
Modular Design of the Messaging
Layer Security (MLS) Protocol

Master Thesis

Tijana Klimovic

September 29, 2021

Advisors: Prof. Dr. Kenny Paterson, Dr. Igors Stepanovs

Applied Cryptography Group
Institute of Information Security

Department of Computer Science, ETH Zürich

Abstract

The Messaging Layer Security (MLS) protocol has been developed by
the IETF group in an attempt to standardise an efficient and secure
group messaging (SGM) protocol. The MLS protocol can be seen as
a composition of three main cryptographic primitives: (1) a continu-
ous group key agreement (CGKA) scheme, (2) a hash function used for
maintaining user key-material entropy pools (PRF-PRNG), and (3) a
key evolving group symmetric encryption (KEGSE) scheme. Presently,
all papers focus on the analysis of CGKA and omit formally defin-
ing the other two modular primitives. Furthermore, no prior work
has proposed any formal syntax, correctness, or security notion for
group messaging schemes. This work aims to fill in the gaps in the
formal treatment of the MLS protocol as follows. It defines the syntax,
security and construction of the KEGSE building block, as well as a
construction of the PRF-PRNG building block based on the MLS speci-
fication and architecture documents. In doing so, we define a novel se-
curity property we term as forward-secure (sender) anonymity which
demands that even upon client compromise, the identity of the sender
of past messages remains unknown. Moreover, we show that the MLS-
based construction of KEGSE is itself a composition of two primitives:
(1) a key-evolving symmetric authenticated encryption (KESE) scheme,
representing a single-sender analogue of a KEGSE scheme and (2)
a nonce-based authenticated encryption scheme with associated data
(NAEAD). We then analyse KEGSE against our proposed security no-
tion and prove that the current version of KEGSE does not provide
forward-secure anonymity. We propose a new construction of KEGSE
based on puncturable function families (PPRF), to address the insecu-
rity. Moreover, we define a simplified security notion of KEGSE and
argue that the current version of KEGSE is secure in this weaker secu-
rity model. Our work also defines the syntax and correctness of SGM
protocols as well as gives a description of the MLS protocol as a whole
based on the MLS specification and architecture documents. Finally,
we propose a list of potential future research directions in the area.

i

Contents

Contents iii

1 Introduction 1
1.1 Overview and Motivation . 1
1.2 Contributions . 2
1.3 Concurrent and Independent work 3
1.4 Outline . 3

2 Preliminaries 5
2.1 Notation . 5
2.2 Tree Terminology . 8
2.3 Cryptographic primitives . 10

2.3.1 Key Encapsulation Mechanism (KEM) 10
2.3.2 Key Derivation Function (KDF) 11
2.3.3 Nonce-based Authenticated Encryption with Associ-

ated Data (NAEAD) . 11
2.3.4 Hash function . 13
2.3.5 Digital Signature (DS) 13
2.3.6 Message Authentication Code (MAC) 13
2.3.7 Function families . 14
2.3.8 Punctured function families 14

3 Secure Group messaging (SGM) protocol 17
3.1 SGM protocol functional requirements 17
3.2 SGM scheme . 18

3.2.1 SGM scheme Syntax . 19
3.2.2 Correctness of an SGM scheme 20

3.3 SGM protocol security requirements 22
3.4 Secure Messaging (SM) scheme requirements 23

3.4.1 Secure Messaging (SM) Syntax 23

iii

Contents

3.4.2 Secure Messaging (SM) security 23
3.4.3 Modularisation of an SM scheme 24

4 The Messaging Layer Security (MLS) protocol 27
4.1 MLS Terminology . 27
4.2 Assumptions and context of MLS 30
4.3 MLS Protocol overview . 33
4.4 State of client . 42
4.5 Ratchet Tree (RT) . 46

4.5.1 Ratchet tree invariants 51
4.6 Group Context . 54
4.7 Handshake and Application message plaintext 54

4.7.1 Handshake and Application plaintext 56
4.7.2 Content of a Proposal message 63
4.7.3 Content of a Commit message 68

4.8 Key Schedule . 79
4.9 Secret Tree . 80
4.10 Handshake and Application message framing 83

4.10.1 Metadata . 84
4.10.2 Symmetric hash ratchet 84
4.10.3 Framing creation . 85
4.10.4 Framing processing . 91

4.11 Welcome message . 93
4.11.1 Welcome message creation 95
4.11.2 Welcome message processing 97

4.12 Initialise group . 100
4.13 Comparison to MLSv11 . 101
4.14 MLS protocol security . 103

5 Building blocks of MLS 107
5.1 Modular construction of MLS 107

5.1.1 CGKA . 108
5.1.2 PRF-PRNG . 109
5.1.3 KEGSE . 110
5.1.4 Inter-component data flow 110

5.2 PRF-PRNG . 111
5.2.1 PRF-PRNG Syntax . 111
5.2.2 Instantiating a PRF-PRNG scheme 111

5.3 Key-Evolving Group Symmetric Encryption Scheme (KEGSE)
with Associated Data . 112
5.3.1 KEGSE Syntax . 113
5.3.2 KEGSE Correctness . 114
5.3.3 KEGSE Security . 115

iv

Contents

5.3.4 Key-Evolving (Stateful) Symmetric Encryption Scheme
with Associated Data (KESE) 120

5.3.5 KEGSE instantiation . 137

6 Conclusions 143
6.1 Summary . 143
6.2 Future work . 144

A Appendix 147
A.1 KESE security definition motivation 147
A.2 FS-GAEAD definition motivation 149

Bibliography 151

v

Chapter 1

Introduction

1.1 Overview and Motivation

Instant Messaging (IM) applications such as Whatsapp, Signal and Telegram
have gained immense popularity in the recent years [Tan21b, Tan21a, Iqb17].
Naturally, with this increased use of IM technology, security protection of
these applications became a pressing concern. Today, many of these ap-
plications make use of sophisticated messaging protocols, which can be
viewed as asynchronous analogues of the TLS protocol that provide end-to-
end guarantees against powerful attackers. Arguably, the most prominent
of these solutions has been the Signal messaging protocol [Siga], which has
been adopted by WhatsApp [Wha16], Facebook Messenger [Gre16], Wire
[Gmb21], Skype [Lun18], Viber [Vib], Google Allo [Mar16] and many oth-
ers.

The Signal protocol was initially designed, implemented and used in the
Signal messenger and it can be roughly divided into two stages. The first
stage is a key exchange, or X3DH (extended triple Diffie-Hellman) proto-
col [Sigb], which combines long-term, medium-term and ephemeral Diffie-
Hellman keys to establish a shared secret key. This shared secret key is then
further used in the second stage i.e. the Double ratchet protocol [PM16],
which ensures that every message sent is encrypted and authenticated using
a fresh symmetric key derived by ratcheting already used symmetric keys.
These two stages of the Signal protocol were formalized and their security
analyzed by researchers in academia, which resulted in a number of papers
analysing the security of the X3DH protocol [BFG+19, CGCD+16, HKKP21]
and the Double ratchet protocol in [ACD18, CGCD+16] proving that both
stages of Signal are secure.

The caveat however is that the Double Ratchet protocol, and hence the secu-
rity proofs, only focus on the two-party case, despite most messaging appli-
cations also supporting group conversations. For groups, most messengers

1

1. Introduction

currently implement ad-hoc solutions that either do not provide end-to-end
encryption (meaning the server sees all messages in plain), or are ineffi-
cient (e.g. an independent Signal channel is established between each pair
of group members). Presently there is an ongoing effort by the IETF work-
ing group to develop and standardize both a secure and an efficient group
messaging protocol, called Messaging Layer Security (MLS) protocol.

Alwen, Coretti and Dodis [ACD18] analyzed the Double Ratchet protocol in
a modular way, by treating it as a composition of 3 cryptographic primitives:
continuous key agreement scheme (CKA), hash function used for main-
taining user key-material entropy pools (PRF-PRNG), and forward-secure
authenticated encryption with associated data (FS-AEAD). This modular-
isation has been extended to the MLS protocol by Alwen, Coretti, Dodis
and Tselekounis [ACDT19], and subsequently used in follow-up work by
[ACC+19, ACJM20, AJM20] which focus on the analysis of continuous group
key agreement scheme (CGKA) , the group version of CKA, and omit for-
mally defining FS-AEAD and PRF-PRNG in the group setting. Moreover
no prior work has yet proposed any formal syntax, correctness or security
notion for group messaging schemes.

1.2 Contributions

We provide a brief summary of the modular composition of the bidirectional
channel from CKA, PRF-PRNG and FS-AEAD covered in [ACD18]. Based
on these ideas and the MLS architecture document [OBR+21], which states
the security goals of MLS, we define the syntax and security of a key evolv-
ing group symmetric encryption (KEGSE) scheme and a PRF-PRNG scheme
representing the missing FS-AEAD and PRF-PRNG primitive in the group
context respectively.

In defining security of a KEGSE scheme we provide a formal definition
of a novel property called forward-secure (sender) anonymity. Intuitively
the property demands that upon client compromise the adversary gains no
knowledge about the sender of a received message by the compromised
client. We then instantiate these primitives based on the MLS protocol spec-
ification [BBM+21]. Subsequently we show an attack on the MLS-based
KEGSE scheme instantiation and propose a fixed KEGSE scheme based on
puncturable function families (PPRF)-s.

We then define a weaker KEGSE security game (excluding forward secure
sender anonymity) and provide a modular construction of the MLS-based
KEGSE scheme based on KESE schemes (the latter similar to FS-AEAD prim-
itive used in [ACD18]) and nonce based authenticated encryption (NAE)
schemes. Following this we show that the security definition of FS-AEAD
schemes in [ACD18] is wrong, fix it and prove the MLS-based instantiation

2

1.3. Concurrent and Independent work

of a KESE scheme secure in the fixed game. We then give a proof sketch of
the MLS-based KEGSE scheme being secure in the weaker security game as-
suming the security of the underlying KESE scheme. Next to this we provide
the syntax and correctness game of secure group messaging (SGM) schemes
and give a description of the MLS protocol based on [OBR+21, BBM+21].

1.3 Concurrent and Independent work

We have recently become aware of one concurrent and independent work by
Alwen, Coretti, Dodis and Tselekounis [ACDT21]. This work, like ours, de-
fines the syntax and security of two primitives FS-GAEAD and PRF-PRNG,
which correspond to the FS-AEAD and PRF-PRNG primitive in the two-user
context respectively. Similarly to us they attempt to formally capture the
syntax and correctness of an SGM protocol. They additionally define secu-
rity of an SGM protocol and show how the MLS protocol can be modularly
built from their CGKA, FS-GAEAD and PRF-PRNG primitives and analyse
its security. However their security games only capture the ‘basic’ security
requirements of an SGM protocol, i.e. confidentiality, authenticity, forward-
security and post-comromise security of messages. Hence their work does
not analyze MLS against the more advanced features such as forward secure
sender anonymity, which we do in our work. Moreover their security notion
of an FS-GAEAD scheme has a flaw that extends from the one we found in
the security game of the FS-AEAD primitive in [ACD18]. The details of both
of these definitional faults is elaborated further in Appendix A.1 and A.2.

1.4 Outline

The remainder of this work is organised as follows. Chapter 2 defines the no-
tation, tree structure terminology and all cryptographic primitives we make
use of throughout this work. In chapter 3 we define the syntax and correct-
ness (in terms of a correctness game) of a secure group messaging (SGM)
protocol and list the security properties it should provide. We then give a
brief summary of the Double ratchet protocol modularization in [ACD18]
whose ideas we attempt to extend to the group scenario. Chapter 4 gives
a description of the MLS protocol and its assumptions about the context in
which it executes based on [OBR+21] and [BBM+21]. In chapter 5 we cast
MLS as an SGM protocol composed out of 3 main building blocks: contin-
uous group key agreement (CGKA), key-evolving group symmetric encryp-
tion (KEGSE) scheme and a PRF-PRNG scheme; along with a MAC and DS
scheme. We then go on to formalise both the KEGSE and PRF-PRNG com-
ponents and analyse the security of the KEGSE building block. Finally, we
conclude with a summary of our results and future work in Chapter 6.

3

Chapter 2

Preliminaries

2.1 Notation

Throughout this work we make use of the following notation and conven-
tions:

Pseudocode basics. Every value (literal) has a data type. In this work we
make use of the basic data types (integers, strings, booleans, bit-strings),
collection data types (lists, tuples, maps, sets) and user defined data types
(structs). The struct data type is essentially a collection of data elements
(also called fields) grouped together under one user specified name. We use
a special symbol ⊥ to indicate an empty position in a list, map or struct; we
also return it as an error code indicating an invalid input to an algorithm or
an oracle, including invalid decryption. We use the← operator to determin-
istically assign the right operand to the left operand and ←$ for probabilis-
tic assignment. We will use the shorthand notation a1, a2, . . . , an ← v (for
some n ∈ N and some value v) to denote a1 ← v, a2 ← v . . . , an ← v. The
= binary operator is used for comparison of equality. We will use range(a),
where a ∈N0 to denote the list [0, 1, . . . , a− 1].

Basic data types. We say a is an integer if and only if a ∈ Z, a string if and
only if a ∈ {”a”, . . . , ”z”}∗, a boolean if and only if a ∈ {true, false} and
a bit-string if and only if a ∈ {0, 1}∗. If a is a string (bit-string) we write |a|
to denote the length of the string (bit-string) a, a[i] to denote a’s i-th letter
(bit) and a[i, . . . , j] to denote a’s substring starting at the i-th letter (bit) and
ending with the j-th letter (bit) for 1 ≤ i ≤ j ≤ |a|. If a and b are strings
(bit-strings) then a‖b denotes the concatenation of a and b.

Lists. The list data type is used to store a sequence (ordered collection) of
elements of same type. Let T be some data type. We say a is a list of type

5

2. Preliminaries

T elements if and only if a ∈ {[e1, e2, . . . , en] | n ∈ N0 ∧ ∀i(i ∈ {1, . . . , n} :
ei = ⊥ ∨ ei is T type)}. Each element in the list has a unique integer (called
index) associated to it. A list supports adding, removing, random access
and overwriting values of elements. Let A be a list containing elements of
some type T. Then the syntax for accessing an element at index i is A[i] and
removing of an element at index i is done by assigning ⊥ to it via A[i]← ⊥.
Adding/Rewriting an element at index i with value v is done by A[i] ← v.
Lists containing the same type elements can be concatenated via + operator.
Let T be some type. If A and B are two lists of type T elements such that
A = [a, b] and B = [c, d] for a, b, c, d of T type then A + B returns [a, b, c, d].
We denote |A| to be the length of the list.

Tuples. Tuples are used to store a sequence (ordered collection) of ele-
ments with potentially different types. Let T1, . . . , Tn be some data types
and n ∈ N. We say a is a tuple of type T1, . . . , Tn elements if and only if
a ∈ {(e1, e2, . . . , en) | ∀i(i ∈ {1, . . . , n} : ei is Ti type)}. The only operation
tuples support is access of its elements. Namely if we have a tuple contain-
ing elements (v1, . . . , v4) of type T1, . . . , T4, we use vi to access the value of
element vi for some i ∈ {1, . . . , 4}.

Sets. A set is used to store multiple elements of the same type with-
out an order. A set ensures that each element is unique in value. Let T
be some data type. We say a is a set of type T elements if and only if
a ∈ {{e1, e2, . . . , en} | n ∈ N0 ∧ ∀i(i ∈ {1, . . . , n} : ei is T type)}. Two sets
(containing elements of the same type) A and B can be unified using the
binary ∪ operator and compared for membership containment using ⊆. If
A and B have at least one element with the same value, the ∪ operator
will ensure that these repetitions do not occur in the set A ∪ B. Sets also
support addition of an element by unifying an existing set S with a set con-
taining the single element we wish to add. Sets also support removing of
elements and checking of membership. To remove a subset of elements e1, e2
from set S = {e1, e2, e3} we use the binary operator \ and write S \ R where
R = {e1, e2}. To check for membership of an element in set S we use the
∈ operator. If S is a finite set, we let s←$ S denote picking an element of
S uniformly at random and assigning it to s. Moreover we will sometimes
make use of the shorthand notation S←+ a and S←− a to denote the adding
and removing of element a from set S respectively.

Maps. Let T1 and T2 be some types. A map is used to store elements of
type T2 that have an associated key of type T1. Let T1, T2 be some data
type. We say a is a map from type T1 to type T2 elements if and only if
a ∈ {{k1 : e1, . . . , kn : en} | n ∈ N0 ∧ ∀i(i ∈ {1, . . . , n} : ki is T1 type ∧
(ei = ⊥ ∨ ei is T2 type))}. It supports the same operations as a list data
type, i.e. addition, removal, overwriting and access of it’s elements. The

6

2.1. Notation

only difference is that the operations use keys instead of indices to do these
operations. Let A be a map from key types T1 to value types T2. Then we
use the statement A[.] ← y to assign to all keys of A the value y (of type T2
or ⊥). Moreover, A.keys returns a list of all keys (of type T1) contained in A,
and A.values returns a list of all values (of type T2) contained in A.

Structs. Let n ∈N and T1, . . . Tn be some types. Structures allows us to give
a name to a collection of n elements of type T1, . . . Tn successively. We use
the following syntax to define a user defined type:

struct label {
f1

f2

f3
...
}

Where fi is the name given to the i-th element of the label structure and
label is some user specified name. The elements of any user defined struc-
ture are also called its fields. Let label be some structure with n ∈ N

fields of type T1, . . . , Tn respectively. We say a is of type label if and only
if a ∈ {label(e1, . . . , en) | ∀i(i ∈ {1, . . . , n} : ei = ⊥ ∨ ei is Ti type)} where ei
corresponds to the i-th field’s value for i ∈ [n]. Any user defined structure
supports access and rewriting of its elements. Assume A is a label and f a
field of label. Then we use A. f to access field f of A and A. f ← v to assign
the value v to field f .

Algorithms and adversaries. Algorithms may be probabilistic or determin-
istic. If A is a probabilistic algorithm, we let y ← A(x1, . . . ; r) denote run-
ning A with random coins r on inputs x1, . . . and assigning the output to
y. We let y←$ A(x1, . . .) be the result of picking r at random and letting
y← A(x1, . . . ; r). If A is a deterministic algorithm, we let y← A(x1, . . .) de-
note running A on inputs x1, . . . and assigning the output to y. Adversaries
are algorithms.

Uniquely decodable encoding. We write 〈a, b, . . . 〉 to denote a bit-string
that is a uniquely decodable encoding of a, b, . . . where each of the encoded
elements can have an arbitrary type.

Random number generation. We use rand(n) a probabilistic algorithm that
takes in an integer n and outputs a uniformly random and independent
bit-string of length n bits.1

1The standard notation for x←$ rand(n) is x←$ {0, 1}n.

7

2. Preliminaries

Keywords and wildcards. We use the keyword req followed by a propo-
sition at the beginning of procedures in security games. If the proposition
is false, then the procedure is exited with a return value ⊥. We use the *
symbol to act as a placeholder (wildcard) for any literal of a certain type.

Security games. We use the code based game playing framework to de-
fine security (and sometimes correctness) notions of schemes. We let Pr[G]
denote the probability that game G returns true. All parameters the game
takes are specified as subscripts.

2.2 Tree Terminology

Here we give a brief overview of the tree terminology necessary for the
Ratchet Tree (RT) data structure covered in Section 4.5 to be understood.

Node. A node (vertex) is a user defined structure.

Undirected graph. A undirected graph G is a pair of sets (V,E) where V is a
finite set of nodes and E is a finite set of unoredered pairs of nodes in V. The
set V is called the vertex set of G and E is the edge set of G and its elements
(unordered pairs of nodes) are called edges. More concretely, an edge is a
set {u, v}, where u, v ∈ V and u 6= v. If {u, v} is an edge in graph G then we
say the edge {u, v} is incident on nodes u and v.

Degree of node. The degree of a node (vertex) in an undirected graph is the
number of edges incident on it.

Path. A path of length k ≥ 0 from a vertex u to a vertex v in a undirected
graph G=(V,E) is a list of nodes [u0, u1, . . . , uk] such that u = u0 and v = uk,
and {ui, ui+1} ∈ E for all i ∈ {0, . . . , k − 1}. The length of the path is the
number of edges in the path. We say that the path contains vertices u0, . . . , uk
and edges {u0, u1}, {u1, u2} . . . {uk−1, uk}. If there exists a path p from node
u to v, we say that v is reachable from u via p. In an undirected graph a path
exists from node u to v if and only if there exists a path from v to u. A path
is simple if all vertices in the path are distinct. It should be noted that each
node has a zero length path to itself, and hence any node is reachable from
itself.

Cycle. In an undirected graph, a path [u0, u1, . . . , uk] forms a cycle if k ≥ 3
and u0 = uk; the cycle is simple if u0, u1, . . . , uk are distinct. A graph with
no cycles is acyclic.

Connected component. An undirected graph is connected if every vertex is
reachable from all other vertices. The connected components of a graph are
the equivalence classes of vertices under the “is reachable from” relation.

8

2.2. Tree Terminology

Tree. A connected, acyclic, undirected graph is a tree. In a tree any two
vertices are connected by a unique simple path.

Rooted tree. A rooted tree is a tree in which one of the nodes is a special
node labelled as the ‘root’ of tree. The root node is special in the sense that
all other nodes in the tree are oriented below it in diagrams.

Ancestor and descendant. Let v be a node in a rooted tree G with root r.
We call any node u on the unique simple path from r to x an ancestor of
x. If u is an ancestor of node x then we say that x is a descendant of node
u. Because every node is reachable from itself (0 length path) every node
is both an ancestor and a descendant of itself. If u is an ancestor of x and
x 6= u, then u is a proper ancestor of x and x is a proper descendant of u.

Lowest common ancestor. Let G be a rooted tree. The lowest common
ancestor between two nodes v0 and v1, denoted as LCA(G, v0, v1) is defined
as the lowest node in G that has both v0 and v1 as descendants.

Subtree. The subtree rooted at node v is the tree containing only descen-
dants of v, rooted at v.

Parent, child, sibling, leaf and intermediate node. Let G be a rooted tree
at node r and let {u, v} be the last edge on the simple path from r to node
v, then u is the parent of v and v is a child of u. The root node r is the
only node in G with no parent. Node u and v are siblings if they have the
same parent. A node is called a leaf if it has no children. If a node has both
children and a parent it is called an intermediate node.

Depth, height and levels. Let G be a rooted tree at node r and u be a node
in G. The length of the simple path from r to a node u is the depth of u in
G. All nodes with the same depth form a level in G. The height of a node u
in G is the number of edges on the longest simple downward path from u
to a leaf. The height of a tree is the height of its root. The largest depth of
any node in the tree is equal to the height of the tree.

Size of tree. The size of a tree is the number of leaf nodes it contains.

Binary tree. A binary tree is a rooted tree where each node has at most two
children, a left child (drawn below and left from node) and a right child
(drawn below and right from node). If a node has a left child, its left subtree
is the subtree rooted at its left child. Similarly if a node has a right child its
right subtree is the subtree rooted at its right child.

Full tree. Let n ∈ N. Then a full tree with size n denoted as FT(n) is a
binary tree whose height h is such that n = 2h.

9

2. Preliminaries

Left-balanced binary tree. Let n ∈ N. A left-balanced binary tree with size
n denoted as LBBT(n) is a binary tree defined over n number of leaves as
follows:

LBBT(n) =

FT(n) if n = 2h for some h ∈N0

FT(mp2(n)) LBBT(n−mp2(n)) otherwise
(2.1)

where mp2(n) = max{2k | 2k ≤ n}. There is a unique LBBT(n) for all n ∈N.

2.3 Cryptographic primitives

In this section we review all the cryptographic primitives we will make use
of in this work.

2.3.1 Key Encapsulation Mechanism (KEM)

Definition 2.1 A key encapsulation mechanism scheme KEM specifies algorithms
KEM.KGen, KEM.DeriveKeyPair, KEM.Encap, KEM.Decap, where KEM.KGen,
KEM.Encap are probabilistic and KEM.DeriveKeyPair, KEM.Decap are determin-
istic. Associated to KEM is a secret key length KEM.Nsk ∈ N, public key length
KEM.Npk ∈ N, symmetric key length KEM.Nsym ∈ N and the KEM ciphertext
length KEM.Nenc ∈N. The algorithms have the following syntax and semantics:

• KEM.KGen algorithm generates a KEM secret key sk ∈ {0, 1}KEM.Nsk and
a KEM public key pk{0, 1}KEM.Npk denoted as (sk, pk)←$ KEM.KGen().

• KEM.DeriveKeyPair algorithm takes initial key material ikm ∈ {0, 1}KEM.Nsk

and generates a KEM secret key sk ∈ {0, 1}KEM.Nsk and a KEM public key
pk{0, 1}KEM.Npk denoted as (sk, pk)← KEM.DeriveKeyPair(ikm). Therefore
KEM.KGen() = KEM.DeriveKeyPair(rand(KEM.Nsk)).

• Encap algorithm takes in a KEM public key pk ∈ {0, 1}Npk and produces a
KEM symmetric key k ∈ {0, 1}KEM.Nsym and an encapsulation of that key
enc ∈ {0, 1}KEM.Nenc denoted as (k, enc)← KEM.Encap(pk).

• Decap algorithm takes as input a secret key sk ∈ {0, 1}KEM.Nsk and en-
capsulation enc ∈ {0, 1}KEM.Nenc and produces some symmetric key k ∈
{⊥} ∪ {0, 1}KEM.Nsym, denoted as k← KEM.Decap(sk, enc).

Correctness Any Key Encapsulation Mechanism K must satisfy the follow-
ing standard correctness property:

10

2.3. Cryptographic primitives

Pr[(sk, pk)←$ K.KGen(), (k, enc)←$ K.Encap(pk), k′ ← K.Decap(sk, enc) : k = k′] = 1

2.3.2 Key Derivation Function (KDF)

Definition 2.2 A key derivation function KDF specifies a pair of deterministic al-
gorithms KDF.Extract and KDF.Expand. Associated to KDF is a pseudorandom
key length KDF.Nh ∈N, a randomness set KDF.R, a salt set KDF.S .

• KDF.Extract algorithm takes as input a randomness r ∈ KDF.R that comes
from a distribution that is potentially non-uniform and a salt material
s ∈ KDF.S and produces a pseudorandom key prk ∈ {0, 1}KDF.Nh denoted
as prk← KDF.Extract(r, s).

• KDF.Expand algorithm takes in a pseudorandom key prk ∈ {0, 1}KDF.Nh, a
context c ∈ {0, 1}∗ and an integer L and produces a pseudorandom bit-
string k ∈ {0, 1}L denoted as k← KDF.Expand(prk, c, L).

2.3.3 Nonce-based Authenticated Encryption with Associated Data
(NAEAD)

Definition 2.3 A nonce-based authenticated encryption with associated data NAE
specifies two deterministic algorithms NAE.Enc, NAE.Dec. Associated to NAE is a
symmetric key length NAE.Nk ∈N, a nonce length NAE.Nn ∈N and a ciphertext
length function NAE.cl : N −→N.

• NAE.Enc takes a symmetric key k ∈ {0, 1}NAE.Nk, a nonce n ∈ {0, 1}NAE.Nn,
associated data ad ∈ {0, 1}∗ and a message m ∈ {0, 1}∗ and produces a
ciphertext c ∈ {0, 1}NAE.cl(|m|) denoted as c← NAE.Enc(k, n, ad, m).

• NAE.Dec algorithm takes in a symmetric key k ∈ {0, 1}NAE.Nk, a nonce
n ∈ {0, 1}NAE.Nn, associated data ad ∈ {0, 1}∗, a ciphertext c and outputs
a message m ∈ {0, 1}∗ ∪ {⊥} denoted as m← NAE.Dec(k, n, ad, c).

Correctness An nonce-based authenticated encryption with associated data
scheme N must satisfy the following standard correctness property for all
keys k ∈ {0, 1}N.Nk nonces n ∈ {0, 1}N.Nn all associated data ad ∈ {0, 1}∗ and
all messages m ∈ {0, 1}∗:

Pr[c← N.Enc(k, n, ad, m), m′ ← N.Dec(k, n, ad, c) : m = m′] = 1

Consider game Gmae in Figure 2.1 associated to a nonce-based authenti-
cated encryption scheme with associated data NAE and an adversary A.
It extends the definition of authenticated encryption to a multi-user setting
(multi-key setting), similarly to [BSJ+16]. The advantage of A in breaking

11

2. Preliminaries

the multi-user authenticated encryption (MAE) security of NAE is defined
as Advmae

NAE(A) = 2 · Pr
[

Gmae
NAE,A

]
− 1.

The game starts by sampling a challenge bit b and initialises all variables
needed to keep track of adversary A not winning the game trivially. It then
asks the adversary A to guess the value of the challenge bit whilst granting
it access to oracles New, Corr, Enc and Dec. The adversary can increase the
number of users (and keys) by calling oracle New, which generates a new
user key. For any user key, A is allowed to ask for either message m0 or m1

to be encrypted by calling oracle Enc. The Dec oracle allows the adversary
to obtain decryptions of ciphertexts. In the real world (b = 1) oracle Dec
returns the correct decryption and in the random world (b = 0) Dec returns
the incorrect decryption ⊥. The adversary A is also allowed to leak the key
of a user if it was not used to create a challenge ciphertext (Enc was called on
m0 6= m1). To avoid trivial attacks A is not allowed to call Enc on m0 6= m1

if the key of user i was leaked. Likewise, A is allowed to call Enc only once
for every unique user-nonce pair (i, n). The adversary A is also not allowed
to query Dec with ciphertexts that were derived by Enc.

Gmae
NAE,A:

b ←$ {0, 1}
ctr ← 0
safe[.] ← true

comp[.] ← false

U← ∅
trans← ∅
b′←$ANew,Enc,Dec,Corr

return b′ = b

New():

keys[ctr]←$ {0, 1}NAE.Nk

ctr← ctr + 1

Corr(i):

req safe[i]
comp[i] ← true

return keys[i]

Enc(i, n, m0, m1, ad) :

req 0 ≤ i < ctr and (i, n) 6∈ U
if comp[i] and m0 6= m1:

return ⊥
c← NAE.Enc(keys[i], n, ad, mb)
U← U∪ {(i, n)}
if m0 6= m1:

safe[i] ← false

trans← trans∪ {(i, n, c, ad)}
return c

Dec(i,n,c,ad):

req 0 ≤ i < ctr and ¬comp[i]
if (i, n, c, ad) ∈ trans:

return ⊥
m← NAE.Dec(keys[i], n, ad, c)
if b=1:

return m
else:

return ⊥

Figure 2.1: Game Gmae defining the MAE security of a nonce-based authenticated encryption
with associated data NAE.

Definition 2.4 A nonce-based authenticated encryption with associated data NAE
is (ε, t)-MAE-secure if for all t-attackers A:

Advmae
NAE(A) ≤ ε

where an attacker is parametrised over its running time t.

12

2.3. Cryptographic primitives

2.3.4 Hash function

Definition 2.5 A hash function H specifies a deterministic algorithm H.Ev and has
an associated digest length H.Nd ∈N.

• H.Ev algorithm takes as input a message m ∈ {0, 1}∗ and outputs the
message’s digest d ∈ {0, 1}H.Nd denoted as d← H.Ev(m).

2.3.5 Digital Signature (DS)

Definition 2.6 A digital signature scheme DS specifies algorithms DS.KGen, DS.Sign
and DS.Vfy where DS.KGen is probabilistic and DS.Sign and DS.Vfy are determin-
istic algorithms. Associated to DS is the secret signing key length DS.Nsk ∈ N,
verification key length DS.Npk ∈N and the signature length DS.Nsign ∈N.

• DS.Kgen algorithm produces a signing key tk ∈ {0, 1}DS.Nsk and a verifi-
cation key vk ∈ {0, 1}DS.Npk, denoted as (tk, vk)←$ DS.KGen().

• DS.Sign algorithm takes as input a secret signing key sk ∈ {0, 1}DS.Nsk and
a message m ∈ {0, 1}∗ and produces a signature s ∈ {0, 1}DS.Nsign over m,
denoted as s← DS.Sign(tk, m).

• DS.Vfy algorithm takes as input a verification key vk ∈ {0, 1}DS.Npk a mes-
sage m ∈ {0, 1}∗ and a signature s ∈ {0, 1}DS.Nsign and outputs a boolean
value b denoted as b← DS.Vfy(vk, m, s).

Correctness A DS scheme DS must satisfy the following standard correct-
ness property for all messages m ∈ {0, 1}∗:

Pr[(tk, vk)←$ DS.KGen(), s←$ DS.Sign(tk, m), b← DS.Vfy(vk, m, s) : b = true] = 1

2.3.6 Message Authentication Code (MAC)

Definition 2.7 A message authentication code scheme M specifies algorithms M.KGen,
M.Mac, M.Vfy, where M.KGen, M.Mac are probabilistic and M.Vfy is determin-
istic. Associated to M is the symmetric key length M.Nk ∈N and the tag length
M.Nt ∈N.

• M.KGen produces a symmetric key k ∈ {0, 1}M.Nk denoted as k←$ M.KGen().

• M.Mac takes a symmetric key k ∈ {0, 1}M.Nk and a message m ∈ {0, 1}∗
and produces a tag t ∈ {0, 1}M.Nt denoted as t←$ M.Mac(k, m).

• M.Vfy takes a symmetric key k ∈ {0, 1}M.Nk, a message m ∈ {0, 1}∗ and a
tag t ∈ {0, 1}M.Nt and outputs a boolean value b denoted as b← M.Vfy(k, m, t).

Correctness A MAC scheme M must satisfy the following standard correct-
ness property for all messages m ∈ {0, 1}∗:

13

2. Preliminaries

Pr[k←$ M.KGen(), t←$ M.Mac(k, m), b← M.Vfy(k, m, t) : b = true] = 1

2.3.7 Function families

Definition 2.8 A family of functions F specifies a deterministic algorithm F.Ev.
Associated to F is a key bit-length F.Kl ∈N and an output bit-length F.Out ∈N.

• The evaluation algorithm F.Ev takes in a function key k ∈ {0, 1}F.Kl and
an input x ∈ {0, 1}∗ and returns an output y∈ {0, 1}F.Out denoted as y←
F.Ev(k, x).

Consider game Gprf in Figure 2.2 associated to a function family F and an ad-
versary A. The advantage of A in breaking the PRF security of F is defined
as Advprf

F (A) = 2 · Pr
[

Gprf
F,A

]
− 1.

Gprf
F,A:

b ←$ {0, 1}
k ←$ {0, 1}F.Kl

f[.]← ⊥
b′←$AComp

return b′ = b

Comp(x):

if b=1:
y ← F.Ev(k,x)

else:
if f[x] = ⊥:

y ←$ {0, 1}F.Out

f[x]← y
else:

y← f[x]
return y

Figure 2.2: Game Gprf defining the PRF security of a function family F.

Definition 2.9 A function family F is (ε, t)-PRF-secure if for all t-attackers A:

Advprf
F (A) ≤ ε

where an attacker is parametrised over its running time t.

2.3.8 Punctured function families

Definition 2.10 A punctured family of functions G specifies deterministic algo-
rithms G.Ev and G.Punct. Associated to G is a key bit-length G.Kl ∈N, an input
bit-length G.In and an output bit-length G.Out ∈N.

• The evaluation algorithm G.Ev takes in a function key k ∈ {0, 1}G.Kl and an
input x ∈ {0, 1}G.In and returns an output y ∈ {0, 1}G.Out ∪ {⊥} denoted
as y← G.Ev(k, x).

• The puncturing algorithm G.Punct takes in a function key k ∈ {0, 1}G.Kl

and an input x ∈ {0, 1}G.In and returns a punctured key k′ ∈ {0, 1}G.Kl

denoted as k′ ← G.Punct(k, x).

14

2.3. Cryptographic primitives

Correctness We make use of the correctness definition provided by [BDdK+21].
A punctured function family G is correct if for all t and x ∈ {0, 1}G.In \
{x1, . . . , xt} it holds that:

Pr
[

G.Ev(k0, x) = G.Ev(kt, x) : k0←$ {0, 1}G.Kl, ki = G.Punct(ki−1, xi) for i ∈ {1, . . . , t}
]
= 1

Consider game Gpprf in Figure 2.3 associated to a punctured function family
G and an adversary A. The advantage of A in breaking the PPRF security
of G is defined as Advpprf

G (A) = 2 · Pr
[

Gpprf
G,A

]
− 1. We use the security defi-

nition provided in [BST13]. The game starts by sampling a challenge bit b
and a key k. It then asks the adversary A to guess the value of the challenge
bit whilst granting it access to a Chall oracle. The adversary queries the Chall
oracle on x and obtains a punctured key k′. The adversary A interacts with
Chall by picking an input value x and gets back the corresponding punctured
key together with a challenge for the value of G.Ev(x).

Gpprf
G,A:

b ←$ {0, 1}
k ←$ {0, 1}G.Kl

b′←$AChall

return b′ = b

Chall(x):

k′ ← G.Punct(k, x)
if b=1:

y ← G.Ev(k,x)
else:

y←$ {0, 1}G.Out

return (k′, y)

Figure 2.3: Game Gpprf defining the PPRF security of a punctured function family G.

Definition 2.11 A punctured function family G is (ε, t)-PPRF-secure if for all
t-attackers A:

Advpprf
G (A) ≤ ε

where an attacker is parametrised over its running time t.

15

Chapter 3

Secure Group messaging (SGM)
protocol

This chapter starts by giving an informal overview of the functional require-
ments a secure group messaging (SGM) protocol should meet. We then
explain how those requirements translate into SGM scheme syntax and in-
formally describe SGM protocol security requirements. Lastly we discuss
how the functional and security requirements and syntax simplify when we
constrain the protocol to only allow groups containing the same two mem-
bers at all times. This kind of simplification is called a Secure Messaging
(SM) scheme and has been studied by Alwen et al. [ACD18]. We give a brief
summary of the main ideas of that work at the end of this chapter.

3.1 SGM protocol functional requirements

An SGM protocol allows any client A to do the following operations:

1. Create a group by inviting a set of other clients.

2. Add a client to a group client A is a member of.

3. Remove a member from a group client A is a member of.

4. Update its own key material.

5. Send an IM application message to everyone in a group client A is a
member of.

6. Receive an IM application message from any member of a group client
A is a member of.

The first 4 operations are group operations, as they are responsible for the
changing of the group membership. All operations must be executable in

17

3. Secure Group messaging (SGM) protocol

the asynchronous setting, that is no operation requires two distinct clients
to be online simultaneously.

An SGM protocol makes use of an SGM scheme that defines all algorithms
a client running an SGM protocol must implement for both functional and
security requirements (see section 3.3) to be satisfied.

3.2 SGM scheme

In an SGM scheme, each client is identified by a unique ID from some set
SGM.ID and each group by a unique group identifier GID. Prior to defining
the syntax of an SGM scheme, we first motivate the choice of algorithms an
SGM scheme specifies. An SGM scheme must specify an initialization algo-
rithm that each client can use at the very beginning of the SGM protocol to
initialize their state. Each client’s state consists of two types of information
known to the client: client data i.e. information specific to that client and
(if the client is a member of some group) group data which is information
specific to the group the client is a member of.

Given some group G, no member of G will know all information pertain-
ing to it. This separation of knowledge is done in order to facilitate more
efficient healing in case of client state compromise. The union of all group
members’ group data then forms all information there is pertaining to a
group, a so called ‘group state’. Note that the information contained in one
members group data may also be present in another member’s group data.
Throughout the lifetime of a group the group state will change whenever
one of its member’s modifies their group data. Of course since this group
state is in reality distributed across the group members’ states, the members
need to ensure that any group data modified locally is propagated to the
rest of the group. Namely if members a and b with group data gda and gdb
respectively are such that gda ∩ gdb 6= ∅ then any modification a makes to
information contained in gda ∩ gdb needs to also be propagated to b and vice
versa.

With an initialised state (containing only client data at first1), each client
has all the necessary values to form a group with other clients. Hence an
SGM scheme specifies a group creation algorithm that will change the state
of the group creator (client running the group creation algorithm) to reflect
the formation of a group. In order for other members of this group to be
aware of its formation and have all the necessary group data to participate
in group conversations, the group creation algorithm also outputs welcome
messages (W) for each new member. The SGM scheme also needs to specify

1A client that runs the initialising algorithm just joined the system and hence is not a
member of any group and therefore its group data is empty.

18

3.2. SGM scheme

a processing algorithm that a client can run upon receiving a welcome mes-
sage in order to extract the group data. Once a group is formed, a group
member may wish to send an IM application message (A). To facilitate this,
an SGM scheme needs to specify a send algorithm and consequently a re-
ceive algorithm, which will enable the other group members to process IM
application messages (A). Because a group member may wish to remove
some group member a and client a itself may wish to perform an update on
its key material, the group members will need to make a choice as to which
of these proposed operations will come into effect. To enable this, an SGM
scheme specifies algorithms for proposing an add, remove or update oper-
ation that produce a proposal message (P) and an algorithm to commit the
group to a set of proposals. Similarly to all the other SGM algorithms, the
commit algorithm is run by some group member not proposed for removal.
The commit algorithm will cause a change to the group data maintained by
the caller of the commit to reflect the chosen proposals. Hence just as in the
case of the group creation algorithm, the commit algorithm also needs to
produce a commit message (T) for members who were already part of the
group and possibly welcome messages (W) in case any add operations were
chosen to come into effect. The time frame within which the group members
use the same group data to perform sends and receives of application data
is called an epoch. Each epoch has a so called epoch number associated to
it, which is equal to the number of commits processed since the group’s cre-
ation until this epoch started. Within each epoch, each group member also
has their own local message counter, responsible for counting the number
of messages sent by this group member within the epoch.

3.2.1 SGM scheme Syntax

Definition 3.1 A secure group messaging scheme SGM specifies ten algorithms,
SGM.Init, SGM.Create, SGM.Propose-Add, SGM.Propose-Remove, SGM.Propose-
Update, SGM.Commit, SGM.Process-Commit, SGM.Process-Welcome, SGM.Send
and finally SGM.Receive. The SGM.Process-Commit, SGM.Process-Welcome and
SGM.Receive algorithms are deterministic, the remainder is probabilistic. Associ-
ated to SGM is a set of client identifiers SGM.ID. The algorithms have the following
syntax and semantics:

• SGM.Init algorithm takes in an identity ID ∈ SGM.ID and outputs the client’s
initial state s denoted as s←$ SGM.Init(ID).

• SGM.Create algorithm takes in a client’s state s and a list of identities
of the members to be added to the group IDs ⊆ SGM.ID and a group
identifier GID, and outputs a new state s′ and a list of welcome messages
Ws denoted as (s′, Ws)←$ SGM.Create(s, IDs, GID).

• SGM.Propose-Add algorithm takes as input a state s and an identifier

19

3. Secure Group messaging (SGM) protocol

ID ∈ SGM.ID and outputs a new state s′ and a proposal message P de-
noted as (s′, P)←$ SGM.Propose-Add(s, ID).

• SGM.Propose-Remove algorithm takes as input a state s and an identifier
ID ∈ SGM.ID and outputs a new state s′ and a proposal message P de-
noted as (s′, P)←$ SGM.Propose-Remove(s, ID).

• SGM.Propose-Update algorithm takes in a state s and outputs a new state
s′ and a proposal message P denoted as (s′, P)←$ SGM.Propose-Update(s).

• SGM.Commit algorithm takes in a state s and a list of proposal messages Ps
and produces a new state s′, a commit message T and a list of client iden-
tity and welcome message pairs corresponding to each client in a commit-
ted add proposal IDWs denoted as (s′, T, IDWs)←$ SGM.Commit(s, Ps).

• SGM.Process-Commit algorithm given a state s and a commit message T
outputs a new state s′ and a list of group members after the commit mes-
sage is applied G, denoted as (s′, G)← SGM.Process-Commit(s, T).

• SGM.Process-Welcome algorithm given a state s and welcome message W
outputs a new state s′ and a list of group members after the commit mes-
sage is applied G, denoted as (s′, G)← SGM.Process-Welcome(s, W).

• SGM.Send algorithm takes in a state s a message m and associated data
ad and outputs a new state s′ and an application message A denoted as
(s′, A)←$ SGM.Send(s, m, ad).

• SGM.Receive algorithm takes in a state s an application message A and
produces a new state s′, an epoch number e, an integer i and a message m
denoted as (s′, e, i, m)← SGM.Receive(s, A).

3.2.2 Correctness of an SGM scheme

Informally an SGM scheme is correct if for any group and any application
message A sent to the group (by some group member), all members who
receive A can immediately decrypt it no matter the order of delivery. The
correctness of an SGM scheme is formally captured by the correctness game
Gsgm-corr

SGM given in Figure 3.1. The game starts by calling A1 (adversary is seen
as a pair of algorithms A = (A1,A2)) to obtain the identifiers of the clients
forming the group IDs and checks that no client is repeated twice.

Then for each client in IDs the game initialises an epoch ep, group operation
message gop and application message app counter recording the epoch the
client is currently in, the number of group messages (P,T,W type) and the
number of application messages (type A) sent by client in epoch ep respec-
tively. For each client the game also initialises the set of proposal messages
recieved thus far in the current epoch ep. It also maintains maps trans-gop
and trans-app that record all group operation messages and application mes-
sages in transmission respectively.

20

3.2. SGM scheme

Gsgm-corr
SGM,A :

(A1,A2)← A
(IDs, state)←$A1()
if ∃i, j ∈ range(|IDs|) : i 6= j∧ IDs[i] = IDs[j]:

return false
for id in IDs:

st[id] ← SGM.Init(id)
ep[id], gop[id], app[id] ← 0
props[id] ← ⊥

trans-gop[.] ← ⊥
trans-app[.] ← ⊥
G[.], lead[.] ← ⊥
start ← true
win ← false
oracles ← {create-group, add-user, remove-user,
send-update, send-commit, deliver-group-ops,
send-app-data, deliver-app-data}
Aoracles

2 (state)
return win

create-group(ID0, IDs, GID):

req ep[ID0] = 0∧ start
start ← false
(st[ID0], Ws)←$ SGM.Create(st[ID0], IDs, GID)
for i in range(|IDs|):

trans-gop[ID0, IDs[i], ep[ID0], gop[ID0], WEL] ←Ws[i]
ep[ID0] + +
G[ep[ID0]] ← [ID0] + IDs
return Ws

add-user(ID, ID′):

req ep[ID] > 0∧ ID ∈ G[ep[ID]] ∧ ID′ 6∈ G[ep[ID]]
(st[ID],P) ←$ SGM.Propose-Add(st[ID],ID′)
for id in G[ep[ID]]:

trans-gop[ID, id, ep[ID], gop[ID], ADD] ← P
gop[ID] + +
return P

remove-user(ID, ID′):

req ep[ID] > 0∧ {ID, ID′} ⊆ G[ep[ID]]
(st[ID],P) ←$ SGM.Propose-Remove(st[ID],ID′)
for id in G[ep[ID]]:

trans-gop[ID, id, ep[ID], gop[ID], RMV] ← P
gop[ID] + +
return P

send-update(ID):

req ep[ID] > 0∧ ID ∈ G[ep[ID]]
(st[ID],P) ←$ SGM.Propose-Update(st[ID])
for id in G[ep[ID]]:

trans-gop[ID, id, ep[ID], gop[ID], UPD] ← P
gop[ID] + +
return P

send-commit(ID):

req ep[ID] > 0∧ ID ∈ G[ep[ID]]
(st[ID], T, IDWs)←$ SGM.Commit(st[ID], props[ID])
for id in G[ep[ID]]:

trans-gop[ID, id, ep[ID], gop[ID], CMT] ← T
for i in IDWs:
(id, W) ← IDWs[i]

trans-gop[ID, id, ep[ID], gop[ID], WEL] ←W
gop[ID] + +
return (T, IDWs)

deliver-group-ops(ID, ID′, e, ctr, flag):

req trans-gop[ID, ID′ , e, ctr, flag] 6= ⊥∧
(e = ep[ID′] ∨ ID′ 6∈ G[e])∧
(flag ∈ {CMT, WEL} =⇒ lead[e] ∈ {⊥, (ID, ctr)})
M ← trans-gop[ID, ID′, e, ctr, flag]
if flag = CMT:

(st[ID′], G)← SGM.Process-Commit(st[ID′], M)
ep[ID′] + +

if flag ∈ {ADD, RMV, UPD}:
props[ID′] ← props[ID′] + M

if flag = WEL:
(st[ID′], G)← SGM.Process-Welcome(st[ID′], M)
ep[ID′] = e + 1

if flag = CMT or flag = WEL:
if lead[e] = ⊥:

lead[e] ← (ID,ctr)
G[e+1] ← G

props[ID′] ← ⊥
gop[ID′], app[ID′] ← 0

trans-gop[ID, ID′, e, ctr, flag] ← ⊥

send-app-data(ID, ad, m):

req ep[ID] > 0
(st[ID], A)←$ SGM.Send(st[ID], m, ad)
for id in G[ep[ID]]:

trans-app[ID, id, ep[ID], app[ID], m, ad]← A
app[ID] + +
return A

deliver-app-data(ID, ID′, e, ctr, m, ad):

req trans-app[ID, ID′ , e, ctr, m, ad] 6= ⊥
A ← trans-app[ID, ID′, e, ctr, m, ad]
(st[ID′], e′ , ctr′ , m)← SGM.Receive(st[ID′], A)
if (e′ , ctr′ , m′) 6= (e, ctr, m):

win ← true
trans-app[ID, ID′, e, ctr, m, add] ← ⊥

Figure 3.1: The correctness game Gsgm-corr associated to a secure group messaging scheme
SGM and an attacker A.

Moreover for each epoch, the G and lead map record the group and leading
commit for a given epoch respectively. Finally the start boolean ensures that
an adversary is limited to creating at most one group, whilst win denotes
whether an attacker won the game. The game then challenges A2 to set
the win flag to true whilst being allowed to interact with the create-group,
add-user, remove-user, send-update, send-commit, deliver-group-ops, send-
app-data and deliver-app-data oracles which allow it to control the lifetime
of the group.

21

3. Secure Group messaging (SGM) protocol

Note that the attacker is forced to call the create-group oracle first and is
allowed to manipulate only one group throughout a run of the game. This
is ensured by the req at the begging of the create-group. Therefore the cor-
rectness game provided here only talks about the correctness of an SGM
scheme with a single group. The correctness of an SGM scheme with mul-
tiple groups easily extends from this, at the expense of more cumbersome
book-keeping.

Correctness An secure group messaging scheme SGM is correct if for all
adversaries A:

Pr
[

Gsgm-corr
SGM,A

]
= 0

where A is a pair of algorithms A1 and A2, where A1 returns a list of iden-
tifiers IDs ⊆ SGM.ID along with some state state that contains information
about its computation; state could include the random coins used by A1, the
list of identifiers IDs returned by A1, etc. The algorithm A2 takes in the state
information state forwarded by A1 and uses it to interact with its oracles.

3.3 SGM protocol security requirements

Informally a group messaging protocol is meant to satisfy (as covered in
[BBN19] and [OBR+21]) the following security requirements:

• Confidentiality: For any group G, if the current members of G are un-
compromised then any message m created by a current member of the
group G can not be read by anyone else apart from the current members
of group G.

• Anonymity: For any group G, if the current members of G are uncompro-
mised then any message m created by a current member of the group G
leaks no information about the sender of the m to anyone else apart from
the current members of group G. 2

• Message and Sender Authenticity: For any group G, if the current mem-
bers are uncompromised, and a current member of G receives a message,
it can detect if it has been tampered with and which member (if any) sent
the message.

• Forward-security (FS): For any group G if the state of any current G mem-
ber is compromised at some point, then all messages sufficiently in the
past remain secure.

• Post-compromise security (PCS): For any group G if the state of any cur-
rent G member is compromised at some point and the adversary upon

2This of course assumes a threat model where an adversary compromises for example
some central router in the network rather than a switch connected to a single group member.

22

3.4. Secure Messaging (SM) scheme requirements

compromise remains passive, then future messages become secure again
after some period of time.

The only non-standard (basic) property is the anonymity property which
we add in order to capture the requirement of minimising metadata leakage
imposed on MLS by the architecture document [OBR+21]. In particular part
of the metadata corresponding to a message is the identity of the sender of
the message.

3.4 Secure Messaging (SM) scheme requirements

As explained in the introduction of this chapter, an SM scheme is an SGM
scheme where the groups are static w.r.t. adds and removes and contain
exactly two members. In other words the two clients who are members of
the group in epoch 0 (upon group creation) are the members in all epochs
greater than 0. Because of this an SM scheme does not support remove
and add operations. Furthermore because the group only has two members
the creation and update operations are embedded within the initialisation
algorithm and the send and receive algorithms respectively.

3.4.1 Secure Messaging (SM) Syntax

Formally, an SM scheme consists of two initialization algorithms (one for
each member), which are given an initial shared key k, as well as a sending
and receiving algorithm.

Definition 3.2 A secure messaging (SM) scheme is a tuple of algorithms SM=(Init-
A,Init-B, Send, Receive) defined as follows:

• Init-A (Init-B) is a deterministic algorithm that takes in a key k and outputs
a state sA ← Init-A(k) (sB ← Init-B(k)).

• Send is a probabilistic algorithm that takes in a state s and a message m
and outputs a new state and ciphertext (s′, c)←$ Send(s, m).

• Receive is a deterministic algorithm that takes in a state s and a ciphertext
c and outputs a new state, an epoch number, an index and a message
(s′, e, i, m)← Recieve(s, c).

3.4.2 Secure Messaging (SM) security

A secure messaging (SM) scheme allows two clients a and b to communi-
cate securely bidirectionally. The exact security requirements it must satisfy
are the same as those required by a secure SGM protocol, except we do
not require anonymity to hold since it is always the same clients a and b
communicating with one another. Additionally confidentiality, authenticity

23

3. Secure Group messaging (SGM) protocol

and forward security are expected to hold even in the case of an adversary
controlling the random coins used by a and b. In summary a secure SM pro-
tocol must provide confidentiality, authenticity, forward security and post
compromise security of its messages.

3.4.3 Modularisation of an SM scheme

In this section we give a summary of the main results of the work by Alwen
et al. [ACD18]. This work presents a modular composition of the dou-
ble ratchet protocol (part of the Signal protocol [PM16]) from three build-
ing blocks: continuous key agreement (CKA), forward-secure authenticated
encryption scheme with associated data (FS-AEAD) and a two-input hash
function (PRF-PRNG).

CKA The CKA primitive is an abstraction of the Diffie-Hellman output
derivation part of the public key ratchet. It is a synchronous and pas-
sive primitive run between two clients a and b. A primitive is considered
synchronous if the clients speak in turns, namely odd rounds consist of a
sending and b receiving messages, whereas in even rounds b is the sender
and a the receiver. By passive we mean that the primitive assumes that the
adversary is passive, i.e. the messages between the clients can only be eaves-
dropped by the adversary. Note that the adversary is however allowed to
control the random coins used by the sender and leak the state of either
client. Each round i produces a fresh key ki which is output by the sender
upon sending the message in round mi and the receiver upon receiving this
message mi. A CKA scheme is considered correct if both the sending and
receiving party in each round produce the same fresh key. A CKA scheme is
considered secure if given the transcript of messages exchanged m1, m2, . . .
the fresh keys underlying these messages k1, k2, . . . look uniformly random
and independent. Moreover a secure CKA scheme guarantees that after a
state leak, security is restored within two rounds of the scheme (PCS) and
that the all messages older than ∆CKA ≥ N0 rounds remain secure upon
state compromise (FS).

FS-AEAD The FS-AEAD primitive represents an SM scheme within a sin-
gle epoch and hence captures the symmetric key ratchets, i.e. the sending
and receiving key derivation (KDF) chains from the double ratchet proto-
col. The FS-AEAD primitive must then provide confidentiality, authenticity
and forward security of messages in the presence of an adversary with ca-
pabilities as in an SM scheme. Post compromise security is not required by
this primitive since healing of clients upon state compromise is supposed to
occur over a certain number of epochs.

24

3.4. Secure Messaging (SM) scheme requirements

PRF-PRNG The PRF-PRNG primitive corresponds to the root KDF chain
of the double ratchet protocol which, along with its state, takes the CKA
primitive’s fresh round keys as input and produces the new state for itself
and the FS-AEAD primitive. More specifically, a PRF-PRNG scheme is a
two-input function, that takes in a state s and an input I , and produces
a new state s′ and a bit-string R. A PRF-PRNG is considered secure if,
provided that either the input state s is not leaked, or the input value I
is sampled uniformly at random from some (input values set) S, the bit-
string produced R is pseudorandom. Therefore, a PRF-PRNG can be seen
to act as a pseudorandom number generator (PRNG) that repeatedly accepts
input values I , uses them to refresh its state s to become s′ and output
pseudorandom bit-strings R (provided s is not leaked); But it can also be
seen to act as a pseudorandom function (PRF), in the sense that the output
bit-strings on different R input values I (on the same not leaked state s) are
indistinguishable from random and independent bit-strings.

25

Chapter 4

The Messaging Layer Security (MLS)
protocol

The MLS protocol is an SGM protocol. In this chapter, we describe how the
MLS protocol works based on the specification [BBM+21] and architecture
[OBR+21] documents. The description presented here is a slight simplifica-
tion of the specification given by the IETF group [BBM+21]. The assump-
tions made by us (in order to accommodate this simplification) and not by
the MLS protocol as given in the [OBR+21] and [BBM+21] documents are
introduced throughout the description. At the end of the description, we
dedicate section 4.13 to summarize all these differences in one place.

4.1 MLS Terminology

This section introduces the basic terminology derived from [BBM+21] and
[OBR+21] the MLS protocol makes use of.

User. A person who has an account in the instant messaging application.

Client. An endpoint device that is used by some user to execute the MLS
protocol.1

State of a client. All information stored by the client. The state of a client
consists of two distinct parts: client data which is information specific to
that client and (if the client is a member of some group) group data which
is information specific to the group the client is a member of. The state

structure encompasses all this information as a collection of fields and is

1The MLS protocol is a group messaging protocol that works on the level of clients.
The users and their association with clients is not considered by MLS. This is the task of the
messaging application using MLS.

27

4. The Messaging Layer Security (MLS) protocol

described in more detail in Section 4.4. All of these fields in the state

structure are only writable by the client itself. However, some of these fields
may be readable by all clients in the system (public), whereas others may
only be readable by the client itself (private).

Group. A set of clients that have the knowledge of and have contributed to
the group’s current group secrets’ values.

Member of a group. A client that is part of the group.

Group secrets. The group data fields that contain the same value and are
private across all group members’ states form the group secrets.

MLS ciphersuite. A collection of primitives: key encapsulation scheme
KEM, key derivation function KDF, a nonce-based authenticated encryption
with associated data NAEAD, a digital signature scheme DS, a hash function
H and a MAC scheme MAC. To represent the MLS ciphersuite we define the
Ciphersuite structure as shown in Figure 4.1:

struct Ciphersuite :
KEM
KDF
NAEAD
DS
H
MAC

Figure 4.1: Ciphersuite structure

Service Provider (SP). A service provider is a pair of two abstract func-
tionalities, an Authentication Service (AS) and a Delivery Service (DS),
available to all MLS clients.

Authentication Service (AS). An authentication service is a functionality
similar to the functionality provided by a Certificate Authority. Namely, it
is responsible for generating and issuing credentials (which are structures
similar to certificates see Figure 4.2) of clients. It does so by producing the
credential’s signature using the AS secret signing key, denoted as AS sign sk.
This signature is made over the remaining fields in the client’s credential,
in this way binding a client’s unique identity ID to the client’s public veri-
fication key sign pk and client’s digital signature scheme of choice DS. This
functionality must also be able to validate these credentials (by verifying
their contained signatures) when requested by MLS clients. The AS ensures
that a given ID is only used by one client.

28

4.1. MLS Terminology

Delivery Service (DS). A functionality composed of two further abstract
functionalities: the DS KeyPackage storage and a per-group DS broad-
cast channel. In order to facilitate asynchronous addition of clients to a
group, each MLS client pre-publishes their own KeyPackages to the DS
KeyPackage storage. A KeyPackage of client a is a structure containing all
information that any other MLS client b may need to add a to its group
asynchronously (see Figure 4.3). Therefore the DS KeyPackage storage is
responsible for storing the set of KeyPackages of each MLS client. Each
client a can either add KeyPackages it owns to the DS KeyPackage storage,
remove KeyPackages it owns or fetch a KeyPackage belonging to itself or
some other client b from the DS KeyPackage storage. Whenever a KeyPack-
age is used by a client to create a group, the DS removes that KeyPackage
from its storage.2 For each group the DS provides a separate DS broad-
cast channel, that is responsible for relaying any message it receives to all
members of the group.

Credential of a client. A Credential structure is a structure that groups a
(1) a unique identity ID of the client, (2) a digital signature scheme DS, (3) a
public key sign pk corresponding to DS and (4) a signature over (1), (2) and
(3) using the secret signing key of the AS AS sign sk. Figure 4.2 depicts this
structure.

struct Credential:

ID
DS
sign pk
signature

Figure 4.2: Credential structure

KeyPackage of a client. A KeyPackage structure is a structure containing all
information needed by a group member to add this client to the group. More
specifically it contains: (1) an integer corresponding to the MLS protocol
version the client supports version, (2) a Ciphersuite suite representing the
MLS ciphersuite the client supports, (3) a Credential credential being the
credential the client obtained from the AS, (4) a KEM public key kem pk
representing the client’s KEM public key corresponding to the KEM scheme
specified in the suite, (5) a Capabilities instance capabilities (see Figure 4.4),
(6) a Lifetime instance lifetime (see Figure 4.5) and (7) a signature over fields
(1) to (6) using the secret signing key corresponding to the public signing
key credential.sign pk. Figure 4.3 depicts this structure:

2This prevents using the same KeyPackage to create two different groups, and hence
prevents replay attacks.

29

4. The Messaging Layer Security (MLS) protocol

struct KeyPackage:

version
suite
credential
kem pk
capabilities
lifetime
signature

Figure 4.3: KeyPackage structure

The Capabilities of a client. A Capabilities structure is a structure that
groups a list of integers versions corresponding to protocol versions the client
supports and a list of Ciphersuite structures suites. It ensures that no down-
grade attack can occur undetected once a client wishes to create a group.
Figure 4.4 depicts this structure:

struct Capabilities:

versions
suites

Figure 4.4: Capabilities structure

The Lifetime of a KeyPackage. A Lifetime structure is a structure that
groups two integers representing the time interval within which the Key-
Package is considered valid. The KeyPackage should be considered invalid
outside of this interval. Figure 4.5 depicts this structure:

struct Lifetime:

not before
not after

Figure 4.5: Lifetime structure

InitKeys of a client. The set of KeyPackages the client has stored in the
DS-s KeyPackage storage.

4.2 Assumptions and context of MLS

In the MLS protocol. each client and each group has a unique identifier ID
and GID respectively, which are defined by the instant messaging applica-
tion. All MLS clients know which client identifier ID belongs to which client.
We assume that each client uses exactly one identifier (that never changes)

30

4.2. Assumptions and context of MLS

throughout the entire MLS protocol. Similarly, we assume that once a group
is created the GID assigned to it never changes throughout the lifetime of the
group. The MLS protocol, as given in [BBM+21], is designed to execute in a
context that supplies the service provider (SP) functionalities for its clients to
use. The specification makes no assumptions on how the SP’s services are
implemented (the services could be running on a server, client, or a com-
bination thereof). The MLS architecture document [OBR+21] does lay out
some suggestions on how different SP functionalities can be achieved.

For simplicity and in order not to detract from the essential components of
MLS, this work models the AS, the DS broadcast channel and the DS Key-
Package storage functionalities as three separate stand-alone servers. The
AS and DS KeyPackage storage servers provide an API that each MLS client
can use to interact with them via a secure channel. The MLS protocol as-
sumes that the DS broadcast service provides clients with a consistent view
of which Commit message (see Section 4.3 and 4.7.3) defines each epoch.
That is, while multiple clients may create a Commit message to initiate the
next epoch, the DS broadcast service ensures that the first Commit message
received by the DS broadcast service, is the one all group members will re-
ceive first and hence use to derive the new epoch secrets.3 We model this as-
sumption by having the channel from the DS broadcast service to the clients
be secure against Commit message drops and reorders and having the chan-
nel from clients to the DS broadcast service be insecure. Note that we make
no assumption about the security of the channel from the DS broadcast
service to clients for Proposal and Application messages. The specification
makes no assumptions on the communication channels between MLS clients
and hence we model them as insecure.

Authentication Service (AS)DS broadcast channelDS KeyPackage storage

Delivery Service (DS)

Service Provider (SP)

Client 1 Client 2 Client 3 Client 4

Figure 4.6: Architecture of MLS.

3The [OBR+21] document indeed demands the DS Broadcast provide a consistent view
to all group members, but it does not require that the first Commit message it receives be
the one chosen to be broadcast. Rather it allows for the messages to carry a counter that can
be used to break ties when two members send a Commit message at the same time asserting
a sort of priority queue. The [OBR+21] suggests that this assumption can be implemented
by means of clients checking with one another if such a misbehaviour occurred. We believe
that this mechanism is insufficient to realise this assumption.

31

4. The Messaging Layer Security (MLS) protocol

Given this model of the service provider, the MLS architecture in this work
is as shown in Figure 4.6.

The API of the AS is shown in Figure 4.7. The get credential takes in a
client identifier ID and a digital signature scheme DS. It verifies that the
calling client is indeed represented by this ID, generates a fresh signature
key pair (sign sk, sign pk) using DS and creates a Credential structure using
the ID, sign pk and a signature over these fields using the AS secret signing
key AS sign sk. It then returns this Credential structure and sign sk to the
calling client, which can now use it to authenticate to all MLS clients. The
verify credential procedure takes in a Credential structure credential and
outputs a boolean bool depending on the validity of the signature contained
within the credential.

get credential(ID,DS):

// creates a Credential structure with
// identifier ID and signature scheme DS

return (credential, sign sk)

verify credential(credential):

// verifies the signature contained in credential
return bool

Figure 4.7: AS API.

The API of the DS KeyPackage storage is shown in Figure 4.8. The pro-
cedure set keypackage takes in a Credential structure credential, integer
version, Ciphersuite structure suite, Capabilities structure caps, Lifetime
structure time and a digital signature signature. It verifies the credential via
the AS, verifies credential.DS=suite.DS and then generates a KEM key pair
(kem sk, kem pk) using the KEM scheme suite.KEM. It then uses these in-
put values and kem pk to create the KeyPackage structure keypackage for the
calling client. It stores keypackage locally to enable other clients to fetch this
keypackage (via get keypackage procedure) in order to asynchronously form
a group with the owner of keypackage. Finally it returns the KEM key pair
(kem sk, kem pk) corresponding to the stored keypackage to the calling client.

get keypackage(ID, version, suite):

// returns KeyPackage structure
// corresponding to the input values

return keypackage

del keypackage(keypackage):

// delete keypackage from local storage

set keypackage(credential, version, suite, caps, time, sign sk):

// generates KEM key pair and corresponding KeyPackage

// structure for the owner of credential
// locally stores the KeyPackage structure to
// facilitate asynchronous addition and group creation

return (kem sk, kem pk)

Figure 4.8: DS KeyPackage storage API.

The get keypackage takes in a client identifier ID, integer (representing pro-
tocol version) version and Ciphersuite structure suite and returns a corre-
sponding KeyPackage structure. A single client (uniquely identified by its
identity) can support multiple protocol versions and ciphersuites, hence we

32

4.3. MLS Protocol overview

need all three values in order to know which KeyPackage structure to return.
We will use get keypackage(ID,*,*) to fetch all keypackages corresponding
to an identifier ID. The del keypackage takes in a KeyPackage structure key-
package and removes it from the DS KeyPackage local storage.

The per group DS broadcast channel is modeled as a standalone server on
the network, whose logic is abstracted away. If a group member wishes to
send an application, commit or proposal message (see Section 4.3) to the
group, it will send that message to the DS broadcast server, which will then
fan out the message to all the members of the group (including its creator).

Of course, in reality AS and DS functionalities, as well as the secure chan-
nel between the AS and DS KeyPackage storage and the clients, would be
implemented in ways described in [OBR+21].

4.3 MLS Protocol overview

The purpose of this section is to give a high level description of how the MLS
protocol implements the different operations an SGM protocol must support
as described in Section 3.1. For each operation it showcases which messages
need to be exchanged for the operation to come into effect. All of these
messages go through a 4 step process: message creation, message sending,
message receiving, message processing. In our diagrams (message sequence
charts) a message is sent by client m if and only if there is an arrow coming
out from m’s lifeline and a message is received by client m if and only if there
is an arrow in-coming into m’s lifeline. As already stated the diagrams only
show the exchange of messages (i.e. sending and receiving) but not how
the messages are created prior to sending or processed post receival. The
details of these two stages (creation and processing) are deferred to Sections
4.7, 4.10 and 4.11.

In this high level description we consider a scenario with four clients A, B,
C and D (associated to some users with messaging application accounts)
with no group formed yet.4 In the diagrams we use green arrows in the
figures to denote a secure channel, orange arrows to denote a no drop or
reorder of messages channel and black arrows denote the network, i.e. inse-
cure channel. We split the protocol description into six steps. The first and
second correspond to the setup stage of the protocol. Namely they describe
what each MLS client needs to do in order to initialize its state upon IM
application installation. The third and fourth step describe the process of
group creation. Step five describes how group operations (adding, remov-
ing clients and updating keys) occur. The last step describes the sending
and receiving of application data.

4We skip the part where users would create an account via some client, as that is the job
of the messaging application, not MLS.

33

4. The Messaging Layer Security (MLS) protocol

1. At the very beginning of the MLS protocol, each client first initializes
their state. To do this, each client T first forms a Capabilities struc-
ture T.capabilities that will contain all the MLS protocol versions and
Ciphersuite structures client T supports ordered by preference. After
creating it, the Capabilities structure is added to the client’s state.
Each client T then chooses a digital signature scheme of their liking
T.DS and uses it and its identifier T.ID to interact with the AS by call-
ing get credential(T.ID, T.DS). The AS then returns to client T its cre-
dential T.credential and its secret signing key T.sign sk corresponding to
T.credential.sign pk. Client T then adds the obtained credential to its state
(see Figure 4.9).

A B C D
DS KeyPack-
age storage

DS broadcast
channel

AS

get credential(A.ID, A.scheme)

get credential(B.ID, B.scheme)

get credential(C.ID, C.scheme)

get credential(D.ID, D.scheme)

(A.Credential, A.sign sk)

(B.Credential, B.sign sk)

(C.Credential, C.sign sk)

(D.Credential, D.sign sk)

Figure 4.9: Creation of credentials.

2. After this, each client T is ready to form its KeyPackage structure, denoted
as T.KeyPackage. First T selects one of the Ciphersuite structures in its
Capabilities structure T.capabilities that contains the digital signature
scheme chosen in step 1 T.DS. Each client T also selects one of the MLS
protocol versions T.v from T.capabilities to be included in its KeyPackage

structure and a time interval T.t within which T.KeyPackage is considered
valid.

Although a client may support more than one Ciphersuite structure
and MLS version, it can only advertise one Credential structure and
KEM public key per KeyPackage structure (and hence one Ciphersuite

structure and version). Therefore a single client will own one KeyPackage

structure for each Ciphersuite structure and MLS version it supports.
In order to ensure that a creator of a group chooses the most preferred
Ciphersuite structure and MLS version by all group members, the client
also includes its Capabilities structure T.credential formed in step 1 in

34

4.3. MLS Protocol overview

its KeyPackage structures.

Finally, each client T calls set keypackage(T.credential, T.v, T.DS,
T.capabilities, T.t, T.sign sk) (denoted as setT.KeyPackage in Figure 4.10)
from the DS KeyPackage Storage API. This call will generate a KEM key
pair for T and use them and the client provided information to form T’s
KeyPackage structure T.KeyPackage. The call will also store T.KeyPackage
at the DS KeyPackage Storage server in the keypacks map and send back
the generated KEM key pair to the calling client (T.enc sk, T.enc pk) (de-
noted as T.enc keys in Figure 4.10). Upon receiving its KEM key pair each
client T adds T.enc keys to its state.

A B C D
DS KeyPack-
age storage

DS broadcast
channel

AS

set A.KeyPackage

set B.KeyPackage

set C.KeyPackage

set D.KeyPackage

A.enc keys

B.enc keys

C.enc keys

D.enc keys

Figure 4.10: Publishing of KeyPackages.

Each client will now repeat steps 1 (excluding the creation of the Capabilities
structure) and 2 for each combination of Ciphersuite and protocol version
listed in its Capabilities structure. Note that step 1 can be skipped for
all version Ciphersuite combinations where the Ciphersuite contains the
same signature scheme. Once this is done the setup stage is complete and
the state resulting from steps 1 and 2 is the initial state of an MLS client.

3. Now let us say client A wishes to establish a group with clients B and
C. To do this, client A will fetch the KeyPackage structures of clients B
and C by calling get keypackage(B.id, ∗, ∗) and get keypackage(C.id, ∗, ∗),
from the DS KeyPackage storage API, which returns all KeyPackage
structures of client B and C stored at the DS KeyPackage storage re-
spectively denoted as B.keypacks and C.keypacks. Client A (group cre-
ator) then verifies the validity of the KeyPackage structures it fetched.

A KeyPackage structure is considered valid if its contained signatures
verify (KeyPackage structure signature and the contained Credential

35

4. The Messaging Layer Security (MLS) protocol

structure’s signature) and if the current time is within the bounds of
the KeyPackage structure’s lifetime. This validity check ensures that
the DS didn’t modify the KeyPackage structure and that it didn’t serve
an expired (stale) one.

If the validity check is passed, the group creator continues to examine
the Capabilities structure contained in the KeyPackage structures it
fetched and chooses the MLS version and Ciphersuite structure most
preferred by all of the clients it wishes to form a group with (B, C and
itself). It then updates its state with this choice. Let us call this version
and Ciphersuite structure G.v and G.suite. Because the KeyPackage

structures are signed and the group creator chooses the best version
and Ciphersuite supported by the whole group, the MLS sessions are
ensured to be safe from downgrade attacks.

Now client A deletes the three KeyPackage structures it uses to form
the group with B and C from the DS KeyPackage storage by calling
del keypacakge(A.ID, G.v, G.suite), del keypacakge(B.ID, G.v, G.suite) and
del keypacakge(C.ID, G.v, G.suite) from the DS KeyPackage storage API.
This ensures that no replay attack can occur across different groups
containing the same members. Namely, consider what would happen
if this deletion did not occur. Clients A, B and C have formed a group
and then proceed to send application data, add members, etc which
all happen through the DS broadcast channel. Now assume client
B wanted to start another group with clients A and C. An attacker
who has recorded messages of the first group could impersonate A
and C without them taking part in the conversation, just by replaying
messages.5

Now that we have seen how ciphersuite and version negotiation works in
MLS, in order to simplify the clients’ state, we assume that all groups are
disjoint. Namely we assume that a client can be a member of at most one
group. This way a client’s state only contains information about the group
it is currently a member of. Secondly, we assume that all clients support ex-
actly one same Ciphersuite structure and MLS version and hence that each
client only contains one Ciphersuite structure, one integer representing the
version, one signature secret key, one Credential structure and one KEM
key pair in its state after steps 1 and 2 described above. Note that we do not
need to save the Capabilities structure of the client since no downgrade
can occur in a scenario where all clients support exactly one and exactly the
same Ciphersuite structure. This implies that there is only one KeyPackage

structure per client stored at the DS KeyPackage storage.

5This is a very weak attack, but none the less one MLS tries to protect against, because it
relies on agent B starting with the same randomness as A in the first group and both groups
evolving in the exact same way.

36

4.3. MLS Protocol overview

A B C D
DS KeyPack-
age storage

DS broadcast
channel

AS

get keypackage(B.id, ∗, ∗)

get keypackage(C.id, ∗, ∗)

del keypacakge(A.ID, G.v, G.suite)

del keypacakge(B.ID, G.v, G.suite)

del keypacakge(C.ID, G.v, G.suite)

B.keypacks

C.keypacks

Figure 4.11: Step 1 of group creation algorithm: Fetching group members’ KeyPackages.

From now on MLS clients can also send and receive 3 types of messages:

Handshake messages. Messages containing information about group op-
erations. We subdivide them into two further types: Proposal messages,
used to propose a group operation, and Commit messages, used to refresh
group secrets and to indicate which of the proposed group operations go
into effect.

Application messages. Messages used to send Instant Messaging (IM) ap-
plication data.

Welcome messages. Messages used to send all data a client would need to
join a group it is not yet a member of.

Given any group G and any of its members m, if m wishes to do one of the
group operations (add a member, remove a member from a group it belongs
to or update its own encryption (KEM) key pair), m first needs to propose
it to other members of group G. It does so by first creating a Proposal
message of the corresponding type Add, Update or Remove. Once formed
m sends the Proposal to G’s DS broadcast channel, which in turn fans out
the Proposal to all members of group G (including m).

In order for a sent Proposal message p to enter into effect, a Commit mes-
sage containing p must be sent from one of G’s members who received p.
Any member m′ who has not received a proposal suggesting to remove m′

can act as a committer and create a Commit message. If m′ is qualified (did
not receive a remove proposal containing itself) and chooses to construct a
Commit message c one of the things c will contain is a list of all valid Pro-
posal messages that m′ received such that each client is targeted by at most
one of them; a Commit message can not contain two proposals that apply

37

4. The Messaging Layer Security (MLS) protocol

to the same client as it would be ambiguous which operation applies to this
client. After forming this list, member m′ uses it to generate fresh values for
the group secrets. Since each group member maintains in their state a local
view of the group secrets, the new values generated by m′ must be commu-
nicated to the rest of the group to ensure consistent group secrets across all
group members. Therefore a second thing that m′-s Commit message must
contain is information related to these new group secrets values.

The Commit message is sent to all clients who were members of the group
prior to m′-s commitment (termed as existing members). However if the
Commit message lists an Add proposal as one of the operations to come
into effect, then m′ also needs to communicate the new group secrets to the
members listed to be added. To do this m′ apart from forming a Commit
message, forms a Welcome message (if and only if the Commit message lists
an Add proposal). The reason why the Commit message can not be sent to
the added members as well is because m′ used the previous values of the
group secrets to form it (see Section 4.7.3). Therefore the Welcome message
is necessary in order for the added members to obtain the newest group
secrets they are entitled to know.

In case m′ does commit, m′ is called a committer. The committer m′ then
sends c to G’s DS broadcast channel, which delivers the Commit message
c to all existing members of G (hence including m′). If the committer m′

made a Welcome message as well, it sends it to each added member directly
(not via the DS broadcast channel). Each existing member will then upon
receiving c process it to obtain new group secrets. Similarly each added
member will upon receiving the Welcome message process it to obtain the
group secrets as well.

Given all this, changes in the group secrets values occur if and only if some
group member processes a Commit message (or a Welcome message). Note
that this implies that even the committer does not change its group secrets
until it receives and processes its own Commit message from the DS broad-
cast server. This is because there may be two group members that act as a
committer at the same time. Hence a client must wait to see if the next Com-
mit message it receives from the DS broadcast server is its own or someone
elses. In this case the DS broadcast channel fans out the Commit message it
receives first. This way all members of the group will process the same Com-
mit message and obtain group secrets whose values are consistent across the
entire group. These different versions of group secrets split the lifetime of
a group into so-called epochs. Each of these epochs is uniquely identified
by an integer epochID. The epochID is 0 prior to group creation. Each time
a Commit message is processed by one of the group members the epochID
is incremented by one. An example of a group’s lifetime is given in Figure

38

4.3. MLS Protocol overview

4.12. 6

time

Commit 1: A creates a
group with B and C

epoch 0

Commit 2: C adds D

epoch 1

Commit 3: B updates
its KEM key pair; A
removes C

epoch 2

Commit 4: D updates
its KEM key pair

epoch 3

Commit 5: D removes
B; D adds C

epoch 4 epoch 5

Figure 4.12: Group lifetime through epochs.

Each group member maintains their own epoch counter (representing the
member’s current epoch) that is in sync with the group’s epochID if the
member has processed the Commit message corresponding to the current
epochID value. This local epoch counter can become out of sync from the
epochID if the client is offline and hence does not process the latest Commit
messages. For example let us say that since the group’s creation there were
6 changes to the group secrets and hence there are 6 epochs. Then a group
member who was offline whilst the last 3 changes occurred would still con-
tain group secrets corresponding to epoch 3. Hence this group member’s
current epoch counter is 3, despite there being 6 epochs overall. If a mem-
ber joins a group with epochID = i (for some i ∈ N0) at the time of joining
then that member’s local epoch counter is set to be i. The remaining details
on how the handshake, application and welcome messages are formed and
processed are explained in Sections 4.7, 4.10 and 4.11.

4. At this point client A knows which Ciphersuite structure and MLS
version is best supported by all the clients it wishes to form a group
with. To create a group containing clients of its choice, A starts by
creating the smallest non-empty group, a group containing only itself,
by running the initGroupData algorithm locally (see Section 4.12). This
call essentially generates the initial group data (hence including group
secret values) corresponding to epoch 0. The secrets at this point are
only known by A, since it is the only member of its one-member group.
Then client A creates an Add Proposal message for each client it wishes
to add to its one-member group (in our example it wishes to add B
and C). Because the group currently only contains A and hence A is

6Note that epochs are a property of a group not of group members. The epochID counts
the number of changes made to group secrets since the group’s creation.

39

4. The Messaging Layer Security (MLS) protocol

the only client that needs to approve of its own Proposals, there is no
need to send the Proposal messages to the DS broadcast. Instead it
just immediately creates a Commit message including these Proposals
as well as a Welcome message. The Welcome message is then sent to
B and C directly (not via the DS broadcast channel). Since, again the
existing group member is only A, there is no need to send the Commit
message to the DS Broadcast server.7 The created Commit message is
processed by client A only, deriving the group secrets corresponding
to epoch 1. Clients B and C upon receiving the Welcome message,
process it and derive the group secrets corresponding to epoch 1 as
well (See the whole process in Figure 4.13).

A B C D
DS KeyPack-
age storage

DS broadcast
channel

AS

initGroupData(GID)

Add(B)

Add(C)

Commit(Add(C),Add(B))

Welcome(B)

Welcome(C)

Figure 4.13: Step 2 of group creation: Client A creates a group containing only itself via
initGroupData(GID). It then forms an Add Proposal for B and C and commits it locally. It then
sends a Welcome message to clients B and C directly.

5. Once a group is created (here the group contains clients A,B,C) any
group operation (add,update,remove) occurs by following a two-step
process: the group operation is proposed and the group operation
is committed. As stated before any group member can propose a
group operation by sending a Proposal message to the group. Then
for the proposed group operation to come into effect, it needs to be
contained (along with possibly other proposals) within a Commit mes-
sage. This Commit message can be created by any group member who
received the Proposal message and who is not proposed for removal
by any of the Proposals it received. If a group member wishes to
propose an Add operation then the Proposal message is preceded by

7The sending of Commit and Proposal messages does not fit what we described before,
simply because it is useless to send a message that will only be received by its creator.
Whenever a group contains more than one member, the Commit and Proposal messages need
to be sent to the DS Broadcast channel in order to achieve agreement on group operations
going into effect and consistency of group secrets’ values across the group.

40

4.3. MLS Protocol overview

A B C D
DS KeyPack-
age storage

DS broadcast
channel

AS

get keypackage(T.id, G.v, G.suite)

T.keypackage

del keypacakge(T.ID, G.v, G.suite)

Propose(GOP(T))

Propose(GOP(T))

Propose(GOP(T))

Propose(GOP(T))

Commit(. . . , Propose(GOP(T)), . . .)

Welcome(T)

Commit(. . . , Propose(GOP(T)), . . .)

Commit(. . . , Propose(GOP(T)), . . .)

Commit(. . . , Propose(GOP(T)), . . .)

Figure 4.14: Group operations: add, remove and update following the propose and commit
paradigm. Client B proposes a group operation GOP applying to some client T and client C
sends commits to this group operation by including it in its Commit message. The messages
annotated in purple are only present in case GOP=Add.

the proposing client fetching the KeyPackage structure of the client it
wishes to add by calling get keypackage(id, G.v, G.suite), where id is the
identifier of the suggested client and G.v and G.suite are the MLS ver-
sion and Ciphersuite structure supported by the group respectively.
This fetched KeyPackage structure, denoted as T.keypackage in Figure
4.14 is then deleted from the DS KeyPackage storage for the same
reasons as in step 3. Moreover the Commit message would be sent
along with a Welcome message suggested for addition. This process
is summarized in Figure 4.14 where B proposes some group operation
GOP ∈ {Add, Remove, Update} for some client T and client C acts as a
committer. The additional messages sent in case of GOP = Add are
colored purple to denote that they are only present in case of a client
being added.

6. Finally if a group member wishes to send some IM application data
info to the group it can do so by simply forming an application mes-
sage (see Section 4.7 and 4.10) denoted as Application(info) in Figure
4.15 and sending it to the group via the group’s DS broadcast channel.
Because the client wishes for the underlying IM application data to be
confidential and authentic, it will encrypt it using keys derived from

41

4. The Messaging Layer Security (MLS) protocol

A B C D
DS KeyPack-
age storage

DS broadcast
channel

AS

Application(info)

Application(info)

Application(info)

Application(info)

Figure 4.15: Send and receive operation: Client C sends an application message (containing IM
application data) to the group. All clients in the group receive it and process it to extract the
underlying IM application data.

the group secrets (see Section 4.9 and 4.10). A client upon receiving
an application message, decrypts it and processes it to obtain the un-
derlying IM application data. This process is summarised in Figure
4.15.

4.4 State of client

As noted in the MLS protocol overview (see Section 4.3) each MLS client
maintains some local information in order to participate in the MLS protocol.
This information is grouped together to form a state structure shown in
Figure 4.16. The fields within this structure can be split into two distinct
parts: client data i.e. information specific to that client and (if the client
is a member of some group) group data which is information specific to
the group the client is a member of. The client data is the set of non-
highlighted fields of the state structure whereas group data is highlighted
in green and yellow. As explained in Section 4.1 some fields in a client’s
state structure may be public (readable by everyone in the system) and
others may be private (readable by only the client). In Figure 4.16 we add a
comment next to the fields MLS requires to be private. The group data can
be further subdivided into two parts: fields that form group secrets (do not
differ in value across group members see Section 4.1)8 and fields that do not
(may differ in value across group members but not necessarily).

A client’s group secrets change if and only if the client either processes a
Commit message, or it initiates the group, or it processes a Welcome mes-
sage. When the remaining fields of the state structure change will become
clear in the following sections. We say that a client knows the value of a if
and only if a is present in its state (not equal ⊥).

8This is of course assuming all members processed the latest commit message that lead
to the most recent group secret values.

42

4.4. State of client

struct state:

version
ciphersuite
credential
sign sk // private
kem pk
kem sk // private
ratchet tree // private
group context
confirmation tag
com ctr
prop ctr
hand generation
app generation
prop pending // private
commit pending // private
prop confirm // private
com confirm // private
hand ratchet state // private
app ratchet state // private
init secret // private
commit secret // private
welcome secret // private
encryption secret // private
sender data secret // private
confirmation key // private

Figure 4.16: State of an MLS client. The non-highlighted fields are set in step 1 of the MLS
overview (see Section 4.3), which is responsible for initialising the state of the client. The fields
in green are part of group data but not part of the group secrets and the fields highlighted in
yellow are part of the group data and group secrets. The fields that are private have a comment
whereas the fields that can be made public do not.

As discussed in the protocol overview, we assume that a client can only
be a member of one group at a time, so the state structure only contains
group data of a single group.9 Furthermore another assumption mentioned
in the protocol overview is that we assume that all clients support the same
and exactly one ciphersuite and version. Therefore instead of client data
containing a list of ciphersuites, credentials, etc. we only maintain one of
each within the state structure. This implies that the state need not con-

9If we were to allow clients to be a member of more groups the bookkeeping would
become more complex (state would essentially contain a map from group identifiers to
group group data) without any added value other than completeness.

43

4. The Messaging Layer Security (MLS) protocol

tain the Capabilities structure of the client since no downgrade can occur
in a scenario where all clients support exactly one and exactly the same
Ciphersuite structure and MLS version.

Let s be a state structure of some client a. Then s.ciphersuite is an integer
representing the MLS version number the client supports. The s.ciphersuite
is the Ciphersuite structure specifying the KEM, KDF, NAEAD, DS, MAC
scheme and hash function the client supports. The s.credential is the Credential
structure this client obtained from the AS. The s.sign sk and s.credential.sign pk
form a digital signature key pair and s.kem pk and s.kem sk form the KEM
key pair the client obtained from the DS KeyPackage storage. The remain-
ing fields’ values are all ⊥ unless the client is part of a group. Thus the state
produced by step 1 and 2 in Section 4.3 (the setup stage) would then have
the client data fields not equal ⊥, whilst the group data fields would be ⊥.

If the client is a member of the group then the group data fields are de-
scribed as follows. The s.ratchet tree is a ratchet tree (see Section 4.5), the
s.group context is a GroupContext structure (see Section 4.6) which essen-
tially contains the group identifier, the epoch the client is currently in, a hash
of the current s.ratchet tree value and a hash of Commit messages received
and processed thus far. Therefore, the GroupContext structure serves as a
summary of some information about the group data. The s.confirmation tag
is a MAC tag that was contained in the most recently processed commit
message. It changes if and only if s.group context changes. Like the group se-
crets, the s.group context and s.confirmation tag contain the same value across
all group member’s states. However since they are allowed to be public
knowledge, we do not classify them as being part of the group secrets.

The fields s.prop pending, s.commit pending, s.prop confirm, s.com confirm, as
well as, s.prop ctr, s.com ctr and s.hand generation are used to keep track of all
the proposal and commit messages sent by this client but not yet confirmed
by the group in the current epoch. Namely s.prop pending, s.commit pending,
s.prop confirm, s.com confirm are maps that take an integer value and map
it to a KEM secret key, a ratchet tree and bit-string (representing the pend-
ing commit secret) pair, Proposal structure (see Section 4.7.2) and Commit

structure (see Section 4.7.3) respectively. The fields s.prop ctr, s.com ctr and
s.hand generation are integer values representing the number of proposal
messages sent, number of commit messages sent and the total number of
handshake (proposal and commit) messages sent by a in the current epoch.
A client’s proposal message is confirmed by the group if the client receives a
commit message containing this proposal. Because there may be two clients
that send a commit message at the same time, a client must wait to see if the
next commit message it receives from the group is its own or someone elses.
If it receives its own commit message back that means its been confirmed by
the group.

44

4.4. State of client

More specifically each time a sends an update proposal message it also
saves the new potential KEM secret key associated to this update in the
s.prop pending[s.prop ctr], saves the content of the sent update proposal mes-
sage (Proposal structure) in s.prop confirm[s.prop ctr] and increments s.prop ctr
and s.hand generation by one. Similarly for each commit message the client
sends, it saves the new ratchet tree and commit secret resulting from pro-
cessing this commit message in s.commit pending[s.com ctr] (see Section 4.5
and 4.7.3), saves the content of the sent commit message (Commit structure)
in s.com confirm[s.com ctr] and increments s.com ctr and s.hand generation by
one.

Similarly the field s.app generation is an integer value representing the num-
ber of application messages sent by a in the current epoch, and is hence
incremented every time a sends an application message.

The hand ratchet state and app ratchet state are maps that take in an integer
ep (representing an epoch) and return a sending and receiving state pair
(stS, stsR). This pair represents all the information a client must maintain in
order to encrypt and decrypt handshake and application messages respec-
tively in epoch ep. In particular the sending state stS is a single bit-string
value, whereas stsR is a map, that takes in a client identifier ID and returns
a triple containing a bit-string, an integer and a list of NAEAD key-nonce
pairs (stR, iR,D). A client a will only use its current epoch to send messages
to the group. Hence, stS = ⊥ for all epochs other than the current one.
In other words, a will only use hand ratchet state[s.group context.epochID] to
send messages to its group. However, due to asynchronous communication
and possible delays in message delivery, a client can have one or more active
receiving epochs and can hence also use information relating to past epochs
to successfully decrypt messages. We describe how the hand ratchet state
and app ratchet state entries are initialised in Section 4.8 and 4.9. In Section
4.10 we describe the derivation of NAEAD key nonce pairs used for encrypt-
ing handshake and application messages and explain the semantics of the
hand ratchet state and app ratchet state fields.

Finally the init secret, commit secret, welcome secret, encryption secret and con-
firmation key are pseudo-random bit-strings that have been derived accord-
ing to the key schedule (see Section 4.8). The sender data secret is a map from
epochs to pseudo-random bitstrings. The reason why this group secret is a
map is because it is used to provide metadata protection of application and
handshake messages sent and received by this client. Therefore, because the
client can receive messages that belong to an epoch older than its current
one, the client needs to maintain an sender data secret entry for older epochs
in order to be able to process the metadata of delayed messages.

45

4. The Messaging Layer Security (MLS) protocol

4.5 Ratchet Tree (RT)

The MLS protocol uses a ratchet tree in order to derive group secrets effi-
ciently.

Ratchet Tree (RT). A ratchet tree is an LBBT whose nodes have the following
structure:

struct node:

kem pk
kem sk
credential
unmerged leaves

Figure 4.17: Structure of a node in a ratchet tree.

Let τ be a ratchet tree and n be a node structure in τ. The n.kem pk and
n.kem sk are a KEM key pair and the n.credential is a Credential structure.
Finally the n.unmerged leaves is a set containing some of the non-blank leaf
nodes in the subtree rooted at n. We say n is blank if and only if all its
fields’ values equal ⊥. In diagrams we will color the nodes white if they are
blank and otherwise black. A client’s ratchet tree changes if and only if the
client processes a Commit message (or it initiates a group or it processes a
Welcome message). Therefore for each new epoch, each client in the group
will have a new ratchet tree. In which way the ratchet tree changes from one
epoch to the next is described in Section 4.7. Now we turn to explaining the
semantics behind the ratchet tree and its nodes’ fields.

Let G be a group with ` members. Then each member m in its state m.s, will
have m.s.ratchet tree be a ratchet tree where each non-blank leaf represents
one of the ` members in G. Hence the ratchet tree maintained by each mem-
ber of group G will have at least ` leaves. Each group member’s ratchet tree
is almost exactly the same as the ratchet tree maintained by other members
in the group. The only difference across the trees of the group members
are the values stored in the kem sk field of nodes. We will explain these
differences in Section 4.5.1 after we have defined the relevant ratchet tree
terminology.

If n is a non-blank leaf node in m.s.ratchet tree then n.kem pk and n.kem sk
are the KEM key pair belonging to the group member n represents. Similarly
n.credential is the Credential structure belonging to the represented group
member and the n.unmerged leaves is always equal to ⊥.10

10A subtree rooted at a leaf ` contains only `.

46

4.5. Ratchet Tree (RT)

If n is a non-blank parent node then n.kem pk and n.kem sk values will be
derived based on the kem pk and kem sk values of one of its children. This
derivation is covered in Section 4.7.3. The parent nodes’ n.credential is always
equal to ⊥, since only non-blank leaves represent a group member. The
n.unmerged leaves is a set that contains each non-blank leaf n′ in the subtree
rooted at n such that the member m′ ∈ G represented by n′ does not know
the value of n.kem sk. More specifically a member m′ ∈ G knows n.kem sk
value if and only if the leaf it is represented by is not in n.unmerged leaves
and is a descendant of n. Client m with state structure m.s knows the value
of n.kem sk if and only if n.kem sk 6= ⊥ in m.s.ratchet tree.

Ratchet tree representation. Within pseudocode we will represent a ratchet
tree as a list of node structures. In this list representation, leaf nodes are
positioned at even-numbered indices, whereas parent nodes are held at odd-
numbered indices; starting at the left-most node in the tree at position zero
and running from left to right. For example, a ratchet tree with 5 leaves
would have its nodes stored in the list representation as shown in Figure
4.18.

7

3

1

0 2

5

4 6

8

Figure 4.18: Example ratchet tree with 5 leaves. The index of each node in the array represen-
tation is written on top of each node.

With this ratchet tree representation we make use of the following functions
to obtain the root of a tree, sibling, parent, left child and right child of any
given node as well as a function to obtain an index given a node:

• Function Root(τ) returns the root node of the ratchet tree τ.

• Functions siblingNode(τ, n) and siblingIndex(τ, i) return the node structure
and index of the sibling of node n at index i in ratchet tree τ respectively.
If the node has no sibling these two functions return ⊥.

• Functions parentNode(τ, n) and parentIndex(τ, i) return the node structure
and index of the parent of node n at index i in ratchet tree τ respectively.

47

4. The Messaging Layer Security (MLS) protocol

If the node has no parent these two functions return ⊥.

• Functions leftNode(τ, n) and leftIndex(τ, i) return the node structure and
index of the left child of node n at index i in ratchet tree τ respectively. If
the node has no left child these two functions return ⊥.

• Functions rightNode(τ, n) and rightIndex(τ, i) return the node structure
and index of the right child of node n at index i in ratchet tree τ re-
spectively. If the node has no right child these two functions return ⊥.

• Function node2index(τ, n) takes in a ratchet tree τ and a node structure n
and returns the index i at which n is stored in the list of nodes τ. If no
such index exists the function returns ⊥.

The [BBM+21] has python code for each of these operations in its Appendix,
and hence we just use them without specifying their implementation.

Resolution. Intuitively the resolution of a node n is the smallest set of nodes
that covers all non-blank leaves in n-s subtree. Let τ be a ratchet tree and
n a node in τ. The resolution Res(n) of node n is a set of nodes defined
recursively as follows:

Res(n) =

{n} ∪ n.unmerged leaves if n is not blank
∅ if n is a blank leaf⋃

n′∈C(n) Res(n′) if n is a blank parent node.

where C(n) are the children of node n.

Direct path. Intuitively a direct path of a node n is the simple path from
n to the root node excluding n. Let τ be a ratchet tree and n a node in τ.
The direct path of node n, denoted as dPath(τ, n) is a list of nodes defined
recursively as follows:

dPath(τ, n) =
{
[] if n is a root node
[parentNode(τ, n)] + dPath(τ, parentNode(τ, n)) otherwise.

Co-path. Intuitively a co-path of a node n is a list of sibling nodes of each
node in n-s simple path excluding the root node. Let τ be a ratchet tree and
n a node in τ. The co-path of node n, denoted as coPath(τ, n) is a list of
nodes defined recursively as follows:

coPath(τ, n) =
{
[] if n is a root node
[siblingNode(τ, n)] + coPath(τ, parentNode(τ, n)) otherwise.

48

4.5. Ratchet Tree (RT)

An example of a direct path and co-path of the leaf node representing mem-
ber C is given in Figure 4.19.

A B C D

E

A B C D

E

Figure 4.19: Example ratchet tree of a group containing A,B,C,D,E (left) and the coPath and
dPath of node representing member C in this tree colored orange and green respectively (right).

Common Path. A common path of two nodes n and n′ in a tree τ, denoted
as commonPath(τ, n, n′), is the simple path from LCA(, τ, n, n′) to the root
node.

enc pk1
enc sk1

enc pk2
enc sk2

enc pk4
credential4

enc pk3
enc sk3

credential3

enc pk1

enc pk2 enc pk4
credential4

enc pk3
credential3

Figure 4.20: Example RT τ (left) and its public state (right). Note that the sibling, children and
parent fields of the nodes are made clear from the picture and hence are for readability reasons
not included explicitly within the nodes. The remaining 5 fields are all made explicit if present.
Note that the node furthest to the left is blank, and hence already has its enc sk value equal ⊥.

Public state. Let τ be a ratchet tree. The public state of τ, is a ratchet tree
τ′ that is identical to τ w.r.t. all fields in all nodes except for the kem sk field
which is set to ⊥ in τ′. More specifically the function in Figure 4.21 returns
the public state given a ratchet tree τ. An example of a public state is given
in Figure 4.5.

49

4. The Messaging Layer Security (MLS) protocol

get-PS(τ):

τ′ ← τ
for node in τ′:

node.kem sk ← ⊥
return τ′

Figure 4.21: Function that computes the public state of the input ratchet tree.

Ratchet tree operations. In this paragraph we describe some more advanced
ratchet tree operations we will make use of in Section 4.7.

The procedure AddLeaf takes in a ratchet tree τ and returns a ratchet tree
with an additional leaf τ′ and the added leaf ` node denoted as (τ′, `) ←
AddLeaf(τ). Given a ratchet tree τ, AddLeaf is specified as follows:

• Let n be the number of leaves contained in τ. If 2k = n for some k ∈ N0
then create two new node structures ` and r′ with all their fields set to ⊥.
Now attach ` to r′ as its right child and the root of τ as r′-s left child. The
new ratchet tree τ′ then has r′ as a root, the input ratchet tree τ as the left
subtree of r′ and a blank leaf ` as the right child of r′.

• Otherwise, let r be the root node of τ and τL and τR be the left subtree
and right subtree of r’s respectively. Now call AddLeaf(τR) that outputs
a new tree τ′R. Return the ratchet tree τ′ with a r as a root, τL as its left
subtree and τ′R as its right subtree.

The procedure Trunc takes in a ratchet tree τ and returns a truncated ratchet
tree τ′ such that its rightmost leaf is non-blank denoted as τ′ ← Trunc(τ)
and specified as follows:

• Let v be the rightmost leaf in τ and v′ its sibling. If v is blank and is not
the root then remove v as well as its parent from τ and place v′ where the
parent was. Use this new ratchet tree τ′ to call Trunc(τ′) and return this
call’s output.

• Otherwise return the input ratchet tree τ.

The procedure dPathBlank takes in a ratchet tree τ and a client identity ID
and returns a ratchet tree τ′ that is a copy of τ with all nodes in dPath(τ,n)
blanked where n is the leaf node representing client identified by ID. This is
denoted as τ′ ←dPathBlank(τ, ID).

Let n be the leaf node representing a client with identity ID. The proce-
dure Unmerge takes in a ratchet tree τ and a client identity ID and returns
a ratchet tree τ′ that is a copy of τ such that each non-blank and not root
node v in dPath(τ,n) has n added to v.unmerged leaves. This is denoted as
τ′ ←Unmerge(τ, ID).

50

4.5. Ratchet Tree (RT)

The procedure BlankNode takes in a ratchet tree τ and a client identity ID and
returns a ratchet tree τ′ that is a copy of τ with the leaf node representing
client ID blanked, denoted as τ′ ←BlankNode(τ, ID).

The procedure SearchNode takes in a ratchet tree τ and a client identity
ID and returns the node n representing the client identified by ID. This is
denoted as n←SeachNode(τ, ID). If no such node exists SearchNode returns
⊥.

4.5.1 Ratchet tree invariants

In this section we introduce the invariants the ratchet trees across the group
should satisfy (assuming all group members are in the same epoch).11 These
invariants govern the conditions under which a node structure has its fields
set (or not) to ⊥ and which fields contain the same value across group mem-
bers. We end this section by providing some motivation behind these invari-
ants whose purpose will become even more clear in the sections succeeding
Section 4.5.

Let G be a group and m ∈ G be a member of group G with m.s denot-
ing the state structure of client m. Let n denote the number of nodes in
m.s.ratchet tree. We use mlea f to denote the leaf node representing member
m in m.s.ratchet tree and mroot to denote the root node in m.s.ratchet tree.

Invariant 1. Given any group G, all its members’ ratchet trees have the same
public state.

∀G : ∀m, m′ ∈ G : get-PS(m.s.ratchet tree) = get-PS(m′.s.ratchet tree). (4.1)

Invariant 2. Given any two members m and m′ of a group and any node v,

if v-s KEM secret key is present (not equal ⊥) in both m-s and m′-s ratchet
tree then v in m-s ratchet tree and v is m′-s ratchet tree has the same KEM
secret key value.

∀G : ∀m, m′ ∈ G : ∀i ∈ range(n) : m.s.ratchet tree[i].kem sk = ⊥∨
m′.s.ratchet tree[i].kem sk = ⊥∨m.s.ratchet tree[i].kem sk = m′.s.ratchet tree[i].kem sk.

(4.2)

Invariant 3. In a ratchet tree, only non-blank leaf nodes have their Credential

11If one of the members is offline for two epochs, clearly that member’s ratchet tree
would be behind. However after the offline member processes the two commit messages
that initiated the two epochs it missed while it was offline, its ratchet tree will also be in sync
with the ratchet trees of other members.

51

4. The Messaging Layer Security (MLS) protocol

structures not equal ⊥.

∀G : ∀m ∈ G : ∀i ∈ range(n) : m.s.ratchet tree[i].credential 6= ⊥
⇐⇒ m.s.ratchet tree[i] is a non-blank leaf.

(4.3)

Invariant 4. In a ratchet tree, only the non-blank parent nodes have their

unmerged leaves not equal ⊥.

∀G : ∀m ∈ G : ∀i ∈ range(n) : m.s.ratchet tree[i].unmerged leaves 6= ⊥
⇐⇒ m.s.ratchet tree[i] is a non-blank parent node.

(4.4)

Invariant 5. A non-blank parent node in a ratchet tree must have its KEM

public key and unmerged leaves present (i.e. not equal ⊥). Note that the
unmerged leaves may be an empty set (∅) however.

∀G : ∀m ∈ G : ∀i ∈ range(n) : m.s.ratchet tree[i].kem pk 6= ⊥∧
m.s.ratchet tree[i].unmerged leaves 6= ⊥ ⇐⇒ m.s.ratchet tree[i] is a non-blank parent node.

(4.5)

Invariant 6. A non-blank leaf node in a ratchet tree must have its KEM

public key and credential present (i.e. not equal ⊥).

∀G : ∀m ∈ G : ∀i ∈ range(n) : m.s.ratchet tree[i].kem pk 6= ⊥∧
m.s.ratchet tree[i].credential 6= ⊥ ⇐⇒ m.s.ratchet tree[i] is a non-blank leaf node.

(4.6)

Invariant 7. The KEM secret key of a non-blank node v in the ratchet tree

is known to a member of the group if and only if that member’s leaf is a
descendant of v and is not in v.unmerged leaves.

∀G : ∀m ∈ G : ∀i ∈ range(n) : m.ratchet tree[i].kem sk 6= ⊥ ⇐⇒
mlea f 6∈ m.ratchet tree[i].unmerged leaves∧mlea f is a descendant of m.ratchet tree[i].

(4.7)

Invariant 8. All members of a group know the root node’s KEM key pair.

∀G : ∀m ∈ G : mroot.kem pk 6= ⊥∧mroot.kem sk 6= ⊥. (4.8)

In summary the above ratchet tree invariants ensure that the ratchet trees
across the group members are identical, except for the KEM secret key val-
ues of nodes, which if present have the same value and otherwise ⊥. There-
fore, if any group member modifies its own ratchet tree, then that member
needs to ensure the ratchet tree invariants hold, by essentially sending this
new local information to the group. This way other members can update
their ratchet tree appropriately and the ratchet tree invariants hold once
again on this new set of group ratchet trees. We say that the group’s ratchet

52

4.5. Ratchet Tree (RT)

trees are in sync if the ratchet tree invariants hold on the set of group ratchet
trees.

Motivation behind invariants

Let G be a group and m a member of that group G. The first invariant
promises that all members’ ratchet trees have the same public state, which
implies that all members know the same KEM public keys. Let n be a node
in m’s ratchet tree.

A B C D

E

unmerged leaves={A}

Figure 4.22: If a client uses the orange node’s KEM public key to create a ciphertext, then
members B,C,D know the corresponding KEM secret key and can decrypt that ciphertext. Be-
cause client A is in the unmerged leaves of the orange node, A does not know KEM secret key
of the orange node, and hence is unable to decrypt.

If n is not blank then by invariant 5 and 6 we have n.kem pk 6= ⊥ which m
can use to encrypt a message of its choosing. All the members who know
n.kem sk will be able to decrypt this message. According to invariant 7 the
exact members who have n.kem sk 6= ⊥ for a non-blank parent node n are
the members represented by the leaves (in the subtree rooted at n) not in
n.unmerged leaves. In particular because of invariant 8, if a member uses
the KEM public key of its ratchet tree’s root node to encrypt a message, all
members will be able to decrypt and obtain that message successfully.

Now let n be a parent node (blank or non-blank) in the tree. To encrypt the
same secret to all members represented by leaves in the subtree rooted at
n we can again ask ourselves who knows n.kem sk. If n is non-blank and
n.unmerged leaves = ∅ then we can encrypt the secret under n.kem pk and
know that all members in n’s subtree will be able to decrypt. Therefore
in this case we would only need to form a single ciphertext. However if
n.unmerged leaves 6= ∅ then there are some members in n’s subtree that can
not decrypt a ciphertext created under n.kem pk. Moreover if n is blank

53

4. The Messaging Layer Security (MLS) protocol

then by definition no one in the group knows neither n.kem sk nor n.kem pk.
Clearly encrypting under one KEM public key will not suffice. To ensure
that we use the minimal number of KEM public keys in these cases we use
the resolution of node n. Namely Res(n) returns the smallest set ` of non-
blank nodes that cover all leaves in the subtree rooted at n. To encrypt to all
leaves in this subtree, for each node n′ ∈ ` client m will encrypt the secret
using n′.kem pk, in turn forming a total of |`| ciphertexts.

4.6 Group Context

A GroupContext structure defined in Figure 4.23 represents a summary of
all the information common across all group members’ states. The GID is a
group identifier, epochID is an integer representing an epoch, the tree hash
is a digest of the public state of a ratchet tree and confirmed transcript hash
is a digest of commit messages. As mentioned in Section 4.4 each client m
who is part of some group G maintains a GroupContext structure as part
of its state. Let m.s be the state of m. Then m.s.group context.GID repre-
sents the group identifier of G, the m.s.group context.epochID represents m’s
current epoch, m.s.group context.tree hash is essentially a hash over the pub-
lic state of m.s.ratchet tree; Finally m.s.group context.confirmed transcript hash
contains a running hash over the commit messages that led to the current
m-s state m.s.

struct GroupContext:

GID
epochID
tree hash
confirmed transcript hash

Figure 4.23: GroupContext structure.

Like the ratchet tree structure and group secrets, a client’s GroupContext

structure also changes if and only if the client processes a Commit message
(or it initiates a group or it processes a Welcome message). The exact way in
which these fields are computed will be explained in Section 4.7 when we
explain how Commit message processing occurs.

4.7 Handshake and Application message plaintext

As we know (from Section 4.3) MLS has 3 different types of messages: Hand-
shake messages (Proposal and Commit), Application messages and Wel-
come messages. The Handshake and Application messages are represented
by an MLSmessage structure shown in Figure 4.24.

54

4.7. Handshake and Application message plaintext

The first 4 fields represent the associated data of the message: GID is a
group identifier, epochID is an integer representing an epoch, content type
is a string that can take on 3 possible forms: “proposal”, “commit” and
“app” and user ad is a string representing any data the creator of the mes-
sage specified and wanted only integrity protected. The enc metadata and
enc data are NAEAD ciphertexts over some metadata and the underlying
plaintext respectively.

The associated data used in both NAEAD encryptions are all the first four
fields in the MLSmessage structure combined. The key and nonce pairs used
to produce enc metadata are (in part) derived from the sender data secret
stored in a client’s state. The key and nonce pairs used to produce enc data
of a handshake or application message, are derived from the hand ratchet state
and app ratchet state respectively (also stored in a client’s state, see Section
4.4). The details of how the metadata and plaintext key nonce pairs are de-
rived are deferred to Section 4.10, since we will need the understanding of
the MLS key schedule (Section 4.8) and secret tree (Section 4.9).

struct MLSmessage:

GID
epochID
content type
user ad
enc metadata
enc data

Figure 4.24: MLSmessage structure. Both (confidential) handshake and application messages
have this structure.

Given all this, creating a new or processing a received handshake or appli-
cation message (represented by MLSmessage) can be viewed as the following
two-step procedure. Namely, a handshake or application message msg is
created by first creating the plaintext underlying msg.enc data. Then, using
the results of this step, the msg.enc data and all the other fields in msg are
created. Similarly, a handshake or application message msg is processed by
first processing (decrypting) the msg.enc metadata and msg.enc data to ob-
tain the underlying metadata and plaintext after which the plaintext itself
is processed (using the results of the first step). We refer to the creating
and processing of the MLSmessage structure excluding the plaintext as the
creating and processing of the framing.

In this section, we focus on the plaintext of the Handshake and Application
messages (MLSmessage structures). First, we define the MLSCiphertextContent
structure used to represent the plaintext underlying MLSmessage structure’s
enc data. We then proceed to describe how this MLSCiphertextContent

55

4. The Messaging Layer Security (MLS) protocol

structure is created (prior to sending) and how it is processed (post receival).
Finally we explain how the Proposal and Commit structures (used to repre-
sent the ‘content’ of a Handshake or Application message) are formed and
processed. The creation and processing of the framing will be explained in
Section 4.10. We postpone it until then, because we need the understanding
of the MLS key schedule (Section 4.8) and secret tree (Section 4.9).

4.7.1 Handshake and Application plaintext

The plaintext underlying the MLSmessage structure’s enc data (Figure 4.24)
is an (encoded) MLSCiphertextContent structure defined in Figure 4.58. An
MLSCiphertextContent structure contains commit, proposal and application
fields which represent the so called content of a Commit, Proposal and Ap-
plication message being constructed (represented by an MLSmessage struc-
ture) respectively.

More specifically the commit is a Commit structure (see Section 4.7.3) rep-
resenting the content of a Commit message, proposal is a Proposal struc-
ture (see Section 4.7.2) representing the content of a Proposal message and
application is a string representing the IM application content the creator
of the message wishes to send to the group. At any point in time an
MLSCiphertextContent structure can only have one of these three fields be
present (not equal ⊥). The field that is present is the message type (Pro-
posal, Commit or Application) the MLSCiphertextContent structure will be
used for.

struct MLSCiphertextContent:

commit
proposal
application
signature
confirmation tag

struct MLSPlaintextTBS:

group context
GID
epochID
sender
user ad
content type
commit
proposal
application

Figure 4.25: MLSCiphertextContent structure and MLSPlaintextTBS structure.

In addition to these fields, an MLSCiphertextContent structure contains a
signature signature produced over the (encoded) MLSPlaintextTBS structure
(defined in Figure 4.25) using the creator’s signing secret key. The confirma-
tion tag field is only present (not equal ⊥) if and only if the commit field is
itself not ⊥. If present, the confirmation tag is a MAC tag computed using

56

4.7. Handshake and Application message plaintext

the creator’s confirmation key over the creator’s current confirmed transcript
(stored in the group context field of the creator’s state structure).

The MLSPlaintextTBS structure contains the following. The group context
is a GroupContext structure, GID is a group identifier, epochID is an integer
representing an epoch and sender is a client identifier. The user ad is a string
and content type is a string that can take on 3 possible forms: “proposal”,
“commit” and “app” (similarly to the fields present in MLSmessage struc-
ture). The commit, proposal and application are exactly the same as the fields
in MLSCiphertextContent structure; exactly one of these 3 fields can be not
⊥ and now the field that is present needs to correspond to the value of the
content type string.

Plaintext creation In this section, we explain how the MLSCiphertextContent
structure is created. Let a be a client, with state a.s, who wishes to cre-
ate a Handshake or Application message, and hence starts by creating the
MLSCiphertextContent structure. To form the MLSCiphertextContent struc-
ture, a first creates an empty MLSCiphertextContent structure ptx by doing:

ptx ← MLSCiphertextContent(⊥,⊥,⊥,⊥,⊥) (4.9)

that it then proceeds to populate field-by-field as follows. Depending on
whether a wishes to create a Proposal, Commit or Application message, a
will either create a Proposal structure (according to Section 4.7.2) and assign
it to ptx.proposal, create a Commit structure (according to Section 4.7.3) and
assign it to ptx.commit or create a string respectively (representing the IM
application data a wants to send) and assign it to ptx.application respectively.
Recall that a can only populate one of these three ptx fields in order to
ensure the ‘single present’ rule holds. Note that, as described in Sections
4.7.2 and 4.7.3, creating of a Proposal or Commit structure modifies a-s state
in order for some pending secrets to be saved.

After having populated ptx.proposal, ptx.commit or ptx.application (and pos-
sibly modifying its state a.s), client a proceeds by choosing some string
user ad, which it wants to only integrity protect by the MLSmessage structure
(containing ptx’s encryption). It calls form Plaintext Signature(a.s, user ad, ptx)
defined in Figure 4.26 and sets ptx.signature to this call’s output.

The algorithm form Plaintext Signature takes in a client’s state state, user
specified associated data and its current MLSCiphertextContent structure
and outputs a signature over: (1) a’s current group context, (2) the group
identifier corresponding to the group a is a member of, (3) a’s current epoch,
(4) a’s identity, (5) the associated data a specified, (6) the type of message a
wishes to form and (7) the content of the message a wishes to create. Some
of the values of the signed fields are also included in the associated data
part of the entire MLSmessage structure that would contain the encryption of

57

4. The Messaging Layer Security (MLS) protocol

ptx; others are part of ptx; and some (sender) underlay the enc metadata of
the MLSmessage structure encrypting ptx (see Section 4.10).

form Plaintext Signature(state, user ad , ptx):

id ← state.credential.ID
ep ← state.group context.epochID
gid ← state.group context.GID
gctx ← state.group context
if ptx.commit 6= ⊥:

type ← “commit”
if ptx.proposal 6= ⊥:

type ← “proposal”
if ptx.application 6= ⊥:

type ← “app”
ptx′ ← MLSPlaintextTBS(gctx, gid, ep, id, user ad, type, ptx.commit, ptx.proposal, ptx.application)
signature ← state.DS.Sign(state.sign sk, 〈ptx′〉)
return signature

Figure 4.26: form Plaintext Signature algorithm.

Finally a forms the ptx.confirmation tag as follows. If a did not choose to
create a plaintext for a Commit message then ptx.confirmation tag is set
to ⊥ as said before. If however a did choose to create a Commit mes-
sage, then a calls form Plaintext MAC(a.s) defined in Figure 4.27 and sets
ptx.confirmation tag to this call’s output. The form Plaintext MAC algorithm
takes in a state structure and returns a mac tag over the confirmed transcript
of the GroupContext structure stored in the input state.

form Plaintext MAC(state):

MAC ← state.ciphersuite.MAC
gctx ← state.group context.confirmed transcript
k ← state.confirm key
return MAC.Mac(k,gctx.confirmed transcript)

Figure 4.27: form Plaintext MAC algorithm.

Therefore the first step of creating an MLSmessage structure can be sum-
marised as given by the create Step1 algorithm in Figure 4.28. It takes in a
string user ad, a Commit structure (or ⊥) commit, a Proposal structure (or ⊥)
proposal and a bit-string (or ⊥) application and produces all the information
that needs to be passed to the second stage of creation (covered in Section
4.10).

Client a with state a.s would therefore (depending on which kind of mes-
sage it wants to send) form either the Commit structure commit, Proposal
structure proposal (according to Sections 4.7.3, 4.7.2 respectively) or a bit-
string application (setting the rest to ⊥). As explained before, the creation of
these may modify the state of a.s. Then a would choose some data it only
wants integrity protection for user ad and call create Step1(a.s, user ad, com-

58

4.7. Handshake and Application message plaintext

mit, proposal, application) to execute the first step of creating an MLSmessage

structure. The output of this call is then used by a to construct the framing
of the MLSmessage structure as covered in Section 4.10.3.

create Step1(user ad, commit, proposal, application):

ptx← MLSCiphertextContent(commit, proposal, application,⊥,⊥)
signature ← form Plaintext Signature(state,user ad,ptx)
if commit 6= ⊥ :

tag ← form Plaintext MAC(state)
else:

tag ← ⊥
ptx.signature ← signature
ptx.confirmation tag ← tag
return (ptx, user ad)

Figure 4.28: create Step1 algorithm.

Plaintext processing In this section we explain how the processing of the
plaintext (underlying the MLSmessage structure’s enc data) occurs. Let a be a
client who received a Handshake or Application message and has managed
to process the frame successfully.12 Moreover, we assume that the frame pro-
cessing step (much like we did in the create Step1 algorithm) passes on all
information we need to process the plaintext. Namely, the frame processing
will supply us with the sender’s identity ID, sender specified authenticated
data user ad, the content type claimed by the sender and of course the ex-
tracted MLSCiphertextContent structure ptx representing the actual plain-
text. How this information is extracted by the frame processing is explained
in Section 4.10.

verifyContentAndSignature(state, user ad, id, ptx, content type):

ep ← state.group context.epochID
gid ← state.group context.GID
gctx ← state.group context
if ptx.commit 6= ⊥:

type ← “commit”
if ptx.proposal 6= ⊥:

type ← “proposal”
if ptx.application 6= ⊥:

type ← “app”
if type 6= content type

return false

ptx′ ← MLSPlaintextTBS(gctx, gid, ep, id, user ad, type, ptx.commit, ptx.proposal, ptx.application)
n← SearchNode(state.ratchet tree, id)
b ← state.DS.Vfy(n.sign pk, 〈ptx′〉, ptx.signature)
return b

Figure 4.29: verifyContentAndSignature algorithm.

Given this information client a with state a.s starts by verifying that in-

12We assume that the frame has been processed successfully as otherwise processing
would terminate.

59

4. The Messaging Layer Security (MLS) protocol

deed only one of the three possible contents ptx.commit, ptx.proposal and
ptx.application is present. It then goes on to verify ptx’s signature ptx.signature
and if the type of content present in ptx matches the declared type con-
tent type by calling the method verifyContentAndSignature(a.s, user ad, ID,
ptx, content type) defined in Figure 4.29.

The verifyContentAndSignature procedure takes in a state structure, string
user ad, client identifier id, MLSCiphertextContent structure ptx and a string
content type that can take on 3 possible forms: “proposal”, “commit” and
“app” and returns a boolean value.

If the verification of either the content type or signature fails, then the client
aborts the plaintext processing. If the signature and type of content in ptx
are valid, a continues to verify the mac tag ptx.confirmation tag (for com-
mit messages) by simply calling the verify Plaintext MAC(state, ptx.tag) algo-
rithm defined in Figure 4.30. The verify Plaintext MAC algorithm takes in a
state structure and mac tag tag and returns boolean.

verify Plaintext MAC(state, tag):

MAC ← state.ciphersuite.MAC
gctx ← state.group context.confirmed transcript
k ← state.confirm key
return MAC.Vfy(k,gctx.confirmed transcript,tag)

Figure 4.30: verify Plaintext MAC algorithm.

Again if the mac tag verification fails then the plaintext processing abort.
Otherwise, it continues to process the content part of plaintext ptx, i.e. the
field that is present out of the ptx.commit, ptx.proposal and ptx.application
fields.

Let us assume ptx.application is present. Then the data contained within
ptx.application would be forwarded to the IM application and the processing
of an Application message is finished successfully.

Let us assume ptx.proposal is present. Then client a simply buffers the
Proposal structure contained in ptx.proposal locally. Client a delays process-
ing the Proposal structure until it wishes to create a Commit message.

Let us assume ptx.commit is present. The client processes the Commit struc-
ture contained in ptx.commit, according to Section 4.7.3. The result of suc-
cessfully processing13 a Commit structure is a state s that now contains a new
ratchet tree s.ratchet tree and a new commit secret s.commit secret. Client a
now overwrites its state a.s with s.

Recall (from Section 4.4) that the group secrets of a client are modified if
and only if the client processes a Commit message (or it initiates a group

13If the processing of the ptx.commit fails, then the processing of the entire Commit mes-
sage naturally fails too.

60

4.7. Handshake and Application message plaintext

or it processes a Welcome message). Moreover, as mentioned in Section 4.6,
the group context of a client also changes if and only if the client processes
a Commit message (or if it initiates a group or if it processes a Welcome
message). Therefore client a now uses its updated state a.s to modify its
group context and the remaining group secrets (init secret, welcome secret,
encryption secret, sender data secret, confirmation key).

Client a first updates its GroupContext structure a.s.group context by forming
an MLSPlaintextCommitContent structure, defined in Figure 4.31 based on
the received Commit message. The MLSPlaintextCommitContent structure
groups fields that are present (not ⊥) in either: (1) the associated data part of
the received Commit message (first 4 fields of the MLSmessage structure), (2)
data underlying the enc metadata field of the Commit message (see Section
4.10) or (3) data underlying the enc data field of the Commit message.

struct MLSPlaintextCommitContent:

GID
epochID
sender
user ad
content type
commit
signature

Figure 4.31: MLSPlaintextCommitContent structure.

More concretely a forms the MLSPlaintextCommitContent structure by call-
ing form Body(a.s, ptx, ID, content type, user ad), defined in Figure 4.32, and
sets body to this call’s output. The form Body algorithm takes a state struc-
ture state, an MLSCiphertextContent structure ptx, a client identifier sender
and two strings content type and user ad (first of which can take on only
three values “proposal”, “commit” or “app”) and produces the correspond-
ing MLSPlaintextCommitContent structure.14

form Body(state,ptx,sender,content type, user ad):

ep ← state.group context.epochID
gid ← state.group context.GID
body← MLSPlaintextCommitContent(gid, ep, sender, user ad, content type, ptx.commit, ptx.signature)
return body

Figure 4.32: form Body algorithm.

14Note that the group identifier and epoch are used from client a’s state, instead of being
passed as an argument by a successful frame processing. As we shall see in Section 4.10, a
successfully processed frame must have the same group identifier and epoch as the client
receiving the Handshake or application message.

61

4. The Messaging Layer Security (MLS) protocol

Finally, client a calls update GroupContext(a.s,body,ptx.confirmation tag), de-
fined in Figure 4.33, and sets a.s to the output of this call. The algorithm up-
date GroupContext takes a state structure state, an MLSPlaintextCommitContent

structure and a mac tag and produces a new state structure (which contains
an updated GroupContext structure and confirmation tag and is otherwise
identical to the input state). The new GroupContext structure essentially
has its epochID incremented by 1 (since it corresponds to the new epoch ini-
tiated by the received Commit message), its tree hash now contains a digest
of the new ratchet tree (produced by the processing of the Commit structure)
and its confirmed transcript hash now incorporates the body corresponding to
the received Commit message. The confirmation tag is overwritten to contain
the ptx.confirmation tag contained in the received Commit message.

update GroupContext(state,body,tag):

gctx← state.group context
gctx.epochID ++
H ← state.ciphersuite.H
τ ← state.ratchet tree
cth← gctx.confirmed transcript hash
gctx.tree hash← TH(H, τ, Root(τ))
ith ← H(〈cth, state.confirmation tag〉)
gctx.confirmed transcript hash← H(〈ith, body〉))
state.group context← gctx
state.confirmation tag← tag
return state

Figure 4.33: update GroupContext algorithm.

The update GroupContext algorithm makes use of TH in order to update the
tree hash (which will now correspond to the new ratchet tree produced by
the processed Commit structure). The TH algorithm is deterministic and
takes in a hash function H, a ratchet tree τ and a node structure n and
outputs a digest (using H) of the Public state of the subtree rooted at n in τ.
It is defined recursively, starting with the leaves as follows:

TH(H, τ, n) =

〈node2index(τ, n), n.kem pk, n.credential〉 if n is a leaf
〈node2index(τ, n), pn(n), hash(H, τ, n, ‘r′))〉 if leftNode(τ, n) = ⊥
〈node2index(τ, n), pn(n), hash(H, τ, n, ‘l′))〉 if rightNode(τ, n) = ⊥
〈node2index(τ, n), pn(n), hash(H, τ, n, ‘l′)), hash(H, τ, n, ‘r′))〉 otherwise.

where pn(n), takes in a node structure n and outputs the bit-string:

pn(n) = 〈n.kem pk, n.unmerged leaves〉

and hash(H, τ, n, side) takes in a hash function H, a ratchet tree τ, a node

structure n and side ∈ {‘l′, ‘r′} and returns the following:

hash(H, τ, n, side) =

{
H.Ev(TH(H, rightNode(τ, n), τ)) if side = ‘r′

H.Ev(TH(H, leftNode(τ, n), τ)) if side = ‘l′.

62

4.7. Handshake and Application message plaintext

Note that TH(H, τ, n) incorporates all fields apart from the KEM secret key
kem sk of each node in the subtree rooted at n in τ, which is exactly what
the Public state of the subtree rooted at n in τ would contain.

Lastly, in order to update the remaining group secrets, client a runs the MLS
key schedule, described in Section 4.8, on a.s.commit secret, a.s.group context
and a.s.init secret. Note, the first two values are new, i.e. they belong to
the new epoch being initiated by the processed Commit message; whilst
a.s.init secret is an old value (belonging to the previous epoch). The a.s.init secret
will be overwritten by the MLS key schedule, just like all the other group
secrets, to store values corresponding to the new epoch.

Once the MLS key schedule derives the remaining group secrets of the
new epoch, the (new) a.s.encryption secret will be used by the secret tree
(see Section 4.9) to initialise the new epoch’s sending and receiving state in
m.s.hand ratchet state and m.s.app ratchet state. Of course, since a processed
Commit message initiates a new epoch, all counters a.s.com ctr, a.s.prop ctr,
a.s.hand generation, a.s.app generation will be reset to 0. Moreover all Commit
messages pending for approval a.s.com confirm, buffered Proposal messages
a.s.prop confirm and their corresponding (pending) secrets a.s.commit pending
and a.s.prop pending will be erased, since they belong to an old epoch (and
the only active sending epoch is the newest one). With this, the processing
of a Commit message is completed successfully.

4.7.2 Content of a Proposal message

There are 3 types of proposal messages: add, update and remove. In our
MLS simplification, an operation (add,remove,update) can be proposed (via
a proposal message) to a group G by some member of group G, and only the
existing members of group G can process it. MLS uses a Proposal structure
defined in Figure 4.34 to represent the content of any Proposal message type.

struct Proposal:

proposal type
add
update
remove

Figure 4.34: Proposal content structure.

Let p be a Proposal structure. Then p.proposal type is a string that can take
on 3 possible forms “add”, “update” or “remove” and is used to represent
the type of Proposal message p corresponds to; p.add is an Add structure
(Figure 4.35), p.update is an Update structure (Figure 4.38), p.remove is a
Remove structure (Figure 4.42). At any point in time p can have only two

63

4. The Messaging Layer Security (MLS) protocol

fields present (not equal ⊥): p.proposal type and one of p.add, p.update or
p.remove fields depending on the string p.proposal type contains.

We next describe the Add, Update and Remove structures contained within
the Proposal structure. For each proposal type we also explain the creation
and processing of the content part of the proposal message.

Add

Add content creation An Add proposal message is used to suggest an
MLS client, who is not yet a member of the group, be added to the group.
Let p be a Proposal structure of an Add proposal message. Then p-s fields
are set as follows: p.proposal type = “add”, p.update = ⊥, p.remove = ⊥ and
p.add is an Add structure defined in Figure 4.35. The p.add.key package is
a KeyPackage structure owned by the client suggested to be added. Recall
(from step 5 in Section 4.3) the client wishing to propose some client A to
be added to the group would fetch A’s KeyPackage structure stored at the
DS KeyStorage service prior to sending the Proposal message. Therefore the
p.add.key package would be set to A’s fetched KeyPackage structure.

struct Add:

key package

Figure 4.35: Add structure.

More specifically let m be a client and let m.s denote its state structure and
ID be the identity of the client m wishes to add to the group. Then client m
will call the Propose-Add-Content(m.s, ID) to create a Proposal structure of
an Add proposal message:

Propose-Add-Content(st, ID):

keypackage ← get keypackage(ID, st.version, st.ciphersuite)
del keypacakge(ID, st.version, st.ciphersuite)
add p ← Add (keypackage)
p ← Proposal(“add”, add p,⊥,⊥)
return (st, p)

Figure 4.36: Algorithm responsible for creating an Add proposal message content.

Add content processing Let p be a Proposal structure representing the
content of an Add proposal message and let m be a client of some group
G with state structure m.s. Client m processes p by first checking that
p.proposal type = “add”. It then picks the leftmost blank leaf n in m.s.ratchet tree
and sets the n.kem pk field to p.add.key package.kem pk and n.credential to
p.add.key package.credential. If no blank leaf exists then m extends its ratchet
tree m.s.ratchet tree by one leaf and assigns p.add.key package.kem pk and

64

4.7. Handshake and Application message plaintext

p.add.key package.credential to the added leaf’s kem pk and credential fields
respectively.

Let n be the node that is chosen to represent the added member. Then
for each non-blank node (excluding the root) n′ in dPath(m.s.ratchet tree, n)
client m adds n to n′.unmerged leaves. There is no need to overwrite the
unmerged leaves field of the root node, since (by invariant 8 in Section 4.5.1)
all clients know its KEM secret key. This entire procedure is summarized by
the Process-As dd-Content algorithm shown in Figure 4.37.

Let p be an Add proposal message and p.content be its content. We say p
applies to an MLS client m if and only if p.content.add.key package is set to
be m’s KeyPackage structure.

Process-Add-Content(st, p):

req p.proposal type = “add”
`← ⊥
for n in st.ratchet tree:

if n is blank and n is leaf:
`←n

if ` = ⊥:
(st.ratchet tree, `) ← AddLeaf(st.ratchet tree)

`.kem pk ← p.add.keypackage.kem pk
`.credential ← p.add.keypackage.credential
index ← node2index(st.ratchet tree, `)
st.ratchet tree[index] ← `
ID ← p.add.keypackage.credential.ID
st.ratchet tree ← Unmerge(st.ratchet tree, ID)
return st

Figure 4.37: Processing algorithm for Add proposal content.

Update

Update content creation An Update proposal message is used to suggest
that its sender should refresh (update) its KEM key pair. Let p be a Proposal

structure of an Update proposal message. Then p.proposal type = “update”,
p.add = ⊥, p.remove = ⊥ and p.update is an Update structure defined in
Figure 4.38. The p.update.key package is a newly created KeyPackage struc-
ture by the sender of the Update proposal message. The goal of an Update
proposal is to have each group member m replace the existing KEM pub-
lic key (in m.ratchet tree) associated to the Update proposal’s sender to the
KEM public key contained in the new KeyPackage structure. The sender
also saves the KEM secret key corresponding to the KEM public key con-
tained in p.update.key package in its state. This way if p is confirmed by the
group (via a Commit message) the sender of p is able to add its new KEM
secret key in its ratchet tree at its representative node.

65

4. The Messaging Layer Security (MLS) protocol

struct Update:

key package

Figure 4.38: Update structure.

More specifically let m be a client and let m.s denote its state structure.
Then client m will call the Propose-Update-Content(m.s) to create a Proposal

structure of an Update proposal message:

Propose-Update-Content(st):

(sk, pk) ←$ st.ciphersuite.KEM.KGen()
keypackage ← Form-KeyPackage(st, pk)
update p ← Update (keypackage)
p ← Proposal(”update”,⊥, update p,⊥)
st.prop pending[st.prop ctr]← sk
st.prop confirm[st.prop ctr]← p
return (st, p)

Figure 4.39: Algorithm responsible for creating an Update proposal message content. It makes
use of the Form-KeyPackage function algorithm defined in 4.40.

Form-KeyPackage(st, kem pk):

t← Lifetime(time.now, time.tomorrow)
caps← Capabilities([st.version], [st.ciphersuite])
m← 〈st.version, st.ciphersuite, st.credential, kem pk, caps, t〉
signature ← st.ciphersuite.DS.Sign(st.sign sk, m)
keypackage← KeyPackage(st.version, st.ciphersuite, st.credential, kem pk, caps, t, signature)
return keypackage

Figure 4.40: Form-KeyPackage algorithm. The time.now and time.tomorrow calls return an
integer corresponding to the current time and an integer corresponding to the time in 24 hours
respectively. This interval is arbitrary.

Update content processing Let p be a Proposal structure representing
the content of an Update proposal message and let m be a client of some
group G with state structure m.s. Client m processes p by first checking
that p.proposal type = “update”. It then checks which member’s key ma-
terial should be updated with p, by reading the identity set in the field
p.update.key package.credential.ID. It finds the leaf node n in m.ratchet tree
representing the client with this identity. Subsequently it replaces n.credential
with p.update.key package.credential and n.kem pk with p.update.key package.kem pk.
If client m is the one represented by leaf node n then m also sets n.kem sk to
m.s.prop pending[ctr] where ctr is the group operation number corresponding
to p. Finally m blanks all the nodes on dPath(m.s.ratchet tree, n). This entire
procedure is summarized by the Process-Update-Content algorithm shown in
Figure 4.41.

66

4.7. Handshake and Application message plaintext

Process-Update-Content(st, p):

req p.proposal type = “update”
ID ← p.update.keypackage.credential.ID
n ← SearchNode(st.ratchet tree, ID)
n.kem pk ← p.update.keypackage.kem pk
n.credential ← p.update.keypackage.credential
if ∃ctr : prop confirm[ctr] = p:

n.kem sk ← prop pending[ctr]
st.kem sk ← n.kem sk
st.kem pk ← n.kem pk
st.credential ← n.credential

index ← node2index(st.ratchet tree, n)
st.ratchet tree[index] ← n
st.ratchet tree ← dPathBlank(st.ratchet tree, ID)
return st

Figure 4.41: Processing algorithm for Update proposal content.

Let p be an Update proposal message and p.content be its content. We say p
applies to an MLS client m if and only if p.content.update.key package.credential.ID
is set to be m’s identity.

Remove

Remove content creation A Remove proposal message is used to suggest
that a member of the group be removed from the group. Let p be a Proposal

structure of a Remove proposal message. Then p.proposal type = ”remove”,
p.add = ⊥, p.update = ⊥ and p.remove is a Remove structure defined in
Figure 4.42. The p.remove.ID is the identity of the client suggested to be
removed.

struct Remove:

ID

Figure 4.42: Remove structure.

More specifically let m be a client and let m.s denote its state structure.
Then client m will call the Propose-Remove-Content(m.s, ID) to create a Proposal

structure of a Remove proposal message:

Propose-Remove-Content(st, ID):

p ← Remove (ID)
return (st, p)

Figure 4.43: Algorithm responsible for creating a Remove proposal message content.

Remove content processing Let p be a Proposal structure representing
the content of a Remove proposal message and let m be a client of some
group G with state structure m.s. Client m processes p by first checking

67

4. The Messaging Layer Security (MLS) protocol

that p.proposal type = ”remove”. Then it searches its ratchet tree to find a
leaf node n such that n.credential.ID = p.remove.ID. Remember since the
client identities are unique across all MLS clients, there can be at most one
leaf with an identity matching the one contained in p. Client m then sets all
the fields of n to ⊥, turning the node blank. Then for each node n′ in the
dPath(m.s.ratchet tree, n) client m blanks n′. Now if n is the rightmost blank
node then m truncates its ratchet tree until the rightmost node becomes non-
blank.

Process-Remove-Content(st, p):

req p.proposal type = ”remove”
ID ← p.remove.ID
st.ratchet tree ← BlankNode(st.ratchet tree, ID)
st.ratchet tree ← dPathBlank(st.ratchet tree, ID)
st.ratchet tree ← Trunc(st.ratchet tree)
return st

Figure 4.44: Processing algorithm for Remove proposal content.

Let p be a Remove proposal message and p.content be its content. We say p
applies to an MLS client m if and only if p.content.remove.ID is set to be m’s
identity.

4.7.3 Content of a Commit message

Commit content creation

Consider a client m who is a member of some group G. Assume m has
buffered all Proposal structures within the current epoch (that have been
received and processed up until the content) in a list `′. Assume further that
m has not been suggested for removal by any of them.15 In MLS if |`′| > 0
then m is not allowed to send application messages. This way MLS ensures
that group members immediately act on any group operations. Therefore,
at this point m can either (case 1) create and send a proposal message itself
or (case 2) create and send a commit message to each existing member of G
and (if the commit message contains any Add proposals) create and send a
welcome message to each member contained in a committed Add proposal.
Assume m wishes to do the latter i.e. create a commit message and possi-
bly (if it commits an Add proposal) welcome message. In this section we
describe the construction of the commit message content. The creation of
welcome messages will be covered in Section 4.11.

A commit message content is represented by the Commit structure displayed
in Figure 4.45. Let c be a Commit structure. Then c.proposals is a list of
Proposal structures and c.path is an UpdatePath structure defined in Fig-

15If m is proposed to be removed then it should not create a commit message.

68

4.7. Handshake and Application message plaintext

ure 4.45 which consists of a KeyPackage structure keypackage and a list of
UpdatePathNode structures nodes defined in Figure 4.48. The c.path must be
present (not equal ⊥) if the c.proposals contains at least one Remove or Up-
date proposal or if |c.proposals| = 0. Otherwise it can be omitted (equal to
⊥). Recall, from Section 4.3, the purpose of a Commit message is two-fold.
Namely it is used to (1) indicate which proposed group operations go into
effect and (2) refresh the group secrets, more specifically the commit secret,
which is then used to derive the remainder of the new group secrets (see
Section 4.8). The c.proposals is used to serve the first purpose and c.path is
used for the second.

struct Commit:
proposals
path

struct UpdatePath:

keypackage
nodes

Figure 4.45: Commit structure which represents the content part of a Commit message and
UpdatePath structure.

A client m with state m.s creates a Commit structure c by following a se-
quence of steps. It starts by forming the c.proposals. As stated before each
client upon receiving a proposal message, processes everything apart from
the contained Proposal structure, which is buffered. It defers the process-
ing of buffered proposal content (Proposal structures) to the point when it
wishes to create a Commit message content. The c.proposals list is formed
by including each buffered Proposal structure p that meets the following
conditions:

• p is a valid Proposal structure. A Proposal structure p is valid if all
of the following conditions hold. All the appropriate fields are present
given a certain value of the p.proposal type field. If p.proposal type = “add”
or p.proposal type = “update” then p.add.keypackage or p.update.keypackage
must be a valid KeyPackage structure respectively. A KeyPackage struc-
ture k is valid if and only if k.signature verifies against the k.credential.sign pk,
k.version is equal to the group’s version, k.ciphersuite is equal to the group’s
Ciphersuite structure, the k.k.credential.signature verifies against the AS
signature key AS sign sk and the time at which p is being processed is
within the bounds specified in k.lifetime. If p.proposal type = ”remove”
then m’s ratchet tree must contain a leaf representing client identified by
p.remove.ID.

• If there are multiple valid Proposal structures that apply to the same
client a, the committer m chooses one Proposal structure (out of the mul-
tiple) and includes only that one in the Commit, considering the rest in-
valid. For all clients a the committer m must prefer any Remove received,
or the most recent Update applying to a if there are no Remove propos-

69

4. The Messaging Layer Security (MLS) protocol

als. If there are multiple Add proposals for the same client, the committer
again chooses one to include at random and considers the rest invalid.

Once having formed the list of Proposal structures c.proposals, client m then
proceeds to process each element of c.proposals on a copy of its local ratchet
tree m.s.ratchet tree16. It first processes all Update Proposal structures in
c.proposals and then all Remove Proposal structures. Finally it processes all
Add Proposal structures in the order listed in c.proposals. So in the example
list of Proposal structures given in Figure 4.1 client m would process the
Proposal structures in the following order: 2,3,0,4,1,5,6.

0 1 2 3 4 5 6

Rem(A) Add(C) Upd(B) Upd(D) Rem(F) Add(G) Add(E)

Table 4.1: Example list of Proposal structures contained in c.proposals where c is a Commit
message. The Remove, Add, Update Proposal structures are denoted as Rem(.), Add(.) and
Upd(.) respectively where the . is a placeholder for any client identifier.

Now if |c.proposals| 6= 0 and c.proposals contains only Add Proposal struc-
tures then m is allowed to not populate c.path, i.e. set c.path to ⊥, and fin-
ish forming the Commit structure. If m in such a scenario chooses not to
populate the c.path field, then m would store the ratchet tree to which the
c.proposals were applied, along with the new commit secret (set to an all-zero
bit-string of KDF.Nh bits length) in m.s.commit pending[m.s.com ctr]. More-
over it would save the produced Commit structure in m.s.com confirm[m.s.com ctr].
This way, if it receives its own Commit message back from the DS Broadcast
service, m can obtain the corresponding ratchet tree and commit secret.

Otherwise client m proceeds to populate the c.path field by creating an
UpdatePath structure. Let v0 be the leaf node representing client m in
m.s.ratchet tree. On a high level in order to create an UpdatePath struc-
ture client m first samples seed values and uses them to generate fresh KEM
key pairs for itself and every node in dPath(m.s.ratchet tree, v0). Then for
every node v on coPath(m.s.ratchet tree, v0) it encrypts specific information
under the KEM public keys of nodes in Res(v). This encrypted information
allows each party in the subtree of v to learn all new KEM secret keys and
seed values from v’s parent up to the root. The seed value corresponding to
the root node is then used to generate the commit secret of the new epoch
this commit message would define. The new KEM public keys and resulting
ciphertexts are grouped together to form an UpdatePath structure.

More specifically, let client m (acting as a committer) be represented by
leaf node v0 and let [v1, v2, . . . , vn] (for some n ∈ N0) be the nodes on the

16It must do it on a copy and not on the original tree since there may be another client
m′ who is also creating a Commit message at the same time as m. Therefore m does not yet
know if its Commit message will be the one defining the next epoch.

70

4.7. Handshake and Application message plaintext

direct path of v0, i.e. [v1, v2, . . . , vn] = dPath(m.s.ratchet tree, v0). Client
m (acting as a committer) starts by sampling a fresh random ‘seed’ value
s0←$ {0, 1}KDF.Nh. Then for all i ∈ {0, 1, . . . , n} client m using the generated
seed s0 computes a new KEM key pair (kem ski, kem pki) for node vi in the
following way:

(si+1, kem ski, kem pki)← Prg(m.s, si). (4.10)

where Prg is a deterministic algorithm that takes in a state structure state
and a pseudorandom value s and computes a new pseudorandom value and
KEM key pair. It is defined as follows:

Prg(state, s):

KDF ← state.ciphersuite.KDF
ns ← KDF.Expand(s, 〈KDF.Nh, ”mls10node”〉 , KDF.Nh)
s′ ← KDF.Expand(s, 〈KDF.Nh, ”mls10path”〉 , KDF.Nh)
(kem sk, kem pk) ← DeriveKeyPair(ns)
return (s′, kem sk, kem pk)

Figure 4.46: Prg algorithm specification.

The seed value sn+1 is then set to be the new commit secret value. Finally
for all i ∈ {1, . . . , n}, client m sets vi.unmerged leaves to ∅. Now that m has
computed a new KEM key pair for its representative node and all nodes
in its direct path, m needs to send some information to the other group
members in order to keep all members’ local ratchet trees in sync.17

Concretely, client m needs to send its new KEM public key kem pk0 and
the KEM public key of all nodes in v0-s direct path, i.e. kem pki for all i ∈
{1, . . . , n} to all members. This is necessary to preserve the first ratchet tree
invariant (see Section 4.5.1), which demands that the public state of each
group members’ ratchet tree is the same.

Moreover, client m needs to ensure that the KEM secret key of any given
node in the direct path of v0 is propagated to the clients eligible to know
it. This is again necessary in order to maintain invariant 7 across the group.
Since for all i ∈ {1, . . . , n} vi.unmerged leaves = ∅ then node vi-s KEM se-
cret key must be sent to all members represented by a leaf in the subtree
rooted at vi. Equivalently, a given member m′ represented by some leaf u
is only allowed to learn the new KEM secret keys belonging to nodes in
commonPath(m.s.ratchet tree, v0, u).

Let [v′0, v′1, . . . , v′n−1] be the nodes on the co-path of v0, i.e. v′t is the sibling
node of vt for all t ∈ {0, . . . , n− 1}. Let i ∈ {1, . . . , n}. Because seed si is
used to derive the KEM key pair belonging to node vi in v0-s direct path

17Note that the group we want the ratchet tree invaraints to hold is the group resulting
from the commit message we are creating.

71

4. The Messaging Layer Security (MLS) protocol

(equation 4.10), it is enough to send si to each client represented by some
leaf u in v′i−1-s subtree and ensure that the member represented by u obtains
the KEM secret keys of nodes in commonPath(m.s.ratchet tree, v0, u).

Of course, client m can not send si plainly, since the non-eligible group
members could simply eavesdrop on the network and obtain the value of
si. Recall from Section 4.5.1 that Res(v′i−1) returns the smallest set of non-
blank nodes that cover all leaves in the subtree rooted at v′i−1. Therefore it
is enough to use the KEM public key of each node in Res(v′i−1) to encrypt
si to all members represented by some leaf in v′i−1-s subtree. Then for all
i ∈ {1, . . . , n} and for every node vj ∈ Res(v′i−1), client m computes:

cij ← SetSeal(m.s, vj.kem pk, si). (4.11)

where SetSeal is defined in Figure 4.47. The SetSeal algorithm takes in a
state structure state, KEM public key kem sk and a message m and outputs
a ciphertext (a KEM encapsulation enc and NAEAD ciphertext c′ pair). 18

SetSeal(state, kem pk, m):

KEM ← state.ciphersuite.KEM
NAEAD ← state.ciphersuite.NAEAD
ctx ← 〈state.group context〉
(k, enc) ← KEM.Encap(kem pk)
(key,nonce) ← KeySchedule(state, k)
c′ ← NAEAD.Enc(key, nonce, ctx, m)
return (enc, c′)

KeySchedule(state, k):

KEM ← state.ciphersuite.KEM
KDF ← state.ciphersuite.KDF
NAEAD ← state.ciphersuite.NAEAD
suite ← 〈KEM, KDF, NAEAD〉
psk id hash ← KDF.Extract(〈“HPKE-v1”, suite, “psk id hash”〉,“ ”)
info hash ← KDF.Extract(〈“HPKE-v1”, suite, “info hash”〉,“ ”)
ks ctx ← 〈“mode base”, psk id hash, info hash〉
secret ← KDF.Extract(〈“HPKE-v1”, suite, “secret”〉,k)
key ← KDF.Expand(secret, 〈NAEAD.Nk, “HPKE-v1”, suite, “key”, ks ctx〉, NAEAD.Nk)
nonce ← KDF.Expand(secret, 〈NAEAD.Nn, “HPKE-v1”, suite, “base nonce”, ks ctx〉, NAEAD.Nn)
return (key,nonce)

Figure 4.47: SetSeal algorithm specification.

Finally client m has all the material it needs to form the UpdatePath structure
c.path, which encompasses all information m needs to broadcast to the group
(for the trees to remain in sync). Namely it creates a KeyPackage structure
c.keypackage by calling the Form-KeyPackage(m.s, kem pk0) function defined

18The SetSeal and OpenSeal (see Figure 4.52) algorithms given here are simplifications
of the HPKE algorithms in the base mode given by [BBLW21]. Moreover MLS uses a
GroupContext structure that is slightly modified from the one that is stored in the client’s
state.

72

4.7. Handshake and Application message plaintext

in Figure 4.40, where m.s is the state of client m. The keypackage is the part
of an UpdatePath structure responsible for sending m’s new KEM public
key kem pk0 to all other group members.19

struct UpdatePathNode:

kem pk
enc path secret

Figure 4.48: UpdatePathNode structure.

To form c.path.nodes client m needs to create an UpdatePathNode structure
for each node in the direct path of v0 (leaf representing client m). An
UpdatePathNode structure defined in Figure 4.48 contains a KEM public key
kem pk and a list of ciphertexts enc path secret. For all i ∈ {1, . . . , n} client
m creates an UpdatePathNode structure node where node.kem pk is set to
kem pki and node.enc path secret is set to contain all ciphertexts encrypting
the seed value si, i.e. all elements of the set {cij | j ∈ {0, . . . , |Res(v′i−1)|}}.

Client m also saves the ratchet tree (produced by applying the c.proposals,
generated KEM keys and empty unmerged leaves) and the produced com-
mit secret in the m.s.commit pending map (at the current index m.s.com ctr).
Moreover it saves the created Commit structure in the m.s.com confirm map
at the same index at which it saved the ratchet tree and commit secret pair
in m.s.commit pending. This way if the commit message is confirmed by the
group, the client (who created it) can obtain the corresponding ratchet tree
and commit secret.20

The entire process of creating the Commit structure, provided the list of
Proposal structures has been formed, is summarized in the form Commit
algorithm defined in Figure 4.49. It takes in a state structure st, and a
list of Proposal structures proposals and produces a state structure and an
Commit structure. Note that the computePath algorithm omits setting the
path if it can (i.e. if |proposals| 6= 0 and proposals only contains Add pro-
posals). We do this here to illustrate all the possibilities of commit content
creation. In reality the client creating a commit message can populate the
c.path no matter the case.

19Note that this KeyPackage is not published to the DS KeyPackage storage since its not
intended to be used to initialize a group. Its purpose is to prove to the members of its
existing group the contained KEM public key really belongs to m.

20Note that, allowing the creator to encrypt the seed value s0 under its own KEM public
key would hinder the Post-Compromise security of MLS. Namely an attacker who has leaked
the state of the committer would then have the KEM public key the committer used to
encrypt the seed value to itself.

73

4. The Messaging Layer Security (MLS) protocol

form Commit(st, proposals):

(τ,setPath) ← applyProposals(st, proposals)
if ¬setPath:

commit secret ← {0}KDF.Nh

commit pending[com ctr]← (τ, commit secret)
com confirm[com ctr]← c
return (st, path)

KDF ← st.ciphersuite.KDF
s[.], kem pk[.], kem sk[.]← ⊥
enc path secret[.][.]← ⊥
nodes[.]← ⊥
v0 ← SearchNode(τ, st.credential.ID)
dp ← dPath(τ, v0)
s[0]←$ {0, 1}KDF.Nh

for i in range(|dp|+ 1) :
(s[i + 1], kem sk[i], kem pk[i])← Prg(st, s[i])

commit secret ← s[|dp|+ 2]
cp ← coPath(τ, v0)
for i in range(|cp|) :

res ← Res(cp[i])
j← 0
for v in res :

enc path secret[i][j]← SetSeal(st, v.kem pk, s[i + 1])
j ++

keypackage ← Form-KeyPackage(st, kem pk[0])
for i in range(|dp|) :

nodes[i] ← UpdatePathNode(kem pk[i + 1], enc path secret[i])
path ← UpdatePath(keypackage, nodes)
τ ← computeTree(τ, v0, kem sk, kem pk, keypackage)
c← Commit(proposals, path)
commit pending[com ctr]← (τ, commit secret)
com confirm[com ctr]← c
return (st, c)

Figure 4.49: Algorithm form Commit. It uses the applyProposals and computeTree functions
defined in Figure 4.50.

The form Commit algorithm makes use of two helper algorithms applyPro-
posals and computeTree defined in Figure 4.50. The applyProposals takes in a
state structure state, and list of Proposal structure proposals. It produces
a copy of the ratchet tree contained in state to which proposals have been
applied to and a boolean setPath which is set to true if and only if the
UpdatePath structure can be excluded from a Commit message containing
proposals.

The computeTree algorithm takes in a ratchet tree τ, a node structure n (an
element of τ), a list of KEM secret keys kem sk and corresponding KEM
public keys kem pk and a KeyPackage structure keypackage. It produces a
copy of the ratchet tree τ in which: (1) the KEM keys along the direct path
of node n have been replaced by kem sk and kem pk, (2) the unmerged leaves
set of each node in n-s direct path has been overwritten with ∅ and (3)
the Credential structure and KEM key pair of n has been set to the values
contained in keypackage.

74

4.7. Handshake and Application message plaintext

applyProposals(st, proposals):

types ← [“update”, “remove”, “add”]
setPath ← false

for type in types:
for p in proposals:

if p.proposal type=type and type=“update”:
st ← Process-Update-Content(st,p)
setPath ← true

if p.proposal type=type and type=“remove”:
st ← Process-Remove-Content(st,p)
setPath ← true

if p.proposal type=type and type=“add”:
st ← Process-Add-Content(st,p)

if |proposals| = 0:
setPath ← true

return (st.ratchet tree, setPath)

computeTree(τ, n, kem sk, kem pk, keypackage):

i← node2index(τ, n)
τ[i].kem sk← kem sk[0]
τ[i].kem pk← kem pk[0]
τ[i].credential← keypackage.credential
for j in range(|dp|) :

i← node2index(τ, dp[j])
τ[i].kem sk← kem sk[j + 1]
τ[i].kem pk← kem pk[j + 1]
τ[i].unmerged leaves← ∅

return τ

Figure 4.50: applyProposals and computeTree algorithms.

Therefore a client m, with state m.s, will call computePath(m.s, proposals) to
obtain a new state m.s and a Commit structure c containing proposals.

Example We illustrate this process with an example. Namely let client
m identified as A with state m.s be in a group containing clients identi-
fied as A,B,C,D and E. Assume m started creating a Commit message c
and has formed and applied a list of all valid received Proposal struc-
tures c.proposals to a copy of its m.s.ratchet tree and is now ready to form
the UpdatePath structure c.path. Assume that the ratchet tree as a result of
applying c.proposals is the one shown in Figure 4.51. Since m identifies as A
the leaf node it is represented by is the left-most leaf in this tree annotated
as v0. Hence its direct path is [v1, v2, v3] and its co-path is [v′0, v′1, v′2].

A B C D

E

s0←$ {0, 1}KDF.Nh

(s1, kem sk0, kem pk0)← Prg(m.s, s0)
v0 v′0 kem pkC kem pkD

(s2, kem sk1, kem pk1)← Prg(m.s, s1) v1 v′1
SetSeal(m.s, kem pkC, s2)
SetSeal(m.s, kem pkD, s2)

(s3, kem sk2, kem pk2)← Prg(m.s, s2) v2 v′2

(s4, kem sk3, kem pk3)← Prg(m.s, s3) v3

Figure 4.51: Example process of assembling the UpdatePath of a commit message. The diagram
only illustrates the ciphertexts corresponding to the seed of v2 and excludes the ciphertexts
corresponding to v1 and v3 due to their simplicity.

Client m first chooses a random value s0. Next, m calls the function Prg

75

4. The Messaging Layer Security (MLS) protocol

for each level i ∈ {0, 1, 2, 3} on the simple path from v0 to the root v3 and
derives a seed value si+1 for the next level and a new KEM key pair for
that level’s node vi. Every seed value si in the direct path of v0 (s1, s2, s3)
is then encrypted with setSeal using the KEM public key of each node in
the resolution of vi−1-s sibling node v′i−1. This ensures that all leaves in the
subtree rooted at v′i−1 can learn the value si. Because all group members use
the same KDF algorithm and equation 4.10 holds, all leaves in the subtree
rooted at v′i−1 can also compute all new KEM key pairs and seeds from
v′i−1-s parent (vi) up to the root.

So in our example the seed value s2 corresponding to node v2 will be en-
crypted using the KEM public keys of nodes in the resolution of v′1. Since
v′1 is blank (indicated white in diagrams) then the resolution includes the
leaves representing clients C and D. Therefore we will have two ciphertexts
encrypting s2, one using kem pkC and another using kem pkD in order to
ensure all clients represented by the leaves in the subtree rooted at v′1 can
obtain s2 and with it s3, s4 and the KEM key pairs corresponding to these
seeds.

The seed value s1 of node v1 needs to be encrypted to the nodes in the
resolution of v′0 which is just v′0 itself and similarly s3 of node v3 needs
to be encrypted to only v′2. Then c.path will contain a new keypackage
c.keypackage of client m binding kem pk0 to m and three UpdatePathNode

structures in c.nodes.

Commit content processing

Let c be a Commit structure representing the content of a Commit message
and let m be a client of some group G with state structure m.s. We consider
two cases of Commit message processing: (1) m is not the creator of the re-
ceived Commit message and (2) m is the creator. If m is the creator, then the
map m.s.com confirm will contain the Commit structure at some counter value
ctr. The client then uses this ctr to obtain the appropriate ratchet tree and
commit secret value saved in m.s.commit pending. It then stores this ‘pend-
ing’ ratchet tree and commit secret in m.s.ratchet tree and m.s.commit secret
respectively. This completes the processing of a Commit structure success-
fully, in case m is its creator. If m is not the creator, i.e. there exists no ctr
such that m.s.com confirm[ctr] contains the received Commit structure, then
client m will proceed to process the Commit message content c as follows.
Let ID be the identity of the creator of the Commit structure.

Client m first parses the c.proposals field to determine if each Proposal struc-
ture it contains is valid and that each client is targeted by at most one of the
contained Proposal structures. Moreover, it uses c.proposals to determine if
c.path is supposed to be populated. Recall that c.path must be populated in
case c.proposals contains a Remove or Update structure or if |c.proposals| = 0.

76

4.7. Handshake and Application message plaintext

If c.path is supposed to be populated but is not, the processing of the Commit

structure fails. If c.path does not need to be populated (|c.proposals| 6= 0
and c.proposals only contains Add structures) and is not, then m applies the
c.proposals to its local ratchet tree m.s.ratchet tree and sets commit secret to
the all zero vector of KDF.Nh length.

If c.path is populated then m applies c.path to its ratchet tree and com-
mit secret as follows. Let mlea f and v0 denote m-s representative leaf in its
ratchet tree and committer’s representative leaf respectively.21 If no such
leaves exist the Commit structure processing fails. First the client checks that
the KeyPackage structure c.path.keypackage is valid and that it indeed corre-
sponds to the creator of the Commit structure ID. If it is, m proceeds to extract
the KEM public and secret keys from the c.path.nodes component, otherwise
the processing fails.

Since m is eligible to know only the KEM secret keys on the common path
of v0 and mlea f , commonPath(m.s.ratchet tree, v0, mlea f), client m determines
the least common ancestor w between mlea f and v0 by computing:

w← LCA(m.s.ratchet tree, mleaf , v0). (4.12)

By Equation 4.10 it is enough for m to obtain the seed value s corresponding
to node w to obtain all KEM secret keys it is allowed to know (by invariant
7).

To obtain s from c.path, client m needs to (1) find a node whose KEM public
key was used to encrypt s and (2) whose KEM secret key m knows. To do
this, m starts by computing the direct path of v0 by calling:

[v1, v2, . . . , vn]← dPath(m.s.ratchet tree, v0) (4.13)

and v0-s co-path by executing:

[v′0, v′1, . . . , v′n−1]← coPath(m.s.ratchet tree, v0). (4.14)

Let i be such that w = vi.22 Then m takes v′i−1 (the unupdated child of w) and
computes its resolution Res(v′i−1). The nodes contained within Res(v′i−1) are
all nodes whose KEM public keys were used to encrypt s.

Client m then parses Res(v′i−1) until it finds a node whose KEM secret key
it knows. If no such node exists, the processing fails since the resolution of
v′i−1 covers all leaves in v′i−1-s subtree (and mlea f is a leaf in this subtree).

Let u be the node in Res(v′i−1) whose KEM secret key is known to m. Client

21Since we know the committer’s identity ID, m would simply search its local ratchet tree
m.s.ratchet tree until it finds the non-blank leaf v0 such that v0.credential.ID.

22Such an i exists since w is on v0-s direct path by definition of common path.

77

4. The Messaging Layer Security (MLS) protocol

m then uses u.kem sk to decrypt the ciphertext under u.kem pk stored in
c.path.nodes[i− 1].enc path secret and obtain the seed value s (corresponding
to w). More specifically, since the ciphertext is formed using SetSeal, then m
obtains s by executing:

s← OpenSeal(m.s, u.kem sk, c.path.nodes[i− 1].enc path secret[j]) (4.15)

where c.path.nodes[i− 1].enc path secret[j] = SetSeal(m.s, u.kem pk, s), for the
appropriate j. The OpenSeal algorithm takes in a state structure state, KEM
secret key kem sk and a ciphertext c (produced by SetSeal) and outputs the
message underlying c.

OpenSeal(state, kem sk, c):

(enc, c′) ← c
KEM ← state.ciphersuite.KEM
NAEAD ← state.ciphersuite.NAEAD
ctx ← 〈state.group context〉
k ← KEM.Decap(kem sk, enc)
(key,nonce) ← KeySchedule(state, k)
m ← NAEAD.Dec(key, nonce, ctx, c′)
return m

Figure 4.52: OpenSeal algorithm specification. The keyschedule used is defined in Figure 4.47.

It then uses s to derive each KEM key pair on the simple path from w to the
root using Equation 4.10 as well as the new commit secret. It of course checks
that the KEM public keys derived in such a way match the KEM public keys
contained in c.path.nodes (corresponding to nodes on the simple path from
w to the root).

Finally m updates its local ratchet tree as follows. For each node in v ∈
[v0, v1, . . . , vn] client m replaces v.kem pk with the corresponding new KEM
public key contained in c.path.nodes and sets v.unmerged leaves to ∅, except
for v = v0 (since it is a leaf and has v0.unmerged leaves = ⊥ by Section
4.5.1). Then for each node v in commonPath(m.s.ratchet tree, v0, mlea f), client
m overwrites v.kem sk to contain the new corresponding KEM secret key.
Lastly, m sets the Credential structure of v0-s leaf to the one contained in
c.path.keypackage.

The output of a successfully processed Commit structure is then a state

structure. This state structure is almost identical to m.s before the process-
ing of the Commit structure began. The only difference is that the m.s.ratchet tree
and m.s.commit secret fields contain the new ratchet tree and commit secret
respectively (obtained from the Commit structure processing).

78

4.8. Key Schedule

4.8 Key Schedule

A client m with state m.s executes the MLS key schedule only at the be-
ginning of a new epoch. More specifically, it is run right after a receives
a Commit message, processes its frame and its Commit structure, which up-
dates its m.s.ratchet tree, m.s.commit secret and m.s.group context (see Section
4.7).

The MLS key schedule is a deterministic procedure. It takes the commit secret
extracted from the received Commit message (now stored in m.s.commit secret),
the init secret derived in the previous epoch (presently stored in m.s.init secret)
and the new GroupContext structure produced as a result of processing the
Commit message (now stored in m.s.group context). Given these inputs, the
MLS key schedule produces a new value for all the remaining group se-
crets welcome secret, encryption secret, sender data secret, confirmation key and
init secret. The client m then stores these derived values in the corresponding
field in its state m.s.

init secret[n]

KDF.Extractcommit secret[n+1]

KDF.Expand(., 〈KDF.Nh, ‘mls10joiner′〉, KDF.Nh)

joiner secret

KDF.Extract0

KDF.Expand(.,〈KDF.Nh, ‘mls10weclome′〉 , KDF.Nh)

= welcome secret

KDF.Expand(., 〈KDF.Nh, ‘mls10epoch′, group context[n + 1]〉, KDF.Nh)

epoch secret

KDF.Expand(., 〈KDF.Nh, ‘mls10encryption′〉,
KDF.Nh) = enc secret[n+1]

KDF.Expand(.,〈KDF.Nh, ‘mls10senderdata′〉,
KDF.Nh) = sender data secret[n+1]

KDF.Expand(.,〈KDF.Nh, ‘mls10confirm′〉, KDF.Nh) =

confirmation key[n+1]

KDF.Expand(., 〈KDF.Nh, ‘mls10init′〉, KDF.Nh)

init secret[n+1]

Figure 4.53: MLS Key schedule.

The entire process is summarized in Figure 4.53. The secrets in this figure
have an index next to them, used to clarify which epoch the values belong
to. That is if n is the epoch m was in prior to receiving the Commit mes-

79

4. The Messaging Layer Security (MLS) protocol

sage, then we supply the Key Schedule with the init secret derived in epoch
n and the commit secret and group context derived in the new epoch n+1
(initiated by the Commit message processing). The MLS key schedule uses
the key derivation scheme KDF stored in m.s.ciphersuite. The KDF.Extract
takes its salt argument from the top and its randomness from the left. The
KDF.Expand takes its pseudorandom key from the incoming arrow.

Note that (as explained in Section 4.4), given some client m with state m.s,
m.s.group context, m.s.init secret and m.s.commit secret are single values, not
maps like suggested in Figure 4.53. We store single values instead of a map
in order for the scheme to provide better forward-security (see Section 5).

Once the remaining group secrets have been derived, via the MLS key
schedule, the new commit secret is never used again. Therefore a client m,
upon running the MLS key schedule will set m.s.commit secret to ⊥, in this
way deleting its value. This is again done in order to facilitate forward-
security of MLS (see Section 5). Note that the MLS key schedule over-
writes the init secret it used as input with the init secret it derives. Since
the m.s.group context might as well be a public value (see Section 4.4), and
all the other MLS key schedule inputs are overwritten, client m does not
need to delete it from its state.23

In the sections to follow we explain the semantics of each of the remaining
group secrets. In Section 4.9 we explain how the encryption secret is utilised
to initialise the new epoch’s sending and receiving state in m.s.hand ratchet state
and m.s.app ratchet state. In Section 4.10, we describe how the sender data secret
is used to produce the enc metadata field in the MLSmessage structure. Fi-
nally, in Section 4.11, we explain how the welcome secret is used to welcome
newly added members to the group.

4.9 Secret Tree

Secret Tree. A secret tree is an LBBT whose nodes contain a single bit-string.
We adopt the same representation of secret trees as we did for ratchet trees.
Namely within pseudocode, we assume that a secret tree is a list containing
bit-strings.24 As in the ratchet tree, bit-strings in leaf nodes are positioned
at even-numbered indices, whereas bit-strings in parent nodes are held at
odd-numbered indices; starting at the left-most node in the tree at position
zero and running from left to right. Given this representation, we use the
same functions as in the ratchet tree (see Section 4.5) to obtain the root of the

23If it were to erase m.s.group context though, then m would need to save
m.s.group context.confirmed transcript hash in some field in its state. This is necessary be-
cause of the way the next GroupContext structure is computed, explained in Section 4.7.1.

24We simplify and make the list contain bit-strings instead of node structures, since the
node structure would contain a single bit-string field.

80

4.9. Secret Tree

tree ,sibling, left child, right child of any node and index of a given node. If
a node’s bit-string is not present, the ⊥ symbol will be stored in place of it.
A node whose bit-string is not present is considered blank in the secret tree.

Let G be a group. Then each member m of G, as part of Commit message
processing, will construct a secret tree secret tree (see Section 4.7.1). In par-
ticular, assume m.s is the state of m after it ran the MLS key schedule to de-
rive (and store) the new group secrets (corresponding to the new epoch ini-
tiated by the Commit message processing). To construct a secret tree, m calls
formSecretTree(m.s.ciphersuite.KDF, m.s.ratchet tree, m.s.encryption secret), de-
fined in Figure 4.54. It then sets secret tree to the output of this call. Note
that secret tree is not a field in the state structure. This is because a secret
tree’s only purpose is to initialise the new epoch’s sending and receiving
state in m.s.hand ratchet state and m.s.app ratchet state, which is done im-
mediately post secret tree construction.

formSecretTree(KDF,τ,encryption secret):

for i in range(|τ|)
secret tree[i]← ⊥

root ← Root(secret tree)
i← node2index(secret tree, root)
secret tree ← populate(KDF, encryption secret, secret tree, i)
return secret tree

populate(KDF, root secret, secret tree, i):

secret tree[i]← root secret
left← leftIndex(secret tree, i)
right← rightIndex(secret tree, i)
if left 6= ⊥:

left secret← KDF.Expand(root secret, 〈KDF.Nh, ‘mls10tree′, 〈left, 0〉〉 , KDF.Nh)
secret tree ← populate(KDF, left secret, secret tree, left)

if right 6= ⊥:
right secret← KDF.Expand(root secret, 〈KDF.Nh, ‘mls10tree′, 〈right, 0〉〉 , KDF.Nh)
secret tree ← populate(KDF, right secret, secret tree, right)

return secret tree

Figure 4.54: formSecretTree algorithm.

The formSecretTree algorithm takes in a key derivation function KDF, a
ratchet tree τ and a bit-string encryption secret and returns a secret tree that
has the same number of leaves as τ. The secrets in the nodes of the output
secret tree are derived recursively, starting from the root node which is as-
signed the encryption secret. Namely if i is the index of some parent node n
in the secret tree, then the secrets of the children nodes of n are defined as:

secret tree[left]← KDF.Expand(secret tree[i],
〈
KDF.Nh, ‘mls10tree′, 〈left, 0〉

〉
, KDF.Nh) (4.16)

secret tree[right]← KDF.Expand(secret tree[i],
〈
KDF.Nh, ‘mls10tree′, 〈right, 0〉

〉
, KDF.Nh) (4.17)

where left is the index of n-s left child (calculated by leftIndex(secret tree, i))
and right is the index of n-s right child (calculated by rightIndex(secret tree, i)).

81

4. The Messaging Layer Security (MLS) protocol

Each group member in G is associated to a leaf secret in secret tree. Which
leaf secret a member a corresponds to is fully determined by the index of the
node representing a in m.s.ratchet tree. Concretely, if some member a is rep-
resented by the node at m.s.ratchet tree[i] (for some index i), then evaluating
secret tree[i] returns the secret associated to a.

Given this secret tree, m then uses the leaf secrets in secret tree to initialise
m.s.hand ratchet state[ep] and m.s.app ratchet state[ep], where ep is the new
epoch being initiated, i.e. ep = m.s.group context.epochID.25 Concretely, m
calls initialiseRatchets step1(m.s.ciphersuite.KDF, m.s.ratchet tree, secret tree) to
obtain two maps ID2app and ID2hand, that take the identity of a member in
G and map it to a bit-string (see Figure 4.55).

initialiseRatchets step1(KDF, ratchet tree, secret tree):

for i in range(|ratchet tree|)
if ratchet tree[i].credential 6= ⊥:

ID← ratchet tree[i].credential.ID
ID2app[ID]← KDF.Expand(secret tree[i], 〈KDF.Nh, ‘mls10application′, 〈i, 0〉〉 , KDF.Nh)
ID2hand[ID]← KDF.Expand(secret tree[i], 〈KDF.Nh, ‘mls10handshake′, 〈i, 0〉〉 , KDF.Nh)

return (ID2app, ID2hand)

Figure 4.55: initialiseRatchets step1 algorithm.

The initialiseRatchets step1 algorithm takes in a key derivation function KDF,
a ratchet tree ratchet tree and a secret tree secret tree and outputs a pair of
maps (ID2app, ID2hand), that map client identifiers to bit-strings. Each map
contains a bit-string for each client ID represented by a leaf in ratchet tree[i]
for some index i. The bit-string is derived, from the leaf secret associated to
ID in secret tree, as follows:

KDF.Expand(secret tree[i],
〈

KDF.Nh, ‘mls10′‖label, 〈i, 0〉
〉

, KDF.Nh) (4.18)

where label is set to ‘application’ for bit-strings stored in ID2app and ‘hand-
shake’ for ID2hand.

Finally, client m uses these two maps to initialise m.s.hand ratchet state[ep]
and m.s.app ratchet state[ep] by calling initialiseRatchets step2(m.s, ID2app,
ID2hand), defined in Figure 4.56. It then overwrites its state m.s with the
output of this call.

The initialiseRatchets step2 algorithm takes in a state structure state, and
two maps ID2app and ID2hand, that map client identifiers to bit-strings, and
produces a state structure. The algorithm sets the state.hand ratchet state
and state.app ratchet state for epoch state.group context.epochID to contain
ID2hand and ID2app respectively along with a counter value 0 and an empty

25Recall that, since an MLS key schedule (and hence the secret tree) is only run at the
beginning of a new epoch, m.s.group context.epochID contains the new epoch’s identifier.

82

4.10. Handshake and Application message framing

list (since no NAEAD key-nonce pairs have been derived at initialisation
time).

initialiseRatchets step2(state, ID2app, ID2hand):

ep← state.group context.epochID
for ID in ID2app.keys:
D ← []
app stsR[ID]← (ID2app[ID], 0,D)
hand stsR[ID]← (ID2hand[ID], 0,D)
if state.credential.ID = ID:

app stS ← ID2app[ID]
hand stS ← ID2hand[ID]

state.app ratchet state[ep]← (app stS, app stsR)
state.hand ratchet state[ep]← (hand stS, hand stsR)
return state

Figure 4.56: initialiseRatchets step2 algorithm.

After m updates its state using the initialiseRatchets step2 algorithm, it sets
m.s.encryption secret to ⊥ (which deletes it). This is done, again, because
the only purpose of the encryption secret is to initialise the handshake and
application sending and receiving state of the new epoch.

4.10 Handshake and Application message framing

In Section 4.7, we have seen that the Handshake and Application messages
are represented by the same MLSmessage structure shown in Figure 4.57.

struct MLSmessage:

GID
epochID
content type
user ad
enc metadata
enc data

Figure 4.57: MLSmessage structure. Both handshake and application messages have this struc-
ture.

There we noted that the enc metadata and enc data are NAEAD ciphertexts,
which allowed us to view the creation (and processing) of the MLSmessage

structure as a two step procedure. Namely, a client creating an MLSmessage

structure msg starts by creating the plaintext underlying the msg.enc data
(step 1 of MLSmessage structure creation). The client then uses the results
of this step to form the msg.enc data and all remaining fields in MLSmessage

structure, the so called framing (step 2 of MLSmessage structure creation).
Similarly a client processing an MLSmessage structure msg, first process the
framing of an MLSmessage structure (step 1 of MLSmessage structure pro-

83

4. The Messaging Layer Security (MLS) protocol

cessing) and then processes the plaintext underlying msg.enc data (step 2 of
MLSmessage structure processing) using the results of frame processing.

Section 4.7 explained the creation and processing of the plaintext underly-
ing enc data. In this section we explain how the ‘framing’ of the MLSmessage

structure is created and processed. We start by defining the MLSSenderData

structure, used to represent the metadata underlying the MLSmessage struc-
ture’s enc metadata and the symmetric hash ratchet, used to derive NAEAD
key-nonce pairs. We then proceed to explain how the MLSmessage fram-
ing (and hence the MLSmessage structure) is created using the results of
MLSCiphertextContent structure creation. Finally, we describe how the
MLSmessage framing is processed upon MLSmessage structure receival.

4.10.1 Metadata

In Section 4.7.1 we have seen that the plaintext underlying the enc data field
is an (encoded) MLSCiphertextContent structure. Similarly, the metadata
underlying the MLSmessage’s enc metadata is an (encoded) MLSSenderData
structure defined in Figure 4.58.

struct MLSSenderData:

sender
generation
reuse guard

Figure 4.58: MLSSenderData structure representing the metadata MLS protects through
NAEAD encryption.

Let metadata be an MLSSenderData structure and let msg be the MLSmessage

structure containing the encryption of metadata. Then metadata.sender is
a client identifier representing the creator (and sender) of msg and hence
metadata. The metadata.generation is an integer value. If msg is used to rep-
resent a Handshake message, then metadata.generation contains the number
of Handshake messages sent by metadata.sender in the epoch identified by
msg.epoch prior to sending msg. Similarly, if msg is used to represent an Ap-
plication message, then metadata.generation contains the number of Applica-
tion messages sent by metadata.sender in the epoch identified by msg.epoch
prior to sending msg. Finally the metadata.reuse guard is a 32-bit-string, sam-
pled uniformly at random by metadata.sender.

4.10.2 Symmetric hash ratchet

Let KDF be a key derivation function and NAE a nonce based authenticated
encryption scheme with associated data. A symmetric hash ratchet is a se-

84

4.10. Handshake and Application message framing

quence of elements, where each element (also called generation) is a bundle
of three KDF.Expand calls.

Let ei be the i-th element (generation) of the symmetric-key hash ratchet, for
some i ∈N0. Then all three KDF.Expand calls in ei take, as the pseudoran-
dom input, the same ratchet secret sti and produce a new ratchet secret sti+1,
an NAE key ki and an NAE nonce ni. All KDF.Expand calls (in and across el-
ements) that derive ratchet secrets, NAE keys and NAE nonces take KDF.Nh,
NAE.Nk and NAE.Nn as the integer input respectively. The output sti+1 of the
i-th element is then used as the pseudorandom input of the i + 1-th element,
for all i ∈N0. We call st0 the initial ratchet secret of the symmetric ratchet.
Figure 4.59 illustrates two successive elements of a symmetric ratchet.

sti

KDF KDF KDFlabeli1 labeli2 labeli3

sti+1

ki
ni

KDF KDF KDFlabeli+1
1 labeli+1

2 labeli+1
3

sti+2 ki+1
ni+1

Figure 4.59: Symmetric hash ratchet. In this figure we use KDF as a shorthand for KDF.Expand,
and we abstract away the length input for better readability.

A symmetric hash ratchet is then fully specified by the KDF and NAE scheme,
the value of its initial ratchet secret st0 and the context inputs supplied to
each KDF.Expand call.

4.10.3 Framing creation

In this section we explain how the framing of the MLSmessage structure is
created. Let a be a client creating an MLSmessage structure. Assume a al-
ready created the MLSCiphertextContent structure underlying the enc data
field, from which it obtains the created MLSCiphertextContent structure ptx
and a string user ad that a wanted only integrity protected. To form the rest
of the MLSmessage structure (framing) a proceeds as follows. Client a starts
by creating an empty MLSmessage structure msg by doing:

msg← MLSmessage(⊥,⊥,⊥,⊥,⊥,⊥) (4.19)

85

4. The Messaging Layer Security (MLS) protocol

that it then proceeds to populate field-by-field. It first sets the first four fields
of msg by calling form AD(a.s, ptx, user ad, msg), defined in Figure 4.60,
where a.s is a-s state after creating the MLSCiphertextContent structure.
Client a then sets msg to the output of this call.

form AD(state, ptx, user ad, msg):

msg.GID ← state.group context.GID
msg.epochID ← state.group context.epochID
if ptx.commit 6= ⊥:

msg.content type ← “commit”
if ptx.proposal 6= ⊥:

msg.content type ← “proposal”
if ptx.application 6= ⊥:

msg.content type ← “app”
msg.user ad ← user ad
return msg

Figure 4.60: form AD algorithm.

The form AD algorithm takes a state structure state, MLSCiphertextContent
structure ptx, string user ad and MLSmessage structure msg and returns msg
with its first 4 fields overwritten. Namely the msg.GID and msg.epochID are
set to the group identifier and epoch contained in state.group context, the
msg.content type is set to contain the type of MLSCiphertextContent struc-
ture ptx is supposed to represent and msg.user ad is set to the input user ad.

As mentioned in Section 4.7, the msg.GID, msg.epochID, msg.content type
and msg.user ad fields are used to create the associated data ad, for both
msg.enc data and msg.enc metadata. Namely ad is computed as follows:

ad← 〈msg.GID, msg.epochID, msg.content type, msg.user ad〉 . (4.20)

At this point, a has a formed plaintext ptx underlying msg.enc data as well
as the associated data ad. All that is left for a to do, in order to form
msg.enc data, is to derive the key and nonce pair it will use to encrypt ptx
and integrity protect the associated data. These key and nonce pairs are
derived from symmetric hash ratchets maintained by a.

Namely, assume client a is a member of a group G. Then for each epoch,
client a maintains some information pertaining to 2 · (|G|+ 1) distinct sym-
metric hash ratchets. Each of these 2 · (|G|+ 1) (per epoch) symmetric hash
ratchets correspond to a member of G. More specifically, for each member b
in G, a will maintain 2 ‘receiving’ symmetric ratchets, a Handshake and an
Application hash ratchet, which it will use to derive decryption key-nonce
pairs needed to process received Application and Handshake messages re-
spectively. Note that a can also receive from itself, since the DS Broadcast
service sends the message it receives to the entire group including its cre-
ator. Additionally, a maintains 2 more ‘sending’ symmetric ratchets, that

86

4.10. Handshake and Application message framing

correspond to a (itself), which a uses to derive key-nonce pairs to encrypt
and hence send messages to the group.

At the beginning of each epoch ep, client a uses the a.s.app ratchet state[ep]
(a.s.hand ratchet state[ep]) entries initialised according to Section 4.9, to set
the initial ratchet secret of each of the 2 · (|G| + 1) symmetric ratchets it
maintains. More concretely, let b be a member in G, and let (stS, stsR) be
this initialised entry of a.s.app ratchet state[ep] (a.s.hand ratchet state[ep]) at
the beginning of epoch ep. Moreover, let (stR, iR,D) be the entry at stsR[b].
Then stR is used as the initial ratchet secret of the ‘receiving’ Application
(Handshake) symmetric ratchet of b (in epoch ep). If a = b then stS is
used as the initial ratchet secret of the ‘sending’ Application (Handshake)
symmetric ratchet of a.

Note that for a = b, the initialiseRatchets step2 algorithm (defined in Figure
4.56), sets stS and stR with the same value, i.e. stR = stS. Hence, at the
beginning of any epoch ep (before any messages are sent or received by a)
the ‘sending’ and ‘receiving’ Application (Handshake) symmetric ratchets
corresponding to a are guaranteed to be identical. However, this is only
guaranteed at the start, since due to message reordering they may diverge.

Each of the 2 · (|G| + 1) symmetric ratchets uses a.s.ciphersuite.KDF and
a.s.ciphersuite.NAEAD as its key derivation function KDF and nonce based
authenticated encryption scheme NAE respectively. Let b be a member in
G. Then the context a supplies to each KDF.Expand call in the j-th element
(generation) of all ‘receiving’ (and ‘sending’ if a = b) Handshake and Ap-
plication symmetric ratchets corresponding to b is:〈

L, ‘mls10′‖label, 〈node2index(a.s.ratchet tree, b), j〉
〉

(4.21)

where L and label are set to be KDF.Nh and ‘secret’, NAE.Nk and ‘key’ or
NAE.Nn and ‘nonce’ if KDF.Expand derives a ratchet secret, key or nonce
respectively.

Each time a sends a message to the group, a will use its ‘sending’ Handshake
or Application symmetric ratchet to derive the key and nonce pair it will use
for encryption. More concretely, if a sends its j-th message to the group (in
its current epoch), then a will use the key-nonce pair of the j-th generation
of its ‘sending’ Handshake (Application) symmetric ratchet for encryption
in the j-th Handshake (Application) message. Each time a a receives a mes-
sage from a client b in G, a will check the type of message (Application
or Handshake message) and then use the‘receiving’ (Application or Hand-
shake message) ratchet corresponding to b, to derive the appropriate key
and nonce for decryption. Note however that due to possible reordering
of messages, the generation this decryption key-nonce pair belong to will
have to be communicated by the sender to the receiver, to ensure efficient

87

4. The Messaging Layer Security (MLS) protocol

derivation. As we shall see, this is exactly what is carried by the generation
field in the MLSSenderData structure representing the message’s underlying
metadata.

Given this, if each member of G uses its i-th generation key-nonce pair for
encryption in the i-th message it sends (for any i ∈N0), then all key-nonce
pairs derived from any ‘sending’ or ‘receiving’ symmetric ratchet will be
used only once. Of course, to do this a member could keep two counter
values, to store the amount of Handshake and Application messages it has
sent thus far (in the current epoch).

However if these counters are lost or overwritten by mistake (instead of
only when a Handshake or Application message is sent), then a client might
reuse a generation that has already been used, causing reuse of a key-nonce
pair. To prevent this scenario, when a client sends its i-th Handshake (Appli-
cation) message, upon deriving the key-nonce pair from the i-th generation
from its ‘sending’ Handshake (Application) ratchet, the client must also gen-
erate a so called ‘reuse-guard’, which is a 32-bit-string r sampled uniformly
at random. This reuse guard r is then xored with the first 32 bits of the
nonce derived from the i-th ‘sending’ Handshake (Application) ratchet gen-
eration. Thus, the nonce used to encrypt in the i-th Handshake (Application)
message, is the value resulting from this xor.

Of course since r is a sampled value, it will have to be communicated by the
sender to the receiver, along with the symmetric ratchet generation used.
Moreover, since the MLSmessage structure (used to represent Handshake and
Application messages) does not contain any explicit information about its
creator’s identity, the identifier of the sender also need to be communicated
across to the receivers, for them to know whose ‘receiving’ ratchet to use.
This is exactly what is contained by the MLSSenderData structure represent-
ing the message’s underlying metadata.

In order to provide forward-security of messages, the used ratchet secrets,
keys and nonces must no longer be maintained by a. A ratchet secret is used
if it has been taken as input by a KDF.Expand call that produced another
ratchet secret, a key and a nonce. We consider a key and nonce to be used if
they were employed to encrypt or decrypt a message.26

The exact information a must maintain pertaining to the 2 · (|G|+ 1) sym-
metric hash ratchets, to ensure forward-security but also successful encryp-
tion and decryption, is precisely captured by the fields a.s.hand ratchet state,
a.s.app ratchet state, a.s.hand generation and a.s.app generation stored in a-s
state a.s. The a.s.hand generation and a.s.app generation, as explained in Sec-

26This implies that a needs to only store the most recently derived ratchet secret, in each
of its 2 · (|G|+ 1) symmetric hash ratchets.

88

4.10. Handshake and Application message framing

tion 4.4, are integer values representing the total number of Handshake and
Application messages sent by a in its current epoch.

As mentioned in Section 4.4, each entry in both a.s.app ratchet state and
a.s.hand ratchet state is a sending and receiving state pair (stS, stsR). The
sending state stS is a bit-string that represents the ratchet secret most re-
cently derived in the ‘sending’ Application (Handshake) ratchet correspond-
ing to a. The receiving state stsR is a map from client identifiers (represent-
ing group members) to a triple (stR, iR,D). Let a client identified as ID
be a member of a-s group G, and let (stR, iR,D) be the entry contained at
a.s.app ratchet state[ep] (a.s.hand ratchet state[ep]) for some epoch ep. Then
stR is a bit-string representing the most recently derived ratchet secret in the
‘receiving’ Application (Handshake) ratchet corresponding to client ID and
iR is the generation of stR. Finally, D is a list of NAEAD key-nonce pairs that
were derived but not yet used (for decryption) in a generation preceding iR,
in the ‘receiving’ Application (Handshake) ratchet corresponding to client
ID. These key-nonce pairs can arise due to messages being delivered out of
order.

The process of forming the msg.enc data can then be summarised by a call-
ing form EncData(a.s, msg.content type, ad, 〈ptx〉, r), defined in Figure 4.61,
where r is the reuse guard sampled by a. Client a then assigns the output of
this call to its state a.s and msg.enc data.

form EncData(state, type, a, m, r):

NAE ← state.ciphersuite.NAEAD
id ← state.credential.ID
index← node2index(state.ratchet tree, id)
ep ← state.group context.epochID
if type = “commit” or type=“proposal”:

gen ← state.hand generation
(stS, stsR)← state.hand ratchet state[ep]

else:
gen ← state.app generation
(stS, stsR)← state.app ratchet state[ep]

nonce ← KDF.Expand(stS, 〈NAE.Nn, ”mls10nonce”, index, iS〉 , NAE.Nn)
key ← KDF.Expand(stS, 〈NAE.Nk, ”mls10key”, index, iS〉 , NAE.Nk)
stS ← KDF.Expand(stS, 〈KDF.Nh, ”mls10secret”, index, iS〉 , KDF.Nh)

n← nonce[0, . . . , 31]
n← n⊕ r
nonce← n‖nonce[32, . . . , NAE.Nn]
if type = “commit” or type=“proposal”:

state.hand ratchet state[ep]← (stS, stsR)
else:

state.app ratchet state[ep]← (stS, stsR)
c ← NAE.Enc(key, nonce, a, m)
return (state, c)

Figure 4.61: form EncData algorithm.

The form EncData algorithm takes in a state structure state, a string type

89

4. The Messaging Layer Security (MLS) protocol

which can take on three values type ∈ {“commit”, “proposal”, “app”}, a bit-
string ad, an MLSmessage structure m and a 32-bit-string r. It then outputs a
new state structure and an NAEAD ciphertext c.

The client then finally goes on to form the msg.enc data as follows. It
starts by creating the MLSSenderData structure meta that will underlay this
msg.enc data. As hinted before, meta will contain all data (reuse guard,
used generation and the identity of the sender of msg) a needs to provide
the recipients of msg with, to ensure efficient and correct derivation of the
key-nonce pair used to encrypt (and hence used to decrypt) msg.enc data.
Therefore a creates meta by doing:

meta← MLSSenderData(a.s.credential.ID, a.s.generation, r) (4.22)

where generation is set to be a.s.app generation or a.s.hand generation depend-
ing on whether msg is an Application or a Handshake message.

Now again, client a at this point has the associated data ad and meta underly-
ing the msg.enc metadata. Therefore, a proceeds to form the ‘metadata’ key-
nonce pair that it will use to encrypt meta and integrity protect ad. Namely
the ‘metadata’ key-nonce pair (used to create messages in a-s current epoch
ep) is computed from: (1) the sender data secret derived in epoch ep, which
is stored in a.s.sender data secret[ep] as explained in Section 4.8, and (2) the
first KDF.Nh bits of msg.enc data, where KDF is the key derivation function
stored in a.s.ciphersuite.KDF.27

More concretely, the ‘metadata’ key and nonce used to form msg.enc metadata
are derived as follows:

key← KDF.Expand(s,
〈
NAE.Nk, ‘mls10key′, msg.enc data[0, . . . , KDF.Nh− 1]

〉
, NAE.Nk) (4.23)

nonce← KDF.Expand(s,
〈
NAE.Nn, ‘mls10nonce′, msg.enc data[0, . . . , KDF.Nh− 1]

〉
, NAE.Nn) (4.24)

where KDF and NAE are the key derivation function and nonce based au-
thenticated encryption scheme stored in the fields a.s.ciphersuite.KDF and
a.s.ciphersuite.NAEAD respectively, and s is a.s.sender data secret[ep] (ep is a-s
current epoch a.s.group context.epochID). Client a can now use key, nonce,
meta and ad to populate msg.enc metadata field. With this, a has formed its
(Handshake or Application) message msg.

The process of a creating an MLSmessage structure can be summarised by a
calling create Step2(a.s, ptx, user ad), defined in Figure 4.62. The create Step2
algorithm takes a state structure, MLSCiphertextContent structure and
string user ad and outputs a state structure state and an MLSmessage struc-

27The [BBM+21] document when forming the underlying plaintext of msg.enc data also
padds it if the plaintext is less than KDF.Nh bit in length. It does not provide any further
details about this padding.

90

4.10. Handshake and Application message framing

ture msg. Client a then sets its a.s to the output state structure and sends
msg to the group.

create Step2(state, ptx, user ad):

ep ← state.group context.epochID
gid ← state.group context.GID
NAE ← state.ciphersuite.NAEAD
if ptx.commit 6= ⊥:

type ← “commit”
if ptx.proposal 6= ⊥:

type ← “proposal”
if ptx.application 6= ⊥:

type ← “app”
a← 〈gid, ep, type, user ad〉
r←$ {0, 1}32

(state, enc data) ← form Ciphertext(state,type,a,〈ptx〉,r)
metadata ← form Metadata(state,type,a,enc data,r)
if type = “commit”:

state.com ctr ++
state.hand generation ++

if type=“proposal”:
state.prop ctr ++
state.hand generation ++

else:
state.app generation ++

msg← MLSmessage(gid, ep, type, user ad, enc metadata, enc data)
return (state, msg)

form Metadata(state, type, a, c, r):

KDF ← state.ciphersuite.KDF
NAE ← state.ciphersuite.NAEAD
id ← state.credential.ID
ep ← state.group context.epochID
if type = “commit” or type=“proposal”:

gen ← state.hand generation
(stS, stsR)← state.hand ratchet state[ep]

else:
gen ← state.app generation
(stS, stsR)← state.app ratchet state[ep]

meta← 〈id, gen, r〉
c sample← c[0, . . . , KDF.Nh− 1]
mS ← state.sender data secret[ep]
ctx1← 〈NAE.Nk, mls10key, c sample〉
ctx2← 〈NAE.Nn, mls10nonce, c sample〉
key ← KDF.Expand(mS, ctx1, NAE.Nk)
nonce ← KDF.Expand(mS, ctx2, NAE.Nn)
enc metadata← NAE.Enc(key, nonce, a, meta)
return enc metadata

Figure 4.62: create Step2 algorithm.

4.10.4 Framing processing

In this section we explain how the framing of an MLSmessage structure is
processed. Let a be a client, with state a.s, who received an MLSmessage

structure msg representing a Handshake or Application message. Then a
starts by ensuring that the group to which msg is sent to is its own, by
checking msg.GID = a.s.group context.GID, and that msg.content type is one
of the three strings it is expected to be (“commit”, “propopsal”, “app”). More-
over if msg.content type = “commit” or msg.content type = “proposal”, then
a asserts that the epoch in which this Commit or Proposal message msg
was created matches its current epoch, i.e. it checks that msg.epochID =
a.s.group context.epochID. This ensures that the group secrets derived from
processing a Commit or Proposal message define a future epoch, not an
already existing one.28

Client a then proceeds to form the associated data used to form the NAEAD
ciphertexts msg.enc metadata and msg.enc data as follows:

ad← 〈msg.GID, msg.epochID, msg.content type, msg.user ad〉 . (4.25)

It then uses ad along with the sender data secret derived in epoch msg.epochID
(stored in a.s.sender data secret[msg.epochID]) to compute the ‘metadata’ key-
nonce pair used to produce msg.enc metadata.

28This check is not needed for Application messages, since they are not used to modify
the group or derive new group secrets.

91

4. The Messaging Layer Security (MLS) protocol

More concretely, a derives the ‘metadata’ key key and nonce nonce according
to Equation 4.23, where s = a.s.sender data secret[msg.epochID] and KDF =
a.s.ciphersuite.KDF and NAE = a.s.ciphersuite.NAEAD.

process Step1(state, msg):

ep ← state.group context.epochID
gid ← state.group context.GID
NAE ← state.ciphersuite.NAEAD
KDF ← state.ciphersuite.KDF
if msg.GID 6= gid :

return (state, ⊥)
if msg.content type = “commit” or msg.content type = “proposal”:

if msg.epochID 6= ep :
return (state, ⊥)

a← 〈msg.GID, msg.epochID, msg.content type, msg.user ad〉
c sample← msg.enc data[0, . . . , KDF.Nh− 1]
mS ← state.sender data secret[msg.epochID]
key ← KDF.Expand(mS, 〈NAE.Nk, mls10key, c sample〉 , NAE.Nk)
nonce ← KDF.Expand(mS, 〈NAE.Nn, mls10nonce, c sample〉 , NAE.Nn)
meta← NAE.Dec(key, nonce, a, msg.enc metadata)
if meta = ⊥ :

return (state, ⊥)
〈ID, gen, r〉 ← meta
index← node2index(state.ratchet tree, ID)
if msg.content type = “app”:

(stS, stsR)← state.app ratchet state[msg.epochID]
else:

(stS, stsR)← state.hand ratchet state[msg.epochID]
(stR, iR,D)← stsR[ID]
while D[i] = ⊥ and iR ≤ gen:
nonce ← KDF.Expand(stR, 〈NAE.Nn, ”mls10nonce”, index, iR〉 , NAE.Nn)
key ← KDF.Expand(stR, 〈NAE.Nk, ”mls10key”, index, iR〉 , NAE.Nk)
stR ← KDF.Expand(stR, 〈KDF.Nh, ”mls10secret”, index, iR〉 , KDF.Nh)
D[iR]← (key, nonce)
iR ++

if D[gen] = ⊥:
stsR[ID]← (stR, iR,D)
if msg.content type = “app”:

state.app ratchet state[msg.epochID]← (stS, stsR)
else:

state.hand ratchet state[msg.epochID]← (stS, stsR)
return (state, ⊥)

(key, nonce) ← D[gen]
n← nonce[0, . . . , 31]
n← n⊕ r
nonce← n‖nonce[32, . . . , NAE.Nn]
〈ptx〉 ← NAE.Dec(key, nonce, a, msg.enc data)
if ptx 6= ⊥:
D[gen]← ⊥

stsR[ID]← (stR, iR,D)
if msg.content type = “app”:

state.app ratchet state[msg.epochID]← (stS, stsR)
else:

state.hand ratchet state[msg.epochID]← (stS, stsR)
if ptx = ⊥:

return (state, ⊥)
return (state, (ID, msg.user ad, msg.content type, ptx))

Figure 4.63: process Step1 algorithm.

Client a can then use key, nonce and ad to decrypt msg.enc metadata to obtain
the underlying metadata meta. This underlying metadata meta contains all
the information a needs in order to derive the key-nonce pair used to form

92

4.11. Welcome message

msg.enc data. Namely meta contains a client identifier ID, integer gen and a
32-bit-string r, which client a uses in the following way to derive the key-
nonce pair (used to form msg.enc data).

Using the client identifier ID, a selects the ‘receiving’ Handshake or Appli-
cation (depending on msg.content type) symmetric ratchet corresponding to
ID. Client a then derives a key-nonce pair (k, n) from the gen-th element
(generation) in this ‘receiving’ Handshake (Application) symmetric ratchet
(corresponding to ID). Finally, a forms a nonce n′ such that:

n′[0, . . . , 31] = n[0, . . . , 31]⊕ r ∧ n′[32, . . . , NAE.Nn− 1] = n[32, . . . , NAE.Nn− 1] (4.26)

where KDF = a.s.ciphersuite.KDF and NAE = a.s.ciphersuite.NAEAD.29 Client
a then uses k, n′ and ad to decrypt the msg.enc data and obtain the un-
derlying plaintext ptx. If any of the checks or decryptions fail the framing
processing fails. Otherwise the framing processing is considered successful,
and a continues to process the extracted plaintext ptx.

The entire processing of the framing of an MLSmessage structure can be sum-
marised by the process Step1 algorithm, defined in Figure 4.63. It takes in a
state structure and an MLSmessage structure msg and returns another state
structure and a tuple grouping all information that needs to be passed to the
second stage of processing (covered in Section 4.7). Therefore, client a upon
receiving an MLSmessage structure msg (representing a Handshake or Appli-
cation message), will call process Step1(a.s, msg) to obtain a new state that
it will use to overwrite its current one a.s and all the information it needs to
pass on to the plaintext processing stage (or ⊥ in case of frame processing
failure).

4.11 Welcome message

As explained in Section 4.3 and 4.7.3, whenever a client creates a Commit
message, it will also create a Welcome message if the Commit contains an
Add Proposal. The Commit message is then sent to all the existing mem-
bers of the group (clients who are part of the group at the time of creating
the Commit message). Assuming the Commit message contains an Add
Proposal, the committer creates a (single) Welcome message and sends it
to each client suggested to be added directly (not via the Delivery Service).
Each client suggested to be added by the Commit message is called a ‘new
joiner’. The Welcome message provides each ‘new joiner’ with all the infor-
mation it needs to derive its group data (pertaining to the group it is joining)
of the new epoch, being initiated by the Commit message.

29Note that for any nonce n, n = n[0, . . . , NAE.Nn] holds for all nonce based authenticated
encryption schemes with associated data NAE.

93

4. The Messaging Layer Security (MLS) protocol

A Welcome message is represented by a Welcome structure, defined in Fig-
ure 4.64. It contains an integer version, representing the MLS version sup-
ported by the group and a Ciphersuite structure ciphersuite, representing
the Ciphersuite structure supported by all members in the group, and a
ratchet tree ratchet tree. Moreover it contains a list of EncryptedGroupSecrets
structures secrets, defined in Figure 4.64, and an NAEAD ciphertext en-
crypted group info. The NAEAD ciphertext encrypted group info is formed
over an (encoded) GroupInfo structure defined in Figure 4.65 using a key-
nonce pair derived from the new welcome secret (see Section 4.8).

struct Welcome:

version
cipher suite
ratchet tree
secrets
encrypted group info

struct EncryptedGroupSecrets:

keypackage
encrypted group secrets

Figure 4.64: Welcome structure and EncryptedGroupSecrets structure.

An EncryptedGroupSecrets structure consists of a KeyPackage structure
keypackage and a ciphertext encrypted group secrets, where the ciphertext is
a KEM ciphertext and NAEAD ciphertext pair. The GroupSecrets structure
contains two bit-strings, path secret and joiner secret.

A GroupInfo structure consists of (1) a GroupContext structure group context,
(2) a MAC tag confirmation tag, (3) a client identifier sender and (4) a signa-
ture signature, where signature is computed over fields (1),(2) and (3) using
the secret signing key associated to sender.

struct GroupInfo:

group context
confirmation tag
sender
signature

struct GroupSecrets:

path secret
joiner secret

Figure 4.65: GroupInfo structure and GroupSecrets structure.

We next describe how a committer forms a Welcome structure (representing
a Welcome message), after which we explain how a ‘new joiner’ goes about
processing it to set its local group data.

94

4.11. Welcome message

4.11.1 Welcome message creation

In this section we explain how a client creating a Commit message, contain-
ing Add proposals, creates a (single) Welcome message that it sends to each
‘new joiner’. Let a, with state a.s, be a client who created a Commit mes-
sage c such that c.proposals contains Add Proposal structures. Let ` be the
number of clients that would be added (new joiners) to the group with c. To
form the Welcome structure (representing the Welcome message) a proceeds
as follows. It starts by creating an empty Welcome structure wel by doing:

wel ← Welcome(⊥,⊥,⊥,⊥,⊥) (4.27)

which it then proceeds to populate field-by-field. Namely, a sets wel.version
and wel.ciphersuite to the MLS version and Ciphersuite structure contained
in its state a.s.version and a.s.ciphersuite respectively (as that is the version
and Ciphersuite structure supported by all group members).

Then, a goes on to form the GroupInfo structure in f o and a list containing
GroupSecrets structures gscr, s.t. in f o underlies the wel.encrypted group info
field and gscr[i] underlies wel.secrets[i].encrypted group secrets for all 0 ≤ i < `
(one GroupSecrets structure for each ‘new joiner’), respectively.

Namely, a first creates an empty GroupInfo structure in f o by doing:

in f o ← GroupInfo(⊥,⊥,⊥,⊥). (4.28)

It then forms a sequence of KeyPackage structures seq of length `, such that
(1) the KeyPackage structures at positions 0 ≤ i, j < ` are the same if and
only if i = j and (2) each KeyPackage structure belongs to one ‘new joiner’.30

The KeyPackage structures used to form this sequence are the ones present
in the Add proposals, included in c.

This allows a to associate to each ‘new joiner’ b, an index 0 ≤ i < `, that will
corresponding to their position in this sequence. Then a will create a list
of GroupSecrets structures gscr, such that each GroupSecrets structure it
contains is empty, i.e.

gscr[i]← GroupSecrets(⊥,⊥). (4.29)

For each 0 ≤ i < `, the GroupSecrets structure gscr[i] will then correspond
to the i-th ‘new joiner’. Now client a will go on to populate each field of
each GroupSecrets structure in gscr, as well as populate each field of in f o.
It will do so by essentially ‘simulating’ the processing of its own Commit
message c.

30The sequence can be arbitrary, but must follow the 2 rules set out.

95

4. The Messaging Layer Security (MLS) protocol

Namely a creates a copy of its state st, and processes its own Commit mes-
sage c onto this copy st (according to Sections 4.10.4, 4.7.1, 4.7.3, 4.8 and
4.9).31 During the processing of c onto st, at the stage when the MLS key
schedule is run to derive the group secrets, client a will store the joiner secret
into gscr[i].joiner secret, for each 0 ≤ i < ` (see Figure 4.53). Observe that the
joiner secret can be used to derive the welcome secret, init secret, enc secret
and confirmation key of the epoch that would be initiated by c (see Figure
4.53).

After c has been processed onto st, a uses st to populate in f o.group context,
in f o.confirmation tag and in f o.sender with st.group context, st.confirmation tag
and st.credential.ID respectively. Note that the field st.group context contains
the GroupContext context structure of the new epoch (initiated by c) and the
field st.confirmation tag contains the MAC tag of the plaintext underlying c
(see Section 4.7.1). It then forms the in f o.signature by doing:

in f o.signature← st.ciphersuite.DS.Sign(st.sign sk, m) (4.30)

where m = 〈in f o.group context, in f o.confirmation tag, in f o.sender〉.

Now a proceeds to form the wel.encrypted group info using the populated
in f o and st.welcome secret. Namely a uses st.welcome secret to derive a key-
nonce pair as follows:

wel key← KDF.Expand(st.welcome secret, ‘key′, NAE.Nk) (4.31)
wel nonce← KDF.Expand(st.welcome secret, ‘nonce′, NAE.Nn) (4.32)

where KDF and NAE are st.ciphersuite.KDF and st.ciphersuite.NAEAD respec-
tively. This key-nonce pair (wel key, wel nonce) is then used to encrypt in f o,
by doing:

wel.encrypted group info← NAE.Enc(wel key, wel nonce, 〈””〉 , info) (4.33)

where NAE is again st.ciphersuite.NAEAD.

At this point, for all 0 ≤ i < `, only the gscr[i].joiner secret field has been
populated. To see if gscr[i].path secret, for all 0 ≤ i < `, needs to be set to a
non ⊥ value, a checks if c.path is populated. If it is not, that means no new
KEM secret keys have been produced in the ratchet tree. Hence all the KEM
secret keys contained have been derived due to a Commit message before
c. Of course if c.path is not populated, since MLS does not want the ‘new
joiners’ to have any past secrets, then gscr[i].path secret is set to ⊥ for all
0 ≤ i < `. If however, c.path was populated, then a needs to provide each

31Note that we opt for the copying of the state approach, since it makes clear which the
exact values used in forming wel are. In reality this can be done in a much more efficient
way and the [BBM+21] does not constrain a client to copying.

96

4.11. Welcome message

‘new joiner’ with all the new KEM secret keys it is entitled to know by the
ratchet tree invariants (see Section 4.5.1). Therefore, like in Section 4.7.3, a
will send the appropriate seed to each ‘new joiner’, enabling the ‘new joiner’
to derive all KEM secret keys it is allowed to know.

More specifically, let alea f be the leaf that represents a in st.ratchet tree and
let b be the i-th ‘new joiner’ (for some 0 ≤ i < `) represented by leaf node
blea f in st.ratchet tree. Then client a identifies the lowest common ancestor u
of alea f and blea f by computing:

u← LCA(st.ratchet tree, aleaf , bleaf). (4.34)

Let s be the seed value corresponding to u. Then, client a sets gscr[i].path secret
to contain s. This process is repeated for each of the ` ‘new joiners’, at the
end of which, the gscr list will contain fully populated GroupSecrets struc-
tures.

Now for each 0 ≤ i < ` the gscr[i], which corresponds to the i-th ‘new joiner’
(in seq), must be encrypted using the KEM public key of the i-th ‘new joiner’.
Namely, let keypacks be a list of KeyPackage structures such that keypacks[i]
is the KeyPackage structure of the i-th ‘new joiner’ (contained in the Add
Proposal structure in c.proposals). Then for each 0 ≤ i < `, a goes on to
encrypt gscr[i] using keypacks[i].kem pk as follows:

enc gscr[i]← SetSeal(st, keypacks[i].kem pk, gscr[i]). (4.35)

where SetSeal is defined in Figure 4.47.

It then uses the list of KeyPackage structures keypacks and the list of cipher-
texts produced enc gscr to form the list of EncryptedGroupSecrets struc-
tures wel.secrets. Namely, for each 0 ≤ i < ` if forms wel.secrets[i] as follows:

wel.secrets[i]← EncryptedGroupSecrets(keypacks[i], enc gscr[i]). (4.36)

Therefore, each new joiner will have exactly one entry in wel.secrets, whose
encrypted group secrets field it will be able to successfully decrypt (using its
KEM secret key). Finally a sets the wel.ratchet tree to the public state of the
st.ratchet tree, i.e. get-PS(st.ratchet tree). With this a has finished populating
each field in wel, and hence completed the creation of the Welcome message.

4.11.2 Welcome message processing

In this section we explain how a ‘new joiner’ processes a Welcome message
upon receiving it. Let a, with state a.s, be a ‘new joiner’ who just received a
Welcome structure wel representing a Welcome message. Recall from Section
4.4, a.s will only have its client data fields populated, whilst all group data

97

4. The Messaging Layer Security (MLS) protocol

fields will be empty (set to ⊥).32 The client then proceeds to process wel as
follows.

It first identifies an index i such that the entry wel.secrets[i] contains a-s
KeyPackage structure in wel.secrets[i].keypackage. Then a checks that the
wel.secrets[i].keypackage.suite and wel.secrets[i].keypackage.version fields match
wel.suite and wel.version respectively.33 If they do not, then the processing
of wel fails, hence let us assume that no miss-match occurred. Then, if wel
is a correctly formed (according to 4.11.1) Welcome structure, a will be able
to successfully decrypt wel.secrets[i].encrypted group secrets using its KEM
secret key a.s.kem sk (corresponding to the KEM public key contained in
wel.secrets[i].keypackage.kem pk) as follows:

gscr ← OpenSeal(a.s, a.s.kem sk, wel.secrets[i].encrypted group secrets) (4.37)

where the OpenSeal algorithm is defined according to Figure 4.52. If de-
cryption is not successful, then a of course stops processing wel. The gscr
obtained, upon successful decryption, is a GroupSecrets structure, which
contains all the secrets a needs, in order to derive its local group data and
hence successfully participate in group conversations in the new epoch.

Namely, a first uses gscr.joiner secret to (according to the Key Schedule 4.53)
derive its group secrets: a.s.init secret, a.s.welcome secret, a.s.encryption secret,
a.s.sender data secret and a.s.confirmation key. It then uses a.s.welcome secret
to construct the key-nonce pair used to form wel.encrypted group info as fol-
lows:

wel key← KDF.Expand(a.s.welcome secret, ‘key′, NAE.Nk) (4.38)
wel nonce← KDF.Expand(a.s.welcome secret, ‘nonce′, NAE.Nn) (4.39)

where KDF and NAE are the same as wel.secrets[i].keypackage.suite.KDF and
wel.secrets[i].keypackage.suite.NAEAD respectively.34 Client a then goes on to
use wel key and wel nonce to decrypt wel.encrypted group info by doing:

in f o ← NAE.Dec(wel key, wel nonce, 〈””〉 , wel.encrypted group info) (4.40)

where NAE is set to be wel.secrets[i].keypackage.suite.NAEAD.

32Note that at the beginning of our description, we assumed that all clients are members
of at most one group at any point in time. Hence, a client needs to only maintain group data
for at most one group.

33Recall that we assumed that all clients support the same and only one version and
Ciphersuite structure. Hence in our simplification this check will always pass. In reality
a client can have more than one KeyPackage structure stored in the Deliver Service, one
for each version and Ciphersuite structure combination it supports. Therefore, it needs to
ensure that the correct KeyPackage structure was used to suggest a to be added to the group.

34Note that in our MLS simplification is the same as a.s.ciphersuite is the same as
wel.secrets[i].keypackage.suite.

98

4.11. Welcome message

If the decryption fails, then so does the processing of wel. If decryption suc-
ceeds in f o is a GroupInfo structure, and a can proceed to verify its contained
signature in f o.signature. More concretely, a will first inspect the in f o.sender
field to know who created wel, and hence who created in f o.signature. It
then uses the information in the ratchet tree wel.ratchet tree to obtain the
public signing key of in f o.sender. Before obtaining the public signing key
however, a first verifies that the ratchet tree is valid. Namely it checks that:
(1) invariants 3,4,5,6 hold (see Section 4.5.1), (2) each node with a popu-
lated Credential structure (not equal ⊥) has a valid signature and (3) the
in f o.group context.tree hash is valid w.r.t. wel.ratchet tree. If wel.ratchet tree
is a valid ratchet tree (passes the above checks), then a goes on to find the
leaf node representing in f o.sender in wel.ratchet tree, otherwise wel process-
ing fails.

Let senderlea f be the leaf representing the client, identified by in f o.sender.
Now a can use the public signing key contained in the Credential structure
senderlea f .credential.sign pk, to verify in f o.signature as follows:

b← DS.Vfy(senderlea f .credential.sign pk, m, in f o.signature) (4.41)

where m = 〈in f o.group context, in f o.confirmation tag, in f o.sender〉 and DS is
the digital signature scheme contained in wel.secrets[i].keypackage.suite.DS.

If b = false, a stops processing wel. Otherwise, it continues to popu-
late its group data using the information it obtained from in f o. Namely, it
assigns in f o.group context and in f o.confirmation tag to a.s.group context and
a.s.confirmation tag respectively.

The only thing left for a to do, in order to have all the group information it
needs to participate in group conversations, is to populate the wel.ratchet tree
with secret KEM keys it is allowed to know. Recall that the gscr.path secret
can be set to ⊥, indicating that the committer did not generate any new
KEM keys along its simple path to the root, and hence it did not generate
any KEM secret key a is allowed to know. Therefore, if gscr.path secret = ⊥,
a assigns the wel.ratchet tree as is to its local ratchet tree a.s.ratchet tree.

Otherwise, a goes on to find the leaf node in wel.ratchet tree that repre-
sents a (contains a-s Credential structure). Let this representative leaf
be alea f . Client a will now use gscr.path secret (like existing members did
when processing the Commit structure in Section 4.7.3) to derive the se-
cret KEM keys of all nodes on the common path of alea f and senderlea f
commonPath(wel.ratchet tree, alea f , senderlea f), using the Prg algorithm, de-
fined in Figure 4.46. It then assigns these secret KEM keys to the appropriate
nodes in the ratchet tree wel.ratchet tree, and then sets it local ratchet tree
a.s.ratchet tree to contain this updated wel.ratchet tree.

Finally a sets all the counters to 0, all the pending and confirmation maps

99

4. The Messaging Layer Security (MLS) protocol

to be empty and derives the initial values of a.s.hand ratchet state[ep] and
a.s.app ratchet state[ep] according to Section 4.9, where ep is the epoch in
which a is part of the group, i.e. ep = a.s.group context.epochID.

4.12 Initialise group

In previous sections we have seen how an existing group can change by
having its members add, remove clients or update keys. However, thus far,
we have avoided specifying (in detail) how a client creates a group to begin
with. Namely, we have seen that the group information was propagated
to ‘new joiners’ via Welcome messages, which were in turn constructed by
some existing member incorporating part of its own group data. This then
begs the question: ‘How do the very first members of the group initialise
their group data?’ This is exactly the problem the initGroupData algorithm,
first mentioned in step 4 of the MLS protocol overview (Section 4.3), solves.

Namely, consider a client a, with state a.s, who wishes to create a group,
identified by the group identifier GID, containing clients a1, a2, . . . , an (and
itself) for some n ∈ N0. In order for a to create a group, (according to
Section 4.3) a will need to follow steps 3 and 4, captured by Figures 4.11 and
4.13. Assume that a finished step 3 and hence has selected the Ciphersuite

structure suiteG and MLS version vG of the group. Now client a will call
initGroupData(a.s,suiteG,vG,GID), defined in Figure 4.66. It will then assign
the output of this algorithm to its state a.s.

initGroupData(state, suite, v, GID):

n ← node(state.kem pk, state.kem sk, state.credential,⊥)
state.ratchet tree ← [n]
root ← Root(state.ratchet tree)
epochID ← 0
tree hash ← TH(suite.H, state.ratchet tree,root)
confirmed transcript hash ← 〈””〉
state.group context ← GroupContext(GID, epochID, tree hash, confirmed transcript hash)
state.confirmation tag ← 〈””〉
state.init secret ←$ {0, 1}suite.KDF.Nh

return state

Figure 4.66: initGroupData algorithm.

The initGroupData algorithm takes in a state structure state, a Ciphersuite

structure suite, an integer (representing the MLS version) v and a group
identifier GID and produces another state structure. The produced state

structure, is almost the same as state, except that some of its group data
fields are not empty (⊥) but instead, initialised to contain information of a
one-member group.

Namely the state.ratchet tree now contains a ratchet tree with a single node,

100

4.13. Comparison to MLSv11

representing the member to whom the state belongs to. The state.group context
is initialised with a GroupContext structure that contains the group iden-
tifier GID, epoch identifier 0, a tree hash of the single node ratchet tree
state.ratchet tree and a zero length octet string as the confirmed transcript hash
(since no Commit messages have been processed yet). Moreover, because no
Commit messages have been processed, the initGroupData algorithm sets the
state.confirmed transcript hash to a a zero length octet string as well. Finally,
in order for the MLS Key Schedule (see Figure 4.53) to be able to compute fu-
ture group secrets, the initGroupData algorithm sets the initial init secret to a
KDF.Nh-bit-string sampled uniformly at random (where KDF = suite.KDF).

Therefore, at this point a has essentially formed a group with itself under the
group identifier GID. In order to actually form the group it wants, namely
a group containing clients a and a1, a2, . . . , an, client a will simply create an
Add Proposal message (according to Sections 4.7 and 4.10) for each ai, where
i ∈ {1, . . . , n}. Since at this point a is the only existing member of group GID,
a does not send the Add Proposal messages to the DS Broadcast service,
and instead immediately forms a Commit message c by setting c.proposals
to include each of the n Add Proposal structures it created (according to
Sections 4.7 and 4.10).

Client a again does not send c out (since a is still the only existing member),
but instead processes c immediately upon creation, to derive a new state.
This new state now contains group data pertaining to a group containing
a along with a1, a2, . . . , an. At the same time a creates a single Welcome
message (according to Section 4.11.1), which it then sends to ai for all i ∈
{1, . . . , n}. The ‘new joiners’ a1, a2, . . . , an then process the Welcome message
according to Section 4.11.2 to derive their own local group data, pertaining
to the group GID with members a, a1, a2, . . . , an.

4.13 Comparison to MLSv11

This section covers the differences between our description and the MLS
description given in the specification document [BBM+21].

We exclude the following sections from our description:

• External initialization [BBM+21, Section 8.1]

• Pre-Shared Keys [BBM+21, Section 8.2]

• Exporters [BBM+21, Section 8.6]

• Resumption secret [BBM+21, Section 8.7]

• State authentication keys [BBM+21, Section 8.8]

• Linking a New Group to an Existing Group [BBM+21, Section 10.1]

101

4. The Messaging Layer Security (MLS) protocol

• Proposal types that are not Adds, Removes or Updates [BBM+21, Sec-
tions 11.1.4 - 11.1.8]

• External commits [BBM+21, Section 11.2.1]

Furthermore, we only consider one type of credential as described in 4.1.
The KeyPackage structure is flattened, in the sense that all the ‘must have’
extensions (Capabilities and Lifetime structure) are embedded directly
into the KeyPackage. Moreover, the types of these extensions are not spec-
ified in this flattened view, since the types are ‘only’ useful for parsing the
KeyPackage structure in practice (and do not contribute to the security of
MLS). In our description we also assume that an MLS client can be a mem-
ber of at most one group, i.e. in any run of the MLS protocol, all groups
formed will be disjoint. Moreover, we assume that all clients support one
and the same Ciphersuite structure and MLS version. This simplifies the
state, as well as the logic of all clients, and provides the same security guar-
antees as the original MLS protocol. The entire state structure, in Section
4.4, was introduced by us, since we believe it facilitates a more fine-grained
understanding of MLS and its security properties. Moreover, the node struc-
ture (used to represent a node in the ratchet tree, see Section 4.5) in our
description, does not contain a ‘parent hash’ field; as its purpose was not
made clear by the [OBR+21, BBM+21] documents, nor the MLS mailing list.
We consider the purpose of the ‘parent hash’ field an open problem, for
possible future work.

Next to this, in Section 4.3, we assumed that it is the client’s job to delete
KeyPackage structures it used to form a group, whereas MLS just suggests
for this deletion to occur, but does not specify the entity responsible for
this deletion. The AS and DS KeyPackage API, is also something we intro-
duced, to make the diagrams in Section 4.3, more exact. The MLS protocol
itself does not put any restraints on this of course. Further, we assumed
that the Handshake and Application messages are represented solely by
the MLSmessage structure, which ensures that the underlying data is pro-
tected by NAEAD encryption. However, MLS also allows for Handshake
messages to be transferred in an MLSPlaintext structure, which essentially
groups the MLSCiphertextContent structure, associated data and its meta-
data, as is (no ciphertexts are formed from these data fields). Moreover,
the list of proposals contained in the Commit message contains a list of
so called ‘ProposalOrRef’ structures, instead of Proposal structures. The
ProposalOrRef structure is, as the name suggests either a Proposal struc-
ture or a digest of a Proposal structure. This, can be used to make the
payload of the Commit message smaller, but does not contribute to the un-
derstanding of MLS, and hence we avoid describing this extra complexity.

Lastly, we assumed that the same GroupContext structure is used to form:
(1) the signature signature contained in the MLSCiphertextContent, (2) the

102

4.14. MLS protocol security

MAC tag confirmation tag in the MLSCiphertextContent and (3) the cipher-
texts enc path secret contained in the UpdatePathNode. However, in MLS,
each of these uses a different GroupContext structure. The usefulness of this
change in GroupContext structure remains an open problem, left for future
work. In addition to this, in Section 4.10, we assumed that the associated
data used to form enc data and enc metadata is the same, whereas MLS ex-
cludes the user ad field from the associated data used to form enc metadata.
This choice, as well, is left as an open problem. Finally, the Welcome struc-
ture, described in Section 4.11, contained a ratchet tree ratchet tree. How-
ever, in MLS this information is either carried as an extra ‘ratchet tree’ ex-
tension in the KeyPackage structure (included in the Welcome message), or
is posted (publicly) at the DS service for new-joiners to fetch. Again, this
alteration made no difference to the security of MLS, but made structures
overall simpler.

Bearing all these alterations in mind, we believe our description still captures
the main aspects of the MLS protocol whilst excluding cumbersome details
of extension-like functionalities.

4.14 MLS protocol security

In Section 3.3 we listed the security properties an SGM protocol is expected
to provide. In this section we give a brief summary of how MLS tries to
achieve each of these properties.

Confidentiality. The plaintext of Handshake and Application messages
(represented by the MLSmessage structure) is, as discussed in Section 4.7.1,
represented by the MLSCiphertextContent structure. The confidentiality
of Handshake and Application messages’ plaintext is achieved by having
the plaintext (MLSCiphertextContent structure) be encrypted to form the
NAEAD ciphertext enc data (using an NAEAD key-nonce pair only known
to group members) of the MLSmessage structure.

The plaintext of Welcome messages (represented by the Welcome structure)
is considered to be all the GroupInfo and GroupSecrets structures com-
bined. The confidentiality of Welcome messages’ plaintext is ensured by
having the: (1) GroupSecrets structures encrypted under the public KEM
key of new joiners (according to the SetSeal algorithm) and having the (2)
GroupInfo structure encrypted using an NAEAD key-nonce pair derived
from the welcome secret, only known by group members.

Message and Sender Authenticity. We consider two aspects to authenticity.
The first aspect allows members to detect if a message has been tampered
with and if it was sent by some member in the group (but not which mem-

103

4. The Messaging Layer Security (MLS) protocol

ber). The second allows members to detect message tampering and the exact
client it was sent by.

For Handshake and Application messages’ plaintext, the first form is pro-
vided by the NAEAD ciphertext enc data, over the underlying plaintext, and
the fact that only group members know the NAEAD keys and nonces used.
Note that, because all members start with the same initial values in their
hand ratchet state and app ratchet state, all members are able to compute
all NAEAD keys and nonces. Hence the NAEAD key-nonce pairs are not
cryptographically bound to a specific group member. The second form for
Handshake and Application messages’ plaintext is instead provided by the
digital signature contained as part of the MLSCiphertextContent structure.

For Welcome messages’ plaintext the first form of authenticity is ensured by:
(1) having the GroupSecrets structures (containing secrets only known to
group members) be encrypted under the public KEM key of new joiners, and
having the (2) GroupInfo structure encrypted using an NAEAD key-nonce
pair derived from the welcome secret, only known by group members. The
second form is provided by the signature contained in the GroupInfo struc-
ture.

Anonymity. The anonymity of senders, for Handshake and Application
messages, is ensured by: (1) having the sender identity (which is part of the
metadata), be encrypted to form the enc metadata field, using a key-nonce
pair derived from the metadata secret (known only by group members) of
the MLSCiphertextContent structure (used to represent Handshake and Ap-
plication messages) and (2) having the signature of the sender be encrypted
as well (to form enc data). For Welcome messages the sender holds, because
the GroupInfo structure containing the sender’s identity and signature is
encrypted to form an NAEAD ciphertext (using a key-nonce pair derived
from the welcome secret, only known to group members).

Forward-security (FS). Let a be a client whose state is compromised. Then
because: (1) all commit secrets before a’s most recent update remain secret,
(2) the MLS key schedule and secret tree delete all values used to derive a
fresh initial handshake and application state (see Section 4.8 and 4.9) and
(3) the client stores only the ratchet state and key-nonce pairs that are not
used in its handshake and application state (see Section 4.10), then forward
security holds for messages (w.r.t. confidentiality and authenticity 35).

Post-compromise security (PCS). Let a1, a2, . . . , an for some n ∈ N, be all
the clients whose state was leaked to some adversary. Then, after each ai
(for all i ∈ {1, . . . , n}) (1) proposed an update (that was committed and

35We will see in Chapter 5 that forward secure anonymity, for MLS, does not hold.

104

4.14. MLS protocol security

processed) or (2) created and processed a Commit message (with a non-
empty path field) or (3) has been proposed for removal (that was committed
and processed), then the messages become secure again. In more detail,
consider ai (for some i ∈ {1, . . . , n}).

Assume ai proposed an update of its keys (that has been committed). Then,
the processing of this update (according to Section 4.7.2) would cause all the
KEM key pairs on ai’s direct path to be blanked, and its own node would
now contain a fresh (randomly sampled) KEM key pair; such that only ai
knows the fresh KEM secret key. Recall, that a client can only know the
KEM secret keys that lie on its (representative leaf’s) simple path to the
root. Therefore, all the secret KEM keys (pertaining to ai) known to the
adversary, will be overwritten to be either blank or a value derived in a non-
deterministic manner. Hence, the adversary would have no knowledge of
any secret KEM key pairs (pertaining to ai), and would therefore be unable
to derive new commit secrets (using ai’s state).

Assume ai is proposed for removal (that has been committed). Then, the
processing of this remove proposal (according to Section 4.7.2) would cause
all the KEM key pairs on ai’s simple path to be blanked. Therefore, all the
secret KEM keys (pertaining to ai) known to the adversary, will be over-
written to be blank. Hence, similarly as above, the adversary would have
no knowledge of any secret KEM key pairs (pertaining to ai), and would
therefore be unable to derive new commit secrets (using ai’s state). Finally,
assume ai created a Commit message (with a non-empty path field). Then,
the processing of this Commit message (according to Section 4.7.3) would
cause all the KEM key pairs on ai’s simple path to be overwritten with new
values, derived recursively using Prg (see Equation 4.10 and Figure 4.46)
from a randomly sampled seed. Therefore, all the secret KEM keys (pertain-
ing to ai) known to the adversary, will be overwritten with a value derived in
a non-deterministic manner. Hence, again, the adversary would be unable
to derive new commit secrets (using ai’s state).

Now, since the commit secret is necessary for the derivation of new group
secrets (which are in turn used to derive the handshake and application
ratchet state and key-nonce pairs), then the messages would regain security.

105

Chapter 5

Building blocks of MLS

This chapter starts by presenting the MLS protocol, described in Chapter 4,
as a modular construction of five components: continuous group key agree-
ment (CGKA), key-evolving group symmetric encryption (KEGSE) scheme,
PRF-PRNG scheme, a digital signature scheme (DS) and a message authen-
tication code (MAC), inspired by [ACD18]. Subsequently, we provide in-
tuition for the security goals and purpose, behind each of the (main) non-
standard components (CGKA, PRF-PRNG and KEGSE); and explain how
they interact with one another within MLS. Since the CGKA component has
been formally studied by many prior works [ACDT19, AJM20, ACC+19]
and DS schemes and MACs are standard cryptographic primitives, we then
turn our attention to formalising the PRF-PRNG and KEGSE components
for the remainder of the chapter.

5.1 Modular construction of MLS

In this section we describe an alternative way of viewing the MLS protocol,
described in Chapter 4. Namely, we see that we can cast the MLS pro-
tocol as an SGM protocol composed of five components: continuous group
key agreement (CGKA), key-evolving group symmetric encryption (KEGSE)
scheme, PRF-PRNG scheme, a digital signature scheme (DS) and a message
authentication code (MAC), see Figure 5.1. Next, we describe the goals
and security we want from each of the non-standard primitives (CGKA,
PRF-PRNG and KEGSE) and explain which parts of the MLS protocol (we
described) belong to which primitive. How each of these MLS based primi-
tives achieves their security goals, can be easily extracted from Section 4.14,
which explicitly states the parts of MLS (and hence primitives) which con-
tribute to its security properties. Finally, we explain the data flow between
these different primitives.

107

5. Building blocks of MLS

5.1.1 CGKA

The CGKA scheme can be seen as the group analogue of a continuous key
agreement (CKA) scheme, described in Section 3.4.3. On a high level, the
goal of a CGKA scheme is to, in an asynchronous scenario for each epoch,
provide all members of a group with fresh secret random values scr. For
members to derive these shared fresh secrets, a CGKA scheme provides its
clients with methods for: creating a group, proposing a client for addition
or removal to the rest of the group and proposing an update of its own
key material. Moreover, to enable clients to choose which of the proposed
operations comes into effect, the CGKA scheme also allows members to
commit a set of proposed operations, as well as welcome any new clients
added by the commitment. Each commitment c will, in turn, cause the
group to change according to the set of proposals committed by c, thereby
initiating a new epoch. More notably, each commitment c will result in a
fresh secret value scr to be derived by each group member.

A CGKA scheme is considered secure if all the following properties hold;
(1) given the transcript of messages exchanged between group members,
the random secrets scr underlying those messages should look uniformly
random and independent to an eavesdropping adversary (confidentiality),
(2) if the state of any group member is compromised, then previous secret
values remain secure (forward security), and (3) if every group member
whose state was compromised, creates a commitment, proposes an update
or is proposed for removal (which is committed and processed) then secret
values scr become secure again (post-compromise security).

Given this, we can view the Welcome messages (see Section 4.11) and Hand-
shake message content (see Section 4.7.3 and 4.7.2), along with the ratchet
tree (see Section 4.5), commit secret and GroupContext structure (see Sec-
tion 4.6) as forming an MLS based instantiation of a CGKA scheme (see
Figure 5.1). Namely, a client proposes to add, remove or update its keys
via a Proposal structure, and commits a set of proposals by creating a
corresponding Commit structure. If the Commit structure contains an Add
Proposal structure, then the committer also forms and sends a Welcome

structure to the ‘new joiners’. Each time an existing group members (‘new
joiner’) processes a Commit (Welcome) structure, its state changes, and in
particular, its ratchet tree, group context and commit secret change. Out
of these values only the commit secret is (1) secret, (2) the same across all
members of the group, and (3) is derived in a non-deterministic way. Hence,
the commit secret acts as the fresh random secret value scr in the MLS based
CGKA.

108

5.1. Modular construction of MLS

A B C D

E

Ratchet TreeCGKA
uses KEMs

Asymmetric key exchange

A B C D

E

Secret Tree

KeySchedulePRF-PRNG
uses KDF

enc secret

init secret
commit secret

group context

Symmetric key derivation

DS

ad‖m sk

σ

MAC

tag

confirmation key

KEGSE

m‖σ‖tagad

c

Symmetric encryption
with evolving keys

init secret metadata secretwelcome secret

Figure 5.1: Sketch of the modular construction of the MLS protocol and the data flow between
its components.

5.1.2 PRF-PRNG

A PRF-PRNG scheme, is the primitive defined in [ACD18], whose summary
can be found in Section 3.4.3. The goal of a PRF-PRNG scheme is to essen-
tially serve as a high entropy pool, from which high entropy values can be
obtained. The MLS key schedule (see Section 4.8) and the secret tree (see
Section 4.9), can be viewed as an MLS based instantiation of a PRF-PRNG
scheme (see Figure 5.1).

More concretely, the init secret can be seen as the state of the PRF-PRNG
since, each time the MLS based PRF-PRNG is run (and hence the key sched-
ule is run), an old init secret is consumed and a new one is produced. More-
over, the tuple containing the group context, commit secret and ratchet tree
can be seen as the input value of the MLS based PRF-PRNG scheme. The
group context and commit secret are part of the input, since the key sched-
ule takes them (along with the init secret) as its input. The ratchet tree
is part of the input, to let the secret tree know how many leaf nodes are
contained in the ratchet tree (since according to Section 4.9, the secret and
ratchet trees in a given epoch have the same structure, modulo the node
contents). Note that, the commit secret, group context and ratchet tree can
not be part of the state instead, because they are not modified by the key
schedule or the secret tree, but by the CGKA component instead. The out-
put values of the MLS based PRF-PRNG scheme are a concatenation of: (1)
all the group secrets (excluding the init secret), derived by the key schedule,
and (2) all the handshake and application secrets derived from the leaf node
secrets of the secret tree.

109

5. Building blocks of MLS

5.1.3 KEGSE

A KEGSE scheme can be seen as the group analogue of a forward-secure au-
thenticated encrpytion scheme with associated data (FS-AEAD), described
in Section 3.4.3. A KEGSE scheme is a stateful primitive that essentially
models an SGM scheme (and hence protocol) within a single epoch. Thus,
the goal of a KEGSE scheme is to allow a (static) group of clients to com-
municate with each other securely and asynchronously. Moreover, a KEGSE
scheme is a symmetric primitive, since each group member starts with the
same set of shared secrets (in its state), that it then evolves over time when-
ever it needs to send or receive a message to or from the group.

A KEGSE scheme is considered secure, if all the following properties hold;
given an active adversary, (1) the messages exchanged within the group are
indistinguishable from one another (confidentiality), (2) legitimate messages
are unforgable, i.e can not be formed by anyone apart from the group mem-
bers (authenticity), (3) senders of messages are indistinguishable from one
another (anonymity), and (4) upon state compromise of a client, all messages
sent and received by the client prior to state compromise remain secure, in
the sense of confidentiality, authenticity and anonymity (forward-security).

Given this, we can view the framing of Handshake and Application mes-
sages (see Section 4.10) along with the metadata secret produced by the
MLS key schedule (see Section 4.8) and the handshake and application se-
crets (and state), initialised from leaf secrets in the secret tree using the ini-
tialiseRatchets step1 and initialiseRatchets step2 algorithms (see Section 4.9)
as forming an MLS based instantiation of a KEGSE scheme.

5.1.4 Inter-component data flow

As explained in Section 5.1.1, the goal of a CGKA scheme is to enable all
group members, who communicate asynchronously, to derive (the same)
fresh secret random value scr. This fresh secret scr is seen as a high entropy
source, that can be further processed by a PRF-PRNG scheme to derive more
high entropy secrets. These PRF-PRNG derived secrets can then, in turn, be
used to refresh the state of the KEGSE scheme.

Note that this is exactly the data flow that occurs in MLS, displayed in Figure
5.1. Namely each time a client processes a Commit message (or Welcome
message), it modifies its ratchet tree and group context in some way (de-
pending on the proposals committed). This change in the ratchet tree then
propagates to the root (according to 4.7.3), from which a new commit secret
is derived (which has the same value across all members).

This new commit secret, along with the new group context and ratchet tree
(PRF-PRNG input), is then used by the key schedule (PRF-PRNG), along

110

5.2. PRF-PRNG

with its init secret (PRF-PRNG state), to produce the welcome secret, meta-
data secret, confirmation key and enc secret (short for encryption secret)
and a new init secret (PRF-PRNG state). Thereafter, the enc secret is used
to derive a secret tree, whose leaves are further processed (according to the
initialiseRatchets step1 algorithm, in Figure 4.55) to derive handshake and ap-
plication secrets. We can then view the handshake, application secrets and
group secrets (derived by the MLS key schedule, excluding the init secret),
as forming a high-entropy pool of secrets.

Finally, the MLS based KEGSE scheme will use the metadata secret, hand-
shake and application secrets to refresh its state. More concretely, it will
use the handshake and application secrets to initialise its handshake and
application ratchet state (according to the initialiseRatchets step2 algorithm,
in Figure 4.56). Moreover, it will take the metadata secret, in attempts to
ensure sender anonymity.

5.2 PRF-PRNG

We start this section by defining the syntax of a PRF-PRNG, which matches
the one given in [ACD18]. We then give the concrete MLS based instan-
tiation of a PRF-PRNG scheme by combining the MLS key schedule and
secret tree (as explained in Section 5.1.2). The security game of the PRF-
PRNG matches the one provided by [ACD18] (whose intuition we provided
in 3.4.3) and hence we omit its definition.

5.2.1 PRF-PRNG Syntax

Definition 5.1 A PRF-PRNG scheme P specifies two deterministic algorithms
P.Init and P.Up. Associated to P is a keyspace P.K. The algorithms are defined
as follows:

• P.Init algorithm takes in a key k ∈ P.K and produces a state st, denoted as
st← P.Init(k).

• P.Up algorithm takes in a state st and an input I and produces a new state
st′ and an output R, denoted as (st′,R)← P.Up(st, I).

5.2.2 Instantiating a PRF-PRNG scheme

In this section we give a concrete instantiation of a PRF-PRNG scheme
based on the MLS protocol. Let KDF be a key derivation function. Then
P = MLS-PRF-PRNG[KDF] is a PRF-PRNG scheme with P.K = {0, 1}KDF.Nh,
whose algorithms are defined as shown in Figure 5.2. As explained in 5.1.2,
the state of P is the secret bit-string init secret, the input values I are tu-
ples consisting of a GroupContext structure, bit-string commit secret and a

111

5. Building blocks of MLS

ratchet tree. The output values R are a concatenation of the following bit-
strings: (1) all the group secrets (excluding the init secret), derived by the
key schedule, and (2) all the handshake and application secrets derived from
the leaf node secrets of the secret tree, according to the initialiseRatchets step1
algorithm (defined in Figure 4.55).

P-Init(k):

init secret ← k
return init secret

P-Up(st, I)

init secret ← st
(group context, commit secret, ratchet tree) ← I
(init secret, (wel secret, enc secret, meta secret, confirm key)) ← KeySchedule(group context, commit secret, init secret)
secret tree ← formSecretTree(KDF,ratchet tree,enc secret)
(ID2app, ID2hand) ← initialiseRatchets step1(KDF, ratchet tree, secret tree)
R ← wel secret‖meta secret‖confirm key
for ID in ID2app.keys:
R ← R‖ID2app[ID]‖ID2hand[ID]

return (init secret, R)

KeySchedule(group context, commit secret, init secret):

joiner secret ← KDF.Expand(KDF.Extract(commit secret, init secret), 〈KDF.Nh, mls10joiner〉, KDF.Nh)
wel secret ← KDF.Expand(KDF.Extract(0,joiner secret),〈KDF.Nh, ‘mls10welcome′〉, KDF.Nh)
epoch secret ← KDF.Expand(KDF.Extract(0,joiner secret), 〈KDF.Nh, ‘mls10epoch′〉, KDF.Nh)
meta secret ← KDF.Expand(epoch secret, 〈KDF.Nh, ‘mls10senderdata′〉, KDF.Nh)
enc secret ← KDF.Expand(epoch secret, 〈KDF.Nh, ‘mls10encryption′〉, KDF.Nh)
confirm key ← KDF.Expand(epoch secret, 〈KDF.Nh, ‘mls10confirm′〉, KDF.Nh)
init secret ← KDF.Expand(epoch secret, 〈KDF.Nh, ‘mls10init′〉, KDF.Nh)
return (init secret, (wel secret, enc secret, meta secret, confirm key))

Figure 5.2: Instantiating PRF-PRNG based on MLS. The formSecretTree and initialiseRatch-
ets step1 are the algorithms we defined in Figures 4.54 and 4.55 respectively.

5.3 Key-Evolving Group Symmetric Encryption Scheme
(KEGSE) with Associated Data

We start this section by defining the syntax of a KEGSE scheme. We then
define what we mean by a KEGSE scheme to be correct and secure. We
consider two notions of KEGSE security in this work. Informally the ba-
sic security properties a secure KEGSE scheme must provide is authentic-
ity, confidentiality and forward security of messages. This basic security
is captured by the game Gfs-gaead shown in Figure 5.4. The stronger no-
tion that we consider (which implies the basic one) is captured by the game
Gfs-anonim-gaead shown in Figure 5.5. Apart from capturing the basic security
properties (confidentiality, authenticity and forward security of messages) it
also captures the notion of sender anonymity and the forward security of
sender anonymity. We consider this property, since the MLS protocol also
aims to provide metadata protection, that in part requires sender anonymity
to hold. The work by Chan and Rogaway [CR19] introduces the concept of
anonymous nonce-based authenticated encryption schemes (anAE), which
provide the same security guarantees as the traditional nonce-based authen-
ticated encryption (NAE) schemes as well as sender privacy, which in turn

112

5.3. Key-Evolving Group Symmetric Encryption Scheme (KEGSE) with Associated
Data

implies anonymity. However their notion of privacy does not include an ad-
versary who is allowed to compromise honest clients. Therefore we believe
that this work is the first to study forward secure anonymity as a property
in any scheme.

After defining both security notions of a KEGSE scheme we divert our at-
tention to a simpler primitive termed as a key evolving symmetric encryp-
tion (KESE) scheme with associated data. This simpler primitive models a
KEGSE scheme with a single sender. We define two security notions for
such a scheme, which essentially capture all the properties the basic KEGSE
security notion captures, of course accommodating for the single sender sce-
nario. The first security notion captures the security of a single sender and
multiple receivers, whereas the second notion captures the security of a sce-
nario with a single sender and single receiver. The later security notion has
been studied before, however we deem the existing definitions inadequate
and provide attacks illustrating the definitional problems. We provide an
MLS based instantiation of a KESE scheme and prove it secure against our
second KESE security definition. The security proof for the MLS based KESE
scheme in the single sender multiple receivers scenario is omitted as the ap-
proach would be identical to the one taken for the first security notion.

We then define a KEGSE instantiation in terms of a KESE scheme and ar-
gue that if a KESE scheme is secure in the single sender multiple receivers
scenario, then the KESE based KEGSE scheme is secure in the basic sense.
We end this section by showing that a KEGSE instantiation in terms of any
KESE scheme (and hence including the MLS based one) does not meet the
stronger KEGSE security definition by providing an adversary who breaks
the FS-anonymity property. In this way we show that MLS does not meet all
the requirements we believe it strives to achieve based on the architecture
document [OBR+21]. We end this chapter by giving a KEGSE instantiation
based on puncturable function families we trust meets the stronger KEGSE
security.

5.3.1 KEGSE Syntax

A KEGSE scheme consists of three algorithms: initialization algorithm, send
algorithm and receive algorithm. The initialization algorithm takes in an ini-
tial metadata secret k, list of group member identifiers ids, encryption secrets
scrts (one for each group member) and an index i such that ids[i] is the iden-
tifier of the initialised client; it then outputs the initial state st of client ids[i].
The sending algorithm takes in the state of the sender st, a message to be en-
crypted m and associated data a and outputs a new state st′ and ciphertext
c. The receive algorithm takes in a state st of the receiver, associated data
a and a ciphertext c and outputs a new state st′, the identity of the sender
of this ciphertext sid, the underlying message m and a message counter i.

113

5. Building blocks of MLS

Since messages may arrive out of order or be dropped, the message counter
i ensures that, when a message m is delivered to the recipient, the recipient
is able to place it in the correct spot in relation to the other messages already
received. This allows the receiver id to sequence the messages in the same
order in which they were sent by the sender sid. Therefore, each message
and ciphertext has a corresponding counter i.

Definition 5.2 A key-evolving symmetric group encryption scheme with associ-
ated data KEGSE specifies algorithms KEGSE.Init, KEGSE.Send, KEGSE.Recieve.
Associated to KEGSE is a set of metadata secrets KEGSE.MK, a set of message
encryption secrets KEGSE.DK, a set of identifiers KEGSE.ID and a set of random
values KEGSE.R. Algorithms KEGSE.Recieve and KEGSE.Init are deterministic
and KEGSE.Send is probabilistic. The algorithms are defined as follows:

• KEGSE.Init algorithm takes in a metadata secret k ∈ KEGSE.MK, a list of
identifiers ids ⊆ KEGSE.ID, a list of encryption secrets scrts ⊆ KEGSE.DK
such that |ids| = |scrts| and an integer 0 ≤ i < |ids|; it outputs a state st
denoted as st← KEGSE.Init(k, ids, scrts, i).

• KEGSE.Send algorithm takes in a state st a message m ∈ {0, 1}∗ and as-
sociated data a ∈ {0, 1}∗ and outputs a state and a ciphertext pair (st′, c)
denoted as (st′, c)←$ KEGSE.Send(st, m, a).

• KEGSE.Recieve algorithm takes a state st, associated data a ∈ {0, 1}∗ and a
ciphertext c and produces a new state st′, counter i, identifier sid and mes-
sage m ∈ {0, 1}∗ ∪ {⊥} denoted as (st′, i, sid, m)← KEGSE.Recieve(st, a, c).

5.3.2 KEGSE Correctness

In this section we define what we mean by a correct KEGSE scheme. In-
formally a KEGSE scheme is correct if any ciphertext sent to the group can
be immediately decrypted by each group member no matter the order of
delivery. The game Gkegse-corr, defined in Figure 5.3, captures this intuition
by initialising a set trans representing all ciphertexts transmitted within the
group. More specifically it contains elements of the form (id, rid, i, a, m, c)
where id is the identifier of the sending client, rid is the identifier of the
receiver, i is the message counter corresponding to message m, c is the ci-
phertext produced and a the associated data.

The game calls A1 to obtain the identifiers of the clients forming the group
ids and checks that no client is repeated twice. It also samples the metadata
secret k used by the group and the encryption secrets scrts, one for each
client in the group. It then uses these values to initialise each client via
KEGSE.Init in the group and saves the produced initial state of each client in
the st map. Given a client id send ctr[id] is a monotonically increasing integer
starting at 0 that corresponds to the number of messages sent by client id so

114

5.3. Key-Evolving Group Symmetric Encryption Scheme (KEGSE) with Associated
Data

far in the game. It also maintains a win flag win which is initialised as
false and is set to true if and only if the adversary manages to break the
correctness of the scheme. This occurs if and only if a ciphertext that was
transmitted (recorded in trans set) fails to be decrypted to the underlying
message, message counter and sender via KEGSE.Recieve. The adversary A2
is granted access to a transmit oracle which crafts legitimate ciphertexts and
deliver oracle which receives only ciphertexts created via the transmit oracle.
Note that the attacker is allowed to deliver messages out of order but that
the decryption should still remain correct.

Gkegse-corr
KEGSE,A:

trans← ∅, scrts← []
k ←$ KEGSE.MK
win ← false
(A1,A2)← A
(state, ids)←$A1()
if ∃i, j ∈ range(|ids|) : i 6= j∧ ids[i] = ids[j]:

return false
for id in ids:

s←$ KEGSE.DK
scrts← scrts + [s]

for id in ids:
for i in range(|ids|):

st[ids[i]]← KEGSE.Init(k, ids, scrts, i)
send ctr[ids[i]] ← 0

Atransmit,deliver
2 (state)

return win

transmit(id,a,m):

(st[id],c) ←$ KEGSE.Send(st[id],m,a)
for rid in ids:

trans← trans∪ {(id, rid, send ctr[id], a, m, c)}
send ctr[id] + +
return c

deliver(id,a,c):

req ∃! sid, i, m : (sid, id, i, a, m, c) ∈ trans
(st[id], i′ , sid′ , m′)← KEGSE.Recieve(st[id], a, c)
if i′ , m′ , sid′ 6= i, m, sid:

win ← true
else:

trans←− (sid′ , id, i′ , a, m′ , c)
return (i′ , sid′ , m′)

Figure 5.3: The KEGSE correctness game and its oracles.

Correctness A KEGSE scheme is (ε, t, q)-correct if for all (t, q)-adversaries
A:

Pr
[

Gkegse-corr
KEGSE,A

]
≤ ε

where an attacker is a pair of algorithms A1 and A2, and is parametrised
over its running time t and number of queries q it makes throughout the
game. The adversary A1 returns a list of identifiers ids ⊆ KEGSE.ID along
with some state state that contains information about its computation; state
could include the random coins used byA1, the list of identifiers ids returned
by A1, etc. The adversary A2 takes in the state information state forwarded
by A1 and uses it to interact with its oracles transmit and deliver.1

5.3.3 KEGSE Security

In this section we define two notions of security for a KEGSE scheme. The
first security notion (FS-GAEAD) captures confidentiality, authenticity and
forward security of messages exchanged within a static (no members added

1We consider a KEGSE scheme to provide perfect correctness if it is (0, ∞, ∞)-correct.

115

5. Building blocks of MLS

or removed) group of clients. The second notion (FS-ANONIM-GAEAD)
captures all properties FS-GAEAD security captures with the addition of
sender anonymity and forward secure sender anonymity.

FS-GAEAD security Consider game Gfs-gaead of Figure 5.4, associated to a
key-evolving (stateful) group symmetric encryption scheme with associated
data KEGSE, and to an adversaryA (pair of algorithmsA = (A1,A2)) which
captures the basic security properties (confidentiality, authenticity and for-
ward security of messages). The advantage of A in breaking the FS-GAEAD
security of KEGSE is defined as:

Advfs-gaead
KEGSE (A) = 2 · Pr

[
Gfs-gaead

KEGSE,A

]
− 1. (5.1)

The game samples a random challenge bit b, calls A1 to obtain the identi-
fiers of the clients forming the group ids and checks that no client is repeated
twice. It initialises all the variables it needs to keep track of during execu-
tion and then requires the adversary A2 to guess the bit b. More specifically
since we want the security game to capture forward-security of messages we
need to allow state compromise to occur via corr oracle. To capture authen-
ticity and confidentiality, A2 must be given the power to inject malicious
ciphertexts via a Dec oracle and to call a left-or-right (LoR) oracle. However
these requirements interfere with each other (when a receiver of messages in
transition is compromised, these messages lose all security since the receiver
needs to keep state required to process the incoming messages; an adversary
can trivially forge and decrypt all future ciphertexts when it leaks the state
of a client). In order for these trivial attacks to be prevented the game keeps
track of all ciphertexts in transmission and challenge ciphertexts via sets
trans and chall respectively. The game also maintains compfut and comppast

which for each client keep track of compromised message counters due to
state leaks. For a given client id the compfut[id] captures all the future mes-
sages yet to be sent by id that are trivially forgable and decryptable upon
state compromise of any group member. It is enough for compfut[id] to store
a single integer representing the smallest of all future compromised mes-
sage counters since sending occurs in order. The comppast[id] is the set of
all message counters corresponding to messages that are sent by id that is
yet to be received by some compromised group member. The comppast[id] is
a set and not an integer because a receiver may get messages out of order,
whereas sending always occurs in order.

Similarly to the correctness game, Gfs-gaead samples the metadata secret k and
the encryption secrets sts and uses these values to initialise each client in the
group via KEGSE.Init. It then saves the produced initial state of each client
in the st map. For each client id it maintains that client’s message counter
in send ctr[id] and initialises it to 0 since no messages have been sent by any

116

5.3. Key-Evolving Group Symmetric Encryption Scheme (KEGSE) with Associated
Data

group member at the beginning of the game. Given a sender id, a receiver id′

and a message counter i the not used[id][id′][i] is set to true if the information
maintained by client id′ needed to receive the i-th message of id has not been
used (deleted) from its state. If it is used (deleted) then not used[id][id′][i]
is set to true. At the beginning of the game since no messages have been
received yet by any client (and hence all clients have all the information
in their state to decrypt all messages) not used[id][id′][i] is set to true for
all id, id′, i. Maintaining this variable ensures that deletion of certain key
material occurs (and hence future security can hold) and that the scheme is
secure against replay attacks.

Gfs-gaead
KEGSE,A:

b ←$ {0, 1}
trans, chall ← ∅, scrts← []
compfut[.]← ∞
comppast[.]← ∅
k ←$ KEGSE.MK
(A1,A2)← A
(state, ids)←$A1()
if ∃i, j ∈ range(|ids|) : i 6= j∧ ids[i] = ids[j]:

return false
for id in ids:

s←$ KEGSE.DK
scrts← scrts + [s]

for i in range(|ids|):
st[ids[i]]← KEGSE.Init(k, ids, scrts, i)
send ctr[ids[i]] ← 0
for id′ in ids:

not used[ids[i]][id′][.] ← true

b′←$ALoR,Dec,corr
2 (state)

return b′ = b

LoR(a,r, id,m0, m1):

req |m0| = |m1| and compfut[id] = ∞
(st[id], c) ← KEGSE.Send(st[id], mb,a;r)
for id′ in ids:

trans ← (id, id′, send ctr[id], a, mb, c)
if m0 6= m1:

chall ← (id, id′, send ctr[id], a, mb, c)
send ctr[id] + +
return c

corr(id):

req 6 ∃id′ , i, a, m, c : (id′ , id, i, a, m, c) ∈ chall
for id′ ∈ ids :

compfut[id′]← send ctr[id′]
S ← {i | (∃a, m, c, r : (id′ , id, i, a, m, c) ∈ trans)}
comppast[id′]← comppast[id′] ∪ S

return st[id]

Dec(id,a,c):

(st[id], i, sid, m) ← KEGSE.Receive(st[id],a,c)
if m = ⊥:

return ⊥
if not used[sid][id][i] and ((sid, id, i, a, m, c) ∈ trans or i ≥ compfut[sid] or i ∈ comppast[sid]):

trans←− (sid, id, i, a, m, c)
chall←− (sid, id, i, a, m, c)
not used[sid][id][i]← false
return ⊥

if b=1:
return m

else:
return ⊥

Figure 5.4: The FS-GAEAD security game and its oracles.

The LoR oracle takes in associated data a, nonce r, an identifier id repre-
senting the sender and two messages m0, m1 and returns an encryption c
of mb created by calling the KEGSE.Send algorithm. It also increments the
message counter send ctr of the sender id and records for each member id’
in the group (id, id′, send ctr[id], a, mb, c) into trans and possibly chall if the
ciphertext is a challenge ciphertext (m0 6= m1) indicating that the ciphertext
c corresponding to counter send ctr[id], message mb, associated data a has
been sent by id to id′. An adversary is allowed to call the LoR if messages m0

and m1 are of the same length and if no compromise occurred. The second
requirement does not weaken the adversary A because A can leak the state
of all clients via the corr oracle and hence obtain all the information it needs
to simulate the LoR oracle for any client. We put this requirement in place
in order to make it easier to prove a scheme secure against the definition.

The Dec oracle takes in a receiver id, associated data a and ciphertext c and

117

5. Building blocks of MLS

returns a message m 6= ⊥ if and only if c is a malicious (not produced by
LoR) non-trivial (false on the second if condition) ciphertext that is success-
fully decrypted by KESE.Receive and b = 1. A ciphertext c is trivial if and
only if the receiver id did not delete the information needed to decrypt the
i-th ciphertext sent by sid (not used[sid][id][i] holds) and the ciphertext c was
either created by the LoR oracle ((sid, id, i, a, m, c) ∈ trans) or it corresponds to
a message counter that is considered to be compromised (i ≥ compfut[sid] or
i ∈ comppast[sid])). If the ciphertext is trivial Dec removes the record (if any)
(sid, id, i, a, m, c) from the trans and chall set since the ciphertext c was trans-
mitted to client id and sets not used[sid][id][i] to false. Doing this ensures
that a secure KEGSE scheme requires each client to delete all information
pertaining to any message the client received.

Finally the corr oracle takes in a client identifier id and returns that client’s
state st[id]. It can only be called if all challenge ciphertexts have been deliv-
ered to id since id’s state would trivially have to contain information needed
to decrypt this challenge ciphertext successfully. The corr oracle also sets
the compfut and comppast variables appropriately to indicate which message
counters (and hence which messages and ciphertexts) should be considered
as compromised after leaking the state of id. More specifically for each
group member id′ it sets compfut[id

′] to the current message counter of client
id′ indicated by send ctr[id′] since with this state leak the adversary has the
exact same information as the honest sender. 2 The corr oracle also adds all
the message counters corresponding to a message not yet received by id to
comppast[id′].

Definition 5.3 A key-evolving (stateful) group symmetric encryption scheme with
associated data KEGSE is (ε, t, q)-FS-GAEAD-secure if for all (t, q)-attackers A:

Advfs-gaead
KEGSE (A) ≤ ε

where A is a pair of two algorithms (A1,A2) parametrised over its running time
t and a value q which represents the maximum number of queries made to the LoR
oracle. Furthermore for each query (a,i,c,r) made to the Dec oracle i < q must hold.

FS-ANONIM-GAEAD security Consider game Gfs-anonim-gaead shown in Fig-
ure 5.5, associated to a key-evolving (stateful) group symmetric encryption
scheme with associated data KEGSE, and to an adversary A. The advantage

2Note that since the LoR oracle is disabled upon the first state compromise, the send ctr
will never change after the first compromise either. This further implies that we do not need
to take care that compfut[id

′] for some id′ is set to the minimum message counter known to
the adversary.

118

5.3. Key-Evolving Group Symmetric Encryption Scheme (KEGSE) with Associated
Data

of A in breaking the FS-GAEAD security of KEGSE is defined as:

Advfs-anonim-gaead
KEGSE (A) = 2 · Pr

[
Gfs-anonim-gaead

KEGSE,A

]
− 1. (5.2)

The game is very similar to Gfs-gaead with the only differences highlighted in
gray. These differences are all that needs to be introduced in order to capture
sender anonymity and future anonymity properties. The LoR oracle now
takes in two sender identifier and message pairs (id0, m0) and (id1, m1) in-
stead of a single sender and two messages. Intuitively the idea is that given
a ciphertext an adversary is not only unable to distinguish which message
(out of two possible messages) is the one underlying the observed cipher-
text but is also unable to distinguish who was the sender of this ciphertext
(out of two possible senders). This is of course assuming that the sender ids
are of the same length. Thus, a call to the LoR oracle is now allowed if the
sender identifiers queried are of the same length (apart from the require-
ments already present from the FS-GAEAD security notion). Consequently
a ciphertext is considered a challenge ciphertexts if it challenges the confi-
dentiality of messages (m0 6= m1) or if it challenges the anonymity (privacy)
of a sender (id0 6= id1).

The notion of forward secure sender anonymity, extends from the forward
security of messages intuitively. Namely if the state of some client id is
leaked then we require that all ciphertexts client id sent and received leak as
much about the sender as if no client state leak occurred. Of course if more
than one state leak occurs then a ciphertext c does not leak the sender’s
identity if all the clients whose state has been leaked have received c. Since
a KEGSE scheme requires message counters (in order to for example allow
an instant messaging application to position chat messages within a group
correctly) a client would need to maintain some information in its state per-
taining to its own sending counter. Hence because we allow the state of any
client id to be leaked we need some additional variables to prevent trivial
wins by A who obtains such message counter information from a leaked
state. Namely the Gfs-anonim-gaead game maintains two additional maps left
and right which map a client identifier id to an integer representing the
amount of times the client id occurred in the left position and right posi-
tion of the LoR oracle respectively. Then in order to allow the corruption
of a client id we require that the amount of times id has occurred in the left
position and right position of the LoR oracle is the same. Note that this re-
quirement allows for stronger adversaries than a requirement that demands
all clients send the same amount of ciphertexts prior to compromise. The
Dec oracle does not need to change in any way. An adversary A wins if it
manages to guess the challenge bit the game Gfs-anonim-gaead samples at the
very beginning.

119

5. Building blocks of MLS

Definition 5.4 A key-evolving group symmetric encryption scheme with associ-
ated data KEGSE is (ε, t, q)-FS-ANONIM-GAEAD-secure if for all (t, q)-attackers
A:

Advfs-anonim-gaead
KEGSE (A) ≤ ε

where A is a pair of two algorithms (A1,A2) parametrised over its running time
t and a value q which represents the maximum number of queries made to the LoR
oracle. Furthermore for each query (a,i,c,r) made to the Dec oracle i < q must hold.

Gfs-anonim-gaead
KEGSE,A :

b ←$ {0, 1}
trans, chall ← ∅, scrts← []
compfut[.]← ∞
comppast[.]← ∅
k ←$ KEGSE.MK
(A1,A2)← A
(state, ids)←$A1()
if ∃i, j ∈ range(|ids|) : i 6= j∧ ids[i] = ids[j]:

return false
for id in ids:

s←$ KEGSE.DK
scrts← scrts + [s]

for i in range(|ids|):
st[ids[i]]← KEGSE.Init(k, ids, scrts, i)
left[ids[i]], right[ids[i]] ← 0

send ctr[ids[i]] ← 0
for id′ in ids:

not used[ids[i]][id′][.] ← true

b′←$ALoR,Dec,corr
2 (state)

return b′ = b

LoR(a,r, (id0, m0), (id1, m1)):

req |m0| = |m1| and |id0| = |id1| and compfut[id0] = ∞
(st[idb], c) ← KEGSE.Send(st[idb], mb,a;r)
for id in ids:

trans ← (idb, id, send ctr[idb], a, mb, c)
if (id0, m0) 6= (id1, m1):

chall ← (idb, id, send ctr[idb], a, mb, c)
left[id0] + +, right[id1] + +
send ctr[idb] + +
return c

corr(id):

req 6 ∃id′ , i, a, m, c : (id′ , id, i, a, m, c) ∈ chall and left[id] = right[id]
for id′ ∈ ids :

compfut[id′]← send ctr[id′]
S ← {i | (∃a, m, c, r : (id′ , id, i, a, m, c) ∈ trans)}
comppast[id′]← comppast[id′] ∪ S

return st[id]

Dec(id,a,c):

(st[id], i, sid, m) ← KEGSE.Receive(st[id],a,c)
if m = ⊥:

return ⊥
if not used[sid][id][i] and ((sid, id, i, a, m, c) ∈ trans or i ≥ compfut[sid] or i ∈ comppast[sid]):

trans←− (sid, id, i, a, m, c)
chall←− (sid, id, i, a, m, c)
not used[sid][id][i]← false
return ⊥

if b=1:
return m

else:
return ⊥

Figure 5.5: The FS-ANONIM-GAEAD security game and its oracles. The code added on top
of the FS-GAEAD security game is highlighted in gray.

5.3.4 Key-Evolving (Stateful) Symmetric Encryption Scheme with
Associated Data (KESE)

A key-evolving (stateful) symmetric encryption scheme with associated data
(KESE) scheme can be considered as a single-sender variant of a KEGSE
scheme.

KESE Syntax

Informally a KESE scheme also consists of three algorithms: initialization,
send and receive algorithm. The initialization algorithm takes in a secret
k and a client identifier id and outputs the initial sending state stS and the
initial receiving state stR corresponding to client id. If client id wishes to

120

5.3. Key-Evolving Group Symmetric Encryption Scheme (KEGSE) with Associated
Data

send a message m securely, it will call the sending algorithm that takes in
the sending state stS corresponding to the client id wishing to send, message
m, associated data a and a nonce r and outputs a new sending state st′S and
ciphertext c. The sender will then transmit the produced ciphertext c along
with the associated data a, message counter i corresponding to c and the
nonce r it used to form c into the network. The client receiving messages
sent by client id will call upon delivery call the receive algorithm that takes
in the receiving state stR corresponding to sender id. The receiver will also
provide the delivered associated data a, message counter i, ciphertext c and
a nonce r to the receive algorithm which in turn outputs a new receiver
state st′R and the underlying message m. The message counter has the same
meaning as in a KEGSE scheme.

Definition 5.5 A key-evolving (stateful) symmetric encryption scheme with as-
sociated data KESE specifies algorithms KESE.Init, KESE.Send, KESE.Recieve.
Associated to KESE is a set of initialization secrets KESE.K, a set of identifiers
KESE.ID and a set of random values KESE.R. All algorithms are deterministic and
are defined as follows:

• KESE.Init algorithm takes a secret k ∈ KESE.K and identifier id ∈ KESE.ID
and outputs a sender state stS and receiver state stR which is denoted as
(stS, stR)← KESE.Init(k, id).

• KESE.Send algorithm takes in a sender state stS, a message m ∈ {0, 1}∗, as-
sociated data a ∈ {0, 1}∗ and nonce r ∈ KESE.R and outputs a new sender
state st′S and a ciphertext c denoted as (st′S, c)← KESE.Send(stS, m, a, r).

• KESE.Receive takes as input a receiver state stR, associated data a ∈ {0, 1}∗,
integer i, ciphertext c and nonce r ∈ KESE.R and produces a new re-
ceiver state st′R and a message m ∈ {0, 1}∗ ∪ {⊥} which is denoted as
(st′R, m)← KESE.Receive(stR, a, i, c, r).

KESE Correctness

Informally a KESE scheme is correct if any ciphertext sent by the sender
can be immediately decrypted by a receiver no matter the order of deliv-
ery. The game Gkese-corr captures this notion of correctness formally and is
very similar to the Gkegse-corr. All the differences stem from the fact that
KESE represents a single sender variant of a KEGSE scheme and that the
KESE.Receive algorithm, unlike the KEGSE.Receive algorithm takes in a mes-
sage counter i and nonce r, and just produces the underlying message. The
adversary A1 needs to specify an identifier id which represents the client
who will send ciphertexts and identifiers rcv ids representing the receiving
clients. The set trans now contains records of the form (id, i, a, m, c, r) instead
of (id, rid, i, a, m, c) since there is only a single sender to receive from and an
explicit nonce r in KESE. The sender and receiver state pair (stS, stR) cor-

121

5. Building blocks of MLS

responding to id is obtained by calling KESE.Init. The sender then has its
initial state set to stS whilst all the receiving clients have their initial state set
to stR. All other parts of the game easily extend from the explanation given
for the Gkegse-corr game.

Gkese-corr
KESE,A :

(A1,A2)← A
(state, id, rcv ids)←$A1()
trans ← ∅
send ctr ← 0
if ∃i, j ∈ range(|rcv ids|) : i 6= j∧ rcv ids[i] = rcv ids[j]:

return false

win ← false

k ←$ KESE.K
(stS, stR)← KESE.Init(k, id)
for id′ in rcv ids :

st[id′]← stR

Atransmit,deliver
2 (state)

return win

transmit(a,m,r):

(stS, c)← KESE.Send(stS, m, a, r)
for id in rcv ids:

trans ←+ (id, send ctr,a,m,c,r)
return (send ctr,c)

deliver(id, a,i,c,r):

req ∃! m : (id, i, a, m, c, r) ∈ trans
(stR, m′)← KESE.Receive(stR, a, i, c, r)
if m′ 6= m:

win ← true

else:
trans ←− (id, send ctr, a, m, c, r)

return m′

Figure 5.6: The correctness game of a key-evolving symmetric encryption scheme with associated
data.

Correctness A key-evolving (stateful) symmetric encryption scheme with
associated data KESE is correct if for all attackers A:

Pr
[

Gkese-corr
KESE,A

]
= 0

where an adversary A is a tuple of two sub-algorithms A1 and A2. The
adversary A1 returns an identifier id ∈ KESE.ID along with some state state
that contains information about its computation; state could include the ran-
dom coins used by A1, the identifier id returned by A1, etc. The adversary
A2 takes in the state information state forwarded by A1 and uses it to query
oracles transmit and deliver.

KESE Security

In this section we define what we mean by a secure KESE scheme in a sce-
nario where there may be multiple receivers and a scenario with a single
receiver (see Figure 5.7). Intuitively, the former requires that the unidirec-
tional communication from the single sender to the multiple receivers is
confidential, authentic and forward secure in the presence of an adaptive
adversary, captured by game Gfs-aead-broadcast in Figure 5.8. Similarly a secure
KESE scheme in the later scenario ensures that the unidirectional commu-
nication from the single sender to the single receiver has the same security
properties, captured by game Gfs-aead in Figure 5.9.

We then further define the selective security variant of Gfs-aead as given by

122

5.3. Key-Evolving Group Symmetric Encryption Scheme (KEGSE) with Associated
Data

A B A C

B

D

Figure 5.7: KESE scheme in the single sender and single receiver scenario (left) and KESE
scheme in a single sender and multiple receivers (right) example where client A acts as the single
sender in both cases.

game Gfs-aead-select, shown in Figure 5.10. In the selective security variant the
adversary needs to select the soonest position in the key evolution it wishes
to leak pos. The game checks that the adversary does not misbehave by
ensuring that the soonest key evolution state leaked occurs at position pos
in the key evolution, not before, not after. If misbehaviour is detected the
game discards the adversary’s answer b′ and instead samples the guess bit
b′ uniformly and independently at random itself.

We then show a reduction from breaking FS-AEAD selective security of a
KESE scheme to breaking its FS-AEAD adaptive security. This in turn, will
allow us to prove the MLS based instantiation in the ‘simpler’ selective vari-
ant instead (which would then imply FS-AEAD security of the MLS based
KESE), in Section 5.3.4. The approach to proving that the KESE instanti-
ation is FS-AEAD-broadcast secure would be exactly the same. Namely,
we would define a selective variant of Gfs-aead-broadcast, where pos is now the
soonest position in the key evolution the adversary wishes to leak across all
receivers. We prove the FS-AEAD security, since the games are a bit shorter
and easier to understand than when the exact same argument is made for
the FS-AEAD-broadcast security of the scheme.

Prior to our work, Bellare and Yee [BY01] captured forward security of
symmetric schemes w.r.t. confidentiality, but not authenticity (in the single
sender single receiver scenario). Alwen et al. in [ACD18] define an FS-
AEAD primitive, analogous to a KESE scheme, and attempt to capture both
confidentiality and authenticity and forward security of messages sent (in
the single sender single receiver scenario). In appendix A.1 we argue that
their notion is inadequate by defining a game equivalent to theirs in order
to fit our KESE syntax and prove that the MLS based KESE scheme is not
secure in their notion. The attacks found clearly show that the problem lies
in their security definition rather than the MLS based KESE scheme.

FS-AEAD broadcast security Consider the game Gfs-aead-broadcast associated
to a key-evolving symmetric scheme with associated data KESE and an ad-

123

5. Building blocks of MLS

versary A, defined in Figure 5.8. The game captures the same basic proper-
ties as game Gfs-gaead for the scenario containing a single sender and possibly
multiple receivers, and is hence a trivial simplification of it. The advantage
of A in breaking the FS-AEAD broadcast security of KESE is defined as:

Advfs-aead-broadcast
KESE (A) = 2 · Pr

[
Gfs-aead-broadcast

KESE,A

]
− 1. (5.3)

Gfs-aead-broadcast
KESE,A :

b ←$ {0, 1}
trans, chall ← ∅
compfut ← ∞
comppast ← ∅
k ←$ KESE.K
(A1,A2)← A
(state, id, rcv ids)←$A1()
(stS, stR)← KESE.Init(k, id)
send ctr ← 0
if ∃i, j ∈ range(|rcv ids|) : i 6= j∧ rcv ids[i] = rcv ids[j]:

return false
for id′ in rcv ids:

not used[id′][.] ← true
st[id′] ← stR

b′←$ALoR,Dec,corr-S,corr-R
2 (state)

return b′ = b

corr-S:

compfut ← send ctr
return stS

corr-R(id):

req 6 ∃i, a, m, c : (id, i, a, m, c) ∈ chall
compfut ← send ctr
S ← {i | (∃a, m, c, r : (id, i, a, m, c, r) ∈ trans)}
comppast ← comppast ∪ S
return st[id]

LoR(a,m0, m1,r):

req |m0| = |m1| and compfut = ∞ :
(stS, c)← KESE.Send(stS, mb, a, r)
for id in rcv ids:

trans ←+ (id, send ctr,a,mb,c,r)
if m0 6= m1 :

chall ←+ (id, send ctr,a,mb,c,r)
send ctr ++
return c

Dec(id,a,i,c,r):

(st[id], m)← KESE.Receive(st[id], a, i, c, r)
if m = ⊥:

return ⊥
if not used[id][i] and ((id,i,a,m,c,r) ∈ trans or i ≥ compfut or i ∈ comppast):

trans ←− (id,i,a,m,c,r)
chall ←− (id,i,a,m,c,r)
not used[id][i]← false
return ⊥

if b=1:
return m

else:
return ⊥

Figure 5.8: The FS-AEAD broadcast security game and its oracles.

Definition 5.6 A key-evolving symmetric encryption scheme with associated data
KESE is (ε, t, q)-FS-AEAD-broadcast-secure if for all (t, q)-attackers A:

Advfs-aead-broadcast
KESE (A) ≤ ε

where an adversaryA is a tuple of two sub-algorithmsA1 andA2 parametrised over
its running time t and a value q ∈ N0. The adversary A1 returns the identifier of
the sender id ∈ KESE.ID, the identifiers of the receivers rcv ids ⊆ KESE.ID along
with some state state that contains information about its computation; state could
include the random coins used by A1, id,rcv ids returned by A1, etc. The adversary
A2 takes in the state information state forwarded by A1 and uses it to query oracles
LoR,Dec,corr-S and corr-R such that it makes at most q queries to the LoR oracle
and for each query (a,i,c,r) made to the Dec oracle i < q holds.

FS-AEAD security Consider game Gfs-aead shown in Figure 5.9, associated
to a key-evolving (stateful) symmetric encryption scheme with associated
data KESE, and to an adversary A. The advantage of A in breaking the FS-
AEAD security of KESE is defined as Advfs-aead

KESE (A) = 2 · Pr
[

Gfs-aead
KESE,A

]
− 1.

124

5.3. Key-Evolving Group Symmetric Encryption Scheme (KEGSE) with Associated
Data

Gfs-aead
KESE,A:

b ←$ {0, 1}
trans, chall← ∅
compsend ← ∞
comprcv ← false

not used[.] ← true

k ←$ KESE.K
(A1,A2)← A
(state,id) ←$A1()
send ctr ← 0
(stS, stR)← KESE.Init(k,id)

b′←$ALoR,Dec,corr-S,corr-R
2 (state)

return b′ = b

corr-S:
compsend ← send ctr
return stS

corr-R:

req chall = ∅
comprcv ← true

return stR

LoR(a,m0, m1,r):

req |m0| = |m1| and ¬comprcv and compsend = ∞
(stS, c)← KESE.Send(stS, mb, a, r)
trans ←+ (send ctr,a,mb,c,r)
if m0 6= m1 :

chall ←+ (send ctr,a,mb,c,r)
send ctr ++
return c

Dec(a,i,c,r):

(stR, m)← KESE.Receive(stR, a, i, c, r)
if m = ⊥:

return ⊥
if not used[i] and ((i,a,m,c,r) ∈ trans or i ≥ compsend or comprcv):

trans ←− (i,a,m,c,r)
chall ←− (i,a,m,c,r)
not used[i]← false

return ⊥
if b=1:

return m
else:

return ⊥

Figure 5.9: The FS-AEAD security game.

The only differences between this game and the previous ones is that the
variables comppast and compfut are now replaced by comprcv and compsend.
The compsend now contains exactly those message counters that are compro-
mised in case of sender’s state leak. The comprcv is a boolean set to true
if and only if the receiver is compromised. Moreover the corruption oracle
is now split into two oracles corr-S and corr-R, explicitly representing the
corruption of the sender and receiver respectively. Because of us separating
senders and receiver’s compromise, the LoR oracle is now disabled in case
of either receiver or sender compromise. Observe that this requirement is
fine as the adversary again can simulate the LoR oracle (since the first client
compromise) because it can leak the state of the sender as many times as it
wishes.

Definition 5.7 A key-evolving (stateful) symmetric encryption scheme with asso-
ciated data KESE is (ε, t, q)-FS-AEAD-secure if for all (t, q)-attackers A:

Advfs-aead
KESE (A) ≤ ε

where an attacker is parametrised over its running time t and a value q ∈N0 which
represents the maximum number of queries made to the LoR oracle. Furthermore
for each query (a,i,c,r) made to the Dec oracle i < q must hold.

FS-AEAD selective security Consider game Gfs-aead-select shown in Figure
5.10, associated to a key-evolving (stateful) symmetric encryption scheme
with associated data KESE, to an adversary A and q ∈N0. The adver-
sary must declare the earliest state leaked in the key evolution by speci-
fying its position pos in the key evolution. If the adversary does not wish

125

5. Building blocks of MLS

to leak the state, then the adversary specifies pos = q + 1. The advantage
of A in breaking the FS-AEAD selective security of KESE is defined as
Advfs-aead-select

KESE,q (A) = 2 · Pr
[

Gfs-aead-select
KESE,A,q

]
− 1.

Gfs-aead-select
KESE,A,q :

b ←$ {0, 1}
trans, chall← ∅
compsend ← ∞
comprcv ← false

not used[.] ← true

k ←$ KESE.K
(A1,A2)← A
(state,id,pos) ←$A1()
send ctr ← 0
soonest rcv← q + 1
max rcv ← 0
soonest send← q + 1
(stS, stR)← KESE.Init(k,id)

b′←$ALoR,Dec,corr-S,corr-R
2 (state)

soonest ← min(soonest rcv, soonest send)
if soonest 6= pos:

b′←$ {0, 1}
return b′ = b

corr-S:
soonest send ← send ctr
compsend ← send ctr
return stS

corr-R:

req chall = ∅
if ¬comprcv:

soonest rcv ← max rcv
comprcv ← true

return stR

LoR(a,m0, m1,r):

req |m0| = |m1| and ¬comprcv and compsend = ∞
(stS, c)← KESE.Send(stS, mb, a, r)
trans ←+ (send ctr,a,mb,c,r)
if m0 6= m1 :

chall ←+ (send ctr,a,mb,c,r)
send ctr ++
return c

Dec(a,i,c,r):

(stR, m)← KESE.Receive(stR, a, i, c, r)
if max rcv < i:

max rcv ← i
if m = ⊥:

return ⊥
if not used[i] and ((i,a,m,c,r) ∈ trans or i ≥ compsend or comprcv):

trans ←− (i,a,m,c,r)
chall ←− (i,a,m,c,r)
not used[i]← false

return ⊥
if b=1:

return m
else:

return ⊥

Figure 5.10: The FS-AEAD selective security game. The code added on top of the game Gfs-aead

is highlighted in gray.

Definition 5.8 A key-evolving (stateful) symmetric encryption scheme with asso-
ciated data KESE is (ε, t, q)-FS-AEAD-selective-secure if for all (t, q)-attackers A:

Advfs-aead-select
KESE,q (A) ≤ ε

where an adversary A is a tuple of two sub-algorithms A1 and A2 parametrised
over its running time t and a value q ∈ N0. The adversary A1 returns an iden-
tifier id ∈ KESE.ID and an integer 0 ≤ pos ≤ q + 1 along with some state state
that contains information about its computation; state could include the random
coins used by A1, id,pos returned by A1, etc. The adversary A2 takes in the state
information state forwarded by A1 and uses it to query oracles LoR,Dec,corr-S and
corr-R such that it makes at most q queries to the LoR oracle and for each query
(a,i,c,r) made to the Dec oracle i < q holds.

Theorem 5.9 Let KESE be (ε, t, q)-FS-AEAD-selective-secure. Then KESE is
(ε′, t, q)-FS-AEAD-secure where ε′ = (q + 2)ε.

Proof. Consider adversary B = (B1,B2) playing in game Gfs-aead and simu-
lating game Gfs-aead-select to adversary A = (A1,A2), defined in Figure 5.11.

126

5.3. Key-Evolving Group Symmetric Encryption Scheme (KEGSE) with Associated
Data

Adversary B1:

pos ←$ {0, 1, . . . , q, q + 1}
(state,id) ←$A1()
return (state,id,pos)

Adversary BLoR,Dec,corr-S,corr-R
2 (state):

b′←$A
LoRSim, DecSim,

corr-SSim,corr-RSim
2 (state)

return b′

corr-SSim:
return corr-S

corr-RSim:

return corr-R

LoRSim(a,m0, m1,r):

return ← LoR(a,m0, m1,r)

DecSim(a,i,c,r):

return Dec(a,i,c,r)

Figure 5.11: Adversary B playing in game Gfs-aead-select for proof of Theorem 5.9.

The adversary B starts by guessing the soonest state A will reveal in the
key evolution pos. Since A is parametrised over the range of queries it
can ask to the LoR and Dec oracle q and the receiver and sender states
are only updated by calls to these oracles, then any state in the key evo-
lution must correspond to a position 0 ≤ i ≤ q. Therefore if A leaks a
state via corr-R or corr-S then 0 ≤ pos ≤ q. If A does not leak a state then
pos = q + 1. Therefore pos ∈ {0, 1, . . . , q, q + 1} and Pr [pos = k] = 1

q+2 for
all k ∈ {0, 1, . . . , q, q + 1}. If B guesses the soonest state reveal correctly then
it perfectly simulates the game Gfs-aead to A and wins its selective game if
A wins its adaptive game. If B does not guess correctly, then the game
Gfs-aead-select will detect this misbehaviour, discard b′ provided by B and in-
stead sample b′ locally and output b′ = b. Therefore B wins if and only if
A wins and pos=soonest or pos 6= soonest and b′ = b when sampled by the
game.

Let E denote the event pos=soonest. The probability of E occurring is:

Pr [E] = ∑
k∈{0,1,...,q,q+1}

Pr [pos = k∧ soonest = k] (5.4)

= ∑
k∈{0,1,...,q,q+1}

Pr [pos = k] · Pr [soonest = k] (5.5)

=
1

q + 2 ∑
k∈{0,1,...,q,q+1}

Pr [soonest = k] =
1

q + 2
(5.6)

This then implies that Pr [¬E] = q+2−1
q+2 .

Since Pr [b = b′ |E] = Pr
[

Gfs-aead
KESE,A

]
and Pr [b = b′ | ¬E] = 1

2 we have:

Advfs-aead-select
KESE (B) = 2 · Pr

[
b = b′

]
− 1 (5.7)

= 2 · (Pr
[

b = b′ |E
]
· Pr [E] + Pr

[
b = b′ | ¬E

]
· Pr [¬E])− 1 (5.8)

= 2 · (Pr
[

b = b′ |E
]
· 1

q + 2
+ Pr

[
b = b′ | ¬E

]
· q + 2− 1

q + 2
)− 1 (5.9)

= 2 · (Pr
[

Gfs-aead
KESE,A

]
· 1

q + 2
+

1

2
· q + 2− 1

q + 2
)− 1 (5.10)

= 2 · Pr
[

Gfs-aead
KESE,A

]
· 1

q + 2
− 1

q + 2
(5.11)

127

5. Building blocks of MLS

=
1

q + 2
(2 · Pr

[
Gfs-aead

KESE,A

]
− 1) (5.12)

=
1

q + 2
Advfs-aead

KESE (A) (5.13)

�

Instantiating a KESE scheme

We start this section by giving an instantiation of a key-evolving (stateful)
symmetric encryption scheme with associated data based on the Handshake
and Application message framing of MLS (see Section 4.10). We then sim-
plify this MLS extracted instantiation and obtain a key-evolving symmetric
encryption scheme with associated data scheme that we prove to be FS-
AEAD secure (see Figure 5.10).

KESE scheme based on MLS Let KDF be a key derivation function and
NAE be a nonce based authenticated encryption scheme with associated
data. Then KESE=MLS-ORG-KESE[KDF,NAE] is a key-evolving symmet-
ric encryption scheme with associated data with KESE.K = {0, 1}KDF.Nh,
KESE.ID = {a, b, . . . , z}∗ and KESE.R = {0, 1}NAE.Nn whose algorithm defi-
nitions are given in Figure 5.12.

KESE.Init(k, id):

v ← k
iS ← 0
D[.]← ⊥
stS ← (v, iS, id)
stR ← (v, iS, id,D)
return (stS, stR)

KESE.Send(stS,m,a,r):

(v, iS, id) ← stS

nonce ← KDF.Expand(v, 〈NAE.Nn, ”mls10nonce”, id, iS〉 , NAE.Nn)
key ← KDF.Expand(v, 〈NAE.Nk, ”mls10key”, id, iS〉 , NAE.Nk)
v ← KDF.Expand(v, 〈KDF.Nh, ”mls10secret”, id, iS〉 , KDF.Nh)

nonce← nonce⊕ r
c ← NAE.Enc(key, nonce, a, m)
stS ← (v, iS + 1, index)
return (stS, c)

KESE.Receive(stR,a,i,c,r):

(v, iR, id, D) ← stR

while D[i] = ⊥ and iR < i:
nonce ← Expand(v, 〈NAE.Nn, ”mls10nonce”, index, iR〉 , NAE.Nn)
key ← Expand(v, 〈NAE.Nk, ”mls10key”, index, iR〉 , NAE.Nk)
v ← Expand(v, 〈KDF.Nh, ”mls10secret”, index, iR〉 , KDF.Nh)
D[iR]← (key, nonce)
iR ++

if D[i] = ⊥:
stR ← (v, iR, id, D)
return (stR, ⊥)

(key, nonce) ← D[i]
nonce← nonce⊕ r
m ← NAE.Dec(key, nonce, a, c)
if m 6= ⊥:
D[i]← ⊥

stR ← (v, iR, id, D)
return (stR, m)

Figure 5.12: MLS based key-evolving (stateful) symmetric encryption scheme with associated
data KESE = MLS-ORG-KESE[KDF,NAE].

MLS based KESE simplified In this section we present a simplification
of the KESE scheme described in section 5.3.4. Namely, the simplification,
given in Figure 5.13, substitutes the Expand algorithm of a KDF scheme, with
a function family F, to derive the key,nonce and v bit-strings. The code that
differs between the original, in Figure 5.12, and simplified instantiation, in
Figure 5.13, is highlighted in yellow.

128

5.3. Key-Evolving Group Symmetric Encryption Scheme (KEGSE) with Associated
Data

KESE.Init(k, id):

v ← k
iS ← 0
D[.]← ⊥
stS ← (v, iS, id)
stR ← (v, iS, id,D)
return (stS, stR)

KESE.Send(stS,m,a,r):

(v, iS, id) ← stS

knv ← F.Ev(v, 〈id, iS〉)
key← knv[0, . . . , NAE.Nk− 1]
nonce← knv[NAE.Nk, . . . , NAE.Nk + NAE.Nn− 1]
v← knv[NAE.Nk + NAE.Nn, . . . , |knv| − 1]
nonce← nonce⊕ r
c ← NAE.Enc(key, nonce, a, m)
stS ← (v, iS + 1, id)
return (stS, c)

KESE.Receive(stR,a,i,c,r):

(v, iR, id, D) ← stR

while D[i] = ⊥ and iR ≤ i:
knv ← F.Ev(v, 〈id, iR〉)
key← knv[0, . . . , NAE.Nk− 1]
nonce← knv[NAE.Nk, . . . , NAE.Nk + NAE.Nn− 1]
v← knv[NAE.Nk + NAE.Nn, . . . , |knv| − 1]
D[iR]← (key, nonce)
iR ++

if D[i] = ⊥:
stR ← (v, iR, id, D)
return (stR, ⊥)

(key, nonce) ← D[i]
nonce← nonce⊕ r
m ← NAE.Dec(key, nonce, a, c)
if m 6= ⊥:
D[i]← ⊥

stR ← (v, iR, id, D)
return (stR, m)

Figure 5.13: Simplified MLS based key-evolving (stateful) symmetric encryption scheme with
associated data KESE = MLS-KESE[F,NAE].

Let NAE be a nonce-based authenticated encryption scheme with associated
data. Let F be a function family F with F.Out = NAE.Nk+ NAE.Nn + F.Kl.
Then KESE = MLS-KESE[F, NAE] is a key-evolving (stateful) symmetric en-
cryption scheme with associated data, defined in Figure 5.9, with KESE.K
= {0, 1}F.Kl, KESE.ID = {a, b, . . . , z}∗ and KESE.R = {0, 1}NAE.Nn.

Theorem 5.10 Let NAE be a (εmae, t1)-MAE secure nonce-based authenticated en-
cryption scheme with associated data and let F be a (εpr f , t2)-PRF-secure function
family with F.Out = NAE.Nk+ NAE.Nn + F.Kl. Let KESE = MLS-KESE[F, NAE].
Then for any q ∈ N0 KESE is (ε, t, q)-FS-AEAD-selective-secure where ε =
2(q + 1) · εpr f + εmae, t ≈ max(t1, t2).

Proof. The proof is a hybrid argument over PRF security of F followed by
a single step of MAE security of NAE. Let NAE be a (εmae, t1)-MAE se-
cure nonce-based authenticated scheme with associated data and let F be
a (εpr f , t2)-PRF-secure function family with F.Out = NAE.Nk+ NAE.Nn +
F.Kl. Let KESE = MLS-KESE[F, NAE] and t, q ∈ N0. Let A = (A1,A2) be an
adversary running in time t making at most q queries to the LoR oracle and
query the Dec oracle with i values less than q.

Consider games G0-Gq+1 associated to F, NAE and A and q defined in Figure
5.14. Observe that game G0

F,NAE,A,q is equivalent to Gfs-aead-select
KESE,A,q since counters

iS and iR are monotonically increasing throughout the game and start with
values iS = iR = 0 and pos ∈ {0, 1, . . . , q, q + 1}. Therefore we have:

Pr
[

G0
F,NAE,A,q

]
= Pr

[
Gfs-aead

KESE,A,q

]
. (5.14)

129

5. Building blocks of MLS

Gj
F,NAE,A,q:

b ←$ {0, 1}
f[.] ← ⊥
trans, chall← ∅
compsend ← ∞
comprcv ← false

not used[.] ← true

k ←$ {0, 1}F.Kl

(A1,A2)← A
(state,id,pos) ←$A1()
send ctr ← 0
soonest rcv← q + 1
max rcv ← 0
soonest send← q + 1
v ← k
iS, iR ← 0
D[.]← ⊥
stS ← (v, iS, id)
stR ← (v, iR, id,D)
b′←$ALoR,Dec,corr-S,corr-R

2 (state)
soonest ← min(soonest rcv, soonest send)
if soonest 6= pos:

b′←$ {0, 1}
return b′ = b

LoR(a,m0, m1,r):

req |m0| = |m1| and ¬comprcv and compsend = ∞
(v, iS, id) ← stS

if f[iS] = ⊥:
if iS≥ j:

knv ← F.Ev(v, 〈id, iS〉)
else:

knv ←$ {0, 1}F.Out

if iS≥ pos:
knv ← F.Ev(v, 〈id, iS〉)

key← knv[0, . . . , NAE.Nk− 1]
nonce← knv[NAE.Nk, . . . , NAE.Nk + NAE.Nn− 1]
v← knv[NAE.Nk + NAE.Nn, . . . , |knv| − 1]
f[iS]← (key, nonce, v)

else:
(key, nonce, v)← f[iS]

nonce← nonce⊕ r
c ← NAE.Enc(key, nonce, a, mb)
stS ← (v, iS + 1, id)
trans ←+ (send ctr,a,mb,c,r)
if m0 6= m1 :

chall ←+ (send ctr,a,mb,c,r)
send ctr ++
return c

Dec(a,i,c,r):

(v, iR, id, D) ← stR

while D[i] = ⊥ and iR ≤ i:
if f[iR] = ⊥:

if iR≥ j:
knv ← F.Ev(v, 〈id, iR〉)

else:
knv ←$ {0, 1}F.Out

if iR≥ pos:
knv ← F.Ev(v, 〈id, iR〉)

key← knv[0, . . . , NAE.Nk− 1]
nonce← knv[NAE.Nk, . . . , NAE.Nk + NAE.Nn− 1]
v← knv[NAE.Nk + NAE.Nn, . . . , |knv| − 1]
f[iR]← (key, nonce, v)

else:
(key, nonce, v)← f[iR]

D[iR]← (key, nonce); iR ++
if D[i] = ⊥:

stR ← (v, iR, id, D)
m ← ⊥

else:
(key, nonce) ← D[i]
nonce← nonce⊕ r
m ← NAE.Dec(key, nonce, a, c)
if m 6= ⊥:
D[i]← ⊥

stR ← (v, iR, id, D)
if max rcv < i:

max rcv ← i
if m = ⊥:

return ⊥
if not used[i] and ((i,a,m,c,r) ∈ trans or i ≥ compsend or comprcv):

trans ←− (i,a,m,c,r)
chall ←− (i,a,m,c,r)
not used[i]← false

return ⊥
if b=1:

return m
else:

return ⊥

corr-SSim:

soonest send ← send ctr
compsend ← send ctr
return stS

corr-RSim:

req chall = ∅
if ¬comprcv:

soonest rcv ← max rcv
comprcv ← true

return stR

Figure 5.14: Game Gj (for some j ∈N0) associated to a function family F, nonce-based au-
thenticated encryption scheme with associated data NAE, an integer q ∈N0 and an adversary
A. The code highlighted in gray is the code added by expanding the algorithms of KESE=MLS-
KESE[F,NAE] in the Gfs-aead-select

KESE,A,q .

Consider adversary B playing in game Gprf
F and using A to win its game as

defined in Figure 5.15. Let h be the value sampled by B at the start of its ex-
ecution. Then for any choice of h ∈ {0, 1, . . . , q} adversary B always assigns
a random bit-string to knv when LoRSim (DecSim) is queried on a message
(ciphertext) corresponding to counter iS (iR) such that iS < h and iS < pos
(iR < h and iR < pos) i.e. when iS < min(h, pos) (iR < min(h, pos)). Observe
that the bit-string knv is a concatenation of the NAE key, NAE nonce and F
key bit-string respectively knv = key‖nonce‖v. Therefore if iS < min(h, pos)
(iR < min(h, pos)) then key, nonce and v bit-strings are assigned a random
bit-string as well. If LoRSim (DecSim) is queried on a message (ciphertext)

130

5.3. Key-Evolving Group Symmetric Encryption Scheme (KEGSE) with Associated
Data

corresponding to iS (iR) such that iS > h or iS ≥ pos (iR > h or iR ≥ pos)
then B instead assigns F.Ev(v, 〈id, iS〉) (F.Ev(v, 〈id, iR〉)). The consistency be-
tween the answers of the two oracles is maintained with the map f. Now
if LoRSim or DecSim is queried on a counter iS (iR) such that iS = h and
iS < pos (iR = h and iR < pos) then B queries its Comp oracle and assigns its
reply to knv. If the Comp oracle returns outputs of a random function then
B perfectly simulates the view of A in game Gh+1

F,NAE,q, meaning:

Pr
[

Gk+1
F,NAE,A,q

]
= Pr

[
d′ = 1 | d = 0, h = k

]
(5.15)

holds for all k ∈ {0, 1, . . . , q} where d denotes the challenge bit in the game
Gprf

F,B and d′ denotes B’s guess.

Let E and E′ be the events that denote soonest = pos occurred in the original
game Gh and in B’s simulation respectively. Observe that up to event E′, B
is able to perfectly simulate the Gh game to A. Thus, if A is started (with the
same random coins) in Gh, it will behave the same (at least) until E happens.
So, all events on which the occurrence of pos = soonest might depend on are
the same in both the original and simulated game. Consequently, E occurs
if and only if E′ occurs and hence we have Pr [E] = Pr [E′]. If Comp returns
answers of function F.Ev we consider two cases: (1) A not misbehaving (E’
occurred) and (2) misbehaving (¬E′ occurred).

First assume A does not misbehave. If Comp returns answers of function
F.Ev and iS = h and iS < pos (iR = h and iR < pos) then the bit-string v
corresponding to iS + 1 (similarly iR + 1) is computed as follows:

key‖nonce‖v = F.Ev(kf , 〈id, iR〉) (5.16)

where kf ∈ {0, 1}F.Kl is the key sampled uniformly at random in the setup
of game Gprf

F,B . Therefore v corresponding to iS + 1 (iR + 1) is independent
of v corresponding to iS (iR) in B’s simulation. But in game Gh

F,NAE,q v cor-
responding to iS (iR) is used in place of kf in 5.16 to derive 〈key, nonce, v〉
corresponding to the next counter iS + 1 (iR + 1). However since we assume
that the earliest state A leaks corresponds to iS, iR = pos and it does not
misbehave, then A can only obtain values of v for iS, iR ≥ pos. But the Comp
oracle is only ever called if iS = h and iS < pos (iR = h and iR < pos)
holds. Since iS < pos, meaning v corresponding to iS is not leaked by a well
behaved A, and v corresponding to iS does not affect any oracles’ outputs
then A has no way of detecting this independence between bit-strings v cor-
responding to iS (iR) and iS + 1 (iR + 1). Therefore if Comp returns answers
of function F.Ev and pos=soonest, then B perfectly simulates the view of A

131

5. Building blocks of MLS

in game Gh
F,NAE,q meaning:

Pr
[

d = 1 | d = 1, h = k, E′
]
= Pr

[
Gk

F,NAE,A,q |E
]

(5.17)

holds for all k ∈ {0, 1, . . . , q} where d denotes the challenge bit in the game
Gprf

F,B and d′ denotes B’s guess.

Adversary BComp:

b ←$ {0, 1}
h ←$ {0, 1, . . . , q}
f[.] ← ⊥
trans, chall← ∅
compsend ← ∞
comprcv ← false

not used[.] ← true

k ←$ {0, 1}F.Kl

(A1,A2)← A
(state,id,pos) ←$A1()
send ctr ← 0
soonest rcv← q + 1
max rcv ← 0
soonest send← q + 1
v ← k
iS, iR ← 0
D[.]← ⊥
stS ← (v, iS, id)
stR ← (v, iR, id,D)

b′←$A
LoRSim, DecSim,

corr-SSim,corr-RSim
2 (state)

soonest ← min(soonest rcv, soonest send)
if soonest 6= pos:

b′←$ {0, 1}
if b′ = b :

d′ ← 1
else:

d′ ← 0
return d′

LoRSim(a,m0, m1,r):

req |m0| = |m1| and ¬comprcv and compsend = ∞
(v, iS, id) ← stS

if f[iS] = ⊥:
if iS> h:

knv ← F.Ev(v, 〈id, iS〉)
if iS= h:

knv ← Comp(〈id, iS〉)
if iS< h:

knv ←$ {0, 1}F.Out

if iS≥ pos:
knv ← F.Ev(v, 〈id, iS〉)

key← knv[0, . . . , NAE.Nk− 1]
nonce← knv[NAE.Nk, . . . , NAE.Nk + NAE.Nn− 1]
v← knv[NAE.Nk + NAE.Nn, . . . , |knv| − 1]
f[iS]← (key, nonce, v)

else:
(key, nonce, v)← f[iS]

nonce← nonce⊕ r
c ← NAE.Enc(key, nonce, a, mb)
stS ← (v, iS + 1, id)
trans ←+ (send ctr,a,mb,c,r)
if m0 6= m1 :

chall ←+ (send ctr,a,mb,c,r)
send ctr ++
return c

DecSim(a,i,c,r):

(v, iR, id, D) ← stR

while D[i] = ⊥ and iR ≤ i:
if f[iR] = ⊥:

if iR> h:
knv ← F.Ev(v, 〈id, iR〉)

if iR= h:
knv ← Comp(〈id, iR〉)

if iR< h:
knv ←$ {0, 1}F.Out

if iR≥ pos:
knv ← F.Ev(v, 〈id, iR〉)

key← knv[0, . . . , NAE.Nk− 1]
nonce← knv[NAE.Nk, . . . , NAE.Nk + NAE.Nn− 1]
v← knv[NAE.Nk + NAE.Nn, . . . , |knv| − 1]
f[iR]← (key, nonce, v)

else:
(key, nonce, v)← f[iR]

D[iR]← (key, nonce); iR ++
if D[i] = ⊥:

stR ← (v, iR, id, D)
m ← ⊥

else:
(key, nonce) ← D[i]
nonce← nonce⊕ r
m ← NAE.Dec(key, nonce, a, c)
if m 6= ⊥:
D[i]← ⊥

stR ← (v, iR, id, D)
if max rcv < i:

max rcv ← i
if m = ⊥:

return ⊥
if not used[i] and ((i,a,m,c,r) ∈ trans or i ≥ compsend or comprcv):

trans ←− (i,a,m,c,r)
chall ←− (i,a,m,c,r)
not used[i]← false

return ⊥
if b=1:

return m
else:

return ⊥

corr-SSim:

soonest send ← send ctr
compsend ← send ctr
return stS

corr-RSim:

req chall = ∅
if ¬comprcv:

soonest rcv ← max rcv
comprcv ← true

return stR

Figure 5.15: Adversary B playing in game Gprf
F for proof of Theorem 5.10. The code that differs

from game Gj for j ∈N0 is highlighted in yellow.

If A misbehaves we do not care to simulate the oracles perfectly since the
game Gh

F,NAE,q discards A’s answer and samples its own b′ instead. There-

132

5.3. Key-Evolving Group Symmetric Encryption Scheme (KEGSE) with Associated
Data

fore if Comp returns answers of F.Ev and pos 6= soonest, then B allows A to
win with the same probability as in game Gh

F,NAE,q given that misbehaviour
occurred, meaning:

Pr
[

d = 1 | d = 1, h = k,¬E′
]
= Pr

[
Gk

F,NAE,A,q | ¬E
]

(5.18)

holds for all k ∈ {0, 1, . . . , q}. Since Pr [E] = Pr [E′] then combining Equa-
tions 5.17 and 5.18 we have:

Pr
[

Gk
F,NAE,A,q

]
= Pr

[
d′ = 1 | d = 1, h = k

]
(5.19)

holding for all k ∈ {0, 1, . . . , q}.

We can now use Equation 5.19 and 5.15 to rewrite the advantage of B in Gprf
F

as follows:

Advprf
F (B) = Pr

[
d′ = 1 | d = 1

]
− Pr

[
d′ = 1 | d = 0

]
(5.20)

=
q

∑
k=0

Pr [h = k] · (Pr
[

d′ = 1 | d = 1, h = k
]
− Pr

[
d′ = 1 | d = 0, h = k

]
) (5.21)

=
1

q + 1

q

∑
k=0

(Pr
[

d′ = 1 | d = 1, h = k
]
− Pr

[
d′ = 1 | d = 0, h = k

]
) (5.22)

=
1

q + 1
· (

q

∑
k=0

(Pr
[

Gk
F,NAE,A,q

]
− Pr

[
Gk+1

F,NAE,A,q

]
)) (5.23)

=
1

q + 1
(Pr

[
G0

F,NAE,A,q

]
− Pr

[
Gq+1

F,NAE,A,q

]
) (5.24)

Now consider game Gq+2 associated to F, NAE, q ∈N0 and attacker A de-
fined in Figure 5.16. We now prove that the game Gq+2

F,NAE,A,q is equivalent to

game Gq+1
F,NAE,A,q. Since the only code that differs between the two games is

the code highlighted in gray it suffices to prove that the Dec oracle behaves
the same in both games. By Dec oracle behaving in the same way in both
games we mean that all variables and outputs obtain the same value on the
same input when using the same random coins.

Namely let (a,i,c,r) be some input the Dec oracle is queried on for the first
time. Since this is the first query to the Dec oracle all variables in both
games have the same values at the start of Dec’s execution. The proof is
split into two cases. In the first case assume that ∃m′ : (i, a, m′, c, r) ∈ trans
is false. Then the Dec oracle never executes the gray highlighted code
and hence it produces the same output as the Dec oracle in game Gq+1.
Now assume that ∃m′ : (i, a, m′, c, r) ∈ trans is true. This statement is true if
and only if c = NAE.Enc(key, nonce, a, m′) where (key, nonce⊕ r, v) = f[i] for
some bit-strings v, key, nonce. We consider two cases: (1) D[i] = ⊥ and (2)
D[i] = (key, nonce⊕ r).

133

5. Building blocks of MLS

G
(q+2)
F,NAE,A,q:

b ←$ {0, 1}
f[.] ← ⊥
trans, chall← ∅
compsend ← ∞
comprcv ← false

not used[.] ← true

k ←$ {0, 1}F.Kl

(A1,A2)← A
(state,id,pos) ←$A1()
send ctr ← 0
soonest rcv← q + 1
max rcv ← 0
soonest send← q + 1
v ← k
iS, iR ← 0
D[.]← ⊥
stS ← (v, iS, id)
stR ← (v, iR, id,D)
b′←$ALoR,Dec,corr-S,corr-R

2 (state)
soonest ← min(soonest rcv, soonest send)
if soonest 6= pos:

b′←$ {0, 1}
return b′ = b

LoR(a,m0, m1,r):

req |m0| = |m1| and ¬comprcv and compsend = ∞
(v, iS, id) ← stS

if f[iS] = ⊥:
if iS≥ q + 1:

knv ← F.Ev(v, 〈id, iS〉)
else:

knv ←$ {0, 1}F.Out

if iS≥ pos:
knv ← F.Ev(v, 〈id, iS〉)

key← knv[0, . . . , NAE.Nk− 1]
nonce← knv[NAE.Nk, . . . , NAE.Nk + NAE.Nn− 1]
v← knv[NAE.Nk + NAE.Nn, . . . , |knv| − 1]
f[iS]← (key, nonce, v)

else:
(key, nonce, v)← f[iS]

nonce← nonce⊕ r
c ← NAE.Enc(key, nonce, a, mb)
stS ← (v, iS + 1, id)
trans ←+ (send ctr,a,mb,c,r)
if m0 6= m1 :

chall ←+ (send ctr,a,mb,c,r)
send ctr ++
return c

corr-R:

req chall = ∅
if ¬comprcv:

soonest rcv ← max rcv
comprcv ← true

return stR

Dec(a,i,c,r):

(v, iR, id, D) ← stR

while D[i] = ⊥ and iR ≤ i:
if f[iR] = ⊥:

if iR≥ q + 1:
knv ← F.Ev(v, 〈id, iR〉)

else:
knv ←$ {0, 1}F.Out

if iR≥ pos:
knv ← F.Ev(v, 〈id, iR〉)

key← knv[0, . . . , NAE.Nk− 1]
nonce← knv[NAE.Nk, . . . , NAE.Nk + NAE.Nn− 1]
v← knv[NAE.Nk + NAE.Nn, . . . , |knv| − 1]
f[iR]← (key, nonce, v)

else:
(key, nonce, v)← f[iR]

D[iR]← (key, nonce); iR ++
if D[i] = ⊥:

stR ← (v, iR, id, D)
m ← ⊥

else:
(key, nonce) ← D[i]
nonce← nonce⊕ r
if ∃m′ : (i, a, m′, c, r) ∈ trans:

if m′ 6= ⊥ :
D[i]← ⊥

stR ← (v, iR, id, D)
if max rcv < i:

max rcv ← i
if m′ = ⊥:

return ⊥
if not used[i] and ((i, a, m′, c, r) ∈ trans or i ≥ compsend or comprcv):

trans←− (i, a, m′, c, r)
chall←− (i, a, m′, c, r)
not used[i]← false

return ⊥
m ← NAE.Dec(key, nonce, a, c)
if m 6= ⊥:
D[i]← ⊥

stR ← (v, iR, id, D)
if max rcv < i:

max rcv ← i
if m = ⊥:

return ⊥
if not used[i] and ((i,a,m,c,r) ∈ trans or i ≥ compsend or comprcv):

trans ←− (i,a,m,c,r)
chall ←− (i,a,m,c,r)
not used[i]← false

return ⊥
if b=1:

return m
else:

return ⊥

corr-S:

soonest send ← send ctr
compsend ← send ctr
return stS

Figure 5.16: Game Gq+2 associated to a function family F, nonce-based authenticated encryp-
tion scheme with associated data NAE, integer q ∈N0 and an adversary A. The code added
on top of the game Gq+1 is highlighted in gray.

First assume D[i] = ⊥ then the gray code is never executed since the condi-
tion if D[i] = ⊥ is true. Hence game Gq+1 and Gq+2 return the same value
trivially. Now assume D[i] = (key, nonce⊕ r). Then in game Gq+1 we have:

NAE.Dec(key, nonce, a, c) = NAE.Dec(key, nonce, a, NAE.Enc(key, nonce, a, m′)).

By the correctness property of NAE we have that m′ = NAE.Dec(key, nonce, a, c)
in game Gq+1.

Since the code up until and including the line nonce← nonce⊕ r in the Dec

134

5.3. Key-Evolving Group Symmetric Encryption Scheme (KEGSE) with Associated
Data

oracle is the same in both games then variables used by the code after that
line in game Gq+1 are the same as those used by the gray code in Gq+2. Now
because m′ = NAE.Dec(key, nonce, a, c) and m′ 6= ⊥ in game Gq+1 and both
games have the same variable values after line nonce← nonce⊕ r then it is
easy to see that the Dec oracle in both games behaves in the same way on
input (a,i,c,r).

Because the Dec oracle in both games behaves in the same way on the first
query, then all variables have the same values after this first query termi-
nates. Then by induction on the number of queries we have the above ar-
gument extend to all possible queries to the Dec oracle not only the first.
Therefore games Gq+1 and Gq+2 are equivalent, meaning:

Pr
[

Gq+1
F,NAE,A,q

]
= Pr

[
Gq+2

F,NAE,A,q

]
. (5.25)

Now consider adversary G playing in game Gmae
NAE as defined in Figure 5.17.

We now argue that each of the oracles available to A in game Gq+2
F,NAE,q are

perfectly simulated by G when pos=soonest. We only care that the simula-
tion is perfect in this case because we only use A’s answer b′ if pos=soonest.

Since pos ∈ {0, 1, . . . , q + 1} the LoRSim and DecSim oracles now sample keys
for iS, iR < pos independently and uniformly at random by querying oracle
New. The nonce and v bit-strings are sampled independently and uniformly
at random locally by G. Note that the New oracle does not return the uniform
key and hence the key bit-string for iS, iR < pos is set to ⊥ indicating that G
does not know the key yet. For iS, iR ≥ pos the bit-string knv = key‖nonce‖v
is derived using F.Ev locally and hence G knows all values needed to locally
encrypt messages corresponding to iS, iR ≥ pos.

In the LoRSim oracle these values are then used to encrypt either message m0

or m1. If the encryption is being made when iS, iR < pos then G queries its
Enc oracle to obtain a ciphertext. Adversary G not knowing key bit-strings
for iS, iR < pos is unimportant since it entrusts the encryption to its Enc
oracle in this case. If the encryption is being made when iS, iR ≥ pos then
G uses bit b it sampled at the start of its execution to produce a ciphertext
locally using the key and nonce corresponding to iS ≥ pos. Moreover the bit b
sampled locally causes no change in the simulation because it is guaranteed
that m0 = m1 for all iS ≥ pos if soonest=pos.

Namely for soonest=pos to be true either the first receiver state stR or first
sender state stS leaked must correspond to position pos. After the first cor-
ruption (either of sender or receiver) calls to the LoR oracle are prohibited
and hence after the first state leak no honestly crafted ciphertexts are sent
(chall and trans sets never have elements added anymore) and the sender
state stS is never updated. The receiver state stR can only be leaked once all
the ciphertexts in the chall set have been delivered by calling the Dec oracle.

135

5. Building blocks of MLS

Therefore if soonest=pos holds then it must be the case that m0 = m1 for all
iS ≥ pos. Hence the LoR oracle of A is perfectly simulated by LoRSim.

Adversary GNew,Enc,Dec,Corr:

b ←$ {0, 1}
f[.] ← ⊥
trans, chall← ∅
compsend ← ∞
comprcv ← false

not used[.] ← true

k ←$ {0, 1}F.Kl

(A1,A2)← A
(state,id,pos) ←$A1()
send ctr ← 0
soonest rcv← q + 1
max rcv ← 0
soonest send← q + 1
v ← k
iS, iR ← 0
D[.]← ⊥
stS ← (v, iS, id)
stR ← (v, iR, id,D)

b′←$A
LoRSim, DecSim,

corr-SSim,corr-RSim
2 (state)

soonest ← min(soonest rcv, soonest send)
if soonest 6= pos:

b′←$ {0, 1}
return b′

LoRSim(a,m0, m1,r):

req |m0| = |m1| and ¬comprcv and compsend = ∞
(v, iS, id) ← stS

if f[iS] = ⊥:
if iS≥ q + 1:

knv ← F.Ev(v, 〈id, iS〉)
key← knv[0, . . . , NAE.Nk− 1]
nonce← knv[NAE.Nk, . . . , NAE.Nk + NAE.Nn− 1]
v← knv[NAE.Nk + NAE.Nn, . . . , |knv| − 1]

else:
New()
key ← ⊥
nonce←$ {0, 1}NAE.Nn

v←$ {0, 1}F.Kl

if iS≥ pos:
knv ← F.Ev(v, 〈id, iS〉)
key← knv[0, . . . , NAE.Nk− 1]
nonce← knv[NAE.Nk, . . . , NAE.Nk + NAE.Nn− 1]
v← knv[NAE.Nk + NAE.Nn, . . . , |knv| − 1]

f[iS]← (key, nonce, v)
else:

(key, nonce, v)← f[iS]
nonce← nonce⊕ r
if iS≥ pos:

c ← NAE.Enc(key, nonce, a, mb)
if iS < pos:

c ← Enc(iS, nonce, m0, m1, a)
stS ← (v, iS + 1, id)
trans ←+ (send ctr,a,mb,c,r)
if m0 6= m1 :

chall ←+ (send ctr,a,mb,c,r)
send ctr ++
return c

corr-RSim:

req chall = ∅
if ¬comprcv:

soonest rcv ← max rcv
(v, iR, id, D) ← stR

for i in range(|D|):
if i < pos:

(key, nonce)← D[i]
key ← Corr(i)
D[i]← (key, nonce)
f[i]← (key, nonce, v)

stR ← (v, iR, id, D)
comprcv ← true

return stR

DecSim(a,i,c,r):

(v, iR, id, D) ← stR

while D[i] = ⊥ and iR ≤ i:
if f[iR] = ⊥:

if iR≥ q + 1:
knv ← F.Ev(v, 〈id, iR〉)
key← knv[0, . . . , NAE.Nk− 1]
nonce← knv[NAE.Nk, . . . , NAE.Nk + NAE.Nn− 1]
v← knv[NAE.Nk + NAE.Nn, . . . , |knv| − 1]

else:
New()
key ← ⊥
nonce←$ {0, 1}NAE.Nn

v←$ {0, 1}F.Kl

if iR≥ pos:
knv ← F.Ev(v, 〈id, iR〉)
key← knv[0, . . . , NAE.Nk− 1]
nonce← knv[NAE.Nk, . . . , NAE.Nk + NAE.Nn− 1]
v← knv[NAE.Nk + NAE.Nn, . . . , |knv| − 1]

f[iR]← (key, nonce, v)
else:

(key, nonce, v)← f[iR]
D[iR]← (key, nonce); iR ++

if D[i] = ⊥:
stR ← (v, iR, id, D)
m ← ⊥

else:
(key, nonce) ← D[i]
nonce← nonce⊕ r
if ∃m′ : (i, a, m′, c, r) ∈ trans:

if m′ 6= ⊥ :
D[i]← ⊥

stR ← (v, iR, id, D)
if max rcv < i:

max rcv ← i
if m′ = ⊥:

return ⊥
if not used[i] and ((i, a, m′, c, r) ∈ trans or i ≥ compsend or comprcv):

trans←− (i, a, m′, c, r)
chall←− (i, a, m′, c, r)
not used[i]← false

return ⊥
if i ≥ pos or key 6= ⊥:

m ← NAE.Dec(key, nonce, a, c)
else:

m ← Dec(i, nonce, c, a)
if m 6= ⊥:
D[i]← ⊥

stR ← (v, iR, id, D)
if max rcv < i:

max rcv ← i
if m = ⊥:

return ⊥
if not used[i] and ((i,a,m,c,r) ∈ trans or i ≥ compsend or comprcv):

trans ←− (i,a,m,c,r)
chall ←− (i,a,m,c,r)
not used[i]← false

return ⊥
if b=1:

return m
else:

return ⊥

corr-SSim:

soonest send ← send ctr
compsend ← send ctr
return stS

Figure 5.17: Adversary G playing in game Gmae
NAE for proof of Theorem 5.10. The code that

differs from game Gq+2 is highlighted in yellow.

136

5.3. Key-Evolving Group Symmetric Encryption Scheme (KEGSE) with Associated
Data

The DecSim oracle trivially simulates the Dec oracle in game Gq+2
F,NAE,q per-

fectly since for all keys that G does not know (iR < pos and key 6= ⊥) it
calls its Dec oracle and for all the keys it does know iR ≥ pos it decrypts
the ciphertext locally. Observe the extra game Gq+2 here is crucial, since the
Dec oracle of the Gmae game returns ⊥ if (i, nonce, c, a) ∈ trans. Therefore
we needed the added gray code in Gq+2 to ensure that the state of the re-
ceiver is the same in the game Gq+2 (hence in Gq+1 game as well) and in the
simulation.

The corr-S is trivially perfectly simulated by corr-SSim. The corr-R oracle is
perfectly simulated by corr-RSim because all the keys not known (set to ⊥)
in the map D maintained in the receiver state, are obtained by G calling its
Corr oracle once corr-RSim is called. Note that the keys corresponding to a
ciphertext stored in the chall set are the only ones that can not be obtained by
calling the Corr oracle. However since corr-RSim can only be called once chall
is empty and hence the keys corresponding to these challange ciphertexts
are erased, this exactly captures what A expects to see after leaking stR.
Therefore all oracles are perfectly simulated in case soonest=pos and hence
G wins if and only if A wins if soonest=pos. If soonest 6= pos then G samples
b′ locally and outputs it as its guess. Therefore if soonest 6= pos occurs G
wins with the same probability as the adversary A in game Gq+2

F,NAE,q given
soonest 6= pos. Therefore we have:

Pr
[

Gmae
NAE,G

]
= Pr

[
Gq+2

F,NAE,qA

]
. (5.26)

Now using Equations 5.14, 5.24, 5.25 and 5.26 we can rewrite the advantage
of A winning in game Gfs-aead-select

KESE,q as follows:

Advfs-aead-select
KESE,q (A) = 2 · Pr

[
Gfs-aead-select

KESE,A,q

]
− 1 = 2 · Pr

[
G0

F,NAE,A,q

]
− 1 = (5.27)

2 · (Pr
[

G0
F,NAE,A,q

]
− Pr

[
Gq+1

F,NAE,A,q

]
+ Pr

[
Gq+1

F,NAE,A,q

]
)− 1 = (5.28)

2 · (Pr
[

G0
F,NAE,A,q

]
− Pr

[
Gq+1

F,NAE,A,q

]
+ Pr

[
Gq+1

F,NAE,A,q

]
)− 1 = (5.29)

2 · ((q + 1) · Advprf
F (B) + Advmae

NAE(G) + 1

2
)− 1 = (5.30)

2(q + 1) · εpr f + εmae. (5.31)

�

5.3.5 KEGSE instantiation

MLS based KEGSE instantiation

In this section, we give an instantiation of a key-evolving group symmet-
ric encryption scheme with associated data based on the MLS protocol’s
framing. Let KDF be a key derivation function and NAE be a nonce based
authenticated encryption scheme with associated data. Then KEGSE=MLS-
ORG-KEGSE[KDF,NAE,KESE] is a key-evolving group symmetric encryp-
tion scheme such that KEGSE.MK = {0, 1}KDF.Nh, KEGSE.DK = KESE.K,

137

5. Building blocks of MLS

KEGSE.ID = KESE.ID and KEGSE.R = KESE.R. Its algorithm definitions
are given in Figure 5.18.

KEGSE.Init(k, ids, scrts, i):

mS ← k
ME ← ids[i]
iS ← 0
for j = 0, . . . , n :

(s, r)← KESE.Init(scrts[j], ids[j])
stsR[j]← r
if i=j:

stS ← s
st ← (ME, mS, stS, stsR, iS)
return st

KEGSE.Send(st,m,a;r):

(ME, mS, stS, stsR, iS)← st
(stS, c1)← KESE.Send(stS, m, a, r)
ptx← 〈ME, iS, r〉
key ← KDF.Expand(mS, 〈NAE.Nk, mls10key, c1〉 , NAE.Nk)
nonce ← KDF.Expand(mS, 〈NAE.Nn, mls10nonce, c1〉 , NAE.Nn)
c2 ← NAE.Enc(key, nonce, a, ptx)
c← (c1, c2)
iS ++
st← (ME, mS, stS, stsR, iS)
return (st, c)

KEGSE.Receive(st,a,c):

(ME, mS, stS, stsR, iS)← st
(c1, c2)← c
key ← KDF.Expand(mS, 〈NAE.Nk, mls10key, c1〉 , NAE.Nk)
nonce ← KDF.Expand(mS, 〈NAE.Nn, mls10nonce, c1〉 , NAE.Nn)
〈sID, i, r〉 ← NAE.Dec(key, nonce, a, c2)
(stsR[sID], m)← KESE.Receive(stsR[sID], a, i, c1, r)
st← (ME, mS, stS, stsR, iS)
return (st, i, m)

Figure 5.18: KEGSE instantiation using MLS.

MLS based KEGSE simplified

We now present a simplification of the KEGSE scheme described in Figure
5.18. The code that differs between the original, in Figure 5.18, and the
simplified instantiation, in Figure 5.19, is highlighted in yellow.

KEGSE.Init(k, ids, scrts, i):

mS ← k
ME ← ids[i]
iS ← 0
for j = 0, . . . , n :

(s, r)← KESE.Init(scrts[j], ids[j])
stsR[j]← r
if i=j:

stS ← s
st ← (ME, mS, stS, stsR, iS)
return st

KEGSE.Send(st,m,ad;r):

(ME, mS, stS, stsR, iS)← st
(stS, c1)← KESE.Send(stS, m, ad, r)
ptx← 〈ME, iS, r〉
kn← F.Ev(mS, 〈c1〉)
key← kn[0, . . . , NAE.Nk− 1]
nonce← kn[NAE.Nk, . . . , NAE.Nk + NAE.Nn− 1]
c2 ← NAE.Enc(key, nonce, ad, ptx)
c← (c1, c2)
iS ++
st← (ME, mS, stS, stsR, iS)
return (st, c)

KEGSE.Receive(st,ad,c):

(ME, mS, stS, stsR, iS)← st
(c1, c2)← c
kn← F.Ev(mS, 〈c1〉)
key← kn[0, . . . , NAE.Nk− 1]
nonce← kn[NAE.Nk, . . . , NAE.Nk + NAE.Nn− 1]
〈sID, i, r〉 ← NAE.Dec(key, nonce, ad, c2)
(stsR[sID], m)← KESE.Receive(stsR[sID], ad, i, c1, r)
st← (ME, mS, stS, stsR, iS)
return (st, i, m)

Figure 5.19: KEGSE instantiation using MLS simplified.

138

5.3. Key-Evolving Group Symmetric Encryption Scheme (KEGSE) with Associated
Data

Let NAE be a nonce-based authenticated encryption scheme with associated
data. Let F be a function family F with F.Out = NAE.Nk+ NAE.Nn. Then
KEGSE = MLS-KEGSE[F, NAE, KESE] is the key-evolving (stateful) symmet-
ric encryption scheme with associated data with KEGSE.MK = {0, 1}F.Kl,
KEGSE.DK = KESE.K, KEGSE.ID = KESE.ID and KEGSE.R = KESE.Rwhose
algorithm definitions are given in Figure 5.19.

FS-GAEAD security intuition We now give an informal argument behind
KEGSE = MLS-KEGSE[F, NAE, KESE] being FS-GAEAD secure if KESE is FS-
AEAD broadcast secure. Note that we make no assumptions on the func-
tion family F and nonce based authenticated encryption scheme NAE as
MLS uses them to achieve anonymity, not the basic properties captured
by FS-GAEAD security. Let n ∈ N and let a KEGSE scheme be run be-
tween n clients identified as {id1, id2, . . . , idn} respectively. The KEGSE se-
curity game, in Figure 5.4, starts with each client idi initialising its state by
calling the KEGSE.Init algorithm, where i ∈ {1, . . . , n}. The KESGE.Init in
KEGSE = MLS-KEGSE[F, NAE, KESE] (defined in Figure 5.19) calls KESE.Init
for each of the n identifiers in order to generate one sender state stS and n
receiver states stsR (allowing for the sender to receive from itself). Since each
client calls KEGSE.Init on the same k,ids and scrts input values, the under-
lying KESE.Init calls (which take the entries of scrts and ids as input) will
generate the same output.

A B

C D

Figure 5.20: KEGSE session run between clients A,B,C,D consisting of 4 independent KESE
sessions where KEGSE = MLS-KEGSE[F, NAE, KESE]. We use different colors to annotate each
KESE session. Note that the self-loop is present for each sender since it sends messages to the
entire group including itself.

Therefore each client idi’s sender state stS will have its corresponding re-
sponder state stR saved by each client idj where j ∈ {1, 2, . . . , n}. Conse-
quently each time idi sends a message to the rest of the group, a client re-
ceiving idi’s message will use the stR corresponding to idi to decrypt it. This
is exactly what occurs in a KESE scheme that is FS-AEAD broadcast secure.
Moreover reciever states maintained by each client progress independently
of one another. Therefore a single KEGSE session between n clients can be

139

5. Building blocks of MLS

seen as n independent KESE sessions in a single sender multiple receivers
scenario. Consequently if KESE is FS-AEAD broadcast secure, that means
that each of these n independent KESE sessions is secure, making the whole
KEGSE session secure. Figure 5.20 showcases this argument pictorially for
n = 4 and identifiers {A, B, C, D}.

FS-ANONIM-GAEAD insecure We now show that the MLS based KEGSE
scheme instantiation KEGSE = MLS-KEGSE[F, NAE, KESE] for some family
function F, nonce based authenticated encryption scheme with associated
data NAE and a key-evolving symmetric encryption scheme KESE is inse-
cure, in the FS-ANONIM-GAEAD sense, by providing an adversary A =

(A1,A2), defined in Figure 5.21, who wins the game Gfs-anonim-gaead
KEGSE with

probability 1.

Intuitively, the MLS based KEGSE scheme does not provide forward-secure
anonymity, because the metadata secret mS, is never refreshed. Thus, if an
adversary (at some point in time) leaks the state of some client (sender or
receiver), the metadata secret mS, contained in the leaked state, would be the
same one used to form all c2 ciphertexts (see Figure 5.19). Hence, assuming
the adversary recorded previous ciphertexts (which are themselves, pairs of
ciphertexts (c1, c2)), it can use the leaked mS along with c1, to derive the key-
nonce pair used to form c2. Thus, the adversary would be able to decrypt
all c2 ciphertexts, and hence leak each identity.

Adversary A1():

id0←$ KEGSE.ID
id1←$ KEGSE.ID/{id0}
ids← [id0, id1]
return (ids,ids)

Adversary ALoR,Dec,corr
2 (state):

r ←$ {0, 1}KESE.R

a ← 0110101
m ← 1001010
id0 ← state[0], id1 ← state[1]
c← LoR(a, r, (id0, m), (id1, m))
c′ ← LoR(a, r, (id1, m), (id0, m))
m′ ← Dec(id0, a, c))
m′ ← Dec(id0, a, c′))
st← corr(id0)
(ME, mS, stS, stsR, iS)← st
(c1, c2)← c
kn← F.Ev(mS, 〈c1〉)
key← kn[0, . . . , NAE.Nk− 1]
nonce← kn[NAE.Nk, . . . , NAE.Nk + NAE.Nn− 1]
〈sid, i, r〉 ← NAE.Dec(key, nonce, ad, c2)
if sid = id0:

return 0
else:

return 1

Figure 5.21: Adversary A = (A1,A2) playing in game Gfs-anonim-gaead
KEGSE (defined in Figure 5.5)

such that KEGSE = MLS-KEGSE[F, NAE, KESE].

The adversary A, given in Figure 5.21, follows exactly the intuition laid out

140

5.3. Key-Evolving Group Symmetric Encryption Scheme (KEGSE) with Associated
Data

above. Namely, it uses A1 to form a group of two clients id0 and id1 (of
course the group can be larger than this). It then uses A2 to win the game
Gfs-anonim-gaead

KEGSE as follows. First, A2 selects some random seed r, associated
data a, and message m, which it uses to query the LoR oracle two times on
(a, r, (id0, m), (id1, m)) and (a, r, (id1, m), (id0, m)). It then uses the ciphertexts
obtained from these LoR oracle queries, c and c′, along with id0, to query
the Dec oracle. This is necessary, in order for A2 to pass the requirement
imposed by the corr oracle. Finally, A2 now leaks the state of id0 and uses
the obtained mS value to, as described above, decrypt c2 of c and break the
FS-ANONIM-GAEAD security of the MLS based KEGSE. The advantage of
this attack is, trivially, 1.

PPRF based KEGSE

Finally we propose a KEGSE scheme based on puncturable function families
G and nonce-based authenticated encryption schemes NAE we believe is se-
cure in the FS-ANONIM-GAEAD sense. The idea is that a client who wishes
to send a message to the group first samples an input value r←$ {0, 1}G.In.
If G.Ev : {0, 1}G.Kl × {0, 1}G.In → {0, 1}NAE.Nk+NAE.Nn then the client can use
this sampled r and its current G key k to obtain obtain a NAE key nonce pair.
It can then use this NAE key nonce pair to encrypt its message along with
its identifier to form a ciphertext c.

In order to ensure forward security of messages and anonimity holds, the
sender would then puncture its current key k on the value it sampled r, and
replace k by the punctured key. This way, if an adversary leaks a client’s
state, the G key it obtains can not be used to obtain any of the NAE key
nonce pairs used to encrypt any of the messages the compromised client
received. Finally, the sender would then transmit c along with r it sampled.
The later needs to be transmitted in order for the receiver to be able to
efficiently compute the NAE key and nonce pair used to encrypt c. The
reciever then itself punctures its local G key on the input value r it used to
process c.

Note that transmitting r in the clear then does not effect the forward secure
anonymity of the scheme because all clients need to receive all challenge
ciphertexts prior to having their state exposed to the adversary. Therefore an
adversary trying to detect the identity of a sender based on whether the key
is punctured or not on a certain input value r, will trivially fail, as all clients
received the ciphertext corresponding to r. Of course, because r is sampled,
there may be an instance where two clients sample the same input value.
Since the receiver punctures the current G key immediately upon receiving
a ciphertext from some client, this implies that the receiver will not be able
to decrypt a legitimate ciphertext from one of the two r colliding clients.

141

5. Building blocks of MLS

Therefore a sufficiently large sampling space KEGSE.R must be provided in
order for these collisions to be minimised.

More formally let NAE be a nonce-based authenticated encryption scheme
with associated data and let G be a punctured function family such that
G.Out = NAE.Nk + NAE.Nn. Then KEGSE = PPRF-KEGSE[G, NAE] is a key-
evolving (stateful) group symmetric encryption scheme with KEGSE.MK =
{0, 1}G.Kl and KEGSE.R = {0, 1}G.In whose algorithm definitions are given
in Figure 5.22.

KEGSE.Init(k, ids, scrts, i):

ctr← 0
ME← ids[i]
st← (ME, k, ctr)
return st

KEGSE.Send(st,m,a;r):

(ME, k, ctr)← st
kn← G.Ev(k, r)
if kn = ⊥ :

return (st,⊥)
key← kn[0, . . . , NAE.Nk− 1]
nonce← kn[NAE.Nk, . . . , NAE.Nk + NAE.Nn− 1]
k′ ← G.Punct(k, r)
c′ ← NAE.Enc(key, nonce, 〈a, r〉 , 〈ME, ctr, m〉)
c← (r, c′)
ctr ++
st← (ME, k′, ctr)
return (st, c)

KEGSE.Receive(st,a,c):

(ME, k, ctr)← st
if c = ⊥ :

return (st,⊥,⊥,⊥)
(r, c′)← c
kn← G.Ev(k, r)
if kn = ⊥ :

return (st,⊥,⊥,⊥)
key← kn[0, . . . , NAE.Nk− 1]
nonce← kn[NAE.Nk, . . . , NAE.Nk + NAE.Nn− 1]
k′ ← G.Punct(k, r)
〈id, i, m〉 ← NAE.Dec(key, nonce, 〈a, r〉 , c′)
st← (ME, k′, ctr)
return (st, i, id, m)

Figure 5.22: PPRF-based KEGSE instantiation.

142

Chapter 6

Conclusions

In this chapter we give a summary of this work as well as some ideas for
future research directions.

6.1 Summary

We started this work by defining the syntax and correctness game of a se-
cure group messaging (SGM) protocol. Thereafter, we explained on a high
level the properties an SGM scheme must satisfy as well as how they com-
pare to the secure messaging protocol, which model secure asynchronous
communication between two parties (instead of a dynamic group). In par-
ticular, we gave a summary of the work by Alwen et al. [ACD18], which cast
the Double ratchet protocol as an SM protocol composed of 3 components:
a CKA scheme, PRF-PRNG scheme and FS-AEAD scheme. We, and many
other works, use this as inspiration to modularise the MLS protocol as well.

Subsequently, we describe a (simplification) of the MLS protocol and through-
out it provide pseudocode, in hopes, to yield a better understanding of what
goes into implementing MLS. We also comment on the security of MLS w.r.t.
the security properties we laid out in the beginning. Once armed with the
MLS description, we cast it in a more modular light, by showing that it
consists of three main components: CGKA, PRF-PRNG and KEGSE scheme;
along with a MAC and DS scheme. Since the CGKA component has been
studied extensively in prior works and the PRF-PRNG scheme is the same
primitive used in SM composition of Alwen et al. we divert our attention to
formalising and analysing the KEGSE component.

In defining KEGSE security, we provide a formal definition of a novel prop-
erty called forward-secure (sender) anonymity; which, intuitively, demands
that upon client compromise the adversary gains no knowledge about the
sender of a received message by the compromised client. We then go on to

143

6. Conclusions

show that the MLS based construction of KEGSE does not satisfy this prop-
erty, and propose an alternative KEGSE scheme based on PPRFs, which we
believe to satisfy this strong security property. To capture the exact security
the MLS based KEGSE satisfies, we define a security notion that completely
excludes the anonymity property.

To prove the MLS based KEGSE scheme secure in this ‘more basic’ sense, we
decompose the MLS based KEGSE further into (1) a KESE scheme (the latter
similar to FS-AEAD primitive used in [ACD18]), and (2) nonce based au-
thenticated encryption (NAEAD) schemes with associated data. Following
this, we show that the security definition of FS-AEAD schemes in [ACD18]
is wrong, fix it and prove the MLS-based instantiation of a KESE scheme
secure in the fixed game. Finally, we give a proof sketch of the MLS-based
KEGSE scheme being secure in the ‘more basic’ sense assuming the security
of the underlying KESE scheme.

6.2 Future work

Throughout researching MLS, many questions regarding some choices and
assumptions made about the MLS protocol arose, some of which we pre-
sented in Section 4.13. We now recap these ambiguities and expand on
them.

Namely, the first thing to question, is the assumption made on the ordering
of Commit messages by the DS Broadcast service. More concretely, in Sec-
tion 4.2, we noted that MLS assumes, that the DS broadcast service provides
clients with a consistent view of which Commit message defines each epoch.
However, the [OBR+21] document, did not provide an adequate way of re-
alising this assumption, and hence we believe that group splitting attacks
(see [ACJM20]) are a big concern.

Further, we are not convinced that the MLS key schedule’s (see Section 4.8)
complexity is necessary. Moreover, we do not see why a secret tree (see
Section 4.9) that contains n leaves (representing n members), can not be
substituted by n parallel PRF calls, which take the encryption secret as their
key and the unique identity of each member, as the input.

In addition to this, as pointed out in Section 4.13, the purpose of the parent
hash field in the nodes of a ratchet tree is left unclear, as well as, the need
for evolving the GroupContext structure during Commit message creation
and processing. Moreover, we consider the purpose of the confirmation tag
(assuming that the MLSmessage structure is used to transfer the underlying
Commit structure) an open problem.

In Section 4.10.3, we explained that a client sending a message, will sample a
random reuse guard, in order to protect against a scenario in which a client

144

6.2. Future work

reuses a generation of its ‘sending’ symmetric ratchets. How, probable such
a scenario is, given that a client needs to only maintain a monotonically
incriminating counter, is debatable. Nonetheless, this reuse attack is yet to
be modelled formally, and is left as possible future work.

In Section 4.7.1 and 4.10, we have seen signatures being encrypted using
an NAEAD scheme (to protect sender anonymity), a paradigm not studied
prior in literature, and which we consider an open problem. Moreover, the
current literature about MLS does not consider various insider security no-
tions, which we deem as an open problem as well. Finally, proving that the
PPRF-based KEGSE scheme we proposed in Section 5.3.5 is indeed secure
in the FS-ANONIM-GAEAD sense is left for future work.

145

Appendix A

Appendix

A.1 KESE security definition motivation

Gfs-aead
KESE (A):

k ←$K
(A1,A2)← A
(id, state)←$A1

b ←$ {0, 1}
win, corr ← false

trans, comp, chall ← ∅
send ctr ← 0
(stS, stR)← KESE.Init(k,id)

b′←$ALoR,Dec,corr-S,corr-R
2 (state)

return win or b′ = b

delete(i):

if ∃a, m, c, r : (i, a, m, c, r) ∈ trans:
trans,comp,chall ←− (i,a,m,c,r)

corr-R:
req chall = ∅
end (stR, stS)

corr-S:
corr ← true

return stS

transmit(a,m,r):

(stS, c)← KESE.Send(stS, a, mb, r)
trans ←+ (send ctr,a,m,c,r)
if corr:

comp ←+ (send ctr,a,mb,c,r)
send ctr ++
return c

chall(a,m0, m1,r):

req |m0| = |m1| and ¬corr
(stS, c)← KESE.Send(stS, a, mb, r)
trans ←+ (send ctr,a,mb,c,r)
if m0 6= m1:

chall ←+ (send ctr,a,mb,c,r)
send ctr ++
return c

Deliver(a,i,c,r):

req ∃m : (i, a, m, c, r) ∈ trans
(stR, m′)← KESE.Recieve(stR, a, i, c, r)
if (i, a, m′, c, r) ∈ chall:

m′ ← ⊥
delete(i)
return m′

Inject(a,i,c,r):

req 6 ∃m : (i, a, m, c, r) ∈ trans
(stR, m′)← KESE.Recieve(stR, a, i, c, r)
if m′ 6= ⊥ and 6 ∃a′, m′, c′, r′ : (i, a′, m′, c′, r′) ∈ comp:

win ← true

delete(i)
return m′

Figure A.1: The FS-AEAD security game and its oracles.

147

A. Appendix

This section contains the deferred argument for our KESE security definition
given by the game in Figure 5.9 and against the security definition provided
by [ACD18]. In order to properly compare the two security notions we need
to make the syntax of the schemes the same. Their primitive uses two ini-
tialization algorithms, one for the sender and another for the receiver state,
which we collapse into one to fit our syntax. Therefore their FS-Init-S and
FS-Init-R become KESE.Init, their FS-Send (we add r as input) corresponds
to KESE.Send and FS-Recieve corresponds to KESE.Recieve. Then their secu-
rity game simplified is shown in Figure A.1. The simplification comes from
the fact that we collapse the Record oracle from their game into transmit and
chall oracle.1

A1:

id ←$ KESE.ID
return id

ALoR,Dec,corr-S,corr-R
2 (state):

stS ← corr-S
(v, iS, index) ← stS

a ← 01101011
m ← 01101000
r ←$ KESE.R
〈key, nonce, v〉 ← F.Ev(v, 〈id, iS〉)
nonce← nonce⊕ r
c← NAE.Enc(key, nonce, a, m)
m← Inject(a, i, c, r)
return 0

Figure A.2: Adversary breaking FS-AEAD security given in Figure A.1. The bit-strings chosen
here are random and the attack would work with any other choice.

We now show that the MLS based KESE scheme we proved secure against
our security definition in Figure 5.9 is insecure against the game given in
Figure A.1. Namely we define two adversaries that break their security of
the MLS based KESE scheme. The two adversaries clearly showcase that
the the problem lies in the security definition provided by [ACD18], not the
MLS based KESE instantiation.

The first mistake they make in their security game is that upon client com-
promise, a ciphertext is only added to the comp set (containing compromised
ciphertexts) if it was created by the transmit oracle. However upon state com-
promise of a client, an adversary is able to craft its own ciphertexts locally
and has no need for the transmit oracle. Of course this kind of ciphertext
should not be considered a break of security and should be added to the
comp set. But the game only populates comp if transmit is called. This flaw
is exactly what allows the adversary defined in Figure A.2 to win the game.

The second problem is that their deletions are not conditional. Namely if

1The simplifications we give here do not change their security definition but are purely
for better readability.

148

A.2. FS-GAEAD definition motivation

a ciphertext corresponding to some i were to fail decryption (it decrypted
to m = ⊥) intuitively a KESE scheme would not erase the key material that
was used to try and decrypt this i-th ciphertext. However since their game
simply deletes the record corresponding to i this allows an adversary A
defined in Figure A.3 to break the scheme by essentially first sending a bad
ciphertext for i (that fails decryption) and then send the honestly crafted i-th
ciphertext.

A1:

id ←$ KESE.ID
return id

ALoR,Dec,corr-S,corr-R
2 (state):

a ← 01101011
m ← 01101000
r ←$ KESE.R
c← transmit(a,m,r)
sample ciphertext c′

Inject(a,0,c′,r)
Inject(a,0,c,r)
return 0

Figure A.3: Adversary breaking FS-AEAD security given in Figure A.1. The bit-strings chosen
here are random and the attack would work with any other choice.

A.2 FS-GAEAD definition motivation

The second flaw in the FS-AEAD security definition of [ACD18] discussed in
Appendix A.1 is identical to the flaw in the FS-GAEAD security of [ACDT21]
(which is supposed to capture the same security intuition as our FS-GAEAD
game given in Figure 5.4). Namely their inj-AM oracle mistakenly deletes a
record from the AM map even if the decryption of a ciphertext was un-
successful. This allows us to attack the security of an FS-GAEAD scheme
(Init,Send,Rcv) defined in terms of another FS-GAEAD scheme (Init′, Send′, Rcv′)
as shown in Figure A.4.

Init(ke, n, ID):

s← Init′(ke, n, ID)
pos ← 1
v← (s, pos, ID)
return v

Send(v, a, m):

(s, pos, ID)← v
a′ ← (a, pos, ID)
(s, e′)← Send′(v, a′, m)
pos ++
e← (ID, pos, e′)
v← (s, pos, ID)
return (v, e)

Rcv(v, a, e):

(s, pos, ID)← v
(S,i, e′)← e
a′ ← (a, pos, ID)
(s, S′,i′, m)← Rcv′(s, a′, e′)
v← (s, pos, ID)
return (v, S,i, m)

Figure A.4: FS-GAEAD scheme construction.

Intuitively if (Init′, Send′, Rcv′) is a secure FS-GAEAD scheme (according to

149

A. Appendix

the definition of [ACDT21]) then (Init,Send,Rcv) should also be a secure FS-
GAEAD scheme. However the adversary defined in Figure A.5 manages to
win the game exactly because of the non-conditional deletion flaw.

A
init, send,corr,no-del
dlv-AM,inj-AM,chall :

sample associated data a
sample message m
S ←$ G
e← send(S,a,m)
sample ciphertext e′

R ←$ G \ {S}
inj-AM(a,e’,R)
inj-AM(a,e,R)
return 0

Figure A.5: Adversary breaking FS-GAEAD security given in [ACDT21] of the scheme given in
Figure A.4.

150

Bibliography

[ACC+19] Joël Alwen, Margarita Capretto, Miguel Cueto, Chethan Ka-
math, Karen Klein, Ilia Markov, Guillermo Pascual-Perez,
Krzysztof Pietrzak, Michael Walter, and Michelle Yeo. Keep the
dirt: Tainted treekem, adaptively and actively secure continu-
ous group key agreement. Cryptology ePrint Archive, Report
2019/1489, 2019. https://ia.cr/2019/1489.

[ACD18] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. The double
ratchet: Security notions, proofs, and modularization for the
signal protocol. Cryptology ePrint Archive, Report 2018/1037,
2018. https://eprint.iacr.org/2018/1037.

[ACDT19] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tse-
lekounis. Security analysis and improvements for the ietf mls
standard for group messaging. Cryptology ePrint Archive, Re-
port 2019/1189, 2019. https://eprint.iacr.org/2019/1189.

[ACDT21] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tse-
lekounis. Modular design of secure group messaging protocols
and the security of mls. Cryptology ePrint Archive, Report
2021/1083, 2021. https://ia.cr/2021/1083.

[ACJM20] Joël Alwen, Sandro Coretti, Daniel Jost, and Marta Mularczyk.
Continuous group key agreement with active security. In Rafael
Pass and Krzysztof Pietrzak, editors, Theory of Cryptography —
TCC 2020, volume 12552 of LNCS, Cham, 12 2020. Springer
International Publishing.

[AJM20] Joël Alwen, Daniel Jost, and Marta Mularczyk. On the insider
security of mls. Cryptology ePrint Archive, Report 2020/1327,
2020. https://ia.cr/2020/1327.

151

https://ia.cr/2019/1489
https://eprint.iacr.org/2018/1037
https://eprint.iacr.org/2019/1189
https://ia.cr/2021/1083
https://ia.cr/2020/1327

Bibliography

[BBLW21] Richard Barnes, Karthikeyan Bhargavan, Benjamin Lipp, and
Christopher A. Wood. Hybrid Public Key Encryption. Internet-
Draft draft-irtf-cfrg-hpke-09, Internet Engineering Task Force,
May 2021. Work in Progress.

[BBM+21] Richard Barnes, Benjamin Beurdouche, Jon Millican, Emad
Omara, Katriel Cohn-Gordon, and Raphael Robert. The
Messaging Layer Security (MLS) Protocol. March 2021.
https://messaginglayersecurity.rocks/mls-protocol/

draft-ietf-mls-protocol.html.

[BBN19] Karthikeyan Bhargavan, Benjamin Beurdouche, and Prasad
Naldurg. Formal Models and Verified Protocols for Group
Messaging: Attacks and Proofs for IETF MLS. Research report,
Inria Paris, December 2019.

[BDdK+21] Colin Boyd, Gareth T. Davies, Bor de Kock, Kai Gellert, Ti-
bor Jager, and Lise Millerjord. Symmetric key exchange with
full forward security and robust synchronization. Cryptology
ePrint Archive, Report 2021/702, 2021. https://ia.cr/2021/

702.

[BFG+19] Jacqueline Brendel, Marc Fischlin, Felix Günther, Christian Jan-
son, and Douglas Stebila. Towards post-quantum security for
signal’s x3dh handshake. Cryptology ePrint Archive, Report
2019/1356, 2019. https://eprint.iacr.org/2019/1356.

[BSJ+16] Mihir Bellare, Asha Camper Singh, Joseph Jaeger, Maya Nyaya-
pati, and Igors Stepanovs. Ratcheted encryption and key ex-
change: The security of messaging. Cryptology ePrint Archive,
Report 2016/1028, 2016. https://ia.cr/2016/1028.

[BST13] Mihir Bellare, Igors Stepanovs, and Stefano Tessaro. Poly-many
hardcore bits for any one-way function and a framework for
differing-inputs obfuscation. Cryptology ePrint Archive, Re-
port 2013/873, 2013. https://ia.cr/2013/873.

[BY01] Mihir Bellare and Bennet Yee. Forward-security in private-key
cryptography. Cryptology ePrint Archive, Report 2001/035,
2001. https://ia.cr/2001/035.

[CGCD+16] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke
Garratt, and Douglas Stebila. A formal security analysis of the
signal messaging protocol. Cryptology ePrint Archive, Report
2016/1013, 2016. https://eprint.iacr.org/2016/1013.

152

https://messaginglayersecurity.rocks/mls-protocol/draft-ietf-mls-protocol.html
https://messaginglayersecurity.rocks/mls-protocol/draft-ietf-mls-protocol.html
https://ia.cr/2021/702
https://ia.cr/2021/702
https://eprint.iacr.org/2019/1356
https://ia.cr/2016/1028
https://ia.cr/2013/873
https://ia.cr/2001/035
https://eprint.iacr.org/2016/1013

Bibliography

[CR19] John Chan and Phillip Rogaway. Anonymous ae. Cryptology
ePrint Archive, Report 2019/1033, 2019. https://ia.cr/2019/
1033.

[Gmb21] Wire Swiss GmbH. Wire Security Whitepaper. July 2021.
https://wire-docs.wire.com/download/Wire+Security+

Whitepaper.pdf.

[Gre16] Andy Greenberg. You Can All Finally En-
crypt Facebook Messenger, So Do It. April
2016. https://www.wired.com/2016/10/

facebook-completely-encrypted-messenger-update-now/.

[HKKP21] Keitaro Hashimoto, Shuichi Katsumata, Kris Kwiatkowski, and
Thomas Prest. An efficient and generic construction for signal’s
handshake (x3dh): Post-quantum, state leakage secure, and
deniable. Cryptology ePrint Archive, Report 2021/616, 2021.
https://eprint.iacr.org/2021/616.

[Iqb17] Mansoor Iqbal. WhatsApp Revenue and Usage Statistics
(2021). August 2017. https://www.businessofapps.com/

data/whatsapp-statistics/.

[Lun18] Joshua Lund. Signal partners with Microsoft to bring end-to-
end encryption to Skype. January 2018. https://signal.org/
blog/skype-partnership/.

[Mar16] Moxie Marlinspike. Open Whisper Systems partners with
Google on end-to-end encryption for Allo. May 2016. https:

//signal.org/blog/allo/.

[OBR+21] Emad Omara, Benjamin Beurdouche, Eric Rescorla, Srini-
vas Inguva, Albert Kwon, and Alan Duric. The Mes-
saging Layer Security (MLS) Architecture. Technical re-
port, March 2021. https://messaginglayersecurity.rocks/

mls-architecture/draft-ietf-mls-architecture.html.

[PM16] Trevor Perrin and Moxie Marlinspike. The double ratchet al-
gorithm, 2016. https://signal.org/docs/specifications/

doubleratchet/doubleratchet.pdf.

[Siga] Signal. Signal specification and libraries. https://signal.

org/docs/.

[Sigb] Signal. The X3DH Key Agreement Protocol. https://signal.
org/docs/specifications/x3dh/x3dh.pdf.

153

https://ia.cr/2019/1033
https://ia.cr/2019/1033
https://wire-docs.wire.com/download/Wire+Security+Whitepaper.pdf
https://wire-docs.wire.com/download/Wire+Security+Whitepaper.pdf
https://www.wired.com/2016/10/facebook-completely-encrypted-messenger-update-now/
https://www.wired.com/2016/10/facebook-completely-encrypted-messenger-update-now/
https://eprint.iacr.org/2021/616
https://www.businessofapps.com/data/whatsapp-statistics/
https://www.businessofapps.com/data/whatsapp-statistics/
https://signal.org/blog/skype-partnership/
https://signal.org/blog/skype-partnership/
https://signal.org/blog/allo/
https://signal.org/blog/allo/
https://messaginglayersecurity.rocks/mls-architecture/draft-ietf-mls-architecture.html
https://messaginglayersecurity.rocks/mls-architecture/draft-ietf-mls-architecture.html
https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://signal.org/docs/
https://signal.org/docs/
https://signal.org/docs/specifications/x3dh/x3dh.pdf
https://signal.org/docs/specifications/x3dh/x3dh.pdf

Bibliography

[Tan21a] H. Tankovska. Daily engagement rate of selected
mobile social media apps among Android users
in the United States as of June 2020. January
2021. https://www.statista.com/statistics/290492/

mobile-media-apps-daily-engagement-rate-of-us-users/.

[Tan21b] H. Tankovska. Most popular global mobile messenger apps as
of January 2021, based on number of monthly active users. Jan-
uary 2021. https://www.statista.com/statistics/258749/

most-popular-global-mobile-messenger-apps/.

[Vib] Viber. Viber encryption overview. https://www.viber.com/

app/uploads/viber-encryption-overview.pdf.

[Wha16] Whatsapp. WhatsApp encryption overview. April
2016. https://scontent.whatsapp.net/v/t39.8562-34/

122249142_469857720642275_2152527586907531259_n.pdf/

WA_Security_WhitePaper.pdf?ccb=1-5&_nc_sid=2fbf2a&

_nc_ohc=xR2mDEs-I0MAX9QFKNn&_nc_ht=scontent.whatsapp.

net&oh=08d9de6e2694f73469e53a1e6d6aa0ca&oe=6147A299.

154

https://www.statista.com/statistics/290492/mobile-media-apps-daily-engagement-rate-of-us-users/
https://www.statista.com/statistics/290492/mobile-media-apps-daily-engagement-rate-of-us-users/
https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/
https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/
https://www.viber.com/app/uploads/viber-encryption-overview.pdf
https://www.viber.com/app/uploads/viber-encryption-overview.pdf
https://scontent.whatsapp.net/v/t39.8562-34/122249142_469857720642275_2152527586907531259_n.pdf/WA_Security_WhitePaper.pdf?ccb=1-5&_nc_sid=2fbf2a&_nc_ohc=xR2mDEs-I0MAX9QFKNn&_nc_ht=scontent.whatsapp.net&oh=08d9de6e2694f73469e53a1e6d6aa0ca&oe=6147A299
https://scontent.whatsapp.net/v/t39.8562-34/122249142_469857720642275_2152527586907531259_n.pdf/WA_Security_WhitePaper.pdf?ccb=1-5&_nc_sid=2fbf2a&_nc_ohc=xR2mDEs-I0MAX9QFKNn&_nc_ht=scontent.whatsapp.net&oh=08d9de6e2694f73469e53a1e6d6aa0ca&oe=6147A299
https://scontent.whatsapp.net/v/t39.8562-34/122249142_469857720642275_2152527586907531259_n.pdf/WA_Security_WhitePaper.pdf?ccb=1-5&_nc_sid=2fbf2a&_nc_ohc=xR2mDEs-I0MAX9QFKNn&_nc_ht=scontent.whatsapp.net&oh=08d9de6e2694f73469e53a1e6d6aa0ca&oe=6147A299
https://scontent.whatsapp.net/v/t39.8562-34/122249142_469857720642275_2152527586907531259_n.pdf/WA_Security_WhitePaper.pdf?ccb=1-5&_nc_sid=2fbf2a&_nc_ohc=xR2mDEs-I0MAX9QFKNn&_nc_ht=scontent.whatsapp.net&oh=08d9de6e2694f73469e53a1e6d6aa0ca&oe=6147A299
https://scontent.whatsapp.net/v/t39.8562-34/122249142_469857720642275_2152527586907531259_n.pdf/WA_Security_WhitePaper.pdf?ccb=1-5&_nc_sid=2fbf2a&_nc_ohc=xR2mDEs-I0MAX9QFKNn&_nc_ht=scontent.whatsapp.net&oh=08d9de6e2694f73469e53a1e6d6aa0ca&oe=6147A299

	Contents
	Introduction
	Overview and Motivation
	Contributions
	Concurrent and Independent work
	Outline

	Preliminaries
	Notation
	Tree Terminology
	Cryptographic primitives
	Key Encapsulation Mechanism (KEM)
	Key Derivation Function (KDF)
	Nonce-based Authenticated Encryption with Associated Data (NAEAD)
	Hash function
	Digital Signature (DS)
	Message Authentication Code (MAC)
	Function families
	Punctured function families

	Secure Group messaging (SGM) protocol
	SGM protocol functional requirements
	SGM scheme
	SGM scheme Syntax
	Correctness of an SGM scheme

	SGM protocol security requirements
	Secure Messaging (SM) scheme requirements
	Secure Messaging (SM) Syntax
	Secure Messaging (SM) security
	Modularisation of an SM scheme

	The Messaging Layer Security (MLS) protocol
	MLS Terminology
	Assumptions and context of MLS
	MLS Protocol overview
	State of client
	Ratchet Tree (RT)
	Ratchet tree invariants

	Group Context
	Handshake and Application message plaintext
	Handshake and Application plaintext
	Content of a Proposal message
	Content of a Commit message

	Key Schedule
	Secret Tree
	Handshake and Application message framing
	Metadata
	Symmetric hash ratchet
	Framing creation
	Framing processing

	Welcome message
	Welcome message creation
	Welcome message processing

	Initialise group
	Comparison to MLSv11
	MLS protocol security

	Building blocks of MLS
	Modular construction of MLS
	CGKA
	PRF-PRNG
	KEGSE
	Inter-component data flow

	PRF-PRNG
	PRF-PRNG Syntax
	Instantiating a PRF-PRNG scheme

	Key-Evolving Group Symmetric Encryption Scheme (KEGSE) with Associated Data
	KEGSE Syntax
	KEGSE Correctness
	KEGSE Security
	Key-Evolving (Stateful) Symmetric Encryption Scheme with Associated Data (KESE)
	KEGSE instantiation

	Conclusions
	Summary
	Future work

	Appendix
	KESE security definition motivation
	FS-GAEAD definition motivation

	Bibliography

