
is actually controlled by Bob. However, since the bindings are consistent, everyone
including Alice, will see the same key bindings (and Alice can complain).

4CONIKS calls the key servers “identity providers”.
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1.3. Related Work

Security Goals CONIKS’ main security goals are [21, Section 2.2]:

• Non-equivocation: If a key server presents a split-world view to two parties, it
has to maintain this equivocation forever. With enough auditors who commu-
nicate with each other and compare tree roots, the chance of equivocation being
detected is high.

• No suspicious keys: Fake keys added by a malicious key server are quickly detec-
ted and there is non-repudiable proof.

• Privacy: Given some consistency and/or inclusion proofs, an adversary learns
nothing about which other usernames are contained in the tree, or which public
keys are linked to these usernames.

The first two properties are straightforward, and similar to CT. Privacy, however, is a
new property specific to CONIKS and KT.

Privacy The attack against privacy is the following: Assume that leaf indices are
simply idx = Hash(username). Also assume that the key server is rate-limiting look-
ups. That is, the adversary can query a few but not all usernames to obtain some
public keys and inclusion proofs. That is, the adversary knows a subset of the tree
(the paths in the proofs). It can now launch an offline attack and brute-force the rest
of the tree. This is possible since the hash function is public (the adversary knows
how to compute it). By distinguishing whether a leaf is empty or not, and also brute-
forcing which username is located at which leaf index, the adversary can learn which
usernames exist. Note that usernames often have low entropy (e.g. phone numbers or
email addresses).

To defend against this, CONIKS computes the leaf index as idx = VRFsk(username).
See section 2.1 for details about Verifiable Random Functions (VRFs). Importantly,
the VRF is keyed with a secret key only known to the server. The adversary can still
complete the hash tree, but it can no longer compute which leaves belong to which
usernames. Meanwhile, normal users can validate inclusion proofs (Does the path
start at the correct leaf?) because the server provides a VRF proof proving that idx was
calculated correctly. This VRF proof can be verified using the server’s public key.

In addition, CONIKS hides the public keys by not storing the keys themselves, but
instead storing a commitment to the keys. Thus knowing the leaf content (through
brute-force) does not leak anything about the keys.

Overall, privacy is improved compared to CT, where all certificate data is public.

Monitoring Monitoring in CONIKS is more private and also more efficient than in
CT. In CT, monitors need to check every single leaf. Otherwise the monitor could miss
a misissued certificate. In CONIKS scanning the entire tree is not desired for privacy.
Luckily, the uniqueness property of VRFs ensures that each username has a single
unique index. Thus to monitor their keys, a user only needs to do a single query for

5



1. Introduction

their own username. They need to verify a single VRF proof (Is the index correct?)
and a single inclusion proof (Is the path consistent with the tree root?).

This allows CONIKS to place the burden of monitoring public keys on the users. Every
user monitors their own entry for suspicious keys by querying the key server for their
own username every epoch.

Third-party monitors only need to monitor for non-equivocation. They verify the tree
roots (STRs) and that they are correctly chained across epochs. If the tree roots ever
diverge, this is non-repudiable proof of bad server behaviour. However, this requires a
large network of monitors, or users that can gossip and compare tree roots. Otherwise,
equivocation attacks are possible.

Formalism The CONIKS paper does not formally specify the protocol and the secur-
ity properties. It also lacks formal proofs, analysing only non-equivocation and giving
intuitive arguments for the other properties.

1.3.2 SEEMless

Building upon CONIKS, SEEMless was published in 2018 [7]. SEEMless is the first to
formalise KT and provide formal proofs. It also makes auditing the directory more
private and more efficient compared to CONIKS. Finally, it greatly reduces the server-
side storage requirements and allows for shorter epochs.

The main difference between CONIKS and SEEMless is that SEEMless maintains an
append-only tree across epochs, whereas CONIKS maintains a unique tree for every
epoch.

Formalism: VKD SEEMless formally defines the Verifiable Key Directory (VKD) as a
primitive for KT. A VKD is a set of algorithms [7, Section 2]: Publish,Query,QueryVer,
KeyHistory,HistoryVer,Audit. These algorithms allow the server to publish commit-
ments to the directory, clients to query usernames and their own key change history,
and auditors to audit consistency.

For this VKD definition, the paper formally defines and proves completeness, sound-
ness, and privacy. Privacy is defined through a leakage function: how much informa-
tion is leaked by the server responses (the commitments, the proofs)?

Formalism: aZKS SEEMless also defines another primitive: append-only Zero Know-
ledge Sets (aZKS). A normal ZKS is a commitment to a fixed set of (label, value) pairs,
such that (1) the prover/committer can prove label (non-) membership with respect to
the commitment, but also such that (2) neither the commitments nor the proofs leak
any information about the set. aZKS are a generalisation of ZKS such that the set is
not fixed and labels can be added (but not deleted or edited).

6



1.3. Related Work

SEEMless uses the aZKS to build the VKD. In the VKD, labels are usernames with
revisions, and values are public keys. Key changes are insertions of the same username
with a later revision.

Concrete Construction After these formal foundations the paper describes a concrete
instantiation of a VKD called “SEEMless” (hence the paper name). The construction
is designed to be modular. The VKD is built from aZKS, and the aZKS is built from
a Patricia trie (a compact binary tree, also known as radix tree). Like in CONIKS, the
leaf indices and leaf values are protected with VRFs and commitments respectively.

The Patricia trie construction is very intricate. It is designed to be space-efficient, i.e.
to grow with the number of key changes as opposed to growing with the number of
epochs. It is also designed to allow for efficient insertions, and efficient Query and
KeyHistory queries. The tree construction achieves this by not naı̈vely replicating the
entire tree every epoch, and instead building a single tree that stores the historical
delta of the tree inside the tree itself.

The SEEMless construction introduces several new ideas compared to CONIKS: First,
usernames have revisions. So the labels of the (label, value) pairs in the VKD are
not username but username:revision. This is necessary to fit the aZKS model where
labels cannot be edited and only new labels can be inserted. It also prevents a tracing
attack (see below).
Second, SEEMless maintains two aZKS per epoch (rather than one): an “all” aZKS and
an “old” aZKS. aZKSall contains all the username:revisions. aZKSold contains all the
username:revisions minus the ones that were newly added in the current epoch. The
server can now prove that a revision is the latest one by giving a membership proof
for aZKSall and a non-membership proof for aZKSold. 5

Auditing This construction requires that every epoch is audited by at least one honest
auditor who verifies the append-only property. Offloading this work to an auditor
allows clients to perform less work because they only have to check the latest tree
(and not all trees like in CONIKS).

Tracing Attack SEEMless also identifies an attack on privacy in CONIKS (Appendix
C [7]). Consider the case where Alice and Bob have two leaf nodes that share the same
direct parent. Bob queries for Alice’s key only once, thus learning her position in the
tree. Now Bob can simply query his own key regularly. Alice’s leaf is included in the
inclusion proof for Bob’s key, thus Bob can observe when Alice’s key changes without
querying for Alice.

This is a tracing attack on privacy, because key changes are sensitive. For example if
Bob compromises Alice’s private key, the fact whether or not Alice rotates her key tells
Bob whether the compromise was detected.

5Assuming that users audit that their own keys are correctly inserted in both aZKS and that there
are no additional unexpected keys.
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1. Introduction

SEEMless is not vulnerable to this, because key updates are not edits of an existing
label alice, but rather the insertion of a new label alice:3 with a revision. Thus to
learn Alice’s key changes, Bob must directly query for her key. Direct querying can be
subject to server policies such as rate limits or Alice blocking Bob.

1.3.3 Parakeet

Parakeet, published in early 2023, is one of the most recent academic works on KT [19].
It builds and improves upon SEEMless in several ways: Firstly, Parakeet proposes a
more efficient data structure for the VKD that scales to billions (and not just millions)
of users. This includes the ability to safely prune the tree over time and delete old
entries. Secondly, the authors propose a consistency protocol to publish and agree on
the tree roots, something which previously required an undefined gossip protocol.

oZKS Parakeet uses the concept of an ordered append-only zero-knowledge set oZKS. An
oZKS is a generalisation of an aZKS, with the additional property that there is a strict
ordering of the inserted elements.

Compaction (Deletion) Parakeet extends the VKD definition to a “VKD with com-
paction”. Compaction allows the server to delete old unused keys. This works by
first marking elements as stale during tombstone epochs. In subsequent deletion epochs
these stale elements are removed. The interval between deletion epochs is a system
parameter.

Clients are required to come online at least once between two deletion epochs and
check their own entries. An external honest auditor, in addition to checking append-
only-ness, now also checks that only old values are marked as stale, and that only stale
values are deleted, and that these actions only occur in the dedicated tombstone and
deletion epochs.

Consistency protocol The security of all KT schemes relies on the fact that equivoc-
ation is eventually detected.

In CONIKS clients are expected to proactively contact “enough” auditors and ask
them for their observed root commitments [21, Section 4.1.4]. Auditors and clients
effectively gossip between each other.

SEEMless skips over the consistency protocol entirely and simply assumes that some
way to achieve consistency exists (e.g. through gossip, a blockchain, or some other
mechanism [7, Section 2.1]).

Parakeet approaches this problem from a distributed systems perspective. It proposes
the following consistency protocol: the server sends each VKD update to some well-
known witnesses. The witnesses verify the update proof and if it passes sign the up-
dated root commitment. The server collects the witnesses’ signatures into a certificate.

8



1.4. KT in the Real World

Later, the server presents this certificate to the clients alongside the root commitment.
This ensures non-equivocation, assuming that there are enough honest, non-Byzantine
witnesses (a quorum). This is convenient for clients because they only need to contact
the central server, as opposed to having to run a complicated gossip protocol.

1.3.4 Comparison between CONIKS, SEEMless, Parakeet, ProtonKT

In Table 1.1 we compare some metrics for CONIKS, SEEMless, Parakeet, and – looking
ahead – also ProtonKT.

We assume that there are n usernames, each with one initial key, t epochs, c key
changes for a single user, and C key changes aggregated across all users (in addition
to the users’ initial keys).

CONIKS SEEMless Parakeet ProtonKT
Merkle tree one tree per epoch one tree forever one tree forever one tree forever
Tree size O(n · t) 6 O(n + C · log n) 7 O(n + C) 8 O(n + C)
Key History time O(t · log n) 9 O(c · log n) 10 O(c · log n) O(c · log n)
Consistency
mechanism

Comparing with other
auditors, gossip

Undefined, assumed
to exist

Certificate signed by
quorum of witnesses

CT logs

Principals IdP, clients, auditors IdP/server, clients/
users, auditors

IdP, users, witnesses server, clients,
auditors

Table 1.1: Comparison between CONIKS, SEEMless, Parakeet, ProtonKT

1.4 KT in the Real World

This section describes some real-world KT implementations that are not just academic
proposals. They show the industry’s interest in KT between 2014 and now.

Keybase Keybase is a service where users can link devices, public keys, and identities
on other platforms (such as Twitter or GitHub) together into a single Keybase identity.
All statements (“I own this key”, “I control this GitHub account”) are cryptograph-
ically signed. The server maintains a sigchain for each user. New signed statements
are appended to the sigchain, effectively providing an immutable history of the user’s
statements.

6There is a new tree every epoch.
7There is one tree, and adding a new leaf changes up to all nodes on the path. Need to store old

nodes to reconstruct old tree states.
8There is one tree. Old tree states can be directly reconstructed from that tree.
9The client needs to check the membership proofs for all epochs. Membership proofs are paths from

the leaf up to the root.
10For each key change there is one membership proof.
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1. Introduction

To prevent the server from maliciously changing a user’s sigchain Keybase uses a KT
scheme (albeit not calling it Key Transparency). They issued their first epoch back in
2014. 11 This makes it one of the earliest real-world KT implementations that we are
aware of. We don’t know whether Keybase was inspired by CONIKS (also published
in 2014) or coincidentally working on it at the same time.

First, a new statement is signed and appended to a user’s sigchain. Then the sigchain
is hashed to form the leaf of a Merkle Tree. The root of the Merkle Tree is inserted into
a blockchain (originally Bitcoin, later Stellar). [2]

Clients verify all statements, their signature, the tree inclusion proof, and that the tree
root is included in the blockchain. However, there are no third-party auditors that
e.g. monitor that the tree is append-only, or that monitor for spurious tree roots in
the blockchain. Security relies on the fact that there is cryptographic proof, and that
someone might find it and complain, thus deterring malicious server behaviour.

Zoom Zoom, which acquired Keybase in 2020, is planning to implement KT with
what they call the Zoom Transparency Tree. 12 Their design is inspired by Keybase.

Google Google announced Key Transparency as an “open-source prototype” 13 in
2017. Their implementation is inspired by CONIKS. However, as of July 2021 the re-
pository is archived, and it is unclear whether this project ever reached the production
stage. 14

One idea that Google proposed (but didn’t implement) is “gossip stapling”: 15 mon-
itors sign the tree roots that they see and return it to the server. The server can then
give the monitor signatures to clients. This is very similar to Parakeet’s idea of wit-
ness certificates. The difference is that Parakeet certificates require a quorum, whereas
gossip stapling could be a single signature from a monitor that the client trusts.

WhatsApp In WhatsApp, keys are bound to an app installation. Every time the user
changes their device or reinstall the app, this leads to a key change. In practice, this
leads to a lot of noise for users who have enabled notifications for Safety Number
changes.

WhatsApp announced in April 2023 that they were deploying KT based on Parakeet
[18]. They initially wanted to implement SEEMless, but in order to scale to two billion
users they had to make performance improvements that led to Parakeet [24]. Whats-
App’s epochs are in the order of 5 to 10 minutes [24].

11https://keybase.io/_/api/1.0/merkle/root.json?seqno=1
12Section 4 of https://github.com/zoom/zoom-e2e-whitepaper/raw/master/archive/

zoom_e2e_v4_1.pdf and https://datatracker.ietf.org/meeting/116/materials/

slides-116-keytrans-keybase-and-zoom-00
13https://security.googleblog.com/2017/01/security-through-transparency.html
14https://github.com/google/keytransparency
15https://github.com/google/keytransparency/issues/178
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1.4. KT in the Real World

Apple iMessage Apple announced in October 2023 that it is rolling out “Contact Key
Verification” in iMessage in iOS 17.2 and macOS 14.2. [10] Its KT design introduces
Signed Mutation Timestamps (SMTs): similar to SCTs in CT, the server signs a promise
to include a value in the tree. This allows the server to reply immediately (even if the
new value is not yet included in the tree), while still producing not-repudiable proof
of server (mis)behaviour.

Proton Proton is also developing KT, primarily for its email service, but also in other
contexts where authentic public keys are required, e.g. for sharing calendar invites,
sharing files on Drive, or sharing password vaults. Proton is rolling out KT during
2023.

The goal of this thesis is to analyse Proton’s KT scheme.

Proton assumes that users have a long-term secret: their password. This is unlike
WhatsApp (which assumes users cannot keep passwords or devices), but like Keybase
(which assumes that users have at least one trusted device that can sign key updates).
The server then stores the private key on behalf of the user, encrypted with a symmet-
ric key derived from the password. This means that there are far fewer key changes:
existing users only change their keys when (1) they forget their password and thus
cannot decrypt their old keys, or (2) they explicitly generate new ones (e.g. to replace
old RSA-2048 with new Ed25519 keys). Notably keys do not change when the mobile
app is reinstalled (unlike WhatsApp). Proton’s epochs are normally 4 hours long.

OpenPGP KT has been discussed at two OpenPGP summits (2015 and 2019). 16 17

But so far no email provider except Proton is known to have deployed KT, nor is there
any draft standard.

IETF The IETF has formed a Working Group to develop a standard for KT, mainly
in the context of Message Layer Security (MLS). Initial discussions were held at a Bird-
of-Feather meeting at IETF 116 in March 2023, and the Working Group was formed in
October 2023 just before IETF 118. 18

Other Applications for Transparency Logs The idea of using Merkle Trees to create
transparency logs has also been applied to other contexts. For example, Golang uses
transparency logs to secure their module ecosystem. 19

16https://wiki.gnupg.org/OpenPGPEmailSummit201512
17https://wiki.gnupg.org/OpenPGPEmailSummit201910Notes#Workshop:_Key_Transparency
18https://datatracker.ietf.org/wg/keytrans/about/
19https://go.googlesource.com/proposal/+/master/design/25530-sumdb.md
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1. Introduction

Google has developed Trillian, a general Verifiable Log/Verifiable Map implementa-
tion based on a Merkle tree. Trillian underlies Google’s CT implementation but also
their KT prototype. 20 Google also has a wider Transparency initiative. 21

Finally, Mozilla floated the idea of Binary Transparency in 2017, 22 but it was never
productionised in Firefox. 23 Mozilla proposed to build a Merkle tree out of the Fire-
fox release artefacts and request a web-PKI certificate for the domain
hash[0:32].hash[32:64].releaseVersion.binaryTransparencyVersion.fx-trans.net.
Because the certificate is logged in CT and CT is assumed to be immutable, this certi-
ficate serves as a commitment to the root hash. This is interesting because Proton later
developed the same idea again independently (see section 3.6).

1.5 Contributions

In this thesis we make the following contributions:

1. We provide a pen-and-paper description of Proton’s Key Transparency scheme.
This is interesting for two reasons:

First, like SEEMless, ProtonKT builds upon CONIKS. But ProtonKT makes dif-
ferent design decisions that lead to different properties. Take privacy for ex-
ample: in SEEMless insertions of new users are indistinguishable to auditors
from key updates for existing users (see section 1.3.2). This comes at the cost of
a much more complicated tree construction and larger inclusion proofs (e.g. to
prove that a revision is the latest one). Proton decided that it does not require
this indistinguishability (e.g. because the key server is public already). Thus the
ProtonKT tree construction is simpler and inclusion proofs more efficient. For
standardisation bodies such as the IETF who want to consider broad industry
use cases, this is an interesting input.

Second, while prior work formally defines the Verifiable Key Directory as the ap-
propriate primitive for KT (see section 2.2), this definition is only in terms of
the algorithm inputs and outputs, and the required properties. But the import-
ant parts for a security analysis are the internal steps of the algorithm, and the
checks that it does. We provide the first full step-by-step algorithm description
of a KT scheme. This format makes it easier to put the algorithm description and
the software implementation side-by-side and check that they match. This is not
possible with prior work.

2. We give a manual security analysis of ProtonKT. We define security properties
and argue why they hold.

20https://github.com/google/trillian
21https://transparency.dev/ and https://github.com/transparency-dev
22https://wiki.mozilla.org/Security/Binary_Transparency
23https://bugzilla.mozilla.org/show_bug.cgi?id=1341396
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1.5. Contributions

3. We develop a formal model of ProtonKT scheme using the Tamarin Prover. This
demonstrates another application of subterms, a feature that was recently intro-
duced in Tamarin [9]. Our model makes heavy use of subterms, e.g. in form of
natural numbers for epoch ids and key revisions. Unfortunately, we encountered
a limitation in Tamarin’s induction mechanism, and because of that did not find
a formal proof for our model.
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Chapter 2

Background

2.1 Verifiable Random Functions (VRFs)

The output of a pseudorandom function fs should be indistinguishable from the output
of a truly random function. This means that – by design – without knowing the PRF
seed s one cannot distinguish whether fs was correctly computed.

A verifiable random function (VRF), introduced in 1999 [22], provides such a correctness
proof alongside the output value.

A more informal way to think about VRF is in terms of hash functions: A plain hash
function is publicly computable and verifiable. A keyed hash function is privately
computable and privately verifiable. A VRF is privately computable and publicly
verifiable.

VRFs achieve this by having an asymmetric key pair (sk, pk). To evaluate the VRF, one
needs the secret key sk. (In practice this is useful if we want to force an adversary to
go through an oracle to evaluate the “hash” function, e.g. to apply access control or
rate limiting. A common example is preventing offline enumeration attacks of hash-
based data stores.) Given a VRF output and a proof, one can use the public key pk to
check that the output is correctly computed. (This is useful if we don’t trust the party
evaluating the VRF.)

Algorithms We follow the notation of RFC 9381 (an informational RFC from the
IRTF’s CFRG) [12], which defines a VRF as a set of algorithms:

β← hash(sk, α)

π ← prove(sk, α)

β/⊥ ← veri f y(pk, α, π)
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2. Background

where α is the input value, β is the output value, and π the proof. RFC 9381 also
defines another function proo f ToHash:

β← proo f ToHash(π) such that hash(sk, α) = proo f ToHash(prove(sk, α))

which allows it to specify proo f ToHash instead of hash. This also allows veri f y to
compute the hash β itself, which means that in practice the prover/evaluator (who
holds sk) only needs to output π.

Properties VRFs have the following security properties:

• Pseudorandomnes: Knowing pk but not sk, an adversary can choose an input α
and gets the output β, but not its corresponding π. The adversary can only
distinguish β from random with a negligible advantage.

Note that β is distinguishable from random if you know π (verify the proof) or
sk (recompute β).

• Uniqueness: For a fixed pk, for all inputs α it is hard to find two different proofs
π1 ̸= π2 that correspond to different outputs β1 ̸= β2 In other words, each input
value α has a unique output value β. 1

• Collision Resistance: It is hard to find a pk, two different inputs α1 ̸= α2, and
proofs π1, π2, such that they correspond to the same outputs β1 = β2. In other
words, no two input values should collide on the output value.

Depending on the VRF construction, some security properties don’t hold if the keypair
is maliciously generated. In EC-based VRFs, clients can validate the key to detect this.
See section 7 of RFC 9381 [12].

2.2 Verifiable Key Directory

SEEMless first introduced the Verifiable Key Directory (VKD) to formalise KT [7, Section
2]. Parakeet uses a slightly different VKD definition, which we will use [19, Appendix
B].

A VKD maps labels (usernames) to values (public keys). The server maintains the actual
directory Dir and some auxiliary state st. Clients can query the directory and verify
the response. Auditors can verify that the directory is correctly constructed.

Parakeet defines a VKD as follows:

Definition 2.1 (Verifiable Key Directory (VKD)) A Verifiable Key Directory (VKD) con-
sists of seven algorithms:

1But it is admissable to have two different proofs π1 ̸= π2 for α that correspond to the same β.
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• (Dirt, stt, ΠUpd)/⊥ ← VKD.Publish(Dirt−1, stt−1, St)

Updates the directory Dir and the internal state st for a set of updates S. Returns a proof
ΠUpd that the update is correct.

The server is assumed to have obtained the set of key updates from clients and to aggreg-
ate them into S.

• 0/1← VKD.VerifyUpdate(t, com, com′, ΠUpd)

Verifies a single VKD.Publish update with respect to its pre- and post-root commitments
com, com′ using the update proof ΠUpd.

• 0/1← VKD.Audit(t1, tn, (ΠUpd
t )

tn−1
t=t1

)

Verifies the set of updates between the epochs t1 to tn.

• (π, val, α)← VKD.Query(stt,Dirt, label)

Returns, for a queried label label, the latest value val and its revision α. val may be ⊥ if
the label is not a member of the directory. The proof π verifies that the value is consistent
with the directory state, i.e. it is a (non-)membership proof.

• 0/1← VKD.VerifyQuery(t, label, val, π, α)

Verifies the (non-)membership proof with respect to the root commitment comt.2

•
(
(vali, ti)

n
i=1 , ΠVer

)
← VKD.KeyHistory(stt,Dirt, t, label)

Returns the values that the label mapped to during its lifetime and a correctness proof
ΠVer. It contains only the epochs ti where the label was updated to a new vali.

• 0/1← VKD.VerifyHistory(t, label, (vali, ti)
n
i=1 , ΠVer)

Verifies the key history with respect to comt
3 using the proof ΠVer.

t is the epoch. Failure is indicated by ⊥ or by the boolean 0/1.

These algorithms hide internal client-to-server API calls. For example, VKD.Query
and VKD.KeyHistory will make a network request to the server to obtain the actual
values. Similarly, VKD.VerifyQuery and VKD.VerifyHistory will reach out to Parakeet’s
WitnessAPI to obtain the tree root commitments com.

2 In SEEMless, this algorithm also takes the commitment comt to the tree root. In Parakeet the
commitment is internally retrieved from the WitnessAPI.

3See footnote 2.
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The server can, and is in fact expected to, apply access controls. For example, it can
rate-limit calls to VKD.Query; or it can limit calls to VKD.KeyHistory such that clients
can only query their own key history but not the key history of other users.

2.3 Tamarin Prover

Formal methods are used to formally, in rigorous mathematic language, specify and
analyse computer systems (algorithms, protocols, programs, hardware, etc.). This is
done by defining a “language” with formal syntax (i.e. with a well-defined alphabet
and a grammar). A mathematical “theory” is used to introduce semantics. An example
of formal languages are process calculi, such as Communicating Sequential Processes
(CSP) and the π-calculus. One can then formally express desired properties of the
system, and use manual or automated/computer-assisted techniques to prove these
properties. This is called formal verification. Two main approaches to formal verification
are model checking and automated theorem provers:

In model checking, one explores the entire state space of the system, checking that a
property is always satisfied. This can be done for finite-state models (by enumerating
all states, subject to state explosion), but also for infinite-state models using symbolic
model checking (reasoning over collections of states). Model checking is often used in
normal software development to check safety and liveness properties.

(Automated) theorem provers on the other hand use deductive reasoning: Theorem
provers try to (automatically) generate a proof that a given property holds. They
start from the program specification, and try to deduce/infer new statements from it,
until they reach a proof. The program specification and the larger theory (the axioms)
give rise to a constraint system, acting as guardrails for the inference. The inference
is usually guided by heuristics. Because of this, theorem provers are closer to tradi-
tional, manual, step-by-step, deductive proofs. In fact, interactive theorem provers are
not just used in computer science, but also in mathematics: one such example is Lean.4

Tamarin The Tamarin Prover is an automated, interactive theorem prover designed
for security protocols analysis. It operates in the symbolic model, which allows it to
reason about an unbounded number of parallel protocol executions. The language in
which protocols are specified are multiset rewriting rules. Properties are specified using
logical statements over traces of protocol executions. It can check both satisfiability
(does there exist a trace satisfying this formula?) and validity (does this formula hold
for all traces?). Tamarin checks validity by negating the formula and then checking
satisfiability. If the negated formula is satisfiable, then this is an attack trace, which
Tamarin can output as a visual graph. Tamarin can try and find proofs automatically,
or it can be run interactively to construct a proof by hand and explore the protocol

4https://leanprover-community.github.io and https://ethz.ch/staffnet/en/

news-and-events/internal-news/archive/2023/08/the-2023-paul-bernays-lectures.html
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step-by-step. This interactivity, showing protocol traces as graphs, can be useful for
debugging both protocol models and proofs.

Protocols are specified in Tamarin using terms, facts, and rules:

Terms, Functions, Equations Terms, together with functions, are used to repres-
ent cryptographic messages (rather than bit-strings). For example, h(m) is the hash
function h applied to the message term m. senc(m, k) is a symmetrically encrypted
term. Equational theories model properties of functions. For example the equation
adec(aenc(m, pk(sk)), sk) = m relates asymmetric encryption and decryption. When
using terms, functions, and equations to model cryptographic primitives, Tamarin as-
sumes these primitives to be perfect.

Terms can be of different types, also called sorts: Publicly-known terms are prefixed
with a dollar sign $. Freshly generated terms are prefixed with a tilde “∼”. Temporal
terms (timestamps) are prefixed with a hashtag “#”. Natural numbers are prefixed
with a percentage sign “%”.

Rules and Facts Rules and multisets of facts are used to represent protocol mes-
sages. Facts are built from terms. They are the “state” of the protocol. Rewriting rules
consume the facts in the multiset on the LHS (premise), and produce new facts in the
multiset on the RHS (conclusion). Rewriting rules are labelled with actions containing
action facts. For example, the following rule takes a State1 fact containing a message
term and a key term and produces a different fact containing the symmetric encryp-
tion of m:

rule Encrypt:

[ State1(m, k) ] --[ EncryptAction(m,k) ]-> [ State2(senc(m,k)) ]

Linear facts can only be consumed once. Persistent facts can be consumed arbitrarily
often; they are prefixed with an exclamation mark “!”. The generation of fresh, ran-
dom values is modelled as the special Fr(~m) fact.

Network Messages and the Network Adversary Tamarin uses the Dolev-Yao ad-
versary model, i.e. the adversary “is” the network. The network can read, modify,
insert, drop, replay, reorder messages. The network is modelled using the special
Out(m) and In(m) linear facts. Every message is sent out to the adversary, and every
message is received in from the adversary, and the adversary can handle them arbit-
rarily.

This goes beyond simply modelling network messages: We can also add rules that
explicitly send data out, thus giving the adversary more knowledge. For example, we
can simulate the adversary compromising a party by sending out their private key.
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In the example below we have three rules: one to model a PKI that generates a long-
term secret key for user Alice $A. With the Out fact we send out the public key to
the network, and hence to the adversary. Note that the adversary cannot look into the
pk() function, i.e. it cannot deconstruct this function symbol and cannot learn ~ltk.
The persistent fact !Ltk can be consumed multiple times. This allows the InitAlice

rule to start many different protocol threads, identified by a thread ~id. Finally, the
CompromiseAlice rule models the adversary compromising Alice’s long-term key.

rule GenKey:

[ Fr(~ltk) ] --> [ !Ltk($A, ~ltk), Out($A, pk(~ltk)) ]

rule InitAlice:

[ Fr(~id), !Ltk($A, ~ltk) ] --> [ StAlice1(~id, $A, ~ltk) ]

rule CompromiseAlice:

[ !Ltk($A, ~ltk) ] --[ Compromise($A) ]-> [ Out(~ltk) ]

Lemmas Lemmas are used to specify security properties. Lemmas are specified us-
ing logical statements over protocol traces, in a language similar to first-order logic. Ex
and All are reserved symbols. Timestamps at which facts occur in a trace are prefixed
with a hashtag “#” (though sometimes it can be dropped as syntactic sugar).

For example, satisfiability lemmas are often used to prove executability of a protocol.
This is useful as a sanity check to catch modelling bugs.

lemma Exec_AppendAuditor_Basic:

exists-trace

"Ex id roothash #i #j #k .

AppendInsert(id)@i

& AppendUpdate(id)@j

& AppendAudit(id, %1 %+ %1 %+ %1, roothash)@k

& i < j

& j < k "

Similarly, we can write validity lemmas for security properties. For example, we can
check that a value x is secret, unless the adversary has compromised a party A that
was assumed to be honest: 5

lemma Secrecy:

all-traces

"All x #i. Secret(x)@i

5This example is taken from Section 7 “Property Specification” of the Tamarin manual [23] and
slightly modified.
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==> not (Ex #j. K(x)@j)

| ( Ex A #j. Honest(A)@i & Compromise(A)@j ) "

K(m) is a special fact modelling that the adversary knows a term m. Secret, Honest,
Compromise are action facts that we need to have included in the action of some rule
in our model.

Such lemmas of the form “secure or X” also give rise to a threat model: while we grant
the adversary the power to do X in the protocol rules, in the lemma we may need to
exclude attacks where the adversary actually does X. This creates a threat model where
we accept X as an attack that the protocol does not prevent.

We can write auxiliary lemmas by marking a lemma as [reuse]. When proving a
lemma, Tamarin will assume all previous reuse-lemmas hold (they need to be proven
separately). Tamarin can then use the reuse-lemmas’ statements to limit its search.
This can be used to break down proofs into smaller ones.

Restrictions Restrictions restrict the set of traces that Tamarin will consider. They
are specified as formulas over action facts. This allows us to model checks that the
protocol does, by restricting when a rewrite rule can be applied. A common example
is checking for equality. By writing the below restriction and adding the Eq(x,y)

action fact to a rule’s actions, we can restrict Tamarin’s search to only considering
traces for which the restriction’s formula holds. 6

restriction Equality:

"All x y #i . Eq(x,y)@i ==> x = y"

Subterms Unboundedness in security protocols typically arises from two dimen-
sions: First, unbounded parallel sessions. Tamarin can often handle these. Second,
terms within a session that grow unboundedly, for example counters or hashchains.
Tamarin has recently received support for these in form of subterms [9]. As the paper
explains: “Intuitively, if x is a subterm of t, then x is needed to compute t.” [9] For
example, both x and h(x) are subterms of h(h(x)). Subterms are strict, i.e. x is not
a subterm of itself. Subterms allow us to write lemmas with a new subterm operator
“<<”. For example:

lemma CounterStrictlyIncreases:

all-traces

"All x y #i #j . Counter(x)@i & Counter(y)@j & i < j ==> x << y

Using subterms, Tamarin also defines natural numbers using a basis element (%1) and
addition (%+). %1 is a subterm of %1 %+ %1.

6This example is taken from Section 7 “Property Specification” of the Tamarin manual [23].
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Limitations of Formal Verification No proof technique and no model can capture
the entirety of any real system. For example in Tamarin, by using a symbolic model
of terms we abstract away bit-strings, thus potentially excluding attacks that use side-
channels or bit-flips. There can also be bugs in the model, or the actual implementation
could differ from the model. Formal verification only complements other analysis
techniques.
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Chapter 3

ProtonKT Specification

This section specifies the ProtonKT security protocol. We begin by giving a high-level
overview. Next, we describe the protocol in more detail (but still informal): how labels
(email addresses) and values (public keys) in the key directory are defined, how the
Merkle tree is built, and how Self Audits and External Audits work. Finally, we give
a more formal specification of ProtonKT, stating the subprotocols and giving their
detailed steps as message sequence diagrams.

3.1 Overview

This section gives a high-level overview of how ProtonKT works. We also describe
how ProtonKT is different from other KT protocols.

Roles and Basic Functionality ProtonKT has the same roles as other KT protocols: a
server, some clients, and some auditors.

The server hosts the key directory. Clients can upload their own public key to the
server, and clients can query (look up) other clients’ public keys. Clients also regularly
audit their own keys and check that they are correct. The server responds to queries
with the requested public key, as well as an inclusion proof leading to a tree root
and a commitment to that tree root. External auditors check that the server correctly
constructs the tree and does not equivocate (present split-views). Clients have a trust
relationship with the auditors: they trust that at least one honest auditor is auditing
the tree.

Merkle Tree The key directory is a Merkle Hash Tree. Each leaf corresponds to a
(username, revision) pair. That is, whenever a user updates its key, a new leaf is
inserted. In ProtonKT, each user has a dedicated subtree: all its revisions belong to
the same subtree. Revision 0 is the left-most leaf of a user’s subtree, revision n is the
right-most leaf.
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This construction is a trade-off: on one hand it leaks the number of revisions a user
has and when they are updated. On the other hand, it makes it trivial to audit that the
server is behaving correctly, e.g. that it is appending the revisions correctly and not
overwriting existing revisions.

The ProtonKT server can also delete old values. External Auditors check that the
server only deletes revisions that have been superseded by a new revision more than
90 days ago. That is, the latest leaf is always retained. This allows the server to clean
up old values.

Root Hash Consistency via Commitments ProtonKT introduces a new approach
for committing to the root hash: it requests a web-PKI certificate that contains the
root hash (or more specifically, the hashchain of root hashes) from a CA (e.g. Let’s
Encrypt). The CA issues the certificate, and it will be logged in CT logs. Assuming
that CT logs are append-only and trusted, this allows ProtonKT to publicly commit to
the tree root.

Clients then verify the commitment to the root by verifying the certificate and the SCTs
inside it. Clients trust the SCTs as a promise of CT log inclusion, and they trust that
some External Auditor somewhere is scanning CT logs for equivocation.

Epochs The server publishes an updated tree at regular intervals, called epochs. It
collects all insertion requests, inserts them as a batch into the tree, requests the web-
PKI certificate for this new tree, and then announces this as a new epoch.

This concludes our rough overview of ProtonKT. Next, we will look at each of the
protocol’s components in more detail.

3.2 VKD Labels: Email Addresses

Recall that a Verifiable Key Directory (VKD) is a dictionary of label-value pairs. 1 In
this section and in the next, we specify the labels and values used in ProtonKT.

Informally, the labels are email addresses and the values are public keys. However,
there are some subtleties. For labels, consider the following use cases that make email
addresses complicated:

• Address normalisation: Email addresses can have different formats that all map to
the same normalised address. For example, john.doe@proton.me, johndoe@proton.me,
and john.doe+alias@proton.me are all equivalent. Mail sent to any of these ad-
dresses will be delivered to the same inbox.

To solve this, we need to apply a set of normalisation rules that are applied to
a label before it interacts with the VKD algorithms. The normalisation rules

1We don’t call them key-value pairs to avoid confusion with cryptographic keys.
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Figure 3.1: ProtonKT Overview

are a public system parameter that is defined in advance. This is important:
otherwise the server could give arbitrary and different rules to different cli-
ents. For example consider the case where Bob wants to query the VKD for
alice@proton.me. The server could give Bob a rule to strip all vowels from the
local part. Bob would then look up the public key for lc@proton.me and send
his email to alice@proton.me encrypted with the key for lc@proton.me. But
when Alice verifies her key history, the server returns only non-malicious rules.

So formally speaking, we simply extend the VKD definition to take a new para-
meter normRules.

Proton has two normalisation rules for the local part (the domain part is not
modified): (1) First, if a plus (+) character is present, strip it and everything after
it. (2) Then strip all dashes (-), underscores (_), and dots (.). 2

2https://github.com/ProtonMail/protoncore_android/blob/85d316965201/key-transparency/

domain/src/main/kotlin/me/proton/core/keytransparency/domain/usecase/NormalizeEmail.kt

25

https://github.com/ProtonMail/protoncore_android/blob/85d316965201/key-transparency/domain/src/main/kotlin/me/proton/core/keytransparency/domain/usecase/NormalizeEmail.kt
https://github.com/ProtonMail/protoncore_android/blob/85d316965201/key-transparency/domain/src/main/kotlin/me/proton/core/keytransparency/domain/usecase/NormalizeEmail.kt


3. ProtonKT Specification

• Multiple addresses: One user account can have multiple email addresses (each
with their own PGP key pair), with one being the primary address. This does
not affect Bob using VKD.Query and VKD.VerifyQuery to look up an address (since
from Bob’s perspective it does not matter which account controls an address).

Alice, however, needs to call VKD.KeyHistory and VKD.VerifyHistory for all of the
addresses that are associated with her account. If she doesn’t monitor an address,
a malicious server could put a fake address into the VKD and re-encrypt all
emails for Alice towards her real key on-the-fly.

• Internal vs External vs Non-Proton Addresses: When a Proton client looks up an
email address, this can either either be a Proton or a Non-Proton Address, de-
pending on whether there exists a Proton account with this address. Proton
addresses are again split into Internal and External Addresses.

A Non-Proton Address is an email address belonging to a user who is not a Pro-
ton customer (e.g. alice@gmail.com). An Internal Address is a Proton-managed
email address (bob@proton.me or custom domains). An External Address (e.g.
charlie@gmail.com) is an email address that is linked to a Proton account, but
whose email is not handled by Proton Mail.3

For Internal Addresses, the server should either return keys and an inclusion
proof, or no keys and an absence or obsolence proof.

For External Addresses, the server may return email encryption keys that it
found in the Web Key Directory (WKD) [13] (since email is hosted elsewhere).
The server may also return data encryption keys, used e.g. for Proton Drive.
The former should have an absence proof in KT, and the latter should have an
inclusion proof.

For Non-Proton Addresses, the server may also return keys that it found in the
WKD. This way clients can automatically encrypt emails to it. These keys won’t
be in ProtonKT, thus KT should return an absence proof.

Clients should always verify the claims of the server against KT, independent of
the address type. KT proofs should not be skipped for Non-Proton Addresses.

Overall, this means that VKD labels are typed.

• Custom domains: In Proton, users can bring their own domain and delegate
email handling to Proton. These are called custom domains. For example, the
private email of the author is managed by Proton: host -t mx thore.io. This
means that Internal Addresses can have arbitrary domains, and not just @pro-
ton.me. The only exception are domains from well-known email providers such
as gmail.com or outlook.com. These exceptional domains can be assumed to
never be Internal Addresses – but they can be External Addresses.

3This allows users to sign up for a Proton account with a GMail address.
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• Catch-all: Owners of custom domains can configure a so-called catch-all address.
The catch-all address of a domain receives all email that is sent to non-existent
addresses for this domain. For example, any email sent to nonexistent@example.com

will be delivered to the catch-all address admin@example.com. (This assumes that
the administrator of example.com has configured this redirection. If they haven’t,
the email will bounce.)

When a Proton client looks up nonexistent@example.com, it should get a key
back, so that it can still encrypt the email. This should be the same key as the
key for admin@example.com, so that the catch-all address can decrypt it.

Thus whenever a client looks up an address, the KT server returns two proofs:
(1) a proof for the queried address, and (2) a proof for the catch-all address. If
the first proof is an absence proof (or an obsolence proof, see below) and the
second is an inclusion proof, then the client can deduce that it should use the
key for the catch-all address. If the domain owner has not configured a catch-all
address, the second proof is an absence proof.

ProtonKT uses @example.com as the VKD label for the catch-all address, i.e. an
@ followed by the domain name.

3.3 VKD Values

The Verifiable Key Directory (VKD) maps labels (email addresses) to values (public
keys). In this section, we discuss how these values are structured in ProtonKT, and
how these values are returned upon querying.

When a client queries the VKD for a label, there are three possible outcomes: absence,
inclusion, and obsolence. Depending on the outcome, the returned value differs: For
absence, the value is empty. For inclusion, the value are public keys, represented
by a data structure called Signed Key List (SKL). For obsolence, the value is a special
ObsolenceToken. Let us now look at these values in detail.

3.3.1 Signed Key Lists

A Signed Key List (SKL) is a list of public key fingerprints signed by the primary key.
The SKL data structure looks as follows: 4

struct {

boolean primary;

uint64 flags;

string fingerprint; // hex-encoded SHA-1/SHA-256 hash of the public key

4https://github.com/ProtonMail/WebClients/blob/3ae32a9/packages/shared/lib/

interfaces/SignedKeyList.ts

27

https://github.com/ProtonMail/WebClients/blob/3ae32a9/packages/shared/lib/interfaces/SignedKeyList.ts
https://github.com/ProtonMail/WebClients/blob/3ae32a9/packages/shared/lib/interfaces/SignedKeyList.ts


3. ProtonKT Specification

vector<string> SHA256Fingerprints; // fingerprint of the key

and of its subkeys, if any

} KeyListItem;

struct {

vector<KeyListItem> items;

} KeyList;

struct {

string data; // KeyList.to_json().to_string()

string signature; // Armored PGP signature over data

} SignedKeyList;

Each KeyListItem corresponds to one PGP key. It has a fingerprint, and possibly a
list of fingerprints of its subkeys. 5 It also has a primary bit and some flags. See
section A.1 for an explanation of the flags. Exactly one KeyListItem should have the
primary bit set.

The SignedKeyList contains a PGP signature over a JSON-encoded list of KeyListItems.
This signature should be produced by the primary KeyListItem (but may be produced
by any of the KeyListItems). The signature ensures that the server cannot tamper with
the data field. (KT would make such tampering transparent. Historically the SKL data
structure is also used elsewhere by Proton, hence the signature.)

Note that while the SignedKeyList uses PGP features (fingerprints, signatures), this
data structure is specified by Proton, not by OpenPGP.

Finally note that the public keys themselves are not included in the SKL.data, only
their fingerprints. Clients need to query the public keys from the key server (like they
would without KT). Clients then use the SKL.data to verify that the returned public
keys are consistent with KT. In an abuse of notation, and for simplicity, we nevertheless
say that KT queries return “keys”, instead of “fingerprints”.

3.3.2 Disabled Addresses and Obsolence Tokens

Email addresses can become disabled in different situations: If users delete their ac-
count, their email address is disabled so that it cannot be reused. To handle abuse,
Proton can disable user accounts and the associated email addresses. Businesses who
manage their organisation on Proton can disable an email address, e.g. when an em-
ployee leaves.

5In PGP, the fingerprint is the hash of the public keying material, either using SHA-256 or SHA-1,
depending on the version. Proton additionally adds SHA-256 hashes to mitigate against attacks on
SHA-1.
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In a first KT design, one would start by considering two cases either a label is present
and has a value (inclusion proof), or it is absent and has no value (absence proof).
Disabled addresses create a third use case: a label is present and had values in the
past, but now it should be “gone”.

Because of the append-only-ness property of KT, we cannot simply delete the label
to make it absent. 6 In addition, we want all server actions to be transparent, so the
fact that the server disabled an address should be logged. We also want to be able to
disable an address immediately in the next epoch.

Therefore we need to insert a new value for the same label (email address). For ex-
ample, we could insert an SKL without any keys, i.e. with an empty data field. With
this empty SKL in the tree, we can create an inclusion proof committing to this empty
set of keys.

However, an auditor with access to the tree can then easily recognise this empty
SKL.data value. For privacy, we want that an auditor cannot distinguish between
active and disabled addresses. Thus instead of an empty data field, we insert an
ObsolenceToken. It is defined as:

ObsolenceToken = UnixTime.now().asU64().toHex() || SecureRandom().getBytes(20).toHex()

We concatenate a timestamp of 64 bits / 16 hex characters with some randomness of
160 bits / 20 bytes / 40 hex characters to form a 56 hex character string.

The randomness makes it harder for an auditor to distinguish a present leaf (which
contains h(SKL.data)) from an obsolete leaf (which contains h(ObsolenceToken), see
section 3.6). A malicious auditor can guess the timestamp based on the epoch id when
the obsolete leaf was inserted, but it would still need to brute-force the 160 random
bits.

The timestamp is included to commit the time at which the address was disabled.
While the server can set any time, it does immutably commit to it, and KT will ensure
that everyone sees a consistent view of the timestamp. The SKL also contains a (hid-
den) timestamp: the signature field has a timestamp, because the OpenPGP standard
includes timestamps in PGP signatures. Overall, the timestamp is an informational
feature (e.g. to show a time in the UI).

3.3.3 Query Outputs: Values for Absence, Inclusion, Obsolence

In reality, when a client queries the server for a label, the server returns more than
just an SKL or an Obsolence Token. It also returns additional metadata, for example

6A malicious server can of course reset a value to being absent. However, this should be flagged as a
protocol violation by an honest auditor or by a client doing a self-audit.
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the revision and the epoch at which this value was inserted. In the REST-API, all the
metadata fields are included in the SKL struct for implementation convenience. That
is, a query will always return a SignedKeyListWithMeta struct. All its fields are null-
able, as indicated by the question mark “?”. Which fields must be present and which
are null depends on the outcome type (absence/inclusion/obsolence).

struct {

string? data;

string? signature;

/* Metadata */

uint64? revision;

uint64? min_epoch_id;

uint64? max_epoch_id;

uint64? expected_min_epoch_id;

string? obsolence_token;

} SignedKeyListWithMeta;

We can formalise this as follows: Querying a label (an email address) results in a query
outcome O = (τ, rev, val). The query outcome is the outcome type τ (absence/inclusion/obsolence),
the latest revision rev of the value, and the outcome values val (e.g. pkA). For each type,
the following values must be present in the SKL, thus forming the val from the VKD
primitive:

• valabs = ∅

• valincl = {data, minEpochId}

• valobs = {ObsolenceToken, minEpochId}

For absence, the entire SKL is null (there is no value, so there is no latest revision). For
inclusion and obsolence, we have for the other values:

• revision should be set. (It is not part of val, as the VKD definition treats it separ-
ately.)

• signature we could technically agree on, but it is not very useful: we don’t have
any keys, so we use KT to at least agree on some untrusted keys in data, and
then we would verify the signature using those untrusted keys. (The signature is
useful to the holder of the private keys. The fact that the signature exists proves
to them that they indeed requested this key to be inserted earlier.)

• maxEpochId for revision t is implied by the minEpochId of revision t + 1 (see
section 3.4). It is not used in the current protocol, but is still present as a helper
field from an earlier ProtonKT version.

• expectedMinEpochId is used for values that are not yet included in the tree; so
we cannot agree on it. If the server answers a query with a value that will only be
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included in the next epoch, minEpochId is null and instead expectedMinEpochId
must be set.

In our security properties later, we will require that clients who query a label always
agree on the outcome O = (τ, rev, val).

3.4 Epochs

We divide time into epochs. Epochs are identified by their epoch id, a strictly increasing,
positive integer.

All key insertion and update requests are collected into batches, which are then col-
lectively inserted into the KT tree. When a batch is fully processed a new tree is
published, marking a new epoch.

This means that there is a gap between a client’s insertion request and the publishing
of a new epoch. Clients inserting/updating their keys use self-auditing to verify that
their insertion request is fulfilled in the next epoch.

To allow clients to immediately use new keys, the KT server may respond to queries
with the new key immediately, even if the next epoch is not yet published. In this
case, the server can not yet provide a tree inclusion proof. It returns the key anyway,
together with the expectedMinEpochId when the key will be included in the tree. The
querying client must store the received value locally and later audit that this value
was correctly inserted before or during expectedMinEpochId.

This still fulfils the transparency requirement: if the server fails to include the key, the
client has evidence of server misbehaviour. (This is local evidence. That is, the client
cannot convince other clients of the server’s misbehaviour. To fix that, the server
would need to sign the query response.)

Intervals Normally a ProtonKT epoch should be published every 4 hours. The max-
imum publishing interval is 72 hours; after that the server is considered to be misbe-
having.

Epoch IDs in the SKL The epoch IDs in the SKL-with-Metadata have the following
meaning:

• minEpochId: is the epoch in which the SKL was inserted into the tree. It can be
null if the SKL is not yet inserted.

minEpochId is committed into the tree via the leaf hash.

• maxEpochId: is the last epoch during which this SKL was the latest SKL in the
tree. If the SKL is not yet inserted, maxEpochId is null. If the SKL is inserted
and the latest one, maxEpochId is equal to the latest epoch id. (I.e. maxEpochId
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changes every time a new epoch is published.) If the SKL is inserted and is
superseded by a newer SKL, maxEpochId is set to the id of the epoch just before
the insertion of the superseding SKL.

In other words, [minEpochId, maxEpochId] is the inclusive interval of the time
where an SKL was the latest one in the tree. 7

maxEpochId is not explicitly committed into the tree, but it is implicit from the
next higher revisions minEpochId (or, if the next higher revision is absent, it must
be equal to the latest epoch).

• expectedMinEpochId: is used by clients to locally store the epoch in which they
expect a fresh SKL to be included in KT. Once an SKL is included expectedMinEpochId
is always null.

This happens (1) when a client generates a new SKL for itself and uploads it for
insertion, and (2) if the server answers another client’s query with a new key that
is not yet included in KT (because the next epoch has not yet been issued).

In both cases, the server chooses a expectedMinEpochId. The client then locally
stores the SKL and uses expectedMinEpochId as a non-binding hint for when to
audit that the SKL was included.

expectedMinEpochId trivially cannot be committed into the tree.

3.5 The Merkle Hash Tree

In this section we describe the Merkle Hash Tree (MHT) used in ProtonKT. First we
define how ProtonKT constructs the tree, and what is hashed into it. Later we define
the inclusion and absence proofs (for querying values), as well as the update proofs (prov-
ing append-only-ness between trees). 8

3.5.1 Leaf indices

Näıve approach A core difference between CT and KT (as proposed by CONIKS) is
that in KT every label has a unique index, whereas in CT a domain’s certificate can be
logged at any index. This makes queries very efficient (and more private), because
clients have to check only a single leaf. A first naı̈ve approach is to map a label label
to a fixed length by hashing it, and then using the binary encoding of h(label) as
the unique index (up to hash collision). Then the output length of the hash function
defines the depth of the tree.

idx = h(label)
7Recall that there can be multiple SKLs in the tree, because new SKLs are always appended.
8Update proofs are called consistency proofs in CT, because they prove that the set of elements in two

trees are consistent. In KT we also have “consistency” in a second context: the consistency of the tree
root between different clients and/or auditors. To avoid confusion about which consistency we mean,
we use the term update proof instead.
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Privacy with VRFs CONIKS proposes private indices so that proofs don’t reveal any-
thing about other labels that are included in the tree. (Recall that from the co-path
from leaf to root one can deduce which neighbouring leaves are present or absent).
[21] Privacy is achieved by instead using a VRF output as the index:

idx = VRF.hashsk(label)

Recall from section 2.1 that VRF hashes can be publicly verified using pk and privately
computed using sk. For brevity we omit the proof π here.

Revisions A problem in CONIKS is that every epoch has a new tree, forcing users to
audit every single epoch. ProtonKT, inspired by SEEMless, proposes to use a single
append-only tree and revisions to address this. Recall that SEEMless uses the follow-
ing indices:

idx = VRF.hashsk(label || rev)
The advantage of this is that the auditors (who see the new leaves as part of the update
proof) learn nothing about which labels were updated. Auditors cannot distinguish
between a new label insertion and a label update. The disadvantage is that users need
to do extra work to ensure that the revision that the server serves them really is the
latest one. This is achieved using markers [7, Section 4].

Proton, however, calculates indices as follows:

idx = VRF.hashsk(label) || rev

With this construction each label (each email address) has a unique subtree (defined by
the trailing index bits of the revision, see subsection 3.5.2). This allows for the tracing
attack described by SEEMless. However, Proton considers this acceptable leakage.
Because Proton runs a public, non-access-controlled key server, an attacker can already
trace key changes through repeated querying.

This construction also has some advantages: (1) Auditors can ensure that new revi-
sions are always incrementally increasing. (2) Auditors can ensure that old revisions
are correctly deleted. (3) It is easy to prove that a revision is the latest one. In compar-
ison, Parakeet needs to be much more intricate and puts more work on clients that in
ProtonKT auditors can do. For example, we will see in section 3.8 that ProtonKT can
support deletions without requiring tombstoning like Parakeet.

Summary ProtonKT instantiates VRF with ECVRF-EDWARDS25519-SHA512-TAI [12]9,
which has output size 512 bits. A leaf index in ProtonKT has 256 bits. The first 224
bits are from the VRF hash (ignoring the remaining 512− 224 = 288 bits), the other 32
bits are the revision. Hence the Merkle tree has a fixed depth of 256. Each bit of the
index (0/1) defines whether a left or a right branch is taken. Being a bit-string of 32
bits, revisions as integers go from 0 up to 232 − 1 (inclusive).

9As of November 2023, Proton uses Draft 10 and not the final RFC 9381.
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3.5.2 Tree Construction

The tree is at the core of KT: it allows us to efficiently achieve consistency by simply
comparing tree root hashes. In this section we describe how the tree is constructed in
ProtonKT.

Nodes The MHT consists of leaf nodes and inner nodes. The topmost inner node is
called the root. Each node has exactly one parent, except the root which has no parent.
All inner nodes have exactly two children: a left child and a right child.

Hashing Each node stores a hash. The leaf hash is described below. The inner node
hash is computed as:

h(hashle f t || hashright)

By hashing from the leaves up towards the root, we build the hash tree. The hash of
the root node is called the tree root hash, or root hash, or tree hash. We can identify the
node with its hash, i.e. sometimes we will say “tree root” when we mean the tree root
hash.

Proton instantiates the hash function h with SHA-256.

Leaf Hashes Recall that each leaf has a leaf index which corresponds to a label and a
revision. Each leaf stores such a VKD value. If the VKD value is present, the leaf hash
is computed as: 10

h(h(SignedKeyList.data) || minEpochId)

If the VKD value is obsolete, the leaf hash is computed as:

h(h(ObsolenceToken) || minEpochId)

If there is no value at the leaf, the leaf hash is set to 0n, i.e. a string of n zeros, where
n is the output size of the hash function (in ProtonKT n = 256).

Note that SKL.data is a JSON-encoded string while ObsolenceToken is a 56-hex-character
string. Clients must check that the encoding is the one they expect for the respective
token type (else we can have type confusion). See also the VKD Values description in
section 3.3, and see the discussion on type separation in section 5.2.

Overall, this leaf hashing commits the VKD values SKL.data, ObsolenceToken, and
minEpochId into the tree. The revision is implicitly committed through the leaf in-
dices. This allows all parties to agree on (τ, rev, val), given that they agree on the root
hash.

10https://github.com/ProtonMail/pm-key-transparency-go-client/blob/a09cc15/

verify_proof.go#L101 and https://github.com/ProtonMail/WebClients/blob/

fab01b1d12cd5f9f7d1838f6464d155dd0b8c158/packages/key-transparency/lib/verification/

verifyProofs.ts#L147
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Label Subtree and Revision/User Subtrees The Merkle Tree in ProtonKT has a fixed
depth of 256 levels. We logically split the tree into an upper part (from the root at
depth 1 up to and including the inner nodes at depth 224), and a lower part (from
depth 225 until depth 256, i.e. 32 levels).

We call the upper part the label subtree. The leaves of the label subtree (i.e. the inner
nodes of the overall tree at level 224) correspond to the VKD labels, i.e. to email
addresses. By taking the first 224 bits (28 bytes) of the VRF hash of an email address,
we thus obtain a unique (up to hash collisions) label-subtree-leaf: starting from the
root, go left if the VRF bit is 0, or right if it is 1. Repeat with the next VRF bit for the
next level of the tree.

Each label-subtree-leaf is the root of a revision subtree. These revision subtrees are
formed by the remaining 32 levels in the overall tree. The lower part of the overall tree
is therefore made up of many parallel revision subtrees. Because each user has their
own distinct revision subtree, we also call it the user subtree. The leaves of a revision
subtree contain the increasing revisions of the VKD values for this label from left to
right. The leaves of all revision subtrees together are exactly the leaves of the overall
tree.

Sparseness The label subtree is sparse, while the individual revision subtrees are
dense. That is, within a revision subtrees all values are in the lower left corner while
all leaves on the right are empty. In the label subtree the non-empty leaves are evenly
distributed due to the VRF hash.

Overall the Merkle Tree in ProtonKT is sparse. This is in contrast to the Merkle Tree in
CT which is dense, because values are inserted from left to right (like in the revision
subtree).

Size There are 2224 ≈ 1067 label-subtree-leaves. This is how many labels (email ad-
dresses) can be inserted into the tree. Each revision subtree has 232 = 4′294′967′296
leaves. Thus every email address can have roughly up to 4 billion revisions.

With proper rate limiting and abuse prevention, none of these bounds should be an
issue in practice (also recall that in Proton’s setting keys rarely change). If the bounds
are reached, one could start a second tree.

Revisions and Inserting Values Initially the revision subtree of a label starts com-
pletely empty. The first value is inserted with revision 1. After that every update
increments the revision by 1. This means that revision 0 is always absent!

3.5.3 Proofs of Inclusion and Absence

The ProtonKT proofs are of the form

(τ, πvr f , πcopath)
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root = h(h0 || h1)

h0

h00 = ε h01

. . .

ε hbinary(vr f (alice))

. . .

ε h(h(SKL.data1)||minEpId1)︸ ︷︷ ︸
=hA1=Alice’s key at revision 1

h(h(ObslncTokn)||minEpId2)︸ ︷︷ ︸
=hA2=Alice’s rev 2, account disabled

ε

ε

ε

ε

h1

h10

ε . . .

ε hbinary(vr f (charlie))

. . .

ε h(. . . )︸ ︷︷ ︸
=hC1=Charlies’s rev 1

ε

ε

ε

h11

. . .

ε hbinary(vr f (bob))

. . .

ε h(. . . )︸ ︷︷ ︸
=hB1=Bob’s rev 1

ε

ε

ε

ε

Figure 3.2: Tree structure example. Leaves of the label subtree (at depth 224) are shown in red and leaves
of the three revision subtrees (at depth 256) are in blue.

τ is the outcome type. πvr f is the VRF proof that can be verified with the server’s VRF
public key, and that can be used to calculate the VRF hash to obtain the leaf index.
πcopath is the inclusion/absence proof. 11 It is a list of all the neighbours on the path
from the leaf to the root, excluding the root hash.

Verifying the proof

1. First, we verify the VRF proof for the label:

β/⊥ = VRF.veri f y(pk, label, πvr f )

If it passes, we use the VRF hash and the revision to calculate the VRF index:

idx = β || rev

11Obsolence proofs are a variant of inclusion proofs. They prove that an ObsolenceToken is included
in the tree.
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2. Second, from the outcome type τ and the query outcome values val we can
construct the leaf hash (as defined above). Inclusion and obsolence proofs must
check that the SKL.data is JSON-encoded and the ObsolenceToken is hex-encoded.

3. Third, we (re-)compute the hash chain from the leaf to the root using the neigh-
bours in πcopath. The bits in the leaf index determine whether a neighbour should
be hashle f t (bit 1, path goes right) or hashright (bit 0, path goes left).

4. Finally, we compare the computed roothash against the provided one. If they
match, the proof verifies.

In practice, we also need sanity checks such as checking that the input values are
non-null.

Pruning empty subtrees (absence proofs only) Recall that the tree is sparse, i.e. it will
have many empty subtrees. We want to avoid hashing h(0n || 0n), and h (h (0n || 0n) || h (0n || 0n)),
etc. many times. To prune these empty subtrees, we ignore all the initial empty neigh-
bours on the co-path, and we start hashing only when we hit the first non-null neigh-
bour. (If we have a null/empty neighbour after that, we treat it as 0n.) Proton calls
this incomplete hashing.

Note that this is only allowed for absence proofs! For inclusion and obsolence proofs,
we always immediately start hashing at the second last level:

h
(

h(h(SKL.data) || minEpochId)︸ ︷︷ ︸
leaf hash hle f t

|| hright
)

In the example in Figure 3.3, the co-path proofs are as follows (neighbours listed from
bottom-to-top):

• πrev0 = (hrev1, h(hrev2 || ε), ε, . . . )

• πrev1 = (ε, h(hrev2 || ε), ε, . . . )

• πrev2 = (ε, h(ε || hrev1), ε, . . . )

• πrev3 = (hrev2, h(ε || hrev1), ε, . . . )

• πrev4 = πrev5 = πrev6 = πrev7 = (ε, ε, h03, . . . )

In particular, we set h47 = ε and not h47 = h (h (0n || 0n) || h (0n || 0n)).

Note that because for inclusion and absence proofs we start hashing immediately from
the leaf onwards (even if the first few neighbours are empty, e.g. in πrev2), we ensure
that the nodes on the path from non-empty leaves to the root always have hash values.
Not ignoring empty neighbours in this case makes sense, because if the leaf has a
value, the subtree induced by the leaf’s parent is no longer empty, so we cannot prune
it.
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With this incomplete hashing/subtree pruning, the hashchain computation for absence
proofs will often be non-constant time, because the number of hashes is no longer
fixed at 256. This opens up an (acceptable) side-channel, where an attacker can try
and learn how many hashes a client did, and where in the tree the queried label may
be. This can leak which labels a client has looked up.

. . .

h
(

h
(
h(ε || hrev1) || h(hrev2 || ε)

)
|| ε

)
h
(
h(ε || hrev1) || h(hrev2 || ε)

)︸ ︷︷ ︸
h03

h(ε || hrev1)

ε hrev1

h(hrev2 || ε)

hrev2 ε

ε︸︷︷︸
h47

ε

ε ε

ε

ε ε

. . .

Figure 3.3: Tree structure example (incomplete). Only the lower left part of a single revision subtree is
shown. hrev1,2 are non-empty leaf hashes of the form hrevi = h(h(SKL.data || minEpochId))

3.6 Committing to the Tree Root

Recall that the goal of KT is to give clients a consistent view of all keys in the system.
To achieve this, a consistent view of the tree is required, which in turn is done by
ensuring a consistent view of the tree root. The tree root represents a commitment to
the entire tree.

If clients don’t check for inconsistent views, equivocation attacks are possible: the
server could present one view of the tree to client A and a different view of the tree to
client B.

Previous approaches Recall that CONIKS achieves consistency by having third-party
auditors who monitor the tree roots. CONIKS clients query multiple such auditors
at random and ask them for their view of the root. Others, like Keybase [2] and
EthIKS [6] write the tree root to a blockchain and use smart contracts, thus outsourcing
the problem of global consistency to the blockchain network. SEEMless skips it and
assumes a consistency mechanism is given. Parakeet proposes its own consistency
protocol involving a quorum of witnesses. Apple uses iMessage itself as a transport
mechanism for gossip: clients include the tree roots they see in “a small percentage of
messages”. [10]

38



3.6. Committing to the Tree Root

Proton’s approach Proton proposes another approach for achieving a consistent
view: Instead of piggybacking on a blockchain, Proton piggybacks on Certificate
Transparency (CT). The server publishes the tree root in a web PKI TLS certificate
that is logged in CT. This bootstraps ProtonKT on top of CT, with the assumption that
there are existing auditors that ensure that CT provides an append-only log.

To publish a new epoch with a new tree root the server requests a new TLS certific-
ate with the Subject Alternative Name for the following DNS domain (called full KT
domain):

{chainhash[0:32]}.{chainhash[32:64]}.{issuanceTime}.{epochid}.1.keytransparency.ch.

chainhash is the hex-encoded SHA-256 chainhash (not the root hash – see below).12

issuanceTime is the epoch issuance Unix timestamp claimed by the server.13 epochid

is the integer epoch id. 1 is the integer version number of the ProtonKT protocol.

The Certificate Authority will log the issued certificate in a CT log. Later anyone can
query the CT log and search for all such KT domains, thus obtaining all logged chain
hashes.

Chain Hashes and Root Hashes Notice how we commit the chain hash and not the
root hash to the CT logs. The chainhash links different epochs together, and for epoch
i it is computed as:

chainhashi = h(chainhashi−1 || roothashi)

For the first epoch (which has i = 1) we set:

chainhash0 = 0n

where n is the output size of the hash function being used (SHA-256, i.e. n = 256).

This chaining commits the entire history of all trees across all epochs as a hashchain
to CT. It does not guarantee that the values in the tree are append-only. This needs to
be verified separately.

Verifying the commitment The certificate contains some Signed Certificate Timestamps
(SCTs). An SCT is a signed promise by a CT log that the certificate will be included
within a maximum merge delay in the log. Clients verify that the commitment is valid

12The hash is split into two subdomains because RFC 1035 specifies that each label must be “63 octets
or less”.

13Clients cannot verify that this is the correct timestamp when the epoch was issued. But at least it
commits the server to a single timestamp that everyone then agrees on.
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by verifying (1) that the certificate is signed by one of the hardcoded CAs, and (2) that
there are at least two SCTs signed by two CT logs, run by different operators, and on a
hardcoded list. Once the certificate is verified, the client can extract the full KT domain
from the Subject Alternative Name field, and thus learn the epoch ID and the chain
hash.

Short KT Domain A short domain format is used for a given epoch id:

epoch.{epochid}.1.keytransparency.ch.

This was introduced because the CommonName in the Subject can be at most 64 bytes
(as per RFC 5280, page 124), hence a second shorter domain is needed. Both the full
KT domain and this short KT domain are included as Subject Alternative Names in the
web-PKI certificate.

It is tempting to use this short domain to search CT logs. However, clients cur-
rently do not check whether the short KT domain is present and correctly format-
ted. Hence a malicious server can put any short domain in the CommonName,
thus hiding the certificate in the CT logs. CT log searches should always search for
*.{epochid}.1.keytransparency.ch (note the leading dot between the wildcard and
the epoch id!).

DoS Risk There is the risk of CAs or CT logs DoS-ing the KT system by refusing to
issue certificates or SCTs. This is mitigated by ProtonKT relying on multiple CAs and
CT logs and hardcoding all of them in the client. If one CA fails, the server can request
a certificate from another CA.

Comparison Below, we analyse the similarities and differences of the consistency
mechanisms used by ProtonKT, Parakeet (WhatsApp), and Apple iMessage.

• Setup: Parakeet clients require a set of well-known witnesses. Proton clients
require no knowledge about the auditors, but require a set of well-known CA
and CT logs.

For both, the identities and public keys of the witnesses or CAs need to be con-
figured on the clients in advance. This requires a hardcoded setup or a trusted
out-of-band channel to update the configuration.

Apple requires no setup.

• Trust Assumptions: In Proton, clients need to trust: a small set of CAs (two or
three) who issue the Certificate and the CT log operators who issue the SCTs.

In Parakeet, clients need to trust that there is no quorum (majority) of colluding
witnesses.
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In Apple, because clients share root hashes via gossip, the iMessage servers
cannot simply MITM a subset of a client’s chats. It would either need to MITM
none, or all chats (to rewrite all root hashes messages on the fly). Clients need to
trust that such a major attack would be detected.

• Communicating observed hashes: In Parakeet information about the observed root
hash flows from witnesses to clients via the witness certificate. Clients see how
many and which witnesses have signed the certificate.

Similarly, Apple’s gossip is a direct exchange of observed root hashes.

In Proton auditors and clients never exchange any information. Clients check
the SCT and trust its promise that the certificate they see will be included in CT.
And they trust that some auditor scans the CT logs and will raise a complaint if
there are conflicting certificates. However, clients are unaware of whether there
are any active auditors.

• Issuing new epochs: Parakeet requires enough witnesses to be online (namely
≥ 2

3 n + 1 out of n) to issue a new epoch.

Proton requires any one of the configured, well-known CAs and a log operator
to be online.

Apple has no external dependency and can issue new epochs any time.

3.7 Timestamps and Recentness

There are several timestamps associated with every epoch:

• issuanceTime: The Unix timestamp at which the new tree has been constructed
and the epoch is except for the certificate fully issued. This time is chosen by the
server. Proton’s API calls this CertificateTime.

• Certificate.notBefore: Timestamp field in the X.509 certificate. Chosen by the CA.

Let’s Encrypt sets it to the actual certificate issuance time. ZeroSSL, Cloudflare,
or Amazon backdate it slightly to 00:00 (hour:min) on the day of the issuance.

• SCT.timestamp: The time at which the CT log accepted the (pre-)certificate. Chosen
by the CT log.

• claimedTime: The time at which the epoch is fully issued, including the certificate.
This timestamp is exposed by Proton’s REST API for engineering and monitoring
purposes. It is not used in the protocol, hence we ignore it in our specification.
We mention it here to avoid confusion when reviewing the implementation and
API.

It is tempting to think that there exists an ordering like:

issuanceTime ≤ Certi f icate.notBe f ore ≤ SCT.timestamp ≤ claimedTime
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However, as mentioned above the notBe f ore is chosen by the CA, and when ZeroSSL
sets the hour:minute to 00:00 we have issuanceTime ≥ Certi f icate.notBe f ore.

Similarly, we cannot assume that notBe f ore is ordered across epochs like:

notBe f oret ≤ noteBe f oret+1

If epoch t has a certificate from Let’s Encrypt and epoch t + 1 has a certificate from
ZeroSSL, then notBe f oret ≥ notBe f oret+1.

Because of that, certificate timestamps can only be used as a rough indication of live-
ness. For monotonicity, we rely on the epoch ids to be strictly increasing. We require
that the server sets the issuanceTimes to be strictly increasing as well:

issuanceTimet < issuanceTimet+1

Recentness When querying keys, the server needs to convince the client that an
epoch is recent. Otherwise, if Bob is compromised and rotates his keys, the server
could keep showing Alice an old epoch and pretend it is still the latest one. Then
Alice would continue to use the compromised keys.

A first idea to ensure recentness is to require that an epoch must be accompanied by a
web certificate that has a notBe f ore timestamp within the past, say, 24 hours. However,
this can be easily attacked: the server can just request a new certificate every 24 hours
for the same old KT domain.

A better idea is to also require that the notBe f ore is within 24 hours of the issuanceTime
(in addition to being within 24 hours of the current time). Because the issuanceTime is
committed in the domain name and thus cannot be changed without equivocating, the
previous attack does not work if we assume that CAs always sets the notBe f ore close
to the time of the certificate request. This is a reasonable assumption. For example,
Let’s Encrypt does not even allow requesters to choose a notBe f ore. Generally CAs
have some flexibility of setting the notBe f ore, with the caveat that they should not
backdate it too far (which is exactly what we require). 14

Therefore, to verify that an epoch is recent, clients should to the following two checks:

|notbe f ore− isstimet| ≤ 24h

|currentTime− isstimet| ≤ 24h

3.8 Deletions

So far, we have only considered the VKD as a label-value dictionary that is append-
only. However, in practice we also want to delete old, unused entries. For example
for legal reasons when a user requests their account deletion, or simply for business
reasons as Proton does not want to operate infinitely growing storage.

14https://wiki.mozilla.org/CA/Forbidden_or_Problematic_Practices#Backdating_the_

notBefore_Date
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Previous approaches Parakeet [19] was the first to construct a KT scheme that sup-
ports deletion. They call the primitive VKD with compaction (cVKD). See also sub-
section 1.3.3. However, Parakeet needs tombstoning: First, during tombstone epochs
elements are marked as to-be-deleted. Then, clients must come online to check that
their entries are correctly tombstoned. Finally, during deletion epochs all tombstoned
entries are deleted (and auditors verify that nothing else is deleted).

Why tombstones? Parakeet requires this extra step because of the way how their
tree is constructed. Their leaf indices are of the form VRF.hashsk(label || rev). When
they insert a new revision, they insert both label || rev and label || rev || stale. The stale
marker allows queries to verify that a revision is the latest one (the stale entry must
have an absence proof for the claimed latest rev). During Self Audit (VKD.VerifyHistory)
clients check that their stale markers are set correctly.

What if there were no tombstones? Then a malicious server could delete label || rev || stale
while keeping label || rev. Now the server is able to present an old revision to query-
ing clients. Then before the next Self Audit the server simply inserts label || rev || stale
again. Therefore for security, we require that the revision and the revision-stale-marker
are always tombstoned together. This needs to be checked by the clients – auditors do
not see into the VRF hashes.

This is why Parakeet needs tombstone epochs (after which clients check that the server
behaved correctly, i.e. a local check on a few entries per client) as well as deletion
epochs (after which auditors check that the server behaved correctly, i.e. a global
check on the entire tree).

Proton’s approach Recall that in ProtonKT leaf indices are of the form
VRF.hashsk(label) || rev. This comes at the cost of having additional leakage towards
the auditors. However, this also enables auditors to monitor correctness of deletion,
because they can “see” into the revision subtrees.

The server is allowed to delete values under the following conditions, verified by the
External Auditors:

• The latest revision is never deleted. At least one revision must always be re-
tained.

• Only values that are old enough are deleted. Auditors see when a leaf was
inserted (minEpochId). A leaf of revision t may only be deleted if it has been
superseded by revision t + 1 more than DeletionParam ago. That is, revision t + 1
was inserted more than DeletionParam ago, and the maxEpochId of t is more than
DeletionParam ago.

In ProtonKT, the system parameter DeletionParam is set to 90 days. This is mo-
tivated by the web-PKI certificates for the tree root commitments which expire
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after 90 days. 15

Parakeet auditors check this, too.

• Values are deleted starting from the lowest revision, and they are deleted con-
tinuously without any gaps. E.g. it is not allowed to delete revisions 1 and 3 but
not revision 2.

This can be monitored by third-party auditors in ProtonKT, but not in Parakeet.

This also means that the ProtonKT server can delete old-enough items in any epoch
(unlike Parakeet which may only delete in deletion epochs, because it needs to wait
for clients to run Self Audits after tombstoning).

Adding deletion to ProtonKT only changes the epoch generation by the server and
adds some checks to the auditors. Client algorithms (in particular Query and Self
Audit) do not change.

3.9 Self Audit

Recall that the goal of Key Transparency is to achieve consistency of username-to-
public-key bindings. Given this consistency, each user can then locally verify that
their binding is correct (i.e. it contains their real keys, and not malicious keys).

Checking correctness done by the Self Audit in ProtonKT: a user’s client looks up its
own label and compares the result against its own keys that it locally knows.16 It
checks that the latest revision in the tree is correct, and that its key history is correct
as well. If there are any unexpected keys, it raises a warning.

Algorithm The client stores a veri f iedRev, initialised to 0.17 This is the last, lowest
revision that the client has audited. It also stores veri f iedCreationTimestamp, the cre-
ation timestamp of the last audited revision. The Self Audit then does the following:

1. Get the latest epoch and verify its commitment.

15Renewing the certificates does not help because the issuanceTime in the full KT domain must be
within 24 hours of the certificate’s notBefore timestamp (see section 3.11). The other option is to set the
notAfter to a value higher than 90 days, but for that ProtonKT would need a CA other than Let’s Encrypt.

16How does “locally know” work in the Proton web client, where a user can log in on any new device
with an empty state? The Proton server stores the user’s private keys in a keyring encrypted under the
user’s password. When the user logs in, the user can simply decrypt these keys with their password,
thus now “locally knowing” their keyring.

We assume that the Proton key server cannot tamper with the encrypted keyring. In particular, it
cannot add a malicious key or remove a key because it doesn’t know the password; hence the server
cannot produce a ciphertext that decrypts successfully with the user’s password.

Of course, all of this assumes that the web server honestly delivers the web client and does not modify
the client code.

17Recall that revision 0 is always absent. The first non-empty revision is 1.
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2. Request all values in the interval [veri f iedRev + 1, latestRev], together with their
proofs.

latestRev is only known to the server, since the client does not know how many
values were inserted since the last Self Audit. Note that the interval may be
empty when veri f iedRev = latestRev.

3. Also request an absence proof for the latestRev + 1.

4. Check all proofs against the epoch’s root hash.

5. If latestRev = 0(= veri f iedRev): Raise a warning and end Self Audit. 18

6. Check all SKL signatures

7. Check that the timestamps in the SKL signatures of the included values are
strictly monotonically increasing, starting from veri f iedCreationTimestamp.

8. For each non-absent val:

• If val is obsolete: Raise a warning. 19

• If val is included: Check that all keys in SKL.data are locally known. If not,
raise a warning.

9. If there are no errors, store veri f iedRev← latestRev
and veri f iedCreationTimestamp← latestRev.SKL.signature.creationTimestamp.

Not Hiding Newer Revisions Client must be sure that latestRev really is the latest re-
vision in the tree, otherwise the server could hide malicious key updates by not show-
ing higher revisions. Currently this is done by checking the absence of latestRev + 1.
This works because if the tree is correctly constructed, revisions are never modified,
and new revisions are created incrementally and continuously without any gaps. Cor-
rect tree construction is checked by the External Audit, see section 3.11. For an altern-
ative approach without a dedicated absence proof, see section 5.4.

Rollback Prevention The Self Audit checks that signature timestamps are strictly
monotonically increasing. This is to prevent the server from “rolling back” values to
previous SKLs. Consider Alice who has the following keys: revision 1 contains an
RSA-1024 key. Revision 2 contains both the old RSA-1024 key and a new Curve25519
key. The new ECC key is marked as primary, thus all emails will be encrypted with
it. The RSA key is still kept in the keylist of revision 2 to allow Alice to decrypt old
emails. If the server re-inserted the SKL from revision 1 again as revision 3 (thus
rolling back), then other querying clients would use the old RSA key.

18Warn the user that their keys are not yet included in the tree and that they should check back later.
(We assume a user always has keys.)

19Recall that if an address is obsolete, querying clients fall back to the catch-all address of the domain.
Thus emails intended for the disabled user will have been encrypted for the catch-all address. Warn the
user that emails for them may have been rerouted.
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If Alice’s Self Audit checks that SKL signatures are temporally increasing, then this
attack does not work, because the server cannot produce an SKL signature with the
required newer timestamp. 20

Note that even though the ObsolenceToken contains a timestamp, we need not it dur-
ing Self Audit. Unlike the signature timestamp, the ObsolenceToken’s timestamp is
chosen by the server so we cannot trust it anyway.

Run Self Audits Regularly Clients are assumed to be online regularly to run Self
Audits, at least every 90 days (due to DeletionParam). If they are offline for longer,
a server may insert a malicious key, later insert the original key back, and delete the
malicious key once it is old enough. Because this increments the revision twice, the
Self Audit will notice that something happened thanks to veri f iedRev, but it won’t see
the malicious key.

Note that even if there are no Self Audits, ProtonKT is designed to still ensure that
queries are consistent and the server cannot behave arbitrarily.

Which labels to audit Users can have multiple email addresses associated with their
accounts. Most of them will be active, but some may have been disabled. Clients need
to run Self Audit for all active email addresses (= labels). Disabled addresses should
not be audited, not even for correct obsoletion. This is because in organisation non-
personal addresses such as finance@example.com might get reassigned from Alice’s
personal account to Bob’s personal account, e.g. when Alice changes jobs from Head
of Finance to Head of Legal. Then the server tells Alice that finance@example.com
was disabled for her, but the tree will now contain Bob’s keys, which Alice would not
recognise.

3.10 Promise Audit

Sometimes the KT server makes a promise to include a value. With a Promise Audit
clients verify that the server fulfils these promises within the Maximum Merge Delay
(MMD) set to 72 hours.

The server makes promises in two cases: First, when a client requests a new value
to be inserted. Second, when a query returns a new, not-yet-included value. This
happens because epochs are only issued every four hours on average.

In both cases, the client locally stores the promised values:21

promises = {(labeli, τi, SKL.datai, ObsolenceTokeni, expectedRevi, creationTimei)}i

20Sidenote: Recall that SKL signatures are not committed in the leaf hash, only the SKL data. However,
the server still stores the signature and has to be able to give it to Alice in order for Alice’s Self Audit to
pass.

21Depending on τi, either SKLdatai or ObsolenceTokeni must be set, but not both.
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expectedRev is used to later query this specific revision and check that it matches
SKL.data. The client calculates the duration between creationTime and the then-current
time and checks that it is less than the MMD. If the server does not include the SKL
within the MMD, this is considered misbehaviour and a warning is raised. If a differ-
ent value is included at expectedRev, this is also misbehaviour.

3.11 External Audit

So far we have seen how the tree should be constructed. However, the KT server is
untrusted and may not adhere to the specification. Therefore, we need at least one
honest auditor that checks that the server behaves correctly. If this external auditor
finds an error, this should result in non-repudiable proof. The auditor can use this
proof to convince others that the server behaved maliciously.

These External Audits complement the Self Audits that clients run. Clients are assumed
to be thin end-user devices like phones and laptops. They are energy constrained and
are offline for longer periods of time (multiple weeks, up to 90 days). External Audit-
ors on the other hand are assumed to be more powerful, have unconstrained storage,
and are online regularly (always online, or at least every few hours). External in-
dividuals or organisations can easily deploy the Auditor code on their servers and
have it run in the background. As of November 2023, an audit of the tree containing
roughly 50 million leaves takes about 15 minutes on a 4-core CPU and takes up to 8
GB of disk space. The download of a single epoch is roughly 4 GB, subsequent epochs
can be delta updates.

We move certain checks into the External Auditor, which allows us to reduce the work
that clients have to do. For example, clients only have to Self Audit the latest epoch
because the external auditors guarantee that the tree is append-only. Without this
guarantee, clients would need to look up their own keys with respect to every single
epoch (like in CONIKS) to do a Self Audit.

Properties to check Auditors verify the following properties:

1. Epoch IDs: are incrementally increasing and continuous (no gaps, no missing
epoch).

2. Tree commitments: Each chainhash claimed by the server appears in at least one
CT log. The auditor must check the log, i.e. not simply trust the SCT.

3. Non-equivocation: There is exactly one (epochid, chainhash, issuanceTime) tuple
logged for each epoch with the expected full KT domain. There may be multiple
CT log entries (e.g. pre-certificate and certificate), or even multiple different
certificates, as long as they all contain the same full KT domain.
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4. IssuanceTime consistency: The issuanceTimes are strictly monotonically increasing
from one epoch to the next.

5. IssuanceTime-to-Certificate consistency: For all certificates logged for an epoch the
following holds:

|IssuanceTime− certi f icate.NotBe f ore| ≤ 24h

6. Insertions: new values are inserted with revision 1.

7. Updates: updates to existing values increment the revision by 1 (and don’t skip
revisions). Old revisions are never overwritten (only deleted, see below).

8. Update consistency: Consider the trees at epoch t and t+ 1, committed as roothasht,
roothasht+1. Check that roothasht+1 is reachable from roothasht by only inserting
new values and deleting old enough values.

A naı̈ve approach is for the auditor to simply re-construct the tree from scratch,
and compare the computed root hash against the claimed one. Starting from an
empty tree at epoch 0, the KT server simply gives the external auditor all the
elements that were inserted and all the elements that were deleted. All other
values are not modified.

9. Deletions: Only (val, rev) entries are deleted have been superseded by a newer
revision, and this newer revision was inserted at an epoch that was issued more
than 90 days ago (according to the epoch’s issuanceTime).

Values are deleted incrementally and continuously, starting from revision 1 to
high revisions.

The ordering of checks is loosely relevant. For example, the auditor should check for
equivocation before it recomputes the root hash (to save computation if an equivoc-
ation is found). It should also check that the issuanceTime is unique and consistent
with the certificates before using it to verify correctness of deletions.

Practical implementations In practice, an auditor implementation may want to stream
epoch information from the KT server as new epochs are issued, and assemble its own
local copy of the KT state (i.e. it ingests every epoch state once). Then it also listens on
all CT logs for new certificates for all epochs. As new certificates come in (even for old
epochs), the auditor verifies that the certificate is consistent with its local state. This is
important because CAs may backdate the notBefore, i.e. issue a certificate for an old
epoch (even though Mozilla finds significant backdating problematic 22).

3.12 ProtonKT Subprotocols

In this section we describe the subprotocols that make up ProtonKT.
22https://wiki.mozilla.org/CA/Forbidden_or_Problematic_Practices#Backdating_the_

notBefore_Date
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3.12. ProtonKT Subprotocols

Subprotocols Recall from section 2.2 that the VKD primitive defined by SEEMless
consists of seven algorithms: VKD.Publish, VKD.VerifyUpdate, VKD.Audit, VKD.Query,
VKD.VerifyQuery, VKD.KeyHistory, VKD.VerifyHistory.

ProtonKT differs slightly:

Definition 3.1 (ProtonKT) The ProtonKT protocol consists of the following subprotocols:
ProtonKT.RequestInsertion, ProtonKT.Publish, ProtonKT.QueryEpoch, ProtonKT.QueryValue,
ProtonKT.SelfAudit, ProtonKT.PromiseAudit, and ProtonKT.ExtAudit.

A major difference between ProtonKT and the VKD definition is that ProtonKT does
not have dedicated “Verify”-algorithms. Verification is an internal part of querying
and auditing.

Below, we define these subprotocols in more detail. We describe what they do, and we
relate them to the VKD primitive.

• 0/1← ProtonKT.RequestInsertion(label, SKL.data)

Requests the insertion of a new value for label.

If successful, the client stores (label, SKL.data, expectedRev, currentTime) and checks
that it is included within the Maximum Merge Delay (MMD) of 72 hours.

The server collects all the requests in its local state in a set of pending updates S.

In the standard VKD definition, this happens implicitly: VKD.Publish is assumed
to have obtained a set of updates from somewhere. We state this explicitly, as an
algorithm that runs and exits independently of ProtonKT.Publish.

In addition, this allows for extensibility: for example, ProtonKT.RequestInsertion
could be modified to return a signed promise of inclusion, similar to SCTs in CT
or SMTs in iMessage’s KT.

• ⊥/(Dirt, roothasht, chainhasht, certt)← ProtonKT.Publish(Dirt−1, {labeli, vali}i)

Publishes a new epoch. Inserts all the (label, val) pairs into the key directory Dir
(i.e. the tree) as new revisions and requests certt as a commitment to the updated
tree.

Returns ⊥ if the epoch could not be generated (e.g. the CA refused to issue
certt).

Corresponds to VKD.Publish.

• ⊥/(roothasht, issuanceTimet, chainhasht)← ProtonKT.QueryEpoch(t, chainhash′t−1)

Gets for epoch t the tree roothasht and verifies it against the commitment.
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Internally, it requests all of (roothasht, chainhasht, certt, chainhasht−1). The web-
PKI certificate certt serves as the commitment. certt should contain two or more
SCTs. This algorithm trusts the SCTs as a promise of CT log inclusion; it does
not scan CT logs. chainhasht−1 is included for convenience (it is needed to com-
pute chainhasht). If chainhash′t−1 is non-null, checks it against the server-claimed
chainhasht−1.

Returns ⊥ if the epoch id t does not exist.

SEEMless’ VKD does not have dedicated algorithms for querying epochs because
SEEMless assumes some gossip algorithm exists. Parakeet defines its own con-
sistency algorithm WitnessAPI, which corresponds to ProtonKT.QueryEpoch. The
VKD algorithms in Parakeet then internally call their WitnessAPI.

• (τ, rev, val)← ProtonKT.QueryValue(roothasht, label)

Gets the latest value of a given label as well as its revision and type. Also verifies
that the value is consistent with the key directory state at epoch t.

τ is the type of proof (absence, inclusion, obsolence); in the REST API it is called
Type. val (called SKL in the API) contains other necessary fields (depending on
τ) such as: SKL.data, ObsolenceToken, minEpochId (see section 3.3).

If τ = abs then rev and val are null. Since we are querying the latest value,
absence is only allowed if rev = 0.

If τ = incl or τ = obs and minEpochId is null, then the value is not yet included
in the tree (but the server promises to include it). In this case, the client can
skip getting and verifying the proof. It should store (τ, rev, val) and verify it later
using ProtonKT.PromiseAudit.

Internally, this function gets the VRF proof πvr f and the Merkle tree proof πcopath
and verifies them against roothasht.

Returns ⊥ if the epoch id t does not exist.

Corresponds to VKD.Query and VKD.VerifyQuery.

• 0/1← ProtonKT.SelfAudit(roothasht, label, keylist, veri f iedRev, veri f iedCreationTimestamp)

Checks the key history of the user for correctness. Requests all values for label
that are equal or larger than veri f iedRev. Then checks that there are no unexpec-
ted values. See section 3.9 for full details.

Corresponds to VKD.KeyHistory and VKD.VerifyHistory.

• 0/1← ProtonKT.PromiseAudit(roothasht, promises)

50



3.12. ProtonKT Subprotocols

Checks that the promises that the server made to include a value were fulfilled.

Has no correspondence because the VKD primitive has no notion of promised
inclusions.

• 0/1← ProtonKT.ExtAudit(r, s,Dirr−1, chainhashr−1, issTimer−1)

Runs an External Audit.

Verifies that the server adhered to the protocol and evolved the key directory
correctly from epoch r until epoch s. Needs Dirr−1, chainhashr−1, issTimer−1 as a
trusted basis. See also section 3.11.

Corresponds to VKD.Audit and VKD.VerifyUpdate.

3.12.1 Message Sequence Diagrams

In this section we state the subprotocols in detail. We use Alice & Bob notation, also
known as security protocol notation. These are simply message sequence diagrams
showing how the different protocol roles exchange messages and which steps and
checks they execute locally. For each role, the diagrams also show the knowledge that
a role must have before the protocol can execute. For brevity, errors are generally not
shown. The protocol is expected to abort upon errors, e.g. if it does not receive a
message or if a check fails.

ProtonKT has the following roles: Server, Client, Auditor, CA, CT Log. We write CT
Logi to indicate that multiple instances of the CT Log role are involved in a protocol.
For simplicity, we only show the roles and the knowledge that are relevant for each
algorithm.

51



ProtonKT.RequestInsertion

Client Server
1 : Knows: label, SKL.data, promises Knows: S, t

2 : label, SKL.data

3 : expectedRev← currentRevForLabel + 1

4 : expectedRev

5 : Stores: promises← promises ∪ {(label, incl, SKL.data, null, expectedRev, currentTime)} S← S ∪ {(label, SKL.data, expectedRev)}

Figure 3.4: ProtonKT.RequestInsertion Sequence Diagram



3.12.
ProtonK

T
Subprotocols

ProtonKT.Publish

Server CA CT Logi

1 : Knows: t− 1, S,Dirt−1, chainhasht−1, skS Knows: skCA Knows: skCT , pkCA

2 : minEpochId← t
3 : for (labeli, keysi) ∈ S :

Insert val← (keysi, minEpochId) into Dir

4 : Dirt ← the resulting updated directory/tree
5 : roothasht ← roothash of Dirt

6 : chainhasht ← h(chainhasht−1 || roothasht)

7 : isstimet ← currentTime
8 : subject← (chainhasht, isstimet, t, ”1”) // symbolic KT domain

9 : certreqt ← (subject, {subject}skS)

10 : certreqt

11 : serialnum← $ {0, 1}∗

12 : notbe f ore← currentTime
13 : nota f ter ← notbe f ore + 90d
14 : tbscertt ← (serialnum, subject,

notbe f ore, nota f ter)
15 : certt ← (tbscertt, {tbscertt}skCA)

16 : certt

17 : sctTimestamp← currentTime
18 : tCrtEntry← (sctTimestamp, h(pkCA), tbscertt)

19 : SCTt ← (tCrtEntry, {tCrtEntry}skCT )

20 : SCTt

21 : certt, SCTt

22 : return Dirt, roothasht, chainhasht, certt

Figure 3.5: ProtonKT.Publish Sequence Diagram
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Client Server
1 : Knows: t, pkCA, pkCT , optionally: chainhash′t−1 Knows: certt, SCTt, roothasht, chainhasht, chainhasht−1

2 : t

3 :
certt︷ ︸︸ ︷

(tbscertt, tbscertsigt),

SCTt︷ ︸︸ ︷
(tCrtEntry, tCrtEntrysig)

4 : roothasht, chainhasht, chainhasht−1

5 : Checks: {tCrtEntrysig}pkCT
= tCrtEntry // Check SCT

6 : Checks: snd(tCrtEntry) = h(pkCA)

7 : Checks: trd(tCrtEntry) = tbscertt

8 : Repeat for SCTs from at least two different log operators
9 : Checks: {tbscertsigt}pkCA

= tbscertt // Check certificate

10 : subject← snd(tbscertt) // Extract fields

11 : notbe f ore← trd(tbscertt)

12 : chainhasht ← f st(subject)
13 : isstimet ← snd(subject)
14 : Checks: subject = (chainhasht, isstimet, t, ”1”) // Check subject

15 : Checks: chainhash′t−1 = chainhasht−1 // If chainhash′t−1 is known (see External Audit)

16 : Checks: chainhasht = h(chainhasht−1 || roothasht) // Check epoch chaining

17 : Checks: |notbe f ore− isstimet| ≤ 24h // Check claimed epoch issuanceTime aligns with CA’s notBefore

18 : Checks: |currentTime− isstimet| ≤ 24h // Check epoch is recent (may be skipped by External Audit querying an old epoch)

19 : return roothasht, isstimet, chainhasht

Figure 3.6: ProtonKT.QueryEpoch Sequence Diagram
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ProtonKT.QueryValue

Client Server
1 : Knows: roothasht, label, pkS, promises Knows: (omitted for brevity)

2 : label

3 :
SKL.data, ObsolenceToken,

minEpochId, rev

4 : τ, πvr f , πcopath

5 : Checks: rev = 0 // If τ = abs (we query the latest value!)

6 : Checks: rev > 0 // If τ = incl/obs

7 : if (τ = incl ∨ τ = obs) ∧minEpochId = null
8 : Stores: promises← promises ∪ {(label, τ, SKL.data,

ObsolenceToken, rev, currentTime)}
9 : return (τ, rev, val)

10 : Checks: SKL.data is valid JSON // If τ = incl (see section 5.2)

11 : Checks: ObsolenceToken is a non-empty hex string // If τ = obs

12 : ⊥/vr f hash← VRF.veri f y(pkS, label, πvr f )

13 : idx ← vr f hash || rev
14 : lea f hash← h(h(SKL.data) || minEpochId) // If τ = incl

lea f hash← h(h(ObsolenceToken) || minEpochId) // If τ = obs

lea f hash← ε // If τ = abs

15 : Checks: roothasht = hashcopath(τ, idx, lea f hash, πcopath) // Computes the roothash, see subsection 3.5.3

16 : π′copath

17 : idx′ ← vr f hash || rev+ 1 // Check next value is absent

18 : Checks: roothasht = hashcopath(abs, idx′, ε, π′copath)

19 : return (τ, rev, val)

Figure 3.7: ProtonKT.QueryValue Sequence Diagram
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ProtonKT.SelfAudit

Client Server
1 : Knows: roothasht, label, keylist, veri f iedRev, veri f iedCreationTimestamp Knows: (omitted)

2 : label, veri f iedRev

3 : {SKL.datai, SKL.sigi, ObsolenceTokeni, minEpochIdi}latestRev
i=veri f iedRev+1

4 : πvr f , {τi, πcopath,i}latestRev+1
i=veri f iedRev+1

5 : ⊥/vr f hash← VRF.veri f y(pkS, label, πvr f )

6 : for i ∈ [veri f iedRev + 1, latestRev] : // Check incl/obs proofs (note: interval may be empty)

7 : Checks: SKL.datai is valid JSON // If τi = incl (see section 5.2)

8 : Checks: ObsolenceTokeni is a non-empty hex string // If τi = obs

9 : idx ← vr f hash || i
10 : lea f hash← h(h(SKL.datai) || minEpochIdi) // If τi = incl

lea f hash← h(h(ObsolenceTokeni) || minEpochIdi) // If τi = obs

lea f hash← ε // If τi = abs

11 : Checks: roothasht = hashcopath(τi, idx, lea f hash, πcopath,i)

12 : idx ← vr f hash || latestRev + 1 // Check absence proof

13 : Checks: roothasht = hashcopath(abs, idx, ε, πcopath,latestRev+1)

14 : if latestRev = 0 : Raise warning and return // Keys not yet included

15 : tempCreationTime← veri f iedCreationTimestamp
16 : for i ∈ [veri f iedRev + 1, latestRev] :
17 : if τi = incl :
18 : Checks: SKL.sigi verifies with a key in keylist // Check signatures

19 : Checks: tempCreationTime < SKL.sigi.creationTimestamp // Check strict monotonicity

20 : tempCreationTime← SKL.sigi.creationTimestamp
21 : for i ∈ [veri f iedRev + 1, latestRev] : // Check new revisions for correctness

22 : if τi = abs : Raise warning // Unexpected gap, either legal deletion or misconstructed tree

23 : if τi = obs : Raise warning // Emails may have gone to catchall while label was obsolete

24 : if τi = incl and any of the keys in SKL.datai not in keylist: Raise warning // Unexpected key

25 : Stores: veri f iedRev← latestRev
26 : Stores: veri f iedCreationTimestamp← tempCreationTime

Figure 3.8: ProtonKT.SelfAudit Sequence Diagram

56



3.12.
ProtonK

T
Subprotocols

ProtonKT.PromiseAudit

Client Server
1 : Knows: roothasht, promises Knows: (omitted for brevity)

2 : for (label, τ, SKL.data, ObsolenceToken, expectedRev, creationTime) ∈ promises

3 : label, expectedRev

4 : minEpochId

5 : τ′, πvr f , πcopath

6 : if τ′ = abs :
7 : if |currentTime− creationTime| > MMD : // Check inclusion within MMD

8 : Raise warning
9 : else :

10 : continue // Try again in a later Promise Audit

11 : Checks: SKL.data is valid JSON // If τ = incl (see section 5.2)

12 : Checks: ObsolenceToken is a non-empty hex string // If τ = obs

13 : ⊥/vr f hash← VRF.veri f y(pkS, label, πvr f )

14 : idx ← vr f hash || expectedRev
15 : lea f hash← h(h(SKL.data) || minEpochId) // If τ = incl

lea f hash← h(h(ObsolenceToken) || minEpochId) // If τ = obs

16 : Checks: roothasht = hashcopath(τ, idx, lea f hash, πcopath) // If proof fails, raise warning for this item

17 : Stores: promises← promises\{all successful item audits}

Figure 3.9: ProtonKT.PromiseAudit Sequence Diagram
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ProtonKT.ExtAudit

Auditor Server CT Logi

1 : Knows: r, s,Dirr−1, chainhashr−1, issTimer−1 Knows: (omitted) Knows: {{certi}i,t}t

2 : Precondition: Dirr−1 correctly constructed

3 : for t ∈ [r, s] :

4 : roothasht, issTimet, chainhasht ← ProtonKT.QueryEpoch(t, chainhasht−1)

5 : Checks: issTimet−1 < issTimet

6 :
∗.{t}.1.keytransparency.ch

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

7 :
{certi}i,t←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

8 : Checks: only certs with the expected full KT domain and no others

9 :
t

−−−−−−−−−−−−−−−−−−→

10 : {(
idxi︷ ︸︸ ︷

vr f hashi || revi, valhashi, minEpochIdi)}i︸ ︷︷ ︸
insertions

11 : for elei ∈ insertions :
12 : Checks: minEpochIdi = t
13 : Checks: revi = 0
14 : Checks: The entire revision subtree for vr f hashi was empty in Dirt−1

15 :
{(vr f hashi || revi, valhashi, minEpochIdi)}i︸ ︷︷ ︸

updates

16 : for elei ∈ updates :
17 : Checks: minEpochIdi = t
18 : Checks: vr f hashi || revi was empty in Dirt−1

19 : Checks: vr f hashi || revi − 1 was non-empty in Dirt−1

Figure 3.10: ProtonKT.ExtAudit Sequence Diagram (Part 1)
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ProtonKT.ExtAudit (continued)

Auditor Server CT Logi

20 :
{vr f hashi || revi}i︸ ︷︷ ︸

deletions

21 : for elei ∈ deletions :
22 : Checks: vr f hashi || revi − 1 was empty in Dirt−1 or revi = 0
23 : Checks: vr f hashi || revi was non-empty in Dirt−1

24 : Checks: vr f hashi || revi + 1 was non-empty in Dirt−1 // revi + 1 cannot have been upserted in t

25 : minEpochId′ ← minEpochId of leaf vr f hashi || revi + 1
26 : Checks: |minEpochId′.issTime− t.issTime| > DeletionParam

27 : Dirt ← apply insertions, updates, deletions to Dirt−1

28 : roothashcomp ← roothash of Dirt

29 : Checks: roothasht = roothashcomp

30 : Postcondition: Dirs correctly constructed

Figure 3.11: ProtonKT.ExtAudit Sequence Diagram (Part 2)
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3.13 Relating the Model and the Implementation

Scope Proton offers clients for web, Android, iOS, and desktop. Availability and
feature completeness differ across the products (Mail, Calendar, Drive, Pass).23 KT
is an interesting project because it touches a lot of code. Being a suite of end-to-
end-encrypted services, public keys are used everywhere: from email encryption, to
receiving calendar invites, and sharing password vaults. Every time a contact’s public
key is used, it must be verified against KT. This makes integrating KT a big undertak-
ing.

In our work we only reviewed the web client, whose source code is available on Git-
Hub.24 While an Android25 and a Go library26 exist, they are both from a previous
protocol iteration that differs significantly from the final scheme. Fully deploying Pro-
tonKT across Android and iOS remains future work.

The server code is not open source, and thus we did not review it. However, this is a
feature of KT: the server is untrusted, and security should not rely on whether or not
the server behaves correctly. We did however interact with the REST-API using curl to
test basic functionality. We found one bug where the server, when asked for the proof
for revisions equal or higher than 232, would wrongly reply with the proof for revision
232 − 1 instead of with an out-of-bounds error.

As we will see in the security analysis, the external auditors play a crucial role in
ensuring that the server constructs the tree correctly. Unfortunately, the auditor im-
plementation is still work-in-progress, so we did not review it.

Findings The web client code that we did review seems to match up with the pro-
tocol scheme defined in this thesis. There are additional error handling and report-
ing mechanisms that a real implementation necessitates. The implementation is also
spread across different packages and files, and the naming in the code (having grown
organically) differs from the naming in this thesis. This makes it harder to just put the
message sequence diagrams and the source code side-by-side. A future rewrite should
consider adhering to the now well-defined naming scheme.

The main difference between the web source code and our specification is that the
implementation lumps the Self Audit and the Promise Audit together. Otherwise, our
protocol description and the implementation match functionality-wise.

In section 5.5 we discuss a finding that would have allowed the server to cause prom-
ises to never be audited because the MMD could get ignored. This has since been
fixed.

23VPN does not need KT because it is not looking up any other users’ public keys.
24https://github.com/ProtonMail/WebClients/tree/f949ce269404/packages/key-transparency
25https://github.com/ProtonMail/protoncore_android/tree/0061b0ae37d6/key-transparency
26https://github.com/ProtonMail/pm-key-transparency-go-client
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Chapter 4

Security Analysis

In this section, we analyse the security of ProtonKT. We first look at the privacy goals.
Next, we define the security properties that we want ProtonKT to achieve. We also
describe the threat model under which these properties should hold. After that we
do a security analysis, and we argue why the ProtonKT scheme achieves the stated
properties. Finally, we formally model ProtonKT with Tamarin.

4.1 Privacy Properties

In this section we describe the privacy goals that ProtonKT has. To limit the scope
of this thesis we do not give a detailed analysis for the privacy properties. We do,
however, give a rough sketch of the design decisions that are intended to support the
privacy goals.

The goal of privacy is to leak as little information about the contents of the key direct-
ory as possible. The main threat actors are the External Auditors, because they have
access to the entire tree (which they need to recompute the tree to check its properties).

ProtonKT accepts that auditors can learn the following from the tree:

• An upper bound on the number of accounts in the tree. It is obvious from the
tree whether a revision subtree is empty or not. However, auditors do not learn
how many of these accounts are active and how many are disabled.

• How many revisions any given user has. This is obvious from the revision sub-
tree leaves.

• In which epoch any given revision was inserted. This is necessary for auditors
to check that only old-enough values are deleted.

However, ProtonKT’s goal is to prevent auditors from learning the following:

• Which email addresses are in the tree. The VRF used to compute leaf indices
enforces that one must actively query the server to learn an email address’ index.
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This allows the server to prevent enumeration attacks, e.g. via rate-limiting. Sim-
ilarly, Proton could hide the email addresses of business customers by not re-
sponding to queries from users outside the business’ organisation.

• Whether a revision that is present in the tree is active (valid SKL) or disabled (Ob-
solenceToken). Recall that both the SKL.data and the ObsolenceToken contain
randomness (key fingerprints are hashes,1 random part of ObsolenceToken). The
auditor would need to compute the preimage of h(SKL.data) and h(ObsolenceToken)
to distinguish them, which is infeasible.

Another threat actor are clients. Their queries and Self Audits necessarily reveal the
co-path to them. By repeatedly querying a label, the difference between the co-paths
leaks which neighbouring parts of the tree have changed. This allows for the tracing
attack described by SEEMless (see section 1.3.2).

Privacy is also a core design goal of CONIKS, SEEMless, and Parakeet. For example,
Parakeet defines leakage functions to specify how much information the protocol
leaks. We refer to these works for an in-depth analysis of privacy in KT protocols.

4.2 Security Properties

We first define the security property that the ProtonKT protocol should provide:
Query-to-SelfAudit Consistency. After that we will analyse how ProtonKT achieves
it.

Informally we want that everything that can be queried must also be seen by a Self
Audit. The queries and the Self Audit should agree on the (label, τ, rev, val) tuples.
Unless there is already some detection of server misbehaviour. Slightly more formally
this means:

Definition 4.1 (Query-to-SelfAudit Consistency) We say that ProtonKT provides Query-
to-SelfAudit Consistency, if

• whenever there was a successful External Audit of epoch t

• and client A runs a successful Self Audit SA for its label at epoch s ≤ t and SA passes
with latestRev ≥ rev,

• and prior to epoch t A has run a successful Self Audit at least once every DeletionParam
(e.g. every 90 days),

• and a query Q for label in epoch r ≤ t returned outcome O = (τ, rev, val),

• and – if Q returned O as a promise P – there was a successful Promise Audit that sees P
at an epoch p with r < p ≤ t,

1We work in the random oracle model.
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• then client A agrees that (τ, rev, val) is the expected outcome for rev.

Note that there is no relationship between r, s, and p, other than all being bounded by
t. Figure 4.1 visualises the components that are mentioned in the property, as well as
highlighting the timepoints at which they can occur.

Figure 4.1: Visualisation for Query-to-SelfAudit Consistency
(showing also other possible locations of queries, Self Audits, and Promise Audits)

Query-to-SelfAudit Consistency relates Self Audits to queries to make sure they are
consistent. Importantly, it also relates queries to other queries (in the presence of a
Self Audit!): if Query-to-SelfAudit consistency holds, then two clients B, C who query
label A agree with client A’s Self Audit; therefore B and C also agree with each other.

Deletions DeletionParam is the minimum age a value need to have to be eligible for
deletion if it has been superseded (90 days in ProtonKT). We can only have security
for queries that are not too far before any Self Audit:
Consider a client who is offline for a long time (e.g. a user travelling for one year on a
sabbatical and not checking their business email). Also consider that some values are
inserted and later deleted during that time, and the client runs a Self Audit only after
they were deleted. Then the deleted value may have been queried by other users, but
the traveller’s Self Audit does not see them.

Need for Audits This security property only holds in the presence of a successful
External Audit. If there was no such audit, then the server could have behaved arbit-
rarily, e.g. it could have equivocated, or modified values in the tree, or illegally deleted
values.

In addition, if the query returned a promise, we also require that this promise is
verified. Otherwise, the server could trivially reply with a promise for any value.

Furthermore, client A who owns the label must do regular Self Audits. For example,
consider that A runs Self Audit SA1, then is offline for 120 days (> DeletionParam), and
then runs Self Audit SA2. Then there may be revisions that were inserted in the tree
just after the SA1 and deleted before SA2. SA2 would only see the unexpected jump
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in the revision, but not the values. However, these values could have been successfully
queried in the meantime.

Comparison Query-to-SelfAudit Consistency is roughly comparable to SEEMless’
VKD soundness definition [7, Appendix B], with the difference that we also need
to account for the DeletionParam and the Promise Audits.

Compared with the cVKD soundness definition given by Parakeet [19, Definition 4,
Appendix B], we have added the Promise Audits but do not have tombstones.

Sidenote: “consistency”, an overloaded term The term “consistency” is heavily
used in transparency protocols, but often with slightly different semantics. Thus for
clarity we call our properties “Query-to-SelfAudit Consistency” and not just “consist-
ency”.

CONIKS [21] talks about “consistency of name-to-key bindings”, which can be thought
of as “query-to-query consistency” (since CONIKS does not have explicit a Self Audits
algorithm).

Parakeet defines “consistency” of the root hashes, called “commitments” in Parakeet’s
terminology [19, Section II.A]. That is, Parakeet looks at “root hash consistency” not
“query consistency”. This is an important distinction: if two clients agree on which
tree they see, they may still disagree on the query outcome, e.g. due to a type confu-
sion when interpreting the leaf value (see section 5.2).

In Certificate Transparency the term “consistency” is used for append-only-ness of
the tree: “Merkle consistency proofs prove the append-only property of the tree.”
[17, Section 2.1.4.]. That is, a CT “consistency proof” proves that the tree at epoch t
and the tree at epoch t + 1 are “consistent” with each other. For clarity, we instead
use the terms “update proof” and “update consistency” when talking about the tree
construction being “consistent” across epochs.

4.3 Adversary Model

In this section we discuss what kind of adversary can try and attack ProtonKT. We
define what power the adversary is allowed to have, and what we assume it cannot
do.

We give the adversary the following power:

• The adversary controls the network (Dolev-Yao style adversary). It can reorder,
replay, drop, insert, and modify messages.

• The adversary can corrupt the KT server. The server is not trusted and can
deviate from the protocol. In particular, it can insert, modify, delete leaves in the
Merkle tree.
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However, we assume that the cryptographic primitives hold. In particular, we assume
that SHA-256 is collision resistant and preimage resistant. We also assume that the
VRF satisfies uniqueness (even under malicious key generation).2 We also assume that
at most one CT log operator is malicious and that at least one CA and at least one
CT log are online and handling requests. Finally, we assume that at least one honest
auditor has a consistent view of the global CT state.

4.4 Manual Analysis

In this section we provide a manual analysis of the security of ProtonKT. Our analysis
will proceed as follows: we begin by assuming that the security property is broken.
Next, we consider possible broken states. For each of them we will reason about how
this state was reached. Finally, if all goes well, we will see that the starting point from
which we could reach this broken state cannot happen. In other words, we reason
backwards. We start from an attack state, look at how it could have been reached, and
then end in a contradiction.

By nature, such an analysis can only consider the high-level protocol ideas. There may
still be subtle bugs, or cases we forgot to consider.

4.4.1 Classic Attacks are Detectable by External Audits

There are two classical threats to transparency protocols: equivocation and non-append-
only-ness of the tree (up to allowed deletions). These affect all KT protocols, and also
ProtonKT. Both of them can break Query-to-SelfAudit consistency.

In (root hash) equivocation, also known as split-world-view attack, the server forks the
tree into two different histories. This allows it to present one view of the tree to
some clients, and a different view to other clients, thus breaking Query-to-SelfAudit
Consistency. However, this split-view has to be maintained indefinitely.

In non-append-only-ness, the server deletes elements from the tree that it shouldn’t. For
example, it inserts a fake entry, waits for the victim to query the malicious entry, and
then deletes the entry again for the owner runs a Self Audit. This breaks Query-to-
SelfAudit consistency.

Detection not Prevention ProtonKT does not aim to prevent a malicious server from
executing these attacks. Instead, ProtonKT aims to detect them. This is again the idea
of transparency: if we cannot prevent, then at least detect. This is why our security
properties require that an External Audit has passed.

Next, we argue that these classic transparency attacks are detected by External Audits.
In other words, External Audits only pass if there is no such attack.

2For ECVRF this should hold if the curve and group generator are from a trusted source [12, Section
7]. Since ProtonKT hardcodes the parameters of ECVRF-EDWARDS25519-SHA512-TAI, the parameters
can easily be checked.
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Root Hash Equivocation

Assume that the server has equivocated at epoch t, i.e. it was possible for the server
to reply to two epoch queries Q, U for the same epoch t with different roothashes
roothashQ

t ̸= roothashU
t , such that both queries accept their respective root hashes, and

– importantly – such that this equivocation cannot be detected by external auditors. 3

Since Q accepted roothashQ
t , there must exist a chainhashQ

t and a chainhashQ
t−1 such that

chainhashQ
t = h(chainhashQ

t−1||roothashQ
t ). There must also exist a certQ

t that contains
chainhashQ

t and two or more SCTQ
t,i . The same reasoning also applies to U, chainhashU

t ,
chainhashU

t−1, certU
t .

Case 1 (chainhashQ
t ̸= chainhashU

t ). If auditors cannot detect the equivocation, this means
that they don’t see either certQ

t or certU
t , or neither of them, in any CT log.

This can happen if the auditor has an inconsistent view of the global CT logs. However,
we assumed that this does not happen.
This can also happen when at least two different CT logs by different operators (since
each certificate contains two or more SCTs from different log operators,4 and ProtonKT
clients check this) either did not include the certificate (thus breaking their promise),
or when both of them are down and not responding to queries. In any case, this is
a contradiction to our assumption that at least one CT log operator is a trusted third
party and that the auditor can see the global CT state.

Case 2 (chainhashQ
t = chainhashU

t ). In this case auditors cannot detect equivocation
because the server can set certQ

t = certU
t and only log a single certificate to CT. But

since roothashQ
t ̸= roothashU

t this means that the server has found a hash collision,
which contradicts our assumptions. In other words the server has found two different
(rh||ch) ̸= (rh′||ch) such that h(rh||ch) = h(rh′||ch).

In both cases we have a contradiction. Thus equivocation is detectable by External
Auditors.

Non-append-only-ness

Assume that the server has violated append-only-ness-with-deletion. That is, either
(case 1) it has overwritten an existing non-absent value with a different non-absent
value, or (case 2) it has deleted a value that it should not have (e.g. the value was the

3By epoch query we mean a run of ProtonKT.QueryEpoch. Recall that the other algorithms such
as ProtonKT.QueryValue, ProtonKT.SelfAudit, ProtonKT.PromiseAudit, ProtonKT.ExtAudit all need to be
preceded by a run of ProtonKT.QueryEpoch to get the root hash.

4This is required by Apple Safari (https://support.apple.com/en-ca/HT205280) and Google
Chrome (https://github.com/GoogleChrome/CertificateTransparency/blob/master/ct_policy.
md). Thus CAs such as Let’s Encrypt automatically submit certificates to two or more logs when issuing
them.

66

https://support.apple.com/en-ca/HT205280
https://github.com/GoogleChrome/CertificateTransparency/blob/master/ct_policy.md
https://github.com/GoogleChrome/CertificateTransparency/blob/master/ct_policy.md


4.4. Manual Analysis

latest revision, or the next-higher revision was not yet old enough). Also assume that
this is not detectable by auditors.

However, the external audit iterates over all leaves and compares for each index the
old and the new leaf: a leaf in the new tree is either unchanged, or changed from
absent to present (insertion), or changed from present to absent while satisfying the
deletion conditions. Hence the auditors must see the wrongly changed value, which
is a contradiction to the assumption that they don’t detect it.

Thus if an External Audit has passed for epoch t, neither equivocation nor non-
append-only-ness (up to legal deletion) can have happened for any epoch s ≤ t.

4.4.2 Analysis of Query-to-SelfAudit Consistency

Assume there was a successful External Audit at epoch t. Additionally assume there
was a Self Audit SA by a client A for its label at epoch s ≤ t and SA passes with
latestRev ≥ rev. Also assume that A has run Self Audits at least every DeletionParam
time. Next, assume we have a value query Q for label at epoch r ≤ t. Let Q return
outcome OQ = (τQ, rev, valQ). If Q returns OQ as a promise P, assume that there
exists a Promise Audit PA of P at epoch p with p ≤ t. Finally, for the contradiction
assume that client A sees outcome OA = (τA, rev, valA) with OQ ̸= OA. When can this
situation happen?

Case i (rev = 0). In this case we must have τQ = abs because for inclusion and
obsolence ProtonKT.QueryValue enforces that rev > 0. We must also have τA = abs
because the Self Audit is initialised with veri f iedRev = 0 under the assumption that
revision 0 is absent. Thus the Self Audit cannot be convinced that revision 0 is not
absent. Recall that valabs = ∅ by definition. Thus we must have OQ = OA.

Case ii (rev > 0). W.l.o.g. assume that SA is the first Self Audit of A that has
latestRev ≥ rev. That is, SA sees OA and upon completion it sets veri f iedRev′ ←
latestRev. All later Self Audits of A don’t see OA again because they only look at
values ≥ veri f iedRev′ + 1. Thus this single SA which sees OA fully defines client A’s
view of what type τ and value val its label should have at revision rev.

We now need to analyse the cases in which Q and this specific first SA can disagree.
In the following, we assume that rev > 0 and reset the case numbering for (slightly)
more clarity.

Case A (no promise). First, let us analyse the case where Q returns OQ based on a tree
proof, i.e. not as a promise. For clarity, we omit the prefix ii.A in the case numbering.

Case 1 (different revision subtrees). Assume Q computes leaf index idxQ =
VRF.proo f ToHash(πQ)||rev, and similarly A computes idxA = VRF.proo f ToHash(πA)||rev.
If VRF.proo f ToHash(πQ) ̸= VRF.proo f ToHash(πA), then trivially idxQ ̸= idxA. That
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is, Q and A believe label to be at different leaves in the label subtree (see subsec-
tion 3.5.2). However, this cannot happen due to our assumption that uniqueness of
VRFs holds. Thus we must have VRF.proo f ToHash(πQ) = VRF.proo f ToHash(πA).
This means that Q and A must agree on the label-subtree-leaf, which also means that
they see the same revision subtree for label. We will need this fact below.

Case 2 (same revision subtrees). In this case the leaf indices are the same (by Case 2.1
and the definition of leaf indices):

idxQ = (VRF.proo f ToHash(πQ) || rev) = (VRF.proo f ToHash(πA) || rev) = idxA

In other words, Q and SA consider the same leaf (but possibly in different trees).

Case 2.1 (r = s). Assume Q and SA happen at the same epoch.

Case 2.1.1 (roothashQ
r ̸= roothashA

s ). This is equivocation, which is a contradiction to
our assumption that an External Audit has passed at epoch t with r, s ≤ t, since we
concluded that External Audits detect equivocation.

Case 2.1.2 (roothashQ
r = roothashA

s ). In this case, Q and A are seeing the same tree.
What can still go wrong?

Case 2.1.2.1 (lea f hashQ
idx ̸= lea f hashA

idx). Since the roothashes are the same, there must
be a hash collision somewhere on the path from the leaf to the root. This is a contra-
diction to our assumption that SHA-256 is collision resistant.

Case 2.1.2.2 (lea f hashQ
idx = lea f hashA

idx). Assume the leaf hashes are the same.

Case 2.1.2.2.1 (valQ ̸= valA). Assume the leaf hashes are equal but the values are not
(and hence OQ ̸= OA).

Case 2.1.2.2.1.1 (τQ = abs, τA = abs). Cannot be because then the values are not dif-
ferent: valQ = valA = ∅.

Case 2.1.2.2.1.2 (τQ = abs, τA = incl/obs). Cannot be because then:
lea f hashQ

idx = ε ̸= h(h(SKL.data/ObsolenceToken) || minEpochId) = lea f hashA
idx

and in this branch we assumed that the leaf hashes are equal.

Case 2.1.2.2.1.3 (τQ = incl/obs, τA = abs). Same as the previous case.

Case 2.1.2.2.1.4 (τQ = incl/obs, τA = incl/obs). Cannot be because then we must have
a hash collision in the leaf hash. (For all the four possible combinations.)

Case 2.1.2.2.2 (valQ = valA). Since OQ ̸= OA we must have τQ ̸= τA. Recall from
section 3.3 that valabs = ∅, valincl = {data, minEpochId}, and
valobs = {ObsolenceToken, minEpochId}.

Case 2.1.2.2.2.1 (τQ = abs, τA ̸= abs). Recall that we have rev > 0. However,
ProtonKT.QueryValue checks that rev = 0 for τ = abs, so it would raise a warning.
Similarly, ProtonKT.SelfAudit raises a warning for τ = abs in the final for-loop. That
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is, Self Audit initialises veri f iedRev = 0 and only allows non-absent updates. Both are
contradictions to our assumption that Q and SA completed successfully.

Case 2.1.2.2.2.2 (τQ ̸= abs, τA = abs). Same as the previous case.

Case 2.1.2.2.2.3 (τQ = incl, τA = obs). Because valQ = valU we must have data = ObsolenceToken,
and Q interprets it as an SKL data and A as an ObsolenceToken. However, this is a
contradiction to the fact that the algorithms checks that the SKL data is JSON-encoded
and that ObsolenceToken is a non-empty hex value.

Case 2.1.2.2.2.4 (τQ = obs, τA = incl). Same as the previous case.

Case 2.2 (r ̸= s). Assume Q and SA happen at different epochs. Recall from Case 2
that idx = idxQ = idxA.

Case 2.2.1 (lea f hashQ
idx = lea f hashA

idx). Same as above in r = s (Case 2.1.2.2).

Case 2.2.2 (lea f hashQ
idx ̸= lea f hashA

idx). Assume the leaf hashes differ between the tree
that Q sees and the tree that A sees. Thus we must have valQ ̸= valA.

Case 2.2.2.1 (equivocation). Assume Q and A are seeing trees that have diverged. This
is a contradiction to the earlier conclusion that an External Audit (which we assumed
has run) detects equivocation.

Case 2.2.2.2 (no equivocation). Assume there is a single tree that has been evolved
from epoch r to epoch s (through insertions, updates, deletions).

Case 2.2.2.2.1 (leaf modified in-place). Assume that the value of our leaf at idx was
maliciously modified in-place. This is a contradiction to the earlier conclusion that an
External Audit (which we assumed has run) detects non-append-only-ness.

Case 2.2.2.2.2 (leaf illegally deleted). Same as leaf modified in-place.

Case 2.2.2.2.3 (leaf legally deleted). Assume the leaf at idx was legally deleted be-
cause it was superseded by a newer leaf with revision rev+ 1 more than DeletionParam
time ago. Recall that SA is the first Self Audit that sees rev. Thus there was no Self
Audit in the time interval [rev inserted, (rev + 1 inserted) + DeletionParam]. That is,
SA must have run more than DeletionParam after rev+ 1 (sic!) was inserted. This is a
contradiction to our assumption that A has run Self Audits every DeletionParam time.

Case B (promise). Now let us analyse the case where Q returns OQ as a promise P. By
our initial assumption there exists a successful Promise Audit PA that sees P at epoch
p ≤ t. For clarity, we omit the prefix ii.B in the case numbering.

Case 1 (not included). Assume the server did not include OQ in the tree at p.

Case 1.1 (|time(P)− time(R)| > MMD). In this case PA raised a warning, which is a
contradiction to the assumption that PA passed.
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Case 1.2 (|time(P)− time(R)| ≤ MMD). In this case PA passed but saw neither an in-
clusion nor obsolence proof for P. This is the contradiction to the assumption that PA
is the specific Promise Audit which saw P in the tree.

Case 2 (included). Assume OQ is included in the tree at p. Here we can repeat the
same argument as Case A, setting r ← p and Q← P.
Only Case 2.1.2.2.2.1 is modified to instead of ProtonKT.QueryValue raising a warning
because the check fails, ProtonKT.PromiseAudit either raises a warning because the
MMD is overdue, or PA did not see P (because τ = abs is the same as Case 1).
With these modifications we can see that all branches of the argument in Case A hold.

Overall all branches lead to a contradiction. Therefore we can conclude that our initial
assumption that OQ ̸= OA was wrong, thus we must have OQ = OA. Thus Query-to-
SelfAudit consistency holds.

Leaf index collisions In the argument above we needed uniqueness of VRFs but not
collision resistance. But what if there is a VRF hash collision? That is, what if two
different (normalised) email addresses A and B VRF-hash to the same value?

For Self Audits, if a leaf contains the keys for A, then B’s Self Audit will not recognise
them as its own, and will thus raise a warning. Thus it is in the interest of the server not
to trigger a VRF hash collision. Because B’s Self Audit will abort raising a warning,
this is also not an attack on Query-to-SelfAudit consistency (which only considers
successful audits).

Note that in the argument for Query-to-SelfAudit Consistency we don’t have such
cases because we are only looking at a fixed label.

4.5 Limitations of the Security Properties and of KT

In this section we analyse the limitations that our security property has. We also dis-
cuss limitations of KT in general, and where KT does not improve over a key directory
without transparency.

Property Assumptions Query-to-SelfAudit Consistency has a lot of assumptions.
They constrain the cases in which we can expect security from this property. Con-
versely, whenever the assumptions are not met, we cannot expect the property to
hold, and we cannot expect any security. A trivial case is the External Audit: if there
is none, the server can have misconstructed the tree in many different ways that attack
consistency but is not noticed by clients.

No Self Audits, No Security Self Audit is more interesting: what if there is none?
Our initial idea was that even in the absence of Self Audit it might make sense to have
a property we would have called Query-to-Query Consistency. Intuitively: all clients
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who query label and obtain outcome O = (τ, rev, val) see the same outcome O for a
fixed revision rev.

It turns out that such a property is not very useful, because the server can still return
arbitrary keys as it pleases if there are no Self Audits.

For example, the server can still isolate a single user Charlie. When Charlie queries
Alice’s key, the server returns the MITM key. For all other queries the server returns
Alice’s correct key. If Alice does not Self Audit, then this MITM attack works even if
Query-to-Query Consistency holds! It proceeds as follows: let Alice’s correct key be at
revision rev. When Charlie queries, the server returns (rev+ 1, pkMITM) as a promise,
and inserts it in the next epoch. For all other queries that happen just slightly after
Charlie’s query the server returns (rev+ 2, pkAlice) as a promise, and inserts it as well.
The server will never reply with rev + 1 to anybody expect to Charlie. Every time
Charlie queries, the server can do this. This works because clients always query the
latest value (to prevent the server from showing outdated views if Alice legitimately
updates her key). Thus even if this potential Query-to-Query Consistency holds, the
server can still execute practical attacks. 5

Alternatively, the server can also insert a malicious key and MITM everyone (not just
Charlie).

Therefore we do need Self Audits and their correctness checks for any practical secur-
ity.

Non-Proton Addresses In practice this means that Non-Proton Addresses (i.e. ad-
dresses that have no Proton account) cannot get any security from KT. The key server
can insert malicious keys into the tree, and because they are not audited we cannot be
sure that these keys are correct. 6

This is problematic because normally emails to Non-Proton Addresses would be un-
encrypted since there are no keys for them. When the server inserts a MITM key, the
client will use it. Then the UI would make the user believe that it is using “end-to-end
encryption” whereas previously the UI would show that it is an unexpected email.
This lulls the user into a false sense of security.

However, this problem is not new, it also exists without KT. KT simply does not im-
prove over the status quo if there are no Self Audits.

Catch-All Addresses Another case where missing Self Audits are an issue are catch-
all addresses. The first question is: who audits the keys of the catch-all address (iden-
tified by VKD label @example.com, i.e. only the domain part). This should be done by

5Note that in this example, the server is rolling back Alice’s key. The Self Audit, if it ran, would
detect this when checking the signature timestamps and would raise a warning.

6To defend against this, users should use the Trusted Keys feature (see section A.1) to pin keys of
Non-Proton Addresses.
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the domain owner. If there is no Self Audit, the catch-all address is similarly vulner-
able as normal VKD labels.

The second problem is: the server can insert malicious keys for non-existent addresses.
Since these addresses are not owned by any user, they won’t be Self Audited. Then,
instead emails to nonexistent@example.com would not be encrypted with the catch-
all keys, but with the address-specific malicious keys, allowing the server to MITM the
email.

This is a problem that is currently unsolved in ProtonKT. Note that this issue also
exists in non-KT-enabled systems.

4.6 Formal Model with Tamarin

In this section we develop a formal model of ProtonKT using the Tamarin Prover. The
model files can be found on GitHub.7 We use Tamarin version 1.8.0. We first describe
the model. Afterwards we discuss our attempts at proving the security properties.

4.6.1 The Model

Our model is spread over multiple Tamarin files for clarity. It implements the main
algorithms: ProtonKT.RequestInsertion, ProtonKT.QueryEpoch, ProtonKT.QueryValue,
ProtonKT.SelfAudit, ProtonKT.ExtAudit. The model matches the specification given
in chapter 3 in spirit. However, as with any model, it makes simplifications and
abstractions typical for a symbolic setting.

For example, when querying a value we don’t model the client sending label out to
the network. Since in Tamarin $label is already a public term the adversary learns
nothing new. Instead, we directly model the client “unpromptedly” receiving the
value and the proofs from the network.

We don’t model the VRF. In our first model (see below) we have no explicit tree struc-
ture because we abstract the tree as facts. Therefore we have no need for bit-string-
based indices; instead we match leaf facts directly based on their labels, which are
terms. In our second model we use a restriction on subterms to ensure that each label
has a unique index in the tree (restriction LabelNotInHeadOrTail). 8

We also don’t model the KT server role in Tamarin. In our adversary model (see
section 4.3) we gave the adversary the power to control both the network and the
server. Thus we can leave it up to Tamarin’s constraint solver to construct the messages
that the client and auditor roles receive from the network.

We model the CA/CT ecosystem as persistent facts: !CT(%epoch_id, chainhash).
“Verifying” a certificate and an SCT in ProtonKT.QueryEpoch then boils down to using

7https://github.com/thgoebel/master-thesis-key-trans/
8Additionally, recall that the VRF contributes only to privacy by randomising the indices. For the

security property that we want to analyse predictable indices are sufficient as long as they are unique.
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the persistent fact in the premise of a rule. We also give the (network) adversary the
power to insert any entry into the CT log:

rule CT_Insert:

[ In(<epoch_id, chainhash>) ]

--[ CtInsertChainhash(epoch_id, chainhash) ]->

[ !CT(epoch_id, chainhash) ]

We model revisions and epoch ids as natural numbers (%rev, %epochid). This is in-
dicated by the prefixed percentage sign. Natural numbers are a new feature that were
recently introduced in Tamarin [9], building upon subterms.

The core challenge in modelling ProtonKT is modelling the tree. We tried two different
approaches:

Model 1: Tree as Persistent Facts In our first iteration we model the tree as persist-
ent facts: !TreeLeaf($label, val, %rev, %min_epoch_id)

On one hand, this is a heavy abstraction, the entire tree structure is not modelled. We
also cannot have an explicit roothash or chainhash, nor log them to CT.

On the other hand, this abstraction also has advantages:

• First, since persistent facts can be consumed arbitrarily often, they cannot be “de-
leted”. Thus we trivially have an append-only tree. (This limits us to modelling
ProtonKT without the deletion feature.)

• Second, we don’t need complicated copath hashing to model proofs. Using the
!TreeLeaf fact in the premise of a rule already models the verification of the
proof: the hashing of the neighbours, and the comparison against the root hash.

• Third, since there is only a single tree, the adversary cannot equivocate on the
tree and create split-views of the tree.

Model 2: Tree as Terms In a second iteration we want to approximate the structure
of the binary Merkle hash tree more realistically. We model the root hash as follows:
roothash = h( <’head’, h(ut_0), h(ut_1), ..., h(ut_n), ’tail’> )

ut_i are the revision subtrees, also known as user subtrees. Thus we don’t have a full
binary tree, but a hash tree with a single root and many parallel subtrees. head and
tail are needed for pattern matching.
The user/revision subtree is modelled as follows:
ut = < $label, <%n, val_n>, ..., <%3, val_3>, <%2, ’empty’>, ’rest’ > 9

The revision subtree is flat, too, and not binary. Thus overall our hash tree has three
levels: root, label subtree leaves, revision subtree leaves.

9The fact that it ends at revision 2 not 1 is an artefact of non-ideal modelling.
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Recall that we don’t have a server role. However, in Model 2, the External Audit
(specifically the append-only part) reconstructs the tree to check it against the claimed
root hash logged in CT.

For example, this is the Append Audit’s rule to insert a new value into the tree:

rule AppendAudit_Insert:

let roothash_old = h( <head, tail> )

new_ut = <$label, <%1 %+ %1, ’empty’>, ’rest’ >

roothash_new = h( <head, <h(new_ut), tail>> )

chainhash_new = h(<chainhash_old, roothash_new>)

in

[ St_AppendAuditor(id, %epoch_id, chainhash_old, roothash_old)

// head + tail let the adversary choose the index at which to insert

, In(head)

, In(tail)

, !CT(%epoch_id %+ %1, chainhash_new)

]

--[

LabelNotInHeadOrTail($label, head, tail)

]->

[ St_AppendAuditor(id, %epoch_id %+ %1, chainhash_new, roothash_new) ]

// limit that $label is not already in head nor tail (i.e. has a unique position)

restriction LabelNotInHeadOrTail:

"All label head tail #i .

LabelNotInHeadOrTail(label, head, tail)@i

==>

not (label << head)

& not (label << tail)

"

The auditor already has the tree in form of the roothash_old contained in its state
fact St_AppendAuditor. Using pattern matching we can separate it into a head and a
tail, thus defining the position at which the new label should be inserted. We let the
adversary chose head and tail by receiving them from the network. Then we use the
restriction (and subterm reasoning!) to enforce that the label does not already appear
in the tree, i.e. that it will have a unique position and is not a duplicate. Because
$label is a public term we can use it without it appearing in one of the premise’s
facts. Also note the usage of the !CT persistent fact, which models the verification of
the new chainhash against the CT logs.

The Append Audit rule for updating values for labels is very similar. The difference is
that instead of creating a new user subtree new_ut, it pattern matches an existing user
subtree and prepends a new (revision, value) tuple.
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In Model 2 querying and Self Audit explicitly receive the root hash (i.e. the tree). They,
too, use pattern matching on the root hash and on the user subtree to model inclusion
proofs.

By not having server rules that build the tree, we give the adversary (played by Tam-
arin’s constraint solver) the power to construct it. Queries and Self Audits only look at
the revision subtree that they are interested in. Theoretically the rest of the tree could
be wrongly constructed. Here the External Auditor’s Append Audit comes in: it, too,
receives the tree from the network. It verifies the tree by reconstructing it according to
the correct rules and comparing the result against the provided root hash.

Model Limitations Our Tamarin models still have the following limitations:

• The SKL is highly simplified. SKL.data is only a single key not a list of keys.
There is no primary bit or other key flags. There is no SKL signature.

• We don’t model absence proofs. Queries can only return values that are in-
cluded.

• We don’t model obsolence and ObsolenceTokens.

• Deletions are not modelled. Thus the tree is append-only and growing forever.

• Promises and Promise Audits are not modelled. Thus Querying can only return
values that are already in the tree.

• We don’t model time. The model doesn’t have a concept of DeletionParam or
MMD. This is also why the CT facts don’t need to contain the epoch issuanceTime.

• The VRF is not modelled. See above.

4.6.2 Attempts at Proving Security Properties

For both model versions we wrote basic executability lemmas (lemma Executability_XYZ).
These serve as sanity checks that all subprotocols are executable by Tamarin. If a pro-
tocol is not be executable, security properties trivially hold: For example, if a client
never sends a secret because the corresponding rule is not executable (i.e. not reach-
able) then the adversary trivially never learns the secret.

Executability lemmas are relatively straight forward because Tamarin only needs to
find a single trace that satisfies the formula, and the property is usually easy to reach.

For security lemmas the formula needs to hold for all traces. Tamarin negates it and
tries to find a trace satisfying the negation. Like our manual analysis, Tamarin starts
from an attack state and reasons backwards to see how it could have been reached.
Ideally this ends in a contradiction, i.e. there is no chain of applying the multiset
rewriting rules that lead to the attack state.

We unsuccessfully attempted to prove Query-to-SelfAudit Consistency in Model 2. Be-
cause Model 1 was originally intended only as a stepping stone to Model 2, we did not
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have enough time to go back to it and try and prove Query-to-SelfAudit Consistency
in Model 1 once the challenges in Model 2 became apparent.

Let us look at the challenges in more detail.

Situation: Loops Both the Self Audit and the Append Audit have loops that iterate
over revisions. Tamarin’s backward search cannot solve general lemmas in looping
protocols. Therefore, we need to use induction.

Induction First, we need to understand how induction works in Tamarin. Consider
the following example, taken from Chapter 11, “Advanced Features” of the Tamarin
manual [23].

rule start:

[ Fr(x) ]

--[ Start(x) ]->

[ A(x) ]

rule repeat:

[ A(x) ]

--[ Loop(x) ]->

[ A(x) ]

lemma AlwaysStarts [use_induction]:

"All x #i. Loop(x) @i ==> Ex #j. Start(x) @j"

The annotation [use_induction] tells Tamarin to try and proof this lemma using
induction.

Without induction, Tamarin first negates the formula, ending up with:
"Ex x #i. ( Loop(x) @i & not (Ex #j. Start(x) @j) )"

If Tamarin can find such a trace, it would be a counterexample for the lemma. In its
backwards search, Tamarin starts from an A(x) fact (that it knows exists because of the
Loop action fact). Then Tamarin’s search will forever loop trying to apply the repeat

rule and ending the tree while avoiding the start rule.

With induction, Tamarin rewrites the formula to obtain the following induction hypo-
thesis:
"All x #i. Loop(x) @i ==> (Ex #j. Start(x) @j) | last(#i)"

In other words, whenever we have a Loop action fact either the property holds, or
we are in the last(#i) timepoint of the trace. This entire induction hypothesis then
becomes an additional constraint, with which Tamarin’s constraint solver is then (usu-
ally) able to prove the original lemma.
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Connecting Chain Hashes across Epochs Recall from our manual analysis of Query-
to-SelfAudit Consistency that we have the case r ̸= s, i.e. the query and the Self Audit
happen at different epochs. In this case we somehow need to relate the trees at these
two epochs. At first sight, the chain hashes make this easy:

chainhasht = h(chainhasht−1||roothasht)

It is clear that chainhasht−1 should be a subterm of chainhasht:

chainhasht−1 ⊏ chainhasht

Therefore, to connect the two trees a lemma can look as follows (Ch is the action fact
in the trace, ch is the term representing the chain hash):
"All ch1 ch2 #i #j. Ch(ch1)@i & Ch(ch2)@j ==> ch1 << ch2"

The induction hypothesis becomes:
"All ch1 ch2 #i #j. Ch(ch1)@i & Ch(ch2)@j ==> ch1 << ch2 | last(#i) | last(#j)"

Problem on Case Splits During its backward search, Tamarin does case splits. In
the case of the last(#i) timepoint, the trace can be completed with some different
Ch(ch3) with ch3 ⊏ ch2. ch3 may still be a valid subterm of ch2, i.e. there is no
equivocation, but it is not the subterm ch1 we are interested in. Thus the proof gets
stuck, and we cannot prove our lemma to relate the trees.

Easy-but-Impossible Solution An easy solution to this would be an auxiliary lemma
such as:
"All ch1 ch2 #j. Ch(ch2)@j & ch1 << ch2 ==> Ex #i. Ch(ch1)@i"

Intuitively, we want to reason over all subterms ch1 of ch2, and show that they must
have previously appeared in the trace. This would allow us to connect the chain hashes
of querying and Self Audit together.

However, this formula is not guarded because ch1 does not appear in any fact on the
left hand side. We cannot have such a formula in Tamarin, it is not valid syntax. This
is were our proof attempts are stuck.

Overall, we unfortunately were not able to find a proof that Query-to-SelfAudit Con-
sistency holds in our Tamarin model of ProtonKT. This is due to the outlined chal-
lenges with induction, as well as to time constraints.

Benefits of the Formal Modelling Process Nevertheless, the process of formally
modelling ProtonKT and trying to find formal proofs already provided us with im-
portant insights. Going through this process enabled us to better understand the
different parts of the protocol. Sometimes questions came up during modelling which
pointed to gaps in our understanding and/or our pen-and-paper description (the mes-
sage sequence diagrams).
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For example, when handling the base case for the Append Audit (Is the first revision
%1 or is it %1 %+ %1?) we noticed that we wrongly assumed that ProtonKT inserts new
entries at the left-most leaf, which would be revision 0. When we checked the web
client code we found that revision 0 is always empty and the first revision is inserted
as revision 1.
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Chapter 5

Recommendations

In this section we describe recommendations for improving the ProtonKT scheme.

5.1 Discrediting the KT Server through Fake Root Commit-
ments

The goal of any transparency system is to ensure that the server cannot misbehave in a
way that is undetectable. If the server is misbehaving, this action should produce non-
repudiable proof. If on the other hand the server is acting honestly, we might also like
that no one can “defame” the server, i.e. make it look like the server is misbehaving
when it isn’t.

The authors of CONIKS discuss this problem in a separate blog post [20]. They focus
on detecting the source of an inconsistency: Was it a protocol flaw? An implementation
bug? Outside compromise of the server? A malicious employee? While they don’t
state it explicitly, they are trying to establish an accountability property [14].

This sort of “non-discreditability” was not among the original design goals for Pro-
tonKT. Nevertheless, we think it is important (even if only from a business perspect-
ive), hence we bring it up as a recommendation.

Attack In turns out that a malicious CA can discredit an honest ProtonKT server.
Recall from section 3.6 that the tree root hash is committed by requesting a certificate
with a Subject Alternative Name (SAN) of the form:

hash[0:32].hash[32:64].timestamp.epochid.1.keytransparency.ch

A malicious CA could issue a certificate for the following SAN on its own accord:

hash’[0:32].hash’[32:64].timestamp.epochid.1.keytransparency.ch
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with the same epochid but a different hash’. This certificate will never be presented
by the server to clients, but it will be included in CT logs. To auditors scanning the CT
log, this is indistinguishable from the server equivocating on the tree hash.

Importantly, this works because a certificate only binds an identity to a public key.
It does not contain a statement signed by the private key that approves this binding.
A Certificate Signing Request would be such a statement. However, the CSR is not
included in the certificate, and the CA may delete the CSR after issuing the certificate.

Adversary Model In its original adversary model, Proton did not consider CAs.
However, if we extend our adversary model to include malicious CAs then this at-
tack on non-discreditability becomes possible.

On one hand, this issue is easy to exploit for a CA: it just has to issue a certificate. On
the other hand, CAs are by nature under heavy public scrutiny and they, too, have a
business risk at stake. This makes it less likely that a CA at its own volition would
execute this attack.

However, there are attacks that trick CAs into misissuing certificates. One such ex-
ample is circumventing DNS-based domain verification with BGP-hijacking [4]. (Let’s
Encrypt has mitigated this particular attack by using multiple vantage points for DNS
verification.1 It is unclear if the second CA used by Proton, ZeroSSL, has such mitiga-
tions in place.)

Recommended fix We can simply use signatures to prevent this attack. The server
needs to prove that it requested the certificate. It can do this e.g. by signing the
original target domain name, and including this signature as a second SAN domain
in the certificate request:2

sig[0:32].sig[32:64].sig[64:96].sig[96:128].epochid.1.keytransparency.ch

More generally, the server needs to sign a statement containing the tree hash, and it
needs to publicly and immutably commit to that signature (using CT, a blockchain, a
bulletin board, etc.). Currently Proton’s scheme only commits to the tree hash. The
origin of the hash is not verifiable.

5.2 Make the Leaf Type Explicit

Recall that the leaf hash for included values is

h
(
h(SignedKeyList.data) || minEpochId

)
1https://community.letsencrypt.org/t/validating-challenges-from-multiple-network-vantage-points/

40955
2This assumes Ed25519 signatures (EdDSA using Curve25519), which have size 512 bits. One hexa-

decimal character encodes 4 bits, hence 128 characters.
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5.2. Make the Leaf Type Explicit

and that for obsolent values it is

h
(
h(ObsolenceToken) || minEpochId

)
Note that the proof type (inclusion/obsolence) is not included in the leaf hash, and
thus also not explicitly included in the tree.

This smells like a good target for a type confusion attack. That is, the key server might
cause some clients to interpret the first value as an SKL, and other clients to interpret
it as an ObsolenceToken. This would break Query-to-SelfAudit Consistency.

Impact However, this is not exploitable. Recall that ProtonKT requires clients to
check3 that the ObsolenceToken is a non-empty hexadecimal string. Thus an SKL
can never be interpreted as an ObsolenceToken. And an ObsolenceToken cannot be
interpreted as an SKL because it will not decode as valid JSON.

Nevertheless, using an encoding (hex vs. JSON) to separate types is not clean cryp-
tography. It feels fragile. It is not immediately clear that the encoding has a security
impact. When reviewing the source code, the check isHexadecimal() reads like a san-
ity check, not like a critical protocol component. In addition, encodings are usually not
part of a symbolic model where we reason using terms. (One can manually constrain
the symbolic model to account for the encoding of values, but this is not idiomatic.)

Recommended improvement The proof type should be explicitly bound to the value
when committed in the tree. We recommend including the proof type in the leaf hash:

h
(

h(”1” || SignedKeyList.data) || minEpochId
)

h
(

h(”2” || ObsolenceToken) || minEpochId
)

Note that this does not leak the proof type to the auditors. Auditors only see
h(”2” || ObsolenceToken) and minEpochId. They cannot deconstruct (“look into”)
the hash output, they can only brute-force all possible values. Thus assuming that
ObsolenceToken cannot be guessed, the auditors cannot distinguish h(”1” || SKL.data)
and h(”2” || ObsolenceToken) (like before).

This change also simplifies the argument in subsection 4.4.2. Currently Case 2.1.2.2.2.3
relies on checking the encoding. With our suggested change this instead reduces to
collision resistance of the hash function.

3https://github.com/ProtonMail/WebClients/blob/94081ab/packages/key-transparency/lib/

verification/verifyProofs.ts#L184
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5.3 Easier Investigation of KT Warnings

Ideally, ProtonKT will happily run in the background. But what if there is a warn-
ing? This is a new UX challenge that is still open. As Kevin Lewi, who works on
WhatsApp’s Parakeet design, acknowledges in an interview: “We’re also working on
what the user interface of this will actually look like: what do users see when they
wanna verify each other?” [24].

No export ability An important UX aspect is the following: what can the user do
if KT does raise a warning? In this case, the user potentially has proof of server
misbehaviour. Clearly, users would like to export such proof for backup and later
analysis.

However, Proton’s web UI does not yet offer such an export feature. It simply displays
a warning: “Proton Mail failed to verify that the keys of this address are consistent
with Key Transparency.” There is only high-level user guidance. No detailed technical
cause is given. Just like advanced users may want to view raw email headers, they
may also want to view raw KT errors.

Limited ability to compare fingerprints A natural first step in case of a KT warning
would be to fall back to manually comparing PGP key fingerprints out-of-band (just
like Signal’s and WhatsApp’s Safety Number scanning).

When verifying Bob’s key against KT fails, the web client does show Bob’s full expec-
ted fingerprint and prompt Alice to compare it manually with Bob. Bob can find his
own full key fingerprints in the web client settings.

However, users cannot easily compare fingerprints proactively when there are no KT
errors. On web, the fingerprints of contacts are trimmed to only show the first 12 of the
total 64 hex characters of the SHA-256 fingerprint (see Figure 5.1). (As a workaround,
one can download the keys and use external tools to compute the fingerprint.) On
Android and iOS, there is no way at all to display fingerprints or download keys
(neither your own nor your contacts’). And with KT not available on mobile, users
continue to have to blindly trust the key server.

Additionally, as we have seen in section 4.5, manual fingerprint comparison still re-
mains important for contacts who are not using Proton. This is because they are not
running Self Audits and thus don’t benefit from KT.

Recommended improvement First, we recommend that KT warning pop-ups have a
button to download the underlying KT state as a sort of “evidence export”. Second,
we believe that even with KT, manual key fingerprint comparison will remain an im-
portant fallback. We recommend to properly implement this across all platforms and
products.
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Figure 5.1: Viewing a Contact’s Key Fingerprints in Proton Mail Web Client v5.0.30.8

5.4 Improved Check that a Revision is the Latest Revision

Queries that return included or obsolent values need to verify that the revision rev that
the server replied with is really the latest available revision, so that the server cannot
present an outdated view. Self Audit needs to do the same to check that the server is
not hiding newer revisions. Recall from section 3.9 and section 3.12 that to achieve this
in ProtonKT, the server also provides an absence proof for rev + 1 and clients verify
it. ProtonKT assumes that auditors verify that revisions are continuous. That is, the
server must not insert revisions 1, 3, and 5 while leaving 2 and 4 absent.

Recommended change Instead of verifying the absence proof for rev+ 1 and relying
on auditors to detect server misbehaviour, clients can check for most-recentness dir-
ectly. Consider the right neighbours on the lower co-path, within the revision subtree.
If rev is the highest non-absent revision, then all the right neighbours in the revision
subtree co-path must be empty. We recommend that instead of checking an absence
proof, ProtonKT clients check this condition.

It is faster: Checking an entire absence proofs requires 256 hash function invocations,
while our check only requires up to 32 comparisons. It also saves bandwidth and
server computation time.
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Note that this is already implemented for absent values in ProtonKT.QueryValue: it
checks the tree proof for revision 0 and then checks that the lower neighbours are
all empty. 4 This allows the client to conclude that the latest value is absent in the
tree. Note that for simplicity Figure 3.7 still shows the old way of checking rev+ 1 for
absence, too.

5.5 Server can Delay Promise Audits for more than the Max-
imum Merge Delay

Situation Recall from section 3.4 that the SKL has a field expectedMinEpochId which
the server uses to signal to the client when it should expect the value to be included
in the tree, i.e. when it makes sense to check back for an inclusion proof.

Also recall that for security we require all promises to be included in the tree within the
Maximum Merge Delay (MMD) of 72 hours. That is, clients should audit the promise
after the MMD has passed, no matter what the non-binding expectedMinEpochId says.

Attack Originally the web client checked the expectedMinEpochId first and the MMD
only later: 5

if (expectedMinEpochID > epoch.EpochID) {

return LocalStorageAuditStatus.RetryLater;

}

/* ... only further down the MMD is checked ... */

if (isTimestampTooOld(creationTimestamp)) {

return throwKTError(’SKL revision was ignored after more ’

+ ’than max allowed interval’, { email, revision });

}

Thus a malicious server could set a very high expectedMinEpochId, one that is years in
the future. This would cause the client to effectively never audit the promise. Because
the promise is not audited for eventual inclusion, the server could have replied to the
query with any value that is not in the tree and thus not seen by a Self Audit. This
would break Query-to-SelfAudit Consistency. Note that we only reviewed the source
code and did not verify this attack in practice.

4https://github.com/ProtonMail/WebClients/blob/ebfa3ae416d1ff66/packages/

key-transparency/lib/verification/verifyProofs.ts#L128-L137
5https://github.com/ProtonMail/WebClients/blob/ebfa3ae/packages/key-transparency/lib/

verification/self-audit/verifyLocalStorage.ts#L60
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5.5. Server can Delay Promise Audits for more than the Maximum Merge Delay

Fix This has since been fixed: 6

if (!isTimestampTooOld(creationTimestamp) && expectedMinEpochID > epoch.EpochID) {

return LocalStorageAuditStatus.RetryLater;

}

Client Time vs Server Time Clients not having the correct time, i.e. having too
much clock skew, is a general problem is security. For example, if the device time is
off by too much, the notBefore and notAfter timestamps of X.509 certificates cannot be
properly verified. The PGP signatures used by Proton also contain timestamps, thus
signature verification is another reason for having roughly the correct time. To address
this issue, Proton’s web client uses the HTTP Date header to obtain the server time.
The client maintains a lastServerTime field that is updated with every API response
received from the server. 7 If the local client time diverges more than 24 hours from
the server time, the web client displays a warning. 8

What does this mean for Promise Audits? They check that:

|currentTime− creationTime| > MMD

In the web client implementation both the currentTime (set during Promise Audit9)
and the creationTime (set during querying when storing the promise10) use the server
time. Thus while in our security analysis we assume that these timestamps are trusted,
in practice the server controls both of them.

However, this does not lead to an attack because the user will always see a warning:
either a KT warning or a time warning. Thus at worst the server can relax the MMD
bound of 72 hours by another 48 hours. In our security analysis this is equivalent to
changing the MMD parameter.

6https://github.com/ProtonMail/WebClients/commit/b55859a1031650abf9c3fb76b84cc8ac19d232f8
7https://github.com/ProtonMail/WebClients/blob/9d9fcbd3f6b98135/packages/components/

containers/api/ApiProvider.js#L155
8https://github.com/ProtonMail/WebClients/commit/ddb1ad3701e127a32fe74401b1ec9996fd7ff5d1
9https://github.com/ProtonMail/WebClients/blob/ab32168726081262/packages/

key-transparency/lib/helpers/utils.ts#L23-L32
10https://github.com/ProtonMail/WebClients/blob/4a5bf82f0f806dc4/packages/components/

containers/keyTransparency/useSaveSKLToLS.ts#L38
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Chapter 6

Conclusion

This thesis analysed the security of ProtonKT, Proton’s Key Transparency scheme.

We started by describing the individual parts of ProtonKT at a high-level. Afterwards
we gave a detailed specification of the subprotocols as message sequence diagrams.
Notably, ProtonKT uses a different tree structure than previous KT designs, which
allows it to shift additional work from clients into auditors, e.g. allowing it to support
deletions without requiring tombstoning. ProtonKT also has slightly different subpro-
tocols compared to the existing VKD primitive. For example, ProtonKT has a Promise
Audit which allows the server to return values that are not yet in the tree but will be
included soon.

The later parts of this thesis defined the security property that ProtonKT is designed
to provide: Query-to-SelfAudit Consistency. We then did a manual analysis to argue
why it should hold. We also formally modelled ProtonKT using the Tamarin Prover.
Using subterms provided a more realistic, albeit still not fully faithful way to model
both the Merkle tree and the root hash chain. For example, our hash tree is not binary
and has only three levels. Due to limitations of Tamarin’s induction, we did not find a
formal proof showing that Query-to-SelfAudit Consistency holds in our model.

Finally, we gave some recommendations on how to improve the protocol in future
iterations. This included preventing CAs being able to discredit the KT server, making
the proof type explicit, making querying more efficient, and pointing out a now fixed
attack on promises.

Future Work Analysing ProtonKT from other angles is a natural opportunity for
future work. For example, we did not consider the computational model (classic game-
based proofs). One could also pick up our Tamarin model to try to find a formal proof.
Another possibility is to expand on non-discreditability, and to formally model and
prove it as an accountability property, similar to [15].
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Appendix A

Appendix

A.1 Keys at Proton

Proton uses a variety of asymmetric PGP keys across its products (which includes not
just Mail, but also Calendar and Drive). This section describes the different key types
and what they are used for.

A Proton user has a username and a password. We will use the terms “user” and “ac-
count” interchangeably. The password is used to authenticate against the server using
the Secure Remote Password (SRP) protocol (a password authenticated key exchange
(PAKE) protocol). 1

The server stores all key pairs on behalf of the user in PGP-encrypted form. The bcrypt
hash of the account password is used as a passphrase (OpenPGP-speak for symmetric
key) to decrypt a key pair. 2

Key Types The first type of key pair are the account keys (also called user keys). The
account keys encrypt account-specific information. They are “private” to a user, i.e.
not known to or needed by other users. They are not included in KT.

The second type are the address keys (also called email encryption keys). They are used
for encrypting emails and other users can look them up. They are included in KT to
achieve consistency.

There are also other asymmetric key pairs, e.g. calendar keys to encrypt calendars or
share keys and node keys to encrypt files on Drive. These key pairs are protected by

1https://proton.me/blog/encrypted-email-authentication
2https://github.com/ProtonMail/WebClients/blob/4c9d1f09a015/packages/components/

containers/login/loginHelper.ts and https://github.com/ProtonMail/WebClients/blob/

4c9d1f09a015/packages/srp/lib/keys.ts
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a randomly generated key (random “passphrase” in Proton’s terminology) which is
itself encrypted with the address key. 3

Users can manage their account keys and address keys in the web client (see Fig-
ure A.1). For example, users with old Proton accounts that were created with RSA-2048
keys can generate new Curve25519 keys. The old keys are kept to allow decrypting
old data.

Figure A.1: Proton Account Keys and Email Keys

Trusted Keys Proton allows Bob to mark Alice’s public key as “trusted”. This effect-
ively pins the public key: Bob will continue to encrypt emails towards Alice with this
key, even if Alice changes her primary address key.

3https://proton.me/blog/protoncalendar-security-model and https://proton.me/blog/

protondrive-security
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A.1. Keys at Proton

Key Flags Proton stores some metadata alongside the keys. Note that this metadata
is only interpreted by Proton-clients and not part of the OpenPGP standard. However,
this metadata is included in the SKL and thus in KT (see section 3.3).

A key can be marked as primary, a simple boolean flag. The primary key is used by
default for all operations. E.g. when Bob looks up Alice’s address key, the server will
return the primary key. Alice will also sign her outgoing emails with her primary
address key.

There is also an integer f lags where the bits have the following meanings (note that
the negations can be confusing): 4

1: NOT-COMPROMISED: If this flag is set to 0 (i.e. not set) the key is marked as
compromised and all signatures made by this key will be considered invalid.
Thus if this flag is set to 1 this “key can be used to sign”. 5 A compromised key
is also obsolete, i.e. no new email may be encrypted to it.

2: NOT-OBSOLETE: If this flag is set to 0 (i.e. not set) the key is marked as obsolete
and no new emails will be encrypted to it. If Bob has previously marked this key
as trusted, this flag forces Bob to no longer use this key, and use the new primary
one instead. Thus if this flag is set to 1 this “key can be used to encrypt”. 6

4: EMAIL-NO-ENCRYPT: Don’t encrypt emails with this key. This is used for keys
that belong to External Addresses (see section 3.2). For example, if alice@gmail.com
signs up for Proton Drive (but not Mail) Proton will create an address key for
Alice so that her files can be encrypted. However, this key should not be used
by Bob to encrypt email, since GMail won’t be able to decrypt it.

8: EMAIL-NO-SIGN: Don’t expect emails to be signed with this key. See EMAIL-
NO-ENCRYPT.

Some flags are visible to the user in the Mail web client. 7 For example, the user can
mark a key as primary and toggle the NOT-COMPROMISED and NOT-OBSOLETE
flags. The other two flags (EMAIL-NO-ENCRYPT, EMAIL-NO-SIGN) are not shown in
the UI.

4 https://github.com/ProtonMail/WebClients/blob/1135ef15e95feb5d/packages/shared/lib/

constants.ts#L840:L853
5See footnote 4
6See footnote 4
7https://proton.me/support/pgp-key-management#key-flags-and-settings
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