
Breaking Cryptography in the Wild:

Nextcloud

Semester Project

Daniele Coppola

January 01, 2023

Advisors: Prof. Dr. K. Paterson, Prof. Dr. M. Albrecht, M. Backendal

Applied Cryptography Group
Institute of Information Security

Department of Computer Science, ETH Zürich

Contents

Contents i

1 Introduction 1

2 Background 3

2.1 Notation . 3

2.1.1 Object-oriented Syntax . 3

2.1.2 Cryptographic Zoo . 4

2.1.3 Shared objects . 5

3 Threat Model 7

3.1 Server side encryption . 7

3.2 End-to-end encryption . 7

4 Pseudocode 9

4.1 Client authentication . 9

4.1.1 Token . 9

4.1.2 Web browser log in . 11

4.1.3 Desktop client log in . 11

4.2 End-To-End Encryption (E2EE) . 13

4.2.1 Key hierarchy . 14

4.2.2 E2EE initialization . 15

4.2.3 E2EE client startup . 15

4.2.4 Folder metadata . 16

4.2.5 E2EE folder creation . 17

4.2.6 Folder synchronization . 17

5 Discovered vulnerabilities 23

5.1 Metadata key insertion . 23

5.2 Empty metadata keys . 24

5.3 IV reuse in file update . 25

6 Mitigation of Attacks on Nextcloud 29

7 Suggestions 31

7.1 Improvements to authentication . 31

7.2 RSA master key verification . 32

7.3 Folder sharing . 33

i

Contents

8 Conclusions 35

A Appendix 37
A.1 Key recovery attack . 37
A.2 RSA encryption with multiple primes in the modulus 44
A.3 Oracle queries to filter candidate public keys 45

Bibliography 49

ii

Chapter 1

Introduction

Cloud storage is a cloud computing model that enables storing data and files on the
internet through a cloud computing provider that one accesses either through the public
internet or a dedicated private network connection. Recent studies have shown that 50% of
the global data will be stored in the cloud by 2025[16]. Cloud storage solutions concentrate
data from multiple users onto a single cloud provider. Consequently, a vulnerability in a
major cloud provider will affect millions of users.

Keeping data safe and secure is a central theme for most cloud providers. Some providers
only defend against external adversaries trying to gain access to the data. These providers,
more or less implicitly, ask their customers to trust them for data confidentiality. Other
more progressive cloud providers offer end-to-end encryption solutions that claim to main-
tain data confidentiality, even in the face of a malicious service provider. They are inter-
esting from a cryptanalysis perspective because the challenging adversarial model presents
more opportunity for mistakes to be made in cryptographic design and implementation. In
a recent Master’s thesis [11], Haller identified a number of such storage services and showed
that a prominent one, MEGA, contained significant cryptographic flaws. He also provided
an overview of the cryptographic architecture of another popular service, Nextcloud. This
project follows Haller’s work and provides a detailed analysis of the cryptography used in
Nextcloud.

Nextcloud

Nextcloud is an open source software that allows enterprises and private individuals to
host their own cloud providing platform. Estimating the number of users is challenging
because they are spread over self-hosted Nextcloud server instances. In 2017, Nextcloud
estimated to have “well over 20 million users” [20]. Today, Nextcloud reports more than
400000 deployments [24], therefore we expect the total number of users to be multiple
factors higher.

The core focus of Nextcloud is to put the customer in control over their data and ensure
that “data meant to stay private will stay private” [22]. Because of the security the
service claims to offer, Nextcloud attracts users who wish to protect highly sensitive data.
Nextcloud is used at the computer science department of ETH Zurich for hosting sensitive
internal documents and by many other organizations such as Amnesty International and
the German federal government [23, 18].

Nextcloud is developing an end-to-end encryption (E2EE) module to protect data privacy
even in case of a compromised or malicious Nextcloud server. This project will focus on
analyzing the current E2EE design and implementation.

1

Chapter 2

Background

2.1 Notation

We define and use the following conventions in this report:

• x← y; sets element x to the value y.

• x←$ X; samples element x from set X.

• r←$ f(x); indicates a randomized function f, which in this instance produces r on
input x.

• ⊥; indicates general errors and algorithm failures. We may use subscripts ⊥0,⊥1
. . . to indicate different errors.

• [m]k; ciphertext representing the encryption of message m with key k.

• |s|; number of characters of the string s.

• |b|2; number of bits of the binary value b.

• |b|8; number of bytes of the binary value b.

• bits(a, n); encodes the integer a in a bit string of length n.

• s1 || s2; concatenates s1 with s2.

• s[a : b]; extracts a substring from s from char/byte a to char/byte b (not included).

• ord(g, N) is the order of an element g in Z∗
N.

• lcmki=1(xi); indicates the least common multiple among values xi with i ranging
from 1 to k.

• ε; indicates an empty string.

2.1.1 Object-oriented Syntax

Occasionally, we use object-oriented syntax in the mathematical description of algorithms
to make relationships explicit.

For instance, we write the following:

• server.fn(args); for the API call of the function fn with argument (s) args on
the server. The returned value has two fields: code for the http status code and
content for the content returned by the server.

3

2. Background

• keychain.Put(id, x)/keychain.Get(id); to specify storing/retrieving a value x
with identifier id in/from the on-device keychain.

• obj.x; for the variable x stored in context of obj.

2.1.2 Cryptographic Zoo

AES

• Cipher Block Chaining (CBC)

– c← AES-CBC.Enc(k, m, iv); encrypts the message m using the key k and the
initialization vector iv to obtain the ciphertext c.

– m ← AES-CBC.Dec(k, c, iv); decrypts the ciphertext c using the key k and
the initialization vector iv to obtain the message m.

• Galois Counter Mode (GCM)

– (c, τ)← AES-GCM.Enc(k, m, n, ad); encrypts the message m with associated
data ad using the key k and the nonce n to obtain the ciphertext c and tag τ .

– m/⊥ ← AES-GCM.Dec(k, c, n, ad); attempts to decrypt the ciphertext c with
associated data ad, nonce n and tag τ using the key k. If authentication fails
⊥ is returned, the message m otherwise.

The tag is obtained evaluating a polynomial in the Galois Field GF(2128). The
elements of this field are 128 bit strings. The addition is the xor of the operands.
The multiplication consists of two phases: (i) carry-less multiplication of the two 128-
bit operands, to generate a 256-bit result; (ii) and reduction modulo the irreducible
polynomial g(x) = x128 + x7 + x2 + x + 1. For those who are more familiar with
modular arithmetic, the reduction modulo g(x) is equivalent to taking the modulus
with respect to a prime number.

RSA

In the following, we define the abstract notation used in the remaining part of the report.

• (sk, pk) ←$ RSA.Gen(l); generates a public key pk and the corresponding private
key sk with an l-bit modulus.

• c←$ RSA.Enc(pk, m); encrypts the message m using the public key pk and producing
the ciphertext c. Since pk is public knowledge, anyone can perform this encryption.
Normally, a randomized padding is applied to m (see below).

• m/⊥ ← RSA.Dec(sk, c); attempts to decrypt the ciphertext c using the secret key
sk. Returns message m on success, ⊥ otherwise.

RSA-OAEP-WITH-SHA-256-AND-MGF1-Padding This is a combination of RSA with
Optimal Asymmetric Encryption Padding (OAEP). Such a randomized padding is needed
to achieve IND-CPA security and prevent other attacks in practice. OAEP is instanti-
ated with the hash function SHA-256 and the Mask Generation Function MGF1. Unless
otherwise specified, RSA.Enc(pk, m) and RSA.Dec(sk, c) will always use this encod-
ing/decoding.

Hash

Hash functions will be called in the following way:

4

2.1. Notation

• digest← HASH(m); generates the hash of message m and stores it in digest

HKDF

The Hashed Message Authentication Code (HMAC)-based key derivation function (HKDF)
is defined in the rfc5869[7] and will be called in the following way:

• k← HKDF(km, s, HASH, len); derives key k of length len expressed in bytes, using
key material km, salt s and the hash function HASH

2.1.3 Shared objects

Two objects are considered to be always available in the pseudocode:

• db; this will be used to get/put/remove objects from/in the database. For simplicity,
we consider the database a key value store with the following APIs

– db.get(k, T); returns the value corresponding to the key k in the table T. If
the key does not exist in the table, ⊥ is returned.

– db.put(k, v, T); inserts the key value pair (k, v) in table T.

– db.remove(k, T); removes the key value pair identified by key k from table T.

• fs; this object will be used to read and write files in the local file system of the
client.

5

Chapter 3

Threat Model

Nextcloud offers two main options for protecting data at rest: server side encryption
(SSE) and end-to-end encryption (E2EE). Each option acts under a specific threat model
providing different security guarantees.

3.1 Server side encryption

Server side encryption provides protection for data on external storage. Files are encrypted
on the Nextcloud server before they are sent to the external storage. The keys used for
the encryption never leave the Nextcloud server. Each file is encrypted with a unique file
key which is encrypted with a server-wide key or a per-user key.

Threat model. There are two sub-settings for server-side encryption: server-wide keys
and per-user keys. The threat model considered when using a server-wide key consists
of an adversary that has full control over the remote storage. The adversary can read,
modify and delete the stored files. Nextcloud server and admin are assumed to be trusted.

If per-user keys are used, a stronger adversarial setting is considered. On top having full
access to the remote storage, the adversary has access to the data at rest on the Nextcloud
server [25]. Every per-user key is encrypted by the user’s password and therefore, even if
an adversary has access to the data at rest on the Nextcloud server, it cannot decrypt the
user’s key.

Note that a malicious server administrator could log the users’ passwords when they log in
and trivially decrypt users’ files. As said, SSE does not protect against a fully compromised
Nextcloud server.

3.2 End-to-end encryption

The Nextcloud end-to-end encryption feature is designed such that the server never has
access to unencrypted files or keys, nor does server-provided code ever handle unencrypted
data which could provide avenues for compromise. Files are encrypted client-side and then
uploaded on the server. The file keys are uploaded encrypted under a secret known to the
client only. Moreover, server-signed certificates and a Trust On First Use (TOFU) model
protect against attackers trying to impersonate other users.

Threat model. According to Nextcloud documentation “End-to-end Encryption in
Nextcloud protects user data against any attack scenario between user devices, even in
case of an undetected, long-term security breach or against untrusted server administra-
tors”. In this threat model the service provider itself is considered potentially adversarial,

7

3. Threat Model

and yet the service should remain secure. The adversary has full access to the encrypted
data and keys and can also interact with clients via legitimate channels during steps like
authentication and file upload.

Security guarantees. The following security properties have to be satisfied [19]:

• Access to file and metadata ciphertexts must not leak directory structure nor file
names or content.

– Leaking the number of files in an encrypted folder is an accepted risk.

• Public keys of users must be auditable. This security guarantee is not explained any
further in the white paper and hard to interpret. Our best explanation is that users
must be able to authenticate other users’ public keys.

• Once a user has been removed from an encrypted folder they should have no relevant
key material to decrypt files updated or created in the future.

• Encrypted folders must use an encryption scheme fulfilling the following criteria:

– Confidentiality: no one, except the legitimate recipients, must have access to
the encrypted documents.

– Integrity: Even with write access to the ciphertext one should not be able to
tamper with the data.

– Data origin authentication.

8

Chapter 4

Pseudocode

4.1 Client authentication

One of the advantages of cloud storage is that data stored on the cloud can be accessed
from any device as long as a connection to the cloud is available. In order to log in to
their account and access their stored files, a user must authenticate the client which they
use to connect to the server.

In the default version of Nextcloud server, accounts are registered by the server administra-
tor. Nextcloud also offers the option to enable users to register a new account themselves.
Every user account consists of a unique user identifier uid in the form of a username and
a password. The server stores the username of each user and the hashed password in its
database. A user can use multiple clients to access the remote storage. Each client is
identified by a client identifier cid which consists of the user identifier uid and a client
name picked by the client based on the host machine it is running on.

There are two default login routines, one for the web browser client and one used by the
desktop client. Nextcloud also supports two-factor authentication and OAuth [8]. This
section focuses on the default log in routines.

The goal of a login procedure is to authenticate the client. Once the client is authenticated
the server returns the client a token. Tokens are used by the server to authenticate future
requests of the client.

We start by the describing in more details what tokens are, how they are created and
used. We then present the login routine used to authenticate from a web browser. Finally,
we describe the login routine used by a desktop client. In the pseudocode that follows,
the server database is accessed through high-level calls to the object db. The syntax for
this object was defined in the background section 2.1.3.

4.1.1 Token

Tokens are byte strings sampled randomly by the server for a client. The server uses tokens
to encrypt values such as users’ passwords or other tokens. The resulting ciphertext is
stored in the server database, and the token is sent to the client. Since the token is not
stored on the server, an adversary who gets access to the database would not be able to
retrieve the values encrypted with the tokens.

This section describes how tokens are used to encrypt and decrypt a value that we will
generally call ptxt. In practice, ptxt corresponds to either the user’s password or to
another token.

9

4. Pseudocode

Figure 4.1: Encryption and decryption procedures used with tokens.

1: procedure encrypt(token, ptxt)
2: sk, pk←$ RSA.Gen(2048)

3: ▷ Encrypt the private key
4: keyMaterial← HKDF(token, salt=ε, SHA512, len=64)

5: encKey← PBKDF2-SHA1(keyMaterial[: 32], salt="salt", iter=1000, len=16)

6: tagKey← SHA512(keyMaterial[32 :] || "a")
7: iv←$ {0, 1}128
8: ctxtSk← AES-CBC.Enc(encKey, PKCS7.pad(sk), iv)

9: tagSk← HMAC(tagKey, ctxt || iv)
10: encSk← ctxtSk || "|" || iv || "|" || tagSk
11: ▷ Encrypt ptxt
12: ctxt←$ RSA.Enc(pk, ptxt)

13: return (encSk, ctxt)

1: procedure decrypt(token, encSk, ctxt)
2: ▷ Decrypt the private key
3: ctxtSk, iv, tagSk← split(encSk, "|")
4: keyMaterial← HKDF(token, salt=ε, SHA512, len=64)

5: encKey← PBKDF2-SHA1(keyMaterial[: 32], salt="salt", iter=1000, len=16)

6: tagKey← SHA512(keyMaterial[32 :] || "a")
7: tag← HMAC(tagKey, ctxtSk || iv)
8: if tag ̸= tagSk then
9: return ⊥

10: sk← PKCS7.unpad(AES-CBC.Dec(encKey, ctxtSk, iv))

11: return RSA.Dec(sk, ctxt)

The encrypt function receives as input a token and a plaintext value ptxt. The pro-
cedure starts by generating an RSA key pair, (sk, pk). From the token, an encryption
key, encKey and a tagging key, tagKey are derived and used to encrypt and tag the secret
key. The plaintext is encrypted with the RSA key using RSA-OAEP. The returned value
consists of the encrypted secret key and the encryption of the plaintext. The decrypt
function is the inverse of the encrypt function. It receives as inputs a token, the encryp-
tion of a secret key, encSk, and a ciphertext, ctxt. The encryption key and tagging key
are derived from the token and used to decrypt the secret key. The secret key is then used
to decrypt the ciphertext. If decryption succeeds, the plaintext is returned. Figure 4.1
shows the pseudocode for the encrypt and decrypt functions.

We define two additional functions encryptAndPut and getAndDecrypt to simplify
the login diagrams. These are wrappers for the functions encrypt and decrypt and
handle the storage of the encrypted values in the database.

The function encryptAndPut receives as input a token token, a plaintext ptxt and
a client identifier cid. The input token can be empty, and, in this case, a new token is
sampled inside the routine. The token is used to encrypt the plaintext with the function
encrypt. The resulting ciphertext is saved in the server database with the client identifier
and a value obtained hashing the token with a salt. The function terminates returning
the token.

The function getAndDecrypt receives as input a client identifier cid and a token token.
From the database, the function fetches the ciphertext identified by the client identifier
and the hash of the token. The ciphertext is decrypted with the function decrypt

10

4.1. Client authentication

Figure 4.2: Helper functions encryptAndPut and getAndDecrypt. They handle the insertion and re-
trieval of ciphertexts from the database. The value salt is a value sampled once when the server is set up,
stored in a configuration file and used as a salt when hashing tokens.

1: procedure encryptAndPut(token, ptxt, cid)
2: if token = ε then
3: token←$ [a-zA-Z0-9]128

4: tokenHash← SHA512(token || salt)
5: (encSk, ctxt)← encrypt(token, ptxt)
6: db.put((tokenHash, cid), (encSk, ctxt), oc authtoken)

7: return token

1: procedure getAndDecrypt(token, cid)
2: tokenHash← SHA512(token || salt)
3: (encSk, ctxt)← db.get((tokenHash, cid), oc authtoken)

4: ptxt← decrypt(token, encSk, ctxt)
5: return ptxt

and returned. Figure 4.2 shows the pseudocode of functions encryptAndPut and
getAndDecrypt.

4.1.2 Web browser log in

In order to log in, the web browser client sends a POST request at the /login endpoint
containing the username and password in clear text. The server compares the hash of the
received password with the one stored in the database using function checkPassword
showed in figure 0. If the check is successful, the server responds with a token that the
client will include in its subsequent requests. The following requests are authenticated by
the server verifying the attached token. The token and the client identifier are passed as
input to the getAndDecrypt function which returns the user’s password. Given the
user’s password, the function checkPassword can be used again to authenticate the
request.

Passwords are hashed using the PHP function call password hash which supports three
algorithms: bcrypt[27], argon2i and argon2id (default)[2]. All these algorithms are specifi-
cally designed for password hashing and make use of a salt. The php function password verify

is used to verify the received password. Based on the hash that the server has stored in
the database, the function picks the correct hashing algorithm and compares the password
hash with the stored one.

4.1.3 Desktop client log in

In order to authenticate a new desktop client, a user must grant access to the client from
an already authenticated web browser session. The desktop client redirects the user to
the web browser client from which the user grants access to the desktop client. The
desktop client periodically polls the server to checks if it was granted access. Once access
is granted, the server sends a token to the desktop client. This token encrypts the user’s
password and can be used to authenticate the client’s requests.

The procedure used by the desktop client starts with an empty POST request to which
the server answers with two tokens: the pollToken and the loginToken. The first is used
by the desktop client to poll the server to check if it was granted access. The latter is used

11

4. Pseudocode

Figure 4.3: Messages exchanged between client and server during login. The client sends the client identifier
cid and the user’s password pwd. If the login succeeds, the server responds with a token named sessionToken.
The following requests are authenticated retrieving the user’s password with the sessionToken and checking
the password again.

Client Server

if checkPassword(cid.uid, pwd) = ⊥ then
return ⊥

sessionToken← encryptAndPut(ε, pwd, cid)

pwd← getAndDecrypt(sessionToken, cid)
return checkPassword(cid.uid, pwd)

POST /login cid, pwd

sessionToken

...

REQUEST sessionToken, cid

Figure 4.4: Credentials verification

Input: user identifier, uid;user’s password, pwd.
Output: boolean indicating if password verification succeeded.

1: procedure checkPassword(uid, pwd)
2: hash← db.get(uid, oc users)

3: if !hash then
4: return ⊥
5: return password verify(pwd, hash)

in the web browser to access the page /login/v2/flow/loginToken. The purpose of the
loginToken is to tie the login of the desktop client to the log in of the web browser. These
tokens are stored together in the server database in the table loginFlow. From the web
browser, the user logs in as described above and grants access to the device. Once access is
granted, the server executes the function encryptAndPut which creates a token called
appPwd and uses it to encrypt the user’s password. The token pollToken is retrieved from
the database and used to encrypt the appPwd. At this point, the server deletes the entry
(loginToken, pollToken) from the database. The idea is that once a token is used to
encrypt a value, the token itself should not be stored on the server. When the desktop
client polls the /poll end point, the server can use the attached pollToken to retrieve the
appPwd which is returned to the client. This concludes the desktop client log in process.
At the end of this process:

• the server stores in its database the user’s password encrypted under the appPwd

token.

• The client stores the token appPwd.

Every request from the desktop client will include the token appPwd. The server can use
the appPwd and the client identifier as input to the function getAndDecrypt to retrieve
the user’s password. The server can then authenticate the request by checking the user’s
password with the function checkPassword.

Both the sessionToken used by the web browser and the appPwd token are byte strings
generated by the server and used to encrypt the user’s password. The main difference is
their time to live (TTL). The sessionToken as the name suggests have a shorter TTL
and is refreshed every session, whereas the appPwd is a long term token that stays valid

12

4.2. End-To-End Encryption (E2EE)

forever unless the user decides to revoke it.

Token revocation is a feature that allows users to revoke access to a specific client. A user
can request the server to revoke access to one of its clients specifying the client identifier.
The server will remove all the entries in the table oc authtoken corresponding to that
particular client identifier.

Tokens are stored on the clients using Qt keychain API [1] in the keychain of the device.
On Mac OS X passwords are stored in the OS X Keychain. On Linux/Unix if running,
GNOME Keyring is used. Since Windows does not provide a service for secure storage
QtKeychain uses the Windows API function CryptProtectData to encrypt the password
with the user’s login credentials.

Figure 4.5: Desktop client login. The blue sections show the messages exchanged between the desktop client
and the server. The orange section shows the messages exchanged between the browser and the server. The
web client is identified by the identifier cid, and the desktop client is identified by the identifier cidD

Client Server

pollToken←$ [a-zA-Z0-9]128

loginToken←$ [a-zA-Z0-9]128

db.put(loginToken, (cidD, pollToken), login flow)

cidD, pollToken← db.get(loginToken, login flow)

encryptAndPut(pollToken, appPwd, cidD)
pwd← getAndDecrypt(sessionToken, cid)
appPwd← encryptAndPut(ε, pwd, cidD)
db.remove(loginToken, login flow)

appPwd← getAndDecrypt(pollToken, cidD)

pwd← getAndDecrypt(appPwd, cidD)
return checkPassword(cid.uid, pwd)

POST /login cidD

pollToken, loginToken

POST /login/loginToken cid, pwd

sessionToken

POST /grant sessionToken, cid

POST /poll pollToken, cidD

appPwd

...

REQUEST appPwd, cidD

4.2 End-To-End Encryption (E2EE)

Nextcloud provides E2EE to protect users’ data even against malicious server adminis-
trators or compromised providers. This feature is not available by default in Nextcloud
and has to be enabled by the server administrator. Once the feature is enabled, users
can choose which folders to protect with E2EE. Folders that are end-to-end encrypted
are only accessible through desktop clients. This is a reasonable decision considering the
E2EE threat model. If E2EE data was accessible through web browser clients, the code
handling such data would be provided by the server which, in the considered setting, can
be adversarial and could trivially gain access to the data. The Nextcloud desktop clients

13

4. Pseudocode

Figure 4.6: Nextcloud’s key hierarchy

mnemonic

encryptionKey

RSA master key

metadata key

file key

file

1:1

1:1

1:N

1:N

1:1

Key derivation

RSA-OAEP Encryption

GCM Encryption

1:1 one to one relationship

1:N one to many relationship

are clients that synchronize the contents of local directories from computers, tablets, and
handheld devices to the Nextcloud server. The E2EE module is essentially a layer on top
of the synchronization layer that encrypts the files before they are uploaded to the server.

We start by presenting the key hierarchy used by Nextcloud and continue explaining
how the previously presented keys are generated and stored. Finally, we illustrate the
synchronization process and provide the pseudocode for file upload and file download.

4.2.1 Key hierarchy

This section provides a bottom-up description of the key hierarchy. Figure 4.6 shows a
visual representation of it.

At the bottom of the hierarchy are file keys. File keys are used to encrypt files and
are freshly generated by the client for every new file. Every folder is associated with a
metadata key that the client generates when a folder is marked as E2EE. The metadata
key of a folder is used to encrypt the file keys for the files contained in that folder. Every
user has an RSA master key used to encrypt metadata keys. The private part of the
master key is encrypted with an encryption key derived from a 12 words mnemonic which
stands at the root of the key hierarchy. The 12 words mnemonic is unique per user,
and it is generated by the client sampling randomly from a set of 2048 words. The user
is strongly recommended to record these somewhere secure as the complete loss of this
private key means there is no way to access their data anymore.

All the presented keys, except for the mnemonic and the public part of the RSA master
key, are stored encrypted on the server to support access from multiple devices. A user
on a new device, after authenticating to the server, can enter the mnemonic, fetch the
encrypted key material from the server and decrypt it. Once file keys are recovered, the
encrypted files can be fetched from the server and decrypted. The public part of the RSA
master key is stored in plaintext on the server.

Note that the 12 words mnemonic is independent of the user password. As a consequence,
client authentication and access to the E2EE folders are kept separated. This is a praise-
worthy design choice because the recovery of users’ password will not hinder the security
of the E2EE files.

14

4.2. End-To-End Encryption (E2EE)

4.2.2 E2EE initialization

In the previous section we explained how desktop login works. Here we assume that
the client has already logged in with user identifier uid. The initialization procedure is
executed once per user when E2EE is enabled.

When the user enables E2EE the client generates a 12 word mnemonic and the RSA
master key as shown in 1. The server provides the client with a certificate that binds
the client’s public key to its user identifier. Certificates can be used by other users to
authenticate each other. However, since sharing is not implemented, the relevance of this
certificate is marginal at the time of our analysis. The mnemonic and the master key
are stored in the keychain of the device. After encrypting the user’s private key with an
encryption key derived from the mnemonic, the master key is uploaded to the server.

To briefly summarize the state at the end of this procedure:

• the client’s keychain stores the mnemonic and the RSA master key.

• The server stores the users’s certificate and the encrypted private key in a specific
folder that collects certificates and keys of all the users.

Algorithm 1 E2EE initialization

Input: User identifier, uid; object to make requests to the server, server.
Output: RSA master key, sk, pk; mnemonic of the user, mnemonic.

1: sk, pk←$ RSA.Gen(2048) ▷ Generate Keys
2: csr← x509.csr(pk, uid)

3: cert← server.signCsr(csr) ▷ Store keys
4: m←$ W12 // |W| = 2048

5: s←$ {0, 1}320 // salt for key derivation
6: k← PBKDF2-SHA1(m, s, iter = 1024, len = 256)

7: n←$ {0, 1}128 // NONCE for the encryption of sk
8: [sk]k, τ ← AES-GCM.Enc(k, sk, n, ad = ε)
9: keychain.Put("certificate", cert)

10: keychain.Put("sk", sk)

11: keychain.Put("mnemonic", m)

12: server.putKey(([sk]k, n, τ, s))

4.2.3 E2EE client startup

During client startup, the RSA master key is loaded either from the keychain, if present, or
it is fetched from the server. The client master key can then be used to decrypt metadata
keys, file keys and consequently files.

As previously mentioned, the public key is stored in plaintext on the server and is not
integrity-protected. The client verifies the public key by checking that RSA correctness
holds for a randomly sampled message as shown in lines 15-18 of algorithm 2. This
verification procedure relies on non-standard standard properties of the RSA-OAEP and
is better analyzed in section 7.2.

If the verification succeeds, at the end of the setup algorithm, the client knows the RSA
master key of the user and can access the E2EE data.

15

4. Pseudocode

Algorithm 2 Setup E2EE

Input: object used to make requests to the server, server; user identifier, uid.
Output: RSA master key, pk, sk; user’s mnemonic, mnemonic.

If the check on pk, sk is successful, the output is saved in the keychain.

1: cert← keychain.Get("certificate")

2: sk← keychain.Get("sk")

3: m← keychain.Get("mnemonic")

4: if cert ̸= ⊥ AND sk ̸= ⊥ AND m ̸= ⊥ then
5: return cert.pk, sk, m // master key and mnemonic are available in the keychain

6: cert← server.getCertficate(uid)

7: pk← cert.pk

8: [sk]k, n, τ, s← server.getPrivateKey()// encrypted sk, nonce, tag, salt
9: action← "check"

10: while action = "check" do
11: m← user input("Enter mnemonic : ")

12: k← PBKDF2-SHA1(m, s, iter=1024, len=256)

13: sk← AES-GCM.Dec(k, [sk]k, n, ε)
14: ▷ Verify secret key
15: r←$ {0, 1}512
16: [r]pk ← RSA.Enc(pk, r)

17: r′ ← RSA.Dec(sk, [r]pk)

18: if r = r′ then // save the verified master key and mnemonic in the keychain
19: keychain.Put("certificate", cert)

20: keychain.Put("sk", sk)

21: keychain.Put("mnemonic", m)

22: break

23: else
24: sk← ⊥
25: m← ⊥
26: action← user input("Action : [check|cancel]")
27: return pk, sk, m

4.2.4 Folder metadata

For each E2EE folder the client stores on the server the encrypted content of the files and
an additional file containing the folder metadata. The folder metadata contains the key
material necessary to access files in the folder and is stored encrypted on the server.

At a high level, when a client wants to access the content in an E2EE folder, it first
fetches the file containing the encrypted folder metadata, decrypts it and retrieves the
key material necessary to access the files. The client synchronizes the content of its local
folder with the remote one and finally uploads the folder metadata back to the server.

We start by describing in more detail the folder metadata. We then present the pseudocode
used to encrypt and the decrypt the folder metadata.

The metadata of a folder consists of two sets. A set K of metadata keys and a set F of
files’ metadata. The set K contains tuples of the form (i, k(i)md) where k(i)md is a metadata
key and i is an integer used to identify the key in the set. Metadata keys encrypt sensitive
information of files’ metadata, namely the filename and the file key used to encrypt the
file.

For each file in the folder, the set F contains a tuple of the form (obfName, filename, kf, ivf, τf).

16

4.2. End-To-End Encryption (E2EE)

Figure 4.7: Example of an encrypted folder metadata. Metadata keys are encrypted the user’s public key pk.
Files’ metadata are encrypted with the latest metadata key. In the example, there are two metadata keys and
multiple files’ metadata, although only one is shown in full.

Encrypted folder metadata

Ke: (1, [k(1)md]pk)

(2, [k(2)md]pk)

Fe: (obfName, [filename, kf]k(2)md
, 2, ivf, τf)

...

We now explain the meaning of each field. Encrypted files are stored on the server under
an obfuscated name generated randomly by the client independently of the original file-
name, filename. The values obfName and filename are used to map obfuscated names
with original file names. Files are encrypted using AES-GCM, the values kf, ivf and τf
are the file key and the initialization vector used to encrypt the file and the tag returned
by the encryption. A tuple stored in F contains all the necessary information to access
an encrypted file. The mapping between filename and obfuscated name is used by the
client to know which encrypted file to fetch from the server. The file key, the initialization
vector and the tag are then used to decrypt the file.

Clients store folders metadata encrypted on the server. Metadata keys are encrypted with
RSA-OAEP under the user’s master key. The metadata key with the highest index is
then used to encrypt the sensitive section of each file metadata: the filename and the
file key. The index corresponding to the metadata key used for the encryption is saved
with the encrypted file metadata. The encrypted metadata keys and files metadata are
collected in the sets Ke and Fe. The full metadata encryption procedure is shown in
algorithm 3. Algorithm 4 describes the inverse procedure, used to decrypt the encrypted
folder metadata fetched from the server.

Nextcloud’s design of the E2EE module allows folder sharing. The algorithms support
multiple metadata keys to allow a user to remove another user from a shared folder.
According to Nextcloud’s whitepaper, all the users with access to a shared folder know
the latest metadata key. If a user wants to remove another user from the share, a new
metadata key is generated and shared with all the other users except the one removed.
More information on the sharing feature can be found in section 7.3. The sharing feature
has not yet been implemented. In practice, the set of metadata keys only ever contains
one key.

4.2.5 E2EE folder creation

Once E2EE is enabled, empty folders can be marked as E2EE. Algorithm 5 initialize the
folder metadata. After initialization, the folder metadata consists of a single metadata
key. The set of files’ metadata is empty.

4.2.6 Folder synchronization

Nextcloud desktop clients are synchronization clients that keep a local folder synchronized
with the remote one on the server. This section starts by describing how file versioning
works, namely how the versions of local files are compared with the remote ones to de-

17

4. Pseudocode

Algorithm 3 Encryption of folder metadata

Input: user’s public key, pk; set of metadata keys, K; set of files’ metadata, F .
Output: set of encrypted metadata keys, Ke; set of encrypted files’ metadata, Fe.

1: procedure encryptMetadata(pk,K,F)
2: ▷ Metadata keys encryption
3: Ke ← {}
4: for (i, k(i)md) in K do

5: [k(i)md]pk ← RSA.Enc(pk, k(i)md)

6: K ← K ∪ (i, [k(i)md]pk)

7: ▷ Pick the most recent metadata key
8: i(max) ← |K|
9: kmd ← k | (i(max), k) ∈ K

10: ▷ Files’ metadata encryption
11: Fe ← {}
12: for (obfName, filename, kf, ivf, τf) in F do
13: ivmd ←$ {0, 1}128// iv for file metadata encryption
14: [(filename, kf)]kmd, τmd ← AES-GCM.Enc(kmd, (filename, kf), ivmd, ε)
15: encrypted← [(filename, kf)]kmd || τmd || "|" || ivmd
16: Fe ← Fe ∪ (obfName, encrypted, i(max), τf, ivf)
17: return Ke,Fe

Algorithm 4 Decryption of folder metadata

Input: user’s secret key, sk; set of encrypted metadata keys Ke, set of encrypted
files’ metadata Fe.

Output: set of metadata keys, K; set of files’ metadata, F
1: procedure decryptMetadata(sk,Ke,Fe)
2: ▷ Metadata keys decryption
3: K ← {}
4: for (i, [k(i)md]pk) in Ke do

5: k(i)md ← RSA.Dec(sk, [k(i)md]pk)

6: K ← K ∪ (i, k(i)md)

7: ▷ Files metadata decryption
8: F ← {}
9: for (obfName, encrypted, i, τf, ivf) in Fe do

10: [(filename, kf)]kmd || τmd || "|" || ivmd ← encrypted

11: kmd ← kmd | (i, kmd) ∈ K
12: (filename, kf)← AES-GCM.Dec(kmd, [(filename, kf)]kmd, iv, ε)
13: F ← F ∪ (obfName, filename, kf, ivf, τf)
14: return K,F

Algorithm 5 E2EE folder setup

Input: public key of the user, pk; name of the folder, foldername.

1: procedure createE2EEFolder(pk, foldername)
2: kmd ←$ {0, 1}128
3: K ← {(1, kmd)}
4: F ← {}
5: Ke,Fe ← encryptMetadata(pk,K,F)
6: server.putMetadata(foldername, (Ke,Fe))

18

4.2. End-To-End Encryption (E2EE)

Figure 4.8: This table sums up the most relevant combinations of etag’s and modifications time with the
corresponding operation executed by the client for the specific file. The superscripts (·)l, (·)fs, (·)r indicate
that the information comes from the local database, the file system or the remote folder. The values m0 and m1
are two different modification times, and similarly e0 and e1 are two different etag’s. Finally, ε indicates that
the specific value is not available. For example, if a file was removed on the server, the server will not return
any information about that file and the remote etag is set to ε.

ml mfs el er operation

m0 m0 e0 e0 none
m0 m1 e0 e0 upload
m0 m0 e0 e1 download
m0 m1 e0 e1 conflict
m0 m1 e0 ε upload
m0 m0 e0 ε delete local
m0 ε e0 e0 delete remote

termine which version is the most recent. Depending on whether the local or the remote
copy of a file is more recent, the client downloads or uploads the file. The download and
upload procedure are described at the end of the section.

For each file in the folder, clients save in their database the modification time mtime and
a randomly generated value called etag that is updated every time a file changes. The
former is used to determine if a file was modified locally, while the latter is used to compare
local and remote versions.

During a sync run the client must first detect if one of the two folders have changed
files. On the local folder, the client traverses the file tree and compares the modification
time of each file with an expected value stored in its database. If the value is not the
same, the client determines that the file has been modified in the local repository. The
server provides for each file in the remote folder the corresponding etag’s. The client
compares the etag of each file with its expected value. Again, the expected etag value
is queried from the client database. If the etag is the same, the file has not changed and
no synchronization occurs. In the event that a value has changed both on the local and
on the remote serve, a conflict case is created, both versions are saved locally, and the
user is responsible to resolve the conflict. Table 4.8 sums up the operations that the client
performs for each file depending on the etag and on the modification time.

Folder synchronization are frequently performed by a client and are also triggered if a local
file is modified. In the first part of a sync run the client collects the versioning attributes
for all files. Based on the recovered attributes, an operation is selected and executed. For
example, if a file was modified remotely (different etags), but was not modified locally
(same modified time), the remote version is downloaded.

The function synchronize describes in more details how a sync run works. It receives as
inputs the user’s master key (sk, pk), the local versioning information local, the remote
versioning information remote and the encrypted folder metadata (Ke,Fe). The object
local is a set of tuples of the form (filename, el, ml, mfs). These fields are respectively
the name of the file, the etag and the modification time stored in the local database and
the modification time retrieved from the file system. The object remote is slightly more
complicated. Files on the server are stored under an obfuscated name obfName and the
server does not know the original filename. For this reason, the object remote, which the
client receives from the server, is a set of tuples of the form (obfName, er) which maps
obfuscated names to the etag values saved in the remote database. After decrypting the
folder metadata, the client learns the mapping between obfuscated names and filenames.

19

4. Pseudocode

This mapping is used to associate the remote tuples with the corresponding filename.
The extended tuples are saved in a set referred as remote′. The two sets remote′ and
local are joined with the function outerJoin. This function performs an outer join of
the two sets using the filename as the common field. If a specific filename filename is
present in both sets, the two corresponding tuples are merged into a single one of the form
(filename, obfName, ml, mfs, el, er). If a filename is present in only one of the two
sets, then the attributes coming from the other sets are set to ε. For each file an operation
is selected and executed. In the pseudocode, the function getOperation receives as input
the etags and modification times of a file and returns the function executing the operation
selected according to table 4.8. The pseudocode does not show the updates to the remote
and local database. If a file is uploaded to the server, the remote database stores a new
etag for that file. If a file was locally modified or downloaded, the time of the operation is
registered in the local database in the mtime field. At the end of the sync run, the folder
metadata is re-encrypted and returned. The encrypted folder metadata is uploaded to
the server. Algorithm 6 contains the pseudocode for the sync run. In the remaining part
of this section we describe the download and upload operations. Local and remote delete
simply delete the files locally or remotely. In addition, in case of a remote delete, the client
removes the file metadata corresponding to the deleted file from the folder metadata.

Algorithm 6 Folder synchronization

procedure synchronize(sk, pk, local, remote,Ke,Fe)
(K,F)← decryptMetadata(sk,Ke,Fe)

▷ Map obfuscated names to original filenames
remote′ ← {}
for (obfName, er) in remote do

filename← filename | (obfName, filename, , ,) ∈ F
remote′ ← remote′ ∪ {(filename, obfName, er)}

joined← outerJoin(local, remote′)
▷ Select and execute an operation for each file

for (filename, obfName, ml, mfs, el, er) in joined do
operation← getOperation(ml, mfs, el, er)

F ← operation(F, filename, obfName)
return encryptMetadata(pk,K,F)

File upload. If the client determines that its version of a file is more recent than the
one on the server, the local version is uploaded to the server executing algorithm 7. The
function upload receives as input the set of files’ metadata F , the filename filename

and the obfuscated name obfName. The last input may be set to ε if the file is new and
therefore the server does not have a copy of it yet. In case of a file update, obfuscated
name, file key and initialization vector are retrieved from the file metadata corresponding
to the updated file. If the file is new, the client generates a new file key, initialization
vector and obfuscated name. In both cases, the file content is read from the file system
with the function fs.read and is then encrypted using AES-GCM. The encrypted file is
uploaded to the server under the name obfName. Finally, the files’ metadata is updated
and returned.

From the server perspective, the encrypted file is a regular file with name equal to the
obfuscated name. The mapping between obfuscated names and original names is encrypted
in the folder metadata. The server cannot retrieve the original file name, nor its content.

20

4.2. End-To-End Encryption (E2EE)

Algorithm 7 File upload to E2EE folder

Input: set of files’ metadata, F ; the filename, filename; the obfuscated name
obfName.

Output: updated set of files’ metadata F
1: procedure upload(F, filename, obfName)
2: ▷ Check if the file already exists in the folder
3: found← false

4: for f in F do
5: (obfName, filename′, kf, ivf, τf)← f

6: if filename = filename′ then // An existing file is updated
7: found← true

8: F ← F \ (obfName, filename, kf, ivf, τf)
9: break

10: if !found then
11: ▷ Generate file metadata for the new file
12: kf ←$ {0, 1}128 // file key
13: ivf ←$ {0, 1}128 // initialization vector
14: obfName← uuid() // universal unique identifier

15: ▷ Encrypt the file content
16: fileContent← fs.read(filename)

17: [fileContent]kf, τf ← AES-GCM.Enc(kf, fileContent, ivf, ε)
18: server.putFile(obfName, [fileContent]kf)

19: ▷ Update metadata
20: F ← F ∪ (obfName, filename, kf, ivf, τf)
21: return F

File download. If the file version on the server is more recent than the one on the client,
the remote version is downloaded on the client executing Algorithm 8. The function
download receives as input the files’ metadata F , the filename filename and the obfus-
cated name obfName. The file metadata corresponding to the obfuscated name is retrieved
from the files’ metadata. If the files’ metadata does not contain an entry with the specific
obfuscated name an error is showed by the function showError to the user and the
operation is terminated. This happens if the server reports in the versioning information
a file for which no file metadata is present in the folder metadata. The procedure fetches
the file content from the server, decrypts it and stores it in the local file system. At the
end, the set of files’ metadata is returned and the sync run continues.

This concludes the overview of the E2EE module. To briefly summarize what was pre-
sented:

• access to the E2EE data is protected by a 12 word mnemonic that each user should
remember and keep secret.

• Every user has a master key that is used to protect the key material used in the files
encryption. The master key is stored on the server encrypted with an encryption
key derived from the mnemonic.

• The key material necessary to access a folder is stored encrypted on the server to
support access from multiple devices.

• When a client wants to synchronize with the server, it first fetches the encrypted
folder metadata from the server, then for each file an operation is select based on the
local and remote versioning information. Finally, the folder metadata is encrypted
and uploaded back to the server.

21

4. Pseudocode

Algorithm 8 E2EE file download

Input: set of files’ metadata, F ; the filename, filename; the obfuscated name
obfName.

Output: set of files’ metadata F
1: procedure download(F, filename, obfName)
2: ▷ Check if the file already exists in the folder
3: found← false

4: for f in F do
5: (obfName, filename′, kf, ivf, τf)← f

6: if filename = filename′ then
7: found← true

8: break
9: if !found then

10: ▷ Show error and terminate operation
11: showError()

12: else
13: ▷ Decrypt the file content and save it
14: [fileContent]kf ← server.getFile(obfName)

15: fileContent← AES-GCM.Dec(kf, ([fileContent]kf, τf), ivf, ε)
16: if fileContent = ⊥ then
17: showError()

18: else
19: fs.write(filename, fileContent)

20: return F

22

Chapter 5

Discovered vulnerabilities

In the following chapter, we describe the vulnerabilities found in Nextcloud’s end-to-end
encryption module. Each presented attack will contain the prerequisites to carry out the
attack, a description of how the attack works, and its consequences.

5.1 Metadata key insertion

Threat model. The attack can be carried out by anyone who has write and read access
to the data folder of the server. Any malicious service provider can therefore carry out
the attack.

Attack description. Metadata keys are encrypted using the user’s master key with RSA-
OAEP. While providing confidentiality and integrity, RSA-OAEP does not provide au-
thentication. Consequently, anyone who has access to the user’s public key can generate
a valid encryption of a metadata key. This is especially problematic because, on every
sync between client and server, all files’ metadata are re-encrypted by the client using the
latest metadata key associated with the highest index. The lack of authenticity allows a
malicious server to induce the client into using a metadata key known to the server. The
following pseudocode shows how a malicious server can add a known metadata key to the
folder metadata.

Algorithm 9 Insert metadata key

Input: client’s public key, pk; set of encrypted metadata keys, Ke; chosen metadata
key, kmd.

Output: set of encrypted metadata keys containing the encryption of kmd, Ke.
1: procedure addMetadataKey(pk,Ke, kmd)
2: [kmd]pk ← RSA.Enc(pk, kmd)

3: index← |Ke| + 1
4: Ke ← Ke ∪ {(index, [kmd]pk)}
5: return Ke

After the server modifies the folder metadata, any synchronization will cause the files’
metadata to be encrypted with the rogue metadata key.

We briefly describe a variant attack that does not rely on the clients supporting multiple
metadata keys. The attack variant works as follows: when an E2EE folder is created,
and the client uploads the folder metadata for the first time, the adversary overwrites the
legitimate metadata key with a chosen metadata key. Every time a new file is added to

23

5. Discovered vulnerabilities

the folder, the client fetches the folder metadata, retrieves the rogue metadata key and
uses it for the encryption of the newly generated file metadata. Note that because the
overwriting happens when the folder is still empty, no file metadata is encrypted with the
legitimate metadata key.

Consequences. The key insertion attack allows the adversary to choose the metadata
key used to protect the file metadata and consequently to decrypt the file keys which are
protected by the metadata key. This in turn allows the adversary to decrypt all files in
the affected folder. Moreover, the adversary can also add files using the rogue metadata
key to encrypt the newly created metadata file.

The attack variant is weaker than the original attack because it only allows an adversary
to gain access to newly created folders. However, it was presented to show that the system
would be vulnerable even if clients supported a single metadata key for every folder.

5.2 Empty metadata keys

Threat model. The attack can be carried out by anyone with write and read access to
the data folder of the server. Any malicious service provider can therefore carry out such
attack.

Attack description. This attack exploits an implementation bug. Specifically, when the
client processes the folder metadata retrieved from the server, no error is generated if the
metadata does not contain any metadata keys. As a consequence, when the client tries
to encrypt a file metadata, the metadata key used will be {0}128. This is because when
accessing the empty map of metadata keys, a pointer to a section of memory containing
all zeros is returned and cast to a char pointer. An adversary can remove all the metadata
keys from the folder metadata and trigger this bug.

The following paragraph gives more details about the objects used in the code and their
expected behavior. The object used to store metadata keys is of type QMap [5]. The
documentation states that when a map is accessed at an index not present in the map,
a default constructed value is inserted in the map and returned [6]. The metadata keys
contained in the map are QByteArray objects, and the default value is a null byte array[4].
In essence, a null byte array is a pointer to a section of memory containing all zeros. To
exploit this bug the adversary returns the following folder metadata

Ke = {}
Fe = {(obfName = dummy, ε, index = 1, ε, ε)}

on the first time the client fetches the metadata. The malicious folder metadata consists
of an empty set of metadata keys Ke and a set of files’ metadata Fe containing the file
metadata of a dummy file. The dummy file is included to ensure that the map (origi-
nally empty) of metadata keys is accessed at index 1 during metadata decryption 11. As
explained previously, this will insert a null byte array at index zero. During metadata
encryption, the client will use this value as a key to encrypt the files’ metadata.

In conclusion, if a client receives a folder metadata with no metadata keys, all the file
metadata will be encrypted with the key {0}128.

Consequences. This attack allows the adversary to trick the client into using {0}128 as
the metadata key. Similarly to the key overwriting attack, this attack allows an adversary
to gain access to the contents of newly created folders. The adversary can use the all zeros

24

5.3. IV reuse in file update

key to decrypt files metadata and recover file keys. This in turn allows the adversary to
decrypt all the files added to the affected folder. Moreover, the adversary can also add
files and encrypt the corresponding file metadata with the all zeros key.

5.3 IV reuse in file update

Threat model. The attack can be carried out by anyone who has read access to the data
folder of the server. Any malicious service provider can therefore carry out the attack.

Attack description. As we can see from the file upload procedure 7, when uploading a file
to an E2EE folder, the IV is freshly generated only if the file is new. Consequently, when
a file is updated the same IV is reused. We note here that, according to the whitepaper,
IVs and file keys should be resampled randomly on every upload for new and modified
files. Therefore, the attack exploits an implementation error.

Files are encrypted using AES-GCM. AES-GCM is an AEAD scheme obtained combining
AES-CTR with a Carter-Wegman MAC. The following describes how an IV reuse in
AES-GCM can lead to a complete loss of confidentiality and authenticity.

Plaintext recovery. As we can see from figure 5.3, AES-GCM is similar to a one-time-pad
where the key stream used to mask the plaintext is the encryption of the counters. If a
counter is repeated under the same key, the key stream will also repeat and consequently
the XOR of the ciphertext will yield the XOR of the plaintext. Hence, an IV reusage in
GCM is equivalent to a two-time pad.

Let p1, p2 and c1, c2 be two versions of a file and their respective encryption. If the IV
(and therefore the counters) is repeated then

p1 ⊕ p2 = c1 ⊕ c2.

The loss of security should be clear, as in c1 and c2, the plaintexts were masked by a key
stream that can be considered uniformly random distributed, while, due to the IV reuse,
each plaintext is masked by another plaintext which has drastically less entropy than the
key stream. Moreover, suppose p1 is known, then recovering p2 is trivial.

The problem of recovering p1 and p2 given p1⊕p2 is well studied in the literature. In [13]
the authors show how to build a language model that can separate p1 and p2 if the
language of the underlying plaintext is known.

For a proof of concept, we considered a simplified case in which an end-to-end encrypted
text file is modified by adding or removing a single character. Let d be the deleted or
added character, and pos the position of the modification in the text. Suppose without
loss of generality that |c1| < |c2|. Note that the position of the first modified character
corresponds to the first byte in p1⊕ p2 different from 0. The following equations allow to
recover the entire plaintext from the modification onwards

p1[pos] = d

p1[i] = c1[i]⊕ c2[i]⊕ p1[i-1] ∀ i in pos, pos + 1, . . . , |c2|8.

The implemented proof of concept iterates over the printable characters and checks, using
a language detection library [26], if the recovered plaintext contains language. If the
guess for d is incorrect, with high probability the recovered plaintext will contain garbled
characters.

25

5. Discovered vulnerabilities

Figure 5.1: The authenticated encryption operation. For simplicity, a case with only a single block of additional
authenticated data (labeled Auth Data 1) and two blocks of plaintext is shown. Here Ek denotes the block
cipher encryption using the key K, multH denotes multiplication in GF(2128) by the hash key H, and incr

denotes the counter increment function [14].

Tagging key recovery. Recall that AES-GCM uses a Carter-Wegman MAC. We start by
describing the Carter-Wegman MAC used in AES-GCM and then explain the Joux’s
forbidden attack [12] which can be used to recover the tagging key if an IV is reused.

Let k, iv, A, C be respectively the AES-GCM key, the IV, the additional data and the
ciphertext obtained by xoring the plaintext with the key stream as explained above. The
additional data and the ciphertext are separately padded to a multiple of 128 bits and
combined in a single message composed of blocks Si

Si =

Ai for i = 1, . . . , m-1

Am || 0128-|Am|2 for i = m

Ci-m for i = m + 1, . . . , m + n-1

Cn || 0128-|Cn|2 for i = m + n

bits(|A|2, 64) || bits(|C|2, 64) ,

(5.1)

where m and n are the length in blocks of A and C and bits(x, y) encodes the integer x
in a bit string of length y. The Carter-Wegman MAC is computed as

T =

m+n+1∑
i=1

Si · Hm+n+1-i + J, (5.2)

where H = Ek(0
128) and J = Ek(iv || 031 || 1) and the operations are performed by

embedding all the blocks in a fixed representation of the Galois field GF(2128). The tag

26

5.3. IV reuse in file update

is computed by evaluating a polynomial with coefficient Si and constant term J at the
value H. Note that all the coefficients Si consisting of the additional data and ciphertext
blocks are known to an adversary trying to forge a valid ciphertext. Let’s now examine
how an IV reuse allows for the recovery of H and J. Consider two ciphertexts, additional
data C, A and C′, A′ obtained by encrypting two messages with AES-GCM using the same
IV iv. Let Si and S′i be the encoding of C, A and C′, A′ as shown in (5.1). The respective
tags can be computed as

T =

m+n+1∑
i=1

Si · Hm+n+1-i + J,

T′ =
m′+n′+1∑
i=1

S′i · Hm
′+n′+1-i + J.

(5.3)

Note that J = Ek(iv || 031 || 1) is the same in both equations due to the IV reuse.
Summing the two equations in (5.3) and rearranging we obtain

m+n+1∑
i=1

Si · Hm+n+1-i +
m′+n′+1∑
i=1

S′i · Hm
′+n′+1-i + (T + T′) = 0. (5.4)

The coefficients of this polynomial can be computed by an adversary from the ciphertexts,
the additional data and the tags. Equation (5.4) shows that H is a root of the constructed
polynomial. Recovering the roots of the polynomial can be done efficiently and allows
the recovery of H. Substituting H in (5.2) and solving for the constant term allows the
recovery of J. The knowledge of H and J allows an attacker to create valid tags for arbitrary
ciphertexts using equation (5.2).

Framing attack to replace or modify a file. We have seen in the previous paragraph how
an IV reuse allows the recovery of plaintext and tagging key. We now show how the
combination of the two attacks allows creating valid ciphertexts that decrypt to controlled
plaintexts. Let P be the recovered plaintext and C the corresponding ciphertext, the key
stream output used to mask the plaintext can be computed as P ⊕ C. An adversary can
now compute a ciphertext C′ that decrypts to a desired plaintext P′ as

C′ = C⊕ P⊕ P′. (5.5)

Since the tagging key can also be recovered, the attacker can tag the new C′ creating a
valid ciphertext that would decrypt correctly on the client.

Consequences. The attacks described in this section undermine the confidentiality and
the authenticity of the end-to-end encrypted files. As shown previously, with some as-
sumption on the underlying plaintext, full plaintext recovery is possible. Note that the
assumption made can be relaxed by adopting more complex techniques. For example,
in [13] the authors show that knowing the language of the underlying plaintext is suffi-
cient to recover the plaintexts. The authors use a language model to map string of texts
to the probability of that string being part of the text. The two plaintexts are recovered
iteratively extending the recovered plaintext with letters or words that maximize the prob-
ability of the plaintext while also respecting the constraint that the xor of the plaintexts
must equal the xor of the ciphertext. These more sophisticated techniques were not ex-
plored here because recovering the XOR of two plaintexts should already show the gravity
of reusing an IV in AES-GCM. A malicious server can use the recovered key stream along
with the tagging key to compute valid ciphertext that decrypts to a known controlled
plaintext. This allows a malicious service provider to modify the files present in the E2EE
folder.

27

Chapter 6

Mitigation of Attacks on Nextcloud

This section aims at providing some first suggestions on how the presented vulnerabilities
can be mitigated.

Metadata key insertion. As mentioned in the attack summary, the attack exploits a
fundamental flaw in the cryptographic design of the E2EE module, namely that metadata
keys are not authenticated.

Metadata keys must be authenticated, or else a malicious server can pick the metadata
key used by the client, effectively gaining full access to the end-to-end folder. The current
design encrypts metadata keys with RSA-OAEP, which provides integrity and confidential-
ity, but it does not provide authenticity. From our understanding, the use of asymmetric
cryptography was introduced to allow a folder sharing feature. Since this feature has not
yet been implemented, a simple mitigation is to drop the sharing feature and prevent the
presented attack. To maintain the sharing functionality described in the whitepaper, a
major revision of the E2EE module would be required.

Simple mitigation. If the sharing feature is removed, asymmetric encryption can be avoided
and metadata keys can be protected using symmetric encryption schemes that provide
confidentiality and authenticity. For example, an additional symmetric key, the metadata
encryption key (MEK) is derived from the mnemonic using a secure key derivation func-
tion and an appropriate context string. The MEK is then used to encrypt the metadata
keys with an AEAD scheme such as AES-GCM. The nonce used for the AEAD encryption
should be sampled randomly before every encryption to avoid reuse. An AEAD scheme
provides both confidentiality and integrity, preventing a malicious server from learning the
metadata keys and from tampering with those keys. Since only the holder of the mnemonic
can derive the appropriate MEK and use it to create properly encrypted metadata keys,
we also gain an assurance concerning the authenticity of those keys. To introduce this
change, the metadata encryption would need to be modified to always encrypt metadata
keys with the chosen AEAD scheme. For all existing E2EE folders, a full re-encryption of
the files under new file keys and metadata keys is necessary to ensure that no key material
which might have leaked (due to the discovered vulnerability) is used to secure metadata
or files. The modified key hierarchy is shown in figure 6.1.

We note that when implementing changes that are backward compatible, it is important
to ensure that downgrade attacks are not possible. A malicious server trying to downgrade
the patched version of E2EE to the original vulnerable version could always return the
metadata folder with the metadata keys encrypted with RSA-OAEP. As long as clients
always encrypt the metadata using symmetric encryption, the server would not be able to

29

6. Mitigation of Attacks on Nextcloud

Figure 6.1: Nextcloud’s key hierarchy if the simple mitigation is applied. The MEK is added in parallel to the
encryptionKey and the RSA master key.

mnemonic

encryptionKey

RSA master key

metadata key

file key

file

MEK

1:1

1:1

1:N

1:N

1:1

1:1

1:N

Key derivation

RSA-OAEP Encryption

GCM Encryption

MEK Additional Metadata Encryption Key

1:1 one to one relationship

1:N one to many relationship

get access to the newly added data. Each client can save a flag to memorize that a folder
has migrated to the new implementation. A client receiving the legacy folder metadata
after migrating to the patched one should show an error and stop.

This mitigation may seem like a reasonable and simple patch, but removes the folder
sharing capability. If folder sharing is a feature that Nextcloud wants to introduce at
some point in the future, this first mitigation would have to be discarded in favor of a
major redesign of the E2EE system.

Major modification. Currently, the E2EE design shows a fundamental flaw that endangers
users’ data and prevents a secure implementation of the sharing feature. We believe that
a redesign of the current E2EE module is necessary before moving forward with the
implementation.

Following is a plausible modification to mitigate the presented vulnerability and maintain
the sharing capability. A signcryption scheme can be used to protect metadata keys. The
confidentiality and authenticity provided by a secure signcryption scheme ensure that a
malicious server cannot recover the metadata key, nor modify it. Each user with access
to a shared folder should check who generated the metadata key and act accordingly.

Empty metadata keys. This vulnerability relies on the fact that the map used by the
client to store metadata keys allocates a default metadata key of all zeros if accessed at
an index that was not already in the map. The attack can be easily prevented. Before ac-
cessing the map, a check should verify that the map contains an item at the specific index.
More in general, when developing end-to-end encryption systems, the inputs provided by
the server should not be trusted and therefore always checked. If the client treated the
folder metadata received by the server as an untrusted input, it would check that at least
one metadata key is present and abort the operation otherwise.

IV reuse in file update. The attack that exploits the IV reuse can be easily prevented by
ALWAYS randomly sampling the IV used for file encryption, for both new and modified
files as suggested in the whitepaper.

30

Chapter 7

Suggestions

This section proposes three improvements to Nextcloud’s cryptographic design. In partic-
ular, while no attacks were found against the authentication process, a simpler and more
efficient approach would achieve the same properties as the current one. A minor change
to the E2EE setup algorithm is proposed to provide authentication to the client’s public
key. Finally, after briefly presenting the sharing feature described in the whitepaper, we
point out an issue with the current design.

7.1 Improvements to authentication

The authentication process used by Nextcloud was described in section 4.1. From Nextcloud’s
website [21] and their security whitepaper [17], the following is required from the authen-
tication procedure:

• A snapshot adversary with access to a snapshot of the server storage and database
can only recover users’ passwords by brute forcing them one at the time.

• Users can revoke access on a per-client basis from the web.

• All user’s tokens must be invalidated in case the user’s password is renewed.

A simpler and more efficient way to handle tokens is described in Figure 7.1. The pro-
cedures show a simplified way of creating and validating token that do not require the
complicated and costly encryption and decryption mechanism used in 4.1. The table
oc authtoken, used to store the tokens should be modified to accommodate for the dif-
ferent fields that need to be stored. As in the current implementation, the server stores
for each user the hash of its password in the table oc users. Furthermore, all tokens
are associated with a client identified cid which consists of the user identifier uid and a
client name picked by the client based on the host machine it is running on. The proposed
modification satisfies the requirements for the authentication procedure:

• The hashed tokens would not help a snapshot adversary to recover users’ password.
In fact, the stored tokenHash only depends on the password hash and on the token.
The former is already available to a snapshot adversary in the table oc users and is
derived using memory hard hash functions. The latter is a high entropy value which
is not vulnerable to dictionary attack.

• Per token revocation would not change from the original version.

• If a password is modified, so will the relative hash and all the tokens would become
invalid.

31

7. Suggestions

Figure 7.1: Functions to create and verify tokens.

1: procedure createToken(cid)
2: token←$ {0, 1}128
3: hashPwd← db.get(cid, oc users)

4: hashToken← new SHA512(token || hashPwd)
5: db.put(cid, hashToken, oc authtoken)

6: return token

1: procedure verifyToken(token, cid)
2: hashPwd← db.get(cid, oc users)

3: storeHashToken← db.get(cid, oc authtoken)

4: if storeHashToken = ⊥ then
5: return ⊥
6: hashToken← new SHA512(token || hashPwd)
7: return hashToken = storeHashToken

The proposed authentication avoids asymmetric cryptography and greatly simplifies the
creation and verification of the tokens. Moreover, the storage required per token on the
server is reduced from a 2048-bit RSA key, to the output of a hash function. Finally, there
is no need to use a password-hashing function because tokens have high entropy, and they
are not vulnerable to dictionary attacks.

7.2 RSA master key verification

Section 4.2 describes the algorithms used by Nextcloud in the E2EE module. When a client
fails to retrieve its public and private key from the keychain, as described in Algorithm 2,
it fetches them from the server. While the secret key sk is encrypted with AES-128-GCM
under a key derived from the user’s mnemonic, the public key is not integrity-protected.
After decrypting the private key with the mnemonic, the client validates the key pair by
executing the check in Algorithm 10.

Algorithm 10 User key pair verification

Input: the user’s public key, pk retrieved from the server; user’s secret key, sk.
Output: boolean indicating the validity of the key pair pk, sk.

1: procedure verify(pk)
2: (e, N)← pk

3: (d, Nsk)← sk

4: r←$ {0, 1}512
5: g←$ OAEP.Encode(r)

6: c← ge mod N

7: g′ ← cd mod Nsk
8: r′ ← OAEP.Decode(g′)
9: return r′ == r

The goal of the verify procedure is to ensure that the public key actually corresponds to
the authenticated private key. This procedure relies on a non-standard property of RSA-
OAEP, namely it should be hard to come up with a public key such that the decryption
of an encrypted random message succeeds.

32

7.3. Folder sharing

As shown in the appendix A.1, a slight modification to the verify would have made
the system vulnerable to a key recovery attack. The intuition behind the attack is that,
if the public key is not integrity-protected, an adversary could learn information about
the private key by observing whether the verification fails or not. While key recovery
attack proposed in A.1 does NOT apply to Nextcloud’s specific instance, the integrity
of the public key should rely on standard properties of the used primitives rather than
non-standard ones which may not hold in general or break in subtle ways.

Following is a natural way of authenticating the public key that can substitute the current
verification procedure. The client’s public key should be included as additional data in
the GCM encryption of the secret key. The authenticity of the public key would then
rely on the integrity property provided by GCM. The client would be able to authenticate
the public key because the key used to encrypt the client’s RSA key is derived from the
mnemonic and only known to the client.

7.3 Folder sharing

File sharing has not yet been implemented and the whitepaper only provides a high-level
description of it. We give a summary of the sharing section of the whitepaper and later
discuss the main issues.

The current design uses the server as the root of trust of a PKI that binds users’ with their
public keys. When user A wants to share a folder with user B, it fetches the certificate of
user B from the server, validates it using the server’s public key, and encrypts the latest
metadata key with user’s B public key. The whitepaper also describes how user A could
remove user B from the shared folder. User A should generate a new metadata key and
encrypt it with the public key of all the users who have access to the folder except user
B. Unfortunately, we cannot give any more details because the whitepaper itself is rather
vague.

The PKI approach with the server as a root of trust has limited advantages in an ad-
versarial setting where the server can be malicious. When user A asks the server for the
public key of user B, it can generate a certificate binding user B to a chosen public key
(corresponding to a private key known to the server) and return it to user A. As a re-
sult, the client of user A will encrypt the metadata key to the server and not to user B.
While the key distribution can still happen through the server, users should compare the
fingerprint of their public keys out-of-band to bind a public key with a specific user.

33

Chapter 8

Conclusions

This research analyzed the end-to-end encryption module developed by Nextcloud. We
provided a detailed description of the algorithms used to authenticate users and to secure
the E2EE data. We found three vulnerabilities all leading to devastating attacks that
completely shatter the confidentiality and integrity of E2EE files. For each vulnerability,
we proposed mitigations that can be implemented to prevent our attacks. These results
will help Nextcloud improve the security of their E2EE system, ultimately increasing the
security of millions of users.

Helping Nextcloud is a worthwhile achievement. However, we believe the value of our work
lies in the lessons that can be extrapolated from the found vulnerabilities. Following are
three high-level takeaways that may be used proactively to prevent similar vulnerabilities
in future designs and implementations.

1. Good primitives don’t imply secure systems. While the mantra “don’t roll
your own crypto” starts to be widely accepted, we see more and more systems that
use good algorithms and standard highly audited implementations. This may lead
to a false sense of security if the chosen primitives are not fit for the requirements
of the application or if they are misused. For example, the presented key insertion
attack exploits the mismatch between what the designer wanted from the primitive:
authentication and confidentiality, and what the primitive offered: integrity and
confidentiality. Designers must understand the security guarantees offered by a
primitive. Similarly, developers must know under what assumption the security
guarantees hold. This would have prevented the IV reuse in file encryption.

2. The threat model is as important for the designers as for the developers.
While the empty metadata key attack relies on an odd behavior of the object used to
store metadata keys, the root cause of this vulnerability is deeper. When developing
end-to-end encryption applications, the server inputs should not be trusted by the
client. Had the server inputs been sanitized, the presented attack would not have
been possible. In a threat model where the server is adversarial, developers must
distrust all the server actions. This mindset is especially difficult because it requires
developers to distrust code that they may have developed themselves.

3. Design→Release→Break→Patch should not be an acceptable model. Firstly,
systems created with this reactive model, if trusted, may increase the perceived level
of security and endanger users’ privacy. Systems should be assumed to be insecure
unless proven otherwise. A fully formal model and security reduction would need to
be produced, specifying the protocol in full, along with the adversarial model and
the computational assumptions under which the proposed protocol is secure. While
this is a considerable task, the history of cryptography “in the wild” has shown that

35

8. Conclusions

assurances below this level do not suffice. Secondly, rolling out bad design choices is
complicated and often leads to unsatisfying patches. This process is especially hard
in protocols, such as E2EE cloud storage, where the involved parties maintain state.

Future Work. The proposed mitigations, especially the one mitigating the key insertion
attack, were ideas on how to improve the current design of Nextcloud. An interesting and
useful continuation of our work would try to prove that the patched system does indeed
satisfy the required security guarantees.

Looking at the current internet, the cryptographic community has managed to prove
and standardize secure protocols for client-server communication (TLS1.3 [10]) and E2EE
messaging (Signal [3]). The ultimate goal should be to reach a similar state for E2EE
cloud storage. The path toward a secure protocol for E2EE cloud storage is long but
necessary. Our work on Nextcloud and Haller’s[11] on Mega showed that, without a
formal security model and a standardized protocol, well-established companies struggle to
provide users with the necessary privacy guarantees. In conclusion, future work should go
in the direction of formalizing a security model and designing a secure protocol for E2EE
cloud storage. This is an ambitious and complicated work, but the result would greatly
improve the current level of users’ privacy.

36

Appendix A

Appendix

A.1 Key recovery attack

This attack was inspired by the procedure used in Nextcloud to verify that a private key
corresponds to a particular public key. It is important to notice that the developed attack
does NOT apply to Nextcloud because the RSA decryption process gets the modulus from
the private key which is integrity-protected.

Attack scenario. While developing the attack we considered the scenario in which a
malicious service provider tries to learn the secret key of one of its clients. The secret key
is stored encrypted and integrity-protected on the server, while the public key is stored in
plaintext. The adversary can interact with the client providing fake public keys and learn
if the verification process succeeds. We model this with the oracle verify in Algorithm 11.
For reference, the verify procedure used by Nextcloud is also reported on the right under
the name verifyNextcloud. The main difference, marked in gray, is that the modulus
used in the decryption in line 8 comes from the secret key sk. This oracle can arise in

Algorithm 11 User key pair verification

On the left, the oracle considered for the attack. On the right, the verify procedure
used by Nextcloud.
Input: the user’s public key, pk retrieved from the server; user’s secret key, sk.
Output: boolean indicating the validity of the key pair pk, sk.

1: procedure verify(pk)
2: // Oracle necessary for the attack
3: (e, N)← pk

4: d← sk

5: r←$ {0, 1}512
6: g←$ OAEP.Encode(r)

7: c← ge mod N

8: g′ ← cd mod N

9: r′ ← OAEP.Decode(g′)
10: return r′ == r

1: procedure verifyNextcloud(pk)
2: // Nextcloud verify procedure
3: (e, N)← pk

4: (d, Nsk)← sk

5: r←$ {0, 1}512
6: g←$ OAEP.Encode(r)

7: c← ge mod N

8: g′ ← cd mod Nsk

9: r′ ← OAEP.Decode(g′)
10: return r′ == r

a client-server setting, in which the client fetches its public key from the server and the
public key is not integrity-protected.

37

A. Appendix

Preliminaries. In the rest of the attack description we will use two well-known functions
in number theory: the Euler’s totient function ϕ(N) and the Carmichael function λ(N).
The former counts the positive integers up to N coprime to N. The latter outputs the
smallest positive integer m such that, for all elements a ∈ Z∗

N, a
m ≡ 1 mod (N). In other

words, the Carmichael function is the least common multiple of the orders of all elements
in Z∗

N. Let N =
∏k

i=1 p
vi
i where p1 < p2 < . . . < pk are primes and v1, v2, . . . , vk are

positive integers. Then λ(N) is the least common multiple of the λ of each of its prime
power factors

λ(N) = lcm(λ(pv11),λ(pv22), . . . ,λ(pvkk)).

By Carmichael’s theorem, the Carmichael function of a prime power can be computed as

λ(pv) =

{
1
2ϕ(p

v) if p = 2 ∧ v ≥ 3

ϕ(pv) otherwise.

Note that in a typical RSA key generation, where the modulus N is a product of two large
primes, the Carmichael and the totient function coincide. For an RSA modulus N, setting
e and d such that ed ≡ 1 mod λ(N) is sufficient to ensure RSA correctness.

Attack description. The attack describes an interesting way of breaking RSA-OAEP
encryption if the attacker can modify the public key pk used by a client and has access to
the oracle shown in 11.

To introduce the idea behind this attack, let’s take a step back from the typical RSA
scheme where the modulus N is a product of two large primes p and q and let’s consider a
generic triplet (e′, d, N′). For this triplet, RSA correctness holds if e′d ≡ 1 mod λ(N′).
That is, for all possible g ∈ ZN′ , g

ed ≡ g mod N′. During RSA key generation, the value
of e′ is typically a fixed value and the value d is derived as the inverse modulo λ(N′) of e′.
The idea behind our attack is to reverse this perspective and consider the user’s private
exponent d as fixed and look for the value e′ for which correctness holds. If we can find
this e′ value, then we know that e′d ≡ 1 mod λ(N′).

On a high level, the attack proceeds as follows: the adversary overwrites the user’s pk =

(e, N) with a new pk′ = (e′, N′) and sends this to the client. The client will try to
verify the authenticity of pk′ using Algorithm 11. If the triplet (e′, d, N′) satisfies RSA
correctness, then the verification succeeds, despite pk ̸= pk′. From the correct verification
of the fake pk′, the adversary learns that e′d ≡ 1 mod λ(N′) since this is the necessary
condition for RSA correctness to hold. Note that, if RSA correctness does not hold for
the triplet (e′, d, N′), the OAEP decoding step will fail with high probability.

The following paragraphs describe:

• what the adversary learns when a fake pk′ verifies correctly

• how to construct one pk′ to minimize the number of oracle queries

• how to leverage a valid pk′ to efficiently recover the full private key

• how to deal with corner cases

Information leaked by a successful verify query. To understand what information is leaked
by the oracle, we study under which condition a public key verifies correctly. All the
variables used in this paragraph come from the oracle procedure verify. In order for a
public key (e′, N′) to verify correctly, the decrypted r′ must be equal to r. This can
happen in two cases:

• case 1: g′ = g

38

A.1. Key recovery attack

• case 2: g′ ̸= g ∧ OAEP.Decode(g) = OAEP.Decode(g′).

From lines 7 to 8 in the verify oracle, we can see that

g′ = gde mod N. (A.1)

For case 1 to be true

de = 1 + k · ord(g, N) (A.2)

has to hold. In fact, substituting (A.2) in equation (A.1) we obtain

g′ ≡ g1+k·ord(g,N) ≡ g · gk·ord(g,N) ≡ g mod N. (A.3)

By definition, any element raised to a multiple of its order is equal to the identity. More-
over, the probability of case 2 being true is extremely low. Recall that the proof for
RSA-OAEP IND-CCA security is in the random oracle model. If we consider the mask
generation function as a random oracle, the probability of a g′ ̸= g verifying correctly is
extremely low.

According to the RSA-OAEP standard [9], the length of the encoding g (and g′) is equal
to the size of the modulus N′. If we consider the output of the decoding of g′ uniformly
random, the probability of g′ ̸= g decoding to r is

P[g′ ̸= g ∧ OAEP.Decode(g) = OAEP.Decode(g′)] =
2|seed|2

2|N
′|2

, (A.4)

where seed is the random value used in the OAEP-Encode step shown in picture A.1.

00 Seed HASH(P) 00..00 01 r

MGF

MGF

00 masked
seed masked DB

 DB

g

Figure A.1: Encoding step of RSA-OAEP. P is an octet string containing the encoding parameters.

Since we will use N′ of length |N′|2 ≥ 1226 and |seed|2 = 256, the probability of case 2
being true is lower or equal to 2-1194. Consequently, if the verify oracle returns true,
equation (A.2) holds with high probability.

How to construct pk′ to minimize oracle queries. Finding a pair (e′, N′) that verifies
correctly and which minimizes the number of pairs which need to be tested (i.e. oracle
queries) before verification succeeds is difficult for two main reasons:

1. given a modulus N′, the set of candidate values for e′ is Z∗
λ(N′)

2. N′ must be at least 1226 bits long for OAEP-Encode to succeed.

An adversary can find the e′ value for which (e′, d, N′) is a valid RSA triplet by testing
all possible public keys (e′, N′) with e′ ∈ Z∗

λ(N′) using the verify oracle. This implies

39

A. Appendix

that minimizing the size of Z∗
λ(N′) is crucial for minimizing the number of oracle queries.

Finding an N′ that satisfies the length constraint while keeping λ(N′) small is not trivial.
We provide a heuristic analysis of this problem and one approximated solution.

Let s1 < s2 < . . . < sk be prime numbers and m1, m2, . . . < mk positive integers. The
following sets

S := {(s1, m1), (s2, m2), . . . , (sk, mk)} (A.5)

Ps,m := { si | 0 ≤ i ≤ m } (A.6)

P :=
∏

(s,m)∈S
Ps,m (A.7)

C := {
k∏

i=1

xi | (x1, x2, . . . , xk) ∈ P } (A.8)

will be used in the analysis. The product of sets in (A.7) indicates the k-ary Cartesian
product of all the sets Ps,m, where k is the size of S. Note that given a set of small primes
and maximal exponents S, all the other sets are then fixed. C is a set of candidates that
will be used to construct a modulus N′ as described in equation (A.9).

N′ =
∏
c∈C

(c + 1)χ(c+1) (A.9)

In the equation the indicator function

χ(y) =

{
1 y is prime

0 otherwise
(A.10)

is used to filter for values that are prime. Since the constructed N′ is of the form
∏

i pi,
for pi prime, equation (A.11) holds by construction.

λ(N′) = lcmi(pi-1)

= lcmi(ci)

=
∏

(s,m)∈S
sm

(A.11)

Note how the obtained λ only depends on the original set S. Moreover, with this value of λ,
the constructed N′ is the largest achievable modulus. In fact, all the possible combinations
of the factors of λ were used to construct N′. In order to increase the modulus one would
have to multiply λ by a new factor.

To build some intuition on how to construct an optimal set S, let’s examine how the size
of the set of candidates C changes if we go from a set S0 to

• S1 = (S0 \ {(si, mi)}) ∪ {(si, mi + 1)}

• S2 = S0 ∪ {(p, 1)}.

In the first case, the maximal exponent for one of the primes in S0 is increased by one. In
the second case, a new prime p is included in the set. It is easy to see that

|C1| =|C0| +
|C0|
mi + 1

|C2| =2|C0|
(A.12)

40

A.1. Key recovery attack

are the sizes of the sets of candidates generated by S1 and S2. If we assume the elements
in the candidate sets to be randomly distributed we can compute the expected size of
N′. The indicator function χ(y) can be seen as a Bernoulli distributed random variable
χ(y) ∼ Ber(1

0.69 log2(y)
). The probability of χ(y) evaluating to 1 comes from the prime

number theorem (PNT), which describes the asymptotic distribution of the primes among
positive integers. The PNT formalizes the intuitive idea that primes become less common
as they grow larger.

E[|N′|2] = E[log2(
|C|∏
i=1

(ci + 1)
χ(ci+1))]

=

|C|∑
i=1

E[χ(ci + 1) log2(ci + 1)]

=

|C|∑
i=1

1

0.69 log2(ci + 1)
log2(ci + 1)

= 1.44|C|

(A.13)

Equations (A.13) and (A.12) show that, on average, adding a prime number to S increases
the size of N′ more than increasing the maximal exponent of an already used prime.
However, while increasing the exponent of an existing prime si has a fixed cost on the
total lcm of |s|2, the cost of adding a prime number p increases with |p|2. Moreover, the
increase in the E[|N′|2] when adding a prime does not depend on the prime itself. In
conclusion, in order to construct a sufficiently large modulus N′ with λ(N′) as small as
possible, smaller primes should be preferred to bigger ones as they keep λ(N′) smaller
while having the same effect on |N′|2.

Approximated solution. In the following paragraph an approximate solution is proposed
and, based on the previous analysis, some arguments are given to why this approximated
solution should be close to the optimal one. As a reference, an exhaustive search over the
sets

Smin search = {(2, m1), (3, m2), (5, m3), (7, m4), (11, m5), (13, m6),
(17, m7), (19, m8), (23, m9), (29, m10), (31, m11)}

(A.14)

with possible maximal exponents 0 ≤ mi ≤ ceil(logsi(256)) finds a valid N′ with
|λ(N′)|2 = 22 and

S∗ = {(2, 4), (3, 2), (5, 2), (7, 1), (11, 1), (13, 1), (17, 0),
(19, 0), (23, 0), (29, 0), (31, 0)}.

(A.15)

Limiting the powers of the small prime was necessary for the search to finish in a reasonable
amount of time. While there are no profound reasons to set the bound to 256, the following
paragraph shows that this limit is large enough to argue that any other candidate solution
outside the considered search space would not be better than the found one. Regardless
of the search being limited to the maximal exponents mi, S

∗ should be close to the best
solution. Any set S∼ leading to a smaller λ(N′) containing the same primes but a maximal
exponent greater than the ones considered in the search would have to at least set to zero
the maximal exponent of a previously used prime leading to a smaller set of candidates
and consequently, on average, a smaller N′. One might also consider adding new primes
to S∗. Again, any prime greater than 31 would require removing a factor f of size |f|2 = 6

41

A. Appendix

from the powers in S∗ to have a significant reduction in the bit length of λ(N′). This
could only be achieved by setting at least one maximal exponent to 0. Consequently, the
candidate set would be smaller (same number of primes but with lower exponents) and
on average result in a smaller N′.

While the previous reasoning is not a proof, it should be a convincing argumentation that
the found solution is a good approximation of the optimal one.

Full key recovery. The full key recovery consists of two phases: in the first phase, the
adversary sets to N1 = N′ generated previously (A.15) and for all e′ ∈ Z∗

λ(N1)
it tests

verify(e′, N1) until it finds the value e′ = e1 that verifies correctly and therefore satisfies
equation

e1d ≡ 1 mod λ(N1). (A.16)

After this first phase in which the adversary finds the correct value e1 brute-forcing all
the possible values, the adversary starts adaptively querying the oracle with a strategy
that leaks d bit by bit with few oracle queries per bit.

This paragraph describes how the knowledge of e1, N1 can be leveraged to extend our
knowledge of d by one bit with few oracle queries. The same strategy can be iterated until
all bits of d are leaked. Suppose N1 = n12

m, with gcd(n1, 2) = 1. Note that the N1 which
we used in the first phase of the attack satisfies this assumption with m = 4. The following
description is general for any value of m, because this strategy will be iteratively repeated
with increasing values of m to leak d bit by bit.

We have that

λ(2m) =

1 if m = 1

2 if m = 2

2m-2 for all m > 2.

(A.17)

Moreover, let dm = d mod (λ(2m)) be the value of d truncated to the first log2(λ(2
m))

bits.

From (A.16) we know that

e1d ≡ 1 mod λ(n1) (A.18)

e1d ≡ 1 mod λ(2m). (A.19)

The idea is now to extend our knowledge of d looking for a pair e2, N2, with N2 = 2N1 =

2m+1n1 that satisfies
e2d ≡ 1 mod λ(N2). (A.20)

Note that λ(N1) | λ(N2) and therefore

e2 ≡ e1 mod λ(N1). (A.21)

For e2, N2 to satisfy equation (A.20), the following two equations

e2d ≡ 1 mod λ(n1)

e2d ≡ 1 mod λ(2m+1)
(A.22)

must hold. Note that knowing an e2 that satisfies the second equation, is equivalent to
knowing dm+1.

We know that e1 is a solution for the first equation. Moreover, by equation (A.19) we
know that dm = e-11 mod λ(2m).

42

A.1. Key recovery attack

There are only two possible values for dm+1, namely

d(0)m+1 = dm

d(1)m+1 = dm + λ(2
m).

This should be intuitive as we are basically guessing one additional bit of d. We can
rewrite the system of equations (A.22) as

e2 ≡ e1 mod λ(n1)

e2 ≡ (d(i)m+1)
-1 mod λ(2m+1).

(A.23)

Solving it for i = 0 and i = 1 returns two candidates e2 values e(0)2 , e(1)2 . Testing

e(0)2 , N2, and e(1)2 , N2, against the verify oracle will retrieve the unique e2 that satisfies
equation (A.20) and consequently the correct guess for dm+1.

Using the oracle to eliminate the incorrect e2 value requires some attention. In particular,
as shown in the appendix A.2, RSA correctness fails for inputs g such that 2 | gcd(g, N2)
because our modulus contains powers of two. This means that the verify oracle will fail
with probability 0.5 if the tested e2 satisfies equation (A.20). Moreover, due to (A.21),
decryption would work for all the odd encodings g such that ord(g, 2m+1) < λ(2m+1).
The incorrect candidate would however fail the verify oracle if ord(g, 2m+1) = λ(2m+1).
These three observation show that a single oracle query is not sufficient to distinguish the
correct guess from the wrong one because in both cases the oracle can succeed or fail.
However, the success probability of the verify oracle is different for the two candidates,
thus with enough oracle attempts we can confidently distinguish the correct e2 from the
wrong one. The details of how this filtering works are shown in the appendix A.3.

Note that this process allows us to increase by one bit our knowledge of d.

Repeating this process multiple times allows us to retrieve dt = d mod 2t for increasingly
higher values of t. Once enough bits of d are known (roughly |d|2/4), a standard lattice
attack described in [15] section 4.2.9 can be used to recover the full private key.

The whole derivation assumed knowledge of a e1, N1 that verifies correctly. In prac-
tice, we use N1 = N′ generated previously (A.15) and for all e′ ∈ Z∗

λ(N1)
we would try

verify(e′, N1). With the particular choice of N1 this would require at most ϕ(λ(N1)) =

691200 oracle queries.

To sum up, after finding e1, N1 that verifies correctly with a cost of approximately 220

oracle queries, we can start leaking d bit by bit.

Corner cases. The described attack fails if gcd(d,λ(N1)) ̸= 1 and therefore equation (A.16)
has no solution. By construction the prime factors of λ(N1) are 2, 3, 5, 7, 11, 13.
Moreover, let N be the modulus of the legitimate public key. ϕ(N) is even and therefore
the private key d is necessarily odd, otherwise it would not have an inverse. Let Ei be the
event that the ith factor divides d,

P[gcd(d,λ(N1)) = 1] = 1-P[∪iEi] ∼ 0.3.

The proposed attack can be adapted to work even if gcd(d,λ(N1)) ̸= 1. In particular,
if after attempting all the possible values e1 once, none of them resulted in a successful
verify query we are certain that d and λ(N1) have a common prime. We can create a new

N
′
1 substituting one of the prime factors of λ(N1) for a bigger one. Repeating the process

until a verify query succeeds ensures the attack to be successful for all private keys.

43

A. Appendix

Attack complexity. As we have seen, after the first successful verify oracle query, it is
possible to leak bits of d using only few oracle queries. The proof of concept showed that,
on average, less than of 65 oracle queries are sufficient to determine an additional bit of
d with 0.99999 confidence. Such confidence ensures that the probability of recovering
512 bits correctly is 0.99. An RSA key of 2048 bits can be fully recovered with a lattice
attack given the knowledge of 512 bits of d. We refer to section 4.2.9 in [15] for the details
of the lattice attack. The most expensive part of the attack is the first phase. The cost
of this phase is proportional to the size of λ(N1). We managed to create a valid N1 with
λ(N1) = 243252 7 11 13. Since, in the worst case, all the values in Z∗

λ(N1)
have to be

verified, the attack will require ϕ(λ(N1)) oracle queries for the first successful verify
and 60 queries per bit of d leaked. The total attack cost would be 220. This is the cost
for the basic attack that does not handle the case in which λ(N1) and d are not coprime.
As previously discussed, λ(N1) and d are coprime with probability ≈ 1/3. Therefore,
the basic attack successfully recovers one in three users’ private keys. If λ(N1) and d are
not coprime, the attack becomes more complicated and costly. Essentially, the first phase
would have to be repeated with different values N1 constructed by iteratively substituting
prime factors of λ(N1) for bigger primes until all the one in common with d are removed.

A.2 RSA encryption with multiple primes in the modulus

The key recovery attack described in section A.1 works by providing the client with fake
public keys pk = (e, N) and observing the result of the verify oracle 1. This section first
shows that RSA correctness holds for a generic square free modulus which may contain
more than only two primes. In the end we show that if the RSA modulus is divisible by
the power of a prime (non-square free), then RSA correctness fails for some inputs.

Let’s start considering a modulus N =
∏k

i=1 pi, with k > 2 and pi primes. This is not a
standard RSA modulus, and therefore we show that correctness of RSA

med ≡ m mod N (A.24)

still holds for any message m < N.

By the Chinese remainder theorem

med ≡ m mod N ⇐⇒
{
med ≡ m mod pi ∀i ∈ 1..k . (A.25)

In the following we will examine a single congruence equation at the time and therefore
the subscript i is dropped for ease of notation. For each congruence equation, two cases
can arise

• gcd (m, p) = 1

• gcd (m, p) = p.

We assume d to be computed as in the normal RSA key generation, hence ed ≡ 1

mod ϕ(N) and consequently ed ≡ 1 mod ϕ(p). In the first case the congruence equation
in (A.25) can be rewritten as

med ≡ m mod p ⇐⇒ mtϕ(p)+1 ≡ m mod p ⇐⇒ m ≡ m mod p (A.26)

and always holds. The last iff comes from the fact that an element raised to a multiple of
its order is equivalent to the neutral element. Let’s now consider the second case. Since
gcd (m, p) = p, m = rp for some integer r. The congruence equation in (A.25) can be

44

A.3. Oracle queries to filter candidate public keys

rewritten as
med ≡ m mod p ⇐⇒

(rp)ed ≡ rp mod p ⇐⇒
redped-1 ≡ r mod 1 ⇐⇒

0 ≡ 0 mod 1

(A.27)

and again always holds. We have shown that each congruence equation in Equation A.25
holds and therefore RSA correctness is preserved.

We will now examine what happens if N is non-square free. This case is relevant in the
second phase of the key recovery attack. During this phase the private key of the user is
leaked bit by bit. This is done using moduli that contain increasing powers of 2. Suppose
N =

∏k
i=1 pi · pz. All the congruence equation modulo pi will hold for the same reasoning

as before. Let’s now examine the congruence equation

med ≡ m mod pz. (A.28)

If gcd (m, pz) = 1, or gcd (m, pz) = pz we fall back in the two previously examined cases
and correctness holds. We will now show that if gcd (m, pz) = pz for some z < z, RSA
correctness will fail. Let m = rpz for some integer r. Rewriting equation (A.28), we obtain

(rpz)ed ≡ rpz mod pz ⇐⇒

redpz(ed-1) ≡ r mod pz-z ⇐⇒

red-1pz(ed-1) ≡ 1 mod pz-z ⇐⇒
red-1pzed-zpz-z ≡ 1 mod pz-z

(A.29)

In the derivation, we used the fact that gcd (r, pz) = 1 and therefore r has an inverse.
Moreover, in the last line we made explicit the fact that the term on the left is a multiple
of pz-z, and therefore it is equivalent to zero. Thus, the last congruence does not hold. In
conclusion, with non-square free modulus, for all the messages m such that gcd (m, pz) = pz

for some z < z, RSA correctness fails.

A.3 Oracle queries to filter candidate public keys

This section complements the enhanced key recovery attack A.1. We will briefly recap the
setting used in the key recovery attack and then show how we can use the verify oracle
to filter out incorrect guesses. In particular let N1, e1, with N1 = 2m+2n1, be a public key
that verifies correctly and let N2 = 2N1. Knowing that

e1d ≡ 1 mod λ(n1)

e1d ≡ 1 mod 2m,
(A.30)

The goal is to find an e2 such that

e2d ≡ 1 mod λ(n1) (A.31)

e2d ≡ 1 mod 2m+1. (A.32)

Intuitively, e2 ≡ e1 mod λ(n1) and e2 ≡ e1 mod 2m. For example, if (A.32) holds, it
also holds for powers of 2 smaller than 2m+1, and we already know that e1 satisfies the
equation mod 2m.

As shown in the key recovery attack, there are two candidate values e(0)2 , e(1)2 .

45

A. Appendix

Proposition A.1 If e2 is such that

e2d ≡ 1 mod (λ(N2)) (A.33)

holds, then
P[verify(N2, e2)] = 0.5 (A.34)

Proof Let g be the encoding of the randomly sampled value in verify. Appendix A.2
shows that, if 2 | g RSA correctness fails and so will the verify oracle. For all the other
g values, hypothesis (A.33) ensures that decryption will succeed and so will the verify
oracle. In conclusion, half of the g values will result in a failing query. □

Lemma A.2 For all k > 2, the number of elements of max order in Z∗
2k

is 2k-3.

Proof Note that for all k > 2, Z∗
2k

is isomorphic to the direct product of two cyclic

groups of order 2 and 2k-2. Moreover, the number of elements of max order in a cyclic
group of order t is ϕ(t). Using these properties we conclude that the number of elements
in Z∗

2k
is

ϕ(2k-2) = 2k-3 (A.35)

□

Proposition A.3 If e2 is such that

e2d ≡ 1 mod (λ(N1)), (A.36)

and
e2d ̸≡ 1 mod (λ(N2)), (A.37)

then
P[verify(N2, e2)] = 0.25 (A.38)

Proof Let g be the encoding of the randomly sampled value in verify. By hypoth-
esis (A.36) decryption will work in all the subgroups of Zn1 . Let’s now examine how
decryption works in Z2m+3 knowing, by hypothesis,

e2d ≡ 1 mod 2m (A.39)

e2d ̸≡ 1 mod 2m+1. (A.40)

Appendix A.2 shows that, if 2 | g RSA correctness fails and so will the verify oracle.

We will now consider odd values of g. If

ord(g, 2m+3) = 2t < λ(2m+3) = 2m+1,

then by (A.39) decryption will work. In fact, e2d = 1 + i2m = 1 + j2t for some integers
i, j, and

ge2d ≡ g1+k2
t

≡ g mod 2m+3. (A.41)

If g has max order in Z∗
2m+3

, decryption will fail due to hypothesis (A.40).

The target probability can be rewritten as

P[verify(N2, e2)] = 1-P[g is even|g←$ Z2m+3]-P[ord(g, 2
m+3) = λ(2m+3)|g←$ Z∗2m+3]

(A.42)
To finish the proof we have to show that the third term equals 0.25. Applying (A.2), we
obtain that the number of elements of maximal order in Z∗

2m+3
is 2m. Consequently,

P[ord(g, 2m+3) = λ(2m+3)|g←$ Z∗2m+3] =
2m

ϕ(2m+3)
=

2m

2m+2
= 0.25. (A.43)

□

46

A.3. Oracle queries to filter candidate public keys

Let without loss of generality e2 = e(0)2 be the value for which

e2d ≡ 1 mod λ(N2)

holds, and let e(1)2 the incorrect guess for e2. By proposition (A.1) and (A.3),

P[verify(N2, e(0)2)] = 0.5

P[verify(N2, e(1)2)] = 0.25.
(A.44)

The result of a single verify query is not sufficient to distinguish e(0)2 from e(1)2 . Let

verify(N2, e
(0)
2) ∼ Ber(0.5)

verify(N2, e
(1)
2) ∼ Ber(0.25)

verify(N2, e2) ∼ Ber(p)

(A.45)

where Ber(ρ) indicates a Bernoulli distributed random variable which takes value 1 with
probability ρ.

We then use hypothesis testing to distinguish the two distributions. In particular, we
make two null hypotheses:

• H0: p ≥ 0.5

• G0: p ≤ 0.25.

In the attack we keep on querying the verify oracle until either one is rejected with
a certain confidence. If H0 is rejected, p = 0.25 and consequently e2 = e(1)2 . If G0 is

rejected, p = 0.5 and consequently e2 = e(0)2 . In conclusion, this method allows us, given

the two e(1)2 , e(0)2 , to determine the one satisfying equation

e2d ≡ 1 mod (λ(N2)). (A.46)

This concludes the Appendix section. The Appendix contains the description on a key
recovery attack which was developed during the project, but that did not apply to the
specific instance of Nextcloud. Such attack was still reported because it raised interesting
challenges and may prove useful in other settings.

47

Bibliography

[1] Qtkeychain documentation. https://inqlude.org/libraries/qtkeychain.html,
Last accessed on 2022-09-30.

[2] A. Biryukov. Rfc 9106 argon2 memory-hard function for password hashing and proof-
of-work applications. https://www.rfc-editor.org/rfc/rfc9106.html, Last ac-
cessed on 2022-09-26.

[3] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Douglas
Stebila. A formal security analysis of the signal messaging protocol. Cryptology
ePrint Archive, Paper 2016/1013, 2016. https://eprint.iacr.org/2016/1013.

[4] The Qt Company. Qbytearray class. https://doc.qt.io/qt-6/qbytearray.html#
QByteArray.

[5] The Qt Company. Qmap class. https://doc.qt.io/qt-6/qmap.html.

[6] The Qt Company. Qmap class, access operator. https://doc.qt.io/qt-6/qmap.

html#operator-5b-5d.

[7] Internet Engineering Task Force. Hmac-based extract-and-expand key derivation
function (hkdf). https://www.rfc-editor.org/rfc/rfc5869.

[8] Internet Engineering Task Force. The oauth 2.0 authorization framework. https:

//www.rfc-editor.org/rfc/rfc6749.

[9] Internet Engineering Task Force. Rsa cryptography specifications. https://www.

ietf.org/rfc/rfc2437.txt.

[10] Internet Engineering Task Force. The transport layer security (tls) protocol version
1.3. https://www.rfc-editor.org/rfc/rfc8446.

[11] Miro Haller. Cloud storage systems: From bad practice to practical attacks. Master’s
thesis, ETH Zurich, 2022.

[12] Antoine Joux. Authentication failures in nist version of gcm. NIST Comment, page 3,
2006.

[13] Joshua Mason, Kathryn Watkins, Jason Eisner, and Adam Stubblefield. A natural
language approach to automated cryptanalysis of two-time pads. In Proceedings of the
13th ACM Conference on Computer and Communications Security, CCS ’06, page
235–244, New York, NY, USA, 2006. Association for Computing Machinery.

49

https://inqlude.org/libraries/qtkeychain.html
https://www.rfc-editor.org/rfc/rfc9106.html
https://eprint.iacr.org/2016/1013
https://doc.qt.io/qt-6/qbytearray.html#QByteArray
https://doc.qt.io/qt-6/qbytearray.html#QByteArray
https://doc.qt.io/qt-6/qmap.html#operator-5b-5d
https://doc.qt.io/qt-6/qmap.html#operator-5b-5d
https://www.rfc-editor.org/rfc/rfc5869
https://www.rfc-editor.org/rfc/rfc6749
https://www.rfc-editor.org/rfc/rfc6749
https://www.ietf.org/rfc/rfc2437.txt
https://www.ietf.org/rfc/rfc2437.txt
https://www.rfc-editor.org/rfc/rfc8446

Bibliography

[14] David A. McGrew and John Viega. The galois/counter mode of operation (gcm).
2005.

[15] Gabrielle De Micheli and Nadia Heninger. Recovering cryptographic keys from partial
information, by example. Cryptology ePrint Archive, Paper 2020/1506, 2020. https:
//eprint.iacr.org/2020/1506.

[16] Steve Morgan. Data attack surface report. cybersecurity ventures, 2020.

[17] Nextcloud. Security and authentication. https://nextcloud.com/blog/

whitepapers/security/, Last accessed on 2022-11-30.

[18] Nextcloud. German federal administration relies on nextcloud as a secure file ex-
change solution, 2018. https://nextcloud.com/blog/german-federal-administration-
relies-on-nextcloud-as-a-secure-file-exchange-solution/.

[19] Nextcloud. Nextcloud end-to-end encryption rfc, 2018. https://

github.com/nextcloud/end_to_end_encryption_rfc/blob/master/RFC.md#

security-properties, Last accessed on 2022-09-12.

[20] Nextcloud. Nextcloud grew customer base 7x, added over 6.6 million lines of
code and doubled its team in 2017, 2018. https://nextcloud.com/blog/nextcloud-
grew-customer-base-7x-added-over-6-6-million-lines-of-code-and-doubled-its-team-
in-2017/.

[21] Nextcloud. Login flow, 2022. https://docs.nextcloud.com/server/latest/

developer_manual/client_apis/LoginFlow/index.html, Last accessed on 2022-
11-30.

[22] Nextcloud. Nextcloud about page, 2022. https://nextcloud.com/about.

[23] Nextcloud. Nextcloud ceo kicks off nextcloud conference with keynote speech,
2022. https://nextcloud.com/blog/nextcloud-ceo-kicks-off-nextcloud-conference-
with-keynote-speech/.

[24] Nextcloud. Nextcloud home page, 2022. https://nextcloud.com/.

[25] Nextcloud. Nextcloud threat model, 2022. https://nextcloud.com/security/

threat-model/, Last accessed on 2022-09-12.

[26] Jeroen Ooms. cld2: Google’s Compact Language Detector 2, 2022.
https://docs.ropensci.org/cld2/ (docs) https://github.com/ropensci/cld2 (devel)
https://github.com/cld2owners/cld2 (upstream).

[27] Niels Provos and David Mazieres. A future-adaptable password scheme. 03 2001.

50

https://eprint.iacr.org/2020/1506
https://eprint.iacr.org/2020/1506
https://nextcloud.com/blog/whitepapers/security/
https://nextcloud.com/blog/whitepapers/security/
https://github.com/nextcloud/end_to_end_encryption_rfc/blob/master/RFC.md#security-properties
https://github.com/nextcloud/end_to_end_encryption_rfc/blob/master/RFC.md#security-properties
https://github.com/nextcloud/end_to_end_encryption_rfc/blob/master/RFC.md#security-properties
https://docs.nextcloud.com/server/latest/developer_manual/client_apis/LoginFlow/index.html
https://docs.nextcloud.com/server/latest/developer_manual/client_apis/LoginFlow/index.html
https://nextcloud.com/security/threat-model/
https://nextcloud.com/security/threat-model/

	Contents
	Introduction
	Background
	Notation
	Object-oriented Syntax
	Cryptographic Zoo
	Shared objects

	Threat Model
	Server side encryption
	End-to-end encryption

	Pseudocode
	Client authentication
	Token
	Web browser log in
	Desktop client log in

	End-To-End Encryption (E2EE)
	Key hierarchy
	E2EE initialization
	E2EE client startup
	Folder metadata
	E2EE folder creation
	Folder synchronization

	Discovered vulnerabilities
	Metadata key insertion
	Empty metadata keys
	IV reuse in file update

	Mitigation of Attacks on Nextcloud
	Suggestions
	Improvements to authentication
	RSA master key verification
	Folder sharing

	Conclusions
	Appendix
	Key recovery attack
	RSA encryption with multiple primes in the modulus
	Oracle queries to filter candidate public keys

	Bibliography

