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Abstract

Cloud storage is used extensively, yet the promises of storage providers
on security and privacy remain in doubt: most times, cloud storage
providers retain control of the encryption keys used to encrypt data at
rest. This means that the providers can theoretically access the stored
data at any time. To mitigate the issue of trust, we aim to present a
cloud storage system with forward-secure deletion, which makes use
of a puncturable key-wrapping (PKW) scheme. Data is end-to-end en-
crypted with data encryption keys (DEKs) to provide fine-grained se-
cure file storage, relying on cloud storage providers only for the avail-
ability of their service, but taking back control of security and privacy.
The DEKs are protected using PKW, the forward security of which
allows for an operation called “shred”, which not only deletes a file
but also makes it irrecoverable by cryptographic means. We explore
the feasibility of forward-secure file storage, evaluate the performance,
and propose extensions to the PKW scheme to support file hierarchies.

i



Acknowledgements

I would like to thank Prof. Dr. Kenny Paterson for making it possible for me
to conduct this project in the Applied Cryptography Group and for super-
vising my thesis. I am also deeply thankful to my co-supervisors Matilda
Backendal and Dr. Felix Günther for their continued support, their encour-
agement, and their poignant remarks and feedback. It was a truly enriching
experience to work with such knowledgeable people.

ii



Acronyms

AEAD Authenticated Encryption With Associated Data
DEK Data Encryption Key
FTP File Transfer Protocol
GCS Google Cloud Storage
GGM Goldreich-Goldwasser-Micali
HPFS Hierarchical Protected File Storage
hPKW Hierarchically Puncturable Key-Wrapping
hPPRF Hierarchically Puncturable Pseudo-Random Func-

tion
KEK Key Encryption Key
PFS Protected File Storage
PKW Puncturable Key-Wrapping
PPRF Puncturable Pseudo-Random Function
PRF Pseudo-Random Function
PRG Pseudo-Random Generator

iii





Contents

Contents v

1 Introduction 1

2 Preliminaries 5
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Cryptographic primitives . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 AEAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Pseudo-random generators (PRGs) and pseudo-random

functions (PRFs) . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Puncturable pseudo-random functions (PPRFs) . . . . 9
2.2.4 Puncturable key wrapping . . . . . . . . . . . . . . . . 11

3 Protected file storage 15
3.1 PFS (original definition) . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Confidentiality and integrity . . . . . . . . . . . . . . . 16
3.1.2 Construction from PKW and AEAD . . . . . . . . . . . 19
3.1.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 PFS without file identifiers (PFS+) . . . . . . . . . . . . . . . . 29
3.2.1 PFS+ from PKW and AEAD . . . . . . . . . . . . . . . . 31
3.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 PFS with file hierarchy 37
4.1 Hierarchical protected file storage (HPFS) . . . . . . . . . . . . 37
4.2 Constructing hierarchical protected file storage (HPFS) using

hierarchically puncturable pseudo-random function (hPPRF) 41
4.2.1 Hierarchically puncturable PRF (hPPRF) . . . . . . . . 41
4.2.2 An instantiation of hPPRF . . . . . . . . . . . . . . . . . 43

v



Contents

4.2.3 Hierarchically puncturable key-wrapping (hPKW) . . 44
4.2.4 hPKW from AEAD and hPPRF . . . . . . . . . . . . . . 46
4.2.5 Hierarchical protected file storage (HPFS) construction 46

4.3 Constructing HPFS from PKW . . . . . . . . . . . . . . . . . . 49
4.3.1 Detailed explanation of the construction . . . . . . . . 50
4.3.2 Security of the construction . . . . . . . . . . . . . . . . 52
4.3.3 Single-directory key rotation . . . . . . . . . . . . . . . 52

4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.1 Extension of the PKW library . . . . . . . . . . . . . . . 52
4.4.2 hPKW . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.3 PKW-per-directory . . . . . . . . . . . . . . . . . . . . . 53

4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Discussion 57

6 Conclusion 61
6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Bibliography 63

vi



Chapter 1

Introduction

OneDrive, iCloud, Google Drive, Dropbox. Many commercial cloud stor-
age services promise easy-to-use functionality and reliable, available, se-
cure, and convenient file storage. Often, these services come with inte-
grated backup functionality. And although some promises of security are
frequently made, these services seldom offer end-to-end encryption of files,
and the encryption keys used to encrypt the files ultimately remain in the
hands of the service providers. This gives the cloud full access to the stored
data. With end-to-end encryption, files are encrypted before they are up-
loaded to the cloud and the encryption keys remain in the hands of the
users. Therefore, not using end-to-end encryption places complete trust in
the providers of these services, which may not be desirable. Hackers may
gain unauthorized access to a service [1] and the services must comply with
search warrants, some of which may be forged by criminals [2]. Barring this
trust, can these services still be used while regaining security and privacy
for the data stored using them?

By using end-to-end encryption, file contents can be protected from un-
wanted inspection. There are services such as BoxCryptor [3], Mega [4], or
NextCloud [5], which offer this functionality without a user having to per-
form encryption themselves. Recently, even iCloud has included the func-
tionality, but it is not active by default [6]. However, there is still an issue
of forward secrecy. The notion of forward secrecy in general describes a
property of cryptographic systems in which the compromise of long-term
secrets does not affect the security of past cryptographic operations. In the
context of cloud storage, this means that a storage service can record all en-
crypted files it has ever seen, in the hopes that at some future point it will
gain access to the encryption key. We require some guarantee that deleted
files will truly be irrecoverable; even if the keying material is later leaked by
some accident or compromised by a malicious actor.

Previous work has focused on attacks against existing cloud storage solu-
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1. Introduction

tions [7, 8] or on designing an end-to-end encrypted storage system for the
cloud in general [9, 10, 11]. Forward-security in the cloud setting has so
far been investigated by [12], which focused on quantum security aspects of
cloud storage, and in [13, 14], forward-security was investigated in relation
to searchable encryption, a growing field of research for cloud storage. Burn-
Box [15], gives “self-revocable” encryption, allowing for protection against
compelled access. In this work, we focus on achieving forward security for
deleted files in a cloud storage system, based on work on puncturable key-
wrapping (PKW) [16]. Forward security for deleted files in cloud storage
has not been implemented so far, to our knowledge.

This project aims to explore the feasibility of forward-secure cloud storage.
Trust is placed in the promises of service providers to provide availability.
But the system no longer relies on the cloud for security or privacy. The
“secure cloud storage system” handles these aspects locally and provides
fine-grained forward security for deleted files. Files can be “shredded” so
that even in the case that the user’s decryption key is stolen, deleted files
cannot be recovered — even if the cloud service accidentally kept backups
of the encrypted files. This is possible because the shredding operation not
only deletes a file, but also updates the user’s decryption key (which is lo-
cated on the user’s device). The updated key is then unable to decrypt the
shredded file. This means that the file in cloud storage can be deleted asyn-
chronously (no connection to the cloud is needed). The shredding operation,
which operates on just the key, can be local-only, with the physical (irretriev-
able) encrypted file remaining on the cloud until a periodic clean-up.

The fine-grained nature of deletion can be achieved by protecting the keys
used to encrypt files (one key per file) with a key-wrapping [17] scheme.
Key-wrapping was recently extended to the primitive “puncturable key-
wrapping” (PKW) [16], which provides the promised forward security. The
authors lay out a scheme using PKW to instantiate a secure file storage
system with forward-secure deletion (protected file storage (PFS) [16]). Fig-
ure 1.1 shows at a basic level how PFS is used to securely store files in the
cloud. To explore the feasibility, we implement the proposed scheme and
test the performance. We present an optimization that requires an update of
the syntax and security notions and significantly improves efficiency.

Often, a user may want to delete not only a handful of files but entire file
(sub-)hierarchies instead. Consider a directory containing sensitive personal
information that is no longer required after a project has been completed. In
this case, it would be both cumbersome and somewhat inefficient to shred
each file contained in the hierarchy individually. Therefore, this project also
explores ways in which file hierarchies can be supported so that the shred-
ding operation cannot be used exclusively at very fine-grained but at the
same time at more coarse-grained levels.
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Figure 1.1: Overview of the fundamental idea behind PFS: for each file, a DEK (shown in the
same colour as the file) is used to encrypt it. Both the encrypted file and the wrapped DEK
(wrapped using PKW) are stored on the cloud. The long-term secret key (shown in blue) used
to wrap the DEKs is stored off the cloud.

In this project, we study the PFS approach and implement it to test its per-
formance. Google Cloud Storage (GCS) is used as a service provider for
the storage of encrypted files, but because cryptographic operations happen
only locally, the cloud storage service is only for very basic functionality
(i.e. uploading and downloading encrypted files). The choice of provider
is rather arbitrary and is mainly based on ease of use. The evaluation pays
special attention to time efficiency and key size, since these are important
metrics for the system. System performance is measured by replaying file
access patterns extracted from the log of public GitHub repositories to gain
insight into performance on real-world usage data.

We will start by going over some preliminaries in Chapter 2, explaining
the notation we use, and introducing the cryptographic primitives that are
used to construct the PFS system (authenticated encryption with associated
data (AEAD) [18], pseudo-random generators (PRGs), pseudo-random func-
tions (PRFs), puncturable pseudo-random functions (PPRFs) [19, 20], and
PKW [16]). Next, in Chapter 3, we will introduce the PFS scheme, along
with its security definitions and show how it can be constructed by combin-
ing other cryptographic primitives, as presented in [16]. We then show how
PFS was taken from this abstract description to a working implementation,
describe how it was tested, and we present an optimization that strongly
improves performance. We will then explore how the PFS scheme can be
extended to support file hierarchies in Chapter 4 and present two construc-
tions of the hierarchical primitive and an evaluation section which then com-
pares these two constructions. In Chapter 5, the performance of the flat and
hierarchical approach is compared and analysed. Finally, in Chapter 6, we
summarize our findings and outline possible future research directions.

The implementations and resources used for the evaluations can be in-
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1. Introduction

spected at https://github.com/younisk/forward-secure-cloud-storage.
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Chapter 2

Preliminaries

We begin by introducing the notation used throughout the thesis. We will
then state the definitions and security notions of cryptographic primitives
in the way they are used in this work.

2.1 Notation

The notation is mostly standard, with some additions to simplify the stating
of concepts that recur frequently.

We use the symbol || to denote string concatenation, a ← b to denote the
assignment of value b to variable a, and x ←$ X to denote that x is sampled
from the set X uniformly at random. Bitstrings of length n or of any length
(including the empty string) are denoted by {0, 1}n and {0, 1}∗, respectively.
The special symbol ⊥ (pronounced bot) is used to denote rejection. We write
[n]t to denote the bitstring representation of length t of the number n ∈N.

In some instances, an associative map is used. We write A [.]← ⊥ to denote
its empty instantiation and A [a] ← b to denote that the value of b is stored
in the map A, indexed by a. In A [a] ← b, a is called the “key” and b is
called the “value”. Tuples are written enclosed with parentheses: (a, b, c).
To concatenate tuples, or to add a single element to the end, we use the
+ operator (e.g. (a, b) + (c, d) produces (a, b, c, d)). As a shorthand, t += b
may be used to express t = t+ b, both for tuples and the standard arithmetic
addition. The length of a tuple T is denoted with |T|. If a value is returned
by an algorithm, but not used, it may be ignored by assigning it to , e.g.
(v, )← (a, b) (v gets the value of a, b is ignored). As a shorthand, the union
of two sets, as in S ← S ∪ T , is often expressed as S ∪← T .
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2. Preliminaries

2.2 Cryptographic primitives

We present cryptographic primitives which lie at the heart of this work and
introduce the notation we use when referring to them.

2.2.1 AEAD

Authenticated encryption with associated data (AEAD) is a symmetric en-
cryption primitive that provides confidentiality for the encrypted plaintext,
and integrity for both the plaintext and additional data (e.g. metadata en-
coding sender and receiver of a message). We restate the definition and the
security games (Figure 2.1) of AEAD [18], as given in [16].

Definition 2.1 (AEAD scheme). An authenticated encryption with associated
data scheme, AEAD = (Enc,Dec), is a pair of algorithms with four associated sets;
the secret-key space SK, the nonce space N , the associated data space AD and
the message space M. Also associated to AEAD is a ciphertext-length function
cl : N→N. The algorithms of AEAD operate as follows.

• Via C ← Enc(sk, N, ad, M), the deterministic encryption algorithm Enc on
input the secret key sk ∈ SK, a nonce N ∈ N , associated data ad ∈ AD
and a message M ∈ M produces a ciphertext C ∈ {0, 1}cl(|M|).

• Via M/⊥ ← Dec(sk, N, ad, C), the deterministic decryption algorithm Dec
on input the secret key sk ∈ SK, a nonce N ∈ N , associated data ad ∈ AD
and a ciphertext C ∈ {0, 1}∗ produces a message M ∈ M or, to indicate
failure, the special symbol ⊥.

Correctness of a nonce-based AEAD scheme stipulates that Dec(sk, N, ad,Enc(sk,
N, ad, M)) = M for all sk ∈ SK, N ∈ N , ad ∈ AD and M ∈ M.

We repeat the definition of AEAD ind$-cpa security (confidentiality) and
int-ctxt security (ciphertext integrity), as stated in [21]. Both notions are
given in the multi-user setting [18].

Definition 2.2 (AEAD confidentiality (ind$-cpa)). Let AEAD be a nonce-based
AEAD scheme, and let game Gind$-cpa

AEAD be defined as in Figure 2.1. We define the
confidentiality (ind$-cpa) advantage of an adversary A against AEAD as:

Advind$-cpa
AEAD (A) = 2 ·

∣∣∣∣Pr[Gind$-cpa
AEAD (A)⇒ true]− 1

2

∣∣∣∣ .

Definition 2.3 (AEAD integrity (int-ctxt)). Let AEAD be a nonce-based AEAD
scheme, and let game Gint-ctxt

AEAD be defined as in Figure 2.1. We define the ciphertext
integrity (int-ctxt) advantage of an adversary A against AEAD as:

Advint-ctxt
AEAD (A) = Pr[Gint-ctxt

AEAD (A)⇒ true].

6



2.2. Cryptographic primitives

Game Gind$-cpa
AEAD (A):

1 b←$ {0, 1}; u← 0
2 b∗ ←$ ANew,Ro$()
3 Return b∗ = b

New():

4 u++; sku ←$ SK
5 SN,u ← ∅

Ro$(i, N, ad, M):

6 If N ∈ SN,i:
7 Return ⊥
8 SN,i

∪← {N}
9 C0 ←$ {0, 1}cl|M|

10 C1 ← Enc(sk i, N, ad, M)
11 Return Cb

Game Gint-ctxt
AEAD (A):

12 win← false; u← 0
13 ANew,Enc,Dec()
14 Return win

New():

15 u++; sku ←$ SK
16 Nu ← ∅; SNadC,u ← ∅

Enc(i, N, ad, M):

17 If N ∈ SN,i:
18 Return ⊥
19 SN,i

∪← {N}
20 C ← Enc(sk i, N, ad, M)

21 SNadC,i
∪← {N, ad, C}

22 Return C

Dec(i, N, ad, C):

23 M← Dec(sk i, N, ad, C)
24 If M ̸= ⊥∧ (N, ad, C) /∈ SNadC,i:
25 win← true
26 Return M

Figure 2.1: Game formalizations for confidentiality (ind$-cpa) and integrity (int-ctxt) of AEAD.
Code with grey font prevents trivial attacks.

2.2.2 PRGs and PRFs

We present the definition of a pseudo-random generator (PRG), adapted
from [22].

Definition 2.4 (Pseudo-random generator). A pseudo-random generator G :
S → R is an algorithm that on an input s ∈ S (called a seed), deterministically
computes an output r ∈ R. S and R are finite.

We provide the PRG security game in Figure 2.2.

Definition 2.5 (PRG security). We define the advantage of an adversaryA against
the PRG security of G as:

AdvPRG
G (A) = 2 ·

∣∣∣∣Pr
[
GPRG

G (A)⇒ true
]
− 1

2

∣∣∣∣ .
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2. Preliminaries

Game GPRG
G (A):

1 b←$ {0, 1}
2 s←$ S
3 r0 ← G(s)
4 r1 ←$R
5 b∗ ←$ A(rb)
6 Return b∗ = b

Game GPRF
F (A):

1 sk←$ KeyGen()
2 b←$ {0, 1}; T[·]← ⊥
3 b∗ ←$ ARo$−Eval()
4 Return b∗ = b

Ro$−Eval(x):

5 y1 ← Eval(sk, x)
6 If T[x] = ⊥ :
7 T[x]←$ Y
8 y0 ← T[x]
9 Return yb

Figure 2.2: Left: The PRG-security game in which the adversary has to distinguish between the
real world (b = 0), where it is given a real evaluation of G, and the random world (b = 1), in
which it is a random element from the output space. Right: the PRF-security game, in which the
adversary can repeatedly query a challenge oracle and either gets truly random values (b = 0) or
pseudo-random values (b = 1).

We also provide the definition of a pseudo-random function (PRF), in a non-
standard way, to more seamlessly integrate with later definitions.

Definition 2.6 (Pseudo-random function). A pseudo-random function, F =
(KeyGen,Eval), is a pair of algorithms with three associated sets; the secret-key
space SK, the domain X , and the range Y .

• Via sk ←$ KeyGen(), the probabilistic key generation algorithm KeyGen,
taking no input, outputs the secret key sk ∈ SK.

• Via y ← Eval(sk, x), the function evaluation algorithm Eval, on input the
secret key sk ∈ SK and an element x ∈ X outputs y ∈ Y .

Definition 2.7 (PRF security). We define the advantage of an adversaryA against
the pseudorandomness PRF of F as

AdvPRF
F (A) = 2 ·

∣∣∣∣Pr
[
GPRF

F (A)⇒ true
]
− 1

2

∣∣∣∣ .

PRF from PRG

We present the well-known construction of a PRF from a PRG [23], and
will refer to it as the Goldreich-Goldwasser-Micali (GGM) construction. Let
G : {0, 1}k → {0, 1}2k, a length-doubling PRG. We will use G0, G1 to refer to

8



2.2. Cryptographic primitives

the left or the right half of G, respectively.

G(s) = G0(s)||G1(s)

We construct a PRF F : {0, 1}l → {0, 1}k, taking as input x = (x1, . . . , xl) ∈
{0, 1}l as

F(sk, x) = Gxl (Gxl−1(. . .Gx2(Gx1(sk)))).

The function F chains evaluations of G together, the bits of the element x are
used as an index to choose which half of G is used as a seed for the next
evaluation of G. This can be imagined as a binary tree with nodes that have
labels that are derived from an initial seed. The root of the tree has sk as
the value, the left child of the root G0(sk) and the right child of the root has
value G1(sk). Nodes are labelled by the bitstring that leads to them.

2.2.3 Puncturable pseudo-random functions (PPRFs)

Puncturable pseudo-random functions (PPRFs) [19, 20, 24] are PRFs that can
be punctured on elements of their domain, which makes it impossible to
derive the corresponding elements in the range, thereby providing forward
security for those values. We will present the syntax and security games for
PPRFs and the construction of a PPRF from a PRG based on the GGM PRF
construction [23].

We start by providing the definition of a PPRF as presented in [16].

Definition 2.8 (PPRF). A puncturable pseudo-random function, PPRF=(KeyGen,
Eval,Punc), is a triple of algorithms with three associated sets; the secret-key space
SK, the domain X and the range Y .

• Via sk ←$ KeyGen(), the probabilistic key generation algorithm KeyGen,
taking no input, outputs the secret key sk ∈ SK.

• Via y/⊥ ← Eval(sk, x), the function evaluation algorithm Eval, on input
the secret key sk and an element x ∈ X outputs y ∈ Y or, to indicate failure,
⊥.

• Via sk ′ ← Punc(sk, x), the deterministic puncturing algorithm Punc, on
input the secret key sk and an element x ∈ X outputs an updated secret key
sk ′ ∈ SK.

For correctness, we require that for all sk ∈ SK and all x, y ∈ X :

• Pr[Eval(sk0, x) ̸= ⊥ | sk0 ←$ KeyGen()] = 1.

• If sk ′ ← Punc(sk, x) and y ̸= x, then Eval(sk, y) = Eval(sk ′, y).

9



2. Preliminaries

Game Gfpr-ro$
PPRF (A), Gfpr-rro$

PPRF (A) :

1 b←$ {0, 1}; u← 0; T[·, ·]← ⊥

2 b∗←$ANew,Ro$−Eval, Eval, Corr,Punc

()
3 Return b∗ = b

New()

4 u++; sku ←$ KeyGen()
5 Cu, Eu,Pu ← ∅

Eval(i, x):

6 If x ∈ Ci: return ⊥
7 y ← Eval(sk i, x)
8 Ei

∪← {x}
9 Return y

Ro$−Eval(i, x):

10 If x ∈ Ei or corri: return ⊥
11 y1 ← Eval(sk i, x)
12 If y1 = ⊥: return ⊥
13 If T[i, x] = ⊥ :
14 T[i, x]←$ Y
15 y0 ← T[i, x]
16 Ci

∪← {x}
17 Return yb

Punc(i, x):

18 sk i ← Punc(sk i, x)
19 Pi

∪← {x}

Corr(i):

20 If Ci ̸⊆ Pi:
21 Return ⊥
22 corri ← true
23 Return sk i

Figure 2.3: Security game for PPRF with adversary A having access to oracles Ro$−Eval,
Punc, Corr in the game Gfpr-ro$

PPRF (A). In the game Gfpr-rro$
PPRF (A) , it additionally has access to

Eval.

• If sk ′ ← Punc(sk, x), then Eval(sk ′, x) = ⊥.

The security games for a PPRF against an adversary are shown in Figure 2.3.
They are in the multi-user setting [25] and capture the security notions
fpr-ro$ and fpr-rro$ [16], which describe a combination of forward security
and pseudo-randomness.

Definition 2.9 (PPRF security (fpr-ro$, fpr-rro$)[16]). We define the advantage
of an adversary A against the forward pseudorandomness X ∈ {fpr-ro$, fpr-rro$}
of PPRF as

AdvX
PPRF(A) = 2 ·

∣∣∣∣Pr
[
GX

PPRF(A)⇒ true
]
− 1

2

∣∣∣∣ .

PPRF from PRG

A possible construction of a PPRF can be achieved by adapting the GGM
construction [23], that is shown above (Section 2.2.2).

To extend this instantiation of a PRF to match the syntax of a PPRF, a Punc
algorithm is needed. Puncturing the GGM construction on x requires the
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sk

G0(sk)

G0( )

G0( )

G0( ) G1( )

G1( )

G0( ) G1( )

G1( )

G0( )

G0( ) G1( )

G1( )

G0( ) G1( )

G1(sk)

G0( )

G0( )

G0( ) G1( )

G1( )

G0( ) G1( )

G1( )

G0( )

G0( ) G1( )

G1( )

G0( ) G1( )

Figure 2.4: Example of a GGM tree of depth 4, punctured on element ’1000’. The node labelled
by the punctured element is shown in red, grey is used to indicate which nodes cannot be part
of the key because of the puncture, the green nodes make up the updated secret key. To show
how the values of the nodes are derived, the function used to generate the node value is shown
inside the node. The symbol “ ” denotes the use of the value of the parent node.

“removal” of the leaf node labelled x. We first note that the value of the
node labelled x should not be recoverable after sk has been punctured on x.
So, the updated secret key sk ′ cannot contain any predecessors of it (because
then the x node could be derived from these). The rest of the tree should
still be derivable, since it must still be possible to evaluate unpunctured
elements. The secret key of a PPRF is therefore not the root secret sk, as
it is for the PRF, but a set of nodes, each node being an unpunctured leaf
node or the root of a subtree with only unpunctured leaf nodes. Observe
that the nodes which make up the co-path from the root of a subtree to the
leaf node define subtrees which make all nodes in the subtree except for the
punctured node derivable. Consequently, to puncture x, the secret key sk is
modified so that the node nx defining the (unpunctured) subtree containing
x is replaced by the co-path from nx to x. As an example, Figure 2.4 shows a
GGM PPRF tree of depth four, in which a single value is punctured. Before
puncturing, the node containing “sk” was the secret key. After puncturing,
the key consists of the green nodes.

2.2.4 Puncturable key wrapping

Key wrapping is a technique that allows safe storage and transport of keys
under the protection of another (master) key. The primitive was introduced
in [17], and extended in [16] to make the wrapped keys puncturable. Here,
we repeat the syntax and security notions that are used to describe the PKW
scheme given in [16].

Definition 2.10 (PKW scheme). A puncturable key-wrapping scheme consists of
four algorithms PKW = (Keygen,Wrap,Unwrap,Punc) with four associated sets:
the secret-key space SK, the tag space T , the header space H and the wrap-key
space K. Associated to the scheme is a ciphertext-length function cl : N → N .

• Via sk ←$ KeyGen(), the probabilistic key generation algorithm KeyGen,
taking no input, outputs a secret key sk ∈ SK.

11
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• Via C/⊥ ← Wrap(sk, T, H, K), the deterministic wrapping algorithm Wrap
on input a secret key sk ∈ SK, a tag T ∈ T , a header H ∈ H and a key
K ∈ K outputs a ciphertext C ∈ {0, 1}cl(|K|) or, to indicate failure, ⊥.

• Via K/⊥ ← Unwrap(sk, T, H, C), the deterministic unwrapping algorithm
Unwrap on input a secret key sk ∈ SK, a tag T ∈ T , a header H ∈ H and a
ciphertext C ∈ {0, 1}∗ returns a key K ∈ K or, to indicate failure, ⊥.

• Via sk ′ ← Punc(sk, T), the deterministic puncturing algorithm Punc on
input a secret key sk ∈ SK and a tag T ∈ T returns a potentially updated
secret key sk ′ ∈ SK.

Confidentiality

Confidentiality is defined by the notions find$-cpa and find$-rcpa, both in
the multi-user setting (Figure 2.5). We provide a brief overview of the ora-
cles, the full explanation is found in [16]. The find$-cpa notion is a form of
indistinguishability from random bits (ind$-cpa) with forward security. It
provides the adversary with a challenge oracle Ro$−Wrap to capture the
indistinguishability, the Punc oracle to perform punctures, and with a cor-
ruption oracle Corr to capture forward secrecy. For the find$-rcpa notion,
the adversary is additionally provided access to an oracle that returns real
wrappings. We refer to the original work for the relations between these
security notions.

Definition 2.11 (PKW confidentiality). Let PKW be a puncturable key-wrapping
scheme. We define the advantage of an adversary A against the forward indistin-
guishability X ∈ {find$-cpa, find$-rcpa} of PKW as

AdvX
PKW(A) = 2

∣∣∣∣Pr[GX
PKW(A)⇒ true]− 1

2

∣∣∣∣ .

Integrity

The security game definition of int-ctxt for a PKW scheme (Figure 2.6) is
very closely related to the int-ctxt notion of AEAD. The objective of the
adversary is to forge a valid ciphertext C (i.e. unwrapping does not result in
⊥) for a tag T and header H. Again, we refer to [16] for the details.

Definition 2.12 (PKW integrity). Let PKW be a puncturable key-wrapping scheme.
We define the advantage of an adversary A against the integrity of ciphertexts
int-ctxt of PKW as

Advint-ctxt
PKW (A) = Pr[Gint-ctxt

PKW (A)⇒ true].
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Game Gfind$-cpa
PKW (A), Gfind$-rcpa

PKW (A) :

1 b←$ {0, 1}; u← 0

2 b∗ ←$ ARo$−Wrap, Wrap, Punc,Corr,New

()
3 Return b∗ = b

New()

4 u++
5 sku ←$ KeyGen()
6 SPT,u,S$T,u,ST,u ← ∅
7 corru ← false

Wrap(i, T, H, K):

8 If T ∈ ST,i then return ⊥
9 C ← Wrap(sk i, T, H, K)

10 ST,i
∪← {T}

11 Return y

Ro$−Wrap(i, T, H, K):

12 If T ∈ ST,i ∨ corri = true:
13 Return ⊥
14 C1 ← Wrap(sk i, T, H, K)
15 If C1 = ⊥:
16 Return ⊥
17 C0 ←$ {0, 1}cl(|K|)

18 S$T,i
∪← {T}; ST,i

∪← {T}
19 Return Cb

Corr(i):

20 If SPT,i ̸⊆ S$T,i:
21 Return ⊥
22 corri ← true
23 Return sk i

Punc(T):

24 sk i ← Punc(sk i, T)
25 SPT,i

∪← {T}

Figure 2.5: Confidentiality and forward security (find$-cpa, find$-rcpa ) games for puncturable

key-wrapping scheme PKW. We omit the definition of find$-1cpa [16].

Game Gint-ctxt
PKW (A):

1 win← false; u← 0
2 ANew,Wrap,Unwrap,Punc()
3 Return win

New()

4 u++; sku ←$ KeyGen()
5 STHC,u,ST,u,SPT,u ← ∅

Punc(T):

6 sk i ← Punc(sk i, T)
7 SPT,i

∪← {T}

Wrap(i, T, H, K):

8 If T ∈ ST,i then return ⊥
9 C ← Wrap(sk i, T, H, K)

10 If C = ⊥ : return ⊥
11 STHC,i

∪← {(T, H, C)}; ST,i
∪← {T}

12 Return C

Unwrap(i, T, H, C):

13 K ← Unwrap(sk i, T, H, C)
14 If K ̸= ⊥ ∧ ((T, H, C) /∈ STHC,i ∨ T ∈ SPT,i) :
15 win← true
16 Return K

Figure 2.6: Ciphertext integrity (int-ctxt) game for puncturable key-wrapping scheme PKW.
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PKW[PPRF,AEAD]:

PKW.KeyGen():

1 Return PPRF.KeyGen()

PKW.Wrap(sk p, T, H, K):

2 ska ← PPRF.Eval(skp, T)
3 C ← AEAD.Enc(ska, N0, H, K)
4 Return C

PKW.Unwrap(sk p, T, H, C):

5 ska ← PPRF.Eval(skp, T)
6 K ← AEAD.Dec(ska, N0, H, C)
7 Return K

PKW.Punc(sk p, T):

8 sk ′p ← PPRF.Punc(skp, T)
9 Return sk ′p

Figure 2.7: Construction of PKW from PPRF and AEAD. The constant N0 is set to the all-zero
nonce.

Construction from AEAD and PPRF

The construction of PKW from AEAD and PPRF proposed in [16] is shown
in Figure 2.7. In Wrap, it uses the PPRF to derive key encryption keys (KEKs)
for the given tag and uses the KEK to encrypt the key passed as argument
with the AEAD scheme. For Unwrap, again the PPRF is evaluated for the
given tag, and the ciphertext is decrypted using the derived KEK. So, the
tag space of the PKW scheme is equal to the domain of the PPRF. The punc-
turing operation is delegated to the PPRF.

We give some intuition on why it is secure:

Confidentiality Because the keys given to wrap are AEAD encrypted under
a key derived by the PPRF, puncturing the PPRF on the tag that was used
for wrapping makes the key underivable and thus gives the forward security
needed for find$-cpa. The indistinguishability from random bits is provided
by AEAD.

Integrity Similarly to confidentiality, ciphertext integrity (int-ctxt) is pro-
vided by the AEAD scheme.
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Chapter 3

Protected file storage

The primary objective of this project is the development of a forward-secure
file storage system that relies on puncturable key-wrapping to provide for-
ward security for deleted files. To achieve this, a library produced in a pre-
vious project offering a puncturable key-wrapping implementation [26], as
described in [16], is used and further enhanced. Puncturable key-wrapping
is used to wrap individual data encryption keys (DEKs) for each file stored
in the system. To delete a file (an operation we call “shred”), the correspond-
ing DEK is punctured.

We will introduce the syntax and security notions used to describe a pro-
tected file storage (PFS) scheme as shown in [16] and present a new opti-
mization which requires an update to the syntax. For both versions, we also
present constructions and implementations and evaluate their performance.

3.1 PFS (original definition)

A protected file storage (PFS) is defined by the following syntax, as stated
in [16].

Definition 3.1 (PFS scheme). A protected file storage scheme PFS = (Setup,
EncFile,DecFile,ShredFile,RotKey) is a 5-tuple of algorithms with four associated
sets; the secret key space SK, the file space F , the file identifier space I and the
header space H. Associated to the PFS is a ciphertext-length function cl : N→N.

• Via sk ←$ Setup(), the probabilistic setup algorithm Setup, taking no input,
produces a secret key sk ∈ SK.

• Via (id, h, C)/⊥ ←$ EncFile(sk, F), the randomized file encryption algo-
rithm EncFile on input the secret key sk ∈ SK and a plaintext file F ∈ F
produces a file identifier id ∈ I , a header h ∈ H and a ciphertext C ∈
{0, 1}cl(|F|) or, to indicate failure, ⊥.
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• Via F/⊥ ← DecFile(sk, id, h, C), the deterministic file decryption algorithm
DecFile on input the key sk ∈ SK, a file identifier id ∈ I , a header h ∈ H,
and a ciphertext C ∈ {0, 1}∗ returns a file plaintext F ∈ F or, to indicate
failure, ⊥.

• Via sk ′ ← ShredFile(sk, id), the deterministic shredding algorithm ShredFile
on input the secret key sk ∈ SK and a file identifier id ∈ I returns the
updated secret key sk ′ ∈ SK.

• Via (sk ′, (h′1, . . . , h′ l))/(sk ′,⊥) ←$ RotKey(sk, ((id1, h1), . . . , (idl , hl))),
the randomized key-rotation algorithm RotKey on input the secret key sk ∈
SK and a list containing file identifier-header pairs ((id1, h1), . . . , (idl , hl))
∈ (I ×H)∗ returns the potentially updated secret key sk ′ ∈ SK and a list
of updated headers (h′1, . . . , h′ l) ∈ H∗ or, to indicate failure, ⊥.

We restate the definition of correctness from [16].

Correctness For correctness of a PFS scheme, we require that an encrypted
file can always be decrypted, unless it has been shredded. This is condi-
tioned on the fact that the corresponding header is updated in key rotations,
since omitting the header during key rotation effectively deletes the file.

3.1.1 Confidentiality and integrity

The security notion for confidentiality is find$-rcpa [16] (Figure 3.1), which
captures both forward security and indistinguishability from random bits
of the tuple (id, h, C) under real and real-or-random chosen plaintext attack
(the adversary gets access to both a real-or-random encryption oracle and a
real encryption oracle). Integrity is modelled with the notion int-ctxt (Fig-
ure 3.2), in which the adversary wins if it manages to forge a ciphertext that
decrypts without error. For the details, we refer to [16].

Definition 3.2 (PFS confidentiality [16]). Let PFS be a protected file storage
scheme. We define the advantage of an adversary A against the find$-rcpa security
of PFS as

Advfind$-rcpa
PFS (A) = 2

∣∣∣∣Pr[Gfind$-rcpa
PFS (A)⇒ true]− 1

2

∣∣∣∣ .

Definition 3.3 (PFS integrity [16]). Let PFS be a protected file storage scheme.
We define the advantage of an adversary A against the int-ctxt security of PFS as

Advint-ctxt
PFS (A) = Pr[Gint-ctxt

PFS (A)⇒ true].

We will give an overview of the oracles to which the adversary has access
for the find$-rcpa security game. It can call the Ro$−Enc (“challenge”) or
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Game Gfind$-rcpa
PFS (A):

1 b←$ {0, 1}; sk ←$ Setup()
2 LRo$ ← (); LEnc ← ()
3 S$id ← ∅; corr← false

4 b∗←$ARo$−Enc,Enc,Shred,Corr,RotKey()
5 Return b∗ = b

Ro$−Enc(F):

6 If corr = true then return ⊥
7 (id1, h1, C1)←$ EncFile(sk, F)
8 If (id1, h1, C1) = ⊥:
9 Return ⊥

10 id0 ←$ I ; h0 ←$H
11 C0 ←$ {0, 1}cl(|F|)
12 LRo$ += (idb, hb)

13 S$id
∪← {idb}

14 Return (idb, hb, Cb)

Enc(F):

15 (id, h, C)←$ EncFile(sk, F)
16 LEnc += (id, h)
17 Return (id, h, C)

Shred(id):

18 sk ← ShredFile(sk, id)
19 LRo$ −= (id, ∗); LEnc −= (id, ∗) ;
20 S$id ← S$id \ {id}

RotKey():

21 l$ ← |LRo$|; lr ← |LEnc|
22 ((id1, h1), . . . , (idl$ , hl$))← LRo$

23 ((idl$+1, hl$+1), . . . , (idl$+lr , hl$+lr ))← LEnc

24 If b = 0 :
25 For i← 1 to l$ do h′i ←$H
26 (sk, (hl$+1, . . . , hl$+lr ))←$ RotKey(sk, LEnc)

27 If (hl$+1, . . . , hl$+lr ) = ⊥ then return ⊥
28 If b = 1 :
29 (sk, (h1, . . . , hl$+lr ))←$ RotKey(sk, LRo$||LEnc)

30 If (h1, . . . , hl$+lr ) = ⊥ then return ⊥
31 LRo$ ← ((id1, h1), . . . , (idl$ , hl$))

32 LEnc ← ((idl$+1, hl$+1), . . . , (idl$+lr , hl$+lr ))

33 corr← false
34 Return LRo$||LEnc

Corr():

35 If S$id ̸= ∅ then return ⊥
36 corr← true
37 Return sk

Figure 3.1: Confidentiality and forward security (find$-rcpa) game for protected file storage
scheme PFS. Lists LRoS and LEnc keep track of headers currently in the system for the sake of
key rotation. We write M −= (id, ∗) to denote removing a any pair from a list M in which the
first item is id.

Enc (“encryption”) oracle to receive a real-or-random or a real encryption
of a file. By calling the Shred oracle, it can forward-securely delete a previ-
ously encrypted file. The adversary can gain access to the key by calling the
corruption oracle Corr, but only after it has deleted all files encrypted with
the challenge oracle. Once the key has been corrupted, the challenge ora-
cle cannot be called until the key rotation oracle, RotKey (which replaces
the secret key with a new secret key) has been called. To win the game,
the adversary has to distinguish whether the challenge oracle provides real
encryptions or random values.

In the int-ctxt game, the adversary has access to an encryption oracle, Enc,
a decryption oracle, Dec, a shred oracle, Shred, and a key rotation oracle,

17
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Game Gint-ctxt
PFS (A):

1 win← false; sk ←$ Setup()
2 S ← ∅
3 AEnc,Dec,Shred,RotKey()
4 Return win

Enc(F):

5 (id, h, C)←$ EncFile(sk, F)

6 S ∪← {(id, h, C)}
7 Return (id, h, C)

Shred(id):

8 sk ← ShredFile(sk, id)
9 S ← S \ {(id, ∗, ∗)}

Dec(id, h, C):

10 F ← DecFile(sk, id, h, C)
11 If (id, h, C) /∈ S and F ̸= ⊥ :
12 win← true
13 Return F

RotKey(((id1, h1), . . . , (idl , hl))):

14 (sk, (h′1, . . . , h′l))←$ RotKey(sk, ((id1,
h1), . . . , (idl , hl)))

15 If (h′1, . . . , h′l) = ⊥
16 Return ⊥
17 Snew ← ∅
18 For (id, h, C) ∈ S do:
19 If ∃i ∈ {1, . . . , l}, s.t.

(id, h) = (idi, hi)

20 Snew
∪← {(id, h′i, C)}

21 S ← Snew
22 Return (h′1, . . . , h′l)

Figure 3.2: Ciphertext integrity (int-ctxt) game for protected file storage scheme PFS as pre-
sented in [16]. The notation S ← S \ {(id, ∗, ∗)} designates the removal of all tuples of which
the first element is id from the set S .

RotKey. To win the game, the adversary has to pass a tuple to the decryp-
tion oracle that was not produced by the encryption oracle, but still decrypts
without error.

Adversarial cloud service

In the security games (Figures 3.1 and 3.2), the adversary has extensive con-
trol over the system. It can encrypt files, shred files, rotate the key, and
for the int-ctxt game, also decrypt files. A realistic adversary in the cloud
storage setting is a malicious cloud storage service, which, while providing
excellent availability for stored data, tries to glean as much insight as pos-
sible on the data that it stores. Reasons for this could range from hackers
gaining access to the cloud service [1] to government-sanctioned dragnet op-
erations [27] or even forged search warrants [2]. A malicious cloud service
has significantly fewer capabilities than the adversary in the security games.
It only sees ciphertexts and headers, and cannot issue any commands to the
local client (it cannot tell the client to shred a file, for instance). The secu-
rity notions are therefore stronger than what is needed for a threat model
in which there is a malicious cloud service, and encode a strong form of
privacy for the stored ciphertexts. However, it means that there is a gap be-
tween the threat model for a forward-secure cloud storage and the definition
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of PFS security, of which the exploration is out of scope for this thesis.

3.1.2 Construction from PKW and AEAD

For completeness, here we repeat the construction of PFS from the compo-
sition of PKW and AEAD (Figure 3.3), as shown in [16]. In short, the PKW
scheme is used to protect the DEKs, which are used in the AEAD scheme to
encrypt and decrypt the files. The shredding operation is delegated to the
PKW, where the PKW secret key for the file in question is punctured on the
tag corresponding to the file. This updates the secret key sk, so that future
encryptions or decryptions are not possible. We note that the random choice
of a file identifier (line 8 of EncFile in Figure 3.3) may result in a collision (a
file identifier being reused to encrypt a new file). The games do not specify
this, the system must disallow it, however.

Setup() :

1 Return PKW.KeyGen()

DecFile(sk, id, h, N||C):

2 K ← PKW.Unwrap(sk, id, ϵ, h)
3 If K = ⊥ :
4 Return ⊥
5 F ← AEAD.Dec(K, N, ϵ, C)
6 Return F

ShredFile(sk, id):

7 sk ′ ← PKW.Punc(sk, id)
8 Return sk ′

EncFile(sk, F):

9 K ←$ {0, 1}k; id ←$ {0, 1}t

10 h← PKW.Wrap(sk, id, ϵ, K)
11 If h = ⊥ :
12 Return ⊥
13 N ←$ {0, 1}n

14 C ← AEAD.Enc(K, N, ϵ, F)
15 Return (id, h, N||C)

RotKey(skold, ((id1, h1), . . . , (idl , hl))):

16 sknew ←$ PKW.KeyGen()
17 For i← 1 to l do:
18 Ki ← PKW.Unwrap(skold, idi, ϵ, hi)
19 h′i ← PKW.Wrap(sknew, idi, ϵ, Ki)
20 If h′i = ⊥ then return (skold,⊥)
21 Return (sknew, ((id1, h′1), . . . , (idl , h′l)))

Figure 3.3: PFS construction achieving find$-rcpa security from composition of PKW scheme
PKW and AEAD scheme AEAD as shown in [16]. The key-wrap space of the PKW scheme

is {0, 1}k, the tag space is {0, 1}t. The AEAD scheme has nonce space {0, 1}n and key space

{0, 1}k. The instantiated PFS scheme therefore has file identifier space I = {0, 1}t, header space

H = {0, 1}PKW.cl(k) and an associated ciphertext length of PFS.cl(|F|) = AEAD.cl(|F|) + n.

3.1.3 Implementation

PFS is implemented in C++ using a PKW library [26] and an AEAD im-
plementation (AES-GCM) from CryptoPP [28], based on the construction in
Figure 3.3. We show an overview of how the primitives are combined in
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Figure 3.4: Diagram showing how the primitives PPRF, PKW, and AEAD are combined to
instantiate PFS. The secret key sk of the PFS is really the secret key of the PPRF.

Figure 3.4. The storage of encrypted files and headers is done with Google
Cloud Storage (GCS), because of ease of integration (a C++ library is pro-
vided by Google [29]) and a free evaluation period of three months. To map
the file identifier (randomly sampled, see line 8 of Figure 3.3) assigned by
PFS during encryption to the corresponding file name, a lookup table in the
form of an associative map is used. The PKW used to instantiate PFS uses
tags and keys of bitlength 256. The tag length is chosen so that a tag collision
will only become a problem after ≈ 2128 files are added (the birthday bound
applies). This number is large enough to support as many files as needed
in any file system and is selected as an upper bound. The header and the
file produced by the encryption operation are stored in the cloud under the
identifier and an appropriate suffix (the encrypted file is stored with <id>.f,
the header with <id>.h). The ciphertext and header are stored separately
because for key rotation, only the headers are needed, and downloading
both the ciphertext and the header would be inefficient.

Because the forward-security of the shred operation relies entirely on the
PKW scheme and the secret key, which is local, the ciphertext and header
located on the cloud do not have to be immediately deleted. They actually
do not need to be deleted at all, although the accumulation of shredded (and
therefore irrecoverable) files may become an issue in terms of the storage
space they occupy. We will present one way to remove shredded files from
the cloud somewhat asynchronously in Section 3.1.4, where files are queued
for cloud deletion until a given threshold, after which they are all deleted.
Another approach could be a periodic clean-up job, which handles actual
cloud deletion at some specified interval and works its way through a queue
of files marked to be deleted on the cloud.
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Local file names and the corresponding assigned identifiers used to refer to
the file when stored on the cloud have to be stored somehow as a lookup
table, since the PFS scheme does not keep track of this metadata. Without a
lookup functionality, there is no way to quickly access a stored file. During
the operation of the client, the information can be held in memory, however,
between sessions, this lookup table has to be persisted.

One option is to store it on the client’s local storage; however, since it could
grow to large sizes, it may be preferable to offload storage. So, instead of
storing the lookup table locally, the cloud service can be used to store it
(encrypted). To mitigate forward security pitfalls (when using a static key),
key ratcheting is used. The lookup table is encrypted under a key Ki on
completion of a session (an initial key K0 is randomly sampled for the first
session). At the start of the next session, the encrypted lookup table is down-
loaded and decrypted under Ki and Ki is ratcheted forward to Ki+1. This
process is described in [30] and appeared as part of the “double ratchet” of
the Signal protocol [31]. We use the term “ratchet” here only in the symmet-
ric sense, implemented as a key derivation function (HKDF.DeriveKey from
CryptoPP [28]).

These aspects (encryption of lookup-table, use of file identifiers as identi-
fiers for cloud storage) are not modelled in a security game, but rather are
practical choices. Their formal security analysis is out of scope for this thesis
but merits further investigation.

To access the system to inspect stored files, an interactive command line
client was implemented, with commands inspired by the file transfer proto-
col (FTP) (Figure 3.5).

3.1.4 Evaluation

To evaluate the performance of the PFS implementation, benchmarks were
performed on a laptop computer with an 8-core 2.3 GHz Intel i9 proces-
sor, 16 GB of RAM and a wired 1 Gbps (up / down) Internet connection.
A first set of benchmarks was run with file storage on GCS, to assess the
overhead of the local cryptographic operations in relation to the time used
for network operations. In a second step, the implementation was tested
by replaying file access patterns extracted from GitHub repository histories.
Previous work [26] found that punctures on random PPRF elements induce
a large secret key size. Since the PFS secret key is actually a PPRF secret
key (Figure 3.4), a focus is placed on investigating the size of the key result-
ing from file access patterns and drawing lessons from the benchmarks to
improve the scheme.
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Figure 3.5: The interactive client, with commands inspired by FTP. Here, the help menu is
shown.

Encrypting files

The time to encrypt a file and then upload it to the cloud was measured
to be about 80 milliseconds, uploading the same file in plaintext took on
average about 70 milliseconds. The time to evaluate the PPRF to obtain the
correct key-wrapping key was about 2 milliseconds, so the largest overhead
is the actual (AEAD) encryption of the file to produce the ciphertext and the
data encryption key to produce the header.

Shredding files

The setup for this benchmark is simple: files are put in the system and then
the time to delete them is measured. As stated earlier, since the PFS scheme
provides forward security for shredded files and the cryptographic opera-
tions providing the forward secrecy are handled locally, there is no need to
physically delete a shredded file on the cloud storage. Here, we handle the
deletion after a given number of files are queued for deletion. In Figure 3.6,
the spikes in time consumption that this approach produces are clearly vis-
ible. We stress that the PFS system can be much more efficient in the time
usage of the deletion (shred) operation. Indeed, the machine running the
system need not even be online to perform the operation, whereas, in a reg-
ular cloud storage setting, the client must wait for the cloud to confirm the
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Figure 3.6: Time used to shred (PFS, blue) or delete (regular cloud storage, orange) files. The
spikes in the PFS system stem from a set of files being deleted from the cloud storage at a
specified threshold (in this instance, when the deletion queue contains more than 10 files).

deletion of a specified file.

Rotating keys

Clearly, the time consumption of key rotation is in a linear relationship with
the number of stored files. Since all the headers must be downloaded, un-
wrapped, wrapped under a new key and reuploaded, the goal was to verify
that the system behaves as expected, i.e. the time consumption for a fixed
number of operations stays reasonably constant. To do so, a baseline of 100
files was uploaded. The key rotation would then affect the headers corre-
sponding to these 100 files. To measure the overhead of having punctures
present, batches of files were repeatedly added and shredded in increasing
numbers (to cause a change in the secret key). The time was measured only
over the key rotation for the 100 base files (which were not touched by the
put and shred operations). While the measurements are rather noisy, there
is a trend: key rotation after many put/shred operations takes longer than
key rotation before. Figures 3.7 and 3.8 show the results of the evaluation.
The time used for local operations is shown in blue and the cloud com-
munication in orange. Time consumption by the PKW scheme to unwrap
and wrap the headers does not increase much for an increasing number of
shredded files (the blue part stays flat in Figure 3.7). So, it is puzzling to see
this clear increase in overall time usage. The observed increase is introduced
by GCS, possibly because of indexing issues. Because many files are added
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Figure 3.7: Time used for key rotation with
100 files present in the system, time mea-
sured after putting and then shredding files
in batches of 10, 50, 100, 200, 500 and
1000. The cryptographic operations of PFS
are shown in blue, network time is shown in
orange.

Figure 3.8: Time used for key rotation
with 100 files present in the system, time
measured after putting and then shredding
files in batches of 1000, 2000. The cryp-
tographic operations of PFS are shown in
blue, network time is shown in orange.

and deleted at a time, the lookup of the file headers (which are retrieved
for key rotation) may take an increasingly long time, until better indexes are
built. Some indication of this is given by looking at the same benchmark, but
where the first batch deletion size is already large (Figure 3.8): the time for
key rotation for the 100 files is greater after 1000 files are shredded than after
2000 files are shredded. The random identifiers used to store the files and
headers possibly contribute to inconsistent lookup times. However, what
this benchmark clearly shows is that network effects dominate key rotation
performance.

GitHub commit histories

To get an impression of realistic file access patterns in a file storage system,
some public GitHub [32] repositories [33, 34, 35, 36] are used. Git records the
history of a directory through a chain of commits, each of which documents
the files which were added, modified, or deleted. This history is extracted
and the actions are sequentially replayed in the PFS system. For these eval-
uations, no actual data is stored in the cloud, since the purpose is to gather
information about local performance. For each file that was added, the file
contents are defined as empty. Therefore, no time is spent encrypting files,
and the benchmark focusses on the time consumption of PFS-specific op-
erations: generating data encryption keys, wrapping them, and shredding
files (i.e. performing PKW punctures, since no files are stored). The four
repositories (Linux kernel, Guava, React, and FreeCodeCamp) are selected
for aspects of their history (number of files that were added and deleted).
No specific metric is used for the selection; rather, it is based on manual in-
spection of the characteristics of the history of the repository. Of particular
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3.1. PFS (original definition)

interest are file deletions, since they affect system performance. A deletion
operation in the dataset is mapped to a shred operation in PFS, and therefore
deletions lead to growth of the secret key.

To extract the history from a repository, the command git log --name-

status --reverse -M100% | grep -E "^(M|A|D|R)[0-9]*\s" is used and
the file-names are cleaned up (whitespaces and commas are replaced by
dashes). The first part of the command shows all commits and the involved
file names and actions (modify, add, delete, rename). The --reverse option
reverses the history so that the oldest commit is shown first. The option -

M100% ensures that only “clean” rename operations are considered a rename
(if contents of the file changed, too, it is a deletion and addition). Finally,
the grep command cleans the output from non-relevant information. Only
the git history of the default branch is considered.

Linux kernel GitHub history [33] Initially, the Linux kernel was considered
an interesting repository. The first commit is from April 2005, the last from
June 2023. However, with 273300 additions and 165300 deletions, it seems
too large for practical benchmarks. For its historical significance and to
measure the best-performing system more in-depth, the dataset was still
created.

Guava GitHub history [35] The smallest data-set that was used. The first
commit is from June 2009 and until May 2023, about 4500 files were added
and 1200 were deleted.

React GitHub history [34] A slightly larger dataset with a span from May
2013 to May 2023 and in that time frame about 7000 additions and 4250
deletions.

FreeCodeCamp GitHub history [36] The second-to-largest dataset, with its
first commit from November 2013 and the last from June 2023. During this
time, about 98000 files were added and 55000 files were deleted.

We present the commit history of the React repository run on the imple-
mentation described previously in Figure 3.9. It shows an increase in the
time used for shred operations, which follows the increasing key size. The
longest time used for a shred operation is approximately 700 ms, which is
too large for a usable system. The time to delete a file from cloud storage
is around 220 ms (“Baseline” in Figure 3.6), so the overhead of using PFS
would be noticeable after not too many punctures.
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3. Protected file storage

Figure 3.9: Key size (purple) and timings for shred operations (green) of the React GitHub
history. File identifiers are randomly sampled when files are added (encrypt operation not shown).

PPRF secret key data structure

In prior work [26] and also during evaluation, it became apparent that re-
peated shredding of (random) file identifiers leads to a considerably large
secret key. As explained in Chapter 2.2.3, the puncturing algorithm for a
PPRF (which is used in the implementation) replaces a single node in the
key with a set of nodes. The use of random file identifiers leads to many
nodes being added for every puncture. Because a list (C++ std::vector)
was used to store the GGM nodes of the key (ordered by their label), punc-
turing became increasingly inefficient. The insertion of the new nodes into
the list meant that the list elements had to be moved around, so the order-
ing remained intact for efficient lookup. A switch to a hashmap to store the
nodes (under their label) leads to a significant increase in time performance
(see Figure 3.10).

The effect of the change in the key data structure is also very apparent when
the React dataset is run with this change (Figure 3.11). Shredding times are
much more consistent, with some large outliers that are attributed to the
large key size (as in Figure 3.10).

Large secret key

Although the change in secret key data structure positively impacts execu-
tion times, the key size seen in Figure 3.9 and Figure 3.11 remains consid-
erable: after 4250 shred operations, the key size has increased to 300 MB
from an initial key size of 72 Bytes. Considering the tag sizes of 256 bits,
this is not surprising: since the leaves in the GGM tree (used to wrap the
key encryption keys) are very sparse, puncturing them adds a large number
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Time used for puncture operations in PKW,
when GGM nodes are stored in a list. The
maximum value is approximately 1400ms.

Time used for puncture operations in PKW
when the GGM nodes are stored in a
hashmap. The maximum value is approx-
imately 175ms.

Figure 3.10: Comparison of time usage of punctures on random tags for different PKW secret
key data structures. Large spikes are attributed to memory allocation.

Figure 3.11: Key size (purple) and timings for shred operations (green) of React GitHub history,
with the PKW key data structure changed to a hashmap. File identifiers are sampled randomly
when files are added (encrypt operation not shown).

of nodes to the key for every puncture. Using tags of shorter length would
somewhat alleviate the problem; however, even halving the tag length does
not seem satisfactory, since it would lead to a key of about half the size,
which is still very large.

From this result, it seems that using random tags comes at a cost: first, tags
must have double the length of what would be required to support a given
number of files (e.g., 256 bits to support in the order of 2128 files, to avoid
collisions of randomly sampled tags (birthday bound)). Second, and even
more worryingly, the key size resulting from few punctures quickly becomes
untenable.
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Led by the intuition that grouping the file identifiers more closely in the
GGM tree would be beneficial, we hypothesize that using an increasing
counter for file identification, rather than using random values, would lead
to more optimal key size.

Counters as file identifiers

For sufficiently large PKW tag spaces, sampling random tags (as done in the
construction of PFS (Figure 3.3, [16])) is not a problem, since tag collisions
are a rare event (the birthday bound applies). However, if punctures happen
randomly, large tag spaces are not ideal because they lead to a very large
key size. Fortunately, nothing speaks against using a counter as a global
file identifier: it is not random, but a malicious cloud service will not gain
any insight from seeing how many files have been uploaded (which is pre-
cisely the information the counter encodes). Moreover, the tag space can
be a lot smaller since there is no need to account for collisions in the ran-
dom sampling of tags (birthday bound). Furthermore, by using a counter,
the punctures will result in a (hopefully) small PKW secret key, as the punc-
tured leaves in the PPRF tree will be located more closely. The reason for this
assumption is that for n f files stored in the system (with sequential identi-
fiers) using PKW space {0, 1}t, the common ancestor in the GGM tree, from
which all the leaves corresponding to the files can be derived, is at depth
≈ t− log2(n f ). Due to the way the puncturing algorithm works in the GGM
construction, all punctures (except the first) will add at most O(log2(n f ))
(most likely less) nodes to the key, instead of the O(d) in the case of random
punctures. The mapping from the counter value n ∈ N<2t to a bitstring in
the tag space s ∈ {0, 1}t is trivial: the number can just be converted to its
binary representation.

Security notions and the cloud

The file identifiers assigned by PFS are given with the intention of them
being used to refer to files when they are stored on the cloud [16]. However,
there is no “binding” of the file identifier to such usage (the identifier is
generated by the scheme, but the security notions do not model the storage
service). So, the assignment of file identifiers for cloud storage lies outside
the scope of the PFS system and should therefore be modelled separately,
since nothing obliges a user of the PFS scheme to use the provided identifiers
for cloud storage. The formal security definition of cloud storage is outside
the scope of this thesis. In the next section, we define an alternative PFS
syntax, which does not use file identifiers.
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3.2 PFS without file identifiers (PFS+)

As stated previously, requiring the file identifiers output by the encryption
operation to be random is a little restrictive, and generating file identifiers
in the first place is not within the scope of the scheme.

In the following updated definition, file identifiers are therefore removed.
Additionally, the confidentiality notion is relaxed to simulatable indistin-
guishability instead of indistinguishability from random bits. Simulatable
indistinguishability is modelled with a simulator, which is allowed to keep
state, but is only given a minimum of information (less than the adversary)
to simulate output that seems real. To allow the scheme more flexibility
with the secret key, the key can be updated during the encryption process
to maintain state. For ease of reference, we refer to this updated PFS scheme
as PFS+.

Definition 3.4 (PFS+ scheme). A protected file storage scheme PFS+ = (Setup,
EncFile,DecFile,ShredFile,RotKey) is a 5-tuple of algorithms with three associated
sets; the secret key space SK, the file space F , and the header space H. Associated
with the PFS+ scheme is a ciphertext-length function cl : N→N.

• Via sk ←$ Setup(), the probabilistic setup algorithm Setup, taking no input,
produces a secret key sk ∈ SK.

• Via (sk ′, h, C)/⊥ ←$ EncFile(sk, F), the randomized file encryption algo-
rithm EncFile on input the secret key sk ∈ SK and a plaintext file F ∈ F
produces a potentially updated secret key sk ′, a header h ∈ H and a ciphertext
C ∈ {0, 1}cl(|F|) or, to indicate failure, ⊥.

• Via F/⊥ ← DecFile(sk, h, C), the deterministic file decryption algorithm
DecFile on input the key sk ∈ SK, a file header h ∈ H, and a ciphertext
C ∈ {0, 1}∗ returns a file plaintext F ∈ F or, to indicate failure, ⊥.

• Via sk ′ ← ShredFile(sk, h), the deterministic shredding algorithm ShredFile
on input the secret key sk ∈ SK and a header h ∈ H returns the updated
secret key sk ′ ∈ SK.

• Via (sk ′, (h′1, . . . , h′ l))/(sk ′,⊥) ←$ RotKey(sk, (h1, . . . , hl)), the random-
ized key-rotation algorithm RotKey on input the secret key sk ∈ SK and a
list of headers (h1, . . . , hl) ∈ H∗ returns the potentially updated secret key
sk ′ ∈ SK and a list of updated headers (h′1, . . . , h′ l) ∈ H∗ or, to indicate
failure, ⊥.

For correctness of a PFS+ scheme, we require:

• Encrypting a new file leaves previously decryptable ciphertext de-
cryptable (the update of the secret key does not impact old cipher-
texts).
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• A file can always be decrypted after encryption, provided that the
secret key sk ′ used to decrypt the ciphertext has not experienced a
shred operation on the associated header of the file.

• The key rotation algorithm, RotKey, leaves all previously decryptable
files decryptable (provided that the corresponding headers are passed
as arguments).

Formally, we say that for all files F ∈ F , all headers (h, h1, . . . , hm, hm+1,
. . . , hn) ∈ Hn, ∀i ∈ {1 . . . , n} : h ̸= hi, and secret key sk ←$ Setup(), if
(sk ′, h, C)←$ EncFile(sk\{h1,...,hm}, F), then

DecFile(sk ′\{hm+1,...,hn}, h, C) = F.

We use the shorthand sk\{h1,...,hn} to denote a series of ShredFile operations
on sk: sk\{h1,...,hn} = ShredFile(ShredFile(. . . ShredFile(sk, h1) . . . ), hn).

Like in PFS, omitting headers when calling RotKey deletes the associated
files. However, the intended way to delete a file is ShredFile.

Confidentiality

The security notion for confidentiality is a combination of forward secu-
rity and indistinguishability from simulation, which we call forward indistin-
guishability from simulation under real and chosen-plaintext attack (finds-rcpa). It
is essentially the security notion of the original PFS definition, with indis-
tinguishability from random bits replaced by indistinguishability from sim-
ulation. This change was initially made to allow more flexibility with file
identifiers. With the removal of file identifiers from the syntax, the change
however remains an improvement, as headers may wish to encode some in-
formation about system state (and must be able to uniquely identify a file),
making them nonrandom. For example, in a construction using PKW (as
previously presented), a value may be prepended to the header, to encode
the PKW tag used to wrap the DEK. A construction may want to use an
increasing counter to generate this value; with simulatable indistinguisha-
bility, this is allowed (because such headers are simulatable).

In the finds-rcpa game, the adversary is challenged to distinguish between
real and simulated outputs of a real or simulated encryption oracle RoS-Enc.
Part of this output is the header, which is also simulated, thereby encoding
a strong form of privacy (the adversary should gain no information from
calling the challenge oracle, since it can simulate the output itself). The
adversary has access to the Shred oracle and forward security is modelled
with the Corr oracle, returning the secret key if all challenged files have
been shredded. After corruption, challenge queries cannot be made until the
RotKey oracle has been called, which captures a form of post-compromise
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security [16, 37]. The adversary also has access to a real encryption or-
acle, Enc, capturing the leakage of encrypted files still in the system af-
ter a compromise. The simulation of headers and ciphertexts is produced
by a simulator S. It has a setup algorithm, S.Setup(), which returns some
state st, and an encryption simulation algorithm, S.SimEncFile(st, l), taking
as input the state st and a ciphertext length l to simulate (header lengths
are assumed to be independent of ciphertext length). The SimEncFile algo-
rithm produces a tuple consisting of a potentially updated state, a header,
and a ciphertext (st, h, C). A third simulation algorithm, for key-rotation, is
S.SimRotKey(st, n), taking as input the state st and the number of headers n,
produces a potentially updated state and the specified number of headers.
The simulator produces “realistic-looking” output (compared to the PFS+

algorithms), but can only keep some state that is independent of any secret
information.

We provide the finds-rcpa game in Figure 3.12.

Definition 3.5 (PFS+ confidentiality). Let PFS+ be a protected file storage scheme.
We define the advantage of an adversary A against the forward indistinguishability
finds-rcpa of PFS+ as

Advfinds-rcpa
PFS+,S (A) = 2

∣∣∣∣Pr[Gfinds-rcpa
PFS+,S (A)⇒ true]− 1

2

∣∣∣∣ .

Integrity

The ciphertext integrity (int-ctxt) for the ciphertexts and their associated meta-
data (headers) is modelled as a game with an adversary given access to an
encryption oracle (Enc) and a shredding (Shred) oracle and a decryption
oracle (Dec). The adversary’s goal is to have a ciphertext and header pair
that was not produced by the encryption oracle decrypt correctly.

Definition 3.6 (PFS+ integrity). Let PFS+ be a protected file storage scheme. We
define the advantage of an adversary A against the int-ctxt security of PFS+ as

Advint-ctxt
PFS+ (A) = Pr[Gint-ctxt

PFS+
(A)⇒ true].

The PFS+ int-ctxt security game is presented in Figure 3.13.

3.2.1 PFS+ from PKW and AEAD

We present a construction of PFS+ from PKW and AEAD, a modified version
of the construction of PFS (Figure 3.3) to follow the updated syntax. We will
refer to this construction by the name ctrPFS (Figure 3.14).

In essence, similar to the previous construction, the PKW scheme is used
to protect the data encryption keys (DEKs) which are used in the AEAD
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Game Gfinds-rcpa
PFS+,S (A):

1 b←$ {0, 1}; sk ←$ Setup()
2 LRoS ← (); LEnc ← ()
3 Sh ← ∅; corr← false
4 st←$ S.Setup()
5 b∗←$ARoS-Enc,Enc,Shred,Corr,RotKey()
6 Return b∗ = b

RoS-Enc(F):

7 If corr = true then return ⊥
8 (sk, h1, C1)←$ EncFile(sk, F)
9 If (sk, h1, C1) = ⊥:

10 Return ⊥
11 LRoS += h1
12 (st, h0, C0)←$ S.SimEncFile(st, |C1|)
13 Sh

∪← {hb}
14 Return (hb, Cb)

Enc(F):

15 (sk, h, C)←$ EncFile(sk, F)
16 (st, , )←$ S.SimEncFile(st, |C|)
17 LEnc += h
18 Return (h, C)

Shred(h):

19 sk ← ShredFile(sk, h)
20 LRoS −= h
21 LEnc −= h
22 Sh ← Sh \ {h}

RotKey():

23 L← LRoS||LEnc
24 (sk, R1||LEnc)←$ RotKey(sk, L)
25 If R1||LEnc = ⊥:
26 Return ⊥
27 (st, R0||Q)←$ S.SimRotKey(st, |L|)
28 corr← false
29 Return Rb||LEnc

Corr():

30 If Sh ̸= ∅:
31 Return ⊥
32 corr← true
33 Return sk

Figure 3.12: Confidentiality and forward security (finds-rcpa) game for protected file storage
scheme PFS+. Lists LRoS and LEnc keep track of headers currently in the system to facilitate
key rotation. We write M −= h to denote removing a header h from a list M, if present.

scheme to encrypt the files. A counter is used for PKW tags instead of
randomly chosen tags. This means that when the PKW tag space capacity is
reached (the tag counter reaches value 2t − 1), no more files can be added.

3.2.2 Implementation

Like the implementation of the original PFS scheme, ctrPFS is implemented
using the PKW library [26], as before, alongside cryptographic primitives
from CryptoPP [28]. While for the previous construction (Figure 3.3), the
(PKW) tag space for random file identifiers was selected to be {0, 1}256 to
support 2128 files, with the removal of file identifiers, the choice of tag
space is made for {0, 1}128. The first PKW tag that is assigned is the all-zero
bitstring 0128, the second is 0127||1, etc. This supports a comparable number
of files, since the tag space for random tags must be large enough to account
for collisions (which by the birthday bound become likely after ≈

√
2256
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Game Gint-ctxt
PFS+

(A):

1 win← false; sk ←$ Setup()
2 S ← ∅
3 AEnc,Dec,Shred,RotKey()
4 Return win

Enc(F):

5 (sk, h, C)←$ EncFile(sk, F)

6 S ∪← {h, C}
7 Return (h, C)

Shred(h):

8 sk ← ShredFile(sk, h)
9 S ← S \ {(h, ∗)}

Dec(h, C):

10 F ← DecFile(sk, h, C)
11 If (h, C) /∈ S and F ̸= ⊥ :
12 win← true
13 Return F

RotKey((h1, . . . , hl)):

14 L← (h1, . . . , hl)
15 (sk, (h′1, . . . , h′l))←$ RotKey(sk, L)
16 If (h′1, . . . , h′l) = ⊥
17 Return ⊥
18 Snew ← ∅
19 For (h, C) ∈ S do:
20 If ∃i ∈ {1, . . . , l}, s.t. h = hi

21 Snew
∪← {(h′i, C)}

22 S ← Snew
23 Return (h′1, . . . , h′l)

Figure 3.13: Ciphertext integrity (int-ctxt) game for protected file storage scheme PFS+.

tags are sampled). The PKW tags (assigned in increasing order) are used as
names to store the header and ciphertext on GCS as before.

3.2.3 Evaluation

For the evaluation of the updated PFS scheme, we focus solely on the GitHub
histories and the resulting key sizes and execution times for the ctrPFS con-
struction. As a first comparison, Figure 3.15 shows a reduction of the key
size by three orders of magnitude and much more consistent shredding
times compared to Figure 3.11. The more consistent shredding times are
likely due to the smaller key size.

Apart from the first shred operation, most shred operations take less than
1 millisecond to complete. The first operation takes longer (about 1.6 mil-
liseconds), the reason being that the very first puncture on the PKW key
adds 127 new nodes to the key (the co-path from the root node to the first
punctured node). Subsequent punctures will add at most log2(7000) < 13
(the React dataset stores about 7000 files overall) new nodes per puncture to
the key.

An interesting detail is that the key size can decrease, especially if many files
are deleted at once. This usually happens when directories are deleted, and
it is probably because the files inside the directories were added sequentially,
i.e. they have contiguous PKW tags. When they are all deleted, a whole
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Setup() :

1 T[.]← ⊥
2 skPKW ←$ PKW.KeyGen()
3 sk ← (skPKW, 0,T)
4 Return sk

DecFile(sk, h, N ||C):

5 (skPKW, ,T)← sk
6 id ← T[h]
7 If id = ⊥ then return ⊥
8 K ← PKW.Unwrap(skPKW, id, ϵ, h)
9 If K = ⊥ then return ⊥

10 F ← AEAD.Dec(K , N , ϵ, C)
11 Return F

ShredFile(sk, h):

12 (skPKW, ctr,T)← sk
13 id ← T[h]
14 If id = ⊥ then return sk
15 sk ′PKW ← PKW.Punc(skPKW, id)
16 Return (sk ′PKW, ctr,T)

EncFile(sk, F):

17 (skPKW, ctr,T)← sk
18 K ←$ {0, 1}k ;
19 h← PKW.Wrap(sk, [ctr]t, ϵ, K)
20 If h = ⊥ :
21 Return ⊥
22 T[h]← [ctr]t
23 N ←$ {0, 1}n

24 C ← AEAD.Enc(K , N , ϵ, F)
25 sk ← (skPKW, ctr+ 1, T)
26 Return (sk, h, N ||C)

RotKey(skold, (h1, . . . , hl)):

27 (skPKW, ctr,T)← skold
28 sk ′PKW ←$ PKW.KeyGen()
29 For i← 0 to l − 1 do:
30 idi ← T[hi]
31 If idi = ⊥ then return (skold,⊥)
32 Ki ← PKW.Unwrap(skPKW, idi, ϵ, hi)
33 h′i ← PKW.Wrap(sk ′PKW, [i]t, ϵ, Ki)
34 If h′i = ⊥ then return (skold,⊥)
35 T[hi]← ⊥; T[h′i]← i
36 sknew ← (sk ′PKW, l,T)
37 Return (sknew, (h′1, . . . , h′l))

Figure 3.14: PFS+ construction from composition of PKW scheme PKW and AEAD scheme

AEAD, using counters. The key-wrap space of the PKW scheme is {0, 1}k, the tag space is

{0, 1}t. The AEAD scheme has nonce space {0, 1}n and key space {0, 1}k. The instantiated

PFS+ scheme therefore has header space H = {0, 1}PKW.cl(k) and an associated ciphertext
length of PFS.cl(|F|) = AEAD.cl(|F|) + n.

subtree of GGM nodes is removed, leading to the reduced key size. For the
larger dataset FreeCodeCamp (Figure 3.16), the key size remains reasonably
small, and the shred execution times remain consistent throughout the test.
Note also the previously described behaviour for the first shred operation,
which takes longer than later shreds.

Therefore, an intriguing amendment to the scheme is to try to encode the
file and directory hierarchy into the scheme, so that the effect of directory
deletions can be better utilized.
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Figure 3.15: React GitHub history run on ctrPFS with a PKW tag space of {0, 1}128.

Figure 3.16: FreeCodeCamp GitHub history on ctrPFS with a PKW tag space of {0, 1}128.
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Chapter 4

PFS with file hierarchy

The PFS scheme presented in Chapter 3 has a shortcoming: it is unaware
of the hierarchies in which the files are stored locally. Typically, files are
stored in some form of hierarchy, consisting of directories, which in turn
contain other directories or files. When a directory is deleted, all the objects
it contains (transitively, i.e. all the objects that lie below it hierarchically) are
also deleted. To obtain an equivalent functionality in PFS, the shredding
operation needs to be adapted, to allow the shredding of entire directories.

We will explore how this change could be achieved by adjusting the prim-
itives used to instantiate PFS: PPRF and PKW. Forward security in this ap-
proach is provided by the key of the adapted PKW scheme. An alternative
construction, using PKW, is also presented. Here, each directory has a dis-
tinct PKW key, which is used to wrap keys for files stored within that di-
rectory. We hypothesize that the first construction will be more space- and
time-efficient, since only a single key must be stored.

We will first define the syntax and security notions for PFS with this ex-
tended functionality. Then, we will present modifications to the primitives,
PPRF and PKW, and the constructions. Finally, we will evaluate the perfor-
mance of the two constructions.

We provide an adapted syntax for this hierarchical PFS (HPFS).

4.1 Hierarchical protected file storage (HPFS)

While the definition of PFS is not aware of the local storage location of files,
in practical scenarios, files are often organized in a hierarchical structure.
To harness the benefits of this hierarchy, it is possible to extend the PFS
definition by introducing a path space. This path space can be visualized as
a tree, with each path corresponding to a sequence of connected nodes and
having a distinct parent path. A node has a name and is uniquely identified
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by the concatenation of the names of the nodes leading to it, from the root.
This defines the path name. By incorporating the concept of a path space
into the PFS scheme, the shredding operation can take advantage of the
hierarchical structure, facilitating the shredding of entire subtrees.

We begin by providing a definition of a path space as is used in this work.

Definition 4.1 (Path space). A path space P is a rooted tree in which vertices
(or nodes) have names and the edges connect a parent to their child nodes. The
special root node has the name ϵ. A path is a connected sequence of these nodes,
the first of which is the root node, with the root path being the sequence containing
only the root node. Associated to the path space is the function parent : P → P ,
which returns the parent of a path. The parent is defined to be the same sequence of
nodes, without the last node, or, for the root path, the root path itself. The relation
⪯ denotes whether a path p1 is a prefix (“transitive parent”) to another path p2, or
p1 = p2.

Using the definition of a path space, we present the syntax of hierarchical
protected file storage (HPFS).

Definition 4.2 (Hierarchical PFS scheme). A hierarchical protected file storage
scheme HPFS = (Setup,EncFile,DecFile,Shred,RotKey) is a 5-tuple of algorithms
with four associated sets; the secret key space SK, the file space F , the path space P
(as defined in Definition 4.1), and the header space H. Associated to HPFS is also a
ciphertext-length function, cl : N→N.

• Via sk ←$ Setup(), the probabilistic setup algorithm Setup, taking no input,
produces a secret key sk ∈ SK.

• Via (sk ′, h, C)/⊥ ←$ EncFile(sk, F, P), the randomized file encryption al-
gorithm EncFile on input the secret key sk ∈ SK and a plaintext file F ∈ F
and the path P ∈ P produces a potentially updated secret key sk ′ ∈ SK, a
header h ∈ H, and a ciphertext C ∈ {0, 1}cl(|F|), or, to indicate failure, ⊥.

• Via F/⊥ ← DecFile(sk, h, C), the deterministic file decryption algorithm
DecFile on input the key sk ∈ SK, a file header h ∈ H, and a ciphertext
C ∈ {0, 1}∗ returns a file plaintext F ∈ F or, to indicate failure, ⊥.

• Via sk ′ ← Shred(sk, P), the deterministic file shredding algorithm Shred on
input the secret key sk ∈ SK and a path P ∈ P returns the updated secret
key sk ′ ∈ SK.

• Via (sk ′, (h′1, . . . , h′j))/(sk
′,⊥) ← RotKey(sk, ((h1, . . . , hj))), the random-

ized key-rotation algorithm RotKey on input the secret key sk ∈ SK and a
list of headers (h1, . . . , hj) ∈ H∗ returns the potentially updated secret key
sk ′ ∈ SK and a sequence of updated headers (h′1, . . . , h′j) ∈ H∗ or, to indicate
failure, ⊥.
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Correctness of the HPFS scheme can be described as follows:

• We require that encrypting a file leaves previously encrypted files de-
cryptable.

• Key rotation leaves all previously decryptable files decryptable, pro-
vided that the corresponding headers are passed to the key rotation
algorithm.

• We require that a file can always be decrypted after encryption, pro-
vided that the secret key sk used to encrypt the file has not undergone
a shred operation on a prefix of the file path.

Formally, we say that for all files F ∈ F , all paths P ∈ P , (P1, . . . , Pm,
Pm+1, . . . , Pn) ∈ Pn s.t. ∀i ∈ {1, . . . , n} : Pi ̸⪯ P and secret key sk ←$

Setup(), if (sk ′, h, C)←$ EncFile(sk\{P1,...,Pm}, F, P), then

DecFile(sk ′\{Pm+1,...,Pn}, h, C) = F.

We use the shorthand sk\{P1,...,Pn} to denote a series of Shred operations
on sk: sk\{P1,...,Pn} = Shred(Shred(. . . Shred(sk, P1) . . . ), Pn).

The most impactful change in the syntax is the addition of paths. They pro-
vide information on the location of the file within the file storage system and
allow hierarchical shredding: calling Shred(sk, P) shreds everything stored
in the scheme located at P and paths that “lie under” P (other paths P′, s.t.
P ⪯ P′). Because not all paths can be known to the scheme in advance (P
is possibly infinite) and the secret key is somewhat dependent on the paths
of the encrypted files, the secret key may change when EncFile is called. In
the key, information about previously seen paths has to be kept. To enable
hierarchical shredding, the scheme needs to map the paths passed to it dur-
ing encryption into the keyspace. Letting the EncFile algorithm update the
secret key provides the necessary flexibility for this.

Files are referred to by their path (which is user-specified). This differs from
PFS, where files are referred to with the file identifier (or header, with the
updated syntax) assigned by the scheme. The paths, therefore, act as user-
chosen file identifiers of which the scheme keeps track.

We provide the security game for the finds-rcpa security notion that we have
already presented for PFS+ (Figure 3.12) in Figure 4.1. It follows the new
syntax (addition of paths) and has some changes related to the use of paths:
the checks for trivial attacks are updated to capture the hierarchical shred
operation, and the lists for key rotation are updated to include the path.

Definition 4.3 (HPFS confidentiality). Let HPFS be a hierarchical protected file
storage scheme. We define the advantage of an adversary A against the forward
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4. PFS with file hierarchy

indistinguishability finds-rcpa of HPFS as

Advfinds-rcpa
HPFS,S (A) = 2

∣∣∣∣Pr[Gfinds-rcpa
HPFS,S (A)⇒ true]− 1

2

∣∣∣∣ .

Game Gfinds-rcpa
HPFS,S (A):

1 b←$ {0, 1}; sk ←$ Setup()
2 LRoS ← (); LEnc ← ()
3 C ← ∅; P ← ∅; corr← false
4 st←$ S.Setup()
5 b∗←$ARoS−Enc,Enc,Shred,Corr,RotKey()
6 Return b∗ = b

RoS−Enc(F, P):

7 If corr = true then return ⊥
8 (sk, h1, C1)←$ EncFile(sk, F, P )
9 If (sk, h1, C1) = ⊥:

10 Return ⊥
11 (st, h0, C0)←$ S.SimEncFile(st, |C1|)
12 LRoS += (P, h1)

13 C ∪← {P}
14 Return (hb, Cb)

Enc(F, P):

15 (sk, h, C)←$ EncFile(sk, F, P )
16 (st, , )←$ S.SimEncFile(st, |C |)
17 LEnc += (P, h)
18 Return (h, C)

Shred(P):

19 sk ← Shred(sk, P)
20 LRoS −= (P∗, ∗); LEnc −= (P∗, ∗)
21 P ∪← {P}

RotKey():

22 PEnc, HEnc ← unzip(LEnc)
23 PRoS, HRoS ← unzip(LRoS)
24 L← HRoS||HEnc
25 (sk, R1||HEnc) ←$ RotKey(sk, L)
26 If R1|| HEnc = ⊥ then return ⊥
27 (st, R0||Q)←$ S.SimRotKey(st, |L|)
28 LEnc ← zip(PEnc, HEnc)
29 LRoS ← zip(PRoS, R1)
30 corr← false
31 Return Rb||HEnc

Corr():

32 If ∃P ∈ C s.t. ∀P′ ∈ P , P′ ̸⪯ P:
33 Return ⊥ // all challenged paths must be

punctured
34 corr← true
35 Return sk

Figure 4.1: Security games for confidentiality and forward-security of HPFS. The syntax R −=
(P∗, ∗) denotes that all pairs in R in which the first entry is P or has P as a prefix are removed.
The functions zip() and unzip(), combine, or split up lists, respectively. unzip(L) takes a list
consisting of pairs and returns two lists, the first containing all the right entries of the pairs in
the list L, the second all the left entries. The function zip() does the opposite. Differences to
the PFS+ game are highlighted.

The ciphertext integrity game remains largely the same as before (for PFS+),
and the differences are highlighted in the game definition (Figure 4.2).

Definition 4.4 (HPFS integrity). Let HPFS be a hierarchical protected file storage
scheme. We define the advantage of an adversary A against the int-ctxt security of
HPFS as

Advint−ctxt
HPFS (A) = Pr[Gint−ctxt

HPFS (A)⇒ true].
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Game Gint-ctxt
HPFS (A):

1 win← false; sk ←$ Setup()
2 S ← ∅
3 AEnc,Dec,Shred,RotKey()
4 Return win

Enc(F, P):

5 (sk, h, C)←$ EncFile(sk, F, P)

6 S ∪← {P, h, C}
7 Return (h, C)

Shred(P):

8 sk ← Shred(sk, P)
9 S ← {(P′, h, C) ∈ S|P ̸⪯ P′}

Dec(h, C):

10 F ← DecFile(sk, h, C)
11 If (∗, h, C) /∈ S and F ̸= ⊥ :
12 win← true
13 Return F

RotKey((h1, . . . , hl)):

14 L← (h1 . . . , hl)
15 (sk, (h′1, . . . , h′l))←$ RotKey(sk, L)
16 If (h′1, . . . , h′l) = ⊥
17 Return ⊥
18 Snew ← ∅
19 For (P, h, C) ∈ S do:
20 If ∃i ∈ {1, . . . , l}, s.t. h = hi :
21 Snew

∪← {(P, h′i, C)}
22 S ← Snew
23 Return (h′1, . . . , h′l)

Figure 4.2: Ciphertext integrity (int-ctxt) game for hierarchical protected file storage scheme
HPFS. The main differences to the int-ctxt game for PFS+ are highlighted.

4.2 Constructing HPFS using hierarchically puncturable
pseudo-random function (hPPRF)

In this section, we explore a modification of the PPRF scheme to support
puncturing on elements that are related to instantiate HPFS. The modi-
fied PPRF scheme (hierarchically puncturable pseudo-random function (hP-
PRF)) can then be used to build a hierarchically puncturable key-wrapping
(hPKW) scheme, which in turn permits the construction of HPFS.

We use a ⪯ b to denote the relation of a to b and impose the relation on the
domain X of the PPRF. In essence, for a, b ∈ X , with a ⪯ b, a puncture of a
should also puncture b.

4.2.1 Hierarchically puncturable PRF (hPPRF)

Building upon the definition of a PPRF, we present the definition of hi-
erarchically puncturable pseudo-random functions (hPPRFs). It is almost
identical to the definition of PPRF, with the puncturing operation addition-
ally allowing one to perform “set”-punctures: elements that are organized
in a hierarchical set can be punctured by only puncturing on an element
representing that set; an element of the domain which is related to the other
elements.
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4. PFS with file hierarchy

This also naturally introduces the idea that evaluations of such “represen-
tative” elements of the domain should allow the derivation of the “repre-
sented” values. This is reminiscent of delegatable PRFs [24], where a Delegate
functionality allows the sharing (delegating) of parts of the secret key. For
now, however, we focus only on making the punctures hierarchical and leave
the syntax the same as for PPRF. The result of evaluating a with a ⪯ b ac-
cordingly does not “leak” any information about the result of evaluating
b.

Definition 4.5 (hPPRF). A hierarchically puncturable pseudo-random function
hPPRF = (KeyGen,Eval,Punc) is a 3-tuple of algorithms with three associated
sets; the secret key space SK, the domain X ⊆ {0, 1}∗ s.t. X is length-closed1, and
the range Y .

• Via sk ←$ KeyGen(), the probabilistic key generation algorithm KeyGen,
taking no input, outputs the secret key sk ∈ SK.

• Via y/⊥ ← Eval(sk, x), the function evaluation algorithm Eval, taking as
input the secret key sk ∈ SK and an element x ∈ X , outputs y ∈ Y or, to
indicate failure, ⊥.

• Via sk ′ ← Punc(sk, x), the deterministic puncturing algorithm Punc taking
as input the secret key sk ∈ SK and an element x ∈ X , outputs an updated
secret key sk ′ ∈ SK.

For the correctness of a hierarchically puncturable PRF, we require that for all
sk ∈ SK and all x, y ∈ X :

(1) Pr[Eval(sk0, x) ̸= ⊥|sk0 ←$ KeyGen()] = 1.

(2) If sk ′ ← Punc(sk, x) and x ̸⪯ y , then Eval(sk ′, y) = Eval(sk, y).

(3) If sk ′ ← Punc(sk, x) then for all z ∈ X s.t. x ⪯ z, Eval(sk ′, z) = ⊥.

Requirement (1) ensures that for any freshly generated key sk0, and any
element x ∈ X , Eval(sk0, x) ̸= ⊥. Requirement (2) states that puncturing
any secret key sk on x will affect only x and other elements to which x
is related. Requirement (3) stipulates that the evaluation of a punctured
element is always ⊥. The puncture of an element can be explicit (i.e. Punc
called on the element itself) or implicit (i.e. the element has a punctured
element that is related to it).

We present the hPPRF security games, adapted from the PPRF security
games shown in [16] (Figure 2.3). The security notion they capture is de-
scribed as forward pseudorandomness, which is a combination of pseudo-
randomness and forward security. The changes introduced to enable hierar-

1∀l ∈N, either {0, 1}l ⊆ X or {0, 1}l ∩ X = ∅
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4.2. Constructing HPFS using hPPRF

chical puncturing do not affect the games much, and we present two secu-
rity notions: real-or-random (fpr-ro$), and the stronger real-and-real-or-random
(fpr-rro$) which also allows real evaluations. These are almost identical
to the PPRF security notions, with only the sets preventing trivial attacks
changing slightly (Figure 4.3).

The advantage terms stay the same as for PPRF (see Chapter 2.2.3) and are
not repeated here.

Game Gfpr−ro$
hPPRF (A), Gfpr−rro$

hPPRF (A) :

1 b←$ {0, 1}; u← 0; T[·, ·]← ⊥

2 b∗←$ANew,Ro$−Eval, Eval, Corr, Punc

()
3 Return b∗ = b

New()

4 u++; sku ←$ KeyGen()
5 Cu, Eu,Pu ← ∅

Eval(i, x):

6 If x ∈ Ci then return ⊥
7 y ← Eval(sk i, x)
8 Ei

∪← {x}
9 Return y

Ro$−Eval(i, x):

10 If x ∈ Ei or corri then return ⊥
11 y1 ← Eval(sk i, x)
12 If y1 = ⊥ then return ⊥
13 If T[i, x] = ⊥ :
14 T[i, x]←$ Y
15 y0 ← T[i, x]
16 Ci

∪← {x}
17 Return yb

Punc(i, x):

18 sk i ← Punc(sk i, x)
19 Pi

∪← {x}

Corr(i):

20 If ∃x ∈ Ci ∧ ¬(∃xp ∈ Pi s.t. xp ⪯ x):
21 Return ⊥
22 corri ← true
23 Return sk i

Figure 4.3: Game definitions for the forward pseudo-randomness security notions fpr-ro$ (real-

or-random) and fpr-rro$ (real-and-real-or-random, with additional access to a real Eval oracle).

Note that the security game remains almost the same as for PPRF — the checks on the sets
used to prevent trivial attacks are highlighted to show the difference to the PPRF game.

4.2.2 An instantiation of hPPRF

As mentioned by [20, 19] and others, GGM trees [23] can be used to in-
stantiate a PPRF. This approach can be modified to allow for punctures on
“inner” tree nodes, removing whole subtrees at a time. The relation ⪯, in
this case, is the prefix relation of bitstrings: a ⪯ b means that a is a prefix to b
(note that a ⪯ a). For example, 100 ⪯ 10010, and 010 ̸⪯ 1100. An interesting
detail is that since elements of any length can be evaluated or punctured,
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Game Gfind$−cpa
hPKW (A), Gfind$-rcpa

hPKW (A) :

1 b←$ {0, 1}; u← 0

2 b∗←$ARo$−Wrap, Wrap, Punc,Corr,New

()
3 Return b∗ = b

New()

4 u++
5 sku ←$ KeyGen()
6 SPT,u,S$T,u,ST,u ← ∅
7 corru ← false

Wrap(i, T, H, K):

8 If T ∈ ST,i return ⊥
9 C ← Wrap(sk i, T, H, K)

10 ST,i
∪← {T}

11 Return y

Ro$-Wrap(i, T, H, K):

12 If T ∈ ST,i ∨ corri = true:
13 Return ⊥
14 C1 ← Wrap(sk i, T, H, K)
15 If C1 = ⊥:
16 Return ⊥
17 C0 ←$ {0, 1}cl(|K|)

18 S$T,i
∪← {T}; ST,i

∪← {T}
19 Return Cb

Corr(i):

20 If ∃T ∈ S$T,i ∧ ¬(∃Tp ∈ SPT,i s.t. Tp⪯T):
21 Return ⊥
22 corri ← true
23 Return sk i

Punc(T):

24 sk i ← Punc(sk i, T)
25 SPT,i

∪← {T}

Figure 4.4: Confidentiality and forward security (find$-cpa, find$-rcpa ) games for a hierarchi-

cally puncturable key-wrapping scheme hPKW. The difference to the PKW games is highlighted.

the GGM tree does not require a fixed (maximum) depth, leading to a more
versatile and dynamic primitive. Because Eval now allows the evaluation
of elements that were previously considered labels of “inner” nodes, an
additional derivation step is necessary before the value can be returned to
prevent trivial attacks. The construction would then use a length-tripling
PRG G(s) = G1(s)||G2(s)||G3(s), the last third of which is only used as the
final stage in the derivation:

F(sk, x) = G3(Gxl (Gxl−1(. . .Gx2(Gx1(sk))))).

In practice, a key derivation step with an appropriate context string can be
used for G3.

4.2.3 Hierarchically puncturable key-wrapping (hPKW)

Based on the definition of PKW, we supply a definition for hierarchically
puncturable key-wrapping (hPKW):
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Game Gint-ctxt
hPKW (A):

1 win← false; u← 0
2 ANew,Wrap,Unwrap,Punc()
3 Return win

New():

4 u++; sku ←$ KeyGen()
5 STHC,u,ST,u,SPT,u ← ∅

Punc(T):

6 sk i ← Punc(sk i, T)
7 SPT,i

∪← {T}

Wrap(i, T, H, K):

8 If T ∈ ST,i then return ⊥
9 C ← Wrap(sk i, T, H, K)

10 If C = ⊥ then return ⊥
11 STHC,i

∪← {(T, H, C)}; ST,i
∪← {T}

12 Return C

Unwrap(i, T, H, C):

13 K ← Unwrap(sk i, T, H, C)
14 If K ̸= ⊥ and ((T, H, C) /∈ STHC,i or ∃T′ ∈

SPT,i s.t. T′ ⪯ T):
15 win← true
16 Return K

Figure 4.5: The ciphertext integrity game for hPKW. Differences to the game for PKW are
highlighted.

Definition 4.6 (hPKW scheme). A hierarchically puncturable key-wrapping
scheme consists of four algorithms hPKW = (KeyGen,Wrap,Unwrap,Punc) with
four associated sets: the secret-key space SK, the tag space T with relation ⪯, the
header space H and the wrap-key space K.

• Via sk ←$ KeyGen(), the probabilistic key generation algorithm KeyGen,
taking no input, outputs a secret key sk ∈ SK.

• Via C/⊥ ← Wrap(sk, T, H, K), the deterministic wrapping algorithm Wrap
on input a secret key sk ∈ SK, a tag T ∈ T , a header H ∈ H and a key
K ∈ K outputs a ciphertext C ∈ {0, 1}cl(|K|) or, to indicate failure, ⊥.

• Via K/⊥ ← Unwrap(sk, T, H, C), the deterministic unwrapping algorithm
Unwrap on input a secret key sk ∈ SK, a tag T ∈ T , a header H ∈ H and a
ciphertext C ∈ {0, 1}∗ returns a key K ∈ K or, to indicate failure, ⊥.

• Via sk ′ ← Punc(sk, T), the deterministic puncturing algorithm Punc on
input of a secret key sk ∈ SK and a tag T ∈ T returns a potentially updated
secret key sk ′ ∈ SK.

For correctness of an hPKW, we require that intuitively, a wrapped key can
always be unwrapped, unless the tag under which it was wrapped, or a tag
which is a prefix to the tag under which it was wrapped has been punctured.
Formally, we require that for all T ∈ T , H ∈ H and all tuples T̄1, T̄2 ∈ T ∗
where T′ ̸⪯ T for any T′ ∈ T̄1 ∪ T̄2,

Pr
[
Unwrap(sk\T̄1

, T, H,Wrap(sk\T̄2
, T, H, K)) = K | sk ←$ KeyGen()

]
= 1.
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We present the adapted security games in Figure 4.4 (forward indistin-
guishability) and in Figure 4.5 (ciphertext integrity). Like hPPRF, the ad-
vantage terms stay the same for hPKW as for PKW (Chapter 2.2.4), so they
will not be repeated here.

4.2.4 hPKW from AEAD and hPPRF

We can construct an hPKW in the same manner as the construction of PKW
from a PPRF and AEAD in [16], by replacing the PPRF with a hPPRF (see
Figure 4.6): the hPPRF enables the hierarchical punctures.

hPKW[hPPRF,AEAD] :

hPKW.KeyGen():

1 Return hPPRF.KeyGen()

hPKW.Wrap(sk p, T, H, K):

2 ska ← hPPRF.Eval(skp, T)
3 C ← AEAD.Enc(ska, N0, H, K)
4 Return C

hPKW.Unwrap(sk p, T, H, C):

5 ska ← hPPRF.Eval(skp, T)
6 K ← AEAD.Dec(ska, N0, H, C)
7 Return K

hPKW.Punc(sk p, T):

8 sk ′p ← hPPRF.Punc(skp, T)
9 Return sk ′p

Figure 4.6: Construction of hPKW from hPPRF and AEAD. The nonce N0 is a constant of
value 0.

4.2.5 HPFS construction

The hPKW that is defined above can be used to instantiate HPFS. To build
HPFS, the tag space with relation ⪯ is mapped to the path space of the
HPFS. In practice, the tag space of the hPKW could be bitstrings, with the
relation ⪯ being the prefix-relation: for files F1, F2 stored in the system us-
ing EncFile(sk, Fi, Pi) with the paths P1, P2 having a common parent path Pp
there is a PKW tag tPp that can be punctured, resulting in both files being
shredded. To correctly map paths to hPKW tags, a mapping is made, which
allows looking up the tags for previously seen paths.

The construction (see Figure 4.7), remains very similar to the PFS+ construc-
tion from PKW and AEAD (Figure 3.14), with hierarchical punctures relying
on the modified hPKW scheme. The mapping from paths to hPKW tags is
made dynamically and depends on what other files have been introduced to
the system. A set of associative maps record which tags have been assigned
to which paths, so that when a path is shredded, the correct hPKW tag can
be retrieved to be punctured.
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Setup() :

1 T [.]← ⊥
2 T [ϵ]← ϵ
3 C [.]← 0
4 H[.]← ⊥
5 skhPKW ←$ hPKW.KeyGen()
6 Return (skhPKW,T,C,H)

EncFile(sk, F, P):

7 K ←$ {0, 1}k ;
8 (skhPKW,T,C,H)← sk
9 (t,T,C)← getOrGenTag(P,T,C)

10 h← hPKW.Wrap(skhPKW, t, ϵ, K)
11 If h = ⊥ :
12 Return ⊥
13 H[h]← P
14 N ←$ {0, 1}n

15 C ← AEAD.Enc(K, N , ϵ, F)
16 sk ′ ← (skhPKW,T,C,H)
17 Return (sk ′, h f , N ||C)

getOrGenTag(P,T,C):

18 p0|| . . . ||pd ← P
19 For i← 0 . . . d :
20 Pi ← p0|| . . . ||pi
21 If T[Pi] = ⊥ :
22 t← T[Pi−1] //P−1 = ϵ
23 c← C[Pi−1]
24 T[Pi]← t||[c]lt //[c]lt makes

fixed-length encoding
25 C[Pi−1]← c + 1
26 t← T[P]
27 Return (t,T,C)

DecFile(sk, h, N ||C):

28 (skhPKW,T,C,H)← sk
29 P ← H[h]
30 t← T[P]
31 K ← hPKW.Unwrap(skhPKW, t, ϵ, h)
32 If K = ⊥ then return ⊥
33 F ← AEAD.Dec(K, N, ϵ, C)
34 Return F

Shred(sk, P):

35 (skhPKW,T,C,H)← sk
36 t← T[P]
37 If t ̸= ⊥ :
38 skhPKW ← PKW.Punc(skhPKW, t)
39 T[P∗]← ⊥
40 C[P∗]← 0
41 H[., P∗]← ⊥
42 Return (skhPKW,T,C,H)

RotKey(skold, (h1, . . . , hl)):

43 (skhPKW,T,C,H)← sk
44 sk ′hPKW ←$ hPKW.KeyGen()
45 T′ [.]← ⊥; T′ [ϵ]← ϵ
46 C′ [.]← 0; H′[.]← ⊥
47 For i← 0 to l do:
48 P ← H[hi]
49 t← T[P]
50 Ki ← PKW.Unwrap(skhPKW, t, ϵ, hi)
51 If Ki = ⊥ then return (sk,⊥)
52 (t′,T′,C′)← getOrGenTag(P,T′,C′)
53 h′i ← PKW.Wrap(sk ′hPKW, t′, ϵ, Ki)
54 If h′i = ⊥ then return (sk,⊥)
55 H′[h′i]← P
56 Return (sk ′hPKW,T′,C′,H′)

Figure 4.7: HPFS construction from composition of hPKW scheme hPKW and AEAD scheme
AEAD, using counters as tags (the map C tracks the current value of the counter for each path).
Integer counters are mapped to fixed-length bitstrings of length lt. The key-wrap space of the

hPKW scheme is {0, 1}k. The AEAD scheme has nonce space {0, 1}n and key space {0, 1}k. The

instantiated HPFS scheme therefore has header space H = {0, 1}PKW.cl(k) and an associated
ciphertext length of PFS.cl(|F|) = AEAD.cl(|F|) + n. T, C and H are associative maps which
map paths of files to their hPKW tags, directory paths to their counter value, and headers with
their path, respectively. The notation T[P∗] ← ⊥ means that entries in T of which the key is
prefixed by P are removed. H[., P∗] ← ⊥ denotes that entries of which the value is prefixed by
P are removed.
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Due to the complexity introduced by HPFS keeping internal state about
the path space, we explain the function of the construction in detail. The
internal state consists of three associative maps. The map T stores which
paths are associated to which tags. The map C is used to store the counters
for directory paths. In directories, files are assigned consecutive tags, like
in ctrPFS. The counters are used to assign these tags. The third associative
map, H, associates headers and paths (so that the path corresponding to a
header can be looked up).

The setup algorithm Setup initializes the associative maps. The counter map
C is initialized with all-zero values. The header map is initialized empty,
except for the root path, which is associated with an empty tag. The headers
map H is initialized empty. The algorithm also generates a fresh hPKW key.
The tuple (skhPKW,T,C,H) makes up the secret key.

We explain the algorithm getOrGenTag, which is responsible for generating
or retrieving the mapping of a path to an hPKW tag. On input the path
P, the tag lookup table T, and the counter table C, it splits the path into
the names of the path space nodes. For each path Pi (line 21) leading to P
(starting at the root), it checks if there is an entry in T for it. If not, the tag
t of the parent path and the counter value c of the parent path are retrieved
from T and C, respectively. To produce the tag for the path Pi, the counter
c is encoded into a fixed-length bitstring and appended to the tag of the
parent path. The tag is then stored in T under Pi. After completion of the
algorithm, the path P and all its ancestors have tags assigned to them stored
in T.

The encryption algorithm EncFile functions virtually the same as the algo-
rithm of the same name in PFS+, except for the tag, which is generated us-
ing the getOrGenTag algorithm explained above. A DEK K is generated and
wrapped under hPKW secret key, producing the header h, which is stored
with the path in the headers map H. The DEK is used to AEAD-encrypt the
file, and the secret key is updated with the modified maps.

For decryption, the path corresponding to the header must be retrieved from
H. It is then used to obtain the hPKW tag t, which in turn is used to unwrap
the header. The recovered DEK K can then decrypt the ciphertext, revealing
the file.

Shredding a path P is done by puncturing the hPKW key on the tag corre-
sponding to the given path. The tag is obtained from the tag map T. After
the puncture, the associative maps T, C, and H are updated by removing
any paths to which the path P is a prefix. These updates to the associative
maps are a clean-up operation and are not needed for security.

The key rotation algorithm RotKey generates a fresh hPKW key and initial-
izes a new set of associative maps (in the same way as in Setup). For all the
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Figure 4.8: Example of directory structure and associated PKW keys for the PKW-per-directory
approach.

given headers, it then retrieves the corresponding path and tag from the cur-
rent maps, and unwraps the header using the current hPKW key to reveal
the DEK. Then a new tag is generated (using the new associative maps), and
the DEK is wrapped using the fresh hPKW key and the new tag. The map
that stores the associations of headers and paths, H, is also updated.

Security of the construction As is in the PFS construction, forward security
of shredded files is provided by the forward security of hPKW, whereas ci-
phertext integrity and indistinguishability are provided by the AEAD scheme.

4.3 Constructing HPFS from PKW

As an alternative construction of HPFS, we provide an instantiation from a
PKW scheme and an AEAD scheme in Figure 4.9, which we call the PKW-
per-directory approach. The underlying idea is to dynamically create a new
PKW secret key for each new directory introduced to the system (see the
example in Figure 4.8). The PKW scheme PKW and AEAD scheme AEAD
used in the construction have the following parameters: The key-wrap space
of the PKW scheme is {0, 1}k, the tag space is {0, 1}t. The AEAD scheme has
nonce space {0, 1}n and key space {0, 1}k. The instantiated HPFS scheme
has header space H = {0, 1}PKW.cl(k) and an associated ciphertext length of
HPFS.cl(|F|) = AEAD.cl(|F|) + n. The construction maintains the associative
map T, to map file paths to PKW tags, and H, to map headers to the paths
for which they were created.

For key rotation in PFS, all headers must be supplied, or else the files asso-
ciated with the omitted headers would effectively be deleted.
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4. PFS with file hierarchy

Duplicate PKW tags

Since in all directories the PKW tags belong to the same space, there will be
duplicates at the HPFS level. The associative map T records a mapping from
paths (which uniquely identify a file) to the PKW tag used for wrapping.
Duplicate tags are not problematic for security, since each directory has a
distinct key.

4.3.1 Detailed explanation of the construction

The construction is provided in Figure 4.9. Here, we elaborate on the func-
tion of the construction in detail:

To start with, consider the Setup algorithm. It initializes the associative map
T, which maps local file paths to their PKW tag. The header map H (map-
ping headers to paths) is also initialized. Its purpose is to make it possible
to look up a path from a header, which is needed for key rotation. The setup
algorithm also sets up the secret key collection SK, which is also an associa-
tive map, associating (directory) paths to PKW keys, and initializes a PKW
key for the root path. The tuple (SK,T,H) makes up the secret key sk.

To encrypt a file, the secret key (PKW) of the directory containing the file is
retrieved. If none exists, a new one is created and stored in the PFS secret
key collection SK, alongside the directory tag counter ctr, initialized at 0.
The secret key is then used to wrap a newly generated data encryption key
(K f ), with the tag given by the tag counter value ctr (embedded in a bitstring
of length t), to produce the header h f . The data encryption key is used to
encrypt the file using the AEAD scheme.

The decryption of a file involves first obtaining the PKW tag of the file from
the map T and the secret directory key from the secret key collection SK.
The directory key is then used to unwrap the data encryption key, which is
finally used to decrypt the AEAD ciphertext.

Key rotation has to rotate each PKW secret key in SK. So, a new PKW secret
key is generated for each directory, and for all headers passed as arguments,
the corresponding PKW directory key is retrieved to unwrap the old header
and then rewrap it with the fresh directory key. The PKW tag may change
in the process: the current number of files in a directory may be smaller
than the directory counter value (because of previous shred operations).
Therefore, during key rotation, new tags are given, to use all possible non-
negative (consecutive) integers. In fact, the reason for the key rotation may
be that the tag counter has reached its maximum value. By rotating keys,
previously punctured tags can be reused, freeing up space in the “upper
end” of the PKW tag space.
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Setup():

1 T [.]← ⊥; H[.]← ⊥; SK [.]← ⊥
2 skϵ ←$ PKW.KeyGen()
3 SK [ϵ]← (skϵ, 0)
4 Return (SK,T,H)

EncFile(sk, F, P f ):

5 K f ←$ {0, 1}k; Pp ← parent(P f )

6 (SK,T,H)← sk
7 If SK[Pp] = ⊥ :
8 skdir ←$ PKW.KeyGen()
9 SK[Pp]← (skdir, 0)

10 (skdir, ctr)← SK[Pp]
11 id f ← [ctr]t
12 h f ← PKW.Wrap(skdir, id f , ϵ, K f )

13 If h f = ⊥ :
14 Return ⊥
15 SK[Pp]← (skdir, ctr+ 1)
16 N ←$ {0, 1}n

17 C ← AEAD.Enc(K f , N , ϵ, F)

18 T[P f ]← id f
19 H[h f ]← P f
20 sk ′ ← (SK,T,H)
21 Return (sk ′, h f , N ||C)

DecFile(sk, h f , N ||C):

22 (SK,T,H)← sk
23 Pf ← H[h f ]

24 If h f = ⊥ then return ⊥
25 id f ← T[Pf ]

26 If id f = ⊥ then return ⊥
27 (skdir, )← SK[parent(P)]
28 K ← PKW.Unwrap(skdir, id f , ϵ, h f )

29 If K = ⊥ then return ⊥
30 F ← AEAD.Dec(K, N, ϵ, C)
31 Return F

RotKey(sk, ((h0, . . . , hl))):

32 (SK,T,H)← sk
33 SK′[.]← ⊥
34 T′[.]← ⊥
35 H′[.]← ⊥
36 For i← 0 to l do:
37 P ← H[hi]
38 id f ← T[P]

39 If SK′[parent(P)] = ⊥ :
40 skdir ←$ PKW.KeyGen()
41 SK′[parent(P)]← (skdir, 0)
42 (skdir, )← SK[parent(P)]
43 (sk′dir, ctr

′)← SK′[parent(P)]
44 Ki ← PKW.Unwrap(skdir, id f , ϵ, hi)

45 If Ki = ⊥ then return (sk,⊥)
46 id′f ← [ctr′]t
47 h′i ← PKW.Wrap(sk ′dir, id

′
f , ϵ, Ki)

48 If h′i = ⊥ then return (sk,⊥)
49 SK′[parent(Pi)]← (sk ′dir, ctr

′ + 1)
50 T′[P]← id′f
51 H′[h′i]← P
52 sk ′ ← (SK′,T′,H′)
53 Return (sk ′, (h′0, . . . , h′l))

Shred(sk, P):

54 (SK,T,H)← sk
55 id f ← T[P]
56 If id f ̸= ⊥ :
57 (skdir, ctr)← SK[P]
58 skdir ← PKW.Punc(skdir, id f )

59 SK[P]← (skdir, ctr)
60 SK[P∗]← ⊥ delete directory keys
61 T[P∗]← ⊥
62 H[., P∗]← ⊥
63 Return sk

Figure 4.9: HPFS construction from composition of PKW scheme PKW and AEAD scheme

AEAD. The key-wrap space of the PKW scheme is {0, 1}k, the tag space is {0, 1}t. The AEAD

scheme has nonce space {0, 1}n and key space {0, 1}k. The notation T[P∗] ← ⊥ denotes that
all entries in the associative map sk which are indexed by P or whose index is a path that starts
with P are set to ⊥. The slight abuse of notation H[., P∗] ← ⊥ denotes that entries in H of
which the value is prefixed by P are removed.
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4.3.2 Security of the construction

As in the previous construction, the confidentiality notion that is achieved
is finds-rcpa, the integrity notion is int-ctxt. We give a brief informal argu-
ment for the realization of these notions. Consider the point at which the
adversary decides to corrupt. Imagine that it has stored some ciphertexts
and headers of files which at this point have already been shredded. Since
in Shred, the keying material that allows file recovery is always deleted, the
adversary cannot decrypt the shredded files: if the parent directory was
shredded, the PKW key has been removed; if a single file was shredded,
the PKW key of the directory has been punctured and so the PKW scheme
provides forward secrecy. Confidentiality of the headers and ciphertexts is
provided by PKW and AEAD, respectively. The integrity of ciphertexts and
headers is again provided by AEAD and PKW, respectively.

4.3.3 Single-directory key rotation

In this construction, every directory has an associated PKW secret key. Key
rotation is defined as an operation that rotates all the keying material, but,
in this construction, a finer-grained, directory-based approach may be taken:
if key rotation is necessary for a given directory (because many punctures
have been performed), it could be performed for only that directory. This
can greatly reduce network traffic (fewer headers must be down-/uploaded)
and therefore also the time for the operation to finish. This optimization, of
course, does not fulfil what is needed for post-compromise security. To
recover from a corruption, a full key rotation is needed. However, it may
merit consideration in practical settings.

4.4 Implementation

The two constructions are implemented based on the PKW library [26] men-
tioned before. In the implementations, directories can contain up to 216 files
and subdirectories (in the approach with a PKW key per directory, sub-
directories are not counted). The number 216 = 65356 is one more than
the maximum number of files supported per directory in FAT32. Although
modern file systems usually support more files per directory, it is a usable
limit for the purposes of this project.

4.4.1 Extension of the PKW library

The PKW library [26] required some changes to allow the evaluation and
puncturing of tags of any length, or, in other words, to implement hPKW.
These changes were in the data structure used for tags (a fixed-length array

52



4.5. Evaluation

was replaced with a variable-length array) and in the puncture algorithm,
which now allows punctures on tags of any length.

4.4.2 hPKW

With the hPKW approach, little changes in the implementation. Only the
assignment of hPKW tags had to be implemented, such that parts of tags
would correspond to directories. Concretely, 16 bits are used per direc-
tory level and all known directories are put into a lookup table. If there
is a file with path a/b/c/file1.txt in the system, a new file with path
a/b/file2.txt will share the first 32 bits of the tag with the first one. Specif-
ically, the 32-bit tag corresponding to the path a/b/. In the following, we
show a possible assignment of hPKW tags for these two paths.

a︷ ︸︸ ︷
0000000000000000

b︷ ︸︸ ︷
0000000000000000

c︷ ︸︸ ︷
0000000000000000

file1.txt︷ ︸︸ ︷
0000000000000000

a︷ ︸︸ ︷
0000000000000000

b︷ ︸︸ ︷
0000000000000000

file2.txt︷ ︸︸ ︷
0000000000000001

4.4.3 PKW-per-directory

In this approach, for each new directory encountered (during encryption), a
new PKW key is added to a lookup table, which maps known directories to
PKW keys. On deletion of a directory, the corresponding entry in the secret
key lookup table SK is simply deleted. The entries to which the directory is
a prefix are also deleted. The PKW schemes use tag sizes of 16 bits, so that
the two approaches are comparable.

4.5 Evaluation

We wanted to test the effect that the inclusion of paths has on key size
and time efficiency, as it seemed probable that shredding whole directories
instead of individual files would lead to improvements. Again, we focus
on the GitHub datasets (Section 3.1.4). Initially, the datasets only included
individual file deletions, even when an entire directory was deleted. To
identify sequences of file deletions that represent a directory deletion, we
simulated the history in a virtual file system. We detected the point at which
a directory becomes empty after a series of deletions and then replaced the
sequence of file deletions with a directory deletion in a rewritten version of
the dataset. Below, we present the GitHub histories for the FreeCodeCamp
repository, run on both implementations.
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Figure 4.10: FreeCodeCamp GitHub history using the hPKW approach. File deletions are shown
in green, directory deletions in blue. For the deletions, the y-position indicates the time used
per operation. The key size is shown in purple, and the black dotted line shows the number of
directories in the system.

Figure 4.11: FreeCodeCamp GitHub history using the PKW-per-directory approach. File dele-
tions are shown in green, directory deletions in blue. For the deletions, the y-position indicates
the time used per operation. The key size is shown in purple, and the black dotted line shows
the number of directories in the system.

What becomes clear in the direct comparison of the two figures (4.10, 4.11),
is that they perform worse than ctrPFS (Figure 3.16) in both the key size
and the time it takes to perform a shred operation. In both approaches,
directory deletions can take a very long time (note that the y-axis for time
is in a logarithmic scale). This may be due to the many lookup tables that
have to be kept up-to-date.

This is indicative of a drawback of HPFS: the system has a lot of state
it needs to track because the relationship between the local file paths is
mapped in the scheme, allowing hierarchical shredding operations.
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It would seem that the mappings made by these constructions are not very
efficient in terms of the resulting secret key size, although the per-directory
PKW approach performs better than the hPKW approach. Against expecta-
tions, the key size rarely decreases for hPKW, but rather increases, even as
the number of directories shrinks due to deletions. The reason for this is not
obvious, but it may be due to a characteristic of these benchmarks. When
directory deletions occur, often there were no previous deletions (shreds) in
that directory. For the hPPRF key, this means that the subtree that is punc-
tured because of the directory removal was not present (that is, there are no
nodes in the key that belong to the subtree) in the key beforehand. And so,
no reduction in key size can be achieved with the directory deletion; rather,
the operations add to the key size. However, we contend that the file access
patterns extracted from the GitHub repositories are a use case that is not
unrealistic for HPFS, and so the underwhelming performance of the two
implementations cannot be ignored.
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Chapter 5

Discussion

As seen in the evaluation sections of Chapters 3 and 4, performance both
in time per shred operation and key size was best for the PFS construction
in which PKW tags were increasing (ctrPFS). For HPFS, even though in-
tuitively it seemed as though utilizing the hierarchical information would
perform well, performance was actually worse, both for key size and time
efficiency. Below, we show a summary of the performance on the React
dataset.

original PFS ctrPFS hPKW PKW-per-directory
final key size 300 MB 150 KB 630 KB 208 KB

total time usage 102 s 4.3 s 5.9 s 4.3 s

Table 5.1: GitHub history metrics for the React history, which contains 4250 file deletions.

In the larger FreeCodeCamp dataset, which contains more deletions, the
difference in performance becomes more apparent. The original PFS con-
struction is not shown because it was not evaluated for the FreeCodeCamp
dataset.

ctrPFS hPKW PKW-per-directory
final key size 230 KB 77 MB 4.5 MB

total time usage 47 s 90 s 415 s

Table 5.2: GitHub history metrics for the FreeCodeCamp history, which contains 55000 file
deletions.

Clearly, ctrPFS is the most efficient of the presented implementations, espe-
cially as the size of the datasets increases.

For the key size, this is because ctrPFS is already quite optimal for shred
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operations. There is an upper bound for the increase in size per shred oper-
ation (in terms of the number of files in the system), and deletions of sequen-
tially added files lead to a reduction in key size. This is not necessarily the
case for HPFS: in the PKW-per-directory approach, having many directories
in which only a single shred operation occurred is costly (in size), since for
each directory 15 key-nodes must be stored. This is because a single punc-
ture in a GGM PPRF results in a key size equal to the tag length minus 1. For
the hPKW approach, there is a similar issue for chains of empty directories,
of which the last one has had some files shredded in it. This leads to a key
with “sparse punctures”, meaning long chains of nodes. Figure 5.2 shows
a part of a hPPRF key, with these characteristic long chains of nodes. As a
comparison, a part of the PPRF key resulting from using PFS with increas-
ing PKW tags (ctrPFS) for the same dataset is shown in Figure 5.3. Here, the
tree is much more balanced because the tags are used in sequential order
and without gaps. These figures show the key nodes (in red) and the nodes
leading to them (in grey, present to help visualize the key structure).

0 1

n1

2 3

n2

4 5 6 7 8 9 10 11 12 13 14 15

Figure 5.1: PPRF key with one punctured element (labelled 1). If nodes 2 and 3 are removed
as well, the key size is reduced by one node. Further removal of nodes 4 to 7 reduces the key
size by another node.

To visualize this point, Figure 5.1 shows the PPRF key for the PFS+ con-
struction with PKW tag length 4. Imagine that it was used to store 9 files
(nodes 0 to 8), of which one (corresponding to the red node) was shredded.
Shredding files corresponding to nodes 2 and 3 would lead to the removal
of the green node n1, and therefore to a reduction in key size.

By introducing the hierarchy of the file system into PFS, we also introduced
inefficiencies which distanced it from the optimization we initially made in
Chapter 3 when increasing PKW tags were introduced (ctrPFS). The HPFS
constructions, then, while better than the original PFS construction, cannot
come close to ctrPFS in key size because:

• For the hPKW approach, the tags which are assigned to files are only
consecutive within a directory. Shredding files across different directo-
ries is unlikely to lead to a decrease in key size (but it does for ctrPFS,
as seen in the evaluations). Furthermore, shredding a directory usu-
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Figure 5.2: Left-most part of the hPPRF secret key structure produced by the Guava GitHub
dataset run on HPFS[hPKW, AEAD]. The HPFS scheme employs 10 bits of hPKW tag per
hierarchy level for improved visualization. Note the long chains of nodes which do not flare out
towards the bottom, indicative of directories in which a single file was shredded.

Figure 5.3: Left-most part of the PPRF secret key structure produced by the Guava GitHub
dataset run on PFS[PKW, AEAD]. Key nodes are shown in red. The PKW scheme uses tag

space {0, 1}128.

ally leads to an increase in key size, since the underlying operation is
a puncture on a hPKW tag.

• For the PKW-per-directory approach, essentially, multiple ctrPFS in-
stances exist in parallel (one per directory). Therefore, when no files
are shredded, the key size is a multiple of the key size in ctrPFS. The
first shred operation in ctrPFS incurs a higher cost than later shred-
dings (a chain of nodes is generated by the puncture algorithm in the
underlying PPRF (see the evaluation section for PFS+)). In the PKW-
per-directory approach, this cost is incurred multiple times, once for
each directory in which at least one file is shredded.

But the hypothesis for better efficiency was not only about the key size, but
also about time: are hierarchichal shreds more time-efficient than shredding
all the contained files? By closer inspection of the mean execution times
for directory delete operations, we conclude that this is not the case. In the
FreeCodeCamp GitHub dataset there are 99033 delete operations, which, af-
ter extracting the directory delete operations, correspond to 47232 file dele-
tions and 3768 directory deletions. Therefore, on average, close to 14 files are
deleted per directory deletion. By comparing the average execution times
(2 milliseconds for a directory shred in (the faster hPKW-based) HPFS vs.
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Figure 5.4: Full Linux kernel GitHub commit history (18 years) in ctrPFS.

70 microseconds for a file shred in PFS), there appears to be no upside to
using HPFS because on average performing the 14 deletions is faster than
performing the hierarchichal shredding.

To show the efficiency of ctrPFS, we provide the GitHub history of the Linux
kernel dataset in Figure 5.4. The key size after replaying commits of 18 years
only grows to about 4.2 MB, and the execution times for shred operations
remain usable. However, with monthly or even yearly key rotation, the key
size could be kept much smaller and the execution times would stay more
consistent.
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Chapter 6

Conclusion

We presented forward-secure cloud storage in the form of PFS, as described
by [16], and showed evaluations for our implementation of it. Further-
more, we presented an optimization of the syntax (PFS+) and its construction
(ctrPFS) that greatly improved the efficiency of the implementation. We ex-
tended the syntax of PFS to also include paths (HPFS), and presented two
possible constructions. Moreover, we laid out the limitations of the PFS
model, and explained that the remote storage of encrypted data is not cap-
tured by the security notions. We provided constructions and evaluations
for PFS and HPFS and showed that the implementations of HPFS are less
efficient. For the two constructions of HPFS, we explained that they are
less efficient than the optimized construction of PFS, ctrPFS, because ctrPFS
already uses the tree structure of the underlying PPRF optimally. Our imple-
mentation ctrPFS shows that forward-secure cloud storage is possible with
an acceptable overhead in time and memory consumption.

6.1 Future work

In this thesis, we only used the cloud for the storage of encrypted files and
headers. Recently, work has been done on searchable encryption [13, 14],
which would allow outsourcing the lookup tables to the cloud as well, fur-
ther reducing the memory footprint of a local client. Work has also been
done which aims at hiding metadata of encrypted files, specifically also
the file size [11]. The composition of forward-secure cloud storage with
searchable encryption for file lookup and more privacy-preserving file stor-
age could be an interesting avenue of exploration. It would also provide the
opportunity to investigate a unified security model in which the cloud is the
adversary under consideration, as in this work the PFS adversary has much
control over the actions (it can add and shred files, in addition to corrupting
the key). In this work, key delegation [24] was not considered. However, file
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sharing, which is a functionality users typically expect from cloud storage,
is only possible by sharing the entire secret key. Exploring the intricacies of
key sharing (delegation) while maintaining the forward-security properties
of PFS is another promising area of study.
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