
Repairable Threshold Schemes with
Malicious Security

Semester Project

Iana Peix

June 23, 2023

Advisors: Prof. Dr. Kenny Paterson, Shannon Veitch

Applied Cryptography Group

Institute of Information Security

Department of Computer Science, ETH Zürich

Abstract

Repairable threshold schemes are threshold schemes where, the participants
can combine their shares to reconstruct a share for a participant who lost
their share. Current protocols ensure share repairability under the assump-
tion of shareholder honesty. Our focus is on the malicious security of re-
pairable threshold schemes, as no constructions secure against malicious
participants exist to date. We prove that existing schemes, which hinge on
the honesty of shareholders, become vulnerable in presence of malicious
players. Secondly, we introduce new schemes with different levels of mali-
cious security, by leveraging various techniques.

i

Contents

Contents iii

1 Introduction 1

2 Background 3
2.1 Threshold schemes . 3

2.1.1 Shamir’s Secret Sharing Scheme 4
2.2 Repairable threshold schemes 6
2.3 Enrollment Repairable Threshold Schemes 6
2.4 Regenerating codes Repairable Threshold Schemes 7

2.4.1 Regenerating Codes . 7
2.5 Ramp Schemes . 8
2.6 Combinatorial Repairable Threshold Schemes 8
2.7 Verifiable secret sharing . 9
2.8 Proactive Secret Sharing . 10

2.8.1 DM-Recover Construction 11

3 Definitions and Threat Model 15
3.1 Correctness and Security . 15

3.1.1 Security types . 16
3.2 Threat model . 17

3.2.1 Assumptions . 17
3.2.2 Adversaries . 17

4 Attacks 19
4.1 Combinatorial repairable threshold scheme attack 19
4.2 Regenerating codes repairable threshold scheme attack 20
4.3 Enrollment repairable threshold scheme attack 21

5 Maliciously Secure Schemes 25

iii

Contents

5.1 Maliciously Secure Combinatorial Repairability using Redun-
dancy . 25
5.1.1 Formal Description . 26
5.1.2 Correctness and Privacy 26
5.1.3 Complexity . 28

5.2 Construction via Bivariate Polynomials 29
5.2.1 Formal description . 31
5.2.2 Proofs of correctness and privacy 32

5.3 Maliciously Secure Enrollment Scheme 34
5.3.1 Commitment Schemes 34
5.3.2 Construction via Pedersen Commitments 35

6 Evaluation 39

7 Conclusion 41

A Appendix 43
A.1 Lagrange Interpolation . 43
A.2 Shamir’s Secret Sharing Scheme Example 44

Bibliography 47

iv

Chapter 1

Introduction

In today’s interconnected world, secure communication among thousands
of devices in distributed systems is essential. Whether it’s cloud computing,
peer-to-peer networks, or Internet of Things (IoT) systems, the challenge lies
in establishing secure communication even when only a threshold number
of participants behaves honestly.

Threshold schemes allows to share a secret based on the assumption that a
threshold number of participants act honestly. Repairable threshold schemes
(RTS), incorporate the ability to repair or recover lost or corrupted shares,
ensuring the long-term usability of the shared secret. At the moment exist-
ing protocols assume that shareholders are honest. However, these schemes
often lack the ability to handle practical scenarios where the adversary is
actively malicious.

We will conduct a survey on the existing constructions of repairable thresh-
old schemes and survey if existing constructions are secure against ma-
licious participants. Then, outline attacks on current constructions if the
shareholders are assumed to be actively malicious.

Furthermore, the project will extend repairable threshold schemes to the
malicious setting and evaluate the communication complexity associated
with each technique.

1

Chapter 2

Background

2.1 Threshold schemes

Threshold schemes are cryptographic primitives used to protect sensitive
information by distributing the secret among a group of participants. The
fundamental idea is to split the secret into shares such that any authorized
subset of participants can combine their shares to reconstruct the secret.

One famous real-life example of threshold schemes is the nuclear launch
codes used in the Soviet Union, where three different keys from the first
secretary, the defense minister, and the chief of the general staff were needed
to launch a nuclear strike, designed to keep any one person from having
ultimate authority.

More recently, threshold schemes have found applications in various do-
mains, such as Ledger using Shamir’s Secret Sharing to protect clients’ cryp-
tocurrency wallet seeds [1].

Here we briefly introduce threshold schemes using the same definitions as
[13].

Definition 2.1 Suppose t and n are positive integers such that 2  t  n. A

(t, n)-threshold scheme is a method in which a dealer chooses a secret s and dis-

tributes a share to each of the n players P1, . . . , Pn such that the following two

properties are satisfied:

• Correctness: any authorized subset of t players can compute the secret from

the shares they collectively hold.

• Secrecy: no subset of fewer than t players can determine any information

about the secret.

A threshold scheme consists of two algorithms: a share algorithm run by the dealer

that receives as input the secret s and outputs n shares, and a reconstruct algorithm,

3

2. Background

which receives as input at least t distinct, valid shares from the players and outputs

the secret.

2.1.1 Shamir’s Secret Sharing Scheme

One of the most prominent threshold schemes is Shamir’s Secret Sharing
Scheme, introduced by Adi Shamir in 1979 [17].

The scheme represents a (t, n) - threshold scheme, where we represent the
secret as a polynomial of degree t� 1, where t is the threshold number of
participants required to reconstruct the secret and n is the total number of
participants. The polynomial’s coefficients are chosen randomly, with the
secret itself represented by the constant term (i.e. the term at f (0) = s).

Each participant is then given a share of the form (i, f (i)) which corresponds
to a point on the polynomial.

To recover the secret, any subset of t participants can combine their shares
and use polynomial interpolation on their shares to determine the polyno-
mial’s coefficients and, consequently, the secret.

Algorithm 1 Shamir’s Secret Sharing Scheme
1: procedure Share Distribution(n, t, s)
2: Input: n - the total number of participants, t - the threshold number

of participants and s - the secret to be shared
3: Choose a prime number p > s to define the finite field Fp

4: Generate a random polynomial f (x) = a0 + a1x + . . . + at�1x
t�1 of

degree t� 1 over Fp, where f (0) = s

5: for 1  j  d do
6: Send participant i the share (i, f (i))
7: end for
8: end procedure
9: procedure Reconstruct((1, f (1)) . . . (t, f (t)))

10: Input: At least t different shares
11: Let x1, x2, . . . , xt be distinct x-values from the shares
12: Let y1, y2, . . . , yt be the corresponding f (xi)-values from the shares
13: Use Lagrange interpolation to compute the polynomial f (x) that

passes through the points (x1, y1), (x2, y2), . . . , (xt, yt)
14: The secret s is the constant term of the polynomial, i.e., s = f (0)
15: Output: s

16: end procedure

This ensures that only authorized participants who have access to the re-
quired number of shares can reconstruct the secret, while maintaining the

4

2.1. Threshold schemes

confidentiality of the secret information. Given a set of t� 1 or fewer players,
it is feasible to reconstruct a polynomial of degree at most t� 1 that aligns
with their shares. This means that there are as many polynomials passing
through these t� 1 points, as there are elements in the field, ensuring the
confidentiality of the secret by not revealing any specific information about
it.

For example, in a 4-out-of-7 threshold scheme, the secret would be split into
seven shares, and any four of these shares would be required to reconstruct
the original secret. This ensures that even if up to three participants are
compromised, the secret information remains secure.

A more detailed example can be found in Appendix A.2.

Attacks on Shamir’s Scheme

While Shamir’s scheme is theoretically unconditionally secure in the passive
adversary setting, there are several possible attacks in practical applications,
where adversaries can be actively malicious.

The first attack in the actively malicious setting was presented by Tompa
and Woll [19], where an adversary corrupts a participant and intentionally
submits a false share during a reconstruction attempt.

Let us consider a (k, n) Shamir’s secret sharing scheme where a secret is
shared among participants. Suppose the adversary controls participant Pi

and submits a false share f (xi)0 instead of the correct share f (xi).

The secret can be expressed as:

s =
k

Â
i=1

li f (xi)

where li represents the Lagrange coefficients and f (xi) denotes the shares,
for i = 1, . . . , k.

If the adversary modifies the share and submits f (xi)0 = f (xi) + d, the secret
will be reconstructed as follows:

s
0 =

i�1

Â
j=1

lj f (xj)

!
+ li f (xi) + ljd +

k

Â
j=i+1

lj f (xj)

!
= s + lid.

This attack has several consequences. It prevents honest participants from
learning the correct secret, fails to alert other participants that the correct
secret has not been reconstructed, and, most importantly, enables the adver-
sary to learn the correct secret by exploiting their knowledge of both f (xi)
and f (xi)0 in the Lagrange interpolation.

5

2. Background

2.2 Repairable threshold schemes

A natural question to ask is what happens if a share is corrupted in transit or
lost and the dealer is not available anymore to resend the share. We would
like to introduce a scheme where a player can repair their share by asking
for help from other players. Such a scheme is called a repairable threshold
scheme, which we abbreviate to RTS.

Here again we use the same definitions as used in [13].

Definition 2.2 As before, let t and n be positive integers such that 2  t  n

and let d 2 N be such that t  d  n � 1. Call d the repairing degree. A

(t, n, d)-repairable threshold scheme, denoted (t, n, d)-RTS, is a (t, n)-threshold

scheme which, in addition to the share and reconstruct algorithms, has a repair

algorithm that allows a repairing player Pr to securely reconstruct their share with

help from a set of d players, called the helping players.

By definition, the threshold number needed to repair a share d must be
bigger than the threshold for recovering the secret t.

Consider the scenario where d is smaller than t. In this case, a subset of d

participants can always generate additional shares since d participants are
sufficient for creating new shares. Therefore, the subset can simply generate
more shares until they have enough to reconstruct the secret. Consequently,
the threshold t to reconstruct must be smaller than or equal to d.

A (t, n, d)-repairable secret sharing scheme has universal repairability if any
possible subset of at least d participants can repair another participant’s
share. If only some subsets can repair another participant’s share we say
that the scheme has restricted repairability.

One potential benefit of restricted repairability is the possibility of achieving
more efficient schemes. Efficiency, in this context, means the communication
complexity of the repairing algorithm. Where communication complexity is the
sum of the sizes of all messages transmitted during an algorithm, divided
by the size of the secret.

2.3 Enrollment Repairable Threshold Schemes

In this section, we present the enrolment RTS, initially proposed by Stinson
and Wei in [18]. The purpose of presenting the enrollment RTS is to intro-
duce a specific RTS schemes, which we will analyze in the future chapters.

The share distribution happens in the same way as in Shamir’s scheme in
Chapter 2.1.1. Starting with a (t, n)-Shamir threshold scheme in FQ, where
Q is the choosen size of the secret space. The share for a player P` is denoted

6

2.4. Regenerating codes Repairable Threshold Schemes

as f` = f (`), where f (x) 2 FQ[x] is a random polynomial of degree at most
t� 1 with the secret f (0) = s.

If our aim is to repair the share for a player Pr and assume that this share is
being repaired by players P1, . . . , Pd where d > t. We can describe the repair
algorithm as follows:

Algorithm 2 Enrollment RTS
1: procedure Repair Algorithm(P1,P2....Pd)

Require: d � t

2: for 1  i  t do
3: Pi compute random dji 1  j  d so that zifi= Âd

i=1 dji

4: for 1  j  d do
5: Pi sends dji to Pj

6: end for
7: end for
8: for 1  j  d do
9: Pj computes sj = Âd

j=1 dji

10: end for
11: for 1  i  t do
12: Pi sends si to Pr

13: end for
14: Pr computes Ât

i=1 si finding their share.
15: end procedure

The communication complexity of the repair algorithm is the sum of the
sizes of all the messages transmitted during the protocol divided by the bit-
length of the secret. As every message is an element of FQ[x] as is the secret,
the communication complexity is equal to the number of sent messages.
As t(t� 1) messages are sent in line 5 and t messages on line 12 the total
complexity is O(t2). In [13] this total complexity is lowered to O(1

2 (t(t+ 1)))
by optimizing the number of messages sent in the repair algorithm.

2.4 Regenerating codes Repairable Threshold Schemes

2.4.1 Regenerating Codes

In a distributed storage system, data is stored across multiple nodes or
servers. If one of these nodes fails, the lost data can be reconstructed using
the remaining data on the other nodes. However, this process can require
a large amount of data to be transmitted between the nodes. Regenerating
codes are a type of error-correcting code used in distributed storage sys-
tems. These codes are designed to reduce the amount of data that needs

7

2. Background

to be transmitted when repairing lost or corrupted data, while retaining the
storage efficiency of traditional codes [11].

Re-using definition from [8], we define regenerating code as follows.

Definition 2.3 An (n, k, d, a, b) regenerating code distributes a file, represented

as a polynomial f in F[x]  k � 1, by encoding it and sending elements of the

encoding to n nodes where each node stores a bits of data. A failed node can recover

(repair) its share by accessing size b data from d surviving nodes, and we denote the

repair bandwidth as g = db. Any k nodes are able to reconstruct the original file f

when using their collective stored data.

2.5 Ramp Schemes

We will briefly introduce the concept of ramp schemes, which are often used
in combinatorial RTS designs. Using the same definition as [12]:

Definition 2.4 (Ramp Scheme) Let n be the number of participants in the scheme,

and let t1 and t2 be the lower and upper thresholds, respectively, such that 1  t1 <
t2  n. A (t1, t2, n)-ramp scheme is defined as follows:

• Reconstruction: Any subset of the n participants of size t2 can determine

the secret from the shares they hold.

• Secrecy: No subset of the n participants consisting of at most t1 participants

is able to gain any knowledge about the secret.

A (t1, t2, n)-ramp scheme is equivalent to a (t, n)-threshold scheme when t2 =
t1 + 1 = t.

2.6 Combinatorial Repairable Threshold Schemes

Combinatorial RTS, as demonstrated in [18], offers a method for construct-
ing repairable threshold schemes. The intuition behind this construction
is to give each player a subset of shares from a different threshold or ramp
scheme called a base scheme. As each participant now has a subset of shares,
these subsets can then be used to repair shares of other players.

If we use a (s, m) Shamir scheme, implemented over a finite field FQ as a
base scheme, then to construct the repairable threshold scheme, we assign
each player a subset of d out of the m shares. To do this we need a set system
or design consisting of n blocks of size d, defined on a set of m points, which
we refer to as the distribution design.

In the resulting (t, n)-threshold scheme, each share is composed of d sub-
shares. Let s1, . . . , sm denote the shares in the base scheme, and let 1, . . . , m

represent the points in the distribution design. Each player Pi corresponds

8

2.7. Verifiable secret sharing

to a block Bi in the distribution design. For each point b 2 Bi, player Pi is
given the corresponding sub-share sb. To satisfy the threshold property we
need the following conditions to hold:

• The union of any t blocks contains at least s points.

• The union of any t � 1 blocks contains at most s� 1 points

This explanation provides a simplified understanding of the explanation
given in [12] for combinatorial repairable threshold schemes.

A common choice for the distribution design is a balanced incomplete block
design (BIBD). We use the definition from [13]:

Definition 2.5 A (m, k, l)-balanced incomplete block design,(m, k, l)-BIBD,is a

design such that

• |X| = m,

• each block in D contains exactly k points,

• every pair of distinct points is contained in exactly l blocks.

Consider the following example from [13]: a (2, 12, 3)-RTS, this share algo-
rithm uses a (9, 3, 1)-BIBD (balanced incomplete block design) as a basis,
which is a repairable (2, 3, 5)-distribution design. For convenience, we will
label the nine shares output from the ramp scheme 1, 2, ..., 9. We then con-
struct the (2, 12, 3)-RTS by allocating sub-shares from the ramp scheme to
the twelve players.

P1 {1, 2, 3} P5 {2, 5, 8} P9 {3, 4, 8}
P2 {4, 5, 6} P6 {3, 6, 9} P10 {1, 6, 8}
P3 {7, 8, 9} P7 {1, 5, 9} P11 {2, 4, 9}
P4 {1, 4, 7} P8 {2, 6, 7} P12 {3, 5, 7}

To reconstruct the secret any two players can combine their shares, giving
them at least five distinct sub-shares from the (3, 5, 9)-ramp scheme allowing
them to recover the secret via the reconstruct algorithm.

Consider the scenario where player P5 needs to repair their share. They
can have assistance from players P1, P2 and P3, who would each send the
sub-shares 2, 5 and 8, respectively. We note that not all subset can repair a
specific share, so this scheme provides restricted repairability.

2.7 Verifiable secret sharing

In the previous sections, we introduced secret sharing schemes. Which rely
on trusting the dealer to distribute the shares correctly. However, in real-
world scenarios, we cannot always assume the dealer’s trustworthiness. Ver-
ifiable Secret Sharing (VSS), introduced in [6], addresses this challenge by

9

2. Background

providing a mechanism to verify the correctness of each share, even in the
presence of malicious participants or a potentially corrupted dealer. VSS
plays a critical role in various multi-party computation schemes, including
Byzantine agreement and secure multi-party computation [5].

In a VSS scheme, the dealer shares the secret in a verifiable manner, even
in the presence of malicious parties and a potentially corrupted dealer. The
scheme consists of a Sharing phase, where the secret is distributed, and a
Reconstruction phase, where the shared secret is reconstructed. For conve-
nience, we can separate the part of the scheme where the validity of shares
is verified into a separate Verification phase. Given a set of valid shares
which make up an authorized set, there exists a unique secret which is out-
put by the Reconstruct algorithm. Our main goal is that even if the dealer
D is corrupt, in any execution of Sharing the Reconstruction of the honest
parties defines some value s which is output by all honest parties at the end
of Reconstruction.

A Verifiable Secret Sharing scheme (VSS) includes a verification algorithm
where participants P1, . . . , Pn can use their shares x

1
t+1, . . . , x

n

t+1 to verify the
validity of their shares.

One commonly used example of a VSS scheme is Feldman’s scheme, which
combines Shamir’s secret sharing scheme with a homomorphic encryption
scheme [9]. However, it is important to note that Feldman’s scheme is only
secure against computationally-bounded adversaries.

2.8 Proactive Secret Sharing

Proactive Secret Sharing (PSS) is an extension of secret sharing schemes that
tackles the problem of adversaries who can corrupt parties over an extended
period of time. In PSS an adversary is capable of corrupting all n parties
over a long period of time, but controls no more than a threshold t at the
same time. To mitigate this, PSS schemes periodically refreshes the shares
of the secret and invalidate old shares. This also allows for the recovery of
the current state held by a participant in case a share has been previously
destroyed by the adversary [16, 7].

This means that a PSS scheme includes two additional algorithms. The re-
fresh algorithm allows participants P1, . . . , Pn to use their shares from phase
f to generate new random shares x

1
t+1, . . . , x

n

t+1 for the same secret, which
are then distributed to each respective participant. The recover algorithm is
used when a corrupted node Pr needs to obtain a new share, and it involves
contacting d uncorrupted nodes who combine their shares to compute a new
share for Pr.

10

2.8. Proactive Secret Sharing

We can extend Shamir’s secret sharing scheme to incorporate proactive fea-
tures. The proactive (t, n) Shamir secret sharing scheme over a finite field F

with evaluation points A = a1, . . . , an ✓ F is defined as follows [8]:

• Refresh: Each participant Pi generates a random polynomial di of de-
gree k conditioned on di(0) = 0 and sends di(aj) to Pj for all j 6= i.
Then, each Pi updates their share as x

i

t+1 x
i
t
+ Âj dj(ai) (and erases

all intermediate values used to compute x
i

t+1).

• Recover: For each corrupted node Pr 2 B, each Pi 2 D, a set of non-
corrupted nodes, does the following: Generate a uniformly random
polynomial of degree k, xi, such that xi(ar) = 0. Then, send xi(aj)

to Pj for all Pj 2 D. Each Pj 2 D updates their share as x
j

t
 x

j

t
+

Âi,Pi2D xi(aj). Finally, each Pi 2 D sends its updated share x
i
t

to Pr and
Pr interpolates them to get its original share x

r
t
.

2.8.1 DM-Recover Construction

In [7], Dolev introduces a new Proactive Secret Sharing Scheme, which pro-
vides a scheme secure against t < n passive adversaries and t < n

2 active
adversaries. As mentioned earlier, PSS includes a recovery protocol that
enables honest parties to recover their shares. This recovery feature shares
similarities with repairable threshold schemes and so, in our evaluation, we
will compare the DM-Recover with the proposed schemes in the upcoming
chapters.

First we will look at DM-Share where we can see how the shares are send
between players as this is quite different from approach seen in Shamir’s
Secret Sharing.

11

2. Background

Algorithm 3 DM-Share: Secret Sharing for Dishonest Majorities
1: procedure ShareSecret(s, n, d) . Dealer shares secret s with n parties

using d random summands
2: Dealer PD chooses d random values s1, . . . , sd such that Âd

i=1 si = s

3: for i = 1 to d do
4: PD generates a random polynomial fi(x) of degree i with fi(0) =

si

5: PD computes and broadcasts to each Pr commitments of the coef-
ficients of fi(x)

6: for each share shi,r = fi(ar) do
7: Each receiving party Pr locally computes commitment ci,r

based on the homomorphic commitment scheme
8: PD sends the opening information oi,r to party Pr

9: Party Pr broadcasts a complaint bit indicating whether oi,r cor-
rectly opens ci,r to some value shi,r

10: end for
11: for each inconsistent share shi,j do
12: PD broadcasts the opening information oi,j, and if oi,j opens

ci,j, party Pj accepts oi,j
13: Otherwise, PD is disqualified and a default sharing of a default

value is used
14: end for
15: end for
16: for each receiving party Pr do
17: Pr outputs its d shares (sh1,r, o1,r), . . . , (shd,r, od,r) and all commit-

ments
18: end for
19: end procedure

DM-Share requires O(n2) communication to share a single secret s. The
secret s is first split into O(n) summands, and then each summand is split
into O(n) shares because d = O(n).

Recovering Shares for Dishonest Majorities (DM-Recover)

The main idea behind DM-Recover is other parties generating and verifiably
sharing random recovery polynomials that evaluate to zero at the rebooted
party’s evaluation point. They then add their local shares of the current
sharing polynomials to the shares of these random recovery polynomials,
resulting in new shared random recovery polynomials. These shares are
sent to the rebooted party, which can then interpolate these polynomials to
recover its share without learning anything about the secret. Using commit-
ments the protocol ensures that as long as there is at least n

2 honest parties,

12

2.8. Proactive Secret Sharing

Algorithm 4 DM-Recover Algorithm: Recovering Shares for Dishonest Ma-
jorities

1: procedure ShareSecret(s, n, d) . Dealer shares secret s with n parties
using d random summands

2: Party Prc, sharing polynomials fi(x) for i 2 {1, ..., d} at arc

3: for i 2 {1, ..., d} do
4: Each party Pj generates a random polynomial gj,i(x) of degree i

with gj,i(arc) = 0
5: Each party Pj verifiably shares gj,i(x) with other n � 2 parties,

excluding Prc

6: for each share shr,j,i = gj,i(ar) do
7: Each receiving party Pr computes commitment crj,i and checks

gj,i(arc) = 0
8: Pj sends opening information orj,i for commitment crj,i to

party Pr

9: Pr broadcasts complaint bit indicating correctness of opening
orj,i

10: end for
11: for each inconsistent share shr,j,i do
12: Pj broadcasts opening information oj,i
13: if oj,i opens cj,i then
14: Pr accepts oj,i
15: else
16: Pj is disqualified and added to set B of parties with incor-

rect shares
17: end if
18: end for
19: Each party Pr adds received shares shr,i,j to its share of fi(x): zr,i =

fi(ar) + Ân�2
j=1 shr,i,j

20: Each party Pr sends zr,i to Prc

21: Prc interpolates recovery polynomial zi(x) and obtains current
share zi(arc) = fi(arc)

22: end for
23: Current share zi(arc) = fi(arc) for i 2 {1, ..., d}
24: end procedure

13

2. Background

the secret information remains protected.

The complexity of DM-Recover when handling a single secret is O(n4), while
for managing multiple secrets, the complexity is reduced to O(n3).

14

Chapter 3

Definitions and Threat Model

In this chapter, we provide definitions of correctness and security for thresh-
old schemes. Additionally, we introduce new definitions specifically related
to the Repair algorithm in Repairable threshold schemes. We also present
a high-level overview of the setting we consider in this work. Furthermore,
we discuss the specific threat model that will be utilized throughout the rest
of this work.

3.1 Correctness and Security

As seen in Chapter 2.2, threshold schemes aim to distribute a secret among a
group of participants in such a way that the secret can only be reconstructed
if at least a certain number of participants collaborate. Recall, these schemes
satisfy the following definitions:

• Correctness: The secret s can be reconstructed by any qualified set of
participants, otherwise ? is output.

• Privacy: No unauthorized subset is able to gain any knowledge about
the secret.

These definitions apply to threshold schemes in general, regardless of their
specific implementation or parameters.

For repairable threshold schemes, these properties must still hold. Addi-
tionally, the introduction of a Repair algorithm requires us to define new
properties. We provide slightly modified definitions of correctness and se-
curity of the Repair algorithm next.

Definition 3.1 (Correctness of Repair) The Repair algorithm outputs a valid

share equal to the repairing player’s, Pr, initial share or a null value ?.

Definition 3.2 (Privacy of Repair) No unauthorized subset of players learns any

additional information about the secret during the repair protocol.

15

3. Definitions and Threat Model

These definitions are consistent with prior definitions in literature from ro-
bust secret sharing [19] which consider misbehaving participants.

The definition of correctness for the Repair algorithm in repairable thresh-
old schemes differs from the traditional threshold schemes correctness due
to the unique nature of RTS.

When using repairable threshold schemes, we can imagine a scenario in-
volving share distribution, multiple rounds of repair, and final reconstruc-
tion with a qualified subset of participants.

We assume that share distribution and secret reconstruction have already
been handled securely against malicious adversaries, as demonstrated in
prior work on Verifiable Secret Sharing (VSS) [6, 15] and robust secret shar-
ing [4]. Therefore, the repair protocol is considered the most vulnerable
component of the scheme and the primary focus of our research.

Our threat model assumes that participants in the scheme can be actively
malicious during the repair process. Specifically, participants may deviate
from the protocol, submit incorrect information, or collude with other ma-
licious participants. The goal is to identify and mitigate vulnerabilities in
repairable threshold schemes under such adversarial conditions.

It is important to note that while the definition of correctness differs, the
definition of privacy remains consistent with prior definitions in literature.
The privacy of the repair process ensures that no unauthorized subset of
participants gains any additional information about the secret during the
repair protocol, maintaining the confidentiality of the secret throughout the
repair process.

3.1.1 Security types

• Information-theoretic security: guarantees that an adversary with in-
finite computational resources learns no information about the secret.

• Computational security: guarantees that an adversary with ”reason-
able” computational resources learns no information about the secret.

• Statistical security: a small amount of information is potentially re-
vealed about the secret, independent of the computing power of an
adversary. [14]

For each of the proposed protocols we will explain the guarantee it manages
to achieve.

16

3.2. Threat model

3.2 Threat model

Here we will define the capabilities of the adversary for the rest of this
work. We assume that during the initialization or share distribution phase,
the adversary remains inactive, and does not learn any information about
the secret. In particular, the adversary does not get to see the shares that
the dealer sends to the players. We stress that the adversary cannot cor-
rupt the dealer and so we assume that share distribution occurred correctly.
VSS provides solutions for the case of a malicious dealer, offering various
alternatives documented in Chapter 2.7 and related literature.

In the repair phase, we assume that the dealer is no longer active. Of course
if the dealer is honest and active during the repairing phase, the solution is
trivial as the dealer can simply reshare the lost or corrupted shares with the
participants. This is pointed out in [2].

After the sharing phase, the adversary chooses up to t players to corrupt.
Once a player Pi is corrupted, the adversary has full control over Pi, mean-
ing that they learn Pi’s share and control the information Pi may send. The
corrupted player can either behave honestly, refrain from sending any mes-
sages, or intentionally send incorrect share or an invalid message.

3.2.1 Assumptions

We begin by stating several assumptions, which are used throughout the
remainder of this work. These assumptions include:

• Each party is connected to all other parties through confidential and
authentic communication channels, ensuring that messages are only
visible to the intended recipients and verified to be from the sender.

• Connections are perfectly synchronous, meaning that messages arrive
instantly at their destination.

• Parties can use a broadcast channel, which allows them to send the
same message to all other parties.

• The dealer is honest and only active during the share distribution al-
gorithm.

3.2.2 Adversaries

In the majority of previous work on repairable threshold schemes, the ad-
versaries are assumed to be passive. Passive adversaries observe the shares
held by participants under their control. They may use this knowledge to
infer additional information about the secret; however, they are assumed to
follow the protocol correctly. These adversaries are also sometimes known
as honest-but-curious.

17

3. Definitions and Threat Model

In practice, we might also be interested in modeling active adversaries,
which are able to deviate from the protocol in an arbitrary fashion.

While modeling passive adversaries provides valuable insight, there is a
need to consider scenarios involving active adversaries, as if we would like
to implement these protocols in practice, active adversaries are much closer
to the possible real-world threats. Active adversaries have the capability to
deviate from the protocol in arbitrary ways, introducing new challenges and
security concerns.

18

Chapter 4

Attacks

In this section we present several attacks that violate the definitions of cor-
rectness or privacy in the repairable threshold schemes as introduced in
Chapter 2.2. As these attacks are possible in our adversarial model, they
demonstrate that combinatorial, regenerating codes and enrollment RTS do
not satisfy malicious security. These attacks motivate our work to create new
maliciously secure repairable threshold schemes.

4.1 Combinatorial repairable threshold scheme attack

In this section, we delve into an adversarial scenario in the context of a
combinatorial repairable threshold scheme. We reuse the example from [13]
seen in detail in Chapter 2.6. Let’s look at an example where an active
adversary controls one participant and behaves dishonestly.

P1 {1, 2, 3} P5 {2, 5, 8} P9 {3, 4, 8}
P2 {4, 5, 6} P6 {3, 6, 9} P10 {1, 6, 8}
P3 {7, 8, 9} P7 {1, 5, 9} P11 {2, 4, 9}
P4 {1, 4, 7} P8 {2, 6, 7} P12 {3, 5, 7}

After the shares are created and distributed, suppose the active adversary
corrupts player P7.

Imagine that now player P2 needs to repair their share and seeks assistance
from players P4, P7, and P8. However, now P7 can simply send a wrong
sub-share back to P2. For example, instead of sending sub-share 5, P7 might
send sub-share 1. As a result, P2 reconstructs their share as 4, 1, 6.

Later, when pairs (P2, P10) or (P2, P4) attempt to reconstruct the secret, they
combine their sub-shares finding {1, 4, 6, 8} and {1, 4, 6, 7} respectively.

19

4. Attacks

We can formalize this attack as follows, suppose the scheme employs a base
(m, l)-threshold scheme and the shares (1, 2, ..., l) are created and distributed
among n participants.

Let the shares of the participants be denoted as follows:

Pi {ai1, ai2, ..., aij}, f or i = 1, 2, ..., n and j = 1, 2, ..., t

where aij is a sub-share of Pi and an active adversary takes control of a
participant Pa. When Px needs to repair their share and seeks assistance
from a set of participants including Pa, the adversary-controlled Pj sends an
incorrect sub-share to Px. Instead of sending the correct sub-share aay, Pa

sends an incorrect sub-share aaz, where z 6= y. As this is a valid sub-share
Px reconstructs their share as:

Px = {ax1, ax2, ..., aay, ..., axt} 6= {ax1, ax2, ..., aaz, ..., axt}

breaking the definition of Correctness of Repair defined in Chapter 3.1 and
showing that the combinatorial repairable threshold scheme is not secure
against actively malicious adversary.

4.2 Regenerating codes repairable threshold scheme at-
tack

In this section, we investigate a scenario involving an active adversary dur-
ing the repair process in a regenerating codes repairable threshold scheme,
as detailed in [13] and explained in Appendix 2.4. Just like the attack dis-
cussed in Chapter 4.1, the adversary can disrupt the repair process of the
regenerating codes RTS by providing a sub-share that differs from the one
requested, resulting in an incorrect repair of the lost share.

Consider a (t, n, d)-regenerating code RTS, where t is the threshold, n is
the number of participants, and d is the number of participants required to
repair a share. Suppose that an adversary controls a participant Pz and be-
haves dishonestly. When another participant Pj needs to repair their share,
they request assistance from d other participants, which includes the cor-
rupted participant Pz.

Using the regeneration algorithm outlined in [13], we can see how the repair
process can be tampered with by the dishonest participant. If Pz sends an
incorrect value instead of the correct one during the repair process, Pj would
inadvertently reconstruct an incorrect value for their share. Int this example,
let all computations be performed in the field Z11.

20

4.3. Enrollment repairable threshold scheme attack

For example, in the correct scenario, a node Pr should reconstruct the fol-
lowing:

(Yrepair)
�1 ⇥

2

4
3
2
9

3

5 =

2

4
9 9 8
4 1 1
10 1 2

3

5

2

4
3
2
9

3

5 =

2

4
7
1
6

3

5

But if Pz behaves dishonestly and sends a wrong value (say 1 instead of 9),
the node Pr reconstructs this instead:

(Yrepair)
�1 ⇥

2

4
3
2
1

3

5 =

2

4
9 9 8
4 1 1
10 1 2

3

5

2

4
3
2
1

3

5 =

2

4
9
4
1

3

5

This leads to the generation of an incorrect share, breaking the definition of
Correctness of Repair defined in Chapter 3.1.

To generalize, when Pj seeks to repair their share, they construct a repair
matrix, Yrepair, from consisting of the rows of Y related to the helper nodes
(i.e. for helping node Pi add row i to the Yrepair), and then calculates the
inverse.

For the correct scenario, the node Pj should reconstruct their share as fol-
lows:

(Yrepair)
�1 ⇥

2

64
a
...

ad

3

75

But if Pz behaves dishonestly and the repair matrix to a0 = a + g, the node
Pj reconstructs an incorrect share:

(Yrepair)
�1 ⇥

2

64
a
...

a0

3

75 = Y�1
repair ⇥

2

64
a
...
a

3

75+ Y�1
repair ⇥

2

64
0
...
g

3

75

Which leads to an incorrect share being reconstructed and breaking the def-
inition of Correctness of Repair defined in Chapter 3.1.

4.3 Enrollment repairable threshold scheme attack

In this section, we analyze a possible attack on the enrollment scheme dis-
cussed in Chapter 2.3. We consider a situation where an adversary controls

21

4. Attacks

one participant and behaves dishonestly during the repair process. The re-
pair process involves each helping node Pi transmitting values dj,i to other
players and subsequently transmitting values sj,i.

Assume that the adversary controlling Pi submits incorrect values of d0
j,i =

dj,i + b, this leads to incorrect computation of the sj value in the subsequent
steps of the repair algorithm.

Initially, each player Pj computes sj as the sum of dj,i values:

sj =
t

Â
i=1

dj,i (4.1)

However, if the adversary modifies the value of dj,i for a particular helping
node Pj, the resulting st becomes:

s0
j
=

t

Â
i=1

dj,i + b

s0
j
=sj + b

(4.2)

During the repair process, the repairing player Pr computes their share fr

using the equation:

fr =
t

Â
i=1

si (4.3)

But if for example the helping node Pt submits an incorrect value s0
t
, it would

lead to incorrect computation of the share fr. Instead the repairing player
Pr receives:

f0r =
t�1

Â
i=1

si + s0t (4.4)

As s0
t

can be chosen to be completely random Pr now has a random value
f0r which gives them no information about their original share. Breaking the
Correctness of Repair property for Repairable Threshold Schemes we have
defined in Chapter 3.1.

Even more if in the future Pr and Pt are a part of a group who want recover
the secret, then Pt can recover the valid share of Pr using the following
equation:

fr =f0r + st + s0t (4.5)

22

4.3. Enrollment repairable threshold scheme attack

Consequently, Pt becomes the only player with the correct value of the secret
s, while all other players have an invalid value s

0.

23

Chapter 5

Maliciously Secure Schemes

After looking at the repairable threshold schemes presented in Chapter 2,
and looking at the possible attacks in Chapter 4 we observe that these
schemes do not offer malicious security. To address this, we will propose
three modified schemes in this chapter.

5.1 Maliciously Secure Combinatorial Repairability us-
ing Redundancy

In this section, we present a modification of the combinatorial repairable
threshold scheme discussed in Chapter 2.6. Our goal is to provide malicious
security by introducing redundancy into the scheme. Instead of requesting
a single player to send their sub-share, the repairing party now solicits all
players with the relevant sub-shares to send their information. The sub-
shares are then checked for consistency.

To illustrate this scheme, let us consider an example from [13] with a (2, 12, 3)-
RTS. We allocate sub-shares from the ramp scheme to the twelve players
defined by the design, as follows:

P1 {1, 2, 3} P5 {2, 5, 8} P9 {3, 4, 8}
P2 {4, 5, 6} P6 {3, 6, 9} P10 {1, 6, 8}
P3 {7, 8, 9} P7 {1, 5, 9} P11 {2, 4, 9}
P4 {1, 4, 7} P8 {2, 6, 7} P12 {3, 5, 7}

Suppose that P5 wishes to repair their share. To obtain their first sub-share
they contact P1, P8 and P11. For their second sub-share, they contact P2, P7
and P11 and for third sub-share P3, P9 and P10. To reconstruct their share,
player P5 checks that all the values for each sub-share the mode is calculated
and this value is output.

25

5. Maliciously Secure Schemes

This approach ensures that if one player submits an incorrect value for each
sub-share it will be detected.

5.1.1 Formal Description

Let us provide a formal description of the redundancy repair scheme, which
we refer to as Redundancy Repair.

The shares belonging to a player Pi are written as (si1, si2, si3, ..., sin) where n

is the number of sub-shares and the players who have a sub-share sij belong
to the set Sij, which is of size t. The size of the set of the set Sij depends on
the distribution design used in the combinatorial

As mentioned before the repairing player knows the members of each group
Sij and helping nodes know what sub-share they need to send to Pr.

Algorithm 5 Redundancy Repair
Require: The dealer is honest and has previously sent each player their

shares.
Require: Each player knows who to contact to repair their shares.

1: The repairing player Pr contacts sets Sr1, Sr2 ... Srn for his sub-shares
(sr1, sr2, sr3, ..., srn)

2: for 1  i  n do
3: Players in Sri send their share sri to Pr

4: end for
5: return For each sub-share set sri to be the mode of received sub-shares,

if Pr has several values as a mode output ? .
6: return Set (sr1, sr2, sr3, ..., srn) as the new share of Pr.

The confidentiality of the secret is maintained as long as the threshold is not
violated against passive adversaries. This scheme provides resilience against
a few malicious players. However, if the majority of the participants in any of
the sub-share sets Sri are malicious, they can manipulate the mode, leading
to the incorrect reconstruction of the share. This scheme is secure against
active adversaries, up to a size of |Sri |

2 . As all Sij are of size t, this scheme
maintains its correctness property in the presence of up to t

2 adversaries.

The proof of security will be presented in the next section, where we analyze
the security properties of the scheme.

5.1.2 Correctness and Privacy

In this section, we will analyze whether the modified scheme fulfils the
properties of correctness and privacy, as defined in Chapter 3.1.

26

5.1. Maliciously Secure Combinatorial Repairability using Redundancy

Proof of Correctness

We assume that at most t
2 players are malicious. In order to achieve correct-

ness, the repairing player must either receive their initial share Pr or output
a null value ?. Let us consider the scenario where the player receives a re-
constructed share P

0
r that is not equal to their original share Pr. This can only

happen if, for at least one sub-share sri, the repairing player Pr has received
at least t

2 + 1 s
0
ri

values from repairing nodes in Sri such that s
0
ri
6= sri.

However, for this to occur, it would require at least t
2 + 1 nodes in the set

Sri to be corrupted. Since our scheme has a malicious security threshold of
t
2 � 1, there is at least t

2 + 1 honest players in Sri sending a correct value
sri. This gives a contradiction, as Pr must have received s

0
ri
6= sri from every

helping node. It is impossible for all nodes in Sri to be corrupted. Therefore,
the correctness property is fulfilled in our scheme.

Proof of Privacy

To evaluate the privacy of the repair process, we need to ensure that no
unauthorized group of players gains any knowledge about the secret during
the repair protocol.

To gain knowledge about the secret, a repairing player would need to receive
information that they did not have knowledge of before. However, as men-
tioned in our algorithm, the indexes of different sub-shares are public, and
the only way a repairing player can receive a different sub-share is if a cor-
rupted player provides it. In this case, the adversary already had knowledge
of this sub-share, and the repairing player gains no new information.

Furthermore, the helping player are only contacted by the repairing player
using the index of the sub-share they want to receive from the group Sri.
The only way helping nodes can receive new information is if the repair-
ing player sends them their own sub-share instead. However, this can only
happen if the repairing player is corrupted, which means that the malicious
player already had knowledge of this sub-share and gains no additional
knowledge. As all communication channels are secure against eavesdrop-
pers, no unauthorized players can gain any knowledge about the secret.
Therefore, the privacy property is preserved in the modified scheme.

In conclusion, the modified scheme satisfies the properties of correctness
and privacy. It ensures that the repairing player receives the correct value
of their sub-share, and it guarantees that unauthorized players cannot gain
any knowledge about the secret during the repair protocol.

27

5. Maliciously Secure Schemes

5.1.3 Complexity

It is evident that this redundancy has implications on the complexity of
this modified combinatorial repairable threshold scheme. Specifically, to
perform a repair, all players with the same sub-shares as the repairing player
are now helping nodes and need to send their sub-shares to the repairing
player.

For instance, in our previous example of a (2, 12, 3)-RTS, where each player
owns three sub-shares, the repairing player, such as P5, would need to con-
tact the nine other players who possess the same sub-shares. This increases
the number of messages exchanged between the players, changing the struc-
ture of the repair scheme from a (2, 12, 3)-RTS to a (2, 12, 9)-RTS.

To generalize this observation for all possible schemes, we can refer to cer-
tain properties of Balanced Incomplete Block Designs (BIBD) on which the
combinatorial threshold scheme is based [13].

Definition 5.1 In an (m, k, l)-BIBD, every point occurs in exactly

t =
l(m� 1)

k� 1

blocks.

and

Definition 5.2 An (m, k, l)-BIBD has exactly

b =
mr

k
=

ml(m� 1)
k(k� 1)

blocks.

These definitions provide information about the structure of a BIBD and
specify the number of blocks a BIBD must have. We also include a quick
reminder on distribution designs, also from [13].

Definition 5.3 A (t, l1, l2)-distribution design is a design that satisfies the follow-

ing two properties:

• the union of any t blocks contain at least l2 points,

• the union of any t� 1 blocks contain at most l2 points,

From a (m, k, 1)-BIBD, we can construct a (t, l1, l2)-distribution design, and
from that, a (t, b, l1)-combinatorial RTS. The construction details can be
found in [18].

In general, when modifying a (t, b, l1)-combinatorial RTS to include redun-
dancy, it becomes a (t, b, tl1)-combinatorial RTS.

28

5.2. Construction via Bivariate Polynomials

The communication complexity of a Repairable Threshold Scheme is defined
as the total number messages transmitted in the protocol. In [13], it is men-
tioned that a (t, n, d)-RTS has a communication complexity of d. Therefore,
the new communication complexity, after including redundancy, becomes
O(dt).

It is important to note that in practical scenarios, such as large distributed
systems with numerous participants and BIBDs with a substantial num-
ber of elements, the increased communication complexity may render the
scheme impractical for real-world settings. Additionally, the repair protocol
stops whenever at least one inconsistent share is detected, requiring a restart
of the repair process even if only one message was corrupted in transit. In
the following sections, we will explore alternative approaches to construct-
ing a maliciously secure repairable threshold scheme that aims to reduce the
communication complexity while maintaining robustness against malicious
players.

5.2 Construction via Bivariate Polynomials

Our previous construction applies a redundancy technique to any combi-
natorial RTS. This inflates the communication complexity of our repairing
algorithm and we still require a larger proportion of honest participants over
dishonest participants (more than half of the owners of the sub-shares are
required to be honest).

In this section, we construct a protocol which is secure under the assumption
that at least one of the helping nodes is honest. This relaxed assumption is
the best we can hope to achieve our construction under, given that if all
helping players were malicious, we could not hope to repair one’s share.

The following construction is derived from bivariate polynomials. The dealer
constructs a random polynomial which satisfies the following equation:

f (x, y) =
t

Â
i=0

t

Â
j=0

fijx
i
y

j, with f00 = s

where s is the secret. In the original [3] construction of an actively-secure
MPC protocol, they make use of such a polynomial, providing each partici-
pant Pi with a share (hi(x) = f (x, ai), vi(y) = f (ai, y)). Then, given a share
from participant Pj, Pi can verify that vi(j) = hj(i).

vi(aj) = f (ai, aj)) = hj(ai)

We will adapt this technique to our setting of repairing algorithms in com-
binatorial RTSs.

29

5. Maliciously Secure Schemes

Let us demonstrate our construction with an example from [13] (and pre-
ceding section). Recall that sub-shares are allocated according to the distri-
bution design below.

P1 {1, 2, 3} P5 {2, 5, 8} P9 {3, 4, 8}
P2 {4, 5, 6} P6 {3, 6, 9} P10 {1, 6, 8}
P3 {7, 8, 9} P7 {1, 5, 9} P11 {2, 4, 9}
P4 {1, 4, 7} P8 {2, 6, 7} P12 {3, 5, 7}

Assuming that these sub-shares correspond to the values hi(x) = f (x, ai),
vi(y) = f (ai, y), and players receive their shares in the following format:

P1 {(h1(x), v1(y)), (h2(x), v2(y)), (h3(x), v3(y))}
P2 {(h4(x), v4(y)), (h5(x), v5(y)), (h6(x), v6(y))}
P3 {(h7(x), v7(y)), (h8(x), v8(y)), (h9(x), v9(y))}

etc....

Now, suppose P5 wishes to repair their share. They can elicit the help from
P1, P2, and P3. P1 sends (h2(x), v2(a8)), P2 sends (h5(x), v5(a2)), and P3 sends
(h8(x), v8(a5)).

Then, P5 verifies the following consistency checks:

h2(a5) = v5(a2),
h5(a8) = v8(a5), and
h8(a2) = v2(a8).

These consistency checks ensure that if one or two players behave mali-
ciously and submit incorrect values, the inconsistency will be detected. On
the other hand, if all players behave honestly, the consistency checks will
pass. It is worth noting that P5 could have similarly requested their shares
from (P7, P8, P9) or (P10, P11, P12). The helping players must know which val-
ues, vi, to send, and this is determined by the participating players in the
repairing algorithm. As long as there is some cyclic nature in the verifying
values, vi, provided, we can ensure that the repairing algorithm is secure in
the presence of at least one honest helping participant.

The approach based on bivariate polynomials ensures security with a re-
laxed assumption, making it possible to repair one’s share as long as there
is at least one honest helping player. In the following subsections, we will
provide a formal description of our approach and present proofs of correct-
ness and privacy.

30

5.2. Construction via Bivariate Polynomials

5.2.1 Formal description

Our construction begins with the dealer, who creates a bivariate polyno-
mial satisfying a specific equation. The dealer then allocates shares to each
participant. The process is formalized as follows:

Algorithm 6 Addition to Initialization and Share Distribution
Require: Degree of the random polynomial t� 1
Require: Secret s to be distributed
Require: Participants Pi, where 1  i  n

1: Generate a random polynomial f (x, y) of degree t � 1, where f00 = s

where s is the secret that we wish to distribute.
2: Choose aj, where 1  j  m

3: Allocate the sub-shares following the distribution design from [13]
4: for i in 1 to n do
5: For each sub-share index ak assigned to participant Pi

6: Compute hk(x) = f (x, ak)
7: Compute vk(y) = f (ak, y)
8: Send (hk(x), vk(y)) as the share pair for participant Pi

9: end for

The initialization and share distribution process begins with the dealer gen-
erating a random polynomial f (x, y) of degree t with the coefficient f00 equal
to the secret s that needs to be distributed. Then, values aj are chosen, where
1  j  m. The sub-shares allocation is determined based on the distribu-
tion design seen in [13]. For each participant Pi, the algorithm computes
the share pairs (hk(x), vk(y)) by evaluating the polynomial f (x, y) at the
corresponding sub-share index ak. Finally, the share pairs are sent to the
respective participants.

When it comes to the repair process, we can formally define it as in Algo-
rithm 7.

The algorithm begins with the repairing player Pr selecting the helping play-
ers according to the BIBD structure seen in Chapter 5.1. Then, Pr requests
the appropriate values (hk(x), vk(ar)) from each helping player Pk. If the
consistency checks are full-filled for all received values, the repairing player
sets (hk(x), vk(y)), (hl(x), vl(y)),, (hz(x), vz(y)) as the new share. Other-
wise, the output is ?, indicating an inconsistent share.

We have provided formal descriptions of the initialization and share distri-
bution as well as and the repair algorithm. For reconstruction we can simply
follow the same algorithm as seen in [3] with some minor modifications.

31

5. Maliciously Secure Schemes

Algorithm 7 Repair
Require: Repairing player Pr

Require: The dealer is honest and has previously shared the bivariate poly-
nomial.

Require: Each player knows their corresponding ai values
Require: Available repairing players Pi, where 1  i  n with relevant share

pairs (hi(x), vi(y))
1: Request aid from one player for each ak of Pr according to previously

seen structure
2: for Each repairing node Pk 2 Rr where Rr is the set of helping players

for Pr do
3: Send (hk(x), vk(y)) to Pr

4: end for
5: Perform consistency check on received shares
6: for each received (hk(x), vk(y)),(hk+1(x), vk+1(y)) from players in Rr do
7: Verify if hk mod |Rr |(ak+1 mod |Rr |) = vk+1 mod |Rr |(ak mod R)
8: if Values do not match then
9: Output Null value ?

10: end if
11: end for
12: Reconstruct the initial share using the received shares as

(hk(x), vk(y)), (hl(x), vl(y)),, (hz(x), vz(y))

5.2.2 Proofs of correctness and privacy

We will analyze whether the modified scheme fulfils the properties of cor-
rectness and privacy, as defined in Chapter 3.1 in the same way we did for
Redundancy construction in Chapter 5.1.

Proof of Correctness

To prove the correctness of our scheme based on bivariate polynomials, we
will assume the existence of a repairing player Pr who receives a recon-
structed share (h0

k
(x), v

0
k
(y)) that is different from the original share (hk(x), vk(y)).

We will show that this assumption leads to a contradiction, proving that the
repairing player receives their correct share.

If (h0
k
(x), v

0
k
(y)) 6= (hk(x), vk(y)), it implies that at least one player has sent

(h0
k
(x), v

0
k
(y)) as their sub-share, and it has passed the consistency check. In

other words, for some indices ak, am, and al , we have:

h
0
k
(al) = vl(ak) and hm(ak) = v

0
k
(am)

32

5.2. Construction via Bivariate Polynomials

The key observation here is that the polynomial f (x, y) is a secret known
only to the dealer. The malicious player attempting to construct a different
polynomial to pass the consistency check must know the values for hm(ak)
and vl(ak) as to create polynomials for which h

0
k
(al) = vl(ak) and hm(ak) =

v
0
k
(am). However, since f (x, y) is only known to the dealer who is now inac-

tive and the malicious player controls subset of the repairing nodes smaller
than t , they cannot reconstruct neither the secret s nor the f (x, y)

Therefore, the malicious player is effectively guessing the values to satisfy
the consistency check. The probability of guessing each value correctly is at
most 1/q, where q is the size of the finite field used for the polynomial eval-
uations. This probability is acceptably low and represents the best security
we can hope to achieve.

Hence, we have shown that the assumption of receiving a reconstructed
share (h0r(x), v

0
r(y)) different from the original share leads to a contradiction.

Therefore, the repairing player Pr indeed receives their correct share with a
probability at best P = 1� 1/q, and the correctness of our scheme is proven.

Proof of Privacy

To establish the privacy property of our scheme based on bivariate polyno-
mials, we aim to show that no unauthorized group of players can gain any
knowledge about the secret during the repair process except for what they
would learn from the inputs and outputs anyways.

Assume that there exists a malicious player who controls fewer than t nodes
as this is a (n, k, t)-RTS. At the beginning, the adversary gets up to t pairs
of polynomials (hi(x), ki(y)), the goal of the adversary is to use the shares
it knows to find f (x, 0) or f (0, x) and then calculate f (0, 0) = s. But these
shares give no information about the secret as the polynomial f (x, y) is of
degree t and to uniquely define it t + 1 points are needed.

The only knowledge gained is when Pr outputs ? so they can check if their
guess for (h0r(x), v

0
r(y)) was correct or not. With sufficiently big Fq this is a

very minor advantage especially as we can consider starting banning nodes
who fail checks several times as to avoid such situations.

Complexity

During the initialization and share distribution phase, the dealer needs to
generate f (x, y), and calculate hk(x) and vk(y) for all participants and for
each sub-share index assigned to them. Each polynomial calculation in-
volves operations of degree t. Assuming each participant has t sub-shares,
the complexity for each participant becomes O(tt), and for all n participants,
the complexity is O(ntt).

33

5. Maliciously Secure Schemes

During the repair phase, the repairing player receives (hk(x), vk(y)) from
each helping player and performs consistency checks on the received shares.
As Pr receives one double (hk(x), vk(y)) from d repairing players and hk(x)
and vk(y) are polynomials of degree t� 1 and we assume that the secret s

is approximately of the same size as coefficients of f (x, y), we find that the
communication complexity is O(2d(t� 1)).

5.3 Maliciously Secure Enrollment Scheme

Building upon the enrollment scheme detailed in Chapter 2.3, we introduce
additional measures to ensure security in a malicious setting. We will in-
corporate commitments which allow the repairing participants to verify the
integrity of each stage of the protocol.

5.3.1 Commitment Schemes

Commitment schemes serve as a cryptographic protocol to ensure reliable
information exchange between parties who may not fully trust each other.
Analogous to the function of signatures in physical contracts, commitment
schemes ensure that once a commitment has been made to a particular mes-
sage, it cannot be altered retrospectively.

A commitment scheme involves two phases: the commitment phase and the
opening phase. In the commitment phase, the Sender holds a message m

and chooses a random key K to ”encode” the message and sends this to the
Receiver. This what we call a commitment to the message. In the opening
phase, the Sender reveals the key to the Receiver, allowing the Receiver to
verify that commitment and the message match.

There are two main properties a commitment scheme should satisfy:

• Hiding: Receiving a commitment to a message m should give no in-
formation to the Receiver about m.

• Biding: After the Commit phase, there exists only one value m that
will be accepted by the Receiver in the Open phase.

These properties can be either perfect or computational, i.e., against un-
bounded or computationally bounded adversaries, respectively. It is im-
portant to note that it is impossible to satisfy both properties simultane-
ously against adversaries with unlimited computational power. However
it is possible, to have schemes in which the Hiding property holds against
computationally unbounded adversaries and the Binding property holds for
computationally bounded adversaries or the other way around.

The most simple commitment scheme is simply computing a cryptographic
hash function of the message and sharing it alongside the original message.

34

5.3. Maliciously Secure Enrollment Scheme

The receiver can then verify the authenticity of the message by comparing
the received hash with one computed from the received message. However,
this form of commitment scheme does not allow for the addition of commit-
ted values without revealing them and may not hold up against computa-
tionally unbounded adversaries, who could potentially compromise it. To
address these limitations, more advanced commitment schemes have been
developed such as Pedersen Commitment Scheme.

Pedersen Commitment Scheme

In [15], Pedersen proposes an efficient non-interactive scheme for verifiable
secret sharing used to securely commit to a value without revealing the
value itself.

The commitments are perfect hiding, meaning that an adversary cannot
learn any information about the committed value, and computationally bind-
ing, meaning that the committed value cannot be changed.

Algorithm 8 Pedersen Commitment Scheme
Require: A value x to be committed, a random value r, and generators g

and h such that nobody knows log
g

h

1: Compute C = g
x · h

r

2: return C

This commitment can be later revealed, along with x and r, to prove that the
committed value was indeed x.

5.3.2 Construction via Pedersen Commitments

In this section we will expand the enrollment scheme seen in Chapter 2
using Pedersen’s Commitment. To quickly explain the protocol we have:

A threshold scheme (t, n) with a secret s, where Pr is the repairing player
and the helping players P1,P2....Pd are such that d = t.

Note that we can recover Pr’s share using the following equation:

fr = f (r) =
t

Â
i=1

zifi,

where zi is the Lagrange coefficients. Here we are using the same approach
seen in Chapter 2.1.1, where Shamir’s scheme is explained.

In this approach, the Initialize, Share, and Reconstruct algorithms are the
same as the ones described in Chapter 2.3.

35

5. Maliciously Secure Schemes

Algorithm 9 Proposed Verifiable Repairable Threshold Scheme Protocol
1: procedure Repair Protocol(P1,P2....Pd)

Require: d � t

2: for 1  i  d do
3: Pi compute random dji 1  j  d so that zifi = Âd

i=1 dji

4: for 1  j  d do
5: Pi sends dji to Pj

6: end for
7: end for
8: for 1  j  d do
9: Pj computes sj = Âd

j=1 dji

10: end for
11: for 1  i  d do
12: Pi sends si to Pr

13: end for
14: Pr computes sum of commitments Âd

i=1 si

15: if Commitments Âd

i=1 si = zifi then
16: Pr sets its share as zifi

17: else
18: Outputs ?
19: end if
20: end procedure

Formal Description

Note that every item highlighted in red, such as zifi , has a commitment
made using Pedersen’s Commitment Scheme. During the initialization phase
of the protocol, the dealer made public commitments to zifi for all Pi.

Pedersen’s commitments are computationally binding, ensuring that in the
first step each Pi is sending values which sum up to zifi, meaning that
malicious players cannot send different values as in the attack seen in Chap-
ter 4.3.

Each Pi essentially re-shares their value, but splitting it between other par-
ticipants means that less than d malicious actors cannot find out their value.

Now we will argue how the commits for the red values protects this scheme
against the attacks shown earlier. Especially as every Pi has to commit ev-
ery dji it shares means that it can’t send wrong values to Pr without being
discovered by other players.

36

5.3. Maliciously Secure Enrollment Scheme

Correctness and Privacy

We will first establish the correctness of the protocol and then prove its
privacy.

Proof of Correctness

The correctness of the scheme for honest-but-curious adversaries has already
been shown in [18]. We will now demonstrate its correctness for malicious
adversaries.

In the case of active adversaries, a malicious player may attempt to send
incorrect values dji in line 5 of the repair protocol or share incorrect si with
Pr. To address this, each participant commits to zifi publicly, where zi is the
commitment to the correct dji and fi is the commitment to the corresponding
si. Participants can verify the correctness of the commitments they receive
by comparing them with the expected values zifi = Âd

i=1 dji. By using the
additive properties of Pedersen commitments, the correctness of all si can
also be verified as all participants already have dji they can also verify the
correctness of all si using the same additive properties.

zrfr =
t

Â
i=1

si

=
t

Â
j=1

t

Â
i=1

dji =
t

Â
i=1

t

Â
j=1

dji

=
t

Â
i=1

zifi = zrfr

(5.1)

Given that there is at least one honest participant, the protocol remains se-
cure, even in the presence of malicious participants. The repairing player,
Pr, verifies that Ât

i=1 si = zifi, outputting ? if the verification fails.

When commitment verification fails, at least one helping player Pi submitted
a commitment for which s0

i
6= si . The repairing player, Pr, then outputs ?

fulfilling the property of correctness.

Proof of Privacy

We employ a similar argument to [18] to prove the privacy property. If
a coalition of d� 1 players attempts to calculate the secret, they may have
knowledge of Âd�1

i=1 si, but the missing value sk is completely random. Know-
ing this value is equivalent to knowing the value of the secret itself. There-
fore, no unauthorized player can gain any knowledge about the secret dur-
ing the repair protocol, satisfying the privacy property.

37

5. Maliciously Secure Schemes

Complexity

Lastly, we look at the complexity of the proposed commitment scheme. The
construction process of p and q involves an initial selection of q, followed
by determining p as the smallest prime congruent to 1 modulo q. Heuristics
show that p  q log q

2 [15], which suggests that a commitment to q bits
necessitates a maximum of q + 2 log q bits.

Looking at Chapter 2.3, the communication complexity of the repair algo-
rithm the total complexity is O(d2) for the initial algorithm. Adding com-
mitments means that for each message send there is a commitment send as
well making the complexity of the improved scheme O(d2)

38

Chapter 6

Evaluation

In this chapter, we will compare the three schemes we have discussed in
the previous sections: The redundancy scheme as discussed in Chapter 5.1,
the construction via Bivariate Polynomials as detailed in Chapter 5.2, and
the Maliciously Secure Enrollment Scheme as described in Chapter 5.3. We
will evaluate these schemes in terms of their communication complexity,
security, and correctness as well as compare it with DM-Recover scheme
from [7] a proactive secret sharing scheme which also offer repair algorithm
to recover lost or corrupted shares.

To recap from Chapter 2, communication complexity is the sum of the sizes
of all messages transmitted during the execution of an algorithm. Where n

is the number of participants, d is the number of players needed to repair
a share and t is the number of times a sub-shares occurs in combinatorial
RTS. Table 6.1 compares the communication complexity and malicious ad-
versaries threshold of these schemes.

Name Communication
Complexity

Threshold of actively
malicious adversaries

Redundancy Scheme O(dt) t
2

Bivariate Polynomials
Scheme

O(2d(t� 1)) d� 1

Enrolment Commitment
Scheme

O(2d
2) d� 1

DM-Recover Scheme O(n3) n

2

Table 6.1: Comparison of Communication Complexity and Threshold

It is clear that different schemes offer different levels of resilience against

39

6. Evaluation

actively malicious adversaries. The choice of scheme would depend on the
specific requirements of the application. We also need to take into account
computational complexity of these different protocols, but with computa-
tional abilities of modern devices, communication complexity is our focus.

The redundancy scheme is the least efficient as it supports the smallest
number of actively malicious adversaries, even if in comparison its com-
munication and computation complexity is quite small. Both bivariate poly-
nomials construction and enrolment scheme with commitments offer sig-
nificant improvements communication complexity compared to DM-Recover

scheme. The choice between bivariate polynomials and enrollment commit-
ment scheme will depend on specific values of n, d and t.

In conclusion, if communication complexity is a priority and t and sup-
posed number of adverseries is low, redundancy scheme might be prefer-
able. If number of adverseries is assumed to be higher, bivariate polynomi-
als or enrollment commitments are preferable.

Notably, all of the modified schemes display an increased communication
complexity compared to the original scheme. However, when considering
the improved thresholds of against against actively malicious adversaries,
this higher complexity can be seen as a valuable trade-off.

40

Chapter 7

Conclusion

This project undertook an intensive study of repairable threshold schemes
and the influence of actively malicious participants on these models.

We introduced new definitions of correctness and privacy for repairable
threshold schemes, which we used when evaluating attacks on existing
RTS constructions. After presenting a survey of existing schemes, we in-
troduced three modified schemes based on [13], subsequently proving their
correctness and privacy, as well as evaluated their communication complex-
ity. These three new constructions we proposed include the redundancy
scheme, the commitments enrolment scheme and construction using bivari-
ate polynomials.

Finally, we compared the three constructions against DM-Recover construc-
tion, which is a proactive secret sharing scheme and also secure against ma-
licious players. Then we concluded that the most optimal solution is either
commitments enrolment scheme or construction using bivariate polynomi-
als.

This work can be extended in several directions, especially when it comes to
expanding malicious security to regenerating codes RTS also introduced in
[13] and briefly introduced in Appendix 2.4. There seems to be an interesting
extension from Robust Threshold Schemes using Difference Sets but there
was not enough time to come up with distribution designs needed.

41

Appendix A

Appendix

A.1 Lagrange Interpolation

As to understand Shamir’s secret sharing scheme we need to define La-
grange interpolating polynomial.

Given a set of n+ 1 data points (x0, y0), (x1, y1), . . . , (xn, yn), where x0, x1, . . . , xn

are distinct. For this set of points the Lagrange interpolation polynomial
P(x) is given by:

L(x) =
n

Â
i=0

yi`i(x)

where `i(x) are the Lagrange basis polynomials defined as:

`i(x) =
n

’
j=0,j 6=i

x� xj

xi � xj

Where each `i(xj) has the following property:

`i(xj) =

(
1, if i = j

0, if i 6= j

The Lagrange interpolation polynomial L(x) is a sum of the yi values mul-
tiplied by `i(xj) evaluated at x and so the resulting polynomial has the fol-
lowing property L(xi) = yi for all i = 0, 1, . . . , n.

Most importantly this polynomial is unique. The proof of this statement can
be found in [10].

43

A. Appendix

A.2 Shamir’s Secret Sharing Scheme Example

Here we have an example of a (3, 5)-threshold scheme in field Z101. Suppose
we have a secret s = 42 that we want to distribute among 5 participants. To
do this we need to choose 3 random coefficients a0, a1, a2. In this case we
choose a0 = 42, a1 = 11, and a2 = 8 from Z1009.

We then compute the polynomial:

f (x) = a0 + a1x + a2x
2

f (x) = 2 + x + 5x
2

We can find the shares are by evaluating the polynomial f (x) at 5 different
points x1, x2, . . . , x5. We choose x1 = 1, x2 = 2, x3 = 3, x4 = 4, and x5 = 5
for convenience.

The shares for each participant Pi are:

P1 = (1, f (1)) = (1, 8)
P2 = (2, f (2)) = (2, 24)
P3 = (3, f (3)) = (3, 50)
P4 = (4, f (4)) = (4, 86)
P5 = (5, f (5)) = (5, 132)

Suppose now that participants P1, P2, P3 wish to reconstruct the secret. They
share their shares with each other, and then compute the Lagrange coeffi-
cients li as follows:

l1 =
(x� x2)(x� x3)
(x1 � x2)(x1 � x3)

=
(x� 2)(x� 3)
(1� 2)(1� 3)

=
1
2

x
2 � 5

2
x + 3

l2 =
(x� x1)(x� x3)
(x2 � x1)(x2 � x3)

=
(x� 1)(x� 3)
(2� 1)(2� 3)

= �x
2 + 4x� 3

l3 =
(x� x1)(x� x2)
(x3 � x1)(x3 � x2)

=
(x� 1)(x� 2)
(3� 1)(3� 2)

=
1
2

x
2 � 3

2
x + 1

Then, we compute f (x):

44

A.2. Shamir’s Secret Sharing Scheme Example

f (x) = l1 · f (1) + l2 · f (2) + l3 · f (3)

= 8 · (1
2

x
2 � 5

2
x + 3) + 24 · (�x

2 + 4x� 3) + 50 · (1
2

x
2 � 3

2
x + 1)

= 5x
2 � x + 2

So we find the original secret is f (0) = 2 mod 1009 = 2. Note that any
subset of 3 or more participants could also have reconstructed the secret,
since a (3, 5)-threshold scheme was used.

45

Bibliography

[1] Anna Baydakova. Is ledger’s new bitcoin key recovery feature safe?
experts have doubts, 2023.

[2] Mihir Bellare, Wei Dai, and Phillip Rogaway. Reimagining secret shar-
ing: Creating a safer and more versatile primitive by adding authentic-
ity, correcting errors, and reducing randomness requirements. Cryptol-
ogy ePrint Archive, Paper 2020/800, 2020. https://eprint.iacr.org/
2020/800.

[3] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed computation.
In Proceedings of the Twentieth Annual ACM Symposium on Theory of Com-

puting, STOC ’88, page 1–10, New York, NY, USA, 1988. Association for
Computing Machinery.

[4] Alfonso Cevallos, Serge Fehr, Rafail Ostrovsky, and Yuval Rabani.
Unconditionally-secure robust secret sharing with compact shares. In
Advances in Cryptology–EUROCRYPT 2012: 31st Annual International

Conference on the Theory and Applications of Cryptographic Techniques, Cam-

bridge, UK, April 15-19, 2012. Proceedings 31, pages 195–208. Springer,
2012.

[5] Anirudh Chandramouli, Ashish Choudhury, and Arpita Patra. A sur-
vey on perfectly secure verifiable secret-sharing. ACM Computing Sur-

veys (CSUR), 54:1 – 36, 2021.

[6] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch.
Verifiable secret sharing and achieving simultaneity in the presence of
faults. In 26th Annual Symposium on Foundations of Computer Science (sfcs

1985), pages 383–395. IEEE, 1985.

47

https://eprint.iacr.org/2020/800
https://eprint.iacr.org/2020/800

Bibliography

[7] Shlomi Dolev, Karim Eldefrawy, Joshua Lampkins, Rafail Ostrovsky,
and Moti Yung. Proactive secret sharing with a dishonest majority.
In Security and Cryptography for Networks: 10th International Conference,

SCN 2016, Amalfi, Italy, August 31–September 2, 2016, Proceedings, pages
529–548. Springer, 2016.

[8] Karim Eldefrawy, Nicholas Genise, Rutuja Kshirsagar, and Moti Yung.
On regenerating codes and proactive secret sharing: Relationships and
implications. In Stabilization, Safety, and Security of Distributed Systems:

23rd International Symposium, SSS 2021, Virtual Event, November 17–20,

2021, Proceedings 23, pages 350–364. Springer, 2021.

[9] Paul Feldman. A practical scheme for non-interactive verifiable secret
sharing. In 28th Annual Symposium on Foundations of Computer Science

(sfcs 1987), pages 427–438. IEEE, 1987.

[10] Jeffrey Humpherys, Tyler J Jarvis, and Emily J Evans. Foundations of
applied mathematics, volume 2: Algorithm design and optimization.

[11] Steve Jiekak, Anne-Marie Kermarrec, Nicolas Le Scouarnec, Gilles
Straub, and Alexandre Van Kempen. Regenerating codes: A system
perspective. ACM SIGOPS Operating Systems Review, 47(2):23–32, 2013.

[12] Bailey Kacsmar. Designing efficient algorithms for combinatorial re-
pairable threshold schemes. Master’s thesis, University of Waterloo,
2018.

[13] Thalia M Laing and Douglas R Stinson. A survey and refinement of re-
pairable threshold schemes. Journal of Mathematical Cryptology, 12(1):57–
81, 2018.

[14] Keith M Martin. Challenging the adversary model in secret sharing
schemes. Coding and Cryptography II, Proceedings of the Royal Flemish

Academy of Belgium for Science and the Arts, pages 45–63, 2008.

[15] Torben Pryds Pedersen. Non-interactive and information-theoretic se-
cure verifiable secret sharing. In Advances in Cryptology—CRYPTO’91:

Proceedings, pages 129–140. Springer, 2001.

[16] David A Schultz, Barbara Liskov, and Moses Liskov. Mobile proactive
secret sharing. In Proceedings of the twenty-seventh ACM symposium on

Principles of distributed computing, pages 458–458, 2008.

[17] Adi Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, 1979.

48

Bibliography

[18] Douglas R Stinson and Ruizhong Wei. Combinatorial repairability for
threshold schemes. Designs, Codes and Cryptography, 86:195–210, 2018.

[19] Martin Tompa and Heather Woll. How to share a secret with cheaters.
journal of Cryptology, 1(3):133–138, 1989.

49

	Contents
	Introduction
	Background
	Threshold schemes
	Shamir's Secret Sharing Scheme

	Repairable threshold schemes
	Enrollment Repairable Threshold Schemes
	Regenerating codes Repairable Threshold Schemes
	Regenerating Codes

	Ramp Schemes
	Combinatorial Repairable Threshold Schemes
	Verifiable secret sharing
	Proactive Secret Sharing
	DM-Recover Construction

	Definitions and Threat Model
	Correctness and Security
	Security types

	Threat model
	Assumptions
	Adversaries

	Attacks
	Combinatorial repairable threshold scheme attack
	Regenerating codes repairable threshold scheme attack
	Enrollment repairable threshold scheme attack

	Maliciously Secure Schemes
	Maliciously Secure Combinatorial Repairability using Redundancy
	Formal Description
	Correctness and Privacy
	Complexity

	Construction via Bivariate Polynomials
	Formal description
	Proofs of correctness and privacy

	Maliciously Secure Enrollment Scheme
	Commitment Schemes
	Construction via Pedersen Commitments

	Evaluation
	Conclusion
	Appendix
	Lagrange Interpolation
	Shamir's Secret Sharing Scheme Example

	Bibliography

