
Cuckoo filters in adversarial settings

Semester project

Keran Kocher

February 17, 2023

Advisors: Prof. Dr. Kenneth Paterson, Anupama Unnikrishnan

Applied Cryptography Group
Institute of Information Security

Department of Computer Science, ETH Zürich





Abstract

The Cuckoo filter is a probabilistic data structure for approximate mem-
bership queries. The structure is a space-efficient data store that sup-
ports the insertion of elements, deletions, and membership queries,
where a small fraction of false positives is possible. They are deployed
in situations where the filter could be manipulated to gain benefit, e.g.,
bypass a defense. Hence, we study the security of Cuckoo filters in ad-
versarial environments. We define the syntax of the Cuckoo filter with
deletions and extend it by applying a keyed pseudorandom function
to the input. Then, we derive a correctness bound using a simulation-
based definition.

i





Contents

Contents iii

1 Introduction 1
1.1 Cuckoo filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Cuckoo filters 7
2.1 Syntax and algorithms . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 The non-adversarial setting . . . . . . . . . . . . . . . . . . . . 10

3 Security Analysis 15

4 Conclusion 29

A Disabling probability 31

Bibliography 39

iii





Chapter 1

Introduction

Probabilistic data structures (PDS) are structures that involve randomized
algorithms in order to trade off different properties such as memory cost,
speed and accuracy. They are becoming increasingly popular with the rise
of data collection and the scaling of many services globally. Indeed, comput-
ing statistics on huge datasets or streams of data becomes infeasible because
of the memory cost. Therefore, probabilistic data structures are designed
for tasks such as estimating the number of unique elements or determining
whether an element belongs to a set, while requiring a memory utilization
that is sublinear. However, these structures give approximate answers. For
instance, the number of distinct elements in a set is not exact but can be
given along with a standard error. Examples of popular structures are the
Bloom filter, HyperLogLog or Count–min sketch. PDS are deployed in a
wide range of applications, such as in distributed systems, search engines
or data mining. More importantly, their usage is also frequent in critical
domains, like detection of DoS attacks in networks.
Probabilistic data structures can be deployed in open environments where
they might encounter adversarial inputs, i.e an attacker tries to influence the
behavior of the structure in his favour. The data structures are usually de-
signed for typical cases in an honest user setting. Their correctness and per-
formance are also measured in that case. However, they are already widely
deployed in adversarial environments. For example, the Bloom filter is a
structure for membership queries in a set and is regularly used in network
security. The detection of DoS attacks by filtering the traffic or the revoca-
tion of certificates (CRLite [12]) are notorious applications. A proposal [18]
to mitigate DNS amplification attacks also involves Bloom filters. A DNS
amplification attack exploits open recursive servers and IP source spoofing
to flood a victim with DNS responses he did not request. The defense con-
sists of recording outgoing requests to verify the one-to-one mapping with
the incoming requests. Since the memory footprint can be huge, the requests

1



1. Introduction

are stored in Bloom filters. If the corresponding outgoing request is found
in the filter, the response is considered legitimate. However, a malicious
request that is a false positive in the set is also considered legitimate. The
authors assume the expected false positive rate that is computed in the hon-
est setting, but a careful adversary could craft his DNS requests to increase
that rate and thus avoid the filtering.
Hence, the current situation justifies the need for a security analysis of prob-
abilistic data structures and the deployment of security measures when nec-
essary. In the past years, researchers have started to study this problematic
and our work aims to contribute to this effort by considering Cuckoo filters.

1.1 Cuckoo filter

The Cuckoo filter [6] is a probabilistic data structure for approximate mem-
bership query (AMQ). The filter lets a user insert and delete elements in a
set, and then query it to determine whether an element is in the set (i.e.
the element was previously inserted). Only a fingerprint of the element,
obtained by hashing, is stored. Therefore, the memory cost of the PDS is
sublinear at the cost of giving approximate answers. That is, if the query is
negative, the element is truly not in the set (no false negative) whereas if the
query is positive, the element can be a false positive with some probability.
The filter trades off the required storage with the false positive rate. This
technique is particularly useful when handling very large data collection.
The filter is based on Cuckoo hashing [15], which is a hashing scheme that
uses two hash functions instead of one, applied for instance in hash tables to
allocate the keys. Cuckoo filters are a recent addition to the family of AMQ-
PDS and are comparable to the popular Bloom filter, except that Cuckoo
filters allow the deletion of elements. Bloom filter extensions (e.g. counting
Bloom filter) exist to permit deletion, however Cuckoo filters perform better
in most situations.

1.2 Applications

The Cuckoo filter was introduced in 2014 while the Bloom filter was con-
ceived in 1970. Hence, the Bloom filter dominates when it comes to appli-
cations in the industry. Bloom filters are widely used in network security
for instance [8]. Network filtering can be done using a counting Bloom filter
that records the origin IP of incoming packets to prevent denial of service at-
tacks. The filter is also suited in a distributed setting. Distributed databases
can share their partition of data efficiently in the case of distributed queries,
i.e they send a Bloom filter instead of the data. In general, an AMQ-PDS
can be used to save bandwidth (e.g. in a disk or a network) by verifying the
presence of an element before fetching it.

2



1.2. Applications

On the other hand, Cuckoo filters are rarely seen in practice. Although
many implementations exist, the Redis database is the only application to
our knowledge offering support for Cuckoo filters. It seems that even if
deletion is needed, counting Bloom filters are still preferred nowadays, al-
though Cuckoo filters perform better in many settings [6]. Still, there are
many propositions to deploy Cuckoo filters. SPACF is a secure privacy-
preserving authentication scheme for vehicular ad-hoc network which uses
a combination of Cuckoo filters to verify a batch of signatures [4]. Sim-
ilarly, TinyCR [17] is a mechanism to verify the validity of certificates in
IoT devices, where performance and memory are decisive. In network se-
curity, many researchers propose to replace Bloom filters with Cuckoo for
improved performance, in deep packet inspection [1] or IP lookup table [11]
for example. Likewise, distributed data systems can benefit from Cuckoo
filters improvements [13]. In privacy, they can be used to reduce the com-
munication and computational costs in complex protocols like Private Set
Intersection (PSI). A concrete example can be found in [9] for efficient private
contact discovery in mobile. Overall, recent research suggests that Cuckoo
filters have a great potential and might be increasingly deployed in practice.

The authors of the Cuckoo filter paper provide a in-depth comparison be-
tween Cuckoo (CF) and Bloom filters (BF) to understand what their strengths
and weaknesses are. We present three metrics [6]:

• Space efficiency: the total size occupied w.r.t the number of items.

• False positive rate: the number of positive responses when querying
random non-inserted elements.

• Throughput: the number of operations per second for insertions, dele-
tions and queries.

We will only state the results of the benchmarks, but the details of the
methodology can be found in the original paper [6]. In a Bloom filter,
each element requires a constant number 1.44 log2(1/ϵ) of bits given the
false positive rate ϵ. In a Cuckoo filter, the number of bits per element is
(log2(1/ϵ) + 3)/α and depends on the load factor α of the data structure.
We observe that the space efficiency is superior in Cuckoo filters when the
load is sufficiently high. In practice, the load factor α of a Cuckoo filter
can reach 95% with a suitable configuration. Therefore, CF are more effi-
cient than BF when the false positive rate ϵ is sufficiently low (ϵ < 0.3%).
This behavior comes from the false positive rate, which is independent of
the number of insertions in the Cuckoo filter. On the other hand, this rate
grows with the number of items in a Bloom filter.
Lookup throughput is constant w.r.t to the state in a Cuckoo filter, since the
queried element is compared to a constant number of items. The lookup
performance is therefore generally better in CF than in BF, except for low
occupancy and negative queries where the BF can return as soon as a zero

3



1. Introduction

bit is encountered. The opposite is observed when comparing the insertion
throughput. Bloom filters are constant regardless of the occupancy while
Cuckoo filters performance drops as the load factor grows. Typically, the
performance is worse than a Bloom filter when the load is above 80%.

1.3 Related work

Previous works have studied the security of probabilistic data structures.
Naor and Yogev [14] highlight the weakness of Bloom filters in an adversar-
ial environment and formalize adversarial correctness using a game-based
approach. They model an adversary that has a limited number of inser-
tions and membership queries, that cannot see the internal state and that
must find a false positive. Clayton et al. [2] extend their work and gen-
eralize to more data structures, namely Bloom filters, Counting filters and
Count-min sketch. They also consider more settings, such as an adversary
that can reveal the internal state. They provide security bounds and some
countermeasures for each structure. However, their game-based framework
requires to choose a winning condition for the adversary.
Paterson and Raynal [16] analyze the security of HyperLogLog, a probabilis-
tic data structure to estimate the cardinality of a data set. They demonstrate
attacks on HyperLogLog and introduce a simulation-based framework for
a formal security analysis. Filić et al. [7] also follow a simulation-based
method inspired by that of [16] to prove the adversarial correctness of any
AMQ-PDS that respects some given rules. Additionally, they also consider
the privacy of the structures. They apply their framework to Bloom and
Cuckoo filters. Our work is based on their method, which we will describe
as we go.
Regarding Cuckoo filters, Reviriego et al. describe an attack on a filter de-
ployed in a networking system. They show that the filter can be adver-
sarially disabled with a number of queries proportional to the filter size
and the fingerprint space. Epstein [5] considers a simplified version of the
Cuckoo filter to understand the performance guarantees in the honest set-
ting. Notably, he removes the hashing of some term such that he can derive
an expression for the probability that an insertion fails. Thus, he can provide
further insights on parameters selection. Unfortunately, we do no know if
his approach generalizes to the standard Cuckoo filter. Yeo [19] focuses on
the use of Cuckoo hashing in cryptography. He proposes a new Cuckoo
hashing construction and states the conditions to obtain a robust data struc-
ture such that an adversary cannot leak private data from the filter.

4



1.4. Outline

1.4 Outline

In this project, we specifically study the security of the Cuckoo filter. We
base our work on the research from Filić et al. [7]. The authors studied the
security of probabilistic data structures for approximate membership query
(AMQ). They provide a simulation-based proof framework and prove the se-
curity of insertion-only AMQ-PDS such as the Bloom filter and the Cuckoo
filter.
Simulation-based proofs consider two worlds. The real world models the
probabilistic data structure under analysis in real conditions, as it is im-
plemented. On the other hand, the ideal world simulates the data struc-
ture such that the simulation is consistent with the expected behavior but
also achieves some security goals. In our case, the ideal world simulates a
filter that stays non-adversarially influenced. Then, we can derive a secu-
rity bound by defining a cryptographic game. In this game, an adversary
is distinguishing between the two worlds by playing in either of them, i.e
he interacts through an API with the filter’s instantiation or the simulator.
His advantage decides the security bound. Intuitively, the bound states the
closeness between the data structure and its ideal version.
An advantage of simulation-based proof is the absence of a specific winning
condition for the adversary, which leads to a broad security definition. In
[7], the authors define the notion of adversarial correctness and derive a se-
curity bound for any insertion-only AMQ-PDS. Our goal is to extend the
simulation-based proof to Cuckoo filters with deletions allowed.
We study the differences introduced by adding deletions in Cuckoo filters.
We first define the syntax and the algorithmic behavior of a Cuckoo filter.
In particular, we add the capability to delete elements and update the other
functions accordingly. Based on that, we proceed with the security analysis
and adapt the framework of [7]. Notably, we need to describe the adver-
sarial model and the game setting. Besides, we update the ideal world’s
simulator to support deletion. Finally, we state a theorem for the adversarial
correctness and demonstrate a bound for it.

1.5 Preliminaries

Notation. We use the same notation as in [7]. Given m ∈ Z≥1, [m] is the
set {1, 2, ..., m}. For a set S, P(S) is the power set of S, and Plists(S) is the
set of all lists with non-repeated elements from S. Given two sets D and R,
Func[D,R] is the set of functions from D to R. When F ←$ Func[D,R] is

sampled, F is a random function D
F→ R. The identity function Id : S → S

over a set S is written IdS. If D is a distribution, x ←$ D is a sample drawn
from D. The number of elements in the set S is written |S|. In pseudo code,
a← ⊥s is a list of s empty slots, load(a) is the number of entries in a and a[i]

5



1. Introduction

is the ith entry in a. Dictionaries (key-value stores) are initialized with empty
value ⊥ at each key, and ⊥ < n, ∀n ∈ R. Variable assignment is denoted
with an normal arrow ← or a dollar arrow ←$ if the input is randomized.
For any randomized algorithm, an extra argument r ∈ R can be added
to represent the coins, i.e the randomness, over the set of coins R. If not
specified, we assume the coins are sampled uniformly. The argument may
be omitted when it is notationally convenient. We write algf1,...,fn to denote
an algorithm that can access oracles f1, ..., fn.

PRF experiment. Figure 1.1 defines the pseudorandom function experiment
which formally defines the security of such functions. In brief, we consider
the advantage of an adversary that must distinguish between a PRF and a
perfectly random function.

Exp
PRF
R (B)

1 : K ←$ K; F ←$ Func[D,R]

2 : b←$ {0, 1}; b′ ←$ BRoR

3 : return b′

Oracle RoR(x)

1 : if b = 0 : y← RK(x)
2 : else : y← F(x)
3 : return y

Figure 1.1: PRF experiment

Definition 1.1 (PRF experiment) Consider the PRF experiment in Figure 1.1.
We say a pseudorandom function family R : K ×D → R is (q, t, ϵ)-secure if for
all adversaries B running in time at most t and making at most q queries to RoR
oracle in Exp

PRF
R (B) we have

AdvPRF
R (B) := |Pr[b′ = 1 | b = 0]− Pr[b′ = 1 | b = 1] | ≤ ϵ.

We say B is a (q, t)-PRF adversary.

6



Chapter 2

Cuckoo filters

2.1 Syntax and algorithms

We define the syntax for the Cuckoo filter with deletions and describe its
exact behavior. The syntax is based on [7]. A Cuckoo filter is characterized
by a set of public parameters pp = (λI , λT, b, u), where

• λI is the bit length of the bucket’s index. The hash function to compute
indices is HI : D→ {0, 1}λI and there are 2λI buckets in the filter.

• λT is the bit length of the fingerprint. The hash function to compute
fingerprints is HT : D→ {0, 1}λT .

• b is the size of a bucket (number of slots).

• u is the maximum number of evictions.

A Cuckoo filter consists of four algorithms. The complete description can
be found in Figure 2.1. We refer to these definitions when the functions are
mentioned in the following chapters.

• The setup algorithm σ ← setup(pp) initializes an empty state σ given
the public parameters pp.

• The insertion algorithm (a, σ′)←$ insert(x, σ) inserts an element x ∈ D
in the state σ. It returns the bit a to indicate either a successful insertion
(a = ⊤) or a failure (a = ⊥). The insertion also returns the updated
state σ′.

• The membership querying algorithm b ← query(x, σ) returns the bit b
to indicate whether the element x ∈ D is present (b = ⊤) or absent
(b = ⊥) in the state σ.

• The deletion algorithm (c, σ′) ← delete(x, σ) deletes an element x ∈ D
from the state σ. It returns the bit c to indicate whether the element

7



2. Cuckoo filters

setup(pp)

1 : λI , λT , b, u← pp
2 : // Initialize 2λI buckets, b λT-bits slots

3 : for i ∈ 2λI : σi ← ⊥b

4 : σevic ← ⊥
5 : ωevic ← ⊥
6 : return σ← (σi)i, σevic

queryF,HT ,HI (x, σ)

1 : x ← F(x)
2 : tag← HT(x)
3 : i1 ← HI(x)
4 : i2 ← i1 ⊕ HI(tag)
5 : a← tag ∈ σi1 or tag ∈ σi2
6 : b← tag = σevic and (i1 = ωevic or i2 = ωevic)

7 : return a or b

Figure 2.1: Syntax for setup and query

was successfully deleted (c = ⊤) or not (c = ⊥). The deletion also
returns the updated state σ′.

Overview. We give a brief overview on how the filter works. The state σ
consists of 2λI buckets and every bucket has b slots to store an element. On
the insertion of element x ∈ D, a fingerprint is computed using the hash
function HT: tag = HT(x). The state will only contain the fingerprint, not
the element itself. Then, two indices are computed using the HI hash func-
tion: i1 = HI(x) and i2 = i1 ⊕ HI(tag). The key property of the indices
is that, given an index, the second index can be computed only using the
fingerprint of x and HI . Finally, the fingerprint is inserted in one of the
buckets given by i1 and i2. If both buckets are full, an element y (which is
a stored fingerprint) is chosen at random in either buckets and moved to its
secondary bucket, in which case the secondary index i′ = i⊕ HI(y) is com-
puted and y is inserted in the bucket given by i′. This procedure is called an
eviction (of y). Note that evictions will be done multiple times consecutively
if the secondary buckets are also full. Also, if the same element is inserted
multiple times, the fingerprint must be inserted every time to maintain con-
sistency with deletions. On the querying of element x ∈ R, the fingerprint
and the two indices are computed. Then, the fingerprint of x is matched
against the fingerprints stored in the two buckets. The insertion algorithm
runs in constant time in expectation, while the query algorithm is always
constant.

Disabling. We now explain how the filter reaches its capacity and insertions
can fail. When the maximum number of consecutive evictions for a single
insertion is reached (defined as the parameter u), the last evicted item is
stored in a stash σevic and insertion is disabled as long as the stash is full.
The insertion leading to that event is still successful, because no element
are discarded. Consequently, the query and deletion algorithms must also
check the element in the stash.

8



2.1. Syntax and algorithms

insertF,HT ,HI (x, σ)

1 : x ← F(x)
2 : if σevic ̸= ⊥ : return ⊥, σ // filter is full

3 : tag← HT(x)
4 : i1 ← HI(x)
5 : i2 ← i1 ⊕ HI(tag)
6 : for i ∈ {i1, i2}
7 : if load(σi) < b
8 : σi ← σi ⋄ tag
9 : return ⊤, σ

10 : // no empty slot available

11 : i←$ i1, i2
12 : for g ∈ [num]

13 : slot←$ [b]
14 : evic← σi[slot]
15 : σi[slot]← tag
16 : tag← evic
17 : i← i⊕ HI(tag)
18 : if load(σi) < b
19 : σi ← σi ⋄ tag
20 : return ⊤, σ

21 : // max number of evictions reached, filter is full

22 : σevic ← tag
23 : ωevic ← i
24 : return ⊤, σ

deleteF,HT ,HI (x, σ)

1 : x ← F(x)
2 : tag← HT(x)
3 : i1 ← HI(x)
4 : i2 ← i1 ⊕ HI(tag)
5 : if tag = σevic and (i1 = ωevic or i2 = ωevic)

6 : σevic ← ⊥; ωevic ← ⊥
7 : return ⊤, σ // The filter is open

8 : if tag ∈ σi1
9 : σi1 ← σi1 ∖ tag

10 : elseif tag ∈ σi2
11 : σi2 ← σi2 ∖ tag
12 : else : return ⊥, σ, // nothing to delete

13 : if σevic ̸= ⊥
14 : (tag, i1)← (σevic, ωevic)

15 : σevic ← ⊥; ωevic ← ⊥
16 : // reinsert the element from the stash

17 : i2 ← i1 ⊕ HI(tag)
18 : for i ∈ {i1, i2}
19 : if load(σi) < b
20 : σi ← σi ⋄ tag
21 : return ⊤, σ

22 : i←$ i1, i2
23 : for g ∈ [num]

24 : slot←$ [b]
25 : evic← σi[slot]
26 : σi[slot]← tag
27 : tag← evic
28 : i← i⊕ HI(tag)
29 : if load(σi) < s
30 : σi ← σi ⋄ tag
31 : return ⊤, σ

32 : σevic ← tag; ωevic ← i
33 : return ⊤, σ

Figure 2.1: Syntax for insert and delete

9



2. Cuckoo filters

Deletion. We extend the syntax of [7] by adding the delete algorithm. Dele-
tion is as described in the original paper [6], except that that the eviction
stash σevic is now supported. On the deletion of element x ∈ D, the finger-
print and the two indices are computed. Similar to querying, the fingerprint
of x is compared to the fingerprints in the buckets and the stash, and one
fingerprint is removed if it matches. If many fingerprints are matching, it
is sufficient to remove any one of them. For instance, the same fingerprint
could reside in the two buckets and correspond to two different elements.
But we can safely delete any of the two since the secondary bucket depends
solely on the fingerprint (the primary bucket of one is the secondary bucket
of the other regardless of the original element).

Non-permanent disabling. Additionally, we must also determine whether the
filter can reopen once elements are deleted. Following the official imple-
mentation [3], we decide that the filter can accept insertions again after an
element is deleted. Thus, the filter is not permanently disabled. This choice
also makes sense for the usability of the filter. In production, the filter could
reach capacity because of high utilization (e.g. peak network traffic) and
then recover when the situation becomes stable again. Therefore, on dele-
tion, the filter opens again if the removed element was in the stash. Addi-
tionally, if an element in a bucket is successfully deleted, the filter takes the
element in the stash (if any) and inserts it again. If this insertion is success-
ful, the stash stays empty. Otherwise, the stash is full again and the filter
remains closed. Note that the state of the filter is made of two variables: σ
represents the tags in the filter and ω stores indices. In particular, it is nec-
essary to store the index of an evicted element such that it can be reinserted
afterwards.

To analyze the state of the filter in the adversarial setting, we must first
know what to expect in the honest setting. We can then identify the devi-
ation between the two settings. The input domain D and its distribution
is not known in general and is application-dependent. Thus, we cannot
derive an expected state in that case. For this reason, [7] introduces the
F-decomposability property and the notion of non-adversarially influenced
(NAI) to describe the non-adversarial setting.

2.2 The non-adversarial setting

Definition 2.1 (Function-decomposability) Let Π be an AMQ-PDS and F←$

Func[D,R] with R ⊂ D be a random function. Let IdR be the identity function

10



2.2. The non-adversarial setting

n-NAI-genF(pp)

1 : σ(0) ←$ setup(pp)
2 : [x1, ..., xn]←$ {S ∈ Plists(D) | |S| = n}
3 : for j = 1, ..., n : (b, σ(j))←$ insertF(xj, σ(j−1))

4 : return σ(n)

Figure 2.2: Algorithm returning non-adversarially influenced (NAI) state

over R. We say that Π is F-decomposable if we can write ∀x ∈ D, σ ∈ Σ

insertF(x, σ) = insertIdR(F(x), σ),

queryF(x, σ) = queryIdR(F(x), σ),

deleteF(x, σ) = deleteIdR(F(x), σ).

The input to the algorithms is first transformed by a random function F
whose output is uniformly random independently from the input. There-
fore, the distribution of the input D can be ignored and the algorithm can
expect a uniform input in R. In practice, a truly random function can be
replaced by a PRF with certain security guarantees.

NAI. We define the non-adversarially influenced state for a Cuckoo filter as
a state close to one generated by inserting n distinct random elements in the
filter. This definition is introduced by [7] to formalize the state in the honest
setting.

Definition 2.2 ((n, ϵ)-NAI) Let ϵ > 0, and let n be a non-negative integer. Let Π
be a Cuckoo filter with public parameters pp and state space Σ, such that its insert
algorithm makes use of oracle access to function F. Let alg be a randomised algo-
rithm outputting values in Σ. Let σ, σ(n) be random variables representing respec-
tively the output of alg and of the randomised algorithm n-NAI-genF(pp) described
in Figure 2.2. We say that alg outputs an (n, ϵ)-non-adversarially-influenced state
(denoted by (n, ϵ)-NAI) if σ is ϵ-statistically close to σ(n).

False positive. In the context of AMQ-PDS, a false positive is a member-
ship query that is positive for an element that was not previously inserted.
False positives are undesirable and are a critical consideration in AMQ-PDS.
Indeed, these structures trade off their memory footprint with their false
positive rate. In Cuckoo filters, on the querying of some x that was not pre-
viously inserted, the fingerprint of x can match another fingerprint in the
buckets (a hash collision) and the query would be falsely positive. First, we
formally define the false positive probability for a NAI state.

11



2. Cuckoo filters

Definition 2.3 (NAI false positive probability) Let Π be a Cuckoo filter with
public parameters pp, using function F sampled from a distribution DF to instanti-
ate its functionality. Let n be a non-negative integer. Define the NAI false positive
probability after n distinct insertions as

PΠ,pp(FP|n) :=

 F ←$ DF
σ←$ n-NAI-genF(pp)

x ←$ D \V : ⊤ ← queryF(x, σ)

 ,

where V is the list [x1, ..., xn] sampled on line 2 of n-NAI-genF(pp).

In Cuckoo filters, we might encounter states that are adversarially generated
despite the randomness. Because of the structure of the filter, the adver-
sary can potentially target the set of random elements that are successfully
inserted. The placement of each element is non-deterministic because of
the two possible slots and depends on the current state. Therefore, a user
could obtain an adversarially influenced state in comparison to the one of
n-NAI-genF(pp) with a suitable sequence of insertions and deletions. Thank-
fully, we can show that the original bound of the false positive probability
[6] also holds for adversarially generated states. Hence, we define the uni-
versal false positive probability and show that the bound is valid for any
state.

Definition 2.4 (Universal false positive probability) Let Π be a Cuckoo filter
with deletions, public parameters pp and state space Σ. Define PΠ,pp(FP) the upper
bound of the false probability of Π in any state σ ∈ Σ.

Lemma 2.5 Let Π be a Cuckoo filter with deletions, public parameters pp =
(λI , λT, b, u) and state space Σ. Define PΠ,pp(FP|σ) the false positive probabil-
ity of the filter given a state σ ∈ Σ. Then,

∀σ ∈ Σ, PΠ,pp(FP|σ) ≤ PΠ,pp(FP) = 1− (1− 2−λT )2b+1.

Proof By definition, a false positive is observed when the membership query
of a non-inserted element is positive. We consider the query of a random
element x. If x is random, then its fingerprint tag = HT(x) is also random.
Thus, the probability that any element y matches x is 2−λT , λT the number
of bits in a fingerprint. Then, the probability that n distinct elements do not
match x is (1− 2−λT )n. Finally, we want the probability that at least one
element matches x, which is 1− (1− 2−λT )n. This probability increases with
n, so the upper bound is reached when n is maximal. In a Cuckoo filter,
a queried element is compared to at most 2b + 1 elements, the two buckets
and the stash. Therefore, the false probability in a filter with any state is
bounded by 1− (1− 2−λT )2b+1. □

False negative. False negatives cannot happen in insertion-only AMQ-PDS.
However, if deletions are possible, then false negatives can arise. In Cuckoo

12



2.2. The non-adversarial setting

filters, the deletion of a non-inserted element can create a false negative.
Indeed, on the deletion of some x that was not previously inserted, most of
the time the state will remain unchanged. However, the fingerprint of x can
still match a fingerprint stored in one of its buckets. In this case, an element
would be deleted and a membership query on that element would be falsely
negative (if the element was only inserted one time).

PRF-wrapped Cuckoo filters. Cuckoo filters are not function-decomposable by
default. To have this property, the proposal of [7] is to preprocess the input
of insert, query and delete by a random function F : D → R. We wrap the
algorithm by first applying F to the input, and then calling the correspond-
ing procedure. The PRF-wrapped Cuckoo filter is described in Figure 2.1.
By doing so, we can easily achieve F-decomposability. This property comes at
the cost of a higher false positive rate (due to the collisions introduced by
F). The false positive rate increase was proven to be bounded by O(|R|−1)
and can be made arbitrarily small by increasing the codomain of F. We state
the lemma from [7].

Lemma 2.6 Let n be a non-negative integer, let Π be a PRF-wrapped insertion-
only Cuckoo filter with public parameters pp = (λI , λT, b, u), wrapped using a
PRF RK : D → R, and let Π′ be an original Cuckoo filter with deletions and the
same parameters pp as Π.

Let PΠ,pp(FP|n) := PΠ′,pp(FP|n) + (2b + 2)2

2|R| .

Then, PΠ,pp(FP|n) ≤ PΠ,pp(FP|n).

Proof Since we defined the NAI false positive probability (Def 2.3) with the
inserted elements being distinct, the PRF can break this assumption due to
collisions. Therefore, we apply the birthday problem to bound the proba-
bility that there is collision in the set of 2b + 2 elements (2b + 1 elements in
the buckets and the stash, and the inserted element). See [7] for a complete
proof. □

Disabling probability. The disabling probability is another central metric for
an AMQ-PDS, since this expression also defines the expected load factor of
the filter. We first define the first-time disabling probability, the probability that
an insertion fails for the first time given n elements were already successfully
inserted.

Definition 2.7 (First-time disabling probability) Let Π be an insertion-only
Cuckoo filter with public parameters pp. Let n be a non-negative integer. Define

13



2. Cuckoo filters

the first-time disabling probability as

PΠ,pp(D|n) :=


σ(0) ←$ setup(pp)

[x1, ..., xn]←$ {S ∈ Plists(D) | |S| = n}
for j = 1, ..., n : (⊤, σ(j))←$ insertF(xj, σ(j−1))

x ←$ D \V : ⊥ ← insertF(x, σ(n))

 ,

where V is the list [x1, ..., xn] sampled on line 2.

Unfortunately, no closed-form expression exists for Cuckoo filters up to this
day. In our case, the disabling probability also intervenes in the adversarial
correctness. Thus, we propose a bound of the probability. The task is not
trivial because the structure of the Cuckoo filter is hard to analyze. In the
end, the probability to be disabled is the probability that the stash is filled at
some point. This event mainly depends on the number of full buckets. We
need to determine the distribution of the full buckets, which is the key and
challenging step. We must consider all ways the filter can construct its state.
Each element has two buckets, which are assigned either at random if both
have empty slots, to the second bucket if the first is full, or another element
is evicted to another bucket if both are full. Furthermore, the secondary
bucket is not uniformly distributed if λT < λI , because the secondary index
depends on the fingerprint which has only 2λT values. Consequently, evicted
elements are not moved uniformly and some buckets may be filled faster
than other. More details can be found in the appendix A. We define a loose
upper bound of the first-time disabling probability.

Definition 2.8 (Upper bound on first-time disabling probability) Let Π be
an insertion-only Cuckoo filter with public parameters pp. Define PΠ,pp(D|n) the
upper bound of the first-time disabling probability (Def 2.7).

Lemma 2.9 Let Π be an insertion-only Cuckoo filter with public parameters pp =
(λI , λT, b, u). Let l = ⌊ n

b ⌋. Then,

PΠ,pp(D|n) ≤ l
m

.

Proof The disabling probability given l buckets are full is trivially bounded
by l

m , the probability that a primary index points to a full bucket. This prob-
ability increases with l, so the upper bound is reached when l is maximal.
Given that n elements were inserted in the filter, the maximal number of full
buckets l is ⌊ n

b ⌋. □

A tighter bound is shown in the analysis of the disabling probability in
appendix A.

14



Chapter 3

Security Analysis

We now proceed to the security analysis of the Cuckoo filter with deletions.
In the following, we describe the simulation-based framework for analyzing
the adversarial correctness of Cuckoo filters.

We formally define the game Real-or-Ideal in Figure 3.1. The game consists
of an adversary A, a simulator S and a distinguisher D. The adversary A
interacts with the filter’s instantiation Π using three oracles. First, the filter
is initialized and is empty at the beginning. Then, A can insert any element
in Π through the Insert oracle and delete through the Delete oracle. The ad-
versary can also use the Query oracle to perform a membership query in Π.
Hence, A can execute the three possible operations in a Cuckoo filter.
The game first flips a coin d to determine whether the world is real (d = 0)
or ideal (d = 1). In the first case, an empty Cuckoo filter is initialized and
the adversary is given the three oracles to perform insertions, deletions and
membership queries on it. In the second case, the adversary is interacting
with the simulator which is defined in the next section. Observe that from
A’s point of view, he is also interacting with the three oracles in the sim-
ulator. The adversary A produces some output out, which is given to the
distinguisher D. Then, D returns the final guess (d = 1 or d = 0). Note that
the output of the adversary is not restricted.

As in [10], we study the security in the ”private” setting, where the adver-
sary cannot reveal and observe the state of the filter. Moreover, the adversary
cannot reinsert an element already inserted in the filter. Indeed, the inser-
tion of 2b times the same element inevitably disables the structure, which
is not the case in the simulator. However, the adversary can reinsert an ele-
ment that was deleted. Because of this rule, we cannot allow the adversary
to reveal the state as he would be able to deduce that the simulator inserts
freshly sampled elements. He can insert a deleted element a second time
and observe that the newly inserted fingerprint is different from the first
time. We call this restricted adversary a no-reinsertion adversary.

15



3. Security Analysis

Definition 3.1 (No-reinsertion adversary) An adversary A is a no-reinsertion
adversary iff for every query Insert(x) from A, x was not previously inserted by A
or x was inserted and then deleted.

In this setting, the harm A can do in the real world can be quantified by
the ability of D to distinguish between the two worlds. We can now define
the notion of adversarial correctness using the Real-or-Ideal game we just
described.

Definition 3.2 (Adversarial correctness) Let Π be a Cuckoo filter with deletions
and public parameters pp, and let RK be keyed function family. We say Π is
(qin, qqry, qdel, ta, ts, td, ϵ)-adversarially correct under no reinsertion if, for all no-
reinsertion adversaries (Def 3.1) A running in time at most ta and making qin, qqry,
qdel queries to oracles Insert,Query,Delete respectively in the Real-or-Ideal game
(Figure 3.1) with the simulator S (Figure 3.2) that runs in time at most ts, and for
all distinguisher D running in time at most td, we have

AdvRoI
Π,A,S (D) := |Pr[Real(A,D) = 1]− Pr[Ideal(A,D,S) = 1] | ≤ ϵ.

Real-or-Ideal(A,S ,D, pp)

1 : d←$ {0, 1}
2 : if d = 0
3 : K ←$ K; F ← RK

4 : σ← setup(pp)

5 : out←$ AInsert,Query,Delete

6 : else
7 : out←$ S(A, pp)

8 : return d′ ←$ D(out)

Oracle Insert(x)

1 : (b, σ)←$ insertF(x, σ)

2 : return b

Oracle Query(x)

1 : return queryF(x, σ)

Oracle Delete(x)

1 : (b, σ)←$ deleteF(x, σ)

2 : return b

Figure 3.1: Real-or-Ideal game

We construct a simulator in Figure 3.2. We base our definition on a master
thesis from Ella Kummer [10]. She does a similar study but for counting
filters with deletions. The simulator defines three oracles that simulate the
functions of a Cuckoo filter. To construct those oracles, we still instantiate a
Cuckoo filter in the background. However, instead of letting the adversary
directly interact with the filter, the simulator proxies the requests.

Insertion. On the insertion of x, the simulator inserts a random element y

16



instead of the given one. The simulator stores the pair x and y. So, if an ele-
ment is inserted a second time, the simulator does not insert it again in the
filter. The counter ctrin counts the number of successful insertions. Overall,
random elements are inserted to ensure that the adversary cannot influence
the state by targeting some elements.

Membership query. On the querying of x, the response is necessarily positive
if the element was previously inserted by the adversary. Otherwise, a ran-
dom element is queried and the result is returned. The goal is to simulate
the honest false positive rate of a Cuckoo filter. Observe that the mem-
bership query’s result of a non-inserted element cannot change unless new
elements are inserted or deleted. Hence, the data structures FPbool, LQCTRin
and LQCTRdel (Last Query Counter) are necessary for consistency. If x was
a false positive and no elements were deleted since, then x must still be a
false positive (line 5-7). If x was not a false positive and no elements were
inserted since, then the query’s response must still be negative (line 8-10).

Deletion. On the deletion of x, the corresponding element y is deleted if x
was previously inserted by the adversary. Recall that a random element y
is inserted in the filter instead of x. Therefore, we maintain the consistency
between insertions and deletions. Consequently, no false negatives are pos-
sible in the simulator. The counter ctrdel counts the number of deletions.

Overall, we remove the dependency between insert/delete and query for non-
inserted elements. The adversary learns nothing useful from querying an
element before inserting it. Furthermore, the simulator is consistent from
the adversary’s perspective.

We now proceed to state and prove the correctness bound for Cuckoo filters
with deletions.

Theorem 3.3 (Adversarial correctness) Let qin, qqry and qdel be non-negative
integers, and let ta, td > 0. Let F : D → R. Let Π be the (wrapped) Cuckoo filter
deletions defined in Figure 2.1) with public parameters pp and oracle access to F.
If RK : D → R is a (qin + qqry + qdel, ta + td, ϵ)-secure pseudorandom function
with key K ←$ K, then Π is (qin, qqry, qdel, ta, ts, td, ϵ′)-adversarially correct under
no reinsertion with respect to the simulator in Figure 3.2, where

ϵ′ = ϵ + qin · PΠ,pp(D|qin − 1) + (2qqry + qdel) · PΠ,pp(FP).

Proof We introduce two games Real-or-G and G-or-Ideal (Figure 3.3) using
an intermediary step G. We then state and prove two lemmas which bound
the advantage of the distinguisher in the new games, that is we show the
closeness of first Real and G and then G and Ideal. In the end, we combine
the lemmas to prove the theorem. □

17



3. Security Analysis

Simulator S(A, pp)

1 : F ←$ Func[D,R]

2 : σ← setup(pp)
3 : // whether an element is inserted and its value

4 : insertedbool ← {}
5 : insertedvalue ← {}
6 : // whether an element is a False Positive

7 : FPbool ← {}
8 : // number of insertion/deletion at the Last Query

9 : LQCTRin ← {}
10 : LQCTRdel ← {}
11 : // counter of total insertion/deletion

12 : ctrin ← 0
13 : ctrdel ← 0

14 : return AInsertSim,QuerySim,DeleteSim

Oracle InsertSim(x)

1 : if insertedbool[x] = ⊥
2 : (a, σ)← insertIdR(y←$ R, σ)

3 : if a = ⊤
4 : ctrin ← ctrin + 1
5 : insertedbool[x]← ⊤
6 : insertedvalue[x]← y
7 : endif
8 : else
9 : a← ⊤

10 : return a

Oracle QuerySim(x)

1 : c← queryIdR(y←$ R, σ)

2 : if insertedbool[x] = ⊤
3 : c← ⊤
4 : elseif FPbool[x] = ⊤ and LQCTRdel = ctrdel

5 : // x was a FP and no deletion happened since

6 : c← ⊤
7 : elseif FPbool[x] = ⊥ and LQCTRin = ctrin

8 : // x was not a FP and no insertion happened since

9 : c← ⊥
10 : else
11 : FPbool[x]← c
12 : LQCTRin[x]← ctrin

13 : LQCTRdel[x]← ctrdel

14 : return c

Oracle DeleteSim(x)

1 : if insertedbool[x] = ⊤
2 : (b, σ)← deleteIdR(insertedvalue[x], σ)

3 : else
4 : b← ⊥
5 : if b = ⊤
6 : ctrdel ← ctrdel + 1
7 : insertedbool[x]← ⊥
8 : return b

Figure 3.2: Simulator

Lemma 3.4 The difference in probability of an arbitrary td-distinguisher D out-
putting 1 in experiments of game Real-or-G in Figure 3.3 with a no-reinsertion
(qin, qqry, qdel, ta)-Cuckoo filter adversary A is bounded by the maximal PRF ad-
vantage ϵ of a (qin + qqry + qdel, ta + td, ϵ)-PRF adversary attacking RK:

AdvReal-or-G
Π,A (D) := |Pr[Real(A,D) = 1]− Pr[G(A,D) = 1] | ≤ ϵ.

Proof In G, the keyed PRF used in the PRF-wrapped Cuckoo filter is re-
placed with a random function F ←$ Func[D,R]. In the Real-or-G game,

18



Real-or-G(A,D, pp)

1 : d←$ {0, 1}
2 : if d = 0 // Real

3 : K ←$ K; F ←$ RK

4 : else // G

5 : F ←$ Func[D,R]

6 : σ← setup(pp)

7 : out←$ AInsert,Query,Delete

8 : d′ ←$ D(out)

9 : return d′

G-or-Ideal(A,S ,D, pp)

1 : d←$ {0, 1}
2 : if d = 0 // G

3 : F ←$ Func[D,R]

4 : σ← setup(pp)

5 : out←$ AInsert,Query,Delete

6 : else // Ideal

7 : out←$ S(A, pp)

8 : d′ ←$ D(out)

9 : return d′

Figure 3.3: Intermediate game G

A interacts either with a PRF-wrapped filter (Real) or with a filter wrapped
with F (G). In Figure 3.4, we construct an adversary B of the PRF experiment
(Figure 1.1). The adversary B invokes the adversary A of the Real-or-G
game, and the oracle RoR handles the queries to Π in Insert,Query and
Delete. This construction proves that the PRF experiment exactly reduces
to the Real-or-G game (and vice-versa). Indeed, when b = 0, RoR applies
a keyed PRF RK, which is equivalent to d = 0 in the Real-or-G game. The
same argument is true for b = 1, B is running G for A where a truly random
function F in RoR is used to handle A oracle queries to Π. Hence, since RK
is a (qin + qqry + qdel, ϵ)-secure PRF by assumption, we can deduce that

AdvReal-or-G
Π,A (D) = AdvPRF

R (B) ≤ ϵ.

Adversary BRoR

1 : F ←$ RoR

2 : σ← setup(pp)

3 : return d′ ←$ D(AInsert,Query,Delete)

Figure 3.4: PRF adversary B

Lemma 3.5 Let Ei
λ be the event that denotes the divergence between G∗ and Ideal

in the ith response of oracle λ to A:

Ei
λ = [The first mismatch is observed during the ith query to the oracle λ].

19



3. Security Analysis

Then, let E, E′, and E′′ be the events that denote the divergence for each oracle:

E = [Ei
QuerySim for some i ∈ [qqry]],

E′ = [Ei
DeleteSim for some i ∈ [qdel]],

E′′ = [Ei
InsertSim for some i ∈ [qin]].

The difference in probability of an arbitrary distinguisher D outputting 1 in ex-
periments of game G-or-Ideal with a no-reinsertion (qin, qqry, qdel, ta)-Cuckoo filter
adversary A is bounded by Pr[E] + Pr[E′] + Pr[E′′].

AdvG-or-Ideal
Π,A,S (D) := |Pr[G(A,D) = 1)]− Pr[Ideal(A,D,S) = 1] |

≤ Pr[E] + Pr[E′] + Pr[E′′].

Proof We now prove a bound on the closeness of G and Ideal. We again
introduce an intermediary step G∗. In G∗, the simulator is modified in a
way that displayed in Figure 3.5 using framed instructions. We show that G
and G∗ behave in the same way from the adversary’s point of view. First,
both use the same random function F when interacting with the filter. On
insertion, the element given by the adversary is inserted in the filter using
insertF and the result is returned (line 3-4, 12). A divergence happens when
an already inserted element is given, but this event is not possible under the
no-reinsertion assumption. On deletion, the element is deleted using deleteF

and the result returned in any case (line 1,6,10). On querying, we distin-
guish two cases. If the element was previously inserted, the result of queryF

is returned (line 2,4,16). If not, the simulator either returns a cached result
of the query if the state did not change since the insertion (line 5-10) or
otherwise the result of queryF (line 12). In conclusion, queries in G and G∗
always trigger the same updates and agree on the result.

We finally show that the divergence between G∗ and Ideal can be character-
ized by the three events defined earlier.
In InsertSim, we observe that the given element x is inserted in G∗ while
a new random element is inserted in Ideal. Thus, a difference can happen
and be noticed by an adversary when aIdeal ̸= aG∗. For instance, an insertion
could fail in Ideal because the filter is disabled, but not in G∗ where the filter
is still open because different elements were inserted. The probability that
this discrepancy is the first one observed by the adversary is Pr[E′′].
In DeleteSim, the simulator calls delete on x in any case in G∗, but in Ideal the
element is deleted only if it was previously inserted. Thus, we are interested
in the event bIdeal ̸= bG∗. Typically, a difference is observed when a non-
inserted element is successfully deleted in G∗ and creates a false negative,
which is not possible in Ideal. The probability that this discrepancy is the
first one observed by the adversary is Pr[E′].

20



Simulator S(A, pp)

1 : F ←$ Funcs[D,R]

2 : σ← setup(pp) // Ideal

3 : σ′ ← setup(pp) // G∗

4 : // whether an element is inserted and its value

5 : insertedbool ← {}
6 : insertedvalue ← {}
7 : // whether an element is a False Positive

8 : FPbool ← {}
9 : // number of insertion/deletion at the Last Query

10 : LQCTRin ← {}
11 : LQCTRdel ← {}
12 : // counter of total insertion/deletion

13 : ctrin ← 0
14 : ctrdel ← 0

15 : return AInsertSim,QuerySim,DeleteSim

Oracle InsertSim(x)

1 : if insertedbool[x] = ⊥
2 : (aIdeal, σ)← insertIdR(y←$ R, σ)

3 : (aG∗, σ′)← insertF(x, σ′)

4 : a← aIdeal a← aG∗ // Ideal G∗

5 : if a = ⊤
6 : ctrin ← ctrin + 1
7 : insertedbool[x]← ⊤
8 : insertedvalue[x]← y
9 : endif

10 : else
11 : a← ⊤
12 : return a

Oracle QuerySim(x)

1 : cIdeal ← queryIdR(y←$ R, σ)

2 : cG∗ ← queryF(x, σ′)

3 : if insertedbool[x] = ⊤

4 : c← ⊤ c← cG∗ // Ideal G∗

5 : elseif FPbool[x] = ⊤ and LQCTRdel = ctrdel

6 : // x was a FP and no deletion happened since

7 : c← ⊤
8 : elseif FPbool[x] = ⊥ and LQCTRin = ctrin

9 : // x was not a FP and no insertion happened since

10 : c← ⊥
11 : else

12 : c← cIdeal c← cG∗ // Ideal G∗

13 : FPbool[x]← c
14 : LQCTRin[x]← ctrin

15 : LQCTRdel[x]← ctrdel

16 : return c

Oracle DeleteSim(x)

1 : (bG∗, σ′)← deleteF(x, σ′)

2 : if insertedbool[x] = ⊤
3 : (bIdeal, σ)← deleteIdR(insertedvalue[x], σ)

4 : else

5 : bIdeal ← ⊥

6 : b← bIdeal b← bG∗ // Ideal G∗

7 : if b = ⊤
8 : ctrdel ← ctrdel + 1
9 : insertedbool[x]← ⊥

10 : return b

Figure 3.5: Simulator with G∗

In QuerySim, if the element x was previously inserted, the result is always
positive in Ideal, but in G∗ the result of the membership query is returned
and x can be a false negative. Otherwise, the oracle either returns a cached
version of the query if the state allows it or returns the result of the mem-

21



3. Security Analysis

bership query. An element can be a false positive in one filter but not in the
other, since the filters contain different elements in G∗ and Ideal. Thus, we
consider the event cIdeal ̸= cG∗ when the element was not inserted or cG∗ ̸= ⊤
when the element was inserted. The probability that this discrepancy is the
first one observed by the adversary is Pr[E].
Therefore, G∗ (and hence G) is indistinguishable from Ideal up to the real-
ization of one of the event E, E′ or E′′, which concludes the proof:

|Pr[G(A,D) = 1)]− Pr[Ideal(A,D,S) = 1] | ≤ Pr[E] + Pr[E′] + Pr[E′′].

We derive a bound for the three events in the following. □

Lemma 3.6 (Divergence in QuerySim) Let E = [Ei
QuerySim for some i ∈ [qqry]].

Then,
Pr[E] ≤ 2qqry · PΠ,pp(FP).

Proof We focus on the QuerySim oracle. We consider an adversary that in-
serts qin elements V = {y1, ..., yqin} and queries qqry elements U = {x1, ..., xqqry}.
We first observe that we only need to consider queries on elements that were
not inserted. Indeed, a query response on an inserted element that differs
in game Ideal and G∗ can have two causes. First, if the element is a false
negative in G∗, the difference happens earlier in DeleteSim. Second, the el-
ement could have been successfully inserted in one game but not the other,
in which case the difference happens in InsertSim. Thus, we can assume that
V ∩U = ∅, otherwise the event E cannot happen since we are interested in
the first mismatch across all oracles. We bound the probability of the event
E by using the union bound and simplifying the terms:

Pr[E] = Pr[Ei
QuerySim for some i ∈ [qqry]]

≤
qqry

∑
i=1

Pr[cIdeal
i ̸= cG∗

i ]

=
qqry

∑
i=1

Pr[cIdeal
i = ⊤, cG∗

i = ⊥] + Pr[cIdeal
i = ⊥, cG∗

i = ⊤]

≤
qqry

∑
i=1

Pr[cIdeal
i = ⊤] + Pr[cG∗

i = ⊤].

We first compute the probability in the Ideal game. We can replace cIdeal
i by

its definition in the simulator. We denote σ(j) the state of the filter after j in-
sertions {ỹ1, ..., ỹj}. Recall that for each element yk inserted by the adversary,
the simulator inserts a sampled element ỹk. Moreover, when the adversary
queries an non-inserted element xk, the simulator queries a sampled element
x̃k. Note that the exact behavior of the filter depends on the randomness of
the simulator Ideal for the sampled elements, and of the adversary A for the

22



state σ(j). The randomness is represented by respectively Ideal’s coins and
A’s coins. Thus,

Pr[cIdeal
i = ⊤] = Pr

Ideal’s coins
r ←$ R
A’s coins

[c← queryIdR(x̃
r
←$ R, σ(j)) : c = ⊤].

This is the probability that, given a state σ(j), a random element x̃ is a false
positive. Thus, we can bound by the universal false positive probability
PΠ,pp(FP) (Def 2.4), which applies on any state given that the queried ele-
ment is random:

Pr[cIdeal
i = ⊤] ≤ PΠ,pp(FP).

Similarly, we bound the probability in the G∗ game. Unlike the Ideal game,
the elements of the adversary are inserted and queried. However, Cuckoo
filters are function-decomposable and F is a random function. So,

Pr[cG∗
i = ⊤] = Pr

Ideal’s coins
G∗’s coins
A’s coins

[
c← queryF(xi, σ(j)) : c = ⊤

]
= Pr

Ideal’s coins
G∗’s coins
A’s coins

[
c← queryIdR(F(xi), σ(j)) : c = ⊤

]
.

We observe that we are again computing the probability that a random ele-
ment F(xi) matches an inserted element and is a false positive. We assume
that F is a perfectly random function. Furthermore, the adversary cannot
learn about F. Because we are in the Ideal world, the adversary does not
learn the responses to his queries insertF, deleteF or queryF by construction.
Therefore, we are in a situation similar to the Ideal game, where the queried
element is completely random:

Pr[cG∗
i = ⊤] ≤ PΠ,pp(FP).

Finally, putting everything together:

Pr[E] ≤
qqry

∑
i=1

Pr[cIdeal
i = ⊤] + Pr[cG∗

i = ⊤]

≤
qqry

∑
i=1

PΠ,pp(FP) + PΠ,pp(FP)

= 2qqry · PΠ,pp(FP). □

Lemma 3.7 (Divergence in DeleteSim) Let E′ = Pr[Ei
DeleteSim for some i ∈ [qdel]].

Then,
Pr[E′] ≤ 2qdel · PΠ,pp(FP).

23



3. Security Analysis

Proof We now bound the second event E′ which focuses on the DeleteSim
oracle. The adversary deletes qdel elements Z = {z0, ..., zqdel}. Similarly to the
first event, we first distinguish the two possible cases of mismatch:

Pr[E′] = Pr[Ei
DeleteSim for some i ∈ [qdel]]

=
qdel

∑
i=1

Pr[Ei
DeleteSim, bIdeal

i = ⊤, bG∗
i = ⊥]

+ Pr[Ei
DeleteSim, bIdeal

i = ⊥, bG∗
i = ⊤].

We can show that Pr[Ei
DeleteSim, bIdeal

i = ⊤, bG∗
i = ⊥] = 0. If the deletion

is successful in the Ideal game but not in G∗, then either the element was
inserted in Ideal but not in G∗, in which case the divergence first happens
in InsertSim, or the element is a false negative in G∗, in which case the
mismatch happens earlier in DeleteSim. Thus, we can ignore that case and
apply the union bound for the second case:

Pr[E′] = Pr[Ei
DeleteSim for some i ∈ [qdel]]

=
qdel

∑
i=1

Pr[Ei
DeleteSim, bIdeal

i = ⊥, bG∗
i = ⊤]

≤
qdel

∑
i=1

Pr[bIdeal
i = ⊥, bG∗

i = ⊤].

We now bound Pr[bIdeal
i = ⊥, bG∗

i = ⊤]. We observe that the only way
bIdeal

i = ⊥ is when the element was not inserted. Thus,

Pr[bIdeal
i = ⊥, bG∗

i = ⊤] = Pr[bG∗
i = ⊤, zi was not inserted]

≤ Pr[bG∗
i = ⊤ | zi was not inserted].

Furthermore, we see from the simulator that ((b, σ′)← deleteF(z, σ′) : b = ⊤)
if and only if (c← queryF(z, σ′) : c = ⊤). Therefore,

Pr[bG∗
i = ⊤ | zi was not inserted]

= Pr
Ideal’s coins

G∗’s coins
A’s coins

[(bG∗
i , σ′(i))← deleteF(zi, σ′(i−1)) : bG∗

i = ⊤ | zi was not inserted]

= Pr
Ideal’s coins

G∗’s coins
A’s coins

[c← queryF(zi, σ′(i−1)) : c = ⊤ | zi was not inserted],

which is a probability we have already bounded for the event E. Putting

24



everything together:

Pr[E′] ≤
qdel

∑
i=1

Pr
Ideal’s coins
G∗’s coins
A’s coins

[c← queryF(zi, σ′(i−1)) : c = ⊤ | zi was not inserted]

≤
qdel

∑
i=1

PΠ,pp(FP)

= qdel · PΠ,pp(FP). □

Lemma 3.8 (Divergence in InsertSim) Let E′′ = Pr[Ei
InsertSim for some i ∈ [qin]].

Then,
Pr[E′′] ≤ 2qin · PΠ,pp(D|qin − 1).

Proof We finally bound the third event which focuses on the InsertSim ora-
cle:

Pr[E′′] = Pr[Ei
InsertSim for some i ∈ [qin]]

≤
qin

∑
i=1

Pr[Ei
InsertSim, aIdeal

i ̸= aG∗
i ]

=
qin

∑
i=1

Pr[Ei
InsertSim, aIdeal

i = ⊤, aG∗
i = ⊥] + Pr[Ei

InsertSim, aIdeal
i = ⊥, aG∗

i = ⊤]

≤
qin

∑
i=1

Pr[Ei
InsertSim, aIdeal

i = ⊥] + Pr[Ei
InsertSim, aG∗

i = ⊥].

We first compute the probability in the Ideal game that an insertion fails for
the first time during the ith insertion query. We replace with the definition
in the simulator:

Pr[Ei
InsertSim, aIdeal

i = ⊥] = Pr
Ideal’s coins

r ←$ R
A’s coins

[(a, σ(i))← insertIdR(ỹ
r
←$ R, σ(i−1)) : a = ⊥].

This is the probability that the filter in state σ(i−1) is disabled. The state σ(i−1)

contains at most i− 1 elements and we are computing the probability of the
first insertion failure. Thus, we argue that we can bound it by the first-time
disabling probability PΠ,pp(D|i − 1) (Def 2.7). First, the inserted element ỹ
is completely random. Then, the elements inserted in σi−1 are also random.
Note that the fingerprints do not play any role in the disabling probability,
rather only the load of the buckets is determinant. Nonetheless, we must
carefully study the consequences of deletions on the state. We observe that
deleting an element cannot itself increase the disabling probability, because
it can only decrease a bucket’s load. Moreover, a deletion can prevent a
future eviction or leave an empty slot for another element (if the deleted

25



3. Security Analysis

element’s bucket was full), but in any case the disabling probability does
not increase. For instance, if A deletes z1 in the full bucket m1 such that z2
may be placed into m1, m1 is full with and without the deletion, but in the
latter the filter contains one more element. Therefore, the adversary cannot
increase the load of targeted buckets and we can bound the probability by
using an NAI state of i − 1 elements. Finally, we know that PΠ,pp(D|i) ≤
PΠ,pp(D|n) for all i < n, so the disabling probability is maximal when all
elements in V are inserted, n = qin − 1. Thus,

Pr[Ei
InsertSim, aIdeal

i = ⊥] = Pr
Ideal’s coins

r ←$ R
A’s coins

[(a, σ(i))← insertIdR(ỹ
r
←$ R, σ(i−1)) : a = ⊥]

≤ Pr


σ(0) ←$ setup(pp)
ỹ1, ..., ỹi−1 ←$ R

for j = 1, ..., i− 1 :
(⊤, σ(j))←$ insertIdR(yj, σ(j−1))

ỹ←$ R : ⊥ ← insertIdR(ỹ, σ(i−1))


≤ PΠ,pp(D|i− 1)
≤ PΠ,pp(D|qin − 1).

In the G∗ game, the proof is similar. We are using the function-decomposable
property of Cuckoo filters. Since F is a random function, the output F(yi) is
random and we can apply the same bound as in the Ideal game. This only
holds if F(yi) is not already in σ(i−1). Under the no reinsertion assumption,
A cannot insert the same element twice, or he must delete it first. In both
cases, the state σ′(i−1) does not contain F(yi). The same is true for every in-
serted element. Therefore, σ′(i−1) is constructed using at most i− 1 distinct
and random elements:

Pr[Ei
InsertSim, aG∗

i = ⊥] = Pr
Ideal’s coins
G∗’s coins
A’s coins

[(a, σ′(i))← insertF(yi, σ′(i−1)) : a = ⊥]

≤ Pr


σ(0) ←$ setup(pp)

[y1, ..., yi−1]←$ {S ∈ Plists(D) | |S| = i− 1}
for j = 1, ..., i− 1 :

(⊤, σ(j))←$ insertF(xj, σ(j−1))

y←$ D \V : ⊥ ← insertF(y, σ(i−1))


= PΠ,pp(D|i− 1)
≤ PΠ,pp(D|qin − 1).

26



Finally,

Pr[E′′] ≤
qin

∑
i=1

Pr[Ei
InsertSim, aIdeal

i = ⊥] + Pr[Ei
InsertSim, aG∗

i = ⊥]

≤
qin

∑
i=1

PΠ,pp(D|qin − 1) + PΠ,pp(D|qin − 1)

= 2qin · PΠ,pp(D|qin − 1). □

We finally conclude and prove the adversarial correctness Theorem 3.3 by
combining Lemmas 3.4 to 3.8. Thus,

AdvRoI
Π,A,S (D) = |Pr[Real(A,D) = 1]− Pr[Ideal(A,D,S) = 1] |

≤ |Pr[Real(A,D) = 1]− Pr[G(A,D) = 1] |
+ |Pr[G(A,D) = 1]− Pr[Ideal(A,D,S) = 1] |

= AdvReal-or-G
Π,A (D) + AdvG-or-Ideal

Π,A,S (D)
≤ ϵ + Pr[E] + Pr[E′] + Pr[E′′]

≤ ϵ + qin · PΠ,pp(D|qin − 1) + (2qqry + qdel) · PΠ,pp(FP).

27





Chapter 4

Conclusion

We have provided a formal security analysis of Cuckoo filters with dele-
tions. We have first extended the syntax to describe the behavior of dele-
tions. Using a simulation-based framework, we have defined the adversarial
correctness of Cuckoo filters with deletions and have demonstrated a bound
for it. The bound depends on the Cuckoo filter’s disabling and false positive
probability. We have also defined the universal false positive probability and
have shown that the false positive bound holds for any state of the Cuckoo
filter.
We notice that the proof diverges from [7] since the state generated by an
adversary cannot be non-adversarially influenced (NAI) even in the ideal
world. Indeed, the authors of [7] have shown in their proof that the state can
be considered statistically close to NAI in the insertion-only setting thanks to
the keyed PRF. In the case of counting filters, [10] also demonstrates a bound
that depends on the NAI false positive probability, even when deletions are
allowed. Generally, reducing the problem to the NAI case is convenient
since we know how to analyse that setting.
However, in Cuckoo filters, deletions allow to reset the state and to con-
duct adaptive attacks. More importantly, the outcome of an insertion is
non-deterministic and depends on the current state. Therefore, the possible
sequences of insertions and deletions can produce different states, which
could be adversarially influenced. Nevertheless, we were still able to derive
bounds by carefully analysing the construction of Cuckoo filters and defin-
ing the universal false positive probability. In that way, we could bound the
correctness without necessarily having a NAI state. This observation could
also simplify the insertion-only proof in [7], but do not generalize to other
AMQ-PDS.

This work can be extended in several directions:

• Remove the no reinsertion assumption and extend the framework to
any adversary. This requires to handle the trivial disabling of the filter

29



4. Conclusion

and to update the proof where distinct elements are assumed.

• Derive a tighter bound for the adversarial correctness. Currently, the
bound is linear with the number of queries, which implies its value is
reasonably low only when the adversary has few queries.

• Analyze the security in the ”public” setting, where the adversary can
reveal the internal state.

• Provide concrete insights on the deployement of Cuckoo filters given
the security analysis.

30



Appendix A

Disabling probability

We derive a bound on the probability that a Cuckoo filter is disabled. Re-
call that a filter is disabled when, on insertion, elements are consecutively
evicted a given number of times and an element still cannot be placed in its
bucket. The element is then placed in the stash and the filter is disabled as
long as the stash is full.

We will assume in the disabling proof that the number of tags 2λT is smaller
than the number of buckets 2λI (which is the case in practice). This assump-
tion implies that the indices of buckets are not uniformly distributed. In-
deed, i1 = HI(x) is uniformly distributed because the domain of x is greater
than the domain of HI , but i2 = i1 ⊕ HI(tag) is not because the number of
tags is smaller than number of possible buckets. Therefore, there are only
2λT possible indices i2. This observation makes the derivation non-trivial.

Theorem A.1 (First-time disabling probability) Let n be a non-negative in-
teger. Let Π be an insertion-only Cuckoo filter with public parameters pp =
(λI , λT, b, u) and m = 2λI . Then, the probability that an insertion fails for the
first time when n elements are already in the filter is bounded by

nb+2
(

n
rb + n

)u+1 ( 1
m
(1 +

1
2λT

)

)b

,

where r = (m−
⌊ n

b

⌋
)(1− (1− 2λT

m )⌊n/b⌋).

First, we observe that we can condition the disabling probability on the
number of full buckets, which are the cause of evictions. We define Bn

l the
event that l buckets are full after n insertions. Then,

Pr[(n + 1)th insertion fails]

=Pr[nth insertion fills the stash]

=
m

∑
l=2

Pr[nth insertion fills the stash | Bn−1
l ]Pr[Bn−1

l ].

31



A. Disabling probability

We first compute the probability of having l full buckets. Then, bounding
the probability of filling the stash becomes trivial knowing the number of
full buckets.

Lemma A.2 Let n be a non-negative integer. Let Π be an insertion-only Cuckoo
filter with public parameters pp = (λI , λT, b, u) and m = 2λI . Let

Pk(n) = Pr
[

n elements are inserted when k buckets are full and
the (k + 1)th bucket is filled on the last insertion

]
.

Let the sequences of non-negative integers n0, n1, ..., nl be such that:

1. b ≤ nk ≤ n− b(l − k− 1) ∀k < l

2. 0 ≤ nl ≤ n

3. ∑k nk = n

Let C(n0, ..., nl−1) be the number of possible ways the sequence of n0, ..., nl−1 in-
sertions is observed, where ni is the number of elements inserted when i buckets are
full. Then, the probability to have l full buckets after n insertions is bounded by(

m
l

)
∑

n0,...,nl−1

C(n0, ..., nl−1) · P0(n0)P1(n1)...Pl−1(nl−1).

Proof We have n insertions, each happening at time ti ∈ [n]. A bucket can
receive an element at time ti with a probability depending on k, but k is
increasing during the insertion process. Thus, we must consider all pos-
sible sequence of insertions, i.e buckets can receive their elements when
k = 0, ..., l. Therefore, we define the sequence n0, ..., nl where ni is the
number of elements inserted when i buckets are full. Moreover, we de-
fine Pk to model the states of the filter and their transition. For example,
P0(n0) · P1(n1) · P2(n2) is the probability that n0 elements are inserted when
0 buckets are full and before the first bucket becomes full, n1 element when
1 bucket is full and n2 elements when 2 buckets are full.
Besides computing the probability of each sequence, we must also count the
number of possible ways a sequence is observed. For instance, let n0 be
the number of elements inserted before the first bucket m1 becomes full. So
m1 receives a new element at b distinct times ti ∈ [n0]. Furthermore, we
know that m1 receives an element at time tn0 , the time the bucket becomes
full. Therefore, there are (n0−1

b−1 ) ways m1 is filled with b elements in n0 time
slots. Then, we count the possible ways of assigning the remaining n0 − b
time slots to other buckets, but each bucket can only receive up to b− 1 ele-
ments. C(n0, ..., nl−1) is the number of possible ways the sequence n0, ..., nl−1
is observed and can be written as:

C(n0, ..., nl−1) =

(
n0−1
b− 1

)(
n0+n1−b−1

b− 1

)
...
(

∑i<l ni−b(i−1)−1
b− 1

)
.

32



Observe that nl is not included, because we can ignore what happens after
the last bucket is filled. The final expression is the sum over all possible
sequences of the probability of the sequence and the number of ways to
allocate elements in the filter. A factor (m

l ) chooses the l full buckets in the
filter. □

Lemma A.3 Let n and k be non-negative integers. Let Π be an insertion-only
Cuckoo filter with public parameters pp = (λI , λT, b, u) and m = 2λI . Let rk be
a random variable with a Binomial distribution B(m− k, p). Then, the probability
pk(n) that n elements are inserted in a given bucket when k buckets are full is

pk(n) =
(

1
m
(1 +

k
rk
)

)n

· rk

m− k
+

(
1
m

)n

· m− k− rk

m− k
.

Proof When no buckets are full, the distribution is uniform, i.e p0(n) =
(1/m)n. We start by considering p1. When 1 bucket is full, a set of active
(not full) buckets are biased. Suppose that an element being inserted has one
of its two buckets that is full, then the element will be placed in the second
bucket in any case. Since the second bucket’s index i2 has only 2λT < m
possibilities, then 2λT buckets have a higher chance to receive an element.
The same holds when the element’s buckets are both full, but in this case
another element is evicted to its secondary bucket.
Let B be the set of full buckets and R the set of active (not full) buckets
reachable from the set of full buckets:

R = {ir ∈ [m] : ir = ib ⊕ HT(tag) for some ib ∈ B and tag ∈ {0, 1}λT}.

We compute the probability that a bucket receives an element in the two
cases, whether the bucket is biased or not:

Ek = [an element is inserted into bucket w, w ∈ R, |B| = k],
E′k = [an element is inserted into bucket w, w /∈ R, |B| = k].

We first consider the case when 1 bucket is full. Thus, the number of reach-
able buckets R is 2λT . We insert an element x and HI(x) = i1. Then,

Pr[E1] = Pr[E1 | i1 ∈ B]Pr[i1 ∈ B] + Pr[E1 | i1 /∈ B]Pr[i1 /∈ B]

= Pr[E1 | i1 ∈ B] · 1
m

+ Pr[E1 | i1 /∈ B] · m− 1
m

=
1

2λT
· 1

m
+

1
m− 1

· m− 1
m

=
1
m
(1 +

1
2λT

),

33



A. Disabling probability

Pr[E′1] = Pr[E′1 | i1 ∈ B]Pr[i1 ∈ B] + Pr[E′1 | i1 /∈ B]Pr[i1 /∈ B]

= 0 · 1
m

+
1

m− 1
· m− 1

m

=
1
m

.

As expected, unbiased buckets still have a uniform probability of 1/m while
biased buckets have a higher chance to receive an element.
We can generalize to k > 1 full buckets. We denote rk the number of reach-
able buckets from the k full buckets, i.e rk = |R|. Then,

Pr[Ek] = Pr[Ek | i1 ∈ B]Pr[i1 ∈ B] + Pr[Ek | i1 /∈ B]Pr[i1 /∈ B]

=
1
rk
· k

m
+

1
m− k

· m− k
m

=
1
m
(1 +

k
rk
),

Pr[E′k] =
1
m

.

We can derive pk(n), the probability that n ≤ b elements are inserted in any
bucket w.

pk(n) = Pr[Ek]
n Pr[w ∈ R] + Pr[E′k]

n Pr[w /∈ R]

= Pr[Ek]
n · rk

m− k
+ Pr[E′k]

n · m− k− rk

m− k

=

(
1
m
(1 +

k
rk
)

)n

· rk

m− k
+

(
1
m

)n

· m− k− rk

m− k
. □

Lemma A.4 Let n be a non-negative integer. Let Π be an insertion-only Cuckoo
filter with public parameters pp = (λI , λT, b, u) and m = 2λI . Let rk be a random
variable with a Binomial distribution B(m− k, p). Let

Pk(n) = Pr
[

n elements are inserted when k buckets are full and
the (k + 1)th bucket is filled on the last insertion

]
.

Then,

Pk(n) ≤
(

1
m
(1 +

k
rk
)

)n

.

Proof To give the exact expression of Pk, we have to consider all possible
ways of filling j buckets with ni elements, i ∈ [j], j ∈ [m] and ∑i ni = n.
Hence, we can write Pk as a function of pk:

Pk(n) = pk(n0) · pk(n1) · ...

34



To simplify, we first bound pk(n) by considering that all buckets are biased:

pk(n) =
(

1
m
(1 +

k
rk
)

)n

· rk

m− k
+

(
1
m

)n

· m− k− rk

m− k

≤
(

1
m
(1 +

k
rk
)

)n

· rk

m− k
+

(
1
m
(1 +

k
rk
)

)n

· m− k− rk

m− k

=

(
1
m
(1 +

k
rk
)

)n

.

Then, Pk can simply be bounded using the expression above:

Pk(n) = pk(n0) · pk(n1) · ...

≤
(

1
m
(1 +

k
rk
)

)n0

·
(

1
m
(1 +

k
rk
)

)n1

· ...

=

(
1
m
(1 +

k
rk
)

)n

. □

Lemma A.5 Let Π be an insertion-only Cuckoo filter with public parameters pp =
(λI , λT, b, u) and m = 2λI . Let rk be the random variable of the number of reachable
active buckets from the set of k full buckets. Then rk follows a Binomial distribution
B(m− k, p), where

p = 1−
(

1− 2λT

m

)k

.

Proof For every full bucket i1, the set of secondary indices i2 is sampled
uniformly from the set of all m indices because HI and HT are assumed to
be perfectly random hash functions. Thus, rk follows a binomial distribution
where r buckets are sampled uniformly out of m− k with probability p. We
remove k because we are only considering active buckets. So,

Pr[rk = r] =
(

m− k
r

)
pr(1− p)m−k−r.

We now derive the probability p that a bucket is selected. This probability p
depends on the factor k since the bucket can be sampled by any of the k full
buckets, each sampling 2λT buckets. Thus,

p = Pr[the bucket is selected by at least one of the k full buckets]
= 1− Pr[the bucket is not selected by the k full buckets]

= 1− Pr[the bucket is not selected by 1 full bucket]k

= 1− (1− Pr[the bucket is selected by 1 full bucket])k

= 1−
(

1− 2λT

m

)k

.

We conclude that rk ∼ Bin(m− k, p) where p = 1−
(

1− 2λT
m

)k
. □

35



A. Disabling probability

Lemma A.6 Let Π be an insertion-only Cuckoo filter with public parameters pp =
(λI , λT, b, u) and m = 2λI . Let rk be a random variable with a Binomial distribution
B(m− k, p). Then, the probability that, on the insertion of an element, Π evicts u
elements consecutively given l buckets are full is bounded by

l
m
·
(

l
rl + l

)u+1

.

Proof An eviction happens when a new element is mapped to two full buck-
ets, or when an evicted element is mapped to a secondary ful bucket. Thus,

Pr[u elements are evicted on the insertion of x | Bn
l ]

=Pr[the two buckets of x are full, u elements are evicted | Bn
l ]

=Pr

 the primary bucket of x is full
the secondary bucket of x is full Bn

l
u secondary buckets are full


≤ l

m
· l

rl + l
·
(

l
rl + l

)u

=
l
m
·
(

l
rl + l

)u+1

.

We approximate the probability that a secondary bucket is full by l
rl+l , the

proportion of full buckets in the set R∪ B. Indeed, we know that the primary
bucket is full, i.e in B, so the secondary bucket is in R ∪ B (either full or
active). The probability to pick a full bucket in R ∪ B is therefore |B|

|B∪R| . □

Proof (Theorem A.1) Recall that the disabling probability can be expressed
as

m

∑
l=2

Pr[nth insertion fills the stash | Bn−1
l ]Pr[Bn−1

l ].

First, observe that k = ⌊n/b⌋ is the maximal number of full buckets when
n elements are inserted in the filter. Therefore, the sum can be bounded by
multiplying k times the maximum of the expression inside the sum. The
probability to have l full buckets is maximal when l = 1 (we could also take
l = 2). Then,

Pr[1 bucket is full] =
(

m
1

)
∑

n0,n1

C(n0, n1) · P0(n0)

= m · ∑
n0,n1

(
n

b− 1

)(
1
m
(1 +

1
2λT

)

)n0

≤ m · n · nb−1
(

1
m
(1 +

1
2λT

)

)b

.

The probability that the stash is filled is increasing with the number of full
buckets. Thus,

Pr[nth insertion fills the stash | Bn−1
l ] ≤ k

m
·
(

k
rk + k

)u+1

.

36



Finally, by bringing both bounds together, approximating rk by its expected
value and replacing k with

⌊ n
b

⌋
, we obtain:

n
b

k
m
·
(

k
rk + k

)u+1

m · n · nb−1
(

1
m
(1 +

1
2λT

)

)b

≤nb+2
(

n
rb + n

)u+1 ( 1
m
(1 +

1
2λT

)

)b

. □

37





Bibliography

[1] Mohammad Al-hisnawi and Mahmood Ahmadi. Deep packet inspec-
tion using cuckoo filter. In 2017 Annual Conference on New Trends in
Information and Communications Technology Applications (NTICT), 2017.

[2] David Clayton, Christopher Patton, and Thomas Shrimpton. Proba-
bilistic data structures in adversarial environments. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’19, page 1317–1334, New York, NY, USA, 2019. Association for
Computing Machinery.

[3] Efficient Computing. Cuckoo filter implementation. https://github.
com/efficient/cuckoofilter.

[4] Jie Cui, Jing Zhang, Hong Zhong, and Yan Xu. Spacf: A secure privacy-
preserving authentication scheme for vanet with cuckoo filter. IEEE
Transactions on Vehicular Technology, 2017.

[5] David Eppstein. Cuckoo filter: Simplification and analysis. CoRR,
abs/1604.06067, 2016.

[6] Bin Fan, Dave G. Andersen, Michael Kaminsky, and Michael D. Mitzen-
macher. Cuckoo filter: Practically better than bloom. In Proceedings of
the 10th ACM International on Conference on Emerging Networking Experi-
ments and Technologies, 2014.

[7] Mia Filić, Kenneth G. Paterson, Anupama Unnikrishnan, and Fer-
nando Virdia. Adversarial correctness and privacy for probabilistic
data structures. Cryptology ePrint Archive, Paper 2022/1186, 2022.
https://eprint.iacr.org/2022/1186.

39

https://github.com/efficient/cuckoofilter
https://github.com/efficient/cuckoofilter
https://eprint.iacr.org/2022/1186


Bibliography

[8] Shahabeddin Geravand and Mahmood Ahmadi. Bloom filter applica-
tions in network security: A state-of-the-art survey. Computer Networks,
2013.

[9] Danie Kales, Christian Rechberger, Thomas Schneider, Matthias Senker,
and Christian Weinert. Mobile private contact discovery at scale. In Pro-
ceedings of the 28th USENIX Conference on Security Symposium, SEC’19,
page 1447–1464, USA, 2019. USENIX Association.

[10] Ella Kummer. Counting filters in adversarial settings. Master’s thesis,
ETH, https://ethz.ch/content/dam/ethz/special-interest/infk/
inst-infsec/appliedcrypto/education/theses/Master_Thesis_

Kummer_Ella.pdf, 2022.

[11] Minseok Kwon, Pedro Reviriego, and Salvatore Pontarelli. A length-
aware cuckoo filter for faster ip lookup. In 2016 IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS), 2016.

[12] James Larisch, David Choffnes, Dave Levin, Bruce M. Maggs, Alan
Mislove, and Christo Wilson. Crlite: A scalable system for pushing
all tls revocations to all browsers. In 2017 IEEE Symposium on Security
and Privacy (SP), pages 539–556, 2017.

[13] Sharafat Mosharraf and Muhammad Abdullah Adnan. Improving
lookup and query execution performance in distributed big data sys-
tems using cuckoo filter, 09 2021.

[14] Moni Naor and Eylon Yogev. Bloom filters in adversarial environments.
Cryptology ePrint Archive, Paper 2015/543, 2015. https://eprint.

iacr.org/2015/543.

[15] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal of
Algorithms, 51(2):122–144, 2004.

[16] Kenneth G. Paterson and Mathilde Raynal. Hyperloglog: Exponen-
tially bad in adversarial settings. Cryptology ePrint Archive, Paper
2021/1139, 2021. https://eprint.iacr.org/2021/1139.

[17] Xiaofeng Shi, Shouqian Shi, Minmei Wang, Jonne Kaunisto, and Chen
Qian. On-device iot certificate revocation checking with small memory
and low latency. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’21, page 1118–1134, New
York, NY, USA, 2021. Association for Computing Machinery.

[18] Changhua Sun, Bin Liu, and Lei Shi. Efficient and low-cost hardware
defense against dns amplification attacks. In IEEE GLOBECOM 2008 -
2008 IEEE Global Telecommunications Conference, 2008.

40

https://ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/appliedcrypto/education/theses/Master_Thesis_Kummer_Ella.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/appliedcrypto/education/theses/Master_Thesis_Kummer_Ella.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/appliedcrypto/education/theses/Master_Thesis_Kummer_Ella.pdf
https://eprint.iacr.org/2015/543
https://eprint.iacr.org/2015/543
https://eprint.iacr.org/2021/1139


Bibliography

[19] Kevin Yeo. Cuckoo hashing in cryptography: Optimal parame-
ters, robustness and applications. Cryptology ePrint Archive, Paper
2022/1455, 2022. https://eprint.iacr.org/2022/1455.

41

https://eprint.iacr.org/2022/1455

	Contents
	Introduction
	Cuckoo filter
	Applications
	Related work
	Outline
	Preliminaries

	Cuckoo filters
	Syntax and algorithms
	The non-adversarial setting

	Security Analysis
	Conclusion
	Disabling probability
	Bibliography

