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Abstract

Post-quantum digital signature schemes generate significantly larger
signature sizes compared to traditional ones, drastically increasing the
size of certificate chains used in TLS for entity authentication. This in-
troduces a significant performance bottleneck due to multiple round-
trips needed by the underlying TCP connection to transmit all the au-
thentication data. Recent solutions have proposed an Approximate
Membership Query (AMQ) based approach for Intermediate Certifi-
cate (ICA) certificate suppression. This approach has been shown to
drastically reduce the communication overhead for authentication data,
avoiding multiple round-trips. On the other hand, it requires the client
to reveal information about its known ICAs to the other entity. Over
95% of Google’s traffic is performed through the TLS-secured HTTPS
protocol, meaning that the near totality of online communications would
be affected by this information leakage. We investigate the privacy im-
plications of such an approach, by concretely evaluating how much
information could be leaked to a malicious adversary impersonating a
TLS server. To do so, we formally define the privacy leakage and the
risk for the user in this scenario. We perform an exploratory analysis
on the current state of certificate-based PKI, particularly focusing on
the distribution of ICAs. We define an adversarial model and a set of
experiments to concretely evaluate the privacy leakage under the out-
lined assumptions. We finally discuss some mitigation strategies and
possible modifications to improve the performance of the ICA suppres-
sion method.
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Chapter 1

Introduction

Transport Layer Security (TLS) is a protocol for secure communication used
in most online applications. It runs on the Transmission Control Protocol
(TCP), and it is made up of two sub-protocols: the handshake protocol and the
record protocol. The handshake protocol serves the purpose of establishing
all the relevant shared secrets in order to later provide a secure channel, as
well as enabling peer authentication between the two parties by using public
key cryptography. During the handshake protocol, peers also negotiate the
cipher suites to employ during the rest of the communication. The record
protocol on the other hand uses all the parameters established during the
handshake to provide a secure tunnel between the two parties, guaranteeing
connection privacy and message integrity.

The current Internet infrastructure relies heavily on TLS connections be-
tween clients and servers in order for the users to correctly access online
content: more than 95% of Google’s traffic is performed through the TLS-
secured HTTPS protocol [2], and other studies suggest that there is a general
wide adoption of HTTPS for all kinds of web traffic [4]. Consequently, the
delay introduced by the establishment of a TLS connection plays a crucial
role in the usability and overall experience of a user surfing the web.

With the continuous improvements in the field of quantum computing, the
“harvest now, decrypt later” type of attacks are becoming increasingly wor-
risome for the cryptographic world. These attacks consist of capturing large
amounts of unreadable encrypted traffic and storing it until new break-
throughs allow for efficient decryption of the data. Large enough stable
quantum computers can in fact potentially break current traditional crypto-
graphic primitives [22], [18], thus representing a threat for most of the ser-
vices used online, no matter how distant in the future they could be. Such an
outcome could have a global impact, causing consequences in almost every
aspect of online communication: instant messaging services would not be
able to properly protect the user’s data, password managers would not be
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1. Introduction

able to securely store credentials, and governmental and military sensitive
information could be revealed. Consequently, privacy and anonymity on the
Internet would not be attainable anymore. This creates the need for robust
quantum-resistant, or post-quantum (PQ), cryptographic primitives. NIST
has already started a standardization process to select future PQ alternatives
both for encryption and authentication [14].

On the other hand, the adoption of PQ signature schemes in the TLS 1.3
handshake protocol introduces a significant performance bottleneck, which
will in most cases render the introduced delay unacceptable for many TLS
applications. An acceptable TLS handshake delay is usually considered to be
within the range of a few up to a few tens of milliseconds, heavily depending
on the kind of application and how time-sensitive it is. A delay of around
100 milliseconds already starts becoming noticeable by users, for example
when loading an Internet webpage. The results of Sikeridis et al. in [24]
show that almost all configurations of the PQ algorithms selected by NIST
for future standardisation introduce a delay of 50 to 500 milliseconds at a
minimum, except for the lowest security levels of Dilithium [6] and Falcon
[9] which manage to stay between 9 and 15 milliseconds.

These newly proposed signature schemes are quantum resistant, but on the
other hand, they require much larger key and signature sizes. The result
is a drastic increase in the size of the messages exchanged during the TLS
handshake. Entity authentication in TLS is performed by exchanging signed
certificate chains, which the receiver verifies to authenticate the sender. Cer-
tificate chains include a certificate of a trusted root Certificate Authority
(CA), the end-entity’s own certificate, also called leaf certificate. They can also
potentially include certificates belonging to Intermediate Certificate Author-
ities (ICAs). Root CAs can delegate to them the ability to issue other certifi-
cates to end entities or even other ICAs. This means that certificate chains
contain at least two certificates, but they can be more than that due to the
presence of ICAs. The adoption of PQ signatures would drastically increase
certificate signature sizes. If the certificate chain data exceeds TCP’s conges-
tion window size, it needs multiple round trip times to be fully transmitted.

To overcome the communication overhead introduced by PQ solutions, and
in general, to optimize the handshake protocol as much as possible, there
have been various proposals. One such technique is Intermediate Certificate
Authority (ICA) certificate suppression [11]: it consists of the omission of
the signatures for ICAs which are already known to both parties to reduce
the size of the messages exchanged during the handshake. This approach
could prove to be extremely useful in mitigating the detrimental increase in
authentication data that PQ signature schemes introduce. In particular, Sik-
eridis et al. [23] propose to use an Approximate Membership Query Prob-
abilistic Data Structure (AMQ-PDS) to advertise the known certificates by
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one party to the other, so that unnecessary signatures can be omitted from
the authentication message. This solution achieves excellent results in terms
of the reduction of the authentication data. However, it also forces the client
to reveal the server information about its stored ICAs. The ICAs stored by
the client are collected during its Internet navigation, by visiting different
web pages. This kind of information can potentially be used by a malicious
server to reconstruct the victim’s visited domains, hindering the user’s pri-
vacy. With this work, we study and analyse this particular instance, and
evaluate the severity of the privacy leakage.

The contributions of this project start with outlining the privacy concerns
we identified in the solution proposed by Sikeridis et al. [23]. We formally
define a notion of privacy leakage and show the extent of it by running
experiments on real data. We perform an exploratory analysis of the Pub-
lic Key Infrastructure (PKI) state in general, and more specifically focus on
ICAs in the wild to have a clearer picture of the real scenario. Then we
design a model for the analysed scenario: this includes a client and an
adversary model. We specify their capabilities, limitations and modes of
interaction. We also present our experimental setup, giving specific details
on how we conducted our experiments. More specifically, we design some
possible attack protocols for the adversary and we outline the assumptions
we make on the two parties. Finally, we present the obtained results. We
also discuss possible improvements regarding the proposed ICA suppres-
sion method and present possible further investigations that remain open at
the end of our project.

The results we obtain reveal that the designed attacks on the privacy of the
client have an extremely variable efficacy, depending on the assumptions
that the adversary can make about the client. More specifically, our results
show that to achieve a significant level of effectiveness, the adversary needs
to have some kind of additional data about the client, that enables the at-
tacker to restrict the scope of the attack. If this condition is satisfied, the
adversary can potentially infer a domain that the client has visited with
≈ 30% confidence level in the best-case scenario.

By themselves, the designed attacks against the AMQ-based ICA suppres-
sion method are relatively weak. Despite this fact, they could prove to be
a powerful tool at the disposal of real-world attackers with access to many
other fingerprinting techniques that can be used against the client. The pro-
posed attacks on the ICA suppression method could be used in pair with
these other fingerprinting techniques to further refine their results.
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Chapter 2

Background

2.1 PKI and ICAs

Public Key Infrastructure (PKI) is one of the main pillars that enable the
Internet to properly and smoothly function as it currently does. PKI binds
the identities of the various entities that compose the Internet together with
their public keys, facilitating authentication processes between parties dur-
ing a connection. This binding is mainly done through the use of digital cer-
tificates, which are issued and signed by Certificate Authorities (CA) with
their private key, which function as roots of trust for the entire ecosystem.
Each entity that wants to own a digital certificate must register through a
CA, which will in turn issue a certificate for that entity, binding it to its
public key. The issued certificate can later be used for authentication and
communication purposes, for example during a TLS connection.

To facilitate and decentralize the certificate issuance process, CAs can also
delegate some tasks to other entities, enabling them to issue digital cer-
tificates. These entities to which root CAs delegate certificate issuance are
called Intermediate CAs (ICAs). This hierarchical structure provides per-
formance benefits such as improved scalability and ease of management. It
allows for a more granular control over certificate issuance: for instance,
ICAs can issue certificates for specific geographic regions, organizational
units, or purposes. Most importantly, decentralising the issuance process
grants enhanced security for the entire infrastructure. Segregating roles and
responsibilities among different ICAs helps mitigate risks arising from a
compromised entity within the infrastructure. If an ICA is compromised,
the consequences are restricted to a subset of all the issued certificates, a
much narrower scope compared to an instance of root CA compromise.

By using this method, entities must provide a certificate chain rather than a
single end-point certificate when authenticating their identity and key ma-
terial. Certificate chains represent the trust relationship between the end

5



2. Background

entity and a trusted root CA. When a new certificate is issued, either for an
ICA or an end entity, it is signed by the issuing entity. Only root certificates
are self-signed by the trusted authority. This process forms a chain of trust,
starting from the end entity certificate to the trust anchor which is the root
CA. Each certificate also includes a reference to its issuer’s certificate, to
enable the verification of the certificate chain.

Certificate signatures can be verified using the public key contained in the
issuer’s certificate, while root CA certificates are self-signed. The verification
of the certificate chain consists of verifying all signatures up to and including
the root certificate. If the certificate signature verification under the claimed
issuer’s public key succeeds for each certificate in the chain, then the entire
chain is verified. Equivalently, the trust relationship between the specified
trusted root CA and the end entity is verified, and thus the end entity can
be considered correctly authenticated.

We can then visualize the certificate-based PKI ecosystem as a forest of dif-
ferent trees. They are rooted in root CA certificates, which branch off into
ICAs. ICAs can either delegate end entity certificate issuance to other ICAs
or do it directly themselves. Edges in this forest represent the parent node
issuing and signing the child node’s certificate. In this way, there can even
be chains with two or more ICAs. Finally, the leaves of these trees are rep-
resented by end entity certificates, which could belong to web servers, for
example.

2.2 PQ and TLS

Let us now focus on the TLS 1.3 protocol [19]. It consists of two sub-
protocols: the handshake protocol and the record protocol. The handshake
protocol makes use of asymmetric cryptography and PKI to authenticate one
or both parties, to negotiate the cryptographic algorithms to use and to es-
tablish some shared ephemeral key material. This key material is later used
in the record protocol to create a secure channel, in which the actual com-
munication between the two parties takes place. In particular, the server’s
(and optionally the client’s) certificate chain is sent during the handshake
protocol, together with their respective signatures, as part of the entity au-
thentication protocol.

The need for standardization and introduction of PQ cryptographic primi-
tives, including digital signatures, into the TLS ecosystem [25] introduces a
problem: PQ digital signature schemes offer a quantum-safe alternative to
their traditional counterparts but are also much more expensive in terms of
signature size. Using PQ digital signature schemes significantly increases
the size of the certificate signatures that entities must send during the hand-
shake to allow entity authentication. This can lead to a substantial per-
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formance bottleneck: the underlying TCP connection might need multiple
round-trips to transmit all the authentication data, resulting in very large
connection delays. Initial measurements obtained on the signature schemes
selected by NIST for future standardization yielded quite negative results.
Virtually all configurations of such schemes result in the introduction of
unacceptable delays for TLS-based applications, and by quite a big margin
[24].

2.3 Intermediate Certificate Suppression

Certificate chains enable entities in peer-to-peer communication such as in
TLS to authenticate one another by using asymmetric cryptography and
verification of digital signatures. Whenever an entity needs to authenticate
itself, it needs to send the entire certificate chain together with the respective
certificate signatures rather than a single digital certificate. This introduces
both a communication overhead, because of the signatures that need to be
sent by the authenticating party, but also a computational overhead, because
the signatures need to be individually verified.

In most cases, verification algorithms for the currently used digital signa-
ture schemes are extremely fast. Thus, the computation time needed does
not significantly impact the overall execution time for entity authentication
in TLS 1.3. On the other hand, the transmission of the certificate chain
with the respective signatures is something that could introduce some delay
in the communication. Naturally, the transmission time is proportional to
the size of the chain and signatures to be transmitted. This fact becomes
even more crucial in TLS-based applications on the Internet, where the user
experience is heavily impacted by the connection delay, which dictates for
example the speed at which a certain webpage is loaded and displayed to
the user. At the current state, traditional digital signatures do not introduce
an excessive communication overhead. This could change in the future with
the introduction of quantum-resistant signature schemes, which produce
significantly larger signature sizes.

One solution that has been proposed to reduce the size of the certificate
chain to be sent is called ICA Suppression. It consists of the omission of
ICA signatures in the chain. In the best-case scenario, only the end-entity
certificate should be sent to the other party to minimise the overhead in-
troduced by the authentication process, even in the case of PQ signature
schemes.

The omission of ICAs from the certificate chain is possible only if the two
parties know which ICAs are already known by the other. If one party
omits an ICA, but the other does not already know the omitted certificate,
it will not be able to successfully perform the authentication process. For
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this reason, entity authentication with ICA suppression requires a process
through which parties can learn which ICAs can be omitted and which ones
cannot.

For example, preloading a common database of ICAs into software prod-
ucts constitutes a possible solution to ensure common knowledge of omitted
ICAs. It embeds a shared set of universally known ICAs into every entity
that uses the same software product. Mozilla set up an ICA Preloading
Framework [27] consisting of a list containing around 1400 ICAs which is
preloaded into Firefox clients.

Another possible solution to ensure common ICA knowledge consists of the
two parties explicitly communicating to each other which ICAs they already
know. This way, the other party can omit the ICAs known to the other party
from their certificate chain. This approach can result in diminishing returns
if not performed in a space-efficient way. We will focus on one proposed
method specifically, which will be presented in Chapter 3.

2.4 AMQ-PDS

Probabilistic Data Structures (PDS) are a class of data structures that makes
use of probabilistic algorithms to provide approximate answers to queries
about the dataset they contain. Their big advantage over the usual determin-
istic data structures is that they are designed to handle very large amounts of
data while ensuring extremely good space and time efficiency. Their down-
side is represented by their probabilistic nature. It introduces a (typically)
small but always present error rate. This way, where the setting permits it,
it is possible to trade off some accuracy in exchange for quick handling of
large amounts of data with good space efficiency.

Approximate Membership Query (AMQ) filters are a set of space-efficient
probabilistic data structures which support approximate membership query
operations. These queries answer whether a certain element is contained
in the filter or not. On the downside, they come with a false positive rate
ϵ. False negatives cannot occur. This means that a successful approximate
membership query indicates that an element is in the set with high proba-
bility, i.e., with probability 1− ϵ. On the other hand, if an element was never
inserted, the query will result in a false positive with probability ϵ.

The most famous AMQ-PDS is the Bloom Filter, designed in 1970. It is by
far the most used and adopted in practice, but it comes with some inconve-
niences, in particular the lack of element removal from the set. Nonetheless,
they are often applied in the context of network security [3] and they have
a quite wide industry adoption despite their downsides and the presence of
arguably better alternatives.
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For example, Cuckoo Filters [7], which we will focus on for the sake of this
project, are a newer design, from 2014. Cuckoo Filters support the deletion
of elements and they have been shown to perform generally better than
other Bloom Filters’ extensions which support deletion.

2.5 Related Work

There are various works which recognize the need and try to implement
some solutions for post-quantum primitives adoption into the TLS ecosys-
tem. In this IETF RFC draft [25] for a TLS Hybrid Key Exchange, Stebila
et al. propose an hybrid TLS for post-quantum transition. It makes use of
two or more cryptographic suites. The security of the TLS session is guaran-
teed as long as at least one of the employed component algorithms is secure
(i.e., has not been cryptographically broken). This enables early adopters
of post-quantum algorithms to benefit from PQ security while still being
guaranteed at least the level of security provided by traditional algorithms.

Multiple works have been focused on the problem of the authentication data
size in PQ TLS and how to solve it. For example, [21] propose a TLS 1.3 al-
ternative, called KEMTLS, which, as they show, removes the need of PQ
signature schemes. This approach results in improved space efficiency and
greatly reduces the communication overhead. Another solution is proposed
in [12], which firstly quantifies the slow-down of TLS handshakes when
dealing with heavy authentication data, and secondly proposes an ICA sup-
pression framework which consists of a flag for signalling the use of the
mechanism, and then caching techniques to actually store the known ICAs.

Finally, in this work, we will mainly focus on the proposal by Sikeridis et
al. [23], in which they design an AMQ-based solution for ICA suppression.
Entities should keep track of their known ICAs using a Cuckoo filter to store
them. Then, during the TLS 1.3 handshake, they can send their filter to the
other party. The other entity performs on approximate membership query
for every intermediate certificate in its chain. If successful, that ICA and its
signature can be omitted from the chain. Due to the probabilistic nature of
Cuckoo filters, there is an ϵ false positive probability, which would lead one
party to omit an ICA which in reality the other peer does not know. In that
case, the authentication would fail and the system would fall back to the
standard PQ TLS 1.3 handshake. The benefit is that the modified handshake
is extremely efficient and can be performed in a significantly shorter time
than the normal PQ TLS handshake.
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Chapter 3

AMQ-based ICA suppression

In this chapter, we present the implementation details of the AMQ-based
ICA suppression method. More specifically, we focus on the exchange of
the ICA filter from the client to the server, as this is the relevant part of
the privacy discussion. We will not provide details on performance and
deployment, since it is not relevant to our goals.

We then present the privacy concerns that arise from the proposed method.
A malicious server that receives the client’s filter has access to the user’s
known ICAs. The ICAs which a user knows are directly linked to the web-
sites it has visited. Consequently, this information leakage could enable the
adversary to reconstruct the victim’s navigation destinations, violating the
user’s privacy.

3.1 Overview

Figure 3.1 graphically depicts the part of the proposed protocol that is rele-
vant for privacy leakage discussion. Consider a scenario in which the client
authenticates the server. The protocol runs as follows.

The client’s filter can be continuously updated with the addition of newly
discovered ICAs, and at the same time revoked ones can be removed, thanks
to the use of filters that enable dynamic updates such as Cuckoo Filters [7] or
Quotient Filters [16]. When the client initiates a new connection, it includes
its filter in its first handshake message to the server.

Upon receiving the filter, the server can locally check whether the interme-
diate certificates in its certificate chain are known to the client. This is done
by performing membership queries on the filter for each intermediate cer-
tificate. If they are already known to the client, the server can omit their
signatures from the certificate chain sent in response to the client as part of
the authentication process. Otherwise, the server will simply fall back to
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3. AMQ-based ICA suppression

Figure 3.1: Diagram that describes the proposed AMQ-based handshake, specifically showing
the addition of the ICA filter in the ClientHello message, and how it is later used by the server.

the usual authentication protocol and include the full certificate chain in its
response. The filter could also return a false positive with probability ϵ, in
which case the server will omit that specific ICA from the certificate chain
even if the client does not already know it. In this instance, the server’s veri-
fication will fail, and the client will start a new TLS 1.3 connection, this time
omitting the filter. The remainder of the handshake will follow the normal
PQ TLS 1.3 protocol. For this reason, the parameters of the filter should be
tuned such that the false positive rate is small.

The solution for AMQ-based ICA suppression proposed by Sikeridis et
al. [23] has a concrete performance impact on the PQ TLS 1.3 handshake,
as shown in the results of the original paper. In fact, it can lead to an av-
erage decrease by 73% of the exchanged authentication data. Nonetheless,
it also entails the exchange of new data from the client to the server, in
the form of the ICA filter, which is normally not included in the usual TLS
connection.

The initial message in the TLS 1.3 handshake, which is the one that would
contain the client’s ICA filter, is sent as cleartext, not effectively protected by
any kind of encryption mechanism. This traffic can be passively observed
and recorded by any on-path adversary. To overcome this risk, the authors
suggest encrypting the first handshake message, as described in the IETF
draft [20].

The use of encryption would mitigate the risk of passive attacks on the
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privacy of the client. Nonetheless, there is still one open problem that is
not fully addressed by this method: a scenario in which the server is under
the control of a malicious adversary. The adversary could either directly
own the server or could have corrupted it and gained read access to it. For
this reason, it is crucial to closely investigate any possible consequences that
could arise from such a modification to the standard protocol.

3.2 Privacy Concerns and Leakage

In this instance, we want to specifically focus on the fact that the client
provides the server with some additional information that is normally not
available when performing the usual PQ TLS 1.3 handshake. We want to
understand what could be the implications and consequences of this infor-
mation leakage.

Evaluating the impact of such leakage is generally hard, as privacy is not
an intrinsic quantitative feature of a cryptographic system. It also generally
has many different connotations depending on the context in which it is in-
tended. For this reason it is crucial to clearly define the type of scenario that
we want to investigate, and who are the entities involved in it. We are able
to do so by clearly defining an adversarial model and goal. This includes
the adversarial capabilities and the assumptions that we make about the two
entities involved.

More specifically, this work focuses on the implications of additional infor-
mation leakage for a regular Internet user. By considering this scenario,
we can realistically evaluate if any attack designed against the protocol can
have repercussions on a broader scale, in case of wide adoption of the ICA
suppression mechanism. This also enables us to have minimal assump-
tions on the type of traffic that a simulated client would need to generate,
which makes testing much easier. For instance, there are many well-known
databases which record top-sites rankings based on popularity and traffic.
These rankings provide a concrete representation of the most common navi-
gation destinations for the vast majority of Internet users. More on this will
follow in Section 4.1.

When working on this project we had one specific representative example
in mind for the kind of scenario we want to investigate. Consider a user
who is not particularly educated and knowledgeable in technology and the
practical underpinnings of Internet browsing. Our work addresses the fol-
lowing questions for such a user: how, and to what extent can this user be
affected by the privacy consequences entailed by AMQ-based ICA suppres-
sion? How can an attacker take advantage of the additional information
provided by the ICA filter, and how can that be concretely used against the
user?
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3. AMQ-based ICA suppression

Since the filter only contains information about intermediate certificates
known by the client, we imagine on a high level what could be useful for
an adversary to extract from the client’s ICA data. For instance, imagine the
adversary can retrieve a set of domains visited by the client with high con-
fidence. Imagine also that the server controlled by the adversary requires a
login, and consequently reveals the client’s email. With the new information
about the client’s visited domains, an attacker could craft much more sophis-
ticated and targeted phishing e-mails, which would look and feel authentic
and legitimate to the victim. If the filter could reveal information about the
visited domains of the client such as what e-banking portal the client con-
nected to, or the client’s mobile carrier, this kind of privacy leakage could
open up many possibilities for an attacker: targeted phishing could be per-
formed in order to steal access credentials to the victim’s e-banking, or it
could even lead to SIM swapping [13] in order to access other accounts of
the victim.

In addition, it is not particularly difficult for attackers to potentially access
user’s ICA filters: if the message containing the filter is not encrypted, then
the adversary can simply passively record it by eavesdropping on the client-
server connection. Even with the use of public key encryption to protect the
message, the adversary can force users to connect to one of its servers. It is
not unreasonable to assume that attackers could potentially force users to
connect to malicious servers under their control to get access to this kind of
information.

For this reason, we believe it is crucial to further investigate the privacy
implications of this method and to understand whether it is feasible for an
adversary to extract a set of domains visited by the victim, and if so, with
what level of accuracy this can be done. The attacks we designed will be
presented in detail in Chapter 5.
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Chapter 4

ICAs in the Wild

In order to understand what a malicious adversary could extract from the
information about the client’s known ICAs it is imperative to have a clear
understanding about the web PKI ecosystem based on certificates and its
current state.

More specifically, we want to focus on understanding how common ICAs
are in the wild and how many we can expect to see on average in certificate
chains. This information is extremely useful for AMQ-based ICA suppres-
sion since it allows to estimate the values of important implementation pa-
rameters for the filter design, such as the required minimum capacity, the
desired false positive rate and the ideal load factor.

In our case though, it is more important from an adversarial standpoint
rather than a design need. We do not focus on the design specifics of the ICA
filter, as this falls out of the scope of this project. We rather try to understand
the state of the PKI ecosystem, and more specifically ICAs, in order to have
a clearer view of what kind of information a potential adversary may have
at its disposal.

The distribution of ICAs constitutes crucial information for the adversary.
Knowing how many ICAs can be typically found in certificate chains, and
how many end-entity certificates each ICA has issued affects the adversary’s
accuracy. For instance, imagine a certificate chain containing a single ICA.
The approximate membership query performed by the adversary will suc-
ceed. Consequently the adversary will know that the client visited a domain
which had that ICA in its certificate chain. If that ICA has thousands of
issued end-entity certificates, the adversary has a very low chance of iden-
tifying the exact domain visited by the client among all the possible ones.
If on the other hand, the ICA only has a single issued end-entity certificate,
the adversary is certain that the associated domain has been visited by the
client. The same is valid for chains with multiple ICAs.
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4.1 Tranco List

Tranco [17] is a research-oriented ranking of top websites across the Inter-
net. It is specifically designed to be much less variable on a day-by-day
basis than most other commercial websites popularity rankings, while also
implementing hardening techniques against malicious manipulation of the
ranking. By default, the Tranco list is computed on a global scale, contain-
ing the most popular domains across the entirety of the web. Despite this,
in our project we focus our experiments on a more restricted use case: the
case of Switzerland. The decision to restrict the list to domains seen only in
Switzerland was made because of various reasons.

A slightly more restricted scenario is arguably more realistic with respect
to what a real malicious adversary would do in this case. An adversarial
server provider would have at least some minimal information about the
approximate location of possible victims. This could arise from the fact that
the compromised server under its control may be offering some kind of
service that operates on a local scale, or that users connecting to it can set
a language to use, a shipping region or even a currency to use in case of
e-commerce.

The Tranco list is particularly convenient in this scenario because it can be
configured in various ways, depending on the nature and the context of the
research. For example, it is possible to restrict the list to domains seen only
in specific continents, regions or nations. This feature has a consequence:
the domains which appear in the list are only those included in the Chrome
User Experience Report [10], without including all the other lists used by
Tranco. The final list used for this project has been configured this way to
only include domains seen from Switzerland.

Using only website domains that are contained in the Chrome User Experi-
ence Report is a solution that only takes into account the navigation destina-
tions of Chrome users. On one hand, this means that popular destinations
among users of other browsers will not influence the list. On the other, we
argue that this does not represent a problem for our scenario. On the con-
trary, Chrome is by far the most popular web browser, accounting for ≈ 65%
of market share globally, and for ≈ 61% on a European level as of February
2024 [1]. For reference, the runner-up is Safari with a global market share
of ≈ 18%, and ≈ 19% in Europe. Consequently, the final domain list is
more representative of the average user browsing the web, the profile that
we want to investigate.
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4.2 Exploratory Analysis

We performed an exploratory analysis regarding the general current state of
PKI within the selected set of domains. More specifically, we collected data
regarding the total amount of ICAs, and the certificate chain length distribu-
tion in order to understand typically how many ICAs can be found in each
certificate chain. This information allows us to evaluate how common ICAs
are in certificate chains, and whether our approach is generally applicable.
If most certificate chains have no ICAs, then the scope of the privacy impli-
cations we outline is very limited. A greater presence of ICAs in certificate
chains would indicate that our approach would have a broader impact.

The methodology consisted of initiating a TLS connection to each domain
listed in the list under investigation, and then downloading the certificate
chain sent by the server. We then recorded the total amount of distinct ICAs
and how many certificates had a certain length.

We performed this analysis on three different sets of domains, containing
100000 domains each:

• Tranco list configured to include the top-ranked 100000 domains from
the Chrome User Experience Report seen in Switzerland, referred to
as Tranco CH.

• Tranco list configured to include the top-ranked 100000 domains from
the Chrome User Experience Report seen in the EU, referred to as
Tranco EU.

• Unconfigured Tranco list, including the top-ranked 100000 domains
globally, referred to as Tranco World.

The lists containing results from the Chrome User Experience Report refer
to the report of November 2023. The unconfigured Tranco list with global
results was created on 23 November 2023.

The results of the analysis are shown in Table 4.1. There is a noticeable dif-
ference in the amount of certificate chains that do not contain ICAs between
the Swiss list and the other two: in the EU and global case there are ≈ 8%
more chains without any ICAs. Also, certificate chains with one ICA are
≈ 14% more in the Swiss list compared to other two. Chains with two or
more ICAs have a very similar distribution between the Swiss and global
list, while the EU list has ≈ 6% more. Ultimately, in Tranco CH certificate
chains that contain at least one ICA are more than 70%, while in Tranco EU

and Tranco World they are closer to 60%. On the other hand, the Swiss list is
the one with the least amount of unique ICAs among the three, with 335 of
them, significantly less compared to the other two which are closer to 400.
The different distribution and number of unique ICAs between the three
lists must be considered by an adversary who focuses on different possible
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List Name Total Unique ICAs Certificate Chain Length (%)
0 ICAs 1 ICA 2 ICAs 3 ICAs > 3 ICAs

Tranco CH 335 27.82% 55.21% 16.73% 0.16% 0.08%
Tranco EU 385 35.63% 41.77% 22.32% 0.21% 0.07%

Tranco World 402 36.66% 46.82% 16.40% 0.09% 0.03%

Table 4.1: Total amount of distinct ICAs and their distribution among certificate chains observed
in the specified domain list.

Figure 4.1: Distribution of ICAs from the Swiss list, grouped in buckets depending on the number
of leaf nodes present in their subtree. The bucket indicated at each point on the x-axis includes
ICAs which have a number of leaf nodes included between the previous x value (excluded) and
the current one. For example, the second point on the x-axis is 100: the ICAs in this bucket
have between 2 and 100 leaf nodes. The next one between 101 and 1000 and so on.

victim sets. The results show that these parameters are not uniform over the
different lists. Ultimately, this could lead to a variation in the effectiveness
of the attacks based on the victim’s geographic location.

Finally, Figure 4.1 shows how many leaf nodes can be found in the subtree
rooted in a specific ICA, i.e. how many end-entity certificates each ICA has
issued. The analysis shows that ≈ 70% of the ICAs in the Swiss list have less
than 100 leaf nodes. The average number of leaf nodes per ICA is ≈ 13580.
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Chapter 5

Problem Modelling

Within this chapter, we present our modelling approach. With our model,
we are trying to capture the scenario in which the AMQ-based ICA suppres-
sion method could be deployed on a large scale. Clients constantly update
their ICA filter with each newly acquired or revoked ICA. The ICA filter
contains information about all the intermediate certificates that have been
encountered by the client during its web navigation. We investigate the case
of a client connecting to a malicious server, to which the victim provides its
ICA filter. The adversary can use the acquired ICA information to construct
a list of domains that have been possibly visited by the client.

We define a model for the client who establishes a TLS connection with a
server. More specifically, we outline the assumptions that we make about the
client, its capabilities and limitations, which should capture the behaviour
of the user we want to model. There are also honest, non-malicious servers
to which the client connects prior to connecting to the malicious one. These
honest servers will be modelled as part of the client model.

On the other hand, the server is modelled under the assumption that it is
being controlled by a malicious adversary. Once again, the server model
is composed of the assumptions that we make on the adversary, and more
specifically on its capabilities and limitations. These should resemble those
of a real-world attacker having access to the victim’s ICA information. The
adversarial goal is to leak user’s sensitive data. More specifically, the adver-
sary extracts a set of domains that the user has possibly visited information
contained in the client’s ICA filter.

5.1 Similarities with Website Fingerprinting

During the modelling process, it became apparent that there are multiple
similarities between the scenario of a malicious server in AMQ-based ICA
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suppression and website fingerprinting attacks.

Website Fingerprinting (WF) [15] [26] is a traffic analysis attack, performed
by a passive eavesdropper. It is used to infer the websites accessed by users,
using exclusively traffic gathered from encrypted connections. This attack
relies on the use of communication metadata such as packet size, inter-
packet timing, direction of communication and other statistical properties
in order to extract significant patterns to discern websites. All the recorded
features are then usually processed by machine learning algorithms to pro-
duce distinct fingerprints of the communication traces between the clients
and the corresponding visited website. These are then compared to precom-
puted fingerprints of known websites in the attacker’s database. By analyz-
ing similarities between the intercepted traffic and the known fingerprints,
the attacker can infer which websites the user is accessing.

In our case, we assume the attacker is not a local passive eavesdropper, but
is instead in control of the server to which the user will eventually connect.
The adversary does not need to record encrypted traffic, as the client directly
provides its ICA filter to the server. But in both cases, the adversary needs to
infer websites accessed by the victim, with only minimal information about
the past navigation destinations of the targeted user. We additionally as-
sume that the adversary only has access to the ICA information provided
by the client’s filter. We restrict the adversary in such a way as to deter-
mine the impact of introducing this additional ICA information in the TLS
handshake, without skewing the results with leaks obtained by other fin-
gerprinting techniques. In a real-world scenario, the adversary may employ
other techniques to further refine its attack.

In WF, there is a distinction between two different modeling approaches
for the attack: closed-world scenario, and open-world scenario [15]. These
are based on different assumptions about the knowledge available to the
attacker regarding the set of websites being visited by the user. More specif-
ically:

• Closed-world: the set of websites that the user may visit is very limited
and is known to the adversary. This assumption is unrealistic and not
reflective of real-world users’ behaviour, but it is useful for comparing
the performance of different classification approaches.

• Open-world: the user may visit any website, even those unknown to
the adversary. The adversarial goal in this case is to identify whether
the user has visited any websites belonging to a set of monitored web-
sites. The set of websites that the adversary does not actively monitor
is called the background set, while the set containing monitored ones
is called the foreground set. Consequently, the final task for the adver-
sary is to classify the recorded communication traces as background
or foreground traffic.
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Of course, the open-world scenario is more realistic compared to the closed-
world one. On the other hand, this also entails that the attack for the ad-
versary is much more complex. The scope is much larger: the user can
practically visit any website available on the Internet. For this reason, the
adversarial goal is weakened in the open-world scenario: the adversary no
longer needs to exactly identify the visited website, but rather it is required
to distinguish whether the user visited a known destination or not.

The scenario of our project is similar to WF because it can also be repre-
sented quite well by the open-world scenario: the user is in principle allowed
to visit any website, known or unknown to the adversary. In our case, the
adversary has a very different kind of information at its disposal compared
to the one in WF: only ICA data is available, while in WF, even with en-
crypted communication, there is a lot of metadata that can be analysed to
extract features with the use of machine learning models. In our case, if the
adversary wants to know whether the victim has visited a certain domain,
the only way to infer it is to compare the ICAs for that specific domain with
the ICA information in the filter. More specifically, if the client has visited
a specific domain, the ICAs in that domain’s certificate chain will appear in
the ICA filter. An additional level of complexity is given by the fact that the
same ICA can be shared among thousands of different domains, rendering
the adversarial goal even harder to achieve.

5.2 Client Model

Due to the motivations presented in the previous section, our general model
is very similar to the open-world scenario of WF. Since we cannot imple-
ment a client that can actually visit any domain present on the Internet, we
consider a universe set U. The universe contains all the domains included in
the list generated using Tranco, as specified in Section 4.1. The list contains
100000 domains, which we deem large enough to be a sufficient approxima-
tion of the open-world scenario. The client can visit any domain within the
universe set.

The client is assumed to behave honestly, i.e., it follows the AMQ-based
ICA suppression protocol described by Sikeridis et al [23]. The client is also
assumed to include all the ICAs that it encounters in certificate chains of the
servers it connects to prior to the malicious server. None of the encountered
ICAs can be excluded from the filter, nor added if they were not present in
any certificate chain obtained from visited servers.

The pseudocode of the client can be found in Algorithm 1. The client estab-
lishes a connection with a certain amount of domains within the universe,
receives their certificate chains and adds all the ICAs in the chain to its ICA
filter. We call the set of domains visited by the client the visited set V. The
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Algorithm 1 Pseudocode of Client

function Client(n, U)
for i ∈ {1, . . . , n} do ▷ n is the number of domains the client visits

d←$ U
ica list← get ICAs(d)
for ica ∈ ica list do

ICA Filter.insert(ica)
end for

end for
return ICA Filter, V

end function

ICA filter is then sent to the server, controlled by the adversary. We do
not model the entire TLS 1.3 handshake: for our purposes, we only model
the part relevant to the privacy analysis and exclude the rest. The only rel-
evant information to evaluate the privacy leakage of the AMQ-based ICA
suppression is solely carried by the ICA filter.

5.3 Adversary Model

The adversary is in control of the server to which the victim connects after n
visited websites. The adversary decides on a set of domains to monitor. We
call this set the monitored set M. The following outlined approach is based
on our analysis and the observed vulnerabilities observed in the AMQ-based
ICA suppression method.

The adversary establishes a TLS connection with each monitored domain
and obtains their respective certificate chains. The attacker then constructs
a dataset which contains an entry for each domain in the monitored set,
in which the ICAs of the corresponding certificate chains are stored. The
pseudocode for this procedure can be found in Algorithm 2.

Algorithm 2 Pseudocode of Adversary extracting ICAs for the Monitored
Set

function Adv Setup(M)
for d ∈ M do

ica list← get ICAs(d)
domain ica map[d]← ica list ▷ Each domain is mapped to its ICAs

end for
end function

Recall that the ICA filter that the server receives from the client is a Cuckoo
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filter, a probabilistic data structure that carries information about the dataset
it contains. As such, it allows approximate membership queries, which an-
swer to whether a certain ICA is in the filter or not, with a false positive rate
ϵ.

Upon receiving the ICA filter from the client, the adversary performs an
approximate membership query for all the ICAs belonging to each domain
in the monitored set. If all the queries for ICAs of a monitored domain are
successful, then the domain is included in a set which we call the guess set
G. The pseudocode for this part of the attack can be found in Algorithm 3.

Algorithm 3 Pseudocode of Adversary

function Adv Attack(M, ICA Filter)
for d ∈ M do

ica list← domain ica map[d]
c← True

for ica ∈ ica list do
if ICA Filter.AMQ(ica) = False then

c← False

break
end if

end for
if c = True then

G ← G ∪ {d}
end if

end for
return G

end function

If the client has visited a domain that is in the monitored set, then this do-
main will always be included in the guess set G. This is a consequence of the
fact that the client is assumed to behave honestly, and it will always include
the ICAs obtained from a certificate chain of a visited domain in the filter.
If the user has visited a domain d ∈ M with corresponding ICAs C1, . . . , Ci,
these will be included in the ICA filter sent to the adversary. The attacker’s
approximate membership queries on the client’s ICA filter for certificates
C1, . . . , Ci will all reveal that the ICAs are known to the client. This is be-
cause the AMQ-PDS does not produce any false negatives. Consequently,
that domain will be included in the guess set, i.e.,

d ∈ V ∧ d ∈ M =⇒ d ∈ G (5.1)

On the other hand, domains that have been inserted in the guess set have
not been necessarily visited by the client. This is due to two main reasons.

23



5. Problem Modelling

Figure 5.1: The monitored set M, the visited set V and their intersection M ∩V, all inside the
universe set U.

The first one is that the client may have visited another domain which has
the same ICAs as one (or more) domains included in the monitored set. If
a domain d ∈ M has ICAs C1, . . . , Ci, there could be another domain d̃ ∈ V
with ICAs C̃1, . . . , C̃j such that i = j and C1 = C̃1, . . . , Ci = C̃j. In this case,
the approximate membership queries performed by the adversary will all
confirm the presence of the ICAs for domain d, which will be inserted in G.
The second one is due to the probabilistic nature of the ICA filter: with prob-
ability ϵ the approximate membership query will result in a false positive.
This could lead the adversary to include domains in the guess set for which
the ICAs are not really known by the adversary, but the approximate mem-
bership query resulted in a false positive. Consequently, not all monitored
domains in the guess set are necessarily visited by the client, i.e.

d ∈ M ∧ d ∈ G ≠⇒ d ∈ V. (5.2)

We can better visualise the relationship between these different sets in Figure
5.1. The figure shows the monitored set M, the visited set V and their
intersection M ∩ V. Their intersection can be empty if the client does not
visit any of the domains included in the monitored set.

Equation 5.1 shows that G is a superset of M ∩V, as it contains all domains
that appear in both sets. Equation 5.2 on the other hand suggests that G
may also contain domains that are not included in V. At the same time, all
domains in the guess set must also be monitored domains. From these facts
we can derive the following set relationships:

∅ ⊆ M ∩V ⊆ G ⊆ M. (5.3)
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5.4 Monitored Set Choice

The choice of the monitored set is arbitrary and completely in the hands
of the adversary. The attacker will construct it based on what kind of in-
formation it wants to learn about the client. We can imagine that the most
valuable information would be any kind of non-public, sensitive informa-
tion about the user. There is a wide range of options: the user’s bank or
phone carrier, what e-commerce websites the user visits or even the health
insurance company of the user.

In our case, we decided to build the monitored set including bank domains.
In this day and age, every bank allows its customers to access an online e-
banking portal from which they can carry out most of their banking needs.
Knowing the exact e-banking portal that the victim uses can be considered
sensitive information in the hands of malicious adversaries. An attacker
could potentially gain access to the user’s bank account, and steal its money
through fraudulent transactions.

To construct the monitored set for our simulated adversary, we have used an
official list of all authorised banks in Switzerland [8], publicly available on
FINMA’s website, the Swiss Financial Market Supervisory Authority. The
list on the website is automatically updated every day. The list used for
the experiments of this project is dated 14 January 2024. Given this list of
authorised banks, we constructed another list containing all their respective
web domains, which constitutes the monitored set for our adversary. The
final monitored set we constructed contains 205 Swiss bank domains.

In the absence of any other additional data, we constructed the most com-
prehensive monitored set possible for the case of banks. This is to ensure
optimal accuracy for the adversary. If there are bank domains excluded
from the monitored set which could be visited by the client, this can impact
the performance of the adversary in the attack. The excluded domain could
potentially have the same ICAs as other bank domains in the monitored
set. Consequently, these other monitored domains will be included in the
adversary’s guess set, without any of them having been visited by the client.
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Chapter 6

Experimental Setup

Within this chapter, we present our experimental setup: the specific experi-
ments that we designed to test our approach, as well as the metric that we
used to evaluate the efficacy of the attack.

We designed two main experiments, which both rely on the client sending
its ICA filter to the server, constructed as described in Section 5.2. Upon
receiving the filter, the adversary constructs its guess set as described in
Section 5.3. The two experiments differ in the assumptions that we make
on the client’s behaviour, and how the adversary adapts its attack to these
different assumptions.

In our experiments, we never actually establish a TLS 1.3 connection be-
tween the client and the server. The client simply passes the ICA filter
alone to the server. We purposefully omit the rest of the TLS connection,
as for our purposes the required information is contained in the ICA filter
itself. Implementing an actual TLS connection would only introduce further
communication overhead and significantly slow down the experimentation
process, without bringing any additional value for our analysis. The perfor-
mance analysis of the proposed ICA suppression method is out of the scope
of this project, and it can already be found in the original paper [23].

6.1 Single Connection

In this experiment, we assume a scenario in which the client performs a
single connection with the malicious server. After visiting a certain number
of domains and inserting the collected ICAs in the filter, it connects to the
server under the control of the adversary and sends over its ICA filter.

Given our chosen monitored set of bank domains, it is reasonable to assume
that the client residing in Switzerland, during its navigation, will visit at
least one of them. We expect the client to, at the very least, connect to the
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domain of its e-banking portal. It may also visit other bank domains, e.g.,
to compare interest rates or because the client owns multiple bank accounts.
The different possible navigation patterns of a client will be modelled by
varying the number of domains visited by the client in the experiments.
Some clients may make limited use of the Internet and only visit very few
domains, while others may visit many more. In either case, it is safe to as-
sume that we expect normal Internet users to access their e-banking portals
at some point during their navigation activity. For this reason, we explic-
itly force the client to connect to a monitored domain in its first connection.
Equivalently, we model the client to visit at least one domain in the moni-
tored set:

∅ ⊊ M ∩V ⇐⇒ |M ∩V| ≥ 1. (6.1)

We have designed two different instances of this experiment:

• Option 1 - Single Monitored Domain (SMD): the client visits exactly
one domain from the monitored set M, and all the other visited do-
mains are selected from U \M. Consequently:

|M ∩V| = 1. (6.2)

• Option 2 - Multiple Monitored Domains (MMD): the client visits at
least one domain from the monitored set M: first, it visits one domain
from M; the rest of the visited domains are selected from U \M with
probability (1− ρ), or from M with probability ρ. Consequently:

|M ∩V| ≥ 1. (6.3)

All the domains selected from a set are randomly sampled unless specified
otherwise in the specific experiment.

6.1.1 Option 1 - Single Monitored Domain (SMD)

In order to implement this experiment, we slightly modify the client’s pseu-
docode presented in Section 5.2. The new pseudocode is shown in Algo-
rithm 4. We force the client to connect to a domain sampled from the mon-
itored set in its first connection. All the remaining domains are randomly
sampled from U \M, to ensure the client does not connect to any other mon-
itored domain apart from the first one. On the other hand, the adversary
behaves exactly as shown in Section 5.3.

6.1.2 Option 2 - Multiple Monitored Domains (MMD)

Also in this instance, the client is slightly modified, as shown in Algorithm
5. We still make sure that the client first connects to a domain sampled
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Algorithm 4 Pseudocode of Client - Single connection: SMD

function Client(n, U, M)
for i ∈ {1, . . . , n} do ▷ n is the number of domains the client visits

if i = 1 then
d←$ M

else
d←$ U \M

end if
conn← TLS connect(d)
chain← get certificate chain(conn)
ica list← chain[1 : −1]
for ica ∈ ica list do

ICA Filter.insert(ica)
end for

end for
return ICA Filter

end function

from the monitored set. For all the remaining domains, we condition the
choice of the set to sample on the probability ρ. This practically means
that each domain will be randomly sampled from M with probability ρ, or
randomly sampled from U \M with probability (1− ρ). For example, if ρ =
0.1, i.e., a 10% probability, then the expected number of visited monitored
domains over a total of 100 visited domains is 10. In our experiments, we use
values of ρ = 0.005, 0.01, 0.02, which respectively translate to an additional
expected amount of visited monitored domains of 0.5, 1, 2 over a total of 100
visited domains. We consider these numbers realistic with respect to the
kind of user we want to represent. Also, the different values of ρ enable
us to represent even users who may have bank accounts with a number of
different banks, and thus consistently visit multiple monitored domains.

6.2 Repeated Connection

In this experiment, we additionally assume that the server is able to link sep-
arate TLS connections to the same user. More specifically, we assume that
between each client connection, its ICA filter is reset. The client connects
to the same malicious server multiple times, or different servers monitored
by the same adversary. We focus on the prior, but the approach naturally
extends to the latter. We additionally assume that the client always visits the
same monitored domain between different connections to the adversary. It
is reasonable to consider such a scenario because, for example, most users
probably have one bank account that is accessed through an e-banking por-
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Algorithm 5 Pseudocode of Client - Single connection: MMD

Require: 0 ≤ ρ ≤ 1
function Client(n, U, M, ρ)

for i ∈ {1, . . . , n} do ▷ n is the number of domains the client visits
if i = 1 then

d←$ M
else

if rand() < ρ then ▷ 0 ≤ rand() ≤ 1 randomly sampled
d←$ M

else
d←$ U \M

end if
end if
conn← TLS connect(d)
chain← get certificate chain(conn)
ica list← chain[1 : −1]
for ica ∈ ica list do

ICA Filter.insert(ica)
end for

end for
return ICA Filter

end function

tal, which is regularly accessed. The adversary can leverage this fact, and
try to reduce the size of the guess set to improve the accuracy of the at-
tack. Since there is one monitored domain which is always visited by the
client, the ICAs for that domain will always be present in all the ICA filters
received by the attacker. The adversary can take the intersection of all the
distinct guess sets constructed individually at each connection and use this
intersection set as its final guess set. By doing so, the adversary only takes
into account the domains for which all corresponding ICAs were in the ICA
filter for every individual connection. We do not make any other specific
assumptions about the rest of the domains visited by the client: they are
randomly sampled as described either in SMD or MMD.

The experiment can be run either with a client that behaves as in SMD shown
in Algorithm 4, or as in MMD shown in Algorithm 5. In both cases, the pseu-
docode for the client will be the same as the one presented for the chosen
option, except for the first domain to visit. This domain will not be ran-
domly sampled from M at each connection, but rather is randomly chosen
once and stays the same in the following connections. The adversary for
this experiment uses the general attack described in Algorithm 3 in Section
5.3 as a sub-routine. The pseudocode of the adversary against the repeated
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connection scenario is shown in Algorithm 6.

Algorithm 6 Experiment Definition - Repeated Connection

Require: m ≥ 0 ▷ m is the amount of repeated connections
function Adv Attack Repeated(M)

for i ∈ {1, . . . , m} do
ICA Filter ← Client(n, U, M, ρ∗) ▷ ρ is optional
G̃ ← Adv Attack(M, ICA Filter)
G ← G ∩ G̃

end for
return G

end function

6.3 Evaluation Metric - Jaccard Index

We want to define a precise quantitative metric to evaluate the performance
of the adversary in each experiment. The adversary has no control over the
domains from the universe which will be included in the visited set V of the
client. The attacker can define and arbitrarily select the domains to include
in the monitored set M. More specifically, the adversary will strategically
select the set of monitored domains based on the kind of information the
attacker wants to extract from the ICA filter. In our case, we chose bank
domains as they may be particularly interesting for general malicious enti-
ties, but this could vary depending on the attacker’s intent. For example,
another plausible category for monitored domains could be mobile carriers,
e-commerce websites or university login pages.

The adversarial goal in this case is to extract information about the client’s
visited domains from the information leaked by the provided ICA filter.
More specifically, the adversary’s goal is to learn the set M ∩ V, i.e., the
monitored domains that the client has visited. Intuitively, the best-case sce-
nario for the adversary would be to construct a guess set G = M ∩ V. As
stated in Equation 5.1 in Section 5.3, all the domains in M∩V will naturally
all be included in G, as there are no false negatives. At the same time, the
guess set can be no larger than M as all the domains included in the guess
set are also monitored domains.

Our chosen performance metric must reflect these properties of the defined
sets. The client can do no better than exactly guess a set G = M ∩V, while
the worst-case guess would be a set G = M. We consider this to be the
worst-case scenario as it reflects the case in which the information contained
in the ICA filter is too general. It does not enable the adversary to restrict
its guess set compared to the initial full monitored set.
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For these reasons, we have selected as our final evaluation metric the Jaccard
index, or Jaccard similarity coefficient. It is a statistic used to compare two
sample sets. The similarity index of sets A and B is computed as:

J(A, B) =
|A ∩ B|
|A ∪ B| , 0 ≤ J(A, B) ≤ 1. (6.4)

It ranges from 0 to 1, where 1 indicates that the two sets are identical, i.e.,
they have all elements in common, and 0 indicates no similarity between the
sets, i.e., they have no elements in common.

In our case, we use the Jaccard index in order to evaluate the similarity
between the guess set G and M∩V, i.e., we compute J(G, M∩V). A Jaccard
index of 1 would indicate that the adversary has perfectly guessed all the
monitored domains visited by the client. A Jaccard index smaller than 1
would indicate that the adversary has wrongfully added monitored domains
that were not visited by the client in the guess set. Finally, a Jaccard index of
0 would only occur if |M ∩V| = 0, which would indicate that the client has
not visited a single monitored domain. This instance never occurs within
our experiments as the client is always forced to visit at least one monitored
domain.

The Jaccard index reflects all the properties we desire from a performance
metric, and consequently, it is the one we used in order to evaluate adver-
sarial performance in our experiments in the following chapter.
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Chapter 7

Results

Within this chapter, we show the data collected from the single connection
experiment. We first consider the full monitored set of Swiss banks, con-
taining 205 domains (see Section 5.4), and then use a reduced monitored
set, containing just 20 randomly sampled monitored domains. Then, we
present the data collected from the repeated connection experiment. We
again use the full monitored set first, and then a reduced one. More specifi-
cally, we show the performance of the adversary represented by the average
computed Jaccard index between the sets G and M ∩ V. We additionally
provide data about the average size of the guess set constructed by the ad-
versary. We also show how the performance of the adversary is related
to the change in universe size. Finally, we present a possible addition to
the original ICA suppression method by Sikeridis et al. [23]. The proposed
method strictly provides the suppression of intermediate certificates, while
we show that also root CAs could be potentially suppressed, reducing the
communication overhead even more, causing no significant privacy reper-
cussions.

For every experiment, we consider 3 variants. In each variant, the client vis-
its and collects ICAs from 100, 200 and 400 different domains, respectively.
We chose these numbers in order to represent three different possible user
profiles: from a not particularly active user who only visits 100 domains, up
to a very active user who visits 400 domains. The results displayed in this
chapter are obtained by averaging over 500 experiment runs.

7.1 Single Connection

In this experiment, the client visits 100, 200 or 400 domains, and inserts the
collected ICAs in its ICA filter later on. The adversary uses the filter in
order to construct its guess set, as described in Algorithm 3 in Section 5.3.
We compute the Jaccard index of the guess set G and the visited monitored
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7. Results

Figure 7.1: Single connection - SMD. The x values indicate the number of domains visited by
the client.

domains by the client M ∩ V. We additionally show the average size of the
guess set G.

7.1.1 Single Connection - Single Monitored Domain (SMD)

This variant of the single connection experiment is characterised by the fact
that the client visits exactly one monitored domain. Note that, as explained
in Section 6.1, this entails that |M ∩V| = 1.

The results are shown in Figure 7.1. Under the assumptions of the single
connection SMD, the adversary performs very poorly, with an average Jac-
card index that oscillates between 0.009 and 0.007 in the three instances, as
can be seen in the left chart of Figure 7.1. Since the size of the set containing
the monitored domains visited by the client, i.e., |M ∩V|, is constant and is
always 1, the Jaccard index only depends on the size of the guess set |G|.
More specifically, in SMD:

J(G, M ∩V) =
1
|G| . (7.1)

They are inversely proportional, and this relation is very clear in the two
charts: a larger guess size results in a smaller Jaccard index. The guess size
naturally increases together with the number of total domains visited by the
client. As the user collects more ICAs, there is a higher probability for each
monitored domain to have matching ICAs with the ones present in the filter,
and consequently be included in the guess set.

While the client only ever visits a single monitored domain, the adversary
has 205 domains in its monitored set. The resulting guess set constructed
by the adversary contains over 100 domains in all three instances, arriving
at almost 150 when the client visits 400 domains. In the end, the adversary
has restricted its original monitored set by almost 50% in the best instance.
Despite that, the resulting guess set is still too large to provide any kind of
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7.1. Single Connection

Figure 7.2: Single connection - MMD: ρ = 0.005 (top), ρ = 0.01 (middle), ρ = 0.02 (bottom).

valuable information to the attacker. This is due to the large ICA overlap
between multiple domains in the monitored set. When multiple monitored
domains share the same ICAs, they will either be all inserted together in the
guess set or will all be excluded from it. This reduces the granularity of the
final guess output by the adversary, which cannot include single domains in
its guess, but rather groups with multiple domains.

7.1.2 Single Connection - Multiple Monitored Domains (MMD)

In this variant of the single connection experiment, the client is guaran-
teed to visit at least one monitored domain. We force the first visited do-
main by the client to be a monitored domain. For all the following visited
domains, there is a small probability ρ that they are randomly sampled
from M instead of U \ M. We have tested this experiment with values of
ρ ∈ {0.005, 0.01, 0.02}. With these values, the expected amount of monitored
domains visited by the client is respectively increased by 0.5, 1 and 2 for
every 100 total visited domains.
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The results are shown in Figure 7.2. In this variant, contrary to SMD, the
client can potentially visit a variable amount of monitored domains. As ex-
plained in Section 6.1, the size of M∩V is not fixed, but rather |M ∩V| ≥ 1.
Thus, we also present results on the average size of the intersection between
the monitored set and the visited set, i.e., |M ∩V|.

The average Jaccard index values are still very low, but higher than those
seen in SMD. More specifically, they are always below 0.05, even in the best-
case outcome for the adversary. The Jaccard index grows with the value of ρ:
as the latter doubles, the former increases by more than ≈ 1.5 times. We see
that, as the client visits more monitored domains in the same total visited
domains, the Jaccard index increases.

Another notable aspect transpires from the obtained results: the average
guess size remains practically equal for all the tested ρ values, and also the
same as the one recorded in the SMD experiments. This suggests that the
size of the constructed guess set, assuming that the monitored set is fixed,
depends solely on the size of the visited set |V|. This result is consistent
with how the guess set is constructed. In our model, the only information
available to the adversary is the client’s ICA filter. The filter will naturally
contain more distinct ICAs as the client visits more distinct domains, and
the adversary will find more monitored domains which can be included
in the guess set. This process does not directly depend on the number of
monitored domains that the client visits. Rather, it depends on the number
of ICAs collected and how many monitored domains’ ICAs are present in
the filter.

While the average guess size remains constant as the values of ρ increase, the
average intersection size becomes larger, since the client visits more moni-
tored domains. This results in a larger Jaccard index value: the guess set
is the same as in SMD, but in this variant, there are multiple domains in
G which have been visited by the client. Ultimately, the guess set obtained
in this variant is slightly more informative for the adversary compared to
SMD.

7.1.3 Reduced Monitored Set

The results obtained from the previous experiments show poor effectiveness
of the attack. One of the reasons for it may be the fact that the monitored
set used is too large to extract any valuable information from the ICA filter.
In some cases, the adversary might have some additional information about
the client. For example, more precise location information might lead to
the exclusion of many domains from the monitored set. A user located in
a certain area is much more likely to take advantage of banks that operate
there. For instance, someone living in Lugano is unlikely to have a bank
account with the Cantonal Bank of Geneva.
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7.1. Single Connection

Figure 7.3: Single connection - SMD: |M| = 20.

For this reason, we also experimented with much smaller monitored sets.
More specifically, we randomly chose 20 bank domains from the original
full set of 205 and used them as the new adversary’s monitored set. We
ran the same experiments with this new monitored set and collected the
respective results.

Figure 7.3 shows the results obtained with SMD. As expected, the trends
of the average Jaccard index and the average guess size follow those from
Figure 7.1: the guess size still increases with the number of domains visited
by the client, while the similarity index decreases. On the other hand, the
value of the Jaccard index is more than 15 times larger than the one obtained
with the full bank list, while having a monitored set that is more than≈ 10
times smaller.

Ultimately, the guess size contains on average between 6 and 9 domains,
depending on the size of the visited set. The results obtained in this instance
are more promising: the constructed guess size is ≈ 70% smaller compared
to the initial monitored set, ultimately containing only a few domains. This
means that the adversary can restrict the client’s navigation destinations in
a much more effective manner by having a significantly smaller monitored
set.

Figure 7.4 shows the results obtained for MMD with the reduced monitored
set. The trends for the recorded values are again the same as with the full
monitored set. Here the Jaccard index is generally ≈ 10 times larger than
when using the full banks list. In the variant with |V| = 400 and ρ = 0.02,
the Jaccard index reaches a value of ≈ 0.4. In this instance, the adversary
constructs a guess set in which more than 1 in 3 included domains have
been actually visited by the client.

These results show that with a smaller monitored set, this kind of attack
can become practically viable for real-world adversaries. Additionally, the
monitored set used for this experiment is composed of randomly chosen
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Figure 7.4: Single connection - MMD: ρ = 0.005 (top), ρ = 0.01 (middle), ρ = 0.02 (bottom).

monitored domains. With a more in-depth and targeted analysis of the
victim, it may be possible to optimize the choice of the domains to include
in the monitored set and further improve the effectiveness of the attack.

7.1.4 Correlation with Universe Size

We collected additional data about the correlation between the effectiveness
of the attack and the size of the universe set.

In all of our experiments, we used the largest universe at our disposal, con-
taining 100000 domains, as presented in section 4.2. We generally deem this
large enough to be representative of the size of the navigation universe of
a general Internet user. Despite this, it is important to understand whether
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7.2. Repeated Connection

Figure 7.5: Correlation between Jaccard index value and universe size (|M| = 20): SMD (top)
and MMD (bottom).

there is a relation between the size of the universe set and the performance
of an adversary. This kind of relation could lead to different ways to opti-
mise the attack, depending on the kind of user that is being targeted.

In order to collect the necessary data, we ran both SMD and MMD exper-
iments with various universe sizes and recorded the average Jaccard index
resulting from each size. The experiments were performed using the re-
duced monitored set.

The collected data, displayed in Figure 7.5, shows no significant correla-
tion between the performance of the adversary and the universe size. The
recorded Jaccard index values show no noticeable variation, apart from the
expected small fluctuations due to the randomness present in the experi-
ments.

7.2 Repeated Connection

In a real-world scenario, a client may realistically visit the same server mul-
tiple times. An adversary controlling that server may gain an advantage
from collecting the client’s ICA information at different points in time. This
is the kind of occurrence that we model with this experiment.
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Figure 7.6: Repeated connection - SMD: average guess set size after each repeated connection.

In this experiment, the client connects to the same malicious server multiple
times. After each connection, the ICA filter is reset. As in the single connec-
tion case, the client visits and inserts into its filter ICAs from 100, 200 and
400 domains. We assume that between each different connection to the mali-
cious server, the client always visits the same monitored domain. If the client
runs as in SMD, that monitored domain is also the only one that it visits. If
it runs as in MMD, it may additionally visit other ones, following the usual
mechanism for this variant. The adversary uses the filters to construct one
guess set per each client’s connection. Finally, the adversary’s final guess is
the intersection of its individual guess sets. The adversarial goal is to infer
the one monitored domain that is always visited by the client.

In the experiments with repeated connection, the client connects to the ma-
licious server 10 times. We have set the number of repeated connections to
10. We have experimentally seen that after the first couple of connections,
the size of the constructed final guess set plateaus and does not decrease
any more. Thus, 10 repeated connections are more than enough to show the
effects of this attack.

For each experiment, we show the average guess set size for each repeated
connection obtained from the intersection of all previous guesses.

7.2.1 SMD

In this case, the client always visits exactly one monitored domain, which is
always the same throughout all the different connections.

Figure 7.6 shows the results collected in this experiment. There is an average
decrease in the guess set size of ≈ 25% for all three visited set sizes. This
is a significant improvement over the single connection case, but ultimately
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7.2. Repeated Connection

Figure 7.7: Repeated connection - MMD (ρ = 0.01): average guess set size after each repeated
connection.

the final guess size is still too large in order to consider this an effective
privacy attack. The final guess size is between 80 and 100 domains in all
three cases, while the adversary should guess one single monitored domain
that has been visited by the client. This is due to the monitored set being
too large.

7.2.2 MMD

In this instance, between each connection, the client is allowed to visit other
monitored domains in addition to the one that is always visited in each
connection.

Figure 7.7 only shows the results for ρ = 0.01, as the ones collected for the
other ρ values are comparable and do not significantly differ from the ones
displayed in the figure. Also in this case, the repeated connections prove to
be beneficial for the adversary, with an average decrease in guess set size
of ≈ 20%. Nonetheless, in this instance, it remains true that the size of the
monitored set is too large to allow the adversary to effectively attack the
victim’s privacy.

7.2.3 Reduced Monitored Set

We reduce the monitored set to 20 domains for the repeated connection
scenario as well. The 20 monitored domains are once again randomly chosen
from the full bank domains list.

Figure 7.8 shows the results obtained for SMD with the reduced monitored
set. We observe that the initial guess set size naturally increases with the
visited set size, as it does in the single connection case. In this case, the
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Figure 7.8: Repeated connection - SMD (|M| = 20): average guess set size after each repeated
connection.

Figure 7.9: Repeated connection - MMD (ρ = 0.01, |M| = 20): average guess set size after
each repeated connection.

guess set size is reduced on average by ≈ 30% in the |V| = 100 variant, a
significant improvement over the single connection experiment. Also, using
a smaller monitored set ensures that the number of domains included in the
final guess set is relatively small. Ultimately, the adversary can restrict its
initial monitored set of 20 domains to a final guess set of around 7 domains.
This kind of guess set size is much more useful for the adversary, as it
narrows down the possible visited monitored domains to a very limited set
compared to the single connection experiment.

Figure 7.9 shows the results obtained for MMD with the reduced monitored
set. Only the results for ρ = 0.01 are displayed, since the ones obtained with
the other values do not significantly differ from the results in the figure. In
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this case, the decrease in the guess set size is even more consistent compared
to those for SMD. For |V| = 100 and |V| = 200 the initial guess set size is
reduced by almost 50%.

Ultimately, the results obtained in the repeated connection experiment with
the reduced monitored set are very promising for the attacker: the con-
structed guess sets are very limited, containing only a few domains, and the
required amount of repeated connections is quite low and reasonable for a
real-world scenario. In addition, the adversary does not necessarily need to
wait for exactly 10 repeated connections, but can gradually reduce the guess
set via the intersection method after each client connection.

This result highlights the importance for the adversary to have access to
additional information about the client. We have purposefully limited and
restricted our designed adversary when considering the full monitored set,
in order to only account for the privacy leakage of the AMQ-based ICA
suppression. Nonetheless, the reduced monitored set is more representative
of a real adversary, which can gather information about the victim through
all the methods at its disposal.

7.3 Alternative Domain Lists

All the results presented in this chapter are collected using the Swiss domain
list presented in Section 4.2 as the universe set. This is because we were able
to obtain official data on all the authorised banks in Switzerland. We did
not do the same for the EU and global domain lists. Part of the reason
is that considering all the authorised banks in the EU, or even the world,
would result in monitored sets too large to be useful for the adversary:
there would be too many domains sharing the same ICAs, and the final
guess would not be as informative for the attacker compared to a much
smaller guess set. Also, on a practical level, gathering the same information
about the authorised banks in such a large geographical area is much more
complex and time-consuming compared to a single country. For this reason,
time constraints did not allow us to design an alternative approach and to
perform a deeper analysis of possible monitored sets to use for the EU and
global cases.

Nonetheless, we have collected data also for the EU and global Tranco lists.
The monitored set used by the adversary was composed of bank domains
chosen arbitrarily among the most popular banks in the EU and the world.
We prefer to focus this project on the Swiss use case, which we were able
to analyse more in-depth and in a more rigorous way. In addition, the
results obtained with the EU and global lists are extremely similar to the
ones displayed in this section using the Swiss list. We have not noticed any
significant privacy consequences in considering one list over the other as a
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universe set. This shows that our approach is not specific to Switzerland,
but it can be generalised to other settings as well.

7.4 Root CA Suppression

The TLS 1.3 specification [19] allows for the root CA certificate to be omit-
ted from the handshake under the assumption that the other entity already
possesses it in order to validate its peers. The proposed AMQ-based ICA
suppression method by Sikeridis et al. [23] only specifies the suppression of
intermediate certificates, without ever referring to root CA certificates.

Suppressing root CAs in addition to ICAs, would further reduce the commu-
nication overhead introduced by PQ signatures in TLS 1.3. For this reason,
we propose the addition of root CAs in the client filter to the original ICA
suppression method.

We have adapted the client and adversary model used in our experiments
to the root CA suppression. We have tested the modified method by per-
forming all the same experiments presented in this chapter. Ultimately, the
results for the attacker are identical to the case of the originally proposed
ICA suppression method. Thus, in our opinion, suppressing root CAs does
not result in any additional privacy leakage compared to the case in which
exclusively ICAs are suppressed.

44



Chapter 8

Conclusion

In this project, we tackle the problem of evaluating the privacy implications
of AMQ-based PQ TLS authentication. In particular, we evaluate the privacy
leakage introduced by the AMQ-based ICA suppression method proposed
by Sikeridis et al. [23].

Our contributions start with an exploratory analysis of the current state
of PKI, presented in Section 4.2. More specifically, we study how ICAs are
distributed in the wild: how many unique ICAs are there, how many can we
expect to find in each certificate chain and how many end entity certificates
have they issued on average. We discuss the privacy leakage introduced
by the proposed ICA suppression method in Section 3.2 and we define a
measure for the leakage in Section 6.3. We design both a client and an
adversarial model. We also design various attack protocols for the adversary
under different assumptions. We outline the experimental setup used to
evaluate the effectiveness of the designed attacks in Chapter 6. We then
present the collected results in Chapter 7. We finally propose the addition of
root CA suppression to the original ICA suppression method in Section 7.4,
also showing that this enhancement would not have any additional privacy
consequences.

The strength of our model lies in the fact that the adversary has complete
control over the choice of the monitored set. As such, the adversary has
a great amount of flexibility, making it hard for the client to put in place
effective mitigation techniques.

During our research we tried to design some mitigation solutions: we have
considered adding a fixed small amount of additional ICAs in the ICA filter
even if the client did not visit any domains with those intermediate certifi-
cates. This addition would cause the adversary to wrongly insert additional
monitored domains in its guess set, decreasing the accuracy and effective-
ness of the attack. By adding only a fixed limited amount of ICAs, we do
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not burden the client with the additional storage of too many PQ certificate
signatures. The problem we run into when designing this mitigation solu-
tion is that its effectiveness strongly depends on the specific monitored set
chosen by the adversary, over which the client has no control or knowledge.
If the additional ICAs inserted in the filter do not match any of the moni-
tored domains’ ICAs, the final guess set constructed by the adversary will
be unaffected.

Ultimately, after our evaluation, the AMQ-based ICA suppression method
proposed by Sikeridis et al. [23] does not seem constitute a big privacy risk
for users by itself. On the other hand, it is a mechanism that can potentially
be deployed on a large-scale complex system such as the TLS infrastructure.
Because of that, it cannot be analysed solely on its own, in a vacuum, but
there needs to be a careful analysis of its interactions with other components
of the system. For instance, our results show that an adversary that is lim-
ited to only the client’s ICA data performs poorly. On the other hand, when
the adversary is given more power, under more realistic assumptions, it is
able to collect additional information about the client. This additional infor-
mation directly translates into a greatly improved adversary effectiveness,
with results that could be worrisome in a real-world setting.

8.1 Future Work

We mainly designed attacks in which the adversary only makes use of the
client’s ICA information and no other additional information. The obtained
results are satisfactory, but in a real-world scenario, the adversary does not
have any limitations. The attacks presented in this project could be used
in parallel with some other passive network attacks on the victim, such as
state-of-the-art website fingerprinting techniques [15] [26] [5]. For instance,
website fingerprinting could potentially help the adversary in reducing the
size of the monitored set, which is crucial for the efficiency of the proposed
attacks.

The most important aspect for the adversary, and the one that ultimately
defines which information is going to be extracted from the ICA filter, is the
choice of the monitored set. Given the time constraints of this project, it was
not possible to perform an in-depth analysis of how to optimize the moni-
tored set in order to maximize the adversary’s effectiveness. For example,
having multiple domains which share the same ICAs in the monitored set
is detrimental for the adversary, as these will always all appear in the guess
set together, even if the client only visited one of them. Future research on
this topic could focus on ways to enable the adversary to have monitored
domains which do not share ICAs.

We have only tested our experiments on monitored sets containing bank
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domains, but in a real-world scenario, the adversary has complete control
over the choice of the monitored set. Future research could study how the
type of monitored set impact the effectiveness of the attacks.

In this work, we have mainly focused on the adversarial setting, but there is
also room to improve the privacy leakage of the ICA suppression method.
Designing mitigation solutions could, for example, require the client to in-
clude additional ICAs in its filter to reduce the adversary’s accuracy. This
would require the client to locally store additional PQ signatures resulting
in a potentially high storage cost. There is an interesting tradeoff between
privacy and utility that needs to be analysed in-depth to implement some
effective privacy mitigations. In addition, the client has no control over the
choice of the monitored set by the adversary. This makes the design of mit-
igation solutions even more complex, as they need to protect against a very
broad set of possible monitored sets.
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