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Abstract

A cryptosystem that performs compression before encryption may leak
information about the plaintext from the ciphertext length, giving rise
to a compression side channel. An attacker with the ability to adap-
tively embed chosen queries in the plaintext along with a fixed secret
can recover the secret from the compression side channel.

Compression side-channel attacks are often assumed to be suscepti-
ble to noise and require a large number of interactions. Consequently,
some proposed mitigations work by adding noise or limiting interac-
tion, without giving rigorous arguments for their effectiveness.

In this thesis, we designed several refined techniques for compression
side-channel attacks from a careful inspection of DEFLATE and zlib.
Our techniques enable an attacker to reduce or remove the noise in
the compression side channel via amplification, and design complex
queries in a modular manner via query programming. We also gave
a series of upper bounds on the success probability of compression
side-channel attacks.
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Chapter 1

Introduction

Do not repeat the tactics which have gained you
one victory, but let your methods be regulated by
the infinite variety of circumstances.

Sun Tzu, The Art of War

1.1 Motivation

Encryption and compression are two operations commonly performed on
data in transit as well as data at rest. Encryption provides data confidential-
ity, and compression saves bandwidth or storage by reducing redundancy in
data. However, it is now well-known that a cryptosystem that performs com-
pression before encryption may leak information about the plaintext from
the ciphertext length, giving rise to a compression side channel [29]. Notable
compression side-channel attacks include CRIME [48] and BREACH [19],
which can recover secrets in the plaintext by exploiting compression in TLS
and HTTP.

Intuitively, when compression is performed before encryption, as encryption
typically does not hide the length of the compressed plaintext, an attacker
can deduce how well the plaintext is compressed from the ciphertext length.
While seemingly innocuous, the compression side channel becomes quite
useful for adaptive chosen-input attackers, i.e. attackers with the ability to
adaptively embed queries of their choice in the plaintext along with a fixed
secret.

We sketch the core idea of a compression side-channel attack against the
widely-used DEFLATE compression algorithm [10]. Given a prefix to the
secret in the plaintext, an attacker can recover the unknown byte following

1



1. Introduction

the known prefix by querying all possible combinations of the prefix and
candidates for that byte. Because DEFLATE replaces a repeated substring
in the input with a reference to its previous occurrence, the plaintext with
the correct guess contains a one-byte longer repeated substring and likely
has a slightly shorter compressed length. It is thus possible for the attacker
to recover the unknown byte by observing the ciphertext lengths and taking
the guess that yields the shortest ciphertext. By repeating this process byte-
by-byte, the attacker can eventually recover the entire secret.

Given that the compression side channel has been known for more than
twenty years and has demonstrated its danger with attacks like CRIME and
BREACH, the pervasiveness of compression before encryption in currently
deployed systems might come as a surprise. More concerningly, some prod-
ucts continued to perform compression before encryption without any mit-
igation, even after researchers had demonstrated that these products were
vulnerable to compression side-channel attacks [13, 21].

Apart from the performance benefits from using compression, a possible
reason for performing compression before encryption is that compression
side channels, like other side channels, are colloquially considered to be
“noisy” and hard to exploit in practice. Indeed, all existing compression
side channel attacks rely on tiny length differences of typically one or two
bytes to extract a secret, and most require additional techniques to make
the signal more reliable. In practice, compression side-channel attacks may
require thousands of queries to extract a short secret, which could be costly
and prone to detection.

We think that the compression side channel is not yet well understood, both
in theory and in practice. Most of the community’s understanding of the
compression side channel is closely tied to the CRIME and BREACH attacks,
which, by the nature of practical exploits, only needed to explore the details
of the DEFLATE compression algorithm to the extent of making the attacks
practical on specific targets. For example, Gluck et al. stated in their paper
on the BREACH attack that “[a] careful study of DEFLATE will undoubtedly
uncover improvements to the attack” [19, Section 4.1]. For some, it might
also be tempting to believe that defences that work on significant variants of
CRIME and BREACH, such as limiting the number of queries and adding
random noise, are able to mitigate all compression side-channel attacks, and
a more rigorous analysis is not necessary.

As a motivating example, we point out an implicit assumption on the com-
pression side channel: the compressed lengths of the plaintext co-located
with the same query cannot differ by more than a few bytes for different
secrets. Consequently, countless efforts were devoted to maintaining as well
as suppressing this small signal. This assumption stems from the intuition
that similar messages have similar redundancies and therefore should be

2



1.2. Contributions

compressed to similar lengths, which is typically not a design goal of com-
pressors and unsurprisingly does not hold for many compressors [1]. As we
will show in Chapter 5, attackers could amplify the apparently small signal
to hundreds of bytes or more, easily defeating random noise.

One may further question whether the compression side channel should be
considered as a side channel at all. According to Standaert, side-channel
cryptanalysis “considers adversaries trying to take advantage of the phys-
ical specificities of actual cryptographic devices” [52]. Indeed, most side
channels involve physical characteristics related to the implementation of a
cryptosystem, such as timing or power consumption, for which there are un-
certainties due to environmental factors that perhaps can never be studied
exactly. In the compression side channel, however, the information leak-
age comes solely from the length of the ciphertext, rather than physical
attributes. An implication of the comparison is that the compression side
channel may be studied and controlled to a very high level of precision. As
we will describe in Chapter 6, when equipped with a solid understanding
of the underlying compression algorithm, attackers can perform complex
queries that were not anticipated in previous works.

1.2 Contributions

This thesis advances the current understanding of the compression side
channel in several aspects. Our main contributions are as follows:

1. We present novel techniques to reduce or remove the effect of noise in
compression side-channel attacks against DEFLATE and zlib by ampli-
fying differences in compressed lengths with specially crafted queries.

2. We introduce a new paradigm called query programming for design-
ing complex queries in compression side-channel attacks. By exploit-
ing DEFLATE and zlib as state machines, we present several new tech-
niques to design queries that precisely control the information leakage.
In particular, our techniques allow an attacker to make fewer number
of queries than the divide-and-conquer technique by combining mul-
tiple queries.

3. We give a series of upper bounds on the success probability of com-
pression side-channel attacks. We extend the model of compression
side-channel attacks by Alawatugoda et al. [2] and combine it with the
study on compressor sensitivity by Akagi et al. [1]. We use our ex-
tended model to study two simple compressors and padding schemes
in terms of compression side-channel attacks.

This thesis also contains several side contributions, which may be of inde-
pendent interest:

3



1. Introduction

1. We provide an in-depth survey of compression side-channel attacks.

2. Our amplification techniques in Chapter 5 can be seen as giving the
first examples on the lack of robustness in DEFLATE/zlib.

3. Our analysis of randomised padding schemes in Section 4.6.2 com-
plement a previous study on randomised padding for length-hiding
encryption [9].

1.3 Roadmap

We first review the related work in Chapter 2, and provide the background
knowledge for our technical results in Chapter 3.

The main technical results of this thesis are in two parts: We first bound the
success probability of compression side-channel attackers in Chapter 4, and
then describe our refined attack techniques on DEFLATE/zlib, including
amplification in Chapter 5 and query programming in Chapter 6.

We discuss the implications of our results and future work in Chapter 7.

Appendices A and B contain supplementary materials for Chapter 4.

Readers primarily interested in our new techniques can read Sections 3.1,
3.2.1 and 3.3 to 3.5 and Chapters 5 and 6 independently; similarly, readers
primarily interested in our theoretical results may find Section 3.2 and Chap-
ter 4 most useful.

4



Chapter 2

Related work

2.1 Compression and encryption

The interplay between compression and encryption is an intriguing case in
cryptography. For a long time, the common belief was that performing com-
pression before encryption could improve security. One frequent argument,
first given by Shannon [51], is that compression reduces the redundancy in
the plaintext, thereby making it harder to uniquely determine the secret key.
Similar statements were reiterated in publications on both theoretical and
applied cryptography [5, 37, 49]. Another argument is that compression can
help resist cryptanalysis. As a concrete example, Katz and Schneier [27]
described a chosen-ciphertext attack against PGP and several other e-mail
encryption protocols, but the attack largely fails to work when the message
is first compressed before encryption [23].

However, Kelsey [29] pointed out that the benefits of compression before
encryption are largely irrelevant for modern cryptosystems; on the contrary,
Kelsey showed that applying compression before encryption may give rise
to a compression side channel. We summarise existing compression side-
channel attacks in Section 2.2.

Apart from the compression side channel, there are more examples illustrat-
ing the danger of performing compression before encryption. Kohno [31]
gave a chosen-ciphertext attack against the WinZip encryption scheme by
modifying the unauthenticated compression method field. Garman et al. [16]
described a gzip format oracle attack against Apple iMessage. Poddebniak
et al. [45] showed that while compression significantly complicates their
EFAIL attack against OpenPGP, it also allows an attacker to more precisely
modify and exfiltrate the plaintext. Recently, Schwarzl et al. [50] demon-
strated several attacks that recover encrypted data via information leakage
from decompression time differences. Note that we classify the attacks of
Schwarzl et al. as timing or decompression side-channel attacks rather than

5
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compression side-channel attacks, because their attacks exploit the timing
side channels in decompressor implementations.

Despite being exploited in many attacks, there is still no consensus on
whether to perform compression before encryption, a choice that arguably
depends on the threat model and cost. For example, Gellert et al. [17] sug-
gested that performing compression before encryption can help mitigate
fingerprinting attacks, and argued that “the general advice to disable com-
pression, independent of a given attacker model, can be misleading and
harmful to security” [17, Appendix A].

Finally, we note that there are studies on the counter-intuitive construction of
compressing encrypted data without using the secret key [15, 24, 30], which
is mainly of theoretical interest and is out of the scope of this thesis.

2.2 Compression side-channel attacks

Kelsey [29] was the first to describe several compression side-channel attacks
that can detect or extract secret strings from the plaintext. However, practical
compression side-channel attacks on deployed systems came much later.

2.2.1 The “CRIME family”

CRIME, developed by Rizzo and Duong [48], is a compression side-channel
attack that recovers session cookies from HTTP requests by exploiting com-
pression in TLS and SPDY. Rizzo and Duong described several techniques
to make the attack work reliably and reduce the number of queries. They
also hypothesized that similar techniques could be used to extract secrets
from HTTP responses, such as personal information and CSRF tokens. We
note that Adam Langley was the first to sketch a possible compression side-
channel attack against SPDY and HTTPS to extract secret cookies.1

The CRIME attack required a Machine-in-the-Middle (MitM) attacker that
can directly observe the sizes of HTTP requests from the target’s device to
the server. The TIME [4] attack by Be’ery and Shulman changed the target to
HTTP responses, where compression is widely used and cannot be simply
disabled without incurring notable performance damage. TIME uses timing
differences to infer changes in HTTP payload sizes, removing the need for
a MitM attacker. HEIST [56] shares the same idea as the TIME attack, but
Vanhoef and Van Goethem made several practical improvements, including
a way to measure the exact HTTP payload sizes from timing differences.
They also demonstrated the HEIST attack for HTTP/2.

The BREACH [19] attack by Gluck et al. also targeted compressed HTTPS
responses as TIME did, but it requires attackers to directly observe the sizes

1https://groups.google.com/g/spdy-dev/c/B_ulCnBjSug/m/rcU-SIFtTKoJ
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of HTTP responses. Gluck et al. described several techniques to reduce noise
and improve stability, and suggested some possible mitigations to the attack.

Karakostas and Zindros [26] built Rupture, a framework for performing
compression side-channel attacks. They employed statistical methods to re-
duce noise and bypass block alignment, and proposed several optimizations,
including divide-and-conquer and browser parallelization. We remark that
Gluck et al. have suggested that statistical methods can be used to miti-
gate noise [19, Section 3.1], and Thomas Pornin was likely the first to intro-
duce the divide-and-conquer method for improving the compression side-
channel attack.2

Note that all attacks in this section target compressors that implement the
DEFLATE algorithm [10], which we will introduce in Section 3.3. Readers
interested in the relations between these attacks can find more details in [54].

2.2.2 Recent developments

Compression side-channel attacks have recently expanded to a more diverse
set of targets, including databases and encrypted messaging applications.

Hogan et al. [21] introduced DBREACH attacks against encrypted databases.
They argued that existing techniques were ineffective in the database set-
ting, and proposed a series of new techniques to exploit the compression
side channel in encrypted databases, such as aligning guesses with page
boundaries and computing a heuristic compressibility score. DBREACH
uses repeated queries to amplify the noisy signal in order to extract secrets
from the database. In addition to DEFLATE, DBREACH also works on LZ4
and Snappy, two compressors based on the LZ77 algorithm [60].

Paterson et al. [41] discovered a compression side-channel attack against
Threema, a Swiss encrypted messaging application. They showed that an
attacker with physical access to the victim’s device could extract their pri-
vate key in the DEFLATE-compressed and encrypted backup by repeatedly
triggering backups with attacker-controlled payloads.

Fábrega et al. [13] described a compression side-channel attack against the
encrypted backup mechanism of WhatsApp, which enables an attacker to
recover a message from a known set of messages in the zlib-compressed and
encrypted backup by performing a binary search. They demonstrated the
attack for small sets of messages.

2https://security.stackexchange.com/questions/19911/

crime-how-to-beat-the-beast-successor/19914#19914
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2.2.3 Traffic analysis

There is also a line of research on leveraging compression side channels for
traffic analysis of protocols, such as TLS [44] and encrypted VoIP [57, 58].
More recently, Albrecht et al. [3] discovered a compression side channel in
the Bridgefy SDK, and demonstrated a compression side-channel attack that
recovers broadcast messages from a set of known plaintexts.

Traffic analysis is not the focus of this thesis, as we primarily study “CRIME-
style” attacks, in which an active attacker tries to extract a secret in the
plaintext by performing adaptive queries to a compressed length oracle.

2.3 Mitigations

A successful compression side-channel attack appears to be contingent on
several factors, including (i) co-location of the secret and attacker-controlled
data in the plaintext, (ii) the use of an “exploitable” compressor, (iii) the
ability to observe or infer the lengths of the compressed data, and (iv) a large
amount of interaction. Therefore, if disabling compression altogether proves
to be too costly, then one might deploy mitigations that target one or more of
the above factors. However, many proposed defences have been shown to be
either ineffective or impractical, and few have received a rigorous evaluation.

In this section, we briefly review some mitigations for compression side-
channel attacks. Our primary focus is on mitigations for compression side-
channel attacks in general, and readers interested in deploying mitigations
for some specific applications should also consult other sources, e.g. [47].

2.3.1 Separating secrets

Separating secrets from user inputs or not compressing secrets can mitigate
or potentially eliminate the compression side channel [2,19,25,36,42]. How-
ever, this approach either requires developers to manually mark or move
secret fields [25], which may be impractical [19], or requires a mechanism to
automatically identify secrets [2,36,42], which can be error-prone and might
introduce additional side channels if implemented badly.

2.3.2 Switching compressors

Since all existing compression side-channel attacks target LZ77-based com-
pressors, switching to other compressors might help mitigate the attacks.
However, as Kelsey [29] remarked, many other compressors can be attacked
using similar techniques, and “the same side channels clearly exist and can
be exploited” [29, Section 8] for the Burrows-Wheeler transform [6], which
is used in bzip2.

8
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Compressors that only adapt to the input to a small extent are likely less
vulnerable to compression side-channel attacks. Alawatugoda et al. [2] de-
scribed a compressor with a fixed dictionary and provided a security proof.
However, this compressor performs relatively poorly, and the proof is flawed
(see Section 4.5.1). Zieliński [59] designed SafeDeflate, a variant of DEFLATE
with reduced information leakage, and gave a security analysis. However,
SafeDeflate also suffers from poor performance, especially if the alphabet
for secrets is large.

HPACK [43] and QPACK [33] are compression algorithms for HTTP headers
in HTTP/2 and HTTP/3, respectively. They are designed to mitigate com-
pression side-channel attacks on HTTP headers like CRIME [48], using fixed
Huffman coding and restricted dynamic dictionaries. Note that HPACK and
QPACK are not general-purpose compressors, but tailored for HTTP header
compression.

2.3.3 Masking secrets

Gluck et al. [19] described a mitigation that they attributed to Tom Berson, in
which the server masks a secret S with a one-time pad P and sends P∥P⊕ S
to the client. Intuitively, an attacker cannot effectively accumulate informa-
tion about a secret across multiple queries if the secret is masked. However,
this method has several drawbacks. First, masking secrets increases the
length of the compressed data, especially if secrets are non-random [19] or
many secrets are present [26]; second, developers have to identify secrets
in advance; finally, although intuitively secure, masking secrets has not re-
ceived a formal analysis in the context of compression side-channel attacks.

2.3.4 Adding noise

Noise can be introduced to the input, the internal state or the output of
a compressor, making the compression side channel harder to exploit [19,
29]. An attacker may need to perform more queries to average out noise
in observed ciphertext lengths, which can be costly and prone to detection.
However, adding noise can only slow down but not completely eliminate
compression side-channel attacks [19, 26].

Degabriele [9] studied random padding schemes in the context of length-
hiding encryption. Degabriele showed that Gaussian padding is better than
uniform padding when multiple samples are available, and demonstrated
the superiority of Gaussian padding on a variant of the CRIME attack.

Palacios et al. [38] proposed HTB, a mitigation against the BREACH attack
which works by modifying the gzip library to add a random fake filename
for each compression. Palacios et al. showed with a simplified model and
experiments that HTB can significantly increase the number of queries an
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attacker needs to perform. HTB is recommended on the website of the
BREACH attack [46].

2.3.5 Limiting interaction

Rate limiting and monitoring can slow down the BREACH attack [19]; they
can likely also mitigate other compression side-channel attacks, which often
require a large number of adaptive queries.

Some proposed mitigations also make it more difficult for attackers to per-
form queries. For BREACH, such mitigations include CSRF protection [19],
performing referrer checks [47] and disabling third-party cookies [26].

2.3.6 Combining compression with encryption

Kelsey suggested preprocessing the input by applying a stream cipher that
“generates a keystream of extremely low Hamming weight” [29], which
might be regarded as an encrypt-then-compress-then-encrypt construction.

It might be tempting to consider combining compression with encryption in
non-trivial ways to achieve better security. However, as Kelley and Tamas-
sia [28] observed, a (perfectly correct) cryptosystem cannot be both be IND-
CPA secure and achieve meaningful compression. We point out that the
squeeze cipher by Kelley and Tamassia [28], which combines compression
and encryption, was only shown to satisfy a weak security notion that is
already satisfied by the compress-then-encrypt construction, and therefore
does not count as a mitigation.

2.4 Security models

There are numerous works on formally modelling side-channel attacks. For
example, Köpf and Basin [32] developed an information-theoretic model for
adaptive side-channel attacks, and applied the model to timing and power
side channels. These models could potentially be used to study compression
side-channel attacks, but no such connections were explicitly made to our
knowledge.

Kelley and Tamassia [28] studied the security of combining compression
and encryption. They defined a new security notion called entropy-related
IND-CPA (ER-CPA) security, which is similar to IND-CPA security, but re-
quires that the challenges come from a fixed set of messages. Their work
considered exclusively sets of messages that compress to the same length,
on which a compress-then-encrypt construction can already be ER-CPA se-
cure. Therefore, as Alawatugoda et al. [2] commented, the work of Kelley
and Tamassia does not capture compression side-channel attacks.

10
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Alawatugoda et al. [2] defined several new security notions for compres-
sion side-channel attacks on secret cookies, including cookie recovery (CR),
random cookie indistinguishability (RCI) and chosen cookie indistinguisha-
bility (CCI). Here CR is a weak security notion sufficient for “CRIME-style”
attacks, RCI is a stronger indistinguishability-style notion, and CCI, being
the strongest of the three notions, means that it is infeasible for attackers to
distinguish between two cookies of their choice embedded in the plaintext.
Alawatugoda et al. used these security notions to formally analyse the se-
curity of two mitigations. They showed that separating secrets from user
inputs achieves CCI security, and their fixed-dictionary fixed-width com-
pression scheme achieves CR security.

Security models for length-hiding encryption [9, 17, 40, 55] are related to
modelling compression side-channel attacks. We highlight two previous
works that discussed compression side-channel attacks in the context of
length-hiding encryption.

Gellert et al. [17] provided a new methodology for quantifying the effects
of length-hiding encryption, and analysed the effect of padding, compres-
sion and mode of operation on fingerprinting attacks using small-scale real-
world datasets. However, their security model does not capture “CRIME-
style” attacks and only concerns fingerprinting adversaries.

Degabriele [9] revisited the previous work [40, 55] and proposed a unified
security model for length-hiding encryption. Degabriele used the new se-
curity model to demonstrate the security of the pad-then-encrypt compo-
sition; more precisely, Degabriele reduced the length-hiding security of a
pad-then-encrypt construction to the channel simulatability of the symmet-
ric encryption scheme and the difference hiding (D-HIDE) security of the
padding length distribution, where D-HIDE characterises the difficulty of
distinguishing between the original distribution and a shifted distribution
with multiple samples for information-theoretic adversaries.

2.5 Robustness of compressors

Our theoretical bounds in Chapter 4 and amplification techniques in Chap-
ter 5 are related to studies on the robustness of compressors to small changes
in their inputs.

The term “one-bit catastrophe” refers to the phenomenon that changing a
single bit or character in the input of some compressors could incur a drastic
change in the length of the compressed data. Motivated by earlier works
such as [35], Lagarde and Perifel [34] studied the one-bit catastrophe for the
LZ78 algorithm, and Giuliani et al. [18] studied this phenomenon for the
Burrows-Wheeler transform.
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Akagi et al. [1] generalised the one-bit catastrophe and introduced the notion
of compressor sensitivity, a compressor property that measures the maxi-
mum change in the length of compressed data with regard to the substitu-
tion, insertion or deletion of a single character. They derived bounds on the
sensitivities of various theoretical compressors.
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Chapter 3

Background

3.1 Terminology

We list some important terminology that we use throughout the thesis.
Readers are encouraged to check it to avoid possible misinterpretations of
our work, especially since compressors and compressed data formats are
used interchangeably in many sources, which may be inaccurate in the con-
text of compression side-channel attacks.

• Compression: In this thesis, compression refers specifically to lossless1

data compression; see also Definition 3.5.

• Compression side channel: The leakage of information about the plain-
text from the length of the compressed data. Our study does not cover
timing side channels in decompressors [50].

• DEFLATE: We refer to DEFLATE as a general compression algorithm
that conforms to the algorithm details in the DEFLATE compressed
data format specification [10, Section 4].

• LZ77: A variant of the LZ77 algorithm [60] described in the DEFLATE
specification [10, Section 4].

• zlib: A library that implements DEFLATE compressors and decom-
pressors.2 Note its difference to the zlib data format [12].

• GNU Gzip: A software tool for data compression using DEFLATE.3

• gzip: A compressed data format [11]. Both zlib and GNU Gzip, among
others, can be used to generate compressed data in the gzip format.

1We only use the lossless property for proofs in Appendix A.
2https://zlib.net/
3https://www.gnu.org/software/gzip/
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3.2 Definitions

3.2.1 Notation

Let Z be the set of all integers, N = {0, 1, 2, . . .}, and N+ = N\{0} =
{1, 2, . . .}. For k ∈ N, let [k] = {1, 2, . . . , k}. We use log x to denote the
binary logarithm of x, and use ln x to denote the natural logarithm of x. We
define 0 ln 0 = 0 for simplicity.

An alphabet is a finite set Σ, where the size of the alphabet is |Σ|. A string s
is an element of the set Σ∗. Let o denote the empty string. Let Σ+ = Σ∗\{o}.
Let |s| denote the length of a string s, and the length of the empty string is
0. Let ⊥ be a specified error symbol that is distinct from all strings.

For a string s of length ℓ ∈ N+, and for each i ∈ [ℓ], let s[i] be the
i-th character of s; we can write s as s[1]s[2] . . . s[ℓ], or vice versa. For
a string s of length ℓ ∈ N+, and for each i, j ∈ [ℓ], where i < j, let
s[i, j] = s[i]s[i + 1] . . . s[j].

For strings a and b, let a∥b denote their concatenation. For strings a and b
where |a| = |b|, let HD(a, b) denote the Hamming distance between a and b,
which is the number of indices at which a and b differ; that is, HD(a, b) :=
|{i ∈ [ℓ] : a[i] ̸= b[i]}|.

For a probability distribution D on a countable sample space S, which we
will refer to in this thesis as a distribution in short, let PrD [·] be the probability
function of D, which is a function that maps every subset of S to a value in
[0, 1], and let PrD [s] be a shorthand for PrD [{s}] for every s ∈ S; let Supp(D)
be the support of D, i.e. Supp(D) := {s ∈ S : PrD [s] ̸= 0}; let x ←$ D denote
sampling x according to D.

We only consider discrete random variables in this thesis. For a random
variable x, let Supp(x) be the support of its corresponding distribution.

For a finite set S, let x ←$ S denote sampling x uniformly at random from S.
For a set S, let 1S be an indicator function for S on domain X ⊇ S, i.e. ∀x ∈ X,

1S(x) :=

{
1 if x ∈ S,
0 if x /∈ S.

For a randomised algorithm A, let A(. . .) represent the distribution of out-
puts when running A with the specified inputs, and let A(. . . ; r) denote
running A with fixed random coins r.

We write <Lx,Dy> for a back-reference of length x and distance y in LZ77,
where we may replace y with * for an unspecified distance.
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3.2.2 Distance measures

Definition 3.1 (statistical distance) For two distributions D1 and D2 on a sam-
ple space S, the statistical distance between D1 and D2 is

SD(D1,D2) = ∑
s∈S

max {0, PrD1 [s]− PrD2 [s]} .

For two random variables x and y with an image S, their statistical distance is the
statistical distance between their corresponding distributions, i.e.

SD(x, y) = ∑
s∈S

max {0, Pr[x = s]− Pr[y = s]} .

We list some well-known properties of the statistical distance.

Lemma 3.2 For two random variables x and y with an image S,

• (equivalent definition) SD(x, y) = 1
2 ∑s∈S|Pr[x = s]− Pr[y = s]|,

• (range) 0 ≤ SD(x, y) ≤ 1,

• (symmetry) SD(x, y) = SD(y, x),

• (triangle inequality) for every random variable z of image S, we have
SD(x, z) ≤ SD(x, z) + SD(z, y),

• (data-processing inequality) for every function f on the domain S, we have
SD( f (x), f (y)) ≤ SD(x, y).

Definition 3.3 (KL divergence) For two distributions D1 and D2 on a sample
space S, where Supp(D1) ⊆ Supp(D2), the Kullback–Leibler (KL) divergence
between D1 and D2 is

KL(D1,D2) = ∑
s∈Supp(D1)

PrD1 [s] ln
(

PrD1 [s]
PrD2 [s]

)
.

The KL divergence between two random variables x and y with an image S where
Supp(x) ⊆ Supp(y) is defined analogously as

KL(x, y) = ∑
s∈Supp(x)

Pr[x = s] ln
(

Pr[x = s]
Pr[y = s]

)
.

Lemma 3.4 (Pinsker’s inequality) Let S be a countable set, x and y be two ran-
dom variables with the image S, such that Supp(y) ⊆ Supp(x). Then

(SD(x, y))2 ≤ 1
2
KL(x, y).
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3.2.3 Compression and encryption

We give the definition of a compression scheme adapted from Alawatugoda
et al. [2] and a standard definition for a symmetric-key encryption scheme.

Definition 3.5 (Compression scheme) A compression scheme on input alphabet
Σ and output alphabet Ω is a pair (C, D), where

• C is a randomised algorithm called a compressor on Σ, which takes m ∈ Σ+

as input and returns z ∈ Ω+, and

• D is a deterministic algorithm called a decompressor on Ω, which takes z ∈
Ω+ as input and returns m′ ∈ Σ+ ∪ {⊥},

such that
∀m ∈ Σ+, ∀z ∈ Supp(C(m)), D(z) = m.

Remark 3.6 We highlight a difference from [2, Definition 2]: our definition is on
fixed input Σ+ and output Ω+ rather than their subsets, in order to simplify the
discussion on sensitivity. Real-world compressors that have an upper bound on the
input length can be naturally augmented to satisfy our definition.

Remark 3.7 We note that most compressors are deterministic, but our definition
allows us to capture random noise in compression; see examples in Section 2.3.4.

Definition 3.8 (Symmetric-key encryption) A symmetric-key encryption scheme
over key spaceK, message spaceM and ciphertext space C is a tuple (KGen,Enc,Dec),
where

• KGen is a randomised algorithm that takes no input and returns k ∈ K,

• Enc is a randomised algorithm that takes (k, m) ∈ K ×M as input and
returns c ∈ C, and

• Dec is a deterministic algorithm that takes (k, c) ∈ K × C as input and
returns m′ ∈ M∪ {⊥},

such that

∀k ∈ K, ∀m ∈ M, ∀c ∈ Supp(Enc(k, m)),Dec(k, c) = m.

We now restate the composition of compression and encryption described
in [2], modified to suit our definitions. We also fixed a small error in [2,
Definition 3], where decryption may pass ⊥ to the decompressor.

Definition 3.9 (Compress-then-encrypt [2, Definition 3]) Let Γ = (C, D) be
a compression scheme on input alphabet Σ and output alphabet Ω. Let Π =
(KGen,Enc,Dec) be a symmetric-key encryption scheme over key space K, mes-
sage spaceW and ciphertext space C, whereW ⊆ Ω+. LetM ⊆ Σ+ be such that
∀m ∈ M, Supp(C(m)) ⊆ W .
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The compress-then-encrypt construction from Γ and Π yields a symmetric-key en-
cryption scheme Π′ = (KGen′,Enc′,Dec′) over key space K, message spaceM and
ciphertext space C, where

• KGen′ := KGen,

• ∀k ∈ K, ∀m ∈ M, Enc′(k, m) := Enc(k, C(m)), and

• For (k, c) ∈ K × C, Dec′(k, c) is defined in Fig. 3.1.

Dec′(k, c)

1 : w← Dec(k, c)
2 : if w =⊥ then
3 : return ⊥
4 : m← D(w)

5 : if m /∈ M then
6 : return ⊥
7 : return m

Figure 3.1: Decrypt-then-decompress, the decryption process for the compress-then-encrypt
construction. We stress that this is a simplified definition, and implementations that directly
follow this definition may be vulnerable to format oracle attacks [16] or side-channel attacks [50].

3.2.4 IND-CPA

We give a standard definition of the IND-CPA security game for a symmetric-
key encryption scheme Π = (KGen,Enc,Dec) with the Left-or-Right (LoR)
oracle in Fig. 3.2. The advantage of A is

Game IND-CPA(A, Π)

1 : b←$ {0, 1}
2 : b′ ←$ ALoR()

3 : return b = b′

Oracle LoR(m0, m1)

1 : if |m0| ̸= |m1| then
2 : return ⊥
3 : return Enc(k, mb)

Figure 3.2: The IND-CPA security game for symmetric-key encryption scheme Π =
(KGen,Enc,Dec); we require that m0, m1 ∈ M for queries to the LoR oracle.

AdvIND-CPA
Π (A) := |2 Pr[IND-CPA(A, Π)⇒ true]− 1|.

Readers who wish to interpret our work in the context of Alawatugoda et
al. [2] should be aware that they used a single-query definition for IND-CPA.

17



3. Background

3.2.5 Cookie recovery

We consider a variant of the cookie recovery (CR) game defined by Alawatu-
goda et al. [2], which captures compression side-channel attacks where an
attacker tries to recover a secret cookie by observing the encrypted cookie
compressed together with some attacker-chosen data. The main differences
from Alawatugoda et al. [2] are:

1. We force the cookies to be of the same length. In [2], the lengths of
cookies could be different, which is one of the reasons why their re-
duction from random cookie indistinguishability (RCI) to CR [2, Theo-
rem 7] is incorrect.4

2. We assign a probability distribution DCK to secret cookies. For exam-
ple, the “cookies” may be personal information like credit card num-
bers or phone numbers in real life. More precisely, we consider a
cookie distribution over CK, where CK ⊆ Σk for some k ∈N+.

3. The oracle query now has a length restriction of L− k. This is because
(i) attackers may only control a small input field in practice, and (ii) it
is possible to reduce the number of queries by making longer queries,
as in the example of binary search and what we will show in Chapter 5.

Game CR(A, Π,DCK, L)

1 : k←$ KGen()

2 : ck←$ DCK
3 : ck′ ←$ AE1,E2()

4 : return ck = ck′

Oracle E1(m′, m′′)

1 : m← m′∥ck∥m′′

2 : if |m| > L then
3 : return ⊥
4 : c←$ Enc(k, m)

5 : return c

Oracle E2(m)

1 : c←$ Enc(k, m)

2 : return c

Figure 3.3: A variant of the cookie recovery (CR) security game [2, Figure 3] for symmetric-
key encryption scheme Π = (KGen,Enc,Dec) on message spaceM, cookie distribution DCK on
CK ⊆ Σk, and maximum length L, where Σ is an alphabet, k, L ∈N+, k ≤ L, and

⋃L
i=k Σi ⊆M.

Figure 3.3 shows our variant of the cookie recovery (CR) game [2]. The
advantage of A is

AdvCRΠ,DCK ,L(A) := Pr[CR(A, Π,DCK, L)⇒ true].

4Another error in their proof is that their bound did not account for random guess-
ing. More specifically, they stated that for every CR adversary A, there exists a RCI adver-
sary BA such that AdvCR(A) ≤ AdvRCI(BA), but a correct bound should be AdvCR(A) ≤
AdvRCI(BA) + 1/|CK|.
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3.2.6 Multisample distinguisher

Degabriele [9] studied the best advantage for an unbounded adversary to
distinguish between two distributions with multiple independent samples
available, in order to evaluate the effectiveness of different random padding
schemes in terms of length hiding. Theorem 3.10 gives a slightly modified
version of Degabriele’s multisample distinguisher theorem [9, Theorem 4.3].

Theorem 3.10 (corollary of [9, Theorem 4.3]) Let M and N be two distribu-
tions over a sample space Ω. Let S = Supp(M) ∩ Supp(N), and assume S ̸= ∅.
For q ∈ N+, let x1, . . . , xq be independent random variables distributed according
to M, and let y1, . . . , yq be independent random variables distributed according to
N. Then

SD((xi)i∈[q], (yi)i∈[q]) ≤ q · ∑
x∈Ω\S

(PrM[x] + PrN [x]) +
√

q
2
KL(M̃, Ñ),

where M̃ and Ñ are two distributions defined on the sample space S such that

PrM̃[X] :=
PrM[X]

PrM[S]
and PrÑ [X] :=

PrN [X]

PrN [S]

for every X ⊆ S.

As Degabriele observed, the bound in Theorem 3.10 consists of two terms
that grow with different rates as the number of samples q increases; there-
fore, padding schemes that perform well when q = 1 may not still be a good
choice when q is large, such as uniform padding.

Chen et al. also derived a similar result on the relation between statistical
distance and KL divergence [7, Lemma 1], which may be used to obtain a
variant of Theorem 3.10. More generally, Theorem 3.10 is related to studies
on information-theoretic indistinguishability, e.g. [8, 39].

3.3 DEFLATE

DEFLATE [10] is a widely used lossless compressed data format. Since our
focus is on compressors that conform to the algorithm details described in
the DEFLATE format specification [10, Section 4], such as zlib and GNU
Gzip, we will refer to DEFLATE as a general compression algorithm from
now on. The exact details of the DEFLATE algorithm may vary for differ-
ent implementations and parameter choices, and readers can refer to our
description of zlib in Section 3.4 for a concrete DEFLATE implementation.

Note that, for historical reasons as well as for performance, there are com-
pressors that deviate from the DEFLATE algorithm but can still produce
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compressed data in the DEFLATE format, such as Zopfli.5 These compres-
sors are out of the scope of this thesis.

Very roughly speaking, the DEFLATE algorithm works as follows. First, it
runs a variant of the LZ77 algorithm [60] (Section 3.3.1) to scan the input
data for repeated strings, for each repetition creating a back-reference to its
last occurrence. Then, it uses Huffman coding [22] (Section 3.3.2) to further
compress the LZ77 output.

Our description of DEFLATE does not cover its full details; we refer in-
terested readers to the DEFLATE specification [10] and an explanation of
DEFLATE by Feldspar [14].

3.3.1 LZ77

LZ77 [60] is a compressor that works by replacing repeated strings in the
input data with their back-references. Many variants of the LZ77 algorithm
exist, and in this thesis, we refer to LZ77 as the variant described in the
DEFLATE specification [10, Section 4].6

Note that the LZ77 algorithm in DEFLATE works on byte strings; in other
words, the input alphabet for LZ77 is Σ = {0x00, . . . , 0xFF}.

Basic idea

The LZ77 algorithm operates in a streaming manner. It scans the input data
with a pointer for repetitions, keeping a sliding window of window size up
to 32KiB for bytes before the pointer.

At each new pointer position, LZ77 tries to find the longest substring in the
sliding window that matches one of the substrings starting from the pointer.
If there are multiple matches of the same length in the sliding window, then
LZ77 prefers the one that is nearest to the pointer. LZ77 ignores any match
that is shorter than the minimum length of min match = 3 bytes or longer
than the maximum length of max match = 258 bytes.

If LZ77 finds a match in the sliding window, then the algorithm outputs a
back-reference, which encodes the length of the matched substring and the
distance to its previous occurrence in the sliding window, and advances the
pointer past the matched substring. Otherwise, the algorithm outputs the
byte at the pointer position and advances the pointer by one byte.

For example, running LZ77 on input

draw drain train

5https://github.com/google/zopfli
6Some may find this LZ77 variant closer to the LZSS algorithm [53].
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gives us

draw <L3,D5>in t<L4,D6>

where we write <Lx,Dy> for a back-reference of length x bytes and distance
y bytes. Note that the substring rain in train can still match the substring
rain in drain, even though drain has already been replaced by <L3,D5>in.

Algorithm 1 shows a simplified version of the LZ77 algorithm described
above, where we omit some details like the hash table and lazy matching,
and we assume the algorithm always searches the whole sliding window for
the longest match.

Algorithm 1: A simplified version of the LZ77 algorithm.
Input: A string s = s1s2 . . . sn.
Output: A sequence of bytes and back-references (t1, t2, . . . , tm).
p← 1;
m← 0;
while p < n do

m← m + 1;
(l, d)← (0, 0);
for j← 1 to window size do

lj ← max{k : k ≤ max match∧ sp−j . . . sp−j+k−1 = sp . . . sp+k−1};
if lj ≥ l then

(l, d)← (lj, j);

if l ≥ min match then
tm ← <Ll,Dd>;
p← p + l;

else
tm ← sp;
p← p + 1;

return (t1, t2, . . . , tm);

Hash table

The LZ77 algorithm maintains a chained hash table for the positions of all
3-byte substrings in the sliding window to help find repetitions. Substrings
are put into the hash table in the order of their positions. LZ77 inserts each
substring position before the head of its corresponding chain in the hash
table, and sets the current substring position as the new head. As a result,
substring positions on every hash chain are ordered by their proximity to the
LZ77 pointer. The oldest entry may be purged when adding a new substring
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to the hash table.

To find the longest match, LZ77 computes the hash digest of the 3-byte sub-
string starting from the pointer, and traverses the chain in the hash table that
corresponds to the hash digest. For each entry on the chain that stores a po-
sition corresponding to the same 3-byte substring, LZ77 looks for the longest
repetition starting from that position in the input. This process stops after
the corresponding hash chain has been traversed, or if sufficiently many
positions have been checked.

For better speed, LZ77 may be configured not to insert substrings in (long)
matches to the hash table, at the cost of a generally worse compression ratio.
For example, suppose we configure LZ77 to not add new substrings in any
match to the hash table. Then, running LZ77 on input

draw drain train

yields the output

draw <L3,D5>in train

instead of

draw <L3,D5>in t<L4,D6>

in the usual case. The reason is that LZ77 does not add positions of sub-
strings rai and ain in drain to the hash table since their positions fall within
a match dra, and therefore LZ77 cannot find any match in the hash table
when scanning train.

Lazy matching

To achieve a better compression ratio, LZ77 may also be configured to per-
form an additional operation called lazy matching after a match has been
found, where LZ77 tries to find a longer match starting from the byte just
after the pointer. If such a match is found, LZ77 discards the current match
and takes the longer new match. More specifically, it outputs the current
byte and advances the pointer by one byte, starting lazy matching again on
the new match. Otherwise, LZ77 proceeds as usual; that is, LZ77 outputs
the back-reference for the current match and advances the pointer past it.

For example, running LZ77 on input

train draw drain

gives us

train draw <L3,D5>in

without lazy matching, and

train draw d<L4,D11>
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with lazy matching. This is because, after finding a repetition dra in drain,
LZ77 searches for a longer match starting from r in drain, and finds rain

in train. Since rain is longer than dra, LZ77 takes rain and discards the
original match.

3.3.2 Huffman coding

Huffman coding [22] is a well-known method for data compression. Huff-
man coding generates prefix-free codes called Huffman codes according to
the frequencies of the symbols, assigning shorter codes for symbols that oc-
cur more frequently, to minimise the expected code length. Conceptually,
Huffman coding works by constructing a binary tree called a Huffman tree,
in which each leaf node represents a symbol, and each path from the root to
a leaf node represents a Huffman code.

The Huffman coding process in DEFLATE is rather complicated, and it is
often regarded as one of the main sources of noise in the compression side
channel (e.g. [19]). Here we only highlight some parts of Huffman coding
that are relevant to our attacks in Chapters 5 and 6.

DEFLATE uses two sets of Huffman codes to encode the LZ77 output, with
one set of Huffman codes for both literals and match lengths, and another set
of Huffman codes for match distances. They must meet certain requirements
such that one can define the Huffman codes by a sequence of the codes’
lengths for each symbol ordered according to the alphabet. The lengths of
the Huffman codes are measured in bits.

In LZ77, match lengths take values from 3 to 258, and match distances take
values from 1 to 32,768. Lengths and distances are respectively grouped and
coded in LZ77: lengths take codes from 257 to 285, and distances take codes
from 0 to 29. To differentiate between different lengths or distances with
the same code, DEFLATE appends zero or more extra bits to each length
or distance code. The exact number of extra bits depends on the code: for
example, a distance of 100 bytes is encoded as bits 110100100 in the LZ77
output, a concatenation of the code 1101(2) = 13 for distances 97–128 and
five extra bits 00100(2) = 4. Note that the extra bits do not participate in
Huffman coding and therefore stay unchanged in the final output.

Table 3.1 shows the codes and extra bits for distance encoding in DEFLATE.
Note that longer distances generally require more extra bits, the rationale
being that closer repetitions tend to occur more frequently. The length en-
coding in DEFLATE follows a similar logic, generally requiring more extra
bits to encode longer lengths; we refer interested readers to [10, Section
3.2.5].

A DEFLATE implementation may choose whether to use fixed or dynamic
Huffman codes based on input data by comparing which option yields a
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Code Extra Bits Distance Code Extra Bits Distance
0 0 1 15 6 193–256
1 0 2 16 7 257–384
2 0 3 17 7 385–512
3 0 4 18 8 513–768
4 1 5–6 19 8 769–1,024
5 1 7–8 20 9 1,025–1,536
6 2 9–12 21 9 1,537–2,048
7 2 13–16 22 10 2,049–3,072
8 3 17–24 23 10 3,073–4,096
9 3 25–32 24 11 4,097–6,144
10 4 33–48 25 11 6,145–8,192
11 4 49–64 26 12 8,193–12,288
12 5 65–96 27 12 12,289–16,384
13 5 97–128 28 13 16,385–24,576
14 6 129–192 29 13 24,577–32,768

Table 3.1: Codes and extra bits for distance encoding in DEFLATE. [10, Section 3.2.5]

better compression ratio. If dynamic Huffman codes are used, then the
final output also includes the length sequences of the Huffman codes, com-
pressed first with run-length encoding and then with another set of Huff-
man codes. As with most existing attacks on compression,7 our attack tech-
niques work for both fixed and dynamic Huffman codes.

3.4 Zlib

For a concrete implementation of DEFLATE, we look at zlib,8 a compression
library that implements DEFLATE compressors and decompressors. Zlib is
widely used to produce compressed data in zlib, DEFLATE or gzip format.
Our description of zlib is based on zlib version 1.3,9 but it likely also ap-
plies to many other zlib versions, as the zlib compressor implementations
have been relatively stable. We remark that GNU Gzip implementation of
DEFLATE is very similar, albeit not identical, to the zlib implementation.

3.4.1 LZ77 in zlib

The LZ77 implementation in zlib closely follows our description of the LZ77
algorithm in Section 3.3.1, with some adjustable parameters to control the
compression speed and quality.

7In fact, some attacks may work more reliably when the Huffman codes are fixed, and
EFAIL [45] actually requires the Huffman codes to be fixed, albeit in a different context.

8https://zlib.net/
9https://github.com/madler/zlib/releases/tag/v1.3
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By default, zlib uses a sliding window of around 32KiB. It is also possible
to increase min match (default 3) or decrease max match (default 258) in zlib.
The hash table in LZ77 contains the positions of all substrings of min match
bytes in the sliding window. The zlib implementation of LZ77 uses an un-
keyed “rolling hash” whose output ranges from 0 to 2hash bits − 1, where
hash bits is 15 by default. In this thesis, we focus on the hash function with
regard to the default parameters min match = 3 and hash bits = 15; other
cases should work similarly. The hash value of a 3-byte string abc is

hash(a, b, c) :=
(

a · 210 + b · 25 + c
)

mod 215,

where each byte is treated as an unsigned integer.

At each new position, LZ77 in zlib checks at most max chain (default 128)
entries in the hash table for a match; the search stops once the longest match
found reaches at least nice length (default 128) bytes.

Zlib defines two compression modes, deflate fast and deflate slow. In general,
the former has better speed, while the latter produces shorter output. The
default compression mode is deflate slow. In addition, zlib has a deflate -
stored mode that does not perform compression and merely stores the input
data in an appropriate format.

In deflate fast, LZ77 does not perform lazy matching, and does not insert
new substrings into the hash table for matches strictly longer than max insert
bytes, with the exception that the first substring of min match bytes in any
match is always inserted into the hash table when trying to find repetitions.

In deflate slow, LZ77 adds all substrings in the sliding window to the hash
table. Moreover, LZ77 performs lazy matching when the current match is
strictly shorter than max lazy (default 16) bytes. In addition, LZ77 considers
a match of at least good length (default 8) bytes as “good enough”, for which
it only checks at most max chain/4 entries in the hash table to find a better
match in lazy matching.

We note that LZ77 in zlib cannot create back-references to a string that starts
at the first byte of the input data. To quote a relevant comment in the zlib
source code: “To simplify the code, we prevent matches with the string of
window index 0.”10 This fact is generally irrelevant to compression side-
channel attacks in practice, but might be good to know for readers who
wish to test our programming techniques in Chapter 6.

10https://github.com/madler/zlib/blob/09155eaa2f9270dc4ed1fa13e2b4b2613e6e4851/

deflate.c#L1340C46-L1341C61
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3.4.2 Compression levels

Zlib defines 10 compression levels, represented by integers from 0 to 9. The
default compression level in zlib is 6. Generally speaking, DEFLATE in
zlib runs at a lower speed but produces shorter compressed data at higher
compression levels, and vice versa.

Table 3.2 shows the configuration for each compression level in zlib.11 Zlib
does not perform compression at level 0. For levels 1 to 3, zlib uses the
deflate fast compression mode, which does not insert substrings in a match
above max insert bytes into the hash table; for levels 4 to 9, zlib uses the
deflate slow compression mode, which performs lazy matching if the current
match is below max lazy bytes.

Level good length max lazy max insert nice length max chain Mode
0 - - - - - stored
1 - - 4 8 4 fast
2 - - 5 16 8 fast
3 - - 6 32 32 fast
4 4 4 - 16 16 slow
5 8 16 - 32 32 slow
6 8 16 - 128 128 slow
7 8 32 - 128 256 slow
8 32 128 - 258 1024 slow
9 32 258 - 258 4096 slow

Table 3.2: Configuration for each compression level in zlib. We use “-” to represent parameters
that are not used at the corresponding compression level, and we mark the default level (6)
in zlib and its corresponding configurations in bold. We use “stored”, “fast” and “slow” as
abbreviations of deflate stored, deflate fast and deflate slow, respectively.

3.5 Existing techniques

In this section, we briefly review several techniques for compression side-
channel attacks. Our focus is on attacks that recover a secret in the plaintext,
i.e. cookie recovery (CR) attackers (Section 3.2.5), and we abstract away the
technical details of the targeted protocols and applications.

3.5.1 Kelsey’s secret extraction attacks

Kelsey [29] proposed two compression side-channel attacks for extracting
a secret in the plaintext. In Kelsey’s attack model, an attacker can choose
N prefixes P0, . . . , PN−1 for the secret S and learn the compressed length of

11Table reproduced from the zlib source code; see https://github.com/madler/zlib/

blob/09155eaa2f9270dc4ed1fa13e2b4b2613e6e4851/deflate.c#L112C1-L124C67
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Pi∥S for each i ∈ {0, . . . , N − 1}; the goal of the attacker is to extract the
secret S.

Adaptive chosen input attack [29, Section 6.1]

An adaptive attacker can set a prefix P such that

P∥S = prefix∥guess∥filler∥prefix∥S,

where prefix and filler are two strings that have little in common, both known
not to occur in S, and guess is a guess for the first k characters of S.

As Kelsey explained, if the guess is correct, then P∥S contains a longer re-
peated substring (prefix∥guess) and its compressed length should be smaller
than in the case where the guess is incorrect. After finding the correct guess,
the attacker can modify prefix and move on to guess the next k characters of
S, and continue this process until all characters in S are recovered.

If we assume that S is chosen uniformly at random from Ωℓ, where ℓ ∈N+

is a multiple of k, then the average number of chosen prefixes is in theory
(ℓ|Ω|k)/(2k). However, Kelsey implemented the attack against zlib and ob-
served that the attack was quite unstable, often requiring backtracking [29].

Non-adaptive chosen input attack [29, Section 6.2]

A non-adaptive attacker can set P0, . . . , PN−1 to be all strings of a certain
length k, and estimate the likelihood of Pi appearing in S from the com-
pressed length of Pi∥S; the attacker can recover the secret by piecing together
prefixes that are most likely to appear in S.

If S is sampled from Ωℓ, then the attacker needs to choose |Ω|k prefixes.
In Kelsey’s implementation, the attacker did not uniquely determine S, but
rather provided a small list of candidates for S.

3.5.2 CRIME/BREACH

In CRIME [48] and BREACH [19], an attacker tries to recover a secret cookie
ck from a plaintext, i.e. . . . ∥Q∥ . . . ∥P∥ck∥ . . . or . . . ∥P∥ck∥ . . . ∥Q∥ . . ., where
P is a known prefix (e.g. secret=), and ck is a cookie value chosen uniformly
at random from Ωℓ. The attacker can adaptively choose Q, a part of the
plaintext located either before or after the prefix and the secret cookie, and
observe the length of the DEFLATE-compressed and encrypted ciphertext.

Generally, both CRIME and BREACH attacks recover the secret cookie ck
character-by-character, similar to Kelsey’s adaptive chosen-input attack [29].
Both attacks employed new techniques to improve stability and reduce the
number of queries.
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Two Tries

Rizzo and Duong designed the Two Tries method for the CRIME attack,
which was later adapted by Gluck et al. for the BREACH attack.

We sketch the general idea of the Two Tries method. In order to recover the
first unknown character in ck, an attacker iterates over the cookie alphabet
Ω, and makes two specifically crafted queries Q1 and Q2 for each guess g,
with the query Q2 being a permutation of Q1. If the resulting ciphertexts
of the two queries are of different lengths, then the attacker regards g as
the correct guess and proceeds to recover the next unknown character of the
cookie in a similar way, until the entire cookie is recovered.

In theory, a Two Tries attacker makes ℓ|Ω| queries on average.

Central to the Two Tries method is the design of Q1 and Q2, to which CRIME
and BREACH take slightly different approaches.

Two Tries in CRIME. The Two Tries method in CRIME makes two queries

Q1 = filler∥P∥g and Q2 = P∥g∥filler

for a guess g. Here the queries are located before the prefix and the secret
cookie in the plaintext, and filler is a string such that the substring P∥g in Q2
is outside of the sliding window when the LZ77 pointer reaches the cookie
P∥ck.

According to Rizzo and Duong [48], if the guess g is the correct, then LZ77
matches P∥g in Q1 but not Q2, causing the compressed lengths of the two
plaintexts to differ; otherwise, if the guess g is incorrect, then LZ77 can-
not find any match between the cookie and the queries, so the compressed
lengths of the two plaintexts should be the same.

However, it appears to us that the attacker needs to use a small prefix P for
the queries, preferably of length min match− 1, as otherwise LZ77 can still
match P in Q1 but not in Q2 if the guess is incorrect.

Two Tries in BREACH. The BREACH [19] attack used a variant of the Two
Tries method, in which an attacker makes two queries

Q1 = P∥g∥padding and Q2 = P∥padding∥g

for each guess g. Here the queries may be before or after the prefix and the
secret cookie in the plaintext, and padding is a short string that does not have
any character in Ω.

If the guess g is correct, then Q1 contains a longer repeated substring P∥g
and likely yields a shorter ciphertext; otherwise, if the guess is incorrect,
then both Q1 an Q2 likely contains only the repeated substring P, so their
corresponding plaintexts are likely to be compressed to the same length.

28



3.5. Existing techniques

The BREACH attack employed several techniques to improve the stability of
Two Tries by mitigating the effect of Huffman coding, including guess swap,
charset pools, dynamic padding and looking ahead [19, Section 2.4]. However,
the attack may still miss the correct guess or identify multiple candidates
for an unknown character.

16K-1

Rizzo and Duong [48] described an attack technique called 16K-1, which can
reduce the average number of queries by an attacker to around ℓ⌈log|Ω|⌉.
However, the attack leverages a feature in TLS and does not apply to other
compression side channels in general.

To recover the first unknown character in ck, a 16K-1 attacker maintains
a candidate set cands for the unknown character, initialised to be Ω, and
repeats the following process until |cands| = 1:

• first, the attacker makes a query Q of around 16KiB such that the
plaintext is split into two TLS records, each compressed separately,
and the only unknown character in the first record is ck[1];

• then, the attacker checks every g ∈ cands, only keeping a guess in
cands if substituting the unknown character in the record to g yields a
ciphertext of the same length.

After that, the attacker regards the only element in cands as the unknown
character in ck, and proceeds to guess the rest of ck character-by-character
in similar ways.

It is clear that the technique can recover ck correctly with high probability.
Rizzo and Duong [48] did not specify the method of selecting the query Q,
but it can be inferred that the Q consists of a half of the guesses in cands, so
that a half of the guesses are encoded more efficiently by Huffman coding,
and and the other half are encoded with more bytes. Therefore, each query
can shrink the size of |cands| by 2, equivalent to a binary search.

Rizzo further claimed12 that 16K-1 can be fine tuned to use as few as 4
queries to recover an unknown character when |Ω| = 64, which may require
a different method of selecting Q than what we describe, e.g. sampling each
character of Q according to a skewed distribution on cands.

Divide and conquer

Despite not having been covered in [19, 48], the divide-and-conquer tech-
nique for compression side-channel attacks is often associated with CRIME
and BREACH and is sometimes confused with the 16K-1 technique. This

12https://twitter.com/julianor/status/245943430570704896
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technique was likely introduced by Thomas Pornin and later rediscovered
in [26].

The divide-and-conquer technique is similar to 16K-1, except for the choice
of Q and the way of updating the candidate set cands. Suppose the candidate
set cands for the first unknown character in ck is currently {g1, . . . , gm} for
some m > 1; the attacker makes a query Q of the form

P∥g1∥filler1∥P∥g2∥filler2 . . . ∥P∥g⌊m/2⌋

where filler1, . . . , filler⌊m/2⌋−1 are optional fillers to separate different guesses.
If the first unknown character in ck is in {g1, . . . , g⌊m/2⌋}, then Q contains
a repeated string P∥gi for some i ∈ [⌊m/2⌋] in addition to the prefixes
P, so its corresponding plaintext is likely compressed to a slightly smaller
length. Therefore, the attacker sets cands to {g1, . . . , g⌊m/2⌋} if the ciphertext
is shorter, and to {g⌊m/2⌋+1, . . . , gm} if the ciphertext is longer. In practice,
the attacker may need to use a variant of the Two Tries method to make the
signal visible. The expected number of queries is in theory around ℓ⌈log|Σ|⌉.

The divide-and-conquer technique can potentially be used to improve many
compression side-channel attacks. However, this technique likely suffers
from greater instability, which partly offsets the reduced number of queries.
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Chapter 4

Theoretical bounds

4.1 Overview

The main goal of this chapter is to derive upper bounds on the advantage
of an attacker in the cookie recovery (CR) game (Section 3.2.5).

In Section 4.2, we introduce two new security notions, the length-only cookie
recovery (LOCR) security and the length-only cookie indistinguishability
(LOCI) security. These two notions characterise the advantage for an un-
bounded adversary to recover a secret cookie or distinguish between two
cookies from the compressed lengths of the cookie and the adaptively cho-
sen inputs. Assuming the encryption scheme is IND-CPA secure, we use
standard techniques to derive a reduction from LOCR to CR in Theorem 4.1.

In Section 4.3, we bound the LOCR security of a compressor using its sensi-
tivity, which is the maximum length difference of the compressed data with
regard to the substitution of a single character. Intuitively, if the sensitiv-
ity of a compressor is very low, then each oracle answer in the LOCR game
only contains a small amount of information. We formalise this intuition in
Theorem 4.10. However, most compressors studied in [1] have a high sen-
sitivity, and we further prove in Appendix A that the existence of a highly
compressible string implies a non-constant sensitivity.

In Section 4.4, we bound the LOCR security of a compressor with its LOCI
security. Since our definition of the LOCI game hard-codes a pair of cookies,
we are able to fine-tune the bound we get in Lemma 4.19 by adjusting the
probability of each pair of cookies, similar to the coupling technique. As
a result, Lemma 4.19 unifies two different theorems: Theorem 4.21 bounds
the LOCR security with a dominating set, where every cookie is indistin-
guishable to a cookie in the dominating set, while Theorem 4.23 and Corol-
lary 4.25 bound the LOCR security by considering the ratio between the
probability of a cookie and the collective probability of cookies indistin-
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guishable to that cookie.

In Section 4.5, we apply Theorem 4.21 to analyse the LOCR security of
two simple compressors, the fixed-dictionary compressor defined in [2] and
Huffman coding. In particular, while the CR security of the fixed-dictionary
compressor was already analysed in [2], we point out that their security
analysis contains several flaws and provide a new proof.

In Section 4.6, we perform a case study of the effect of padding on compres-
sion side-channel attacks. Degabriele [9] studied random padding schemes
for length-hiding encryption, and demonstrated the superior performance
of Gaussian padding over uniform padding by evaluating its effect on a vari-
ant of the CRIME attack. We point out a gap between the difference hiding
game and the multisample distinguisher theorem (Theorem 3.10) in [9], and
bridge the gap with similar techniques as [7, 8]. Then, we bound the LOCR
security with the padding scheme by applying a corollary of Theorem 4.23.

As the best known compression side-channel attack requires Θ(ℓ log |Ω|)
attempts to recover a secret cookie in Ωℓ, and compression side-channel
attacks are generally sensitive to noise, some of the results in this chapter
may appear counter-intuitive. They are nevertheless justified by our refined
techniques for compression side-channel attacks in Chapters 5 and 6.

4.2 New security notions

In this section, we present two new security notions for a compressor, the
length-only cookie recovery (LOCR) security and the length-only cookie in-
distinguishability (LOCI) security.

4.2.1 Length-only cookie recovery (LOCR)

Intuitively, in the CR security game, if the scheme is a compress-then-encrypt
construction (Definition 3.9) with an underlying IND-CPA secure encryp-
tion scheme, then an adversary cannot learn much more than compressed
lengths. The bound in [2, Theorem 2] suggested that Alawatugoda et al. have
used this intuition, but we were unable to find any corresponding proof or
argument in their paper. Similar results on “removing” encryption were also
present in [17, 55].

For completeness, we formalise this intuition and give a proof using stan-
dard techniques.

We define the length-only cookie recovery (LOCR) game in Fig. 4.1. The
advantage of A is

AdvLOCR
C,DCK ,L(A) := Pr[LOCR(A, C,DCK, L)⇒ true].
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Game LOCR(A, C,DCK, L)

1 : ck←$ DCK
2 : ck′ ←$ AO()

3 : return ck = ck′

Oracle O(m′, m′′)

1 : m← m′∥ck∥m′′

2 : if |m| > L then
3 : return ⊥
4 : z←$ C(m)

5 : return |z|

Figure 4.1: The LOCR security game [2] for compressor C on Σ, cookie distribution DCK on
CK ⊆ Σk, and maximum length L, where k, L ∈ N+ and k ≤ L. The adversary A can be
computationally unbounded.

The LOCR security of compressor C with regard to cookie space DCK, maxi-
mum length L and number of queries q ∈N is

AdvLOCR
C,CK,L,q := sup{AdvLOCR

C,CK,L(A) : ∀A s.t. A makes at most q queries to O}.

Theorem 4.1 Let Γ = (C, D) be a compresion scheme on input alphabet Σ, and let
Π = (KGen,Enc,Dec) be a symmetric-key encryption scheme over message space
W ⊆ Ω+. For simplicity, we assume that ∃ω ∈ Ω, such that ∀s ∈ W , ω|s| ∈ W .

Let Π′ = (KGen′,Enc′,Dec′) be a compress-then-encrypt construction of Γ and Π
over message spaceM ⊆ Σ+. Let k, L ∈ N+ such that k ≤ L and

⋃L
i=k Σi ⊆ M.

Let DCK be a cookie distribution on CK ⊆ Σk.

For every CR adversary A that makes at most q queries to oracles E1 and E2, we
can construct an IND-CPA adversary B against Π that makes at most q queries to
the oracle LoR, such that

AdvCRΠ′,DCK ,L(A) ≤ AdvIND-CPA
Π (B) + AdvLOCR

C,CK,L,q.

Remark 4.2 Our construction of B runs the compressor C at most q times and
samples once from DCK. For the derived bound to be meaningful in the real world,
(i) the compressor C should be efficient, and (ii) the cookie distribution DCK should
be efficiently sampleable.

Proof Without loss of generality, assume that A makes at most q oracle
queries, and that A only makes valid queries, i.e. for every query E1(m′, m′′)
that A makes, m′, m′′ ∈ Σ∗, and |m′| + |m′′| ≤ L − k, and for every query
E2(m) that A makes, m ∈ M.

Let game G0(·) = CR(·, Π′,DCK, L), and game G1 be as in Fig. 4.2.

We construct an IND-CPA adversary B against Π from A as in Fig. 4.3. Since
A makes at most q queries, B also makes at most q queries to LoR. The ad-
versary B does not make invalid queries, because z ∈ W by the definition of
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Game G1(A)

1 : k←$ KGen′()

2 : ck←$ DCK
3 : ck′ ←$ AE1,E2()

4 : return ck = ck′

Oracle E1(m′, m′′)

1 : m← m′∥ck∥m′′

2 : if |m| > L then
3 : return ⊥
4 : z←$ C(m)

5 : c←$ Enc(k, ω|z|)

6 : return c

Oracle E2(m)

1 : c←$ Enc′(k, m)

2 : return c

Figure 4.2: The game G1. We modify oracle E1 to return the encryption of ω|z|.

Adversary BLoR()

1 : ck←$ DCK
2 : ck′ ←$ AE1,E2()

3 : if ck = ck′ then
4 : return 1
5 : else
6 : return 0

Oracle E1(m′, m′′)

1 : m← m′∥ck∥m′′

2 : if |m| > L then
3 : return ⊥
4 : z←$ C(m)

5 : c←$ LoR(z, ω|z|)

6 : return c

Oracle E2(m)

1 : z←$ C(m)

2 : c←$ LoR(z, z)
3 : return c

Figure 4.3: The adversary B.

compress-then-encrypt, ω|z| ∈ W by our assumption, and |z| = |ω|z||. The
answer to the oracle query LoR(z, z) has the same distribution as Enc(k, z).

If b = 0 in the IND-CPA game, then LoR(z, ω|z|) has the same distribution as
Enc(k, z); therefore, B simulates E1 and E2 perfectly for A in game G0, and
thus Pr[B()⇒ 1 | b = 0 ] = Pr[G0(A)⇒ true]. Otherwise, if b = 1 in the
IND-CPA game, then LoR(z, ω|z|) has the same distribution as Enc(k, ω|z|),
so B simulates E1 and E2 perfectly for A in game G1; therefore, we have
Pr[B()⇒ 1 | b = 1 ] = Pr[G1(A)⇒ true]. The advantage of B satisfies

AdvIND-CPA
Π (B) = |Pr[B()⇒ 1 | b = 0 ]− Pr[B()⇒ 1 | b = 1 ]|

= |Pr[G0(A)⇒ true]− Pr[G1(A)⇒ true]|,

so
Pr[G0(A)⇒ true] ≤ AdvIND-CPA

Π (B) + Pr[G1(A)⇒ true]. (4.1)

Define G2(·) = LOCR(·, C,DCK, L). We build a G2 adversary C on a G1
adversary A, as in Fig. 4.4.

By our assumptions on A, the G2 adversary C makes at most q queries to
the oracle O, and simulates game G1 perfectly for A. Therefore,

Pr[G1(A)⇒ true] = Pr[G2(C)⇒ true] ≤ AdvLOCR
C,DCK ,L,q. (4.2)
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Adversary CO()

1 : k←$ KGen()

2 : ck′ ←$ AE1,E2()

3 : return ck′

Oracle E1(m′, m′′)

1 : l ← O(m′, m′′)

2 : c←$ Enc(k, ωl)

3 : return c

Oracle E2(m)

1 : z←$ C(m)

2 : z←$ Enc(k, z)
3 : return c

Figure 4.4: The adversary C.

Combining Eq. (4.1) and Eq. (4.2), we get

AdvCRΠ′,DCK ,L(A) ≤ AdvIND-CPA
Π (B) + AdvLOCR

C,DCK ,L,q. □

4.2.2 Length-only cookie indistinguishability (LOCI)

Alawatugoda et al. also defined two indistinguishability-style security no-
tions, the random cookie indistinguishability (RCI) security and the chosen
cookie indistinguishability (CCI) security [2]. The CCI security requires that
it should be infeasible for an adversary to distinguish between two cookies
of their choice is in the plaintext, and the RCI security requires that it should
be infeasible for an adversary to distinguish between two randomly chosen
cookies known to the adversary. Alawatugoda et al. showed a sequence of
reductions IND-CPA⇒ CCI⇒ RCI⇒ CR and gave separating examples.

However, the CCI security can hardly be achieved by any non-trivial deter-
ministic compressor without being programmed to identify the cookie, and
the benefit of random RCI security is not clear except for bounding the CR
security. Therefore, we will not use these two security games in this thesis.
Instead, we will base our results on a more fine-grained indistinguishability
game.

Game LOCI(A, C, ck0, ck1, L)

1 : b←$ {0, 1}
2 : b′ ←$ AO(ck0, ck1)

3 : return b = b′

Oracle O(m′, m′′)

1 : m← m′∥ckb∥m′′

2 : if |m| > L then
3 : return ⊥
4 : z←$ C(m)

5 : return |z|

Figure 4.5: The LOCI security game for compressor C on Σ, cookies ck0, ck1 ∈ Σk, and maximum
length L, where k, L ∈N+, and k ≤ L. The adversary A can be computationally unbounded.

We define the length-only cookie indistinguishability (LOCI) game in Fig. 4.5.

35



4. Theoretical bounds

The advantage of A is

AdvLOCI
C,ck0,ck1,L(A) = |2 Pr[LOCI(A, C, ck0, ck1, L)⇒ true]− 1|.

We define the LOCI security of compressor C with regard to cookies ck0, ck1,
maximum length L and number of queries q ∈N as

AdvLOCI
C,ck0,ck1,L,q = sup{AdvLOCI

C,ck0,ck1,L(A) : ∀A s.t. A makes at most q queries to O}.

We point out that the LOCI security degenerates to a binary value when the
compressor C is deterministic.

Theorem 4.3 Let C be a compressor, k, L ≤ N+ such that k ≤ L, and let
ck0, ck1 ∈ Σk. If C is deterministic, then for all q ∈N, AdvLOCI

C,ck0,ck1,L,q ∈ {0, 1}.

Proof See Appendix B.1. □

4.3 Sensitivity

To simplify discussion, we first introduce an artificial concept called the coin
space. Without loss of generality, we assume that a compressor C uses the
same amount of coin tosses when handling all inputs of the same length.

Definition 4.4 (Coin space) Let C be a compressor, and ℓ ∈N+. The coin space
RC,ℓ is the set of random coins that C use for inputs of length ℓ.

Remark 4.5 Note that the coin space RC,ℓ is finite by definition.

We adapt the definition of additive sensitivity with regard to substitution
by Akagi et al. [1, Section 2.2], and extend their definition to also apply to
randomised compressors as well as more than one possible substitutions.

Definition 4.6 ((k-)sensitivity) Let C be a compressor on Σ, and ℓ, k ∈N+. The
k-sensitivity of C at length ℓ is

∆k(C, ℓ) = max
r∈RC,ℓ

max
s,s′∈Σℓ

HD(s,s′)≤k

(
∣∣C(s′; r)

∣∣− |C(s; r)|). (4.3)

If C is deterministic, then Eq. (4.3) can be simplified to

∆k(C, ℓ) = max
s,s′∈Σℓ

HD(s,s′)≤k

(
∣∣C(s′)∣∣− |C(s)|).

We refer to 1-sensitivity directly as sensitivity and let ∆(C, ℓ) = ∆1(C, ℓ).

We now prove some basic results on k-sensitivity.
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4.3. Sensitivity

Lemma 4.7 Let C be a compressor on Σ, ℓ ∈N+, r ∈ RC,ℓ. For all a, b ∈ Σℓ,

||C(b; r)| − |C(a; r)|| ≤ HD(a, b) · ∆(C, ℓ).

Proof Let k = HD(a, b), and let i1 < i2 < · · · < ik be the positions where a
and b differ. Let s0 = b, and for j ∈ [k], let sj = a1 . . . aij bij+1 . . . bl ∈ Σℓ. By
definition, sk = a1 . . . aik bik+1 . . . bl = a1 . . . aik aik+1 . . . al = a, and for ∀j ∈ [k],
HD(sj−1, sj) = 1. Therefore,

||C(b; r)| − |C(a; r)|| = ||C(sk; r)| − |C(s0; r)||

=

∣∣∣∣∣ k

∑
i=1

(|C(si; r)| − |C(si−1; r)|)
∣∣∣∣∣

≤
k

∑
i=1
|(|C(si; r)| − |C(si−1; r)|)| ≤ k · ∆(C, ℓ). □

Corollary 4.8 Let C be a compressor, ℓ ∈N+, r ∈ RC,ℓ. We have

∆(C, ℓ) ≥ 1
ℓ

(
max
s∈Σℓ
|C(s; r)| −min

s∈Σℓ
|C(s; r)|

)
.

Lemma 4.9 Let C be a compressor, ℓ ∈N+. The following claims hold:

a) For all k1, k2 ∈N+ where k1 ≤ k2, we have ∆k1(C, ℓ) ≤ ∆k2(C, ℓ);

b) For all k ∈N+, we have ∆k(C, ℓ) ≤ k · ∆(C, ℓ);

Proof Claim a) holds by the definition of k-sensitivity.

For claim b), note that

∆k(C, ℓ) = max
r∈RC,ℓ

max
s,s′∈Σℓ

HD(s,s′)≤k

(
∣∣C(s′; r)

∣∣− |C(s; r)|)

≤ max
r∈RC,ℓ

max
s,s′∈Σℓ

HD(s,s′)≤k

HD(s′, s) · ∆(C, ℓ) (Lemma 4.7)

≤ k · ∆(C, ℓ). □

4.3.1 Generic bound

Theorem 4.10 Let C be a compressor on Σ, let k, L ∈ N+ such that k ≤ L, let
DCK be a cookie distribution on CK ⊆ Σk, and let

δk,L = max
ℓ∈{k,...,L}

∆k(C, ℓ).

For every q ∈N, we have

AdvLOCR
C,DCK ,L,q ≤ max

S⊆CK
|S|≤(1+δk,L)

q

PrDCK [S].

37



4. Theoretical bounds

Remark 4.11 One may also apply Fano’s inequality to obtain a likely worse bound.

The intuition is that if we assume that the compressor is deterministic, then
each oracle query only has δk,L + 1 possible outcomes. An adversary maps
(δk,L + 1)q inputs to |CK| possible outputs in the end, and the proof is done
by a direct argument. We extend the intuition to all compressors via a sim-
ple derandomisation, where we fix the random coins for answering oracle
queries and give them to the adversary beforehand.

Proof Let A be an LOCR adversary that makes at most q queries.

Without loss of generality, we assume that A makes exactly q queries to O
in the LOCR game, and that A does not make invalid queries, i.e. for every
query O(m′, m′′) that A makes, m′, m′′ ∈ Σ∗, and |m′|+ |m′′| ≤ L− k.

Game G(A, q)

1 : iq ← 0

2 : for j = k, . . . , L do
3 : r1,j . . . rq,j ←$RC,j

4 : R← {ri,j}i∈[q],j∈{k,...,L}

5 : ck←$ DCK
6 : ck′ ←$ AO(R)

7 : return ck = ck′

Oracle O(m′, m′′)

1 : iq ← iq + 1

2 : m← m′∥ck∥m′′

3 : r ← riq ,|m|

4 : c← C(m; r)

5 : ℓ0 ← min
ck′∈CK

∣∣C(m′∥ck′∥m′′; r)
∣∣

6 : return |c| − ℓ0

Figure 4.6: Game G. Note that the oracle O does not use any fresh random coins.

Consider the game G defined in Fig. 4.6. Game G selects all randomness
it may use when answering oracle queries, and gives it to the adversary A.
When A queries O on input m′, m′′, game G derandomises the compressor
C with the corresponding random coins, and computes a “differential” com-
pressed length, |c| − ℓ0. By definition, |c| − ℓ0 ≤ maxℓ∈{k,...,L} ∆k(C, ℓ) = δk,L.

Game BO(R)

1 : {ri,j}i∈[q],j∈{k,...,L} ← R

2 : iq ← 0

3 : ck′ ←$ AO′()

4 : return ck′

Oracle O′(m′, m′′)

1 : iq ← iq + 1

2 : d← O(m′, m′′)

3 : j←
∣∣m′∣∣+ ∣∣m′′∣∣+ k

4 : ℓ0 ← min
ck′∈CK

∣∣∣C(m′∥ck∥m′′; riq ,j)
∣∣∣

5 : return ℓ0 + d

Figure 4.7: Adversary B.
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4.3. Sensitivity

We construct an adversary B playing in game G from A, as in Fig. 4.7. For
each oracle query made by the LOCR adversary A, the adversary B queries
its own oracle and uses the randomness it received at the beginning of the
game to recover the compressed length. Therefore, B simulates the LOCR
game perfectly for A, and

AdvLOCR
C,DCK ,L(A) = Pr[G(B, q)⇒ true]. (4.4)

Let B′ be obtained by fixing the random coins used by B to maximise the
probability that game G returns true. By definition, B′ is deterministic, and

Pr[G(B, q)⇒ true] ≤ Pr
[
G(B′, q)⇒ true

]
. (4.5)

For i ∈ [q], let di denote the answer to the i-th oracle query to O′. We observe
that for adversary B′ in game G, the final output ck′ only depends on R and
d1, . . . , dq, which we can write as

ck′ = fB′(R, d1, . . . , dq).

Let E(d1,...,dq) denote the event that the answers to the oracle queries made by
B are d1, . . . , dq, respectively. Let R be arbitrarily fixed. Let

S′(R) =
{

fB′(R, d1, . . . , dq) : d1, . . . , dq ∈ {0, . . . , δk,L}
}

.

By definition, |S′(R)| ≤ (1 + δk,L)
q. For all ck ∈ CK, we have

Pr
[
G(B′, q)⇒ true

∣∣ R, ck
]

= ∑
d1,...,dq∈{0,...,δk,L}

Pr
[

E(d1,...,dq)

∣∣∣ R, ck
]

Pr
[
B(R)⇒ ck

∣∣∣ E(d1,...,dq)

]
≤ max

d1,...,dq∈{0,...,δk,L}
Pr
[
B(R)⇒ ck

∣∣∣ E(d1,...,dq)

]
= 1S′(R)(ck).

Therefore,

Pr
[
G(B′, q)⇒ true

∣∣ R
]
≤ ∑

ck∈CK
1ck∈S′(R) PrDCK [ck]

= PrDCK
[
S′(R)

]
≤ ∑

S⊆CK
|S|≤(1+δk,L)

q

PrDCK [S]. (4.6)

Applying the law of total probability on Eq. (4.6), we get

Pr
[
G(B′, q)⇒ true

]
≤ ∑

S⊆CK
|S|≤(1+δk,L)

q

PrDCK [S]. (4.7)

Finally, combining Eq. (4.4), Eq. (4.5) and Eq. (4.7) completes the proof. □
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4. Theoretical bounds

Corollary 4.12 For every q ∈N,

AdvLOCR
C,DCK ,L,q ≤ (1 + δk,L)

q max
ck∈CK

PrDCK [ck].

Equivalently, for every LOCR adversaryA, let q be the maximum number of queries
that A makes. We have

q ≥
logAdvLOCR

C,DCK ,L(A)− log maxck∈CK PrDCK [ck]
log(1 + δk,L)

.

Remark 4.13 This corollary can also be proved directly by modifying our proof
of Theorem 4.10, where we simulate game G for the adversary B by answering its
oracle queries with integers sampled uniformly at random from {0, . . . , δk,L}.

Corollary 4.14 Let UCK be a uniform distribution on CK ⊆ Σk. For every q ∈N,

AdvLOCR
C,UCK ,L,q ≤

(1 + δk,L)
q

|CK| ,

Equivalently, for every LOCR adversaryA, let q be the maximum number of queries
that A makes. We have

q ≥
logAdvLOCR

C,UCK ,L(A) + log|CK|
log(1 + δk,L)

.

Remark 4.15 If δk,L is a small constant, then the adversary has to make O(log|CK|)
queries to succeed with a high probability, which can very roughly be imitated with
a binary search.

4.3.2 Negative results

Theorem 4.10 and its corollaries may give the impression that compressors
with low constant sensitivities should be preferred in order to mitigate com-
pression side-channel attacks. However, most compressors considered by
Akagi et al. [1] have a sensitivity of Ω(

√
ℓ), making our results much less

useful, especially if the maximum length ℓ is large.

We further argue in Appendix A that a constant sensitivity is out of reach
for most compressors. For example, one of our results shows that for com-
pressor C, α ∈ (0, 1) and ℓ ∈ N, if there exists a string of length ℓ that can
be compressed by C to a string of length O(ℓα), then ∆(C, ℓ) = Ω(log ℓ). We
refer interested readers to Appendix A for more details.

On one hand, the negative results suggest the need for a more refined secu-
rity metric. On the other hand, they hint that it is possible to design attacks
that require fewer queries than the divide-and-conquer attack by making
specifically crafted queries, which we will show in subsequent chapters.
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4.4. From LOCI to LOCR

4.4 From LOCI to LOCR

4.4.1 Indistinguishable sets

Definition 4.16 ((q, ε)-indistinguishable) Let C be a compressor on Σ, k, L ∈
N+ such that k ≤ L, CK ⊆ Σk. For q ∈ N and 0 ≤ ε ≤ 1, two cookies
ck0, ck1 ∈ CK are (q, ε)-indistinguishable if AdvLOCI

C,ck0,ck1,L,q ≤ ε.

We call ck0 and ck1 ε-indistinguishable if AdvLOCI
C,ck0,ck1,L,q ≤ ε for all q ∈N.

Definition 4.17 (Indistinguishable set) Let C be a compressor on Σ, k, L ∈N+

such that k ≤ L, CK ⊆ Σk. For ck ∈ CK, the (q, ε)-indistinguishable set of ck is

SC,CK,L,q,ε(ck) = {ck′ ∈ CK : AdvLOCI
C,ck,ck′,L,q ≤ ε}.

We may omit C, CK and L from the subscript if they are clear from the context.

Note that both definitions do not rely on the cookie distribution DCK.

The relation ck0 ∈ Sq,ε(ck1) is reflexive and symmetric, but not transitive.
However, it is clear that if ck0 ∈ Sq1,ε1(ck1) and ck1 ∈ Sq2,ε2(ck2), then ck0 ∈
Smax{q1,q2},ε1+ε2

(ck2).

Lemma 4.18 Let C be a compressor on Σ, k, L ∈ N+ such that k ≤ L, CK ⊆ Σk,
q ∈N, 0 ≤ ε ≤ 1. For all ck0, ck1 ∈ CK, if ck0 ∈ Sq,ε(ck1), then ck1 ∈ Sq,ε(ck0).

Proof Suppose, for contradiction, that there exists ck0, ck1 ∈ CK, such that
ck0 ∈ Sq,ε(ck1), and ck1 /∈ Sq,ε(ck0). By definition, AdvLOCI

C,ck0,ck1,L,q ≤ ε, and
AdvLOCI

C,ck1,ck0,L,q > ε. Therefore, there exists a LOCI adversaryA against C, ck1, ck0, L
that makes at most q queries, such that

ε < AdvLOCI
C,ck1,ck0,L(A) ≤ AdvLOCI

C,ck1,ck0,L,q.

Let LOCI adversaryA′ against C, ck0, ck1, L be obtained by runningA(ck1, ck0)
to obtain a guess b′, and then returning 1− b′. By definition, A′ also makes
at most q queries. We have

AdvLOCI
C,ck0,ck1,L,q ≥ AdvLOCI

C,ck0,ck1,L(A′)
=
∣∣2 Pr

[
LOCI(A′, C, ck0, ck1, L)⇒ true

]
− 1
∣∣

= |2 Pr[LOCI(A, C, ck1, ck0, L)⇒ true]− 1|
= AdvLOCI

C,ck1,ckq,L(A) > ε.

We arrived at a contradiction since AdvLOCI
C,ck0,ck1,L,q ≤ ε. □
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4.4.2 Bounding LOCR

Lemma 4.19 Let C be a compressor on Σ, let k, L ∈ N+ such that k ≤ L, and let
DCK be a cookie distribution on CK ⊆ Σk. Let q ∈N and 0 ≤ ε ≤ 1.

Let A be a LOCR adversary against C,DCK and L that makes at most q queries.
For adversary A, let {Pck}ck∈CK be a set of distributions on CK, such that for every
ck ∈ CK, we have Supp(Pck) ⊆ Sq,ε(ck). Then

AdvLOCR
C,CK,L(A) ≤ ε′ + ∑

ck0∈CK
max

ck1∈Sq,ε(ck0)
PrPck1

[ck0]PrDCK [ck1],

where

ε′ = ∑
ck0∈CK

∑
ck1∈Sq,ε(ck0)

PrPck1
[ck0]PrDCK [ck1]Adv

LOCI
C,ck0,ck1,L,q ≤ ε.

Remark 4.20 The distributions {Pck}ck∈CK, as we will show, are artificial concepts
that have no concrete meaning in the real world and are only used to simplify our
proof for subsequent theorems. They can be selected arbitrarily and do not need
to be efficiently sampleable; the selection of distributions may also depend on the
adversary A, in addition to other parameters.

The intuition is that an adversary should not be able to do much better than
randomly guessing an element in Sq,ε(ck) to recover ck. However, there are
some caveats that require careful treatment.

Proof Without loss of generality, we assume that A makes exactly q queries.
We construct a LOCI adversary B from A as in Fig. 4.8. Note that we use the
same construction of B for all ck0, ck1 ∈ CK.

Adversary BO(ck0, ck1)

1 : ck′ ←$ AO()

2 : if ck′ = ck1 then
3 : return 1
4 : else
5 : return 0

Figure 4.8: Construction of the LOCI adversary B.

The LOCI adversary B simulates the LOCR game for A, also making exactly
q queries to the oracle (Fig. 4.1). The adversary B returns 1 if A outputs
ck1, and returns 0 otherwise. The adversary B simulates perfectly the LOCR
game for A conditioned on ck = ckb in the LOCR game.
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4.4. From LOCI to LOCR

By definition, for all ck0, ck1 ∈ CK,

AdvLOCI
C,ck0,ck1,L,q ≥ AdvLOCI

C,ck0,ck1,L(B)
= |Pr[B(ck0, ck1)⇒ 1 | b = 0 ]− Pr[B(ck0, ck1)⇒ 1 | b = 1 ]|
=
∣∣Pr
[
ck′ = ck1

∣∣ b = 0
]
− Pr

[
ck′ = ck1

∣∣ b = 1
]∣∣.

Translating the above result to the LOCR game, we get

AdvLOCI
C,ck0,ck1,L,q ≥ |Pr[A()⇒ ck1 | ck = ck0 ]− Pr[A()⇒ ck1 | ck = ck1 ]|,

and it immediately follows that

Pr[A()⇒ ck1 | ck = ck1 ] ≤ AdvLOCI
C,ck0,ck1,L,q + Pr[A()⇒ ck1 | ck = ck0 ]. (4.8)

To simplify notation, let pck1|ck1
be a shorthand for Pr[A()⇒ ck1 | ck = ck1 ],

and pck1|ck0
be a shorthand for Pr[A()⇒ ck1 | ck = ck0 ]. Equation (4.8) is

then equivalent to pck1|ck0
≤ AdvLOCI

C,ck0,ck1,L,q + pck1|ck0
.

For all ck0, ck1 ∈ CK, if ck1 /∈ Sq,ε(ck0), then by Lemma 4.18, ck0 /∈ Sq,ε(ck1),
and since Supp(Pck1) ⊆ Sq,ε(ck1), we have PrPck1

[ck0] = 0. Therefore,

AdvLOCR
C,DCK ,L(A) = ∑

ck1∈CK
PrDCK [ck1]pck1|ck1

= ∑
ck1∈CK

∑
ck0∈CK

PrPck1
[ck0]PrDCK [ck1]pck1|ck1

= ∑
ck0∈CK

∑
ck1∈CK

PrPck1
[ck0]PrDCK [ck1]pck1|ck1

= ∑
ck0∈CK

∑
ck1∈Sq,ε(ck0)

PrPck1
[ck0]PrDCK [ck1]pck1|ck1

. (4.9)

Applying Eq. (4.8) to Eq. (4.9), we get

AdvLOCR
C,DCK ,L(A) ≤ ∑

ck0∈CK
∑

ck1∈Sq,ε(ck0)

PrPck1
[ck0]PrDCK [ck1]

(
AdvLOCI

C,ck0,ck1,L,q + pck1|ck0

)
= ε′ + ∑

ck0∈CK
∑

ck1∈Sq,ε(ck0)

PrPck1
[ck0]PrDCK [ck1]pck1|ck0

≤ ε′ + ∑
ck0∈CK

max
ck1∈Sq,ε(ck0)

PrPck1
[ck0]PrDCK [ck1].

We complete the proof by showing that

ε′ = ∑
ck0∈CK

∑
ck1∈Sq,ε(ck0)

PrPck1
[ck0]PrDCK [ck1]Adv

LOCI
C,ck0,ck1,L,q

≤ ∑
ck0∈CK

∑
ck1∈Sq,ε(ck0)

PrPck1
[ck0]PrDCK [ck1]ε

≤ ∑
ck1∈CK

∑
ck0∈CK

PrPck1
[ck0]PrDCK [ck1]ε

= ∑
ck1∈CK

PrDCK [ck1]ε = ε. □
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Determining the optimal selection for {Pck}ck∈CK is likely difficult without
knowing the exact structure of indistinguishable sets. However, we can de-
rive useful results by considering some special cases.

Theorem 4.21 (Dominating set bound) Let C be a compressor on Σ, let k, L ∈
N+ such that k ≤ L, and let DCK be a cookie distribution on CK ⊆ Σk. Let q ∈N

and 0 ≤ ε ≤ 1.

For every set T ⊆ CK be such that⋃
ck∈T

Sq,ε(ck) = CK.

We have
AdvLOCR

C,DCK ,L,q ≤ ε + ∑
ck0∈T

max
ck1∈Sq,ε(ck0)

PrDCK [ck1].

Remark 4.22 Setting T = CK guarantees that
⋃

ck∈T Sq,ε(ck) = CK, but this
case is not very interesting.

A variant of this theorem may be used to prove Theorem 4.10.

Proof Let t = |T|. We write T = {ck1, . . . , ckt}. For every i ∈ [t], let

S′(cki) = Sq,ε(cki)\
i−1⋃
j=1

Sq,ε(ck j).

It follows that
⋃

ck∈T S′(ck) = CK, and ∀i, j ∈ [m] where i ̸= j, we have
S′(cki) ∩ S′(ck j) = ∅.

For all ck0, ck1 ∈ CK, let

PrPck1
[ck0] =

{
1, ck0 ∈ T ∧ ck1 ∈ S′(ck0)

0, otherwise
.

It is easy to see that the distributions {Pck}ck∈CK are well-defined.

Applying Lemma 4.19, we get

AdvLOCR
C,CK,L,q ≤ ε + ∑

ck0∈CK
max

ck1∈Sq,ε(ck0)
1T(ck0)1S′(ck0)(ck1)PrDCK [ck1]

= ε + ∑
ck0∈CK

1T(ck0) max
ck1∈S′(ck0)

PrDCK [ck1]

= ε + ∑
ck0∈T

max
ck1∈S′(ck0)

PrDCK [ck1]

≤ ε + ∑
ck0∈T

max
ck1∈Sq,ε(ck0)

PrDCK [ck1]. □
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Theorem 4.23 (Ratio-based bound) Let C be a compressor on Σ, let k, L ∈N+

such that k ≤ L, and let DCK be a cookie distribution on CK ⊆ Σk. Let q ∈N and
0 ≤ ε ≤ 1. Then

AdvLOCR
C,DCK ,L,q ≤ ε′ + ∑

ck0∈Supp(DCK)
PrDCK [ck0] max

ck1∈Sq,ε(ck0)

PrDCK [ck1]

PrDCK
[
Sq,ε(ck1)

] ,

where

ε′ = ∑
ck0∈Supp(DCK)

PrDCK [ck0] ∑
ck1∈Sq,ε(ck0)

PrDCK [ck1]

PrDCK
[
Sq,ε(ck1)

]AdvLOCI
C,ck0,ck1,L,q ≤ ε.

Remark 4.24 As we will also show in the proof, if ck0 ∈ Supp(DCK), then
PrDCK

[
Sq,ε(ck1)

]
> 0, so the inequality is indeed well-defined.

Proof For every ck0, ck1 ∈ CK, if PrDCK
[
Sq,ε(ck1)

]
> 0, then

PrPck1
[ck0] :=


PrDCK [ck0]

PrDCK [Sq,ε(ck1)]
, ck0 ∈ Sq,ε(ck1)

0, otherwise
,

whereas if PrDCK
[
Sq,ε(ck1)

]
= 0, then PrPck1

[ck0] := 1ck1=ck0 .

Note that for all ck0 ∈ CK and ck1 ∈ Sq,ε(ck0), if ck0 /∈ Supp(DCK), then

PrPck1
[ck0]PrDCK [ck1] = 0; (4.10)

otherwise, if ck0 ∈ Supp(DCK), then since ck0 ∈ Sq,ε(ck1) by Lemma 4.18,

PrDCK
[
Sq,ε(ck1)

]
≥ PrDCK [ck0] > 0,

and thus

PrPck1
[ck0] =

PrDCK [ck0]

PrDCK
[
Sq,ε(ck1)

] . (4.11)

Applying Lemma 4.19 then gives

AdvLOCR
C,CK,L,q ≤ ε′ + ∑

ck0∈CK
max

ck1∈Sq,ε(ck0)
PrPck1

[ck0]PrDCK [ck1]

= ε′ + ∑
ck0∈Supp(DCK)

max
ck1∈Sq,ε(ck0)

PrPck1
[ck0]PrDCK [ck1] (Eq. (4.10))

= ε′ + ∑
ck0∈Supp(DCK)

PrDCK [ck0] max
ck1∈Sq,ε(ck0)

PrDCK [ck1]

PrDCK
[
Sq,ε(ck1)

] , (Eq. (4.11))

where by applying Lemma 4.19, Eq. (4.10) and Eq. (4.11), we get

ε′ = ∑
ck0∈CK

∑
ck1∈Sq,ε(ck0)

PrPck1
[ck0]PrDCK [ck1]Adv

LOCI
C,ck0,ck1,L,q

= ∑
ck0∈Supp(DCK)

PrDCK [ck0] ∑
ck1∈Sq,ε(ck0)

PrDCK [ck1]

PrDCK
[
Sq,ε(ck1)

]AdvLOCI
C,ck0,ck1,L,q. □
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Corollary 4.25 (Threshold-based bound) Let C be a compressor on Σ, let k, L ∈
N+ such that k ≤ L, and let DCK be a cookie distribution on CK ⊆ Σk. Let q ∈N

and 0 ≤ α, β, ε ≤ 1. Let

T =
{

ck ∈ CK : PrDCK [ck] > β PrDCK
[
Sq,ε(ck)

]}
.

If PrDCK [T] ≤ α, then

AdvLOCR
C,CK,L,q ≤ ε + α + β− αβ.

Proof By Theorem 4.23,

AdvLOCR
C,CK,L,q ≤ ε + ∑

ck0∈Supp(CK)
PrDCK [ck0] max

ck1∈Sq,ε(ck0)

PrDCK [ck1]

PrDCK
[
Sq,ε(ck1)

] . (4.12)

By the definition of T, for every ck0 ∈ Supp(CK),

max
ck1∈Sq,ε(ck0)

PrDCK [ck1]

PrDCK
[
Sq,ε(ck1)

] ≤ β + max
ck1∈Sq,ε(ck0)∩T

{
PrDCK [ck1]

PrDCK
[
Sq,ε(ck1)

] − β

}

≤ β + ∑
ck1∈T

1Sq,ε(ck0)(ck1)

(
PrDCK [ck1]

PrDCK
[
Sq,ε(ck1)

] − β

)

= β + ∑
ck1∈T

1Sq,ε(ck1)(ck0)

(
PrDCK [ck1]

PrDCK
[
Sq,ε(ck1)

] − β

)
,

where the last equality is due to Lemma 4.18.

Plugging the above inequality into Eq. (4.12) gives us

AdvLOCR
C,CK,L,q ≤ ε + β + ∑

ck0∈Supp(DCK)
PrDCK [ck0] ∑

ck1∈T
1Sq,ε(ck1)

(ck0)

(
PrDCK [ck1]

PrDCK
[
Sq,ε(ck1)

] − β

)

= ε + β + ∑
ck1∈T

(
PrDCK [ck1]

PrDCK
[
Sq,ε(ck1)

] − β

)
∑

ck0∈Supp(DCK)
1Sq,ε(ck1)

(ck0)PrDCK [ck0]

= ε + β + ∑
ck1∈T

(
PrDCK [ck1]

PrDCK
[
Sq,ε(ck1)

] − β

)
PrDCK

[
Sq,ε(ck1)

]
= ε + β + ∑

ck1∈T

(
PrDCK [ck1]− β PrDCK

[
Sq,ε(ck1)

])
≤ ε + β + ∑

ck1∈T
(1− β)PrDCK [ck1]

≤ ε + β + (1− β)α = ε + α + β− αβ.

□

We should be able to derive similar results based on the sizes of indistin-
guishable sets instead of ratios. Finally, it seems possible to get more intel-
ligible results if we relax the advantage by ε.
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4.5 Bounds on simple compressors

We use Theorem 4.21 to study the LOCR security of two simple compressors,
the fixed-dictionary compressor defined in [2] and Huffman coding.

4.5.1 Fixed-dictionary compressor

Construction

FDD,w,ℓ(x)

1 : y← o
2 : i← 1
3 : {s1, . . . , sd} ← D

4 : while i ≤ |x| − w + 1 do
5 : if ∃j ∈ [d] s.t. sj = x[i, i + w− 1] then

6 : y← y∥encoding of j
7 : i← i + w
8 : else
9 : y← y∥encoding of x[i, i + ℓ− 1]

10 : i← i + ℓ

11 : return y

Figure 4.9: The fixed-dictionary compressor FDD,w,ℓ defined in [2].

Figure 4.9 shows the fixed-dictionary compressor FDD,w,ℓ defined in [2],
modified to conform to our notation. The fixed dictionary D is a set of
d strings {s1, . . . , sd}, each of length w. The compressor FDD,w,ℓ iterates
through the input. At the i-th character in x, if x[i, i + w− 1], the substring
of length w starting from the i-th character in x, corresponds to entry sj in
the dictionary, then the compressor outputs encoding of the index j, and
advances the pointer by w; otherwise, the compressor outputs the next ℓ
characters x[i, i + ℓ− 1], and advances the pointer by ℓ.

The encoding scheme used in the fixed-dictionary compressor is only spec-
ified for a special case for evaluation, but remains generally unspecified
in [2]. As the encoding scheme clearly matters for a security proof, we as-
sume that the encoding scheme encodes every string in of length ℓ to the
same length ℓ′, which is consistent with the note on the decompressor pseu-
docode in [2].
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Flaws in [2, Appendix C]

We restate the the theorem on the CR security of the fixed-dictionary com-
pressor in [2], with necessary modifications to suit our definitions. In par-
ticular, because the corresponding security analysis in [2] does not contain
any analysis of the encryption scheme, we directly translate their results to
the LOCR security. We also fixed their confusion between w and ℓ.

Proposition 4.26 (Adapted from [2, Theorem 2]) Let Ω be an alphabet, and let
d, w, ℓ, n ∈N+. Let D be a set of d strings {s1, . . . , sd}, each of length w. Let UCK
be a uniform distribution on CK = Ωn. Let A be a LOCR adversary against the
fixed-dictionary compressor FDD,w,ℓ. Then, for every q ∈N,

AdvLOCR
FDD,w,ℓ,UCK ,q(A) ≤ 2−∆,

where

∆ ≥
(

1− d

(
1−

(
1− 1
|Ω|w

)n−3w+1
))
· log

(
|Ω|n−2w − |Ω|n−2w · d

(
1−

(
1− 1
|Ω|w

)n−3w+1
))

.

The security analysis for [2, Theorem 2] can be found in [2, Appendix C].
We highlight two notable flaws in the analysis:

• The proof of [2, Lemma 1] is incorrect. More specifically, for a fixed
x ∈ Ωw and ck←$ UCK, the proof used an inequality

Pr

[
n−w+1∧

i=1

x ̸= ck[i, i + w− 1]

]
≥

n−w+1

∑
i=1

Pr[x ̸= ck[i, i + w− 1]],

which was unexplained and clearly does not hold.

• In the security analysis, ∆ appears to come from the conditional Shan-
non entropy of the secret cookie, but then 2−∆ cannot bound the LOCR
advantage of A, as Shannon entropy may be much larger than min-
entropy, while the latter is the correct notion to use in this context.

The security analysis for [2, Theorem 2] is not easily repairable, as it relies
heavily on Shannon entropy.

New proof

We provide a new security proof for the LOCR security of the fixed-dictionary
compressor. The proof follows the general idea in [2, Appendix C] but uses
Theorem 4.21 in place of entropy.

Theorem 4.27 Let Ω be an alphabet, and let d, w, ℓ, n ∈ N+. Let D be a set of
d strings {s1, . . . , sd}, each of length w. Let UCK be a uniform distribution on
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CK = Ωn. Let A be a LOCR adversary against the fixed-dictionary compressor
FDD,w,ℓ. Then, for every q ∈N,

AdvLOCR
FDD,w,ℓ,UCK ,q(A) ≤

d(n− w + 1)
|Ω|w

+
1

|Ω|n−2w+2 .

Proof If n− 2w + 2 ≤ 0, then the theorem trivially holds; assume hereafter
that n− 2w + 2 > 0.

Let x ⪯ ck denote that x is a substring of ck.

First, we get a rough bound for Pr[∃x ∈ D : x ⪯ ck] by applying the union
bound twice:

Pr[∃x ∈ D : x ⪯ ck] ≤ ∑
x∈D

Pr[x ⪯ ck]

≤ ∑
x∈D

n−w+1

∑
i=1

Pr[x = ck[i, i + w− 1]]

≤ ∑
x∈D

n−w+1

∑
i=1

1
|Ω|w

=
d(n− w + 1)
|Ω|w

,

in which all probabilities are conditional to ck←$ UCK. Let

S1 := {ck : ∃x ∈ D : x ⪯ ck}.

We proceed by using the same intuition as in [2] that a CRIME attacker
can at best recover the (w − 1)-prefix and (w − 1)-suffix of ck. For every
ckpre, cksuf ∈ Ωw−1, let Kckpre,cksuf ⊆ Ωn be

Kckpre,cksuf =
{

ckpre∥ckmid∥cksuf : ckmid ∈ Ωn−2w+2} \S1,

and let S2 be an arbitrary minimum set such that for every ckpre, cksuf ∈
Ωw−1, if Kckpre,cksuf ̸= ∅, then S2 ∩ Kckpre,cksuf ̸= ∅. Because S2 is minimum, we
have |S2| ≤ |Ω|2w−2. Let T = S1 ∪ S2.

We show that for every ck0 ∈ Ωn, there exists some ck1 ∈ T that is 0-
indistinguishable (i.e. perfectly indistinguishable) from ck0: If ∃x ∈ D : x ⪯
ck0, then ck0 ∈ S1 ⊆ T, and we let ck1 = ck0. Otherwise, ck0 /∈ S1, so
there exist ckpre, cksuf ∈ Ωw−1 such that ck0 ∈ Kckpre,cksuf , and by definition,
there exists ck1 ∈ Kckpre,cksuf such that ck1 ∈ S2 ⊆ T. The cookies ck0 and
ck1 share the same (w− 1)-prefix and (w− 1)-suffix and do not contain any
substring in the dictionary, so by a similar argument as in [2], ck0 and ck1
are 0-indistinguishable if we assume the encoding scheme encodes strings
of length ℓ to the same length ℓ′.
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Since cookies are uniformly distributed, applying Theorem 4.21 gives

AdvLOCR
FDD,w,ℓ,UCK ,q(A) ≤

|T|
|Ω|n

≤ |S1|
|Ω|n

+
|S2|
|Ω|n

≤ Pr[∃x ∈ D : x ⪯ ck] +
1

|Ω|n−2w+2

≤ d(n− w + 1)
|Ω|w

+
1

|Ω|n−2w+2 . □

Huffman coding

We do not specify the technical details of the Huffman coding compres-
sor CH here; instead, we remark that the Huffman coding compressor is
what we call insensitive to permutations; that is, for all x, x′ ∈ Σ+, if x′ is
a permutation of x, then |CH(x)| = |CH(x′)|. The reason is that Huffman
coding derives prefix codes solely from the frequencies of each character in
the plaintext, so the encoding of each character stays the same after per-
mutation, and therefore the compressed length also does not change after
permutation. Note that a compressor that uses a set of fixed Huffman codes
are also insensitive to permutations.

Definition 4.28 A deterministic compressor C on Σ is insensitive to permutations,
if for every ℓ ∈N+ and for every x, x′ ∈ Σℓ, if there exists a bijection f : [ℓ]→ [ℓ]
such that for every i ∈ [ℓ], x[i] = x′[ f (i)], then |C(x)| = |C(x′)|.

Theorem 4.29 Let CH be a compressor on Σ that is insensitive to permutations, let
k ∈N+, and let UCK be a uniform cookie distribution on CK = Ωk, where Ω ⊆ Σ.
Then for every q ∈N,

AdvLOCR
CH ,UCK ,q(A) ≤

(
e
|Ω| +

e
k

)k

,

where e = 2.718 . . . is the Euler’s number.

Proof First, note that for two cookies ck0, ck1 ∈ Ωk, if ck1 is a permutation
of ck0, then they are perfectly indistinguishable. The reason is that for all
possible queries m′, m′′ ∈ Σ∗, if ck1 is a permutation of ck0, then m′∥ck1∥m′′ is
also a permutation of m′∥ck0∥m′′, so |CH(m′∥ck0∥m′′)| = |CH(m′∥ck1∥m′′)|.

Let T ⊆ CK be the minimum set such that for every ck0 ∈ CK, there exists
ck1 ∈ T such that ck1 is a permutation of ck0. Computing the size of T is a
simple problem in combinatorics, for which the answer is (|Ω|+k−1

k ).
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Therefore,

AdvLOCR
CH ,UCK ,q(A) ≤

|T|
|Ω|k

=
1

|Ω|k
·
(
|Ω|+ k− 1

k

)
≤ 1

|Ω|k

(
e
|Ω|+ k− 1

k

)k

≤
(

e
|Ω| +

e
k

)k

. □

4.6 Padding

4.6.1 Block padding

The most commonly used padding scheme pads a compressed message of
length ℓ ∈N to length ⌈ℓ/B⌉ · B, where B ∈N+ is the block length.

Applying a block padding scheme to the compressor output can be regarded
as mapping the compressor output to a different alphabet. For example, for
a compressor with an output alphabet {{0, 1}8}+, applying a block padding
with B = 16 can be seen as changing the output alphabet to {{0, 1}128}+. For
a compressor C on the input alphabet Σ, applying a block padding scheme
of block length B ∈N+ yields another compressor CB on the input alphabet
Σ but on a larger output alphabet, where for every ℓ ∈ N+, RCB,ℓ = RC,ℓ,
and for every s ∈ Σℓ and r ∈ RC,ℓ,

|CB(s; r)| =
⌈
|C(s; r)|

B

⌉
.

Therefore, for every k ∈N+,

∆k(CB, ℓ) = max
r∈RCB ,ℓ

max
s,s′∈Σℓ

HD(s,s′)≤k

(
∣∣CB(s′; r)

∣∣− |CB(s; r)|)

= max
r∈RC,ℓ

max
s,s′∈Σℓ

HD(s,s′)≤k

(⌈
|C(s′; r)|

B

⌉
−
⌈
|C(s; r)|

B

⌉)

≤ max
r∈RC,ℓ

max
s,s′∈Σℓ

HD(s,s′)≤k

⌈
|C(s′; r)| − |C(s; r)|

B

⌉

=

⌈
∆k(C, ℓ)

B

⌉
.

51



4. Theoretical bounds

where the inequality is because ⌈x⌉ + ⌈y⌉ ≥ ⌈x + y⌉ for all numbers x, y.
We can then apply Theorem 4.10 and its corollaries to bound the LOCR
security of CB. Ideally, B should be greater or equal to maxℓ∈{k,...,L} ∆(C, ℓ).
Therefore, if sensitivity of the compressor C in question satisfies ∆(C, ℓ) =

Θ(
√
ℓ), then ideally B = Ω(

√
L); however, padding schemes in practice

often use a small constant for B, and as a result ∆(CB, ℓ) = Θ(
√
ℓ).

4.6.2 Randomised padding

Definitions

Definition 4.30 (randomised padding scheme) A randomised padding scheme
pad on alphabet Ω is a probabilistic distribution on Ω∗ with finite support.

Remark 4.31 Similar to Degabriele [9], we do not consider padding schemes that
depend on the message m or its length |m|.1

Definition 4.32 (padding length distribution) Let pad be a randomised padding
scheme on Ω. The padding length distribution of pad is a distribution Dpad on N,
where for every ℓ ∈N,

PrDpad
[ℓ] = Prpad

[
Ωℓ
]
= ∑

s∈Ωℓ

Pr[pad()⇒ s].

A randomised padding scheme pad on alphabet Ω is a probabilistic distribution on
Ω∗ with finite support.

Definition 4.33 (padded compressor) Let C be a compressor on input alphabet
Σ and output alphabet Ω, and let pad be a randomised padding scheme on Ω with
padding length distribution Dpad.

Cpad(m)

1 : z←$ C(m)

2 : p←$ pad()

3 : return z∥p

Figure 4.10: The padded compressor Cpad.

The padded compressor Cpad constructed from C and pad is a compressor defined in
Fig. 4.10. More specifically, let ℓ ∈N+, letRC,ℓ be the set of random coins used by

1Intuitively, such padding schemes may leak more information about the plaintext, but
an analogy to local differential privacy hints that they may actually be better in some cases.
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C on length ℓ, and let Rpad be the set of random coins used by pad; for all m ∈ Σℓ

and rℓ := (rC,ℓ, rpad) ∈ RC,ℓ ×Rpad,

Cpad(m; rℓ) := C(m; rC,ℓ)∥pad(; rpad).

Remark 4.34 Since our subsequent discussion is only related to the padding length
distribution, we do not specify a corresponding decompressor for Cpad. In fact, such
a decompressor might not even exist for some padding length distributions.

Bounding LOCI with difference hiding

Similar to [9, Theorem 3.3], we relegate the LOCI game on a padded com-
pressor to distinguishing between samples from pad() or d + pad().

Game BD-HIDE(A,Dpad, δ)

1 : b←$ {0, 1}
2 : b′ ←$ AHide()

3 : return b = b′

Oracle Hide(d)

1 : if |d| > δ then
2 : return ⊥
3 : p←$ Dpad

4 : return b · d + p

Figure 4.11: Game BD-HIDE for Dpad and δ ∈N, a bidirectional version of the D-HIDE game
in [9]. We use a different formulation to bypass a restriction in Degabriele’s formulation; namely,
the Left-or-Right oracle in Degabriele’s length hiding game requires that |m0| ≤ |m1|.

Consider the game BD-HIDE in Fig. 4.11, in which the oracle Hide takes an
integer d that is possibly negative. The advantage of A in game BD-HIDE is

AdvBD-HIDE
Dpad,δ (A) = |2 Pr[G(A,Dpad, δ)⇒ true]− 1|.

The BD-HIDE security with regard to Dpad, δ ∈N and q ∈N is

AdvBD-HIDE
Dpad,δ,q = sup{AdvBD-HIDE

Dpad,δ (A) : ∀A s.t. A makes at most q queries to Hide}.

Theorem 4.35 Let C be a compressor on input alphabet Σ and output alphabet Ω,
and pad be a randomised padding scheme on Ω with padding length distribution
Dpad; let Cpad be a padded compressor constructed from C and pad.

Let k, L ∈N+ such that k ≤ L, CK ⊆ Σk, ck0, ck1 ∈ CK, and q ∈N. Then

AdvLOCI
Cpad,ck0,ck1,L,q ≤ min

{
AdvLOCI

C,ck0,ck1,L,q,AdvBD-HIDE
Dpad,δk,L,q

}
,

where
δk,L = max

ℓ∈{k,...,L}
∆HD(ck0,ck1)(C, ℓ).

53



4. Theoretical bounds

The proof is similar to Degabriele’s proof sketch of [9, Theorem 3.3], except
that our proof is under a slightly different setting.

Proof See Appendix B.2. □

Bounding difference hiding with distance measures

A natural next step is to attempt to transform a BD-HIDE adversary into a
non-adaptive adversary. Intuitively, an adversary can just query Hide with
the maximum possible d and therefore does not need to be adaptive. How-
ever, on a closer look, it appears possible for an adaptive adversary to per-
form strictly better than any non-adaptive adversary, even if the distribution
is simple. This barrier may partly explain the gap between the D-HIDE game
and the multisample distinguisher theorem (Theorem 3.10) in [9].

We first give a weaker linear bound in this thesis, which can also be proved
via a standard hybrid argument.

Definition 4.36 A padding length distributionDpad is unimodal if for every x1, x2, x3 ∈
N where x1 < x2 < x3, we have PrDpad

[x2] ≥ min(PrDpad
[x1], PrDpad

[x3]).

Remark 4.37 All padding length distributions considered in [9] are unimodal.

Theorem 4.38 Let Dpad be a padding length distribution, δ, q ∈N, x be a random
variable distributed according to Dpad. Then

AdvBD-HIDE
Dpad,δ,q ≤ q ·max

d∈[δ]
SD (x, x + d) .

In particular, if Dpad is unimodal, then

AdvBD-HIDE
Dpad,δ,q ≤ q · SD (x, x + δ) ,

Proof For simplicity, we define all random variables that appear in the proof
on the image Z. Let B be a BD-HIDE adversary against Dpad and δ that
makes at most q queries. Without loss of generality, we assume that B is
deterministic and makes exactly q queries, and for each query Hide(d), we
have |d| ∈ {−δ,−δ + 1, . . . , δ}.
In game BD-HIDE with B, for every i ∈ [q], let pi be a random variable that
denotes the sample from Dpad when answering the i-th query, let di be a
random variable that denotes the i-th query of B to Hide when b = 1, and let
hi = b · di + pi be the answer to the i-th query. Since we assumed that B is
deterministic, di can be written as a function of h1, . . . , hi−1, and the output
of B can be written as a function fB(h1, . . . , hq). Therefore,

AdvBD-HIDE
Dpad,δ (B) =

∣∣Pr
[

fB(h1, . . . , hq) = 0
∣∣ b = 0

]
− Pr

[
fB(h1, . . . , hq) = 0

∣∣ b = 1
]∣∣

≤ SD
(
(pi)i∈[q], (di + pi)i∈[q]

)
.
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By triangle inequality,

SD
(
(pi)i∈[q], (di + pi)i∈[q]

)
≤

q

∑
t=1

SD ((d1 + p1, . . . , dt−1 + pt−1, pt), (d1 + p1, . . . , dt + pt))

≤
q

∑
i=1

max
d∈{−δ,...,δ}

SD (pt, d + pt)

= q · max
d∈{−δ,...,δ}

SD (x, d + x) .

Note that SD (x, x) = 0, and for every d ∈ [δ],

SD (x, d + x) = SD (x− d, x) = SD (x,−d + x) ,

so

AdvBD-HIDE
Dpad,δ (B) ≤ q · max

d∈{−δ,...,δ}
SD (x, d + x) = q ·max

d∈[δ]
SD (x, d + x) .

We now discuss the case where Dpad is unimodal. For every d ∈ [δ− 1] and
x ∈ N, if PrDpad

[x + d] < PrDpad
[x], then PrDpad

[x + d] ≥ PrDpad
[x + d + 1];

otherwise, we have PrDpad
[x + d] < min{PrDpad

[x], PrDpad
[x + d + 1]}, contra-

dictory to the unimodality of Dpad. Therefore, for every d ∈ [δ− 1],

SD (x, d + x) = ∑
x∈N

PrDpad [x+d]<PrDpad [x]

(
PrDpad

[x]− PrDpad
[x + d]

)
≤ ∑

x∈N
PrDpad [x+d]<PrDpad [x]

(
PrDpad

[x]− PrDpad
[x + d + 1]

)
≤ ∑

x∈N
PrDpad [x+d+1]<PrDpad [x]

(
PrDpad

[x]− PrDpad
[x + d + 1]

)
= SD (x, d + 1 + x) .

Thus, if Dpad is unimodal, then

AdvBD-HIDE
Dpad,δ (B) ≤ max

d∈[δ]
SD (x, d + x) ≤ SD (x, δ + x) . □

Theorem 4.38 is already sufficient for studying uniform padding schemes.
However, it fails to capture Degabriele’s motivation for choosing Gaussian
padding over uniform padding when q is large.

Then, we derive a similar bound to the multisample distinguisher theorem
(Section 3.2.6). Our bound also applies to adaptive adversaries, bridging the
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gap in [9]. Our proof is derived from the intermediate results in the Chi-
squared method by Dai et al. [8] and a lemma for the Squared-Ratio method
by Chen et al. [7]. We note that the bound can likely be further optimised,
which we leave for future work.

Lemma 4.39 (adapted from [7, Lemma 1]) Let P and Q be two distributions
over the discrete set Γ. For any subset Γ′ ⊂ Γ such that Γ′ ⊆ Supp(Q), one has

∑
x∈Γ′
|PrP[x]− PrQ[x]| ≤

(
2 ∑

x∈Γ′
PrP[x] ln

(
PrP[x]
PrQ[x]

)
+ 2 ∑

x∈Γ\Γ′
PrP[x]− PrQ[x]

) 1
2

.

Remark 4.40 The lemma is a generalisation of Pinsker’s inequality (Lemma 3.4).

Theorem 4.41 Let Dpad be a padding length distribution, δ, q ∈ N. Let T =
{−δ,−δ + 1, . . . , δ}. Let

W = 1−min
d∈T

∑
x≥d

x∈Supp(Dpad)

PrDpad
[x− d],

and

K = max
d∈T

∑
x≥d

x∈Supp(Dpad)

PrDpad
[x− d] ln

(
PrDpad

[x− d]
PrDpad

[x]

)
.

Then

AdvBD-HIDE
Dpad,δ,q ≤

qW
2

+

√
q(K + W)

2
.

Remark 4.42 For a BD-HIDE adversary Bna that always queries the oracle Hide
with the same value as the first query it makes, applying the multisample distin-
guisher theorem (Theorem 3.10) gives

AdvBD-HIDE
Dpad,δ,q (Bna) ≤ 2qW +

√
qK

2(1−W)
.

Proof For simplicity, we define all random variables that appear in the proof
on the image Z. Let x be a random variable distributed according to Dpad.
Let B be a BD-HIDE adversary against Dpad and δ that makes at most q
queries. Without loss of generality, we assume that B is deterministic and
makes exactly q queries, and for each query Hide(d), we have |d| ∈ T.

In game BD-HIDE with B, for each i ∈ [q], let pi be a random variable that
denotes the sample from Dpad when answering the i-th query, and let di be
a random variable that denotes the i-th query of B to Hide when b = 1. As
in the proof for Theorem 4.38, we have

AdvBD-HIDE
Dpad,δ (B) ≤ SD

(
(pi)i∈[q], (di + pi)i∈[q]

)
. (4.13)
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4.6. Padding

We have

∑
(x1,...,xq)∈Zq\ Supp(Dpad)

q
Pr

[ q∧
i=1

di + pi = xi

]

= 1− ∑
(x1,...,xq)∈Supp(Dpad)

q
Pr

[ q∧
i=1

di + pi = xi

]

= Pr

[ q∨
i=1

di + pi /∈ Supp(Dpad)

]

≤
q

∑
i=1

Pr[di + pi /∈ Supp(Dpad)].

For every i ∈ [q], because di and pi are independent,

q

∑
i=1

Pr[di + pi /∈ Supp(Dpad)] =
q

∑
i=1

∑
d∈T

Pr[di = d]Pr[pi + d /∈ Supp(Dpad)]

≤
q

∑
i=1

max
d∈T

Pr[pi + d /∈ Supp(Dpad)]

= q ·max
d∈T

Pr[x + d /∈ Supp(Dpad)].

Therefore,

∑
(x1,...,xq)∈Zq\ Supp(Dpad)

q
Pr

[ q∧
i=1

di + pi = xi

]
≤ q ·W. (4.14)

We can follow the derivation of [8, Eq. (5)] to apply Lemma 4.39 and get

∑
x1,...,xq

1√
2

∣∣∣∣∣Pr

[ q∧
i=1

di + pi = xi

]
− Pr

[ q∧
i=1

pi = xi

]∣∣∣∣∣
≤

 ∑
x1,...,xq

Pr

[ q∧
i=1

di + pi = xi

]
ln

Pr
[∧q

i=1 di + pi = xi

]
Pr
[∧q

i=1 pi = xi

]
+ q ·W


1
2

=

 ∑
x1,...,xq

q

∑
t=1

Pr

[ q∧
i=1

di + pi = xi

]
ln

Pr
[
dt + pt = xt

∣∣∣∧t−1
i=1 di + pi = xi

]
Pr[x = xt]

+ q ·W


1
2

=

 q

∑
t=1

∑
x1,...,xt

Pr

[
dt + pt = xt

∣∣∣∣∣ t−1∧
i=1

di + pi = xi

]
ln

Pr
[
dt + pt = xt

∣∣∣∧t−1
i=1 di + pi = xi

]
Pr[x = xt]

+ q ·W


1
2

,

in which x1, . . . , xq each takes values from Supp(Dpad).
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4. Theoretical bounds

Because for every t ∈ [q], dt is a function of (d1 + p1, . . . , dt−1 + pt−1), for
every (x1, . . . , xt−1) ∈ Supp(Dpad)

t−1, we have

∑
xt∈Supp(Dpad)

Pr

[
dt + pt = xt

∣∣∣∣∣ t−1∧
i=1

di + pi = xi

]
ln

Pr
[
dt + pt = xt

∣∣∣∧t−1
i=1 di + pi = xi

]
Pr[x = xt]


≤ max

d∈T
∑

xt∈Supp(Dpad)

Pr[pt = xt − d] ln
(

Pr[pt = xt − d]
Pr[x = xt]

)

= max
d∈T

∑
xt∈Supp(Dpad)

Pr[x = xt − d] ln
(

Pr[x = xt − d]
Pr[x = xt]

)
.

So

q

∑
t=1

∑
x1,...,xt

Pr

[
dt + pt = xt

∣∣∣∣∣ t−1∧
i=1

di + pi = xi

]
ln

Pr
[
dt + pt = xt

∣∣∣∧t−1
i=1 di + pi = xi

]
Pr[x = xt]


≤

q

∑
t=1

∑
x1,...,xt−1

Pr

[
t−1∧
i=1

di + pi = xi

]
max
d∈T

∑
xt∈Supp(Dpad)

Pr[x = xt − d] ln
(

Pr[x = xt − d]
Pr[x = xt]

)

≤ q ·max
d∈T

∑
x∈Supp(Dpad)

Pr[x = x− d] ln
(

Pr[x = x− d]
Pr[x = x]

)
= q · K, (4.15)

in which x1, . . . , xt each takes values from Supp(Dpad). Then

∑
x1,...,xq∈Supp(Dpad)

1
2

∣∣∣∣∣Pr

[ q∧
i=1

di + pi = xi

]
− Pr

[ q∧
i=1

pi = xi

]∣∣∣∣∣ ≤
√

q(K + W)

2
. (4.16)

Combining Eqs. (4.13) to (4.16), we get

AdvBD-HIDE
Dpad,δ (B) ≤ SD

(
(pi)i∈[q], (di + pi)i∈[q]

)
≤ qW

2
+

√
q(K + W)

2
,

and the proof is complete. □

Bounding LOCR with difference hiding

Theorem 4.43 Let C be a compressor, pad be a randomised padding scheme with
a padding length distribution Dpad, and Cpad be a padded compressor constructed
from C and pad. Let h, k, L ∈ N+ such that h ≤ k ≤ L, Σ be an alphabet of size
σ > 1, UCK be a uniform cookie distribution on CK = Σk, and q ∈N. Then

AdvLOCR
Cpad,UCK ,L,q ≤ min

h∈[k]

{
AdvBD-HIDE

Dpad,δk,L,h,q +
1

∑h
i=0 (

k
i)(σ− 1)i

}
,
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4.6. Padding

where for every h ∈ [k],

δk,L,h := max
ℓ∈{k,...,L}

∆h(C, ℓ).

Proof By Theorem 4.35. for every ck0, ck1 ∈ CK,

AdvLOCI
Cpad,ck0,ck1,L,q ≤ AdvBD-HIDE

Dpad,δk,L,HD(ck0,ck1)
,q.

Note also that for every δ1, δ2 ∈N where δ1 ≤ δ2,

AdvBD-HIDE
Dpad,δ1,q ≤ AdvBD-HIDE

Dpad,δ2,q ,

because a BD-HIDE adversary againstDpad and δ1 is naturally also a BD-HIDE
adversary against Dpad and δ2.

Let h be an arbitrary element in [k], and let ε = AdvBD-HIDE
Dpad,h,q . For every cookie

ck0 ∈ CK, consider Sck0 := {ck1 ∈ CK : HD(ck0, ck1) ≤ h}; we have

|Sck0 | =
h

∑
i=0

(
k
i

)
(σ− 1)i,

and Sck0 ⊆ Sq,ε(ck0). Therefore, applying Corollary 4.25 with α = 0 and
β = 1/(∑h

i=0 (
k
i)(σ− 1)i) gives

AdvLOCR
Cpad,UCK ,L,q ≤ min

h∈[k]

{
AdvBD-HIDE

Dpad,δk,L,h,q +
1

∑h
i=0 (

k
i)(σ− 1)i

}
, □

Corollary 4.44 Let C be a compressor, B ∈ N, pad be a randomised padding
scheme with a uniform padding length distribution Dpad on {0, . . . , B}, and Cpad

be a padded compressor constructed from C and pad. Let h, k, L ∈ N+ such that
h ≤ k ≤ L, Σ be an alphabet of size σ > 1, UCK be a uniform cookie distribution on
CK = Σk, and q ∈N. Then

AdvLOCR
Cpad,UCK ,L,q ≤ min

h∈[k]

{
q

δk,L,h

B + 1
+

1

∑h
i=0 (

k
i)(σ− 1)i

}
,

where for every h ∈ [k],

δk,L,h := max
ℓ∈{k,...,L}

∆h(C, ℓ).

More generally, we can apply Theorems 4.38 and 4.41 to study other ran-
domised padding schemes, such as Gaussian padding and Laplace padding.
However, as Degabriele noted [9], we do not have a closed form of expres-
sion for the distance measures of discrete Gaussian padding schemes, and
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4. Theoretical bounds

must rely on approximation or numerical evaluation, which we leave for
future work and refer readers to [9] for more details.

Finally, we note that the evaluation of the CRIME attack in [9] does not
apply to all compression side-channel attacks, because in the CRIME at-
tack considered in [9], the compressed lengths are assumed to only differ
by one depending on whether the guess for the next byte is correct. This
assumption does not hold for Kelsey’s attacks (Section 3.5.1), the looking
ahead technique in BREACH [19], as well as our amplification techniques
in Chapter 5. The attacker in [9] also does not perform backtracking.

On the contrary, selecting parameters for Gaussian padding according to its
effect on the CRIME attack may make Gaussian padding more vulnerable
to our amplification techniques in Chapter 5. Intuitively, if the compressed
lengths can have a larger difference than the average padding length, then
the bounds in Theorems 3.10 and 4.41 may favour uniform padding than
Gaussian padding. We leave the evaluation of compression side-channel
attacks against different randomised padding schemes for future work.
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Chapter 5

Amplification on DEFLATE/zlib

In this chapter, we present novel techniques to reduce or remove the noise in
compression side-channel attacks against DEFLATE and zlib by amplifying
differences in compressed lengths with specially crafted queries.

5.1 Attack model and assumptions

In this section, we present a model for our attacks in Chapters 5 and 6, and
highlight two special assumptions to our techniques.

5.1.1 Attack model

Our attack model can be seen as an abstraction of the “CRIME-style” attacks
in e.g. [19, 48].

Let Σ and Ω be two alphabets such that Ω ⊆ Σ ⊆ {0x00, . . . , 0xFF}. Let
ℓ, ℓp, Lq ∈ N+. A target possesses a secret cookie ck ∈ Ωℓ, and the goal of
an attacker is to recover ck through a compression side channel.

We abstract the compression side channel as a compression length oracle, to
which an attacker can submit queries Q ∈ Σ∗, where |Q| ≤ Lq. The oracle
responds to each query Q with the compressed length ℓC of a plaintext
embedded with both the secret and the query; namely

ℓC = |C(. . . ∥P∥ck∥ . . . ∥Q∥ . . .)|,

where C represents a compressor that implements the DEFLATE algorithm
described in Section 3.3, or, when specified, the zlib compressor (Section 3.4),
and P ∈ Σℓp is a prefix. The attacker is assumed to know the compressor C
and the prefix P. Both the prefix P and the secret ck stay unchanged among
different queries, but the omitted parts in the plaintext might be unknown to
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5. Amplification on DEFLATE/zlib

the attacker and might change with each query. The attacker can adaptively
query the compression length oracle.

We require that ℓp ≥ min match− 1, where min match is the minimum match
length. We also require that Q is close to ck in the plaintext, and in particular
their distance is smaller than the sliding window size max window.

Our model captures a subset of adversaries playing in the length-only cookie
recovery (LOCR) game (Section 4.2.1) against DEFLATE or zlib, in that an
adversary in our model can only control a part of the plaintext located after
the secret.

It is also possible to make certain variations to our model without invalidat-
ing our techniques; for example, an attacker may know a suffix to the secret
instead of a prefix, or there could be a format restriction on the queries.

A toy example

We use the following example setting for illustration in Chapters 5 and 6.
Let Σ be the set of printable ASCII characters without the symbol &, and let
Ω ⊆ Σ be the set of hexadecimal characters, i.e. Ω = {0, . . . , 9, a, . . . , f}. The
target’s secret ck ∈ Ωℓ is a random value represented in the hexadecimal
format. The target exposes an compression length oracle to an attacker, in
which the target uses zlib with default parameters to compress a string

...&secret=ck&...&query=Q&...

for each query Q ∈ Σ∗ of length |Q| ≤ Lq, and returns the length of the
compressed string to the attacker. The attacker knows the compression level
used by the target as well as the prefix to the secret secret=, and tries to
recover the secret by making adaptive queries to the oracle.

5.1.2 Special assumptions

In addition to the assumptions in Section 5.1.1 that are shared by most com-
pression side-channel attacks, our new techniques in Chapters 5 and 6 gen-
erally rely on two special assumptions:

1. The secret ck is located before a query Q, but not necessarily directly;
i.e. the index of ck is smaller than the index of Q in the plaintext.

2. The maximum length of a query Lq is not too small.

The first assumption is present in our attack model, but is generally not
required for existing compression side-channel attacks; in fact, the 16K-1
technique in [48] only works if the secret is located after the query. Unfor-
tunately, this assumption is crucial for almost all of our techniques.
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Nevertheless, we expect that it should be feasible for a query to be located
after the secret in compression side channels. Indeed, many existing com-
pression side-channel attacks were based on such queries, e.g. [21, 41]. For
web servers vulnerable to BREACH and its variants, an example where this
assumption holds was given in [38]. While CRIME exploited the request
path located before the secret cookie in HTTP requests, it is known to be
possible to launch a similar attack with the control of another cookie located
after the secret cookie.

The second assumption on the maximum length of a query Lq is also im-
portant, since longer queries are intuitively more powerful, which is also
suggested by our analysis on the effect of compressor sensitivity on com-
pression side-channel attacks in Chapter 4. In this chapter, Lq determines
the amplification that the attacker could eventually get. We will quantify the
effect of Lq on each of our technique in the following sections.

Several existing techniques for compression side-channel attacks already
used long queries: the 16K-1 technique in CRIME [48], as the name suggests,
utilised queries of around 16KiB; in the divide-and-conquer technique, the
length of a query can reach hundreds of bytes when the cookie alphabet is
large; DBREACH [21] required filling a 4KiB page with attacker-controlled
data to compute the compressibility of a guess.

Some of our techniques may also rely on other assumptions, which we will
discuss separately in the following sections.

5.2 Overview of amplification

5.2.1 Motivation

Compression side-channel attacks are known to be sensitive to noise, as they
rely on length differences of at most a few bytes in the compressed data.
However, random data are often present in the plaintext to be compressed,
and a target may also introduce noise to the compressor as a heuristic de-
fence against compression side-channel attacks (Section 2.3.4). Performing
more adaptive queries can help mitigate noise, but at the cost of making
attacks less practical and easier to detect.

As a concrete example, we consider a simple compression side-channel at-
tack in our example setting. In order to check if ck[1] = a, an attacker may
make a query secret=a. if the first character in ck is indeed a, then LZ77
replaces the whole query secret=a with a back-reference to its previous oc-
currence; otherwise, LZ77 only replaces secret= with a back-reference and
keeps the character a in the query as is. Therefore, the lengths of the LZ77
outputs differ by one depending on whether ck[1] = a, and the length dif-
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ference likely persists in the compressed data after Huffman coding, from
which the attacker can learn if ck[1] = a.

In the above example, the length difference depending on whether ck[1] = a

can hardly exceed more than a few bytes, because the (i) LZ77 output is vir-
tually the same between the two cases, and (ii) the Huffman codes are either
fixed or largely determined by other parts of the plaintext. However, the
contraposition of the above arguments suggests that, if we want to amplify
the compressed length difference, then we might first try to design queries
for which either (i) or (ii) does not hold. Because LZ77 adapts to its input, it
appears possible to design queries for which the LZ77 outputs can be very
different depending on the secret, which we will exploit for amplification.

5.2.2 General idea

We amplify the compression side channel by designing queries to make the
LZ77 outputs differ substantially depending on the secret, in ways such that
the differences in LZ77 outputs can be translated into differences in com-
pressed lengths. Because LZ77 adapts to the input it has scanned, finding
such queries is surprisingly easy and can be done in several ways. We high-
light three mechanisms in DEFLATE/zlib that we exploit:

• The LZ77 algorithm itself;

• The combination of Huffman coding and LZ77;

• The LZ77 hash table in zlib.

We describe our amplification techniques for the setting where an attacker
wants to check whether ck[1] is equal to a guess g ∈ Ω, which will be
generalised in Chapter 6. Note that our techniques naturally generalise to
checking the next unknown character in ck: if an attacker has already recov-
ered the first ℓ′ < ℓ characters of the secret ck, then by letting P′ = P[1, ℓ′]
and ck′ = ck[ℓ′ + 1, ℓ], the problem of checking whether ck[ℓ′ + 1] is equal to
g is reduced to checking whether ck′[1] is equal to g.

We loosely define the amplification ratio to measure the efficiency of our am-
plification techniques, which is the absolute value of the ratio between the
expected compressed length differences depending on whether ck[1] = g
and the length of the query |Q|. We refrain from giving a formal definition
as this would require specifying the distributions of ck and the unspeci-
fied parts in the plaintext, but we note that the amplification ratio is upper
bounded by the sensitivity of the compressor in question if we assume the
unspecified parts in the plaintext are independent from ck.
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5.2.3 Query structure

The queries we design follow the general structure we describe below, which
we will also reuse in Chapter 6.

A query may contain up to four parts, each represented as a string in Σ∗.
They include two dictionary strings dict1 and dict2, an optional filler string
filler between the two dictionary strings, and a string of gadgets gadgets.
Generally,

Q = dict1∥filler∥dict2∥gadgets

It is not necessary for dict1, filler, dict2 and gadgets be next to each other, as
long as they follow this order in the query. Only gadgets is required to be
located after the secret in the plaintext, while dict1, filler and dict2 are allowed
to appear before the secret, possibly in separate parts of the plaintext.

The dictionary strings dict1 and dict2 each represent a set of strings called a
dictionary. One way to construct a dictionary string dict from a set of strings
{s1, . . . , sd} is

dict = sep∥s1∥sep∥s2∥sep∥ . . . ∥sep∥sd∥sep

where the separator sep is preferably a character that never or only rarely
appears in other parts of the plaintext, while dict1 and dict2 can share the
same separator sep. For example, we can write a dictionary string for the set
{foo, bar} as $foo$bar$.

The filler string filler is optional and may be omitted with possible perfor-
mance degradation. The purpose of filler is to increase the distance between
the dictionary strings dict1 and dict2. For example, a filler string can be a
single character repeated multiple times or a randomly sampled string.

The string of gadgets gadgets is the concatenation of one or more specially
crafted strings, each being an individual gadget. Each gadget exploits the
DEFLATE algorithm to perform a desired functionality. We will elaborate
on the concept of gadgets and present more types of gadgets in Chapter 6.

In this chapter, we do not present our amplification techniques from the
perspective of gadgets, but we note that all constructions for gadgets in this
chapter except telescoping (Section 5.3) can be seen as the concatenation of
a byte-match gadget (Section 6.3.1) and an amplify gadget (Section 6.3.4).

5.3 Telescoping

Telescoping is a simple but convenient technique for amplification. This tech-
nique achieves a compressed length difference of several bytes with rela-
tively short queries, which makes it particularly useful in cases where the
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maximum query length Lq is small. Telescoping can also be used in concert
with other amplification techniques as a “free lunch”.

Akagi et al. have used similar techniques to derive lower bounds on the sen-
sitivities of several LZ-family compressors [1]. However, to our knowledge,
there are no existing works that used telescoping or similar techniques for
compression side-channel attacks.

Telescoping does not require dict1, filler or dict2 and only needs gadgets.
Suppose an attacker wishes to check whether the character ck[1] immedi-
ately following a known prefix P of length ℓp is equal to a guess g ∈ Ω. The
attacker can choose k ∈N+ where k ≤ ℓp + 2−min match, and query

Q = P[k, ℓp]∥g∥sep1∥P[k− 1, ℓp]∥g∥sep2∥ . . . ∥sepk−1∥P[1, ℓp]∥g

which can be

et=1Aret=1Bcret=1Cecret=1Dsecret=1

in our example setting when the guess is 1 and k = ℓp − 2 = 5. Note that, if
k = 1, then Q degenerates to P∥g, or to secret=1 in our example.

The separators sep1, . . . , sepk−1 are pairwise distinct strings such that their
first characters sep1[1], . . . , sepk−1[1] are preferably not in Ω. It usually suf-
fices to use separators of one or two characters each, but longer separators
also work, and in practice, the substrings P[i, ℓp]∥g may be in different parts
of the plaintext, in which case the separators can be seen as the unspecified
plaintexts in between. The separators sep1, . . . , sepk−1 can also be the same
when lazy matching is disabled.

In order for the telescoping technique to work with high probability, one
should additionally ensure that:

1. The substring P∥ck[1] can be found by LZ77 in the sliding window
before the query Q;

2. Besides in the known prefix P, the substring P[k, ℓp] has no or few
occurrences in the sliding window before the query Q.

If g = ck[1], then LZ77 likely transforms the query Q into

<L(ℓp−k+2),D*>∥sep1∥<L(ℓp−k+3),D*>∥sep2∥ . . . ∥sepk−1∥<L(ℓp+1),D*>

Otherwise, if g ̸= ck[1], then LZ77 likely transforms Q into

<L(ℓp−k+1),D*>∥g∥sep1∥<L(ℓp−k+2),D*>∥g∥sep2∥ . . . ∥sepk−1∥<Lℓp,D*>∥g

Thus, after Huffman coding, the compressed length when g = ck[1] is likely
smaller than when g ̸= ck[1] by around k bytes. However, the exact length
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difference depends on Huffman coding: for example, if k is large, then the
character g may be encoded more efficiently by Huffman coding, making the
length difference smaller. The amplification ratio for telescoping is roughly
(ℓp− k/2)−1, and the maximum compressed length difference is roughly ℓp.
Therefore, telescoping can only increase the compressed length difference
by several bytes if the known prefix is short.

Finally, we note that reversing the direction of telescoping, such as querying
secret=1Aecret=1Bcret=1... in our example, only works correctly in zlib
if lazy matching is disabled and ℓp − k + 2 > max insert. Otherwise, LZ77
is likely to match the substring P[k, ℓp]∥g in the query to its previous occur-
rence in the query P[k− 1, ℓp]∥g regardless of the actual value of ck[1]. The
same problem applies for every substring P[i, ℓp]∥g whose previous occur-
rences in the query are inserted into the hash table in LZ77.

5.4 Chaining

In this section, we describe several techniques for amplification that we refer
to as chaining.

We motivate the chaining techniques by making the following observation.
When an attacker queries P∥g, depending on whether ck[1] = g, LZ77 not
only produces different outputs, but also moves its pointer to different posi-
tions in the plaintext. If ck[1] = g, then LZ77 likely replaces the whole query
with a single back-reference, and moves the pointer just past the query; oth-
erwise, LZ77 likely only replaces P in the query with a back-reference, and
moves the pointer to the position of g.

If the plaintext after P∥g is not adversarially chosen, then when ck[1] ̸= g,
the LZ77 pointer at g likely moves just by one in the next step and coincides
with the pointer position when ck[1] = g. However, with carefully designed
strings following the query, it is possible to maintain the small difference in
pointer positions and utilise the difference to create diverging LZ77 outputs.

5.4.1 Setup

Suppose an attacker wishes to check whether the character ck[1] immedi-
ately following a known prefix P of length ℓp is equal to a guess g ∈ Ω.

Let m, k ∈ N+, where k ≥ min match. Here m indicates the number of
segments in the chain, and k indicates the length of each segment. A larger
m increases the compressed length difference, but it also increases the query
size and the probability of failure. A larger k means that the chain is more
likely to work as desired, but it also decreases the amplification ratio and
thus makes the query less space-efficient.
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Let S be a string of length ℓs ∈ N+ chosen by the attacker, where ℓs is a
function of m and k to be specified later. The character S[1] preferably does
not take values in Ω, and the substring S[2, ℓs] can be a random string of
length ℓs− 1. The string S should not contain special characters we designate
for other purposes, such as the separator for dict1 and dict2. For example,
one can construct S[2, ℓs] by sampling from alphanumeric characters.

A chaining query consists of four parts dict1, filler, dict2 and gadgets as speci-
fied in Section 5.2.3. The dictionary strings dict1 and dict2 are to be specified
later; the filler string filler is optional and is constructed as described in Sec-
tion 5.2.3. The string of gadgets gadgets is of the form P∥g∥S. That is, the
query is of the form

dict1∥filler∥dict2∥P∥g∥S

We assume that the substring P∥ck[1] can be found by LZ77 in the sliding
window before Q, but P[2, ℓp]gS[1] does not not appear in the sliding win-
dow. Therefore, when the LZ77 pointer is at P[1] in the query, if ck[0] = g,
then LZ77 finds a match for P∥g in the sliding window, and moves the
pointer to S[1] in the query; otherwise, if ck[0] ̸= g, then the LZ77 pointer
moves to the position of g in the query at some point.

To simplify our discussion, we abuse the notation to let S[0] denote the
character before S in the plaintext (i.e. g), and let S[ℓs + 1]S[ℓs + 2] denote
the characters that immediately follow S in the plaintext, or end symbols if
there are no more characters available.

5.4.2 Distance-based chain

A distance-based chain amplifies the compressed length difference by ex-
ploiting the interaction of LZ77 and Huffman coding in DEFLATE. More
specifically, depending on whether the guess is correct, LZ77 encodes the
string of gadgets gadgets in a distance-based chain into two different se-
quences of back-references, such that the sequence of back-references when
the guess is correct tend to be encoded more efficiently.

Recall that, for a back-reference <Lx,Dy> of length x and distance y, the
Huffman coding process in DEFLATE maps the distance y to a code between
0 and 29 and some extra bits, with the extra bits stay unchanged thereafter;
see Section 3.3.2. The number of extra codes required increases as y grows;
for example, a distance of 50 requires 4 extra bits to encode, while a distance
of 500 requires 7 extra bits (see Table 3.1).

We describe the construction of a distance-based chain based on Section 5.4.1.
Let the length of the string S be ℓs = mk. The dictionary string dict1 rep-
resents a set of strings {S[(i− 1)k, ik− 1]}i∈[m], and dict2 represents a set of
strings {S[(i− 1)k + 1, ik]}i∈[m].
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In our example setting, suppose the guess is 1, m = 4 and k = 3. Then the
query could be

-1AB-CDE-FGH-IJK------------ABC-DEF-GHI-JKL-secret=1ABCDEFGHIJKL

For the distance-based chain to work correctly, we should ensure that:

1. For each i ∈ [m], S[(i − 1)k, ik − 1] in dict1 can be found by LZ77 in
the sliding window before Q, but S[(i− 1)k, ik] does not appear in the
sliding window.

2. For each i ∈ [m], S[(i− 1)k + 1, ik] in dict2 can be found by LZ77 in the
sliding window before Q, but S[(i − 1)k + 1, ik + 1] and S[(i − 1)k +
2, ik + 2] do not appear in the sliding window.

The above conditions are likely to be met if one uses random bytes to con-
struct the gadget, but other constructions are also possible.

If ck[1] = g, then LZ77 finds a match for P∥g and moves the pointer to S[1]
in the query Q. Next, by condition 2, LZ77 likely replaces S[1, k], . . . , S[(m−
1)k + 1, mk] with back-references to their respective occurrences in dict2, and
the pointer moves just past S. Otherwise, ck[1] ̸= g, then LZ77 finds a match
for P and moves the pointer to g in the query Q. Next, by conditions 1 and 2,
LZ77 likely replaces g∥S[1, k− 1], . . . , S[(m− 1)k, mk− 1] by back-references
to their respective occurrences in dict2, and the pointer moves to S[mk]. That
is, the LZ77 algorithm can be seen to group gadgets as

P∥g, S[1, k], . . . , S[(m− 1)k + 1, mk] (ck[1] = g)
P, g∥S[1, k− 1], . . . , S[(m− 1)k, mk− 1], S[mk] (ck[1] ̸= g)

While the length of the LZ77 output differ by only one depending on whether
ck[1] = g, the back-reference distances are larger when ck[1] ̸= g as most of
them refer to substrings in the farther dictionary dict1, and therefore may
need more extra bits to encode. Because the extra bits stay unchanged in
Huffman coding, if we assume Huffman coding compresses other parts of
LZ77 outputs to similar lengths, then the differences in the number of ex-
tra bits persist to affect the difference of compressed lengths, making the
compressed length larger when ck[1] ̸= g.

The Huffman coding should be stable and only affect the amplification min-
imally. That said, it appears possible to construct adversarial examples in
which the Huffman coding partially or completely offsets the length change
from extra bits. In practice, this probability is negligible and in particular
much lower than the probability that some prerequisites of the distance-
based chain are not satisfied.
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It is challenging to determine the amplification ratio for a distance-based
chain; as a rough estimation, if each back-reference to dict1 needs two more
extra bits to encode its distance than a back-reference to dict2, then the
gadget creates a compressed length difference of around m/4 bytes with
around (3k + 2)m bytes, yielding an amplification ratio of around 1/12k.
The length of the query is bounded by Lq as well as the sliding window size
max window.

We remark that one can immediately obtain a distance-based chain that
amplifies compressed length differences in the reverse direction, i.e. increase
the compressed length when ck[1] = g, by switching dict1 and dict2.

5.4.3 Match-based chain

A match-based chain amplifies compressed length differences by making
LZ77 find different matches to gadgets that have different lengths.

We describe the constructions of match-based chains based on Section 5.4.1.
It suffices to use one dictionary string for our techniques to work, but having
two dictionary strings can slightly improve performance in ways similar to
distance-based chains.

To give readers the general idea of a match-based chain, we first describe
in Section 5.4.3 how to construct a match-based chain when lazy match-
ing is disabled. Then, we discuss in Section 5.4.3 the more interesting and
simultaneously more challenging case where lazy matching is enabled.

Lazy matching disabled

Let k ≥ min match + 1, and let the length of S be ℓs = mk. The dictio-
nary string dict1 represents a set of strings {S[(i− 1)k, ik− 2]}i∈[m], and dict2
represents a set of strings {S[(i− 1)k + 1, ik]}i∈[m].

In our example setting, suppose the guess is 1, m = 3 and k = 4. Then the
query could be

-1AB-DEF-HIJ----ABCD-EFGH-IJKL-secret=1ABCDEFGHIJKL

If ck[1] is indeed 1, then LZ77 likely groups gadgets as secret=1, ABCD, EFGH,
IJKL; otherwise, LZ77 likely groups gadgets as secret=, 1AB, C, DEF, G, HIJ.
However, in the latter case, if lazy matching is enabled, then LZ77 can im-
prove 1AB with the lazy match ABCD, and the subsequent LZ77 output is the
same regardless of ck[1].

More formally, if ck[1] = g, then LZ77 likely groups gadgets as

P∥g, S[1, k], . . . , S[(m− 1)k + 1, mk]
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and outputs
<L(ℓp + 1),D*>∥<Lk,D*>∥...∥<Lk,D*>

Otherwise, ck[1] ̸= g, then LZ77 likely groups gadgets as

P, g∥S[1, k− 2], S[k− 1], . . . , S[(m− 1)k, mk− 2], S[mk− 1], S[mk]

and outputs

<Lℓp,D*>∥<L(k− 1),D*>∥S[k− 1]∥...∥<L(k− 1),D*>∥S[mk− 1]∥S[mk]

Lazy matching enabled

We first remark that when lazy matching is enabled, the above construction
for the case where lazy matching is disabled still works correctly in zlib
when k ≥ max lazy+ 1, which is useful for level 4 in zlib.

Let k ≥ min match+ 2. In zlib, we also require that k ≤ max lazy+ 1. Let
the length of S be ℓs = mk− 1. The dictionary string dict1 represents a set of
strings

{S[(i− 1)k + 2, ik]}i∈[m−1] ∪ {S[(m− 1)k + 1, mk− 2]},

and dict2 represents a set of strings

{g∥S[1, k− 2]} ∪ {S[ik− 1, (i + 1)k− 2]}i∈[m−1].

In our example setting, suppose the guess is 1, m = 3 and k = 5. Then the
query could be

-BCDE-GHIJ-KLMN----1ABC-DEFGH-IJKLM-secret=1ABCDEFGHIJKLMN

If ck[1] is indeed 1, then in gadgets, LZ77 first finds a match for secret=1

and moves the pointer to A. There, LZ77 finds a match ABC, but subsequently
improves it with the lazy match BCDE, and moves the pointer to F. LZ77
finds a match FGH at F, but then improves it with the lazy match GHIJ, after
which LZ77 finds another match KLMN. In summary, when ck[1] = g, then
LZ77 likely groups gadgets as secret=1, A, BCDE, F, GHIJ, KLMN. Otherwise, if
ck[1] ̸= g, then LZ77 likely groups gadgets as secret=, 1ABC, DEFGH, IJKLM.

More formally, if ck[1] = g, then LZ77 likely groups gadgets as

P∥g, S[1], S[2, k], . . . , S[(m− 2)k+ 1], S[(m− 2)k+ 2, (m− 1)k], S[(m− 1)k+ 1, mk− 1]

and outputs

<L(ℓp + 1),D*>∥S[1]∥<L(k− 1),D*>∥...∥S[(m− 2)k + 1]∥<L(k− 1),D*>∥<L(k− 1),D*>
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Otherwise, ck[1] ̸= g, then LZ77 likely groups gadgets as

P, g∥S[1, k− 2], S[k− 1, 2k− 2] . . . , S[(m− 1)k− 1, mk− 2], S[mk− 1]

and outputs

<Lℓp,D*>∥<L(k− 1),D*>∥S[k− 1]∥...∥<Lk,D*>∥S[mk− 1]∥S[mk]

Note our construction for the final part of the chain can clearly be further
optimised. For example, we can remove the string S[(m− 1)k + 1, mk − 2]
(KLMN in our example) from dict1 to get an additional compressed length
difference of around one. However, as we will see in Chapter 6, our design
allows for a modular treatment of all amplification chains.

Note also that the amplification chain constructed above increases the com-
pressed length when ck[1] = g.

Estimated performance

If we make a simplifying assumption that Huffman coding encodes each
back-reference to about the same length in both cases, then the compressed
length difference is around m. The length of the query is about (3k + 1)m,
so the amplification ratio is approximately 1/3k. The length of the query is
bounded by Lq as well as the sliding window size max window.

5.4.4 Optimisations

Reducing dictionary size

We briefly discuss several ways to reduce the query size in the chaining
technique by using shorter dictionary strings.

A natural strategy is to choose the string S such dict1 or dict2 represents a
set of strings with fewer than m entries, and is therefore shorter than the
normal length of around (k + 1)m. For example, in a distance-based chain,
dict2 represents {S[(i− 1)k + 1, ik]}i∈[m]; if we choose S such that for every
i′ ∈ [⌊m/2⌋], we have

S[(2i′ − 1)k + 1, 2i′k] = S[(2i′ − 2)k + 1, (2i′ − 1)k]

then dict1 represents a set with at most ⌈m/2⌉ entries. In our example set-
ting, when g = 1, a distance-based chain with m = 4 and k = 3 could
be

-1AB-CAB-CDE-FDE------------ABC-DEF-secret=1ABCABCDEFDEF

An attacker may also choose S such that dict1 or dict2 can be encoded more
efficiently. In our example setting, when g = 1, a possible distance-based
chain with m = 4 and k = 3 is
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-1DE-FCD-EBC-DAB------------ABCDEF-secret=1DEFCDEBCDABC

Finally, if an attacker knows some parts of the plaintext located before the
query, then they may use the known substrings as a dictionary string to
construct the query, reducing the size of dict1.

Match-based chains can also be optimised in similar ways.

We remark that all of the above optimisation strategies require S to be struc-
tured, so care should be taken to ensure that the correctness of the chain still
holds with high probability.

Quick check

One way to check whether an amplification chain is correct is to test it in
a simulated attack environment, and see if it produces the desired results.
That is, an attacker could embed the query into plaintexts they constructed
to the best of their knowledge, and see if the compressed lengths indeed
change as desired depending on whether the guess is the same as the secret
character in the plaintext simulated by the attacker.

If the check succeeds, then the attacker submits the query to the oracle,
which is likely to produce desired results in the real attack environment;
otherwise, if the check fails, then the attacker generates another query with
fresh randomness and repeats the above process, until a preset number of
attempts has been reached.

5.5 Collision-based amplification

In this section, we sketch a technique that we refer to as collision-based am-
plification, which amplifies compressed length differences in zlib by creating
collisions in its LZ77 hash table implementation.

Note that the collision-based amplification techniques we describe in this
section do not target the general DEFLATE algorithm, because they depend
on details of the hash table implementation that are unspecified in DE-
FLATE, and in particular the (non-cryptographic) hash function used. That
said, our techniques likely also apply to other DEFLATE compressors with
similar hash table implementations as zlib, and we expect most DEFLATE
compressors to be susceptible to variants of collision-based amplification.

The general idea for collision-based amplification is very similar to chaining,
in that both try to make LZ77 find very different back-references depend-
ing on whether a guess is correct. In collision-based amplification, a query
contains some adversarially chosen substrings with the same hash value,
such that the corresponding hash chain becomes too long and the older en-
tries on that chain are no longer visible to LZ77. As a result, LZ77 cannot
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find a match at certain positions in the query despite a matching substring
is present in the sliding window, but can find a match at slightly different
positions, creating a divergence in LZ77 outputs.

There are many possible ways to design queries for collision-based amplifi-
cation. Our technique mainly utilises strings with a special property, but, as
the readers will notice, the use of such strings is mainly for efficiency, and
more general techniques for collision-based amplification certainly exist.

For simplicity, we focus on the default parameters for all compression levels
in zlib where min match = 3 and hash bits = 15, but our techniques should
also work similarly for other reasonable parameters.

Our presentation is again based on the following scenario: Suppose an at-
tacker wishes to check whether the character ck[1] immediately following a
known prefix P of length ℓp is equal to a guess g ∈ Ω.

5.5.1 Collisions

Hash collisions

Recall that in the hash table implementation of zlib, the hash value of a
3-byte string abc is

hash(a, b, c) =
(

a · 210 + b · 25 + c
)

mod 215,

where each byte is treated as an unsigned integer.

Notice a simple fact that the number of collisions for each hash value is bal-
anced: for each possible hash value in {0, . . . , 215− 1}, the number of 3-byte
strings with that hash value is precisely (28)3/215 = 29. However, if we limit
the alphabet to alphanumeric characters, then the collisions naturally be-
come unbalanced, with the highest number of collisions being 27, for which
we give an example in Table 5.1.

0pq 0qQ 0r1 1Pq 1QQ 1R1 20q 21Q 221

Ppq PqQ Pr1 QPq QQQ QR1 R0q R1Q R21

ppq pqQ pr1 qPq qQQ qR1 r0q r1Q r21

Table 5.1: The 27 alphanumeric strings with the hash value 20081.

Doubly-colliding strings

We will mainly consider all strings T with what we call the doubly-colliding
property with regard to a given byte z; that is, let abcd = T[1, 4], then

hash(a, b, c) = hash(b, c, d) = hash(z, z, z).
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If hash is a random function, then one would expect that such strings are
extremely rare for any given z. However, because zlib uses a “rolling” hash
function, if hash(a, b, c) = hash(z, z, z), then for each possible value of d,

hash(b, c, d) =
(
hash(a, b, c) · 25 + d

)
mod 215

=
(
hash(z, z, z) · 25 + d

)
mod 215

=
(

z · 210 + z · 25 + d
)

mod 215,

so hash(b, c, d) = hash(z, z, z) if and only if d = z.

5.5.2 Infinite chain

Up to now, all of our chaining techniques require adding more dictionary
entries as m grows. However, it is possible to design a collision-based am-
plification chain that continues infinitely with some bootstrap data before
the chain. The basic idea is to leverage two sequences of doubly-colliding
strings with regard to some byte z, Z1 = (T1,i)i∈[k], Z2 = (T2,i)i∈[k], where one
sequence is the permutation of the other one. The string of gadgets gadgets
is of the form

P∥(S1∥S2)
m

where k = ⌊max chain/4⌋,

S1 = g∥T1,1∥ . . . ∥T1,k∥R
S2 = g∥T2,1∥ . . . ∥T2,k∥R

and R contains z repeated by a number of times.

To bootstrap the chain, we add S1, S2 to dict1, add {T1,i}i∈[k] to dict2, and set
filler to zmax chain. We design S1 and S2 such that when the LZ77 pointer is
at T2,i in S2, then it finds the corresponding entry T1,i′ in S1, but not to the
previous occurrence of S2, and similarly for S1. Therefore, when ck = g, we
force LZ77 to take shorter matches, but when ck ̸= g, starting at a different
position without a collision, LZ77 can first find long matches in dict1, and
later from the previous occurrences of S1 and S2.

We have built an example for compression level 5, where we choose k = 8,

Z1 = (ppqQ, pr1Q, qPqQ, qR1Q, r0qQ, r21Q, PpqQ, Pr1Q),
Z2 = (qR1Q, qPqQ, pr1Q, ppqQ, r21Q, r0qQ, Pr1Q, PpqQ),
R = QQQQ

where the amplification ratio is around 0.185 as m grows. However, we did
not test for other levels. We expect that such examples can be found for
most compression levels, possibly with longer doubly-colliding strings or
variations, which we leave for future work.
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Chapter 6

Query programming on DEFLATE/zlib

In this chapter, we introduce a new paradigm called query programming for
designing complex queries in compression side-channel attacks against DE-
FLATE and zlib.

6.1 Overview

We provide an overview of query programming in this section. The attack
model and assumptions for query programming can be found in Section 5.1.

6.1.1 Motivation and general idea

As the reader may have noticed in Chapter 5, most of our amplification
techniques create queries whose string of gadgets gadgets consists of two
parts: the first part P∥g checks whether g is the correct guess for ck[1],
and the second part S amplifies the compressed length difference. It is
therefore natural to treat each part as an individual gadget that provides a
certain functionality. In our case, the two gadgets are a byte-match gadget
(Section 6.3.1) and an amplify gadget (Section 6.3.4).

The byte-match gadget P∥g creates a difference in the LZ77 pointer posi-
tions depending on whether ck[1] = g, while the amplify gadget maintains
that difference and leverages the difference to make LZ77 find very differ-
ent back-references. More generally, a gadget transitions one set of LZ77
pointer positions to another, possibly bringing differences in LZ77 outputs
at different LZ77 pointer positions.

A core observation that motivates query programming is that we can see
LZ77 pointer positions as states, and abuse the LZ77 algorithm in DEFLATE
for a controlled state transition. This observation leads to a modular way
to design gadgets and make them work in concert to perform a complex
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functionality in what we call a (CRIME) program. In particular, by utilising
logical gadgets, it is possible to combine multiple queries into a single one,
debunking a myth that a query can only leak around one bit of information
in compression side-channel attacks.

6.1.2 Structure

The query structure for query programming is the same as in Section 5.2.3.
Recall that a query Q contains up to four parts: two dictionary strings dict1
and dict2, each representing a set of strings called a dictionary, an optional
filler string filler, and a string of gadgets gadgets; that is,

Q = dict1∥filler∥dict2∥gadgets

The string gadgets is the concatenation of a series of specifically crafted
strings, each being a gadget that performs a specified functionality.

We refer to Q as a (CRIME) program. For simplicity, we often only describe
the composition of gadgets when we specify a program, because the entries
in dict1 and dict2 are determined by gadgets.

6.1.3 Execution and output

The output of a program Q is the answer to the the query Q given by the
compression oracle, i.e. the compressed length of the plaintext with Q em-
bedded after the secret. We refer to the process of compressing the plaintext
with DEFLATE/zlib as a program execution.

6.1.4 State

The state in a program execution is indicated by the LZ77 pointer position
when LZ77 scans through gadgets. Without loss of generality, we denote
the state where the LZ77 pointer is at the last character of a gadget as false,
and denote the state where the LZ77 pointer is at the first character of a
gadget (i.e. aligned with the gadget) as true. All other pointer positions have
undefined states. Note that every gadget should have at least two characters
for the states to be well-defined.

We note that it is clearly possible but likely impractical in general to use
ternary or quaternary states.

6.1.5 Gadget

A gadget takes an initial state and transitions it into another state. The initial
state for a gadget is the state when the LZ77 pointer falls within the gadget
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or at the character before the gadget for the first time. The state transition
derives the initial state for the next gadget, if there is any.

In the following sections, we denote a gadget by a string S of length ℓs ≥ 2.
We abuse the notation to let S[0] denote the character before the gadget in
the plaintext, and let S[ℓs + 1]S[ℓs + 2] denote the characters that immedi-
ately follow S in the plaintext, or end symbols if there are no more characters
available.

6.2 Separation gadgets

We first describe two types of simple gadgets used to separate gadgets from
other parts of the query, or to separate two gadgets.

6.2.1 Align gadget

An align gadget forces the LZ77 pointer that falls within the gadget to move
just past it, to the first character of the next gadget. More formally, an align
gadget transitions any initial state, which can be true, false or undefined, to
the state true for the next gadget.

The motivation for align gadgets is that, in most cases, for a gadget to per-
form its intended functionality, the LZ77 pointer must be either aligned with
the gadget or just before the gadget. In our example setting, an attacker
may query secret=1 to check if ck[1] is equal to 1. The query field is then
query=secret=1. However, if the plaintext before the query contains a sub-
string memory=secret, then LZ77 likely outputs que<L9,D*>=1 regardless of
the guess, causing the attack to fail. To solve this problem, the attacker could
prepend an align gadget to the query to separate secret=1 from query, such
that LZ77 can find a match for secret=1.

We list three candidates for the align gadget; other constructions are also
possible.

• Repeated characters. The repetition of some character that ideally does
not appear elsewhere, such as @@@@@@, could work as an align gadget.

• Known match. One could use a known substring in the sliding window
as an align gadget. In the above example, the attacker may use memory

or secret as an align gadget, but memory= does not work.

• Random string. A random string, such as HJx0c6, could also work as
an align gadget. One could also repeat the random string to obtain a
known match.

Care must be taken when using multiple align gadgets to avoid interference
among them.
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Note that, the align gadget, and more generally the idea of ensuring the
initial pointer position for each gadget, may not be necessary for real-world
attacks, which generally allow some level of inaccuracy. Nevertheless, in
the compression side-channel attack against Threema [41, Appendix B], the
former of the two required canary strings possibly acted as an align gadget.

6.2.2 Dummy gadget

Sometimes, concatenating two gadgets directly may create a substring that
affect the correctness of the program; a dummy gadget acts as a separator
between two interfering gadgets by transitioning an initial state of true to
true, and an initial state of false to false.

We give two possible constructions for a dummy gadget S of length ℓs:

• Random string. We could select S as a random string, and add both
S[0, ℓs − 1] and S[1, ℓs] to arbitrary dictionaries.

• Known match. We could also select S to be a known substring of length
ℓS in the sliding window, and add S[0, ℓs− 1] to an arbitrary dictionary.

Note that a dummy gadget can be seen as a degenerate case of a distance-
based amplify gadget (Section 6.3.4) when m = 1. Conversely, an amplify
gadget also provides the functionality of a dummy gadget.

6.3 Match and amplify gadgets

6.3.1 Byte-match gadget

A byte-match gadget checks whether P∥g can be found the sliding window
for a string P of length ℓp and a character g, where ℓp ≥ min match − 1.
Here P does not have to appear in the sliding window for the gadget to
work correctly.

If the initial state is true, then the byte-match gadget changes the state to
true if P∥g can be found in the sliding window, and changes the state to false
otherwise. The behaviour of the byte-match gadget is unspecified when the
initial state is false or undefined.

A byte-match gadget can simply be P∥g. If ℓp ≥ min match and LZ77 might
not find P in the sliding window, then we can add P to a dictionary. Adding
P ensures that the program returns false when only a proper suffix of P∥g
but not P∥g itself can be found in the sliding window.

In our example, a byte-match gadget could be secret=1 for the prefix secret

and guess 1.
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To ensure the correctness of the byte-match gadget, we require that S[2, ℓs +
1] does not appear in the sliding window; recall that S[ℓs + 1] is the character
following the gadget and can be chosen by the attacker.

It is easy to see why the byte-match gadget works correctly. If LZ77 can find
P∥g in the sliding window, then LZ77 finds a match for the whole gadget,
which by our assumption cannot be improved by lazy matching. Therefore,
LZ77 outputs a back-reference for the whole gadget and moves its pointer
to S[ℓs + 1], which represents the state true. Otherwise, LZ77 either only
matches P in the query or slides through it if ℓp < min match, and moves
the pointer to S[ℓs], which represents the state false.

6.3.2 Lazy-match gadget

It is also possible to design match gadgets based on lazy matching in LZ77.
A lazy-match gadget checks whether a string T can be found in the sliding
window, where |T| ≥ min match. In zlib, we also require |T| ≤ max lazy.

If the initial state is true, then the lazy-match gadget changes the state to
false if T can be found in the sliding window, and changes the state to true
otherwise. The behaviour of the lazy-match gadget is unspecified when the
initial state is false or undefined, or when lazy matching is disabled.

Note that, contrary to the byte-match gadget, the lazy-match gadget changes
the state to true if T cannot be found sliding window. If a program uses
both types of match gadgets together, then the NOT gadget described in
Section 6.4.1 may be helpful.

The lazy-match gadget is of the form S = T∥c of length ℓs = |T|+ 1, where
c is a character that ideally only appears in lazy-match gadgets. In addition,
we add S[2, ℓs] to one of the two dictionaries.

In our example, to probe whether secret=123 is in the sliding window, a
lazy-match gadget could be secret=123/, and we add ecret=123/ to dict2.

To ensure the correctness of the lazy-match gadget, we require that the sub-
string S[2, ℓs] does not appear in the sliding window.

If LZ77 can find T in the sliding window, then LZ77 finds a match for
S[1, ℓs − 1] in the gadget, which cannot be improved by lazy matching.
Therefore, LZ77 moves the pointer to S[ℓs], which represents false. Oth-
erwise, LZ77 either finds a match shorter than T, to be replaced by the lazy
match S[2, ℓs] of length |T|, or does not find any match at S[1] and proceeds
to find the match S[2, ℓs] at S[2]; in both cases, the pointer moves to S[ℓs],
which represents the state true.

The lazy-match gadget is essentially the same as byte-match gadget. How-
ever, the lazy-match gadget should be used with care, because it always
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adds a non-random entry to a dictionary, which may interfere with other
gadgets, and lazy matching is only performed under certain conditions.

6.3.3 Telescoped-match gadget

The telescoping technique in Section 5.3 can be seen as a single match gadget
that also decreases the compressed length by several bytes when P∥g can be
found in the sliding window, which we call a telescoped-match gadget. The
telescoped-match gadget likely works when regardless of the initial state.

Like for the byte-match gadget (Section 6.3.1), if LZ77 might not find P in
the sliding window, then we can add P to one of the two dictionaries.

We remark that a telescoped-match gadget can be seen as a compact variant
of a program with k byte-match gadgets, separated by align gadgets.

6.3.4 Amplify gadgets

An amplify gadget increases the compressed length difference between the
initial states true and false, and keep the initial state for the next gadget.
The constructions for amplify gadgets are already covered implicitly when
we introduce our amplification techniques, and can be easily extracted from
our description in Chapter 5.

Depending on the direction of amplification, there could be two types of
amplification gadgets: one type increases the compressed length when the
initial state is true, and the other type increases the compressed length when
the initial state is false. Note that one type of amplification gadgets can
be transformed into the other by prepending and appending NOT gadgets
(Section 6.4.1).

6.4 Logical gadgets

We have already seen that align gadgets (eventually) set the state to true,
dummy gadgets merely keep the initial state, match gadgets set different
states based on the match result when the initial state is true, and amplify
gadgets change the compressed length difference based on the initial state
while keeping that state.

In this section, we will introduce some logical gadgets to equip us with more
control over states.

6.4.1 NOT gadget

As the name suggests, a NOT gadget inverts the state of the previous gadget.
That is, if the initial state is true, then the NOT gadget changes the state to
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false; otherwise, if the initial state if false, then the NOT gadget changes the
state to true.

We give two possible ways to build a NOT gadget S:

• The gadget can be a string S with length ℓs = min match− 1, such that
LZ77 cannot find a match for S[1, ℓs + 1] in the sliding window. We
add S[0, ℓs] to a dictionary if LZ77 might not find a match for S[0, ℓs]
in the sliding window. The string S ideally contains a special charac-
ter reserved for NOT gadgets at one position, and generally random
strings or known matches can also work.

In our example, to invert the state after the gadget secret=1, we could
use a NOT gadget !0, and add 1!0 to the dictionary dict2. If the initial
state for the NOT gadget is true, then the pointer is first at !, and
then advances the pointer by one byte to 0, which represents false.
Otherwise, if the initial state is false, then the pointer is at 1, where
LZ77 finds a match 1!0 in the dictionary and moves its pointer just
after the gadget, changing the state to true.

• Alternatively, one could use lazy matching to construct a NOT gadget;
here we only sketch the general idea in our example setting. A possible
NOT gadget after secret=1 is ABCDEF, where we add 1ABC, BCDE, and
DEF to the dictionary. If the initial state is true, then LZ77 first matches
ABC, and then replaces it with a lazy match BCDE, reaching the false
state at F; otherwise, if the initial state is false, then LZ77 subsequently
matches 1ABC and DEF, reaching the true state.

This method creates more nuisance than the previous method, but may
help reduce the chance of failure if we cannot use a custom character
for NOT gadgets.

6.4.2 AND-match

An AND-match gadget sets the state as the logical AND of the initial state
and the result of a match gadget. More specifically, if the initial state is
true, then the AND-match gadget sets the state according to the result of
the match gadget; otherwise, if the initial state is false, then the AND-match
gadget sets the state to false.

For simplicity, we only consider AND-match gadgets constructed from byte-
match gadgets in this section.

AND byte-match

The AND-match gadget constructed from a byte-match gadget P∥g is simply
S = P∥g. We could nonetheless use append a dummy gadget (Section 6.2.2)
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to the previous gadget if some of the requirements below are not satisfied, or
the concatenation of the AND-match gadget with the previous gadget may
create unwanted interference. Let ℓs = |S|. We add S[0, ℓs − 1] = g[0]∥P to a
dictionary.

In our example setting, if we want to perform the AND operation on two
byte-match gadgets secret=1 and data=2, by treating the latter as an AND-
match gadget, we could simply write secret=1data=2 and put 1data= into
a dictionary. If we want to separate them, we could add a dummy gadget
like {R22} to make it secret=1{R22}data=2, for which we should instead
put 1{R22, {R22}, and }data= into the dictionaries.

For our construction to work correctly, we require that LZ77 cannot find a
match for S[0, ℓs] in the sliding window.

If the initial state is true, then the LZ77 pointer is at S[1] (in our example, d
in data=), so S[1, ℓs] acts as a byte-match gadget; otherwise, the initial state
is false, then the pointer is at S[0] (1 in secret=1), and LZ77 finds the match
for S[0, ℓs− 1] (1data=) we added to a dictionary, moving the pointer to S[ℓs]
(2 in data=2), which is the state of false.

This construction should be used with care, because it adds a non-random
entry to a dictionary.

6.4.3 OR-match

An OR-match gadget sets the state as the logical OR of the initial state and
the result of a match gadget. More specifically, if the initial state is true, then
the OR-match gadget sets the state to true; otherwise, if the initial state is
false, the OR-match gadget sets the state according to the result of the match
gadget.

For simplicity, we only consider OR-match gadgets constructed from byte-
match gadgets.

OR byte-match

Unlike AND byte-match, we do need to prepend a string before the byte-
match gadget to perform the OR operation. We could still append a dummy
gadget to the previous gadget to provide separation.

Here, we describe one possible way of building an OR byte-match gadget
when lazy matching is enabled. We note that a similar but simpler construc-
tion exists when lazy matching is disabled.

Let P∥g be a byte-match gadget for the prefix P and guess g, where ℓp ≥
min match + 2 for ℓp := |P|. An OR byte-match gadget of length ℓs con-
structed from the byte-match gadget can be S = T∥P∥g, where T is a string
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of length ℓt such that ℓt ≥ min match, and, if using zlib, ℓt ≤ max lazy. The
string T can be drawn at random, preferably containing a special character
reserved for OR-match; ideally, at least T[2] should be a special character.
Let k be a positive integer such that 2 ≤ k ≤ ℓp −min match. We add three
strings to the dictionaries:

S[0, ℓt] = S[0]∥T
S[2, ℓt + k] = T[2, ℓt]∥P[1, k]

S[ℓt + k + 1, ℓs] = P[k + 1, ℓp]∥g

For the underlying byte-match gadget to work correctly, we may also add P
to a dictionary if LZ77 cannot find P in the sliding window.

In our example setting, to perform the OR operation on secret=1 and
secret=2, we could choose ℓt = 3 and k = 5, and let e|Asecret=2 be the
OR byte-match gadget. The concatenation is then secret=1e|Asecret=2,
and we should add strings 1e|A, |Asecre, and t=2 to arbitrary dictionaries.

For this gadget to work correctly, we should ensure that LZ77 does not find
a match for S[1, ℓt + 1], S[3, ℓt + k + 1] or S[ℓt + k + 2, ℓs + 1] in the sliding
window.

If the initial state for the OR-match gadget is true, then the LZ77 pointer is at
S[1], where LZ77 finds a match for S[1, ℓt] in a dictionary (likely in the entry
for S[0, ℓt]). Because ℓt ≤ max lazy in zlib, LZ77 performs lazy matching
and finds S[2, ℓt + k] of length ℓt + k − 1 > ℓt. Because this lazy match is
longer and cannot be further improved either by extension or lazy matching,
LZ77 takes the lazy match and advances the pointer to S[ℓt + k + 1]. There,
LZ77 finds S[ℓt + k + 1, ℓs] in a dictionary, which meets the minimum match
length and cannot be further improved, making the LZ77 pointer advance
just past the gadget to the state of true.

Otherwise, if the initial state for the OR-match gadget is false, then the LZ77
pointer is at S[0], where LZ77 finds the match S[0, ℓt] in a dictionary, which
cannot be further improved. Therefore, the pointer moves to S[ℓt + 1], the
start of the byte-match gadget. Assuming that the strings we added do not
interfere with the byte-match gadget, it should set the state depending on
whether LZ77 can find P∥g in the sliding window.

In our example, starting at e in e|A, LZ77 first finds a match for e|A, then
replaces it with the lazy match |Asecre, and finally matches t=2, moving the
pointer just after secret=2; starting at 1 in secret=1, LZ77 matches 1e|A,
and the pointer falls at s in secret=2.

This construction should be used with great care, because it adds two non-
random entries to the dictionaries.
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6.5 Example programs

In this section, we describe three types of programs for compression side-
channel attacks.

6.5.1 CRIME chain

An attacker can use a CRIME chain to check with high confidence whether a
character follows a prefix in the plaintext, or check whether a string exists in
the plaintext. We have already used CRIME chains implicitly in Chapter 5.

The construction of a CRIME chain is straightforward. Its gadgets are of the
form

(align∥)match∥amplify

where align, match and amplify are respectively an optional align gadget, a
match gadget and an amplify gadget.

6.5.2 CRIME slide

A CRIME slide allows an attacker to perform a parallel search on multiple
candidate characters that follow a prefix in the plaintext, or perform a par-
allel search on multiple target strings. The CRIME slide can be seen as an
extension to the divide-and-conquer technique (Section 3.5.2) for compres-
sion side-channel attacks. Its gadgets are of the form

(align∥)match-1∥or-match-2∥or-match-3∥. . . ∥or-match-n∥amplify

where align is an optional align gadget, match-1 is a byte-match gadget for
the first candidate, or-match-i is an OR-match gadget constructed from the
byte-match gadget for the i-th candidate for each i ∈ {2, . . . , n}, and amplify
is an amplify gadget.

If at least one candidate can be found in the sliding window, then the initial
state for amplify is true; otherwise, the initial state for amplify is false, creating
a difference in their compressed lengths.

If OR-match gadgets are unusable for some reason, an attacker could per-
form a parallel search by composition. The composition can be done at
either the level of gadgets or the level or programs. However, these con-
structions require longer queries and are likely unstable.

An attacker can construct the gadgets as

(align∥)match-1∥amplify-1∥align∥match-2∥amplify-2∥. . . ∥align∥match-n∥amplify-n
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where for each i ∈ [n], match-i is a byte-match gadget for the i-th candidate,
and amplify-i is an amplify gadget. If we assume every amplify gadget in-
creases the compressed length by around the same value at the state true,
then an attacker could deduce from the compressed length how many can-
didates are in the plaintext. Furthermore, if each amplify gadget changes
the compressed length differently, then an attacker may learn more infor-
mation from the compressed length, and may even be able to deduce which
candidate is in the plaintext by making a single query.

Alternatively, an attacker could concatenate multiple CRIME chains by mak-
ing the query

Q=crime-chain-1∥crime-chain-2∥. . . ∥crime-chain-n

where for each i ∈ [n], crime-chain-i refers to the CRIME chain constructed
for the i-th candidate. This construction achieves a similar effect as the
construction above.

6.5.3 CRIME cascade

A CRIME cascade can not only match multiple candidates in parallel, but
also inform the attacker the first matched candidate from the length of the
compressed plaintext. Its gadgets are of the form

(align∥)match-1∥amplify-1∥or-match-2∥amplify-2∥. . . ∥or-match-n∥amplify-n.

where align is an optional align gadget, match-1 is a byte-match gadget for
the first candidate, for each i ∈ {2, . . . , n}, or-match-i is an OR-match gadget
constructed from the byte-match gadget for the i-th candidate, and for each
i ∈ [n], amplify-i is an amplify gadget.

Assume that each amplify gadget increases the compressed length by around
the same value d at the state true. Then, for each i ∈ [n], if the i-th candidate
is the candidate with the smallest index that appears in the sliding window,
then for each j ∈ [n], amplify-j increases the compressed length by around
d if and only if j ≥ i, meaning that the compressed length is increased by
around (n − i + 1) · d. Therefore, an attacker could learn from the com-
pressed length how many amplify gadgets produced an increased length,
and then naturally deduce the first matched candidate.

We note that the alternative constructions for the CRIME slide can achieve
the same effect by using amplification gadgets of different lengths, but the
resulting queries would be longer than a CRIME cascade.
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Chapter 7

Discussion and future work

7.1 Discussion

It is hard to gauge the real-world implications of our work due to its theo-
retical nature. While we are currently unaware of any deployed system that
is simultaneously not vulnerable to existing compression side-channel at-
tacks and can be exploited using our new techniques, we reasonably expect
that such targets would soon be found if their vendors do not take proper
measures to mitigate the potential compression side channels in time. There-
fore, we urge vendors not to perform compression before encryption in their
products whenever possible.

While previous works have suggested that adding random noise can be
effective at mitigating compression side-channel attacks, our amplification
techniques imply that these mitigations are not as effective as claimed. How-
ever, the exact extents to which they are effective are still unknown. Sim-
ilarly, systems that are not highly interactive by nature may also be more
vulnerable to compression side-channel attacks than previously expected.

Finally, this thesis concurs with [29] that the compression side channel is
different in nature from many other side channels. We therefore advocate for
a change of mindset when analysing compression side-channel attacks. In
particular, a slightly more fitting name for the attacks could be compression
(length) oracle attacks.

7.2 Future work

Some possible directions for future work include:

• Evaluation. Due to time constraints, this thesis did not include an eval-
uation of our techniques. Therefore, a primary task for future work
is to conduct a rigorous evaluation, including but not limited to the
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effects of different parameters, compression levels and compressor im-
plementations.

• Techniques. Some of our techniques can likely be further refined, and it
should be possible to find new techniques with a better understanding
of the Huffman coding process in DEFLATE/zlib.

• Attacks. It remains an open problem to demonstrate the practicality
of our new techniques on a real-world target, which likely requires
additional tweaks to adapt to the attack scenario.

• Extensions. It is of particular interest to extend our results to other
compressors. Some variants of our amplification techniques already
apply to several other compressors, like brotli and bzip2. However,
one may uncover more interesting techniques by inspecting their al-
gorithms and implementations more closely. In addition, our tech-
niques can clearly be adapted to exploit the timing side channels in
DEFLATE/zlib decompressors [50].

• Bounds. Apart from extending our results on randomised padding, it is
also of interest to study the effect of random noise in compressors and
masking secrets, which may require further extensions to our models.
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Appendix A

Generic lower bounds on sensitivity

We give some lower bounds on the sensitivity of generic compressors.

Definition A.1 (Neighbors) Let Σ be an alphabet, ℓ ∈ N+, S ⊆ Σℓ. The neigh-
bors of the set S are

N[S] := {a ∈ Σℓ : ∃b ∈ S ∧HD(a, b) ≤ 1},

and for every k ∈N, the k-neighbors of the set S are

N(k)[S] := {a ∈ Σℓ : ∃b ∈ S ∧HD(a, b) ≤ k}.

Definition A.2 (Hamming ball) Let Σ be an alphabet, ℓ ∈ N+, a ∈ Σℓ, k ∈
{0, 1, . . . , ℓ}. The Hamming ball on Σℓ with the center a and radius k is

Ball(a, k) := {b ∈ Σℓ : HD(a, b) ≤ k}.

Theorem A.3 Let C be a compressor on an input alphabet Σ of size σ and an
output alphabet Ω of size ω > 1. Let α ∈ (0, 1), β ∈ (0, 1− α), and ℓ ∈N+ such
that ℓ ≥ ω1/(1−α−β). If there exists s ∈ Σℓ such that Pr[|C(s)| ≤ ℓα − 1] ̸= 0,
then

∆(C, ℓ) >
β log ℓ+ log(σ− 1)

log ω
.

Proof If C is randomised, then there exist random coins r ∈ RC,ℓ such that
|C(s; r)| ≤ ℓα− 1, and we consider the compressor C′, obtained by fixing the
random coins to r for inputs of length ℓ; that is,

C′(m) :=

{
C(m; r) if m ∈ Σℓ,
C(m) otherwise.

Clearly, C′ is deterministic on inputs in Σℓ, and ∆(C, ℓ) ≥ ∆(C′, ℓ).

We assume in the rest of the proof that C is deterministic on inputs in Σℓ.
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Suppose, for contradiction, that ∆(C, ℓ) ≤ (β log ℓ+ log(σ− 1))/ log ω.

Let k ∈ N, with its exact value to be specified later. Consider the Hamming
ball on Σℓ with the center s and radius k. We have

|Ball(s, k)| =
k

∑
i=0

(
ℓ

i

)
(σ− 1)i >

(
ℓ

k

)
(σ− 1)k >

(
(σ− 1)ℓ

k

)k

. (A.1)

Because |C(s)| ∈N, |C(s)| ≤ ⌊nα⌋ − 1. By Lemma 4.7, ∀x ∈ Ball(s, k),

|C(x)| ≤ |C(s)|+ k · ∆(C, ℓ) ≤ ⌊ℓα⌋ − 1 + k · ∆(C, ℓ).

Let h = ⌊ℓα⌋ − 1 + k · ∆(C, ℓ). Since ω ≥ 2 and C is injective on Σl ,

|Ball(s, k)| ≤
∣∣∣∣∣ h⋃
i=1

Ωi

∣∣∣∣∣ = h

∑
i=1

ωi < ωh+1 ≤ ω⌊ℓ
α⌋+k·∆(C,ℓ). (A.2)

Let k = ⌊ℓα⌋. We have

log|Ball(s, k)| > k(log ℓ+ log(σ− 1)− log k) (Eq. (A.1))
= k((1− β) log ℓ− log k) + k(β log ℓ+ log(σ− 1))
≥ k((1− β) log ℓ− log k) + k log ω · ∆(C, ℓ) (supposition)
≥ ⌊ℓα⌋((1− β) log ℓ− log⌊ℓα⌋) + k log ω · ∆(C, ℓ) (k = ⌊ℓα⌋)
≥ ⌊ℓα⌋(1− α− β) log ℓ+ k log ω · ∆(C, ℓ) (α > 0)

≥ ⌊ℓα⌋ log ω + k log ω · ∆(C, ℓ) (ℓ ≥ ω1/(1−α−β))

> log|Ball(s, k)|. (Eq. (A.2))

We arrived at a contradiction. □

Remark A.4 Asymptotically better results are likely unattainable with our proof
technique. As a matter of fact, the sensitivity of the Kolmogorov complexity (i.e. the
shortest program that outputs a given string) is O(log ℓ) [1], so an asymptotically
better bound for generic compressors may be out of reach.

Corollary A.5 Let C be a compressor on input alphabet {0, 1} and output alphabet
{0, 1}. Let α ∈ (0, 1), β ∈ (0, 1− α), and ℓ ∈ N+ such that ℓ ≥ 21/(1−α−β). If
there exists s ∈ Σℓ such that Pr[|C(s)| ≤ ℓα − 1] ̸= 0, then ∆(C, ℓ) > β log ℓ.

We can extend Corollary A.5 by relating it to the vertex-isoperimetric prob-
lem on a hypercube.

Lemma A.6 (corollary of Harper’s theorem [20]) Let ℓ ∈N+, S ⊆ {0, 1}ℓ. If
there exists k ∈ [ℓ− 1] such that

|S| ≥
k

∑
i=0

(
ℓ

i

)
,

then

|N[S]| ≥
k+1

∑
i=0

(
ℓ

i

)
.
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Theorem A.7 Let C be a deterministic compressor on input alphabet {0, 1} and
output alphabet {0, 1}. Let α ∈ (0, 1), β ∈ (0, 1− α), ℓ ∈ N+ such that ℓ ≥
21/(1−α−β), and h ∈ [⌊ℓα⌋]. If there exists S ⊆ {0, 1}ℓ such that |S| ≥ ∑h

i=0 (
ℓ
i),

and ∀s ∈ S, |C(s)| ≤ ⌊ℓα⌋+ hβ log ℓ− 1, then ∆(C, ℓ) > β log ℓ.

Proof (sketch) The basic idea is to show that having such a set S is equiva-
lent in effect to having a single string s such that |C(s)| ≤ ℓα − 1. Then, we
can follow the steps in Theorem A.3 to complete the proof.

Suppose, for contradiction, that ∆(C, ℓ) ≤ β log ℓ. Let k = ⌊ℓα⌋.

By repeatedly applying Lemma A.6 for m = k− h times, we get∣∣∣N(m)[S]
∣∣∣ ≥ h+m

∑
i=0

(
ℓ

i

)
=

k

∑
i=0

(
ℓ

i

)
≥
(
ℓ

k

)k

.

On the other hand, for every x ∈ N(m)[S] , there exists s ∈ S such that
HD(s, x) ≤ m. By Lemma 4.7,

|C(x)| ≤ |C(s)|+ m · ∆(C, ℓ)
≤ ⌊ℓα⌋+ hβ log ℓ− 1 + (k− h) · ∆(C, ℓ)
≤ ⌊ℓα⌋+ kβ log ℓ− 1.

Since C is injective, ∣∣∣N(m)[S]
∣∣∣ ≤ 2⌊ℓ

α⌋+kβ log ℓ.

Applying a similar reasoning as Theorem A.3 shows that ∆(C, ℓ) > β log ℓ.□

Corollary A.8 Let C be a compressor on input alphabet {0, 1} and output alphabet
{0, 1}. Let α ∈ (0, 1), β ∈ (0, 1 − α), γ ∈ (0, 1], ℓ ∈ N+ such that ℓ ≥
21/(1−α−β), and h ∈ [⌊ℓα⌋]. If there exists S ⊆ {0, 1}ℓ such that |S| ≥ ∑h

i=0 (
ℓ
i)/γ,

and Pr[|C(s)| ≤ ⌊ℓα⌋+ hβ log ℓ− 1 | s←$ S ] ≥ γ, then ∆(C, ℓ) > β log ℓ.

Proof (sketch) For all random coins r ∈ RC,ℓ, let

Sr = {s ∈ S : |C(s; r)| ≤ ⌊ℓα⌋+ hβ log ℓ− 1}.

Suppose, for contradiction, that ∀r ∈ RC,ℓ, we have |Sr| < γ|S|. Then

Pr[|C(s)| ≤ ⌊ℓα⌋+ hβ log ℓ− 1 | s←$ S ] = ∑
s∈S

1
|S| Pr[s ∈ Sr | r ←$RC,ℓ ]

= ∑
r∈RC,ℓ

1
|RC,ℓ|

|Sr|
|S| < γ,

and we arrived at a contradiction. Therefore, there exists r ∈ RC,ℓ such that
|Sr| ≥ γ|S| ≥ ∑h

i=0 (
ℓ
i). Similar to the proof for Theorem A.3, we complete

our proof by first fixing the random coins used by C to r for inputs of length
ℓ, which does not increase ∆(C, ℓ), and then applying Theorem A.7. □
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Appendix B

Additional proofs

B.1 Proof for Theorem 4.3

Proof For all q ∈N such that AdvLOCI
C,ck0,ck1,L,q ̸= 0, by definition, there exists a

LOCI adversary A that makes at most q queries, such that AdvLOCI
C,ck0,ck1,L(A) >

0.

Without loss of generality, assume Pr[LOCI(A, C, ck0, ck1, L)⇒ true] ≥ 1/2.
If Pr[LOCI(A, C, ck0, ck1, L)⇒ true] = 1/2, then AdvLOCI

C,ck0,ck1,L(A) would be 0,
so we have Pr[LOCI(A, C, ck0, ck1, L)⇒ true] > 1/2.

Let RA be the set of all random coin tosses for A, and for r ∈ RA, let Ar
denote running A with fixed random coins r; i.e. Ar() = A(; r). We have

Pr[LOCI(A, C, ck0, ck1, L)⇒ true] = ∑
r∈RA

Pr[r]Pr[LOCI(Ar, C, ck0, ck1, L)⇒ true]

≤ max
r∈RA

Pr[LOCI(Ar, C, ck0, ck1, L)⇒ true].

Therefore, there exists r′ ∈ RA, such that

Pr[LOCI(Ar′ , C, ck0, ck1, L)⇒ true] ≥ Pr[LOCI(A, C, ck0, ck1, L)⇒ true] >
1
2

. (B.1)

Note that for x ∈ {0, 1}, the game LOCI for adversary Ar′ conditioned on
b = x can be simulated perfectly by a deterministic algorithm. Therefore,

Pr[LOCI(Ar′ , C, ck0, ck1, L)⇒ true | b = x ] ∈ {0, 1},

and thus

Pr[LOCI(Ar′ , C, ck0, ck1, L)⇒ true] ∈
{

0,
1
2

, 1
}

.
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B. Additional proofs

By Eq. (B.1), we have Pr[LOCI(Ar′ , C, ck0, ck1, L)⇒ true] = 1. Because Ar′ , as
an instantiation of A, also makes at most q queries,

AdvLOCI
C,ck0,ck1,L,q ≥ AdvLOCI

C,ck0,ck1,L(Ar′)

= |2 Pr[LOCI(Ar′ , C, ck0, ck1, L)⇒ true]− 1|
= 1.

We complete the proof by noting that AdvLOCI
C,ck0,ck1,L,q ≤ 1 by definition. □

B.2 Proof for Theorem 4.35

Proof It is easy to see AdvLOCI
Cpad,ck0,ck1,L,q ≤ AdvLOCI

C,ck0,ck1,L,q via a straightforward
reduction from a LOCI adversary against Cpad to a LOCI adversary against C.
We show in the remaining of the proof that AdvLOCI

Cpad,ck0,ck1,L,q ≤ AdvBD-HIDE
Dpad,δk,L,q.

Let A be a LOCI adversary against Cpad, ck0, ck1 and L that makes at most
q queries. Without loss of generality, we assume that A does not make
invalid queries, i.e. for every query O(m′, m′′) that A makes, m′, m′′ ∈ Σ∗,
and |m′|+ |m′′| ≤ L− k.

We construct from A a BD-HIDE adversary B against Dpad and δk,L as in
Fig. B.1.

Adversary BHide()

1 : b′ ←$ AO(ck0, ck1)

2 : return b′

Oracle O(m′, m′′)

1 : m0 ← m′∥ck0∥m′′

2 : m1 ← m′∥ck1∥m′′

3 : r ←$RC,ℓ

4 : z0 ← C(m0; r)
5 : z1 ← C(m1; r)
6 : d← |z1| − |z0|
7 : h←$ Hide(d)
8 : return |z0|+ h

Figure B.1: The BD-HIDE adversary B constructed from A.

By definition, the BD-HIDE adversary B makes at most q queries, and

|d| = ||C(m0; r)| − |C(m1; r)|| ≤ ∆HD(ck0,ck1)(C, |m0|) ≤ δk,L,

so the adversary B’s answer to the oracle query O(m′, m′′) made by A is

|z0|+ ℓ = |z0|+ b · d + p = |z0|+ b · (|z1| − |z0|) + p = |zb|+ p,
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B.2. Proof for Theorem 4.35

where zb ←$ C(m′∥ckb∥m′′), and p is sampled independently for each query
from Dpad. Therefore, the BD-HIDE adversary B simulates perfectly the LOCI
game for A, and thus

AdvLOCI
Cpad,ck0,ck1,L(A) = AdvBD-HIDE

Dpad,δ (B) ≤ AdvBD-HIDE
Dpad,δ,q . □
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