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Abstract—Nextcloud is a leading cloud storage platform with
more than 20 million users. Nextcloud offers an end-to-end
encryption (E2EE) feature that is claimed to be able “to keep
extremely sensitive data fully secure even in case of a full
server breach”. They also claim that the Nextcloud server
“has Zero Knowledge, that is, never has access to any of
the data or keys in unencrypted form”. This is achieved by
having encryption and decryption operations that are done
using file keys that are only available to Nextcloud clients,
with those file keys being protected by a key hierarchy that
ultimately relies on long passphrases known exclusively to
the users.

We provide the first detailed documentation and security
analysis of Nextcloud’s E2EE feature. Nextcloud’s strong
security claims motivate conducting the analysis in the setting
where the server itself is considered malicious. We present
three distinct attacks against the feature in this setting. Each
one enables the confidentiality and integrity of all user files
to be compromised. All three attacks are fully practical and
we have built proof-of-concept implementations for each. The
vulnerabilities make it trivial for a malicious Nextcloud server
to access and manipulate users’ data.

We have responsibly disclosed the three vulnerabilities
to Nextcloud. The second and third vulnerabilities have been
remediated. The first was addressed by temporarily removing
the file sharing feature from the E2EE feature until a redesign
of the feature can be made. We reflect on broader lessons
that can be learned for designers of E2EE systems.

1. Introduction

Cloud storage enables users to store data and files
online using the storage infrastructure of a cloud computing
service provider. The advantages for the users are many:
outsourced files are safely backed up, can be accessed
from any device, and are easily shared with other users.
Additionally, features such as real-time collaborative edit-
ing make it possible to work with data stored in the cloud
in a way that is not possible for local files. For these
reasons, and more, the use of cloud storage has become
ubiquitous among individuals and businesses alike, and
estimates indicate that it is likely to account for half of
all global data storage by 2025 [22].

However, the advantages come at a cost. When data
leaves the safety of a user’s local device, it may become

exposed to a range of additional security threats. Users
must place their trust in the selected cloud storage provider
to not deny them access to their files. In the absence
of cryptographic mechanisms, users must also trust the
provider to not examine or modify their files. Additionally,
users are no longer in control of how their data is stored,
and must also trust the provider to protect their files from
malicious third parties. The sheer amount of data stored
by cloud providers, and their large user-bases, make them
attractive targets for attackers; a successful attack on a
cloud storage service can potentially compromise data of
numerous users simultaneously.

These threats are not just hypothetical. Cloud storage
breaches due to misconfigurations or lack of appropriate
access management are ubiquitous and lead to exposure of
potentially sensitive data. For example, in 2021, personal
information about US citizens was left accessible to the
public due to misconfiguration of the Amazon S3 buckets
used to store the data of over 80 US municipalities [40].
Furthermore, beyond privacy issues, lack of integrity of
data stored in cloud,1 leads to another set of attacks, such as
ransomware attacks, e-skimming and cryptojacking. These
types of attacks can be performed directly by a malicious
cloud storage provider, but a more likely adversary is an
external actor who compromises the cloud or makes use
of its lack of security to launch an attack.

Given that cloud storage systems are highly attractive
targets for attackers and that they are not immune to
breaches, it makes sense to minimize the amount of trust
that needs to be placed in the service provider, in an
attempt to decrease the negative consequences of a breach.
Additionally, privacy-minded users might not want to
entrust their sensitive data to a company, even if it would be
perfectly secure against outsiders. Luckily, with appropriate
use of cryptographic mechanisms and key management
techniques, most of the required trust assumptions can be
dispensed with.2

To meet the demand for privacy-preserving outsourced
storage, multiple services offering cloud storage with
client-side encryption are available, including MEGA [21],
Nextcloud [28], Preveil [37], Proton Drive [38] and
Tresorit [41]. These systems aim to provide end-to-end

1. By design, or due to misconfiguration.
2. Trusting the service provider with availability, that is, to not deny

users access to their outsourced files, remains a necessary assumption.
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encryption (E2EE), which guarantees both confidentiality
and integrity of data stored in the cloud, even if the cloud
provider is compromised or malicious. In addition, all
of the above-mentioned service providers aim to offer
file-sharing features, enabling users to securely grant, and
possibly later remove, access to their files for other users.

There is still no standardized approach for E2EE cloud
storage, and as recent analyses [1], [2], [17] show, ad hoc
approaches such as that taken by MEGA can spectacularly
fail to achieve the advertised security claims. In the case
of MEGA, up to 1000 Petabytes of user data was left
vulnerable to attacks that could be mounted in practice by
a malicious or compromised service provider.

In the continued absence of a standardization effort,
we are forced to rely on security audits of the existing
systems in order to evaluate their security. However, the
standard industry approach to performing security audits
typically involves a time-limited approach that checks
for standard vulnerabilities and that is usually focussed
on testing for standard software vulnerabilities rather than
conducting a deep investigation of the cryptographic design.
This has limited value. As supporting evidence for this
statement, we remark that Nextcloud and its customers
had commissioned at least two different security audits3

and yet we were able to find three different and severe
cryptographic vulnerabilities in the E2EE feature.

1.1. Nextcloud

Nextcloud provides open-source software that lets
individuals and businesses create and host their own cloud
storage platforms. In 2017, Nextcloud estimated that it had
“well over 20 million users” [25]. Nextcloud has reported
having over 400,000 separate deployments in 2022, also
suggesting a large number of users. However, estimating
the true number of Nextcloud users is challenging, as they
are spread across a range of self-hosted server instances.

Nextcloud’s primary goal is to give users control over
their data and to safeguard the privacy of sensitive informa-
tion. Nextcloud advertises an enterprise-grade, seamlessly
integrated solution for end-to-end encryption [27]. They
claim “to keep extremely sensitive data fully secure even in
case of a full server breach” because the server “has Zero
Knowledge, that is, never has access to any of the data
or keys in unencrypted form” [27]. Given these claims, it
makes sense to study the security of Nextcloud’s E2EE
feature in the setting where the adversary has control over
the server.

The platform has gained popularity among users who
require advanced security features. For example, organ-
isations such as Amnesty International and the German
Federal Government [24], [29] use Nextcloud to safeguard
the privacy of their sensitive data.

1.2. E2EE in Nextcloud

Here we briefly describe Nextcloud’s approach to E2EE.
More details can be found in Section 2.2.

Notably, E2EE is not deployed by default in Nextcloud.
Instead, it is a feature that users have to enable at the folder
level by marking the folder as E2EE. The Nextcloud client

3. See https://nextcloud.com/secure/.

encrypts the files in all E2EE folders using AES-GCM
(an authenticated encryption with additional data (AEAD)
mode of operation of AES) with a separate key for each
file. Each E2EE folder is assigned a so called “metadata
key”. The metadata key encrypts the file keys as well
as other metadata associated with the folder, again using
AES-GCM.

In order to support key rotation, the system allows
each folder to have an array of associated metadata keys
and only uses the one with the highest index to encrypt the
folder metadata. Each time the client syncs with the server,
the metadata (including all file keys) are re-encrypted with
the highest indexed metadata key in the array.

Each Nextcloud user additionally holds a unique RSA
key pair. The metadata keys of all folders to which the user
has access are encrypted to the user’s public key using
RSA-OAEP. To support access from multiple devices,
storage of the RSA key pairs is outsourced to the Nextcloud
server. The public key is stored in clear, and the private
key is encrypted using AES-GCM under a master key that
is derived from a so-called mnemonic. This is a secret
passphrase consisting of 12 randomly sampled words. The
mnemonic is generated for the user by its client when
E2EE is first enabled.

In totality, then, Nextcloud uses a key hierarchy con-
sisting of: file keys (at the lowest level), metadata keys,
RSA key pair, master key, user-memorable mnemonic (at
the highest level). See Figure 1 for a pictorial view.

When a user wants to access E2EE files, the user enters
their mnemonic into the client. The client then re-derives
the master key, uses the master key to decrypt the private
RSA key, uses the RSA private key to decrypt the metadata
keys, uses the metadata keys to decrypt the file keys, and
finally uses the file keys to decrypt E2EE files fetched
from the server.

When a folder is shared between multiple users, its
metadata key is encrypted for all of those users individually
using RSA-OAEP. A user can revoke access to a folder
for another user by generating a new metadata key for the
folder and encrypting it using RSA-OAEP to the public
keys of all the users who should still have access, omitting
the public key of the revoked user.

1.3. Contributions

In this work, we conduct a detailed analysis of the
cryptographic security of Nextcloud’s E2EE feature, as-
sessing the achieved security compared to the advertised
guarantees. Our analysis unveiled three distinct vulnera-
bilities in the E2EE module of Nextcloud. As we will
explain, an adversary in control of the Nextcloud server
can leverage the presented vulnerabilities to completely
break confidentiality and integrity of users’ data. We briefly
present each attack next.

1.3.1. Key Insertion Attack. The first attack arises from
a basic misunderstanding of the security offered by public
key encryption (PKE) in tandem with Nextcloud’s desire
to allow access to files to be granted and possibly later
revoked for other users as part of the E2EE feature. The
attack exploits the fact that the malicious server can create
an RSA-OAEP ciphertext containing a chosen metadata
key and place it in the relevant directory of the victim
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user; the server can then trigger the client to perform a
key rotation operation so that the chosen key is taken into
use. Hence, a malicious server can substitute a legitimate
metadata key for a folder with one that they chose, encrypt
it for the relevant user(s), and thereby make the client
encrypt the keys of all future files added to the folder
using a metadata key that the server knows. Knowledge of
the metadata key also allows the server to trivially insert
new files and modify existing ones.

At its core, the attack exploits the fact that PKE
provides confidentiality but not data origin authentication:
without some form of the latter, the victim user cannot be
sure from whence the key came.

1.3.2. Ghost Key Attack. Nextcloud clients fetch en-
crypted key material from the server. The file structure
containing this information is not thoroughly checked by
the client. This allows a malicious server to craft a file
that tricks clients into accessing the map of metadata keys
at an index that is not present in the map. If accessed at
an uninitialized index, the map allocates a default all-zero
key. The all-zero key is later used by the client to encrypt
file keys. This obviously leads to a complete loss of both
confidentiality and integrity for user data.

1.3.3. IV Reuse in File Encryption. Files are encrypted
using AES-GCM with a random 128-bit key and a random
96-bit initialization vector (IV). However, when a file is
modified, it is re-encrypted using the same key and the
same IV. It is well known that the security of AES-GCM
depends critically on using a fresh IV for each encryption
under a given key, with disastrous consequences otherwise.
Specifically, because AES-GCM uses a stream cipher
mode of AES as its encryption component, a repeated
IV leads to a repeated keystream. This can result in a
loss of confidentiality. In the context of Nextcloud, we
show how to exploit this weakness to recover plaintext
files in the situation where the adversary can see encrypted
versions of a file and of a modified version of the file (more
exactly, a version of the file in which a single character has
been inserted). A repeated IV in AES-GCM also enables
recovery of the AES-GCM authentication key, making it
possible for an attacker to violate integrity [5], [18]. In the
context of Nextcloud, this allows the adversary to mount
a framing attack in which it injects validly encrypted files
into E2EE folders.

1.4. Methodology

Our security analysis was performed in three main
steps:

1) Definition of the Threat Model. We outlined the threat
model and associated security claims by referring to
Nextcloud’s documentation on the E2EE module [23],
[30] and on their advertised claims [27].

2) System Modeling. We modeled Nextcloud’s E2EE
based on their white paper [23], [26] and on the
client source code.4 In particular, only the in-depth
analysis of the client source code revealed the ghost
key vulnerability and the IV reuse.

4. https://github.com/nextcloud/desktop

3) Proof-of-Concepts. We used a self-hosted Nextcloud
server to test all attacks against real (self-owned)
desktop clients.

1.5. Ethical Considerations

All the experiments and proof of concepts were de-
veloped on a self-hosted Nextcloud server under our full
control; no other server instance was targeted.

We contacted Nextcloud to inform them of the vul-
nerabilities in their system and to suggest mitigations
on January 2, 2023. We suggested a 90-day disclosure
period. Nextcloud acknowledged the attacks on January
12, 2023, confirming that the system is vulnerable and
needs patching.

Nextcloud released patches for all three vulnerabilities
on March 29, 2023. Each vulnerability was accompanied by
a CVE.5 The first vulnerability was temporarily addressed
by disabling the sharing feature and implementing a
checksum on the metadata keys [?]. This represents a
significant downgrade to the E2EE feature set. A significant
revision of Nextcloud’s cryptographic design is required to
fully restore the sharing feature. Nextcloud has announced
that it plans to reintroduce the feature with a new version
of E2EE. At the time of writing, this has not yet happened.
The other two vulnerabilities were fixed by addressing the
implementation pitfalls that caused them [?], [?].

1.6. Related Work

The only previous published work on cryptography in
Nextcloud that we are aware of is that of Niehage [35],
who analyzed server-side encryption in Nextcloud and
discovered four vulnerabilities. The first exploits the lack
of authenticity of public keys to break confidentiality,
essentially by performing a key substitution attack. The
others break file integrity. The vulnerabilities were patched
by Nextcloud in version 20 of their server.

As noted above, the systematic study of deployed
E2EE cloud storage systems only began recently, with the
analysis of MEGA [1], [2], [17]. Backendal, Haller and
Paterson [2] performed the first in-depth analysis of MEGA.
By leveraging a lack of key separation, poor primitive
choices, and a lack of integrity of users’ private keys,
they managed to completely break both the confidentiality
and integrity of MEGA’s cloud storage. In a follow-up
work, Ryan and Heninger [17] improved the central RSA
private-key recovery attack of [2] that required 512 logins
(and user interactions) down to just six logins. Albrecht,
Haller, Mareková and Paterson [1] showed that the patches
to the attacks of [2] deployed by MEGA were ineffective.
They presented two distinct attacks each leading to RSA
private-key recovery and needing roughly the same number
of logins as the original attack in [2].

Our work can be seen as a natural successor to this
line of work on MEGA, focussed on the next most
prominent E2EE cloud storage provider. The attacks we
present on Nextcloud are significantly less complex (both
from a technical perspective and in terms of the attack

5. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-28997,
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-28998,
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-28999.

https://github.com/nextcloud/desktop
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-28997
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-28998
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-28999


requirements). But they are as equally devastating when
considering the core security properties that Nextcloud’s
E2EE feature purports to achieve.

Already five years ago, Dalskov and Orlandi [13]
found significant and numerous vulnerabilities in the
cryptographic design of SpiderOak One, an E2EE backup
solution. This work can be seen as an early indicator
that implementations of E2EE cloud storage systems
could be badly designed. Other prominent E2EE cloud
storage solutions include PreVeil [37], Proton Drive [38]
and Tresorit [41]. Analyses of these systems may yield
interesting results.

One of our attacks exploits the well-known IV (or
nonce) re-use vulnerability in AES-GCM. This was first
highlighted by Joux [18]. Böck, Zauner, Devlin, So-
morovsky and Jovanovic [5] showed how this vulnerability
arose in some SSL/TLS implementations and performed
Internet-wide scans to identify vulnerable servers. The field
of Misuse-Resistant Authenticated Encryption (MRAE),
cf. [39], can be seen as attempting to design AE schemes
that are more resilient to mishandling of IVs by developers.
RSA-OAEP is generally considered to be a secure PKE
scheme, with a detailed analysis of its IND-CCA security
being available in the literature [16]. However, some
early implementations of RSA-OAEP were vulnerable to
Manger’s attack [19] which exploited analysis of different
error conditions that could arise during decryption. Our
attack does not rely on any implementation pitfall in
RSA-OAEP itself, but rather on a misunderstanding on the
part of Nextcloud’s developers concerning what security
services a PKE scheme can provide.

There is a huge academic literature on cloud storage
with E2EE and other, more advanced security features,
e.g. user anonymity, metadata hiding, and obliviousness
of access and operations. While scientifically sound and
technically interesting, this work seems to have had little
influence on the practice of E2EE for cloud storage, as
evinced by the above-mentioned work on MEGA and our
work on Nextcloud.

1.7. Paper Structure

We give a detailed description of cryptographic aspects
of Nextcloud’s E2EE feature in Section 2. We provide
more details on each attack in Section 3. In Section 4, we
briefly describe our proof of concept implementations of
the three attacks. We discuss mitigations for the attacks in
Section 5. We discuss general takeaways for the design of
secure cloud storage systems in Section 6. In particular,
we believe that the first vulnerability reveals a common
misconception PKE schemes, namely that they provide
some form of (data origin) authenticity.

2. Background

2.1. Notation

By [ptxt]k we denote the encryption of a plaintext
ptxt with the key k. The encryption algorithm can
be derived from the context. We use maps to collect
identifier-value pairs. A map T is initialized as T ← {}.
T.put(id, v) represents the insertion of the identifier-value

Figure 1: Nextcloud’s key hierarchy
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RSA Master Key: (𝑠𝑘, 𝑝𝑘)
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pair (id, v). T.get(id) returns the value v corresponding
to the identifier id, and T.keys() returns the set of all
identifiers for which a value has been inserted. Finally, the
Encode/Decode procedures serialize/deserialize a list
of variables. In practice, Nextcloud collects the values in
a JSON-encoded byte string.

2.2. Cryptography in Nextcloud

Key Hierarchy. Figure 1 illustrates the key hierarchy in
Nextcloud’s E2EE module.

At the bottom of the hierarchy are the file keys. File
keys are 128-bit symmetric keys used to encrypt files with
AES-GCM, and are freshly generated by the client for
every new file that is uploaded.

Files are organized in folders, and every folder is
associated with a metadata key k that the client generates
by sampling k←$ {0, 1}128 when a folder is marked as
E2EE. Each file key is encrypted separately with the
metadata key of the corresponding folder using AES-GCM
with a randomly sampled IV.

To enable sharing of encrypted folders, Nextcloud
uses public-key encryption (RSA-OAEP) to encrypt the
metadata keys. When a user enables E2EE, an RSA master
key pair (sk,pk) is generated by their client and the public
key is signed by the server to form an X.509 certificate in
a public key infrastructure (PKI) in which the Nextcloud
server acts as the root certificate authority. The first time a
user wants to share a folder with another user, they establish
a trust relationship with the recipient by downloading and
verifying the certificate for their public key [26]. Following
a trust on first use (TOFU) approach, clients store the
downloaded certificates locally for future use. We discuss
this design choice in Section 3. The metadata key of an
E2EE folder is initially encrypted for the owner, and can
then additionally be encrypted with the public key of any
user to give them shared access to the folder. To allow
a user to fetch their keys from any device, the RSA key
pair is stored on the server, in partially encrypted form;
the public key is stored in the clear, whereas the private



key sk is encrypted using AES-GCM with an encryption
key kmk derived from a so-called mnemonic.

The mnemonic is a 12-word long passphrase, which is
generated on the client by random sampling from a set of
2048 words. It stands at the top of the key hierarchy and
thereby forms the root of security for E2EE data. Note that
in other E2EE systems, it is common to have a user-chosen
password as the root of the key hierarchy. In Nextcloud, in
contrast, passwords are only used to authenticate users, and
the mnemonic (for which the client enforces relatively high
entropy) is used to achieve confidentiality and integrity. As
a consequence, user authentication is kept separate from
cryptographic access to E2EE data. This is a laudable
design choice which likely improves the E2E security of
Nextcloud compared to password-only systems, since users
unfortunately often pick weak passwords having much
lower entropy than the mnemonics used by Nextcloud.

To summarize, all of the keys in the hierarchy depicted
in Figure 1 – except for the mnemonic and the public part
of the RSA master key – are stored encrypted on the server
to support access from multiple devices. The public key is
stored in plaintext on the server, and the mnemonic is the
root of the key hierarchy that the user needs to remember
or securely store in order to access their files.6 A user on
a new device, after authenticating to the server, can enter
the mnemonic, fetch the encrypted key material from the
server, decrypt it, and validate it.7 Once the file keys have
been recovered, the encrypted files can be fetched from
the server and decrypted.

Folder Metadata. The metadata of an E2EE encrypted
folder consists of two maps, Tk and Tf, containing the
metadata keys associated with the folder and the file
metadata (i.e. the file keys and file names), respectively.

The metadata key map Tk maps integers i to metadata
keys k. Here, the index i represents the order in which
metadata keys were generated. (The initial metadata key
has index i = 0, the second one index 1, and so on.)

In the file metadata map Tf, a filename fn is mapped to
a tuple consisting of the obfuscated file name ofn, the file
key kf , the IV ivf used for the encryption of the file, as
well as the resulting message authentication code (MAC)
tag τf . The obfuscated file name is a random bitstring used
to identify an encrypted file on the server.

Together, Tk and Tf form the folder metadata, which
is stored encrypted on the server. That is, corresponding to
each of Tk and Tf, there is an “encrypted” map

[
Tk

]
and[

Tf
]
, which instead maps the identifiers to the encryption

of the values in the original map. The encryption and
decryption procedures for the folder metadata are described
later in this section.

6. Note that, as a consequence of the E2EE security guarantees, the
server cannot support a user who has lost their mnemonic in recovering
their keys.

7. The validation of the RSA key pair is done by retrieving the public
key from the server, reconstructing a version of the RSA modulus
from the private key, and finally performing a trial encryption and
decryption operation. This operation uses the retrieved public key
for encryption and the private key and reconstructed modulus during
decryption. Because of the integrity provided by AES-GCM and the use
of a reconstructed modulus during decryption, this approach appears to
prevent key overwriting attacks like those in [6].

Folder Creation. When an E2EE folder is created, the
client initializes the folder metadata (Tk, Tf), samples
a metadata key k←$ {0, 1}128 and puts it in the map
of metadata keys Tk via an operation Tk.put(0, k). The
client concludes the creation of the folder by encrypting the
folder metadata and uploading (

[
Tk

]
,
[
Tf
]
) to the server.

At this point,
[
Tk

]
contains the encryption of a single

metadata key, and
[
Tf
]

is empty because the folder still
does not contain any files.

Folder Synchronization. Nextcloud desktop clients are
synchronization clients that keep a local folder synchro-
nized with the one stored remotely on the server. Synchro-
nization can be triggered by various events, including a
modification to the local folder, a user-initiated synchro-
nization request, or an automatic activation upon opening
the client.

The synchronization process consists of three steps:
1) Folder Metadata Download. The client downloads the

encrypted folder metadata and decrypts it to retrieve
the list of filenames contained in the E2EE folder and
the corresponding file keys.

2) File Synchronization. The local and remote times-
tamps of each file are compared to determine which
copy (if the file is present both remotely and locally)
is newer. Each timestamp reported by the server is
associated with the obfuscated file name. If the client
determines that the more recent version of a file is the
remote one, it requests the encrypted file identified by
the obfuscated name ofn from the server. Similarly,
new local files are encrypted and uploaded to the
server under the name ofn.

3) Folder Metadata Upload. At the end of the syn-
chronization, the folder metadata is encrypted and
uploaded to the server. The folder metadata is re-
uploaded each time as it may have been modified in
the previous step. For example, if a new file is added
locally, its filename and corresponding file key are
added to Tf.

The encryption and decryption procedure of folder meta-
data, as well as the file encryption procedure, are described
next.

Folder Metadata Encryption. The client executes the
encryptFolderMetadata procedure in Figure 2 to
encrypt the folder metadata before uploading it to the
server.

During the encryption, the metadata keys are encrypted
with RSA-OAEP under the user’s public key pk and are
stored in the map

[
Tk

]
under their index from Tk. For each

file, the protected metadata prot, encoding the filename fn
and the file key kf , is encrypted with AES-GCM under
the metadata key k∗ associated with the highest index i∗

in Tk, and a randomly sampled IV iv . In the encrypted file
metadata map

[
Tf
]
, the obfuscated file name ofn is mapped

to ([prot]k∗ , τ , iv , i∗, τf , ivf ), where τ , iv and τf , ivf are
the tags and IVs resulting from the encryption of prot and
of the file itself, respectively.

The inverse of the folder metadata encryption is the
decryptFolderMetadata procedure shown in Fig-
ure 3. This procedure is executed by the client at the
beginning of synchronization to retrieve the file metadata.



encryptFolderMetadata(pk, Tk, Tf):

Given: the user’s public key pk, the map of metadata keys Tk,
and the map of file metadata Tf
Returns: the map of encrypted metadata keys

[
Tk

]
, and the

map of encrypted file metadata
[
Tf
]

1
[
Tk

]
← {}

2 for i, k ∈ Tk
3 [k]pk ← RSA.Enc(pk, k)
4

[
Tk

]
.put(i, [k]pk )

5 i∗ ← max(Tk.keys())
6 k∗ ← Tk.get(i∗)
7

[
Tf
]
← {}

8 for fn, (ofn, kf , τf , ivf ) ∈ Tf
9 iv ←$ {0, 1}96

10 prot← Encode((fn, kf ))
11 [prot]k∗ , τ ← AES-GCM.Enc(k∗, prot, iv , ε)
12

[
Tf
]
.put(ofn, ([prot]k∗ , τ , iv , i∗, τf , ivf ))

13 return (
[
Tk

]
,
[
Tf
]
)

Figure 2: Encryption of folder metadata. Note that file
metadata is encrypted with the latest metadata key k∗

corresponding to the highest index i∗ in Tk.

decryptFolderMetadata(sk,
[
Tk

]
,
[
Tf
]
):

Given: the user’s secret key sk, the map of encrypted metadata
keys

[
Tk

]
, and the map of encrypted file metadata

[
Tf
]

Returns: the map of metadata keys Tk, and the map of file
metadata Tf

1 Tk ← {}
2 for i, [k]pk ∈

[
Tk

]
3 k ← RSA.Dec(sk, [k]pk )
4 Tk.put(i, k)
5 Tf ← {}
6 for ofn, ([prot]k∗ , τ , iv , i, τf , ivf ) ∈

[
Tf
]

7 k ← Tk.get(i)
8 if k == ⊥
9 k ← {0}128

10 Tk.put(i, k)
11 prot← AES-GCM.Dec(k, [prot]k∗ , τ , iv)
12 if prot == ⊥
13 continue � No error is reported.
14 (fn, kf )← Encode(prot)
15 Tf.put(fn, (ofn, kf , τf , ivf ))
16 return (Tk, Tf)

Figure 3: Decryption of folder metadata. Note that the map
Tk is accessed at the index i specified in the file metadata.
This is relevant for the ghost key attack.

In the procedure, the protected metadata [prot]k is de-
crypted using the metadata key corresponding to the index
i specified in the tuple (which is not necessarily the highest
in Tk). We believe this behavior is to allow clients to rotate
the metadata key while postponing the re-encryption of
the file metadata to only happen when/if the file itself is
modified.

File Encryption. Files are encrypted with the
encryptFile procedure in Figure 4. If a new file
is created locally, a file key kf and IV ivf are sampled
randomly and used to encrypt the file content using
AES-GCM. According to Nextcloud’s white paper and
E2EE RFC [23], [26], file keys should be re-sampled each
time a file is modified and re-encrypted. However, during
our analysis, we found that file keys were only generated
when a file is first uploaded. That is, if an already existing

encryptFile(Tf, fn, f ):

Given: the map of file metadata Tf, the name of the file fn,
and the file content f
Returns: the updated map of file metadata Tf, and the encrypted
file [f ]kf

1 if fn ∈ Tf
2 (ofn, kf , τf , ivf )← Tf.get(fn)
3 else
4 kf ←$ {0, 1}128

5 ivf ←$ {0, 1}96

6 ofn←$ {0, 1}128

7 ([f ]kf , τf )← AES-GCM.Enc(kf , f , ivf , ε)
8 Tf.put(fn, (ofn, kf , τf , ivf ))
9 return

(
Tf, [f ]kf

)
Figure 4: File encryption. Note that if the filename is
already in the map Tf, then both the file encryption key
and the IV are reused.

decryptFile(Tf, ofn, [f ]kf ):

Given: the map of file metadata Tf, the obfuscated name ofn,
and the encrypted file [f ]kf
Returns: the filename fn, and the decrypted file f

1 for fn, ( ˜ofn, kf , τf , ivf ) ∈ Tf
2 if ofn == ˜ofn
3 (ofn, kf , τf , ivf )← Tf.get(fn)
4 f ← AES-GCM.Dec(kf , [f ]kf , τf , ivf )
5 return (f , fn)
6 return (⊥,⊥) � The client reports an error.

Figure 5: File decryption. If there is no entry in Tf for the
file identified by ofn, then the client reports an error to
the user during the synchronization step.

file is updated, kf and ivf are retrieved from Tf and used
to re-encrypt the file content. At the end of the procedure,
Tf is updated with the key and IV used in the encryption.

The decryptFile procedure is shown in Figure 5.
On input the obfuscated file name ofn, it first looks for an
entry in the file metadata Tf which contains ofn. If such
an entry is found, the associated file key is used to decrypt
the file, which is returned together with the (unobfuscated)
filename. If no entry contains the obfuscated name, then
an error is raised by the client.

Sharing. In Nextcloud, file sharing is implemented on a
folder level using the PKI of RSA keys associated to users.
To share a folder, the relevant metadata key is encrypted
under the RSA public key of the intended recipient. Direct
sharing of individual E2EE files is not supported.

As described above, each folder has an associated meta-
data key map Tk, which may contain multiple metadata
keys. According to Nextcloud documentation [23], the
reason that each folder can have multiple metadata keys
is to allow the removal of users from shared access to
the folder. That is, if user A wants to revoke access to a
folder from user B, A can add a new metadata key to Tk
and not encrypt the new key with the public key of user
B. Since only the highest indexed metadata key k∗ in Tk
is used to encrypt the folder metadata when the folder is
next synchronized (see the encryptFolderMetadata
procedure in Figure 2), user B will no longer be able to
decrypt the folder metadata.

Note, however, that since file keys are not updated



when files are re-encrypted (contradicting the specification
in Nextcloud’s white paper [23]), the removed user could
in theory still access the files by storing the individual file
keys themselves. That is, the re-encryption of file keys
with a new metadata key is insufficient to provide forward
security for updated files from removed users.

Finally, we note that, in the Nextcloud client deployed
at the time of our analysis (v3.6), the sharing feature is not
fully implemented, meaning that folder sharing is actually
not possible in practice. However, clients already support
multiple metadata keys and key rotation as described above.

3. Attacks

Threat Model. According to Nextcloud’s documentation,
“end-to-end encryption in Nextcloud protects user data
against any attack scenario between user devices, even
in case of an undetected, long-term security breach or
against untrusted server administrators” [30]. As this quote
highlights, the E2EE module is supposed to remain secure
even if the server running Nextcloud’s protocol is itself
compromised or malicious.

In this setting, the adversary has full access to all
encrypted data outsourced by the clients to the server, and
can also interact with clients via legitimate channels during
operations like authentication and file upload. Furthermore,
a malicious server – or an adversary with control of the
server – can change the behavior of the server and deviate
arbitrarily from the normal protocol. Consequently, the
security of the system relies entirely on the protective
measures and cryptography employed by the clients.

In the following sections, we describe three attacks on
the end-to-end security guarantees of Nextcloud in this
setting. First, however, we make a short detour to critique
Nextcloud’s trust assumptions concerning authentication
of users’ public keys.

Trust Assumptions for Public Key Authentication.
While a client can authenticate its own RSA key pair
because it is authenticated by the key kmk derived from
the user’s mnemonic, the authentication of other users’
public key relies on a PKI having the server as the root
of trust.

Nextcloud employs a TOFU approach to justify the use
of an untrusted entity as the root of trust: when a client
downloads a certificate from the server, it is stored locally
for future use; it is assumed that the server is honest and
provides a certificate for the legitimate requested public
key at this point. However, this approach leaves much to
be desired.

First, given the setting, the server should be considered
to be an untrusted entity and so cannot be relied upon as
a root of trust. A malicious server can mount certificate
substitution attacks that fool clients into accepting the
wrong public key for any other client; coupled with the file
sharing mechanism described in Section 2.2 this enables
trivial attacks allowing the server to recover file contents
of E2EE shared folders.

Second, if TOFU is the chosen security model, then
exchanging certificates instead of just public keys does not
add significant security to the system. This is because an
adversary in control of the server would presumably also

have access to the server’s private key and hence be able
to issue fake certificates.

Third, if TOFU is used, it should not be possible for
the server to remove already cached keys or certificates
on the clients. However, Nextcloud allows servers to issue
a so-called “remote wipe” which induces a client to delete
all the stored key material (including the certificates). The
feature is intended to allow the server to delete important
key material from the client in case the device on which it
is running is lost or stolen. However, this feature voids the
TOFU approach because it allows a compromised server
to erase older certificates and substitute them with new
ones when the user next logs in.

Nextcloud is aware that TOFU relies on a strong
security assumption and aspires to integrate a certificate
transparency log and support for hardware security mod-
ules [23] in the future. However, these features are not
currently implemented.

None of the attacks that we present below exploit
weaknesses in the TOFU assumption; they all work even
if public keys are properly authenticated.

3.1. Key Insertion Attack

In this attack, the malicious or compromised server
exploits the lack of authenticity of encrypted metadata keys
to replace an honest metadata key with one generated by
and known to the server. This gives the adversary access
to all the file keys which are encrypted with the malicious
metadata key.

The attack relies on the fact that metadata keys are en-
crypted under the user’s master key using RSA-OAEP [4].
While RSA-OAEP has been proven secure against adap-
tive chosen-ciperhtext attacks (IND-CCA2) [15] – which
also implies that ciphertexts are non-malleable [3] – it does
not provide any data origin authentication (or integrity)
guarantees for the generated ciphertexts. Consequently,
anyone who has access to the public key of a Nextcloud
user can generate a valid encryption of a metadata key of
their choosing. This allows a malicious server to deceive
a client into using a metadata key known to the server, by
replacing the highest-indexed metadata key of a folder with
the encryption of a chosen key. We provide the pseudocode
of the attack in Figure 6.

Once the attack has been executed, the folder metadata
contains the encryption of a metadata key k̂ chosen by
the adversary which decrypts correctly on the client. Any
subsequent synchronization process will then cause the file
metadata – including file keys – to be encrypted with the
rogue metadata key, as shown in Figure 2.

Note that users’ public keys are stored in the clear on
the server, and hence known to the adversary, enabling
the attack. Additionally, according to the white paper [23]
public keys should be auditable. That is, it is explicitly
required that the keys can be made public. This means that
the attack is in theory also possible by a TLS machine-in-
the-middle (MiTM) attacker (i.e. a MiTM attacker that can
break TLS), since such an attacker can intercept the client
to server traffic and replace the metadata key map with a
modified version containing k̂. This highlights the system’s
reliance on the security provided by TLS. Furthermore,
the attack is entirely surreptitious: since RSA-OAEP does
not provide authentication, the client cannot distinguish



the maliciously inserted metadata key from a metadata key
added by another legitimate client (for example to perform
a key rotation).

Key Overwriting Variant. The presented key insertion
attack uses the fact that clients support the decryption of
protected metadata with different metadata keys, while
always encrypting these fields with the metadata key asso-
ciated with the highest index in the key map Tk. Therefore,
the insertion of k̂ does not disrupt the decryption of file
metadata encrypted with other legitimate keys. Rather,
only the encryption step at the end of the synchronization
process changes, as the client will encrypt all the file
metadata with the new k̂.

Here, we present a variant of the attack which does not
rely on clients supporting the use of multiple metadata keys,
but still gives the adversary access to files that are added
after the attack. We include this variant to demonstrate that
the simple fix of removing multiple metadata keys would
not be sufficient to address the vulnerability. It works as
follows. Instead of inserting k̂ with identifier î > i∗ into
Tk, the adversary overwrites the legitimate metadata key
at i∗ with k̂. This means that all file metadata of files
added to the E2EE folder after the overwriting takes place
will be encrypted with the malicious key k̂. Therefore the
adversary can recover the file keys and get full access to
any newly added files.

This attack variant is weaker than the original key
insertion version for two reasons. First, it does not allow
the recovery of files added to the E2EE folder before the
adversary was active. Second, it is less stealthy: without
support for multiple metadata keys, the client cannot
use the previous legitimate metadata keys to decrypt the
metadata of files added before the attack. As a result, the
decryption of file metadata (and the related files) fails
because the client would try to decrypt it using k̂ instead
of the overwritten previous key. This raises an error when
procedure decryptFile in Figure 5 is executed with one
of the older files as input, because there is no corresponding
entry in the file metadata. (The decryption of the protected
metadata on line 11 in Figure 3 will fail, leading to a ⊥
entry in Tf.)

To avoid raising errors, the adversary can delete the
files on the server, causing the files to also be deleted
locally. Both options may raise the suspicion of users.
However, if the adversary is active when the folder is
created and still empty, then the attack stealthiness would
be preserved. In conclusion, although weaker, the attack
variant highlights the root cause of the vulnerability: PKE-
encrypted metadata keys are not authenticated.

Consequences. The consequences of the key insertion
attack are severe, as it provides an attacker with complete
control over the E2EE folder. The confidentiality and
integrity of the folder are entirely compromised, allowing
the adversary to access files, modify existing ones, and
insert new ones at will – and all of this in a way that is
completely undetectable to the client.

The overwriting variant of the attack enables an
adversary to gain full control of folders created after
the adversary becomes active. Performing the attack on
existing, non-empty E2EE folders either leads to errors or

KeyInsertionAttack(
[
Tk

]
,pk, k̂):

Given: the encrypted map of metadata keys
[
Tk

]
, the victim’s

public key pk, a metadata key chosen by the adversary k̂
Returns: the map of encrypted metadata keys

[
Tk

]
1 [k̂]pk ← RSA.Enc(pk, k̂)
2 i∗ ← max(

[
Tk

]
.keys())

3 î ← i∗ + 1 � Key Overwriting: î ← i∗

4
[
Tk

]
.put(i, [k̂]pk )

5 return
[
Tk

]
Figure 6: Key insertion attack. A malicious or compromised
server can add the encryption of a rogue metadata key k̂
to the map of metadata kes.

to content modifications which are detectable to victim. It
also does not allow the recovery of the already existing
files.

3.2. Ghost Key Attack

In this attack, the adversary exploits two implemen-
tation pitfalls to insert an all-zero metadata key at the
highest index in the metadata key map Tk of an E2EE
folder. Similar to the key insertion attack, this results in
the client using a metadata key which is known to the
adversary to encrypt the folder metadata, thereby giving
the attacker complete access to the files in the folder.

At the core of the vulnerability is the fact that the
metadata key map Tk allocates a default value – namely,
an all-zero entry – when accessed at an index that is
not already in the map. Nextcloud maps are implemented
using the QMap object [8] from the Qt library [10], and
this default allocation is clearly specified in the map
documentation [9]. Hence the issue does not stem from
a bug in the library. Rather, the problem is that this
behavior is not well-suited for use in a security-critical
system, unless precautions are taken to avoid it. This leads
to the second implementation pitfall: Nextcloud clients
do not perform sufficient sanity checks on the inputs
provided by the server. In particular, the client does not
check for “out-of-bound” indices, and error messages from
metadata decryption failures are ignored. Together, this
creates sufficient conditions for an attack which we call
the “ghost key attack”. The attack is shown in Figure 7.

To perform the attack, the adversary first inserts a
dummy entry into the encrypted file metadata map

[
Tf
]
.

The dummy entry is empty, except for where it specifies the
index of the metadata key that should be used to decrypt it.
There, the adversary chooses î ← max(

[
Tk

]
.keys()) + 1,

such that the malicious index î is higher than the highest
index in the metadata key map

[
Tk

]
. As a consequence,

the index in the dummy entry points to a non-existing
metadata key in

[
Tk

]
. When the client performs the next

synchronization, it will try to decrypt the file metadata of
the dummy entry (as shown in Figure 3), thereby accessing
Tk at the adversarially chosen index î. Due to the default
behavior of the Qmap object, this creates an entry with
the all-zero key k̂0 = {0}128 in Tk at î. At the end of
the synchronization, î is the highest identifier in Tk and
therefore all file metadata – including all file keys – are re-
encrypted with k̂0 before being re-uploaded to the server.



GhostKeyAttack(
[
Tk

]
,
[
Tf
]
):

Given: the encrypted map of file metadata
[
Tk

]
, the encrypted

map of metadata keys
[
Tk

]
Returns: the modified encrypted file metadata

[
Tk

]
1 i∗ ← max(

[
Tk

]
.keys())

2 î ← i∗ + 1 � Key Overwriting: î ← i∗

3
[
Tf
]
.put(“dummy”, (0, 0, 0, î, 0, 0))

4 return
[
Tk

]
Figure 7: Ghost key attack. A malicious or compromised
server can add a dummy entry to the file metadata which
leads the client to access Tk at a non-existing index. By
default behavior of the map object used, this access creates
an all-zero key in Tk at the index î.

This attack can be performed by a malicious or com-
promised server, or by a TLS MiTM attacker. After the
attack has been performed, the adversary has access to
the folder metadata encrypted under k̂0 and therefore full
control over the whole E2EE folder.

Attack Stealthiness. As shown in procedure
decryptFolderMetadata in Figure 3, no error
is raised when decryption of the protected fields fails.
Instead, the entry is simply skipped. For this reason, the
attacker can set all values in the dummy entry (except
î) to zero and let the decryption fail. However, it is also
possible to be even smarter; since the adversary knows
that the client will try to decrypt the protected fields using
k̂0 , this decryption failure can be avoided.

Specifically, the adversary can set the protected field
of the dummy entry to [(k̂f , f̂n)]

k̂0
where k̂f and f̂n are

a file key and a filename chosen by the adversary, and
additionally insert a dummy file in the remote folder
encrypted with k̂f . As a result, the client would successfully
decrypt both the protected fields and the file content of the
dummy file. This strategy avoids the decryption failure but
forces the adversary to insert a file into the victim’s folder.
On the one hand, this prevents the decryption failure, and
also directly breaks the integrity guarantees of the end-to-
end encryption. On the other hand, the new file is detectable
to the user and may hence make the attack less stealthy.

Key Overwriting Variant. Similarly to the key insertion
attack, the ghost key attack relies on clients supporting
multiple metadata keys, but can be modified to work
without this feature. If the adversary is active when the
folder is first created, then they can substitute the encrypted
folder metadata

[
Tk

]
with an empty map. This causes the

client to replace the honest metadata key map Tk with one
which contains (0, k̂0 ) as the only entry. The replacement
will not raise any errors since the legitimate metadata key
was never used, and after the replacement the metadata of
all files added to the folder will be encrypted with k̂0 .

Performing this attack for an existing folder, rather than
a new one, leads to the overwriting of a metadata key that
already encrypts some data. This is possible but results
in the same limitations as discussed in the overwriting
version of the key insertion attack in Section 3.1. That is,
the decryption of the existing metadata would fail on the
client and additionally the adversary would not be able

to recover files that are present in the E2EE folder before
the attack was performed.

Consequences. The ghost key attack allows an adversary
in control of the server or a TLS MiTM attacker to gain
full access to an E2EE folder. Because the adversary knows
the metadata key used to encrypt the folder metadata it
can access files, modify existing ones, as well as insert
new ones at will.

The key overwriting variant of the attack allows the
adversary to gain full control over newly created folders.
For existing folders, the adversary can gain full access to
the files added after the overwriting attack takes place.

Despite the consequences of the ghost key attack being
the same as the key insertion attack, we stress that the two
vulnerabilities are independent. In the ghost key attack,
the key known to the adversary (k̂0 ) is generated by the
client itself and therefore this attack would work even if
metadata keys were authenticated.

3.3. IV Reuse in File Encryption

This vulnerability is caused by the reuse of IVs when
E2EE files are updated. As shown in Figure 4, no new IV
is sampled when an existing file is re-encrypted; rather,
the existing IV is reused. This is problematic, since the
encryption scheme used for file encryption in Nextcloud’s
E2EE module is AES-GCM, and it is a well-known fact
that IV reuse in AES-GCM can lead to a complete loss
of confidentiality and integrity. Below, we briefly explain
why this is the case, as well as how it can be turned into
an attack on the E2EE security of Nextcloud.

AES-GCM is an AEAD scheme obtained by combin-
ing AES-CTR with a Carter-Wegman MAC. That is, the
encryption component of AES-GCM uses a keystream to
mask the plaintext using an XOR operation. The keystream
is generated by applying AES block cipher encryption to
an increasing counter. The counter is initialized by the IV.
Reusing the IV leads to a repeated sequence of counters
and hence a repeated keystream. Consequently, taking the
XOR of two ciphertexts c1 , c2 created using the same
IV will yield the XOR of the corresponding plaintexts
p1 ⊕ p2 .

The problem of recovering the individual plaintexts p1
and p2 given their XOR p1 ⊕ p2 was carefully studied
in [20]. There, the authors show how to separate p1 and
p2 with a high success rate if a suitable language model
for the underlying plaintext is available. The core idea of
the attack is to use an n-gram model of the language in
combination with dynamic programming to approximate
the likelihoods of pairs of candidates (p1 , p2 ) satisfying
the constraint on their XOR.

In the context of Nextcloud, we can mount an even
simpler attack breaking confidentiality under a mild as-
sumption on the nature of the files being encrypted. Recall
that in Nextcloud, IV reuse occurs when different versions
of the same file are encrypted. Imagine a scenario where
a user edits a text file, perhaps adding and deleting a few
characters on each update. Then many characters in the
updated file will appear in shifted positions relative to
the original file. This can be used to recover part of the
original plaintext.
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0. Guess p2[i]

... ...

1. Recover
p1[i] = c1[i]  ⊕ c2[i]  ⊕ p2[i]

2. Recover p2[i+1] = p1[i]

p1:

p2:

Figure 8: Illustrating the plaintext recovery attack when an IV is reused in AES-GCM and the plaintexts are related by
a single character shift.

For concreteness, suppose that a file p1 is stored
encrypted on the server and that the user modifies it
by adding exactly one character at an offset i∗ from
the beginning of the file. As a result, the server learns
two ciphertexts, c1 and c2 : the encryption of p1 and of
the updated file p2 , respectively. By comparing the two
ciphertexts, the server can learn the value of i∗ (since c1
and c2 are identical up to that position).

As shown in Figure 8, the modification causes all the
characters after the character in position i∗ to shift one
position to the right. Consequently,

p1 [i] = p2 [i + 1] (1)

for all indices i ≥ i∗. For each guess g of the added
character, the server does the following (see Figure 8):

1) set p2 [i∗] = g .
2) for each i ≥ i∗, set p1 [i] = c1 [i]⊕ c2 [i]⊕ p2 [i] and

p2 [i + 1] = p1 [i].
Repeating these steps yields a pair of candidate plaintexts
(p1 ,p2 ) for each guess g of the added character. A
language model can then be used to automatically detect
which candidate pair contains meaningful text. As a result,
the server can recover all the plaintext characters beyond
position i∗.

This attack can be generalised to the situation where a
larger number of contiguous characters have been added or
deleted. This number can be approximated by comparing
ciphertext lengths (since AES-GCM ciphertext lengths
directly leak plaintext lengths).

This method for “unzipping” the plaintexts when
characters have been inserted (or deleted) and an IV reused
is not new, but in fact dates back to Tiltman’s cryptanalysis
of the German Lorenz cipher at Bletchley Park during
World War II.8

Reuse of the IV in AES-GCM also leads to a break
of integrity [18]. In short, with high probability and
with low effort, an adversary can recover the AES-GCM
authentication key from two ciphertexts if an IV is reused.
Given this key, and a portion of keystream recovered using
the confidentiality attack given above, an adversary can
go on to forge valid AES-GCM ciphertexts for chosen
plaintexts. We refer to [18] for further details.

Consequences. An adversary with read access to encrypted
files can leverage the IV reuse to mount a plaintext recovery
attack on modified files. An adversary that can also modify
a user’s file storage can then use the attack of [18] to forge
validly AES-GCM-encrypted files.

8. See https://billtuttememorial.org.uk/codebreaking/the-tiltman-break/.

4. Proof of Concept Attack Implementations

We implemented all attacks presented in this work and
tested them using a self-hosted Nextcloud server instance
over which we had full control (as appropriate in the
E2EE setting). This allowed us to test the attacks in a
controlled environment and verify their effectiveness. The
attacks were performed against version 3.6 of the desktop
client,9 this being the latest stable version at the time of
our analysis.

The PoCs modified the server behavior by edits to
its source code. This is consistent with the setting where
the service provider itself is to be considered malicious.
Furthermore, since the server code is loaded on each client
request, an adversary gaining control over a Nextcloud
server can alter its code and behavior in real-time, without
needing to restart the server. No changes were made to
the client code.

The PoCs for the key insertion attack and the ghost key
attack follow exactly the pseudocode in Figure 6 and 7,
respectively. To build a PoC exploiting the IV reuse, we
considered the simplified case shown in Figure 8 in which
a single character is added to or deleted from a text file.
Our PoC brute-forces on the deleted character and uses a
language model to recover the correct underlying plaintext,
as described in Section 3.3. We also implemented Joux’s
attack [18] to recover the AES-GCM authentication key
on IV reuse. Combining the two attacks, our PoC can then
both recover the file plaintext and change it to an arbitrary
string (of the same length as the original). The source code
of the PoCs is publicly available.10

5. Mitigations

This section describes the mitigations that we sug-
gested to Nextcloud as part of our disclosure, as well as
the measures implemented by Nextcloud to address the
vulnerabilities. Nextcloud implemented mitigations for the
key insertion attack in version 3.8 of their client and for
the other vulnerabilities in version 3.6.5 of their client [?],
[?], [?].

5.1. Mitigation of the Key Insertion Attack

As mentioned in the attack description (see Section 3.1),
the key insertion attack exploits the fact that metadata
keys are encrypted using RSA-OAEP, and hence not

9. https://github.com/nextcloud/desktop/releases/tag/v3.6.0
10. https://anonymous.4open.science/r/nc-poc-release-C86D

https://billtuttememorial.org.uk/codebreaking/the-tiltman-break/
https://github.com/nextcloud/desktop/releases/tag/v3.6.0


checksum(m, k∗,
[
Tf
]
):

Given: the user’s mnemonic m, the metadata key k∗, and the
map of encrypted file metadata

[
Tf
]

Returns: the checksum cs
1 buff ← “ ” � Initialize an empty buffer
2 buff ← buff || m
3 for ofn, ∈

[
Tf
]

4 buff ← buff || ofn
5 buff ← buff || k∗
6 cs ← SHA256(buff )
7 return cs

Figure 9: Checksum introduced by Nextcloud to authenti-
cate the metadata key k∗ and the obfuscated file names.

authenticated. The use of asymmetric cryptography to
encrypt metadata keys was introduced to allow a folder-
sharing feature.

Suggested Mitigation. In order to achieve authentication
of the encrypted metadata keys, while still allowing folder
sharing through the use of public-key cryptography, a
signcryption scheme can be used to protect metadata keys
instead of RSA-OAEP. A secure signcryption scheme
provides both confidentiality, unforgeability, and non-
repudiation [42]. Confidentiality (which is already achieved
with RSA-OAEP) ensures that an adversary without access
to the private key is not able to retrieve an encrypted meta-
data key. Unforgeability provides the additional necessary
guarantee of origin authentication for the encrypted key.
If metadata keys were signcrypted, each user with access
to a shared folder would be able to check who generated
the encrypted metadata key, thereby preventing the server
from inserting malicious keys.

Implemented Mitigation. Nextcloud’s security team de-
cided to introduce a short-term patch in order to prevent
the key insertion attack and gain more time to design and
deploy a completely new version of the E2EE module
with secure file sharing. The patch consists of computing
a checksum over part of the folder metadata and the
owner’s mnemonic with the checksum procedure in
Figure 9. The checksum consists of a SHA-256 hash over
the concatenation of the mnemonic m, the obfuscated file
names ofn, and the metadata key used to encrypt the file
metadata k∗. Since m is only known to the user, the idea
is that only the legitimate user should be able to generate
cs.

The checksum is computed at the end of the
encryptFolderMetadata in Figure 2 and stored
on the server as part of the folder metadata. The
decryptFolderMetadata in Figure 3 is modified to
recompute the checksum and compare it with the one
provided by the server.

Discussion. Although we could not find an attack on
this mitigation, we note that hash checksums generally
do not provide cryptographic unforgeability guarantees.
The correct primitive to use in order to authenticate the
metadata based on the mnemonic would have been a MAC.
More precisely, a key should be derived from the mnemonic
and used as input to a secure MAC to authenticate the
encrypted metadata key.

Additionally, authentication using symmetric-key cryp-
tography based on the mnemonic does not follow the
requirements posed by Nextcloud for their sharing feature.
Because the mnemonic is kept secret by each user, only the
user who created the folder metadata is able to authenticate
it. As a consequence, the recipient of a shared E2EE folder
cannot verify the origin of the folder metadata nor of
the folder content. Therefore, if folder sharing was to be
enabled together with this temporary patch, the recipient
of a shared folder could not authenticate the metadata
key, and would hence still be vulnerable to attacks from
a malicious server. In conclusion, unless metadata keys
can be authenticated by the recipients (for example using
signcryption), E2EE folder sharing cannot be implemented
securely.

We note that Nextcloud announced in [31] that v3.8 of
the Nextcloud client introduces folder sharing for E2EE
folders. However, the feature is still not functional in the
current version (v3.10). In particular, when attempting to
share a folder, clients do not encrypt the metadata key
with the public key of the recipient. Hence the recipient is
not able to decrypt the metadata of the shared folder, and
therefore does not gain access to any files. No additional
mechanisms have been introduced in this version of the
client to allow recipients to authenticate the folder metadata
without knowledge of the sharer’s mnemonic.

Hence, the introduced mitigation is merely a patch to
the key insertion attack. On its own, it is not sufficient to
enable secure file sharing which is the reason why PKE
was introduced in the first place.

5.2. Mitigation of the Ghost Key Attack

This vulnerability stems from the fact that the map Tk
used by the client to store metadata keys allocates a default
metadata key of all zeros if accessed at an uninitialized
index.

Suggested Mitigation. The attack can be easily prevented
by having the client verify that the map entry has been
initialized before accessing the map at a specified identifier.
In general, when developing end-to-end encryption systems
in a malicious server threat model, the inputs provided by
the server should not be trusted and hence always checked
by the client.

Implemented Mitigation. As suggested, additional checks
on the server input were introduced. After decrypt-
ing

[
Tk

]
in Figure 3, the client checks that the de-

crypted map Tk is not empty. Additionally, in the
decryptFolderMetadata procedure, all files are de-
crypted with the metadata key at the highest initialized
index in Tk, rather than with the key indicated by the file
metadata. This prevents maliciously added file metadata
entries from causing the client to access the map at an
uninitialized index. Together with the fact that the client
checks that Tk is not empty, this ensures that the map is
only accessed at valid indices.

After the mitigation, clients still support metadata key
rotation. However, they no longer support file keys for
different files being encrypted with different metadata keys.



Discussion. Note that none of the mitigations (suggested
or implemented) for the key insertion attack help prevent
the ghost key attack. The mitigations against the key
insertion attack aim to authenticate metadata keys, thereby
preventing an adversary (such as a MiTM attacker or
a malicious or compromised server) from modifying or
adding a new metadata key to the folder metadata. However,
in the ghost key attack, the all-zero key is inserted by the
client itself and not by the adversary. Even if metadata keys
were authenticated, the verification of their authenticity
would occur during decryption in line 3 of Figure 3. Once
the metadata keys are decrypted and put into the key map
Tk, the client trusts that the map only contains authentic
keys. However, in the ghost key attack, the client inserts
the all-zero key directly into Tk, thereby circumventing
any authenticity checks.

5.3. Mitigation of IV Reuse

The attack can be easily prevented by always sampling
the IV used for file encryption uniformly at random, both
when encrypting new files and when re-encrypting modified
files.

Nextcloud patched this vulnerability by generating a
fresh random IV as well as a new file key for each file
encryption.

Note that to prevent our attack it would have been
sufficient to just re-sample the IV. Nextcloud chose to
re-sample both the IV and the file key, such that (in a
future where folder sharing is actually possible) security
for updated files is ensured against a removed user. That
is, since updated files are encrypted with new file keys, a
user who has their access to a shared folder revoked does
not learn the new file keys, and hence cannot decrypt the
modified files.

6. Conclusion

We analyzed the E2EE features offered by Nextcloud
and found three vulnerabilities; each leading to devastating
attacks that completely break the confidentiality and in-
tegrity of E2EE files. Moreover, we can draw the following
broader lessons.

Treat your own code and infrastructure as adversarial.
While the ghost key attack relies on an odd behavior of the
object used to store metadata keys, the root cause of this
vulnerability is more fundamental. Here, had the server
inputs been checked before use by the client, the attack
would have been prevented. This points to the lesson that,
in the E2EE setting where the servers should be considered
adversarial, developers need to distrust all server actions
and all server-generated inputs. This mindset might be
difficult to adopt because it requires developers to produce
client code that distrusts server code that they themselves
may have written.

Do not beta test security-critical features. Releasing
features early, as beta, or as minimum viable products
(MVPs), may help attract users and gather support from
the developer community. The latter is particularly valuable
in an open-source project such as Nextcloud. However,
prematurely deploying security features that are only

partially implemented can introduce vulnerabilities. For
example, deploying a server-rooted PKI while leaving the
development of a certificate transparency log as future
work undermines the basic security assumptions on which
the system relies. Moreover, committing to insecure design
choices can lead to an over-complicated solution later on
and may necessitate complex patches when vulnerabilities
are found. In an extreme case, as with Nextcloud’s file
sharing feature, an important functionality had to be
disabled altogether until a better solution can be developed.

Secure primitives do not imply secure systems. While
the adoption of secure primitives and carefully audited
implementations is picking up pace in real-world deploy-
ments such as Nextcloud, this does not suffice if the
chosen primitives do not meet the requirements of the
application or are composed incorrectly. For example, our
key insertion attack exploits the mismatch between what
the designers presumably expected from the primitive (data
origin authentication and confidentiality), and what the
primitive actually offers (confidentiality). Generalizing
from this example, designers need to understand the
security guarantees offered by a primitive, and understand
how to properly combine primitives in order to achieve
more complex security properties. Similarly, developers
need to know under what assumption(s) these security
guarantees hold. This would have prevented the IV reuse
vulnerability in file encryption.

Do not “Design→Release→Break→Patch”. Systems
should be designed using a proactive approach to security,
cf. [36]. This alternative approach requires designers to first
produce formal security models capturing the security goals
and adversarial capabilities, then specify the system in full,
and finally develop security proofs showing that the system
meets its goals under well-defined assumptions concerning
its cryptographic components. Only once this phase is
complete, developers can start their work. Of course, this
approach still leaves a gap between formal specification and
implementation, but this approach prevents specification-
level flaws. Pursuing it is also considerably more involved
and less agile than the current practice where design and
development go hand-in-hand, and where there is often no
separation between designers and developers. It requires
highly specialist knowledge on the part of the designers,
or the recruitment of applied cryptographers to the design
team.

Future Work. Our work on Nextcloud and the recent work
on MEGA [1], [2], [17] have shown that well-established
companies and open-source projects with millions of
users struggle to provide their users with the intended
security guarantees. At the same time, the cryptographic
community has managed to model and prove the security
of important protocols for client-server communication
(e.g. TLS1.3 [11], [12], [14]) and E2EE messaging (e.g.
Signal [7]). An important goal for future work would be to
reach a similar state for E2EE cloud storage. This would be
an ambitious and complicated goal to attain, even without
the more advanced security properties typically targeted
in the literature today. However the result – when adopted
by vendors – would greatly improve the security of cloud



storage systems compared to the observed state in today’s
deployed systems.
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