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Abstract

Secure computation techniques like Secure Multi-Party Computation, Fully Ho-
momorphic Encryption, and Zero-Knowledge Proofs have made significant progress
in performance and feature variety in recent years. Still, we cannot observe a
substantial rise in its use in real-life applications. In this thesis, we investigate
possible reasons for the slow adoption of secure computation by exploring the
gap between the existing cryptographic state-of-the-art and the requirements of
real-world stakeholders.

We focus our attention on applications of secure computation in (Swiss) health
care and investigate (i) the current state of data collection, sharing, and processing
in the domain of health care and medical research, (ii) the extent to which existing
secure computation approaches in research and industry solve the needs of the
medical community, and finally (iii)) what would be required to close the gaps
between the current capabilities offered by secure computation on one hand and
the requirements of medical applications on the other hand.

Our exploration reveals several widespread challenges and issues stemming from
standard medical data sharing practices, hindering and restricting technological
advances. We explore existing secure computation approaches in research and in-
dustry to see how they could mitigate these restrictions to enable new approaches
to, e.g., longitudinal medical study. Our analysis highlights promising prospects
but also shows that current secure computation approaches alone are not sufficient
to resolve the issue. Finally, we propose possible solutions to close this gap, show-
ing that rather than requiring novel cryptographic primitives, a more pragmatic
attitude and a shift to client-centered product development in secure computation
providers seem crucial for future advancements.
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Chapter 1

Introduction

Secure computation techniques such as Fully Homomorphic Encryption (FHE), secure
Multi-Party Computation (MPC), and Zero-Knowledge Proofs (ZKPs) allow differ-
ent parties to perform computations without requiring them to reveal their inputs to
each other. While these techniques have long been explored in cryptography, the last
decade has seen the performance of many advance significantly, to a point where they
can be used to practically solve problem instances of sizes useful to real-world ap-
plications. However, even with this dramatic performance improvement, applications
of these techniques have remained relatively rare. MPC has seen a few high-profile
applications [18, 17], FHE has been deployed in Microsoft’s Edge browser [105], and
ZKPs have been used heavily in cryptocurrencies and smart contracts [41]. How-
ever, this has so far not been accompanied by broader adoption of these technologies.
Performance limitations and the complexity of deploying these techniques certainly
play a role in limiting their growth. But these alone cannot account for the lack of
secure-computation-based solutions even in settings where performance is sufficient
and high-quality commercial solutions are available. Instead, there appears to be a
significant gap between the properties and protections offered by cryptographic se-
cure computation techniques and the challenges and concerns of those working with
sensitive data in real-world settings.

In this project, we want to explore this gap in health and medical data sharing. Re-
search on patient data is key for understanding whether and how treatments work.
While clinical trials offer important insights when bringing treatments to market, bi-
ases in the composition of clinical trials can lead to issues affecting under-represented
groups being overlooked [83]. In general, in today’s medical research, rare diseases
and side effects, off-label use of drugs, and the needs of underrepresented groups of-
ten appear only as outliers or fall through the cracks altogether. Even for severe cases,
e.g. adverse reactions, it is difficult to find possible causes for the problems at hand
since there is a lack of comparative material. This can be relieved by retrospective
observational studies, which allow to find causation and relationships in illnesses and
medical treatments in a larger scope, and thus are fundamental for the evolution of
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medicine. Enabling these kinds of studies is in the interest of all, but requires col-
lecting, processing and sharing sensitive medical data, which requires solving various
technical, regulatory and organizational challenges.

The majority of patient data in public health care institutions is collected for the pur-
pose of care. The lack of a patient-owned Electronic Health Record (EHR) further
leads to patient’s medical history being scattered among all health care institutions
they have visited. Sharing this data is a delicate matter and must be carefully consid-
ered, since patient privacy must not be violated. However, if everyone is too reluctant
to share, data siloization occurs, preventing beneficial uses of the data. Due to the
wide distribution of the data and incompatible or non-existent standards, even health
care professionals are prevented from having a complete overview of their patient’s
medical history. These issues may not significantly hinder the everyday business of
health care professionals (who often share data directly in mutual consultations). But
this scattering and siloization runs counter to the requirements of research, where
Findability, Accessibility, Interoperability and Reuse of data (FAIR Guiding Princi-
ples [123], see also §A.1.1), are considered crucial. The Swiss government criticized
the fragmented landscape without interoperability, which also threatens patient safety,
and the ill-incentives posed by the health insurance reimbursements as well as the
siloization of data in its 2007 eHealth strategy [49]. In a 2018 update (eHealth strategy
2.0 [107]) the Swiss government acknowledged that the technological progress in the
health sector lags behind other areas and that increased digital competence is needed.
Digital connection and information exchange between health care institutions as well
as the reuse of collected data should be fostered and supported.

A possible solution to promote data sharing is Secure Computation [69], allowing
parties that do not trust each other with their data to jointly perform computations,
without ever sharing their data. Today’s secure computation technologies permit
large-scale, highly accurate research with multiple collaborating institutions, requiring
minimal trust and letting all input remain private. Using inputs from different orga-
nizations, rather than extrapolating from a local data silo, can help eliminate certain
types of bias early on. This allows research to follow a rapid, iterative, hypothesis-
driven approach. The unprecedented amount of data generated today enables testing
of hypotheses that previously simply lacked material, such as the aforementioned rare
diseases and side effects, off-label use of drugs, and the needs of underrepresented
groups. However, unlocking these possibilities requires an advanced technical infras-
tructure, including complicated-to-deploy cryptography, and skilled professionals to
operate it. Furthermore, the mental models used in creating privacy-preserving com-
putation applications do not always match the real world when it comes to threat
models as well as the legal and social hurdles that need to be overcome in order to
implement such a solution. For example, such aspects are typically not considered in
the synthetic data sets used to evaluate secure computation approaches [36].

To understand both the challenges and the future potential of data collection, sharing
and processing in the domain of health care and medical research, we explore the



current status of data handling in the Swiss health care system and investigate to what
extent secure computation approaches in research and industry meet the needs of the
medical community. We identify the gaps between the current capabilities offered by
secure computation on one hand and the requirements of medical applications on the
other hand. Finally, we provide suggestions on how to bridge these gaps.






Chapter 2

Background

2.1 Multi-Party Computation

MPC protocols allow a group of data-owners, who do not wish to disclose their
data, to jointly perform a computation, where the output depends on all their pri-
vate inputs [44]. In the 1980s, two-party protocols were established which allowed
to solve questions such as the famous Millionaires Problem [125] (determining which
of two parties has the larger input without revealing anything else about the input).
Following this, multi-party protocols and protocols for more complex threat models
emerged. In more recent times, computational efficiency and real-live applications
moved into the center of attention. We provide a high-level overview over modern
MPC approaches before considering real-world uses of MPC.

MPC protocols can be mostly divided into garbled-circuit-based and secret-sharing—
based protocols. Garbled circuit protocols [51] are mainly used in a two-party setting,
allowing two mistrusting parties to compute an output without the need for an in-
dependent third party. They build upon oblivious transfer and the function used in
the computation is described by a (generally public) Boolean circuit [44]. In protocols
for more than two parties, secret-sharing—based protocols [101] are more common.
Here, data is split up into pieces, and only more than a threshold amount of pieces
allow extracting the original knowledge, while having less than that amount of pieces
discloses no information about the data that is missing.

In the last decade, the main focus in MPC has been to put the existing protocols to
work in order to test and improve their efficiency and maturity. The two most famous
projects have been the Danish sugar beet auction [18] and a large statistical study on
government data in Estonia, linking tax and student data [17].

In the 2000’s, a long-standing monopolist in sugar sales in Denmark had to close one
of it’s factories, which suddenly created the need for a nation wide auction for sugar
beets. They decided to design a double auction, where the final price is computed
from secret bids. Because conflicting interests made it unclear who should be the
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auctioneer, an MPC solution was created to relieve responsibility and prevent abuse.
They used a secret-sharing protocol and assumed honest-but-curious servers in their
setup. With this solution, the auction has been conducted successfully for multiple
years [18].

In 2016, an MPC platform called Sharemind [15] was used to test the hypothesis of Es-
tonian universities that working students would leave their studies early. For this, they
needed to access multiple large government databases that were not linked together.
Especially the tax data was protected by strong privacy laws, making such studies
difficult. The team managed to successfully conduct the study with Sharemind in a
privacy-preserving manner. They validated their results with a “classical” study us-
ing aggregated data in accordance with local privacy laws, and finally concluded that
working while studying did not lead to early dropout [17].

2.2 Zero-Knowledge Proofs

ZKPs are often viewed as a special case of MPC with 2 parties (a prover and a verifier).
However, rather than collaborating to compute a function, the prover can demonstrate
knowledge of a secret without revealing it. The verifier can be sure the prover has
told the truth, even when an independent observer might not be able to verify the
prover’s claim. We can divide ZKPs in two categories: interactive and non-interactive.
In an interactive proof, the verifier interacts with the prover and thus has to vouch for
the integrity of the prover towards observing parties. In a non-interactive proof, the
verifier does not need to “test” the prover’s knowledge in an interaction, but instead
can just observe whether the prover’s statement is valid [70]. ZKPs have been used
heavily in cryptocurrencies and smart contracts [41], but are also used in more general-
purpose secure computation protocols, e.g., when parties cannot be trusted to provide
well-formed inputs.

2.3 Homomorphic Encryption

Homomorphic Encryption is the umbrella term for several encryption schemes that al-
low operations to be performed on a ciphertext, where the decrypted output of these
operations is the same as if they were performed on the plaintext. [8] Partially ho-
momorphic encryption schemes allow only one type of operation on the ciphertext,
usually addition or multiplication. Well-known examples include the RSA [94] and El-
Gamal [40] cryptosystems that both allow (modular) multiplications on the ciphertext.
Fully Homomorphic Encryption (FHE) schemes, on the other hand, allow arbitrary
computations on the ciphertext. For decades, it was unclear whether FHE was even
possible. In 2009, Craig Gentry first showed that FHE was feasible and follow-up work
quickly resulted in first implementations. However, only in recent years has FHE be-
come truly practical. The most recent big step for FHE was in 2017, when Cheon, Kim,
Kim and Song introduced an FHE scheme that allowed approximate rather than ex-
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act values [25]. The possibility to round and approximate values made it signficantly
easier to use FHE as a tool for encrypted machine learning.

2.4 Differential Privacy

Differential privacy allows us to gather information about a group without learn-
ing anything about an individual. The impact on an individual should be the same
whether or not they were part of the group that was studied. This means the output
of such a study is independent of the presence of individuals, thus almost equally
likely to occur in any constellation of the study group. We denote “almost” with a pa-
rameter €, where a smaller € implies better privacy for the individual, but also a less
accurate output. Note that differential privacy is not an algorithm, but a definition.
There exist multiple algorithms that can compute different tasks while guaranteeing e-
differential privacy. Differential privacy mitigates one of the most prevalent problems
of anonymized data sets, the linkage attack [38].

2.5 K-Anonymity

K-anonymity is a property of a data set which is modified such that the information
of an individual entry is indistinguishable from at least k — 1 other individual entries.
The concept was first mentioned in 1998 by Sweeney and Samariti who also suggested
two methods to accomplish k-anonymity in a database: suppression and generaliza-
tion [96]. Suppression means certain values of attributes, or the whole attribute column
itself, are replaced by “empty” values, e.g. an asterisk. E.g., an attribute like “name”,
which is frequently not needed for the computations done on a data set with personal
data can simply be omitted. Generalization means that certain values of attributes
are replaced by a more general value, e.g., a range, or the whole attribute column
is replaced by a broader category and thus all its values are also changed to a more
general answer. For example, a database containing an attribute “address”, where the
full address of the people in the database is visible could have this column replaced
by (parts of) a zip-code or even a country code, making the entry more general.






Chapter 3

Data & Digitalization in Health Care

In this chapter, we investigate how data is collected, processed and shared in the
Swiss health care system. Only by properly understanding this ecosystem and its
characteristics will we later be able to propose sustainable solutions.

We consider the current state of digitalization, whether there are any hindrances, what
causes them and how they influence data handling. We will also explore how culture
and demographics affect these processes. We observe ongoing national efforts in digi-
talization and complement it with lessons learned from other countries.

3.1 Data Collection

In the following, we observe the location, format and conditions under which medical
data is collected. There are many different types of health data collecting instances in
Switzerland and internationally. We differentiate between data collected explicitly for
research and data which originates from care purposes as the respective institutions
have different priorities while collecting and show varying characteristics. We review
the current status and explore possibilities for change where it is necessary.

3.1.1 Collection for Explicit Research Purposes

Data collection specifically for research purposes usually happens in the context of
clinical trials or through supervising bodies like SwissMedic [117] who watch for criti-
cal incidents (e.g., adverse drug reactions) that would require further investigation. We
found that data collected for research purposes is usually digital and well structured,
as this has a naturally high priority for the organizations collecting it.

Supervising bodies usually do not have to actively find the affected patients since
there is an obligation to report [116] unexpected severe incidents in connection with
medical treatment. Because doctors are obliged to also include relevant parts of a
patient’s medical history, the incidents can then be investigated by national research
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centers. In these reports, a patient’s identity is anonymized, and thus no consent from
the patient to disclose the information is needed [9].

Finding data for a clinical trial, on the other hand, is time-consuming, expensive and
slow. These projects need to be approved by an ethics committee and suitable people
for the trial have to be identified without compromising data protection laws [72]. In
many countries, there exist registries where people can volunteer to be contacted for
trials [12], but this is still relatively rare in Switzerland. There are also various organi-
zations trying to build such databases all over the world to facilitate research on new
treatments. However, there are often inherent biases in clinical trial groups, as clinical
trials have to adhere to strict regulations regarding patient safety and companies do
not want people to drop out of the expensive process. As a result (pregnant) women,
the elderly and demographic minorities are often excluded, leading to issues specific
to them being overlooked [83].

The expenditures of clinical trials lead to the question of reusability of the data, since
it might be more cost-efficient to work with existing data. According to the law,
health-related data taken for research purposes may be disclosed for research pur-
poses, which would encourage reuse. [112] However, the rules of data proportionality
and data minimization also apply. This means that data cannot be accumulated arbi-
trarily simply because it might be useful at some point in the future. Therefore, the
collected data is likely of highly specific nature, such that it is rather improbable that
it would be useful for another type of study.

3.1.2 Data collected for Care and Treatment

The vast majority of medical data arises from the health care environment. Even
though it comes in varying quality and levels of detail, this type of data is interest-
ing because of its broad scope. Data collected in a care environment is comparatively
unbiased as it includes everyone visiting a doctor, making it ideal for research. For ex-
ample, it could be used for large-scale retrospective studies and as input for machine
learning, which would allow one to, e.g., discover drug interactions, assess treatment
feasibility over extended periods of time or for demographic groups not considered
in the clinical trial, or detect early indications for certain diseases. However, there can
be other forms of bias, such as due to doctors” and hospitals” social and demographic
catchment areas. While health insurance is mandatory in Switzerland, there is an ex-
tensive range of offers and some treatments are only covered by expensive optional
insurances. This means that some providers might be mainly visited by wealthy pa-
tients, while others (e.g., focusing on general or emergency care) see a wider variety
of patients.

Most medical care is provided by general practitioners, making them an essential po-
tential data source. However, in Switzerland there are no national standards prescrib-
ing how to collect patient data. As a result, some practices are still fully paper-based
while others use a variety of different electronic systems. Some take part in the FIRE
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project, which aims to build a nation-wide database of family medicine, with data
from routine check-ups as well as diagnoses, classified using the International Classi-
fication of Primary Care (ICPC) standard. However, electronic or not, patient records
commonly consist primarily of free-form text, making them ill-suited for most auto-
mated analysis. Hospitals’ patient data tends to be better documented and structured.
However, the files still suffer from weaknesses of the individual documentation tools
and frequently do not follow the FAIR principles [123].

The federated landscape of Switzerland makes it hard to define consistent codes and
standards. Even if everyone could agree on the same codes, these would need to exist
in at least four languages. If the codes are poorly translated (e.g., initial versions of
Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT), see §A.1.2),
information is lost and they will likely be abandoned. Since the law lacks an en-
forcement of a standard, the main working incentive for adapting a uniform standard
are the health insurances. They can decide in what form they accept reimbursement
requests [81], which is the reason that hospitals mainly use the International Classifi-
cation of Diseases (ICD)-10, Swiss Operation Classification (CHOP), or SNOMED CT
code systems (see §A.1.2). While this means health data from insurances is very well
structured, it might still be biased due to conflicting interests and incentives. Health
insurances in Switzerland employ a fixed-price system for every type of diagnosis and
intervention, which does not take into consideration the individual circumstances, in-
cluding the length of the hospital stay. Therefore, there is an incentive to identify as
many diagnoses as possible, especially in patients requiring more time and attention,
resulting in a distortion of data sets.

3.2 Data Sharing & Processing

In this section, we explore existing data sharing and processing frameworks. We will
be investigating how access to collected medical data is controlled in practice before
assessing the legal restrictions on this sensitive kind of data. In the context of re-
search, the most important properties of data are its shareability and interoperability.
Therefore, we pay special attention to whether or not existing sharing processes are
suitable for medical research. Shared data can also suffer from significant information
loss through aggregation techniques used to adhere to data protection laws. These
factors need to be considered carefully, because they might render the data useless for
projects that require a high level of detail.

3.2.1 Accessing Collected Medical Data

How and under what circumstances data collections can be accessed differs from in-
stitution to institution. We found that trust among different parties in the medical do-
main is very high in Switzerland, and exchanging medical data between institutions
for care purposes can be surprisingly easy. Generally, neither the research community
nor the collecting institutions seem to consider malicious actors. However, most pro-
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cesses do require the researchers to authenticate themselves, and some even require
having direct contact in the data-sharing institution, who might carry out the analysis
themselves rather than hand out the underlying data.

Most governments maintain incident databases for analytical purposes and surveil-
lance of patient safety [75]. For example, SwissMedic has a National Pharmacovig-
ilance Centre and they periodically crawl their database for quantitative signals that
indicate that a drug needs a closer inspection. While this data does not seem to be ac-
cessible to independent researchers, we found that they are often monitoring the Direct
Health Care Professional Communications (DHPCs) where SwissMedic communicates
their findings and might conduct independent studies on the drugs in question.

Some Swiss hospitals also allow researchers to use their data in the form they have
the patient’s consent to do so [11]. In the private sector, some health insurances make
anonymized data commercially available to researchers. We found that data analysis
is usually done in-house for data protection reasons, with no data leaving the insur-
ance [118]. Several pharmaceutical companies, like Novartis and Bayer, also share
some of their data with researchers, e.g., via a collective portal, where a review panel
evaluates research proposals and grants access to patient-level data [28]. This data
tends to be well organized and documented since clinical trials by pharmaceutical
companies are highly regulated [3]. Non-profit organizations in the medical field of-
ten actively support research as well, e.g., the Gates Foundation with its Gates Open
Research project [47] provides funding to research resulting in public data sets. If the
data is too sensitive to be published, researchers can define access constraints such that
the foundation can handle access requests. Other organizations also offer data upon
request or combined with industry collaborations, e.g., Médecins Sans Frontieres [78]
and the Institut Pasteur [64].

More convenient data sources for researchers are being built by the Swiss Person-
alized Health Network (SPHN) [113] that is funded by the Swiss government and
tasked with increasing health data availability for research. Other governments, for
example the U.S., already have organizations that allow statistical queries on some of
their databases [22]. The Centers for Disease Control and Prevention (CDC) has an
interactive database system that allows querying e.g. the number of cancer patients
according to the year they were diagnosed, the local registry they were reported to,
the body part their cancer was found on and the age range they were in when they got
the diagnosis. If the database finds less than 16 entries for a query, it does not display
the results. The CDC further has a research data center that gives access to restricted-
use data to authorized persons. The World Health Organization (WHO) gathers data
from all over the world and makes it available for research in different ways [24]. In
aggregated, anonymized form, the data is available for national research centers. For
specialized queries, it also appears possible to informally receive more detailed data,
if one has contacts to the WHO and the necessary references.

The lack of standardization makes most of the data gathered by general practitioners
unavailable for research, even though it makes up a huge part of medical data in
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Switzerland. However, currently, more than 700 doctors in Switzerland already take
part in the FIRE project [26, 31], making some care data available for research. To
use FIRE project data for research, it is anonymized by only transmitting birth year,
gender and the patient’s case number as potentially identifying attributes. The Swiss
data protection agency has approved this procedure. This means the data can be used
for research without explicit patient consent. However, the data base can only be
evaluated by the scientific staff of the institute for family medicine at the University
of Zurich. Which projects are conducted is decided by a committee of university and
family medicine representatives. [45]

Finally, we observe that health care institutions tend not to actively share data amongst
each other for care and treatment purposes. Instead, health care professionals can ex-
change (anonymized) thoughts in specialized networks [119, 56] and urgent informa-
tion requirements are resolved via calls or emails between different institutions. While
many are using the secure services from Health Info Net AG (HIN) [53] for data ex-
change, it still happens that paper-based records are faxed or scanned and emailed
without encryption. For example, in the early stages of the Covid-19 pandemic, pos-
itive test results had to be entered in an electronic form, which was then printed and
faxed to the Federal Office for Public Health (FOPH) [20]. This culture of low-threshold
communication is non-standardized and seems to be based on high mutual trust, but
appears to work well in practice. However, in some cases the ad-hoc and opt-in nature
of these channels might lead to important information being lost.

3.2.2 Legal & Regulatory Considerations

To fully understand the constraints under which this data can be shared and pro-
cessed, we need to take a closer look at the legal frameworks in effect. In Switzer-
land, cantonal ethics committees [84] are generally responsible for approving research
projects involving human subjects, such as medical research, as well as for approving
exceptions permitted by law. [112] The committees have to ensure that laws are obeyed
and guarantee study participant’s safety, dignity and well-being. This also holds for
retrospective studies and thus for research on data collections [68]. Here, we highlight
the impact of regulations like the Federal Act on Data Protection (FADP) and Human
Research Act (HRA) on medical research by investigating the prerequisites for data
processing under Swiss law.

Consent & Alternatives If data will be used for research purposes at some point,
consent has to be obtained from the affected person “in the case of processing of sen-
sitive personal data or personality profiles” [110]. The HRA specifies that research on
humans is only permitted if the participant has been sufficiently informed and con-
sented to only a specific procedure, which is known as informed consent. A patient
can be asked for general consent, making their data available for current and future
research projects. In certain cases, the use of the data is considered particularly dan-
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gerous, and general consent is not sufficient. This applies, for example, to the further
use of biological material or genetic data.

On the other hand, the law also provides ways for research to occur without explicit
consent. If (non-genetic) personal data is used in de-identified form, the data subject
must be informed of this, but consent is not required. If the data are anonymized,
their use for research is even permitted without any preconditions. The “research
privileges” in the HRA come into play when data is processed in research for non-
personal purposes, anonymized during processing as soon as the purpose permits,
and the persons concerned cannot be identified in the publication of the results. Then
the need for consent does not apply, even if the processing of the data was previously
explicitly rejected by the person. [112] The Message on the FADP also states that a
commission of experts appointed by the Federal Council may authorize researchers
to view medical records without patient consent if it is impossible or disproportion-
ately difficult to obtain this consent from the patient in question, the study cannot
be conducted on anonymized data and if the research interests outweigh the secrecy
interests of an individual. This is meant to balance the public interest in the advances
of medicine and data protection rights. [111]

Identifiability of Records Many legal and regulatory frameworks provide exceptions
for “anonymized” data. However, medical records usually contain data that makes a
person easily identifiable. To remove identifiability (known as de-identification), we
can either anonymize data, which irreversibly removes the link between a person and
their data, or pseudonymize it, where the connection between a person and their data is
stored somewhere, rendering the action reversible. [77]

De-identifying data is a challenging task. Especially in data files containing free text, it
is extremely hard to automatically remove all identifiers from the free text, while doing
so manually will not be feasible for many projects. Even beyond the challenges of deal-
ing with free-form text, there seems to be no uniform approach to the de-identification
of medical records. Especially for small institutions without a legal department, the
uncertainty resulting from the imprecise formulation of the data protection laws might
discourage sharing efforts. But even large institutions dislike anonymization because
it removes valuable information, sometimes to the point of rendering data useless al-
together. Instead, larger organizations prefer to use pseudonymization, which leads
to siloization as the linking information cannot be shared.

The processing of anonymized and pseudonymized data (for those that cannot re-
identify the subject) is not covered by the FADP because the data is no longer consid-
ered personal data. While convenient, anonymization is sometimes impossible. For
example, the (message to the) HRA states that in research projects related to severe
diseases, the data collected may not be anonymized so that researchers can contact
and inform the patient concerned if necessary unless the patient has expressly waived
information. Also, in long-term studies, the relevant data cannot be anonymized in
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most cases since the link between the person and the data must be restored on an
ongoing basis. [112]

3.3 National and International Efforts in Digitalization

In this section, we give an overview of the digitalization efforts in the Swiss health sec-
tor and compare it to international counterparts. We will first consider Switzerland’s
characteristics and current direction before we describe the situation in other countries,
especially in the U.S. and Estonia. The latter is especially interesting for us because
of its highly advanced digitalization that runs through all parts of its governmental
bodies.

3.3.1 Digitalization of the Swiss Health Sector

Federalism has always defined the Swiss health system. Some institutes, such as pri-
vate hospitals, operate under federal law, while other universities and public hospitals
operate under cantonal law. Further, we can see that FADP as well as General Data
Protection Regulation (GDPR) offer little guidance for security and medical profes-
sionals alike, who have to choose their privacy-preservation measures carefully. This
fosters an aversion towards technological advances since they first would need to be
assessed under these obligations. When it comes to standardization, an essential pillar
of digitalization, we need to consider Swiss multilinguality, which makes standardiza-
tion an unusually arduous task on a technical level. When considering the status quo,
an obviously missing step towards digitalization and especially automation is the abil-
ity to handle data at scale. Many operations on medical files are conducted manually,
which heavily limits the possibilities to scale these processes.

The 2018 eHealth strategy indirectly admits that many of the original problems men-
tioned in the first strategy [49] from 2007 still persist. As a result, the SPHN was
founded. SPHN is lead by the Swiss Academy of Medical Sciences (SAMS) and col-
laborates with the Swiss Institute of Bioinformatics (SIB), the Personalized Health and
Related Technologies (PHRT) of ETH and interacts with international data-sharing ini-
tiatives “to ensure lessons are learned”. It is tasked with solving the major pain points
in medical digitalization, namely build marketable coordinated data infrastructure to
share interoperable health-data for research in Switzerland. SPHN is trying to bridge
the interoperability gap between competing standards by adding another layer of in-
direction and thus accepting all previously used standards in its data model with its
semantic interoperability framework [19]. Today, SPHN has 24 driver and infrastruc-
ture development projects [89, 104]. One of them is DelD [27], a project that should
clarify how medical documents should be properly de-identified, with the goal of an
implementation that works in German, Italian and French. SPHN further invests in
Natural Language Processing (NLP) projects to transform free text into known termi-
nology and connects cohort data to a metadata catalog for findability. NLPforTC [4]
wants to build an NLP-based tool that maps clinical reports to SNOMED CT codes.
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Another project deals with e-consent [95], developing a “harmonized interactive elec-
tronic general consent” to make the process of (informed) consenting easier, faster and
more broadly applied. We observe that the progress made thanks to SPHN is impres-
sive when it comes to possible solutions to many issues named before. The challenge
of nationwide adaption of these solutions remains.

The basis of a secure infrastructure, called BioMedIT, have been set up by SIB. It
should allow authorized researchers access to confidential data with the goal of col-
laborative analysis. Of course, data privacy is highly valued in this setting. The three
main nodes are now operational in Basel, Lausanne and Zurich. The data that is up-
loaded in encrypted form by health care institutions to a node is shared with the other
nodes. Authorized researchers can access them through a single portal with two-factor
authentication (2FA). The project that might be closest to our topic is MedCo [74].
MedCo aims to develop an open-source, privacy-preserving operational system for
health care institutions that makes their data available for research in a secure, dis-
tributed way, using homomorphic encryption, secure MPC and result obfuscation.
MedCo plans to offer secure, private cohort exploration. It already supports the ex-
isting i2b2 framework, which should make it easy to deploy it on top of i2b2-based
infrastructure. They even promise a similar query response time for cohort exploration
as the non-privacy-preserving i2b2. However, it was started as a research project and
SPHN is still in the process of making MedCo production-ready.

In summary, it seems Switzerland is lagging behind its potential when it comes to
digitalization in the health sector. However, we welcome the efforts as part of the new
eHealth Strategy, which already show promising prospects and give reason to believe
that Switzerland will be catching up as long as government support is maintained and
digitalization stays a national priority [29, 79].

3.3.2 International Comparison

In the following, we will review some examples of digitalization in health care from
other countries and thus allow a comparison to the situation in Switzerland. We
will focus on Estonia and the U.S. because Estonia has a technically highly advanced
infrastructure and the U.S. has seen a boom in tech startups over the last few years
thanks to Health Insurance Portability and Accountability Act (HIPAA) [73].

Estonia recognized that establishing trust is something that needs time, and that this
also holds for sustainable digital progress. They found it essential to be transparent at
every step of the way, build informal types of communication to the citizens that lower
the entry barrier, and let systems run internally for a while before they are opened to
the public to eradicate technical teething troubles [85]. The digitalization process was
promoted as an anti-corruption measure as it frequently removed “human” steps from
official processes. Since 2018, whenever officials process a citizen’s data, the citizen has
to be informed about it and provided with a contact possibility (with the exemption of
criminal prosecution) [67]. Most e-government solutions in Estonia are open source for
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transparency [42]. The government has also nominated digital advisors whose job it is
to bring the technologies to the people, e.g. through hold digital conferences where the
audience can directly ask questions about the different projects [39]. Technically, Es-
tonia’s e-government is built around their e-identification and national public key in-
frastructure, allowing citizens to authenticate themselves for public services. Another
key ingredient is X-Road, an open-source, decentralized ecosystem for data exchange
that connects all public and some private institutions, using a blockchain solution to
log events in order to prevent fraud [67]. The government applications are designed
for ease of use, and use decentralized systems. Thanks to their already advanced IT
infrastructure, Estonia managed teleworking, telemedicine and teleschooling during
the Covid-19 pandemic much better than other countries [35]. It is worth noting that
Estonia works mainly with local companies since at the time, Estonia did not have the
financial means to pay big, established companies. As a result, the private sector and
the government have worked very closely and there is a significant amount of rotation
of employees between the government and the private sector.

While there may be quite a number of cultural and demographic differences between
Estonia and Switzerland, we can still learn a lot from their approach. The success of
establishing digitalization as a part of a countries DNA, making highly complex tech-
nologies in short accessible to a broad audience, introducing strong legal protections,
and adoption by 99 percent of the population did not come overnight. It took uncom-
promising transparency, the will to collaborate cross-sectional, and broad inclusion of
citizens, academics, government institutions and private companies, with the goal to
build trust at the center. An example that could maybe be reproduced in Switzerland
is how the e-health system in Estonia allowed the country to establish several registers
for rare diseases, a field where research data is usually scarce [91]. Legally, this would
already be possible in Switzerland, since the creation of such registers is not in itself
research. Thus the HRA does not apply, and no consent is required at the point of
creation, as the Swiss federal ethics committee has clarified [46]. Not only in Estonia,
but also in the U.S., technologies like differential privacy or MPC are slowly making
their way into government processes. Since 2020, the U.S. Census Bureau has been
using differential privacy to enumerate people and households of U.S. citizens, after it
has previously used the less secure imputation that likely allowed linkage attacks [34].
In 2017, a bill was introduced to U.S. Congress called “Student Right to Know Before
You Go Act”, which should make results available about student’s graduation rates,
debt levels, salary and other units of different universities. The goal is to properly
inform students how to spend their college fund best. Since these measures can only
be calculated with sensitive data from different federal offices like the Internal Rev-
enue Service and the Department of Education, they suggested using MPC to combine
the data. While the bill is still being considered in Congress [127, 124], it shows that
legislators are aware enough of secure computation to identify suitable deployment
opportunities. Clearly, there is some room for improvement in Switzerland in compar-
ison to other countries. However, the long-established political and economic stability
in Switzerland does not afford it the same “fresh start” scenario that enabled Estonia’s
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drive to digitization. Rather than looking for a huge leap of progress in a short time,
we need to consider the more profound lessons of trust and transparency and how
they can apply to Switzerland.

18



Chapter 4

Secure Computation in Practice

In this chapter, we explore current (commercially available) secure computation ap-
proaches and how they are or could be applied to the needs of the medical community.
In addition to secure computation platform providers, we also consider companies
offering security compliance and policy tools, as such solutions are currently more
widely adopted.Finally, we will assess the current approaches to secure computation
in research and how academic research is being brought to market. Instead of focus-
ing on the technical implementation of different solutions, we focus on how well they
address the requirements of real-world medical applications.

4.1 Commercial Secure Computation Solutions

We explore the growing number of commercially available secure computation so-
lutions, analyzing how suitable they are for data analytics on health care data. Our
survey is not exhaustive, but covers examples of technologies and companies we found
most ready to ship and most frequently mentioned in the industry. We focus primar-
ily on MPC, where commercial offerings seem most mature, but also briefly address
FHE and other secure computation technologies. Several companies offer ready-made
platforms for secure MPC, the most well-known of which is Sharemind by Cyber-
netica [102, 15]. These platforms for privacy-preserving computations are meant to
facilitate the process of setting up the software part of such an infrastructure. Next to
Sharemind, we will consider the smaller, younger company Inpher as a representative
for the emerging startups, and compare their offers.

Cybernetica’s Sharemind MPC framework promises computation on encrypted data
with comparably low performance overhead, which can be hosted in any data center
or cloud as long as at least three servers can be used as nodes. They further enable ex-
ternal privacy controls that manage what computations and outputs are allowed, such
that no information is leaked. Private values are stored in a secret-shared way, such
that no single server can learn them [98]. There are a number of papers based on Share-
mind, e.g., linking (simulated) health records from different health centers together if
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they belong to the same person to avoid duplication in a privacy-preserving manner.
With Rmind, Cybernetica also designed a cryptographically secure statistical analysis
tool based on the R language [16] to make statisticians feel more at home when work-
ing with MPC. With the help of Rmind and Sharemind they conducted a well-known
real-world MPC study ("Students and Taxes” [17]) demonstrating that their offerings
are ready for real-world use, linking and analyzing ten million tax records and 500”000
education records without loss of accuracy or privacy. The results were validated with
a classic statistical analysis, which had to use anonymization methods to comply with
privacy regulations, leading to a significant sample loss of 10-30 percent, while MPC
suffered none. The bias introduced by k-anonymity aggregation further lead to 4-13
percent difference between the anonymized and the MPC-based precise results.

Inpher [62], a Swiss-American Startup, also develops a secure MPC solution called the
XOR Secret Computing Engine. Inpher claims to provide high accuracy and precision
and compliance with cross-border data transfer standards [1]. In 2020, Inpher won
2 of 3 tracks in the iDASH secure computation competition, exceeding prior state-of-
the-art performance results [60, 63, 61]. With Manticore [21], they also propose an
MPC framework specifically for differentially private federated learning. Manticore
is designed for real number and Boolean arithmetic as well as garbled circuit opera-
tions, which include real-valued polynomials, division, exponential, logarithm, linear
combination, and (oblivious) comparison and requires a trusted dealer. Several appli-
cations are possible with this range of operations, and the designing team focused on
logistic regression, PCA and oblivious sorting. However, as far as we know, there are
as of yet no real-world deployments of either Inpher’s XOR or Manticore technologies.

We see that these companies already have medical use cases on their radar and show
highly promising results. The benefits of such offers are that data analysts can imple-
ment queries without having access to the data and only the issuer of a query can read
the output, offering high security and confidentiality. Furthermore, they promote new
forms of collaboration and previously unknown scopes of data, which allow to in-
vestigate hypotheses that were impossible to test before The main drawbacks of these
companies are that often a trusted third party is required, as well as a technically
highly advanced infrastructure and skilled professionals to handle the complex setup.
Even given a performant infrastructure, most queries will take a significant amount
of time, but recent improvements promise to bring down the query time in the future
significantly. Further, each question has to be implemented and solved individually
and one might need to organize a party supervising information leakage to ensure
privacy, creating a vast setup overhead. This is a skillset that, e.g., researchers in Swiss
hospitals will not have at hand in order to conduct cross-institutional studies. There-
fore, these technologies will have to become significantly more accessible before they
can be deployed at scale.
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4.2 Compliance Tools

Currently, most security and privacy efforts in industry concentrate on encrypting
data in transit and at rest, and use non-cryptographic techniques like access control
to control processing. As a result, compliance, policies and out-of-the-box security
solutions are mainly built to keep the data where it belongs, rather than to share
it securely, furthering siloization [86]. A variety of companies realizing and selling
a more compliance-centric vision of privacy-preserving technology exists, focusing
on high-quality access control, privacy policies and heuristic measures such as de-
identification.

Privitar [87], for example, is a security company offering many services for de-identification
and linkage of data automatically and at scale, access control, encryption, implemen-
tation of privacy policies, cloud security, watermarks and monitoring. The techniques
they use for de-identification include pseudonymization, generalization, perturbation,
noise addition and data minimization. A so-called Protected Data Domain maintains
the structure of the original data set, keeping format, storage location and meta-
data, which eliminates the need for adapting existing applications that work with
this data [88]. One of their use cases is health data protection and analysis. They have
partnered with the National Health Service (NHS) where they have mitigated the is-
sues of federation by linking the data from the data silos together in a (presumably)
secure and private way with the help of homomorphic encryption. [57] Since the NHS
did not have the technical infrastructure to handle such a large amount of data, they
started to use the Amazon Web Services (AWS) cloud services. [120]

Of course, companies like Microsoft and Amazon also offer their own compliance
tools. AWS provides an extensive list of services for Identity and Access Management
(IAM), threat detection, infrastructure protection, data protection, incident response
and compliance [5]. Creating custom solutions by navigating this abundance of pos-
sibilities tends to be cumbersome, making it error-prone. As a result, a significant
amount of data breaches are enabled by misconfigured access control systems. Mean-
while, the Microsoft Security Compliance Toolkit [76] allows one to edit and analyze
security configuration baselines for Windows clients and servers. The tool shows se-
curity administrators where and how these baselines should be applied. However,
these cover only the bare minimum of security, and do not consider the customiza-
tions done by individual companies. There, the security administrator has to decide
themself where to add more rules. Tools like this are becoming easier to deploy, but
health care institutions have to make sure that all their assets are truly covered by them
and also adhere to the local law. While helpful, such tools can also lead to a dangerous
sense of perceived security, leading to complacency rather than compliance.
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4.3 Real-World Example: Contact-Tracing Apps

While the progression from academic research to real-world ready solutions has tra-
ditionally been slow in this domain the Covid-19 pandemic has seen the rapid de-
ployment of privacy-preserving contact-tracing apps in many countries. Interestingly,
some of these use complex privacy-preserving systems based on academic ideas, while
others rely on more traditional and privacy-invasive approaches. In this section, we
investigate the technology behind these two fundamentally different types of contact
tracing and set them in context of their public perception and adoption. This gives us
information about possible pitfalls that privacy-preserving systems need to manage if
they are widely deployed.

The Decentralized Privacy-Preserving Proximity Tracing (DP-3T) [37] protocol has
been the base for several contact tracing apps in Europe, namely Austria, Belgium,
Croatia, Germany, Italy, Ireland, the UK, the Netherlands and Switzerland [10]. The
technology uses Bluetooth Low Energy to track contacts in the background without
draining much battery, an approach that had to be supported by the phone’s operating
system (OS) providers Apple and Google in order to work [50]. The vital core of the
protocol is the so-called Ephemeral IDs used as an identifier. The strings are 16 bytes
long, semi-random, rotate in specific intervals, and are used for logging the contacts
of the person using the app. The solution offers strong privacy guarantees and is a
rare example of an academic design being brought to market in record time. In July
2020, about 14 percent of the Swiss and German population had downloaded the app,
while in Italy, it was only 7 percent [114, 82, 32].

Meanwhile, in South Korea, researchers developed a Privacy-Oriented Technique for
COVID-19 Contact Tracing (PROTECT) that uses homomorphic encryption to share
the location of patients and a secure proximity computation and allows a central au-
thority to notify people if they are within 100 meters of a patient [6]. However, instead
of adopting this protocol, South Korea chose to release the (somewhat de-identified)
travel histories of confirmed patients and displaying coronavirus-hit areas. Gender
and age range of patients seems to be disclosed in addition to the travel histories,
exposing patients to a high risk of re-identification. Despite these possibly massive
privacy violations, the acceptance of these measures appears high [126]. While South
Korea has made its experiences with the Middle East respiratory syndrome (MERS)
in 2015 [71] and thus knows of the necessity of countermeasures in a pandemic, there
are also cultural factors that influence the acceptance of such actions.

It appears that the trust in authorities, the health care system and technology is fre-
quently more important than the actual quality of privacy-preserving designs. In Eu-
rope, concerns like fear of government surveillance and fear of being stigmatized have
been a significant barrier to adoption. Additional influencing factors are the individ-
ual’s perception of social responsibility and technology, as well as the perceived threat
to their own health. The individual’s understanding of the functionality and preven-
tative nature of the app, as well as what performance and benefits can be expected
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from it play a crucial role in broad adoption, as the spreading of misconceptions can
significantly hinder the process. Last but not least, we need to consider an intention-
action gap, where people have a positive perception of the application but still remain
passive [121]. We observe that this displays again the crucial role of transparency and
low-threshold educational work in technological competence, especially in Europe.
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Chapter 5

Discussion: Bridging the Gap

In this chapter, we will think of the measures and changes required to close the gaps
between secure computation offers and real-world health care and medical research
requirements. We divide this into matters concerning ease of use, the public perception
and their security concerns and the underlying protocols and threat models of secure
computation technologies. We will discuss possible solutions and how a pragmatic
attitude in research and client-centered product development could go a long way.

5.1 Ease of Use

In the following, we discuss the usability shortcomings of secure computation offers
using the example of MPC. We suggest ways how ease of use could be improved
generally, but specifically in the context of medical research.

As of today, MPC applications are usually custom-tailored for specific applications.
This effort is hardly scalable since applications require an elaborate set up and a lot of
preparation work for query and data set preparation. Not all projects have so much
time to spare or the courage to tackle such a technologically demanding task and thus
might rather keep working on smaller, centralized data sets. It should be a goal to get
away from highly customized systems to more standardized and maybe even certified
approaches that offer certain legal guarantees and robustness to customers. Ideally,
off-the-shelf systems will reduce the preparation time by orders of magnitude, such
that willingness to experiment with this technology increases.

Not every project is suited for MPC, as some operations will remain difficult to per-
form on encrypted data (e.g., NLP) or will lose information in the process of prepara-
tion and encryption that would have been necessary to answer the research question.
Researchers considering MPC should first explore whether or not their techniques
translate to MPC, as well as whether they can actually benefit from an increased sen-
sitivity and scope of the data because of MPC. Lastly, they need to consider whether
the question they want to answer can be formulated as an MPC query without leaking
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information unintentionally. Companies offering MPC platforms should provide sup-
port for researchers to clarify these questions to avoid frustration with their product
or accidental information leakage. We identify here a potential business field where
companies could sell solutions for specific problems, thus providing ready-made, off-
the-shelf setups. For example, an offer for private set intersection on patient data
containing a particular list of value types and identifiers, linking a fixed amount of
parties and requiring at least a specific size of the input data sets. These offers could
reduce the know-how necessary from the client and thus increase their catchment
area. Modular designs with frequent components such as set intersection or duplicate
removal also offer good reusability for the service provider.

Further, ease of use can be massively increased by considering the clients who will
use it later. For example, Sharemind developed the Rmind tool that is modeled after
the programming language R frequently used by statisticians [16]. Providers of cryp-
tographic solutions must first understand the tools people already use and integrate
their product into this environment. It is also more constructive to work with the
habits of people and not against them, which means e.g. parsing free text with NLP
instead of requiring people to enter data in a highly complex fashion.

We assume that work on unencrypted data will also remain necessary since we saw
that not every research question can be put into an MPC query. This type of research
scales poorly today because we found that time-consuming tasks (e.g. assessing and
performing de-identification) are frequently done manually. For this reason, we con-
sider it crucial that repetitive, question-independent tasks like anonymization become
automated. Some companies like Privitar already offer such services, but as the med-
ical world is little digitalized and standardized, it remains a tedious task which we
imagine needs the support of NLP to be truly performant. This does not necessarily
solve problems like linkage attacks, but applying differential privacy could mitigate
this while retaining high accuracy, and various tools and libraries for differentially
private machine learning have become available over the last few years [52].

In medical research, linking data sets is sometimes actually a necessary task because
of the scattered medical histories of patients. Linking of course needs to be consid-
ered before the data is fully anonymized, and also requires careful consideration of
identification possibilities [43]. One possible approach could be to hash or otherwise
encrypt specific identifiers before removing them, such that matching identifiers can
be combined cross-institutionally. This of course requires that the combined data still
does not leak information about the patient’s identities, which is inherently difficult
to know before the data is combined. This consideration makes it more attractive
to use something like MPC, where the encrypted inputs do not necessarily require
anonymization, and only the output of an analysis is potentially public. There is still
a requirement for a carefully crafted query, but it could mitigate some of the issue.

We can summarize the suggestions above as a call to client-centered product devel-
opment and an invitation to orient oneself on already commercially available security
products and the way they are presented and sold.
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5.2 Public Perception and Security Concerns

Secure computation is not a widely known solution for data-sharing in Switzerland
and the legal and societal frameworks have not yet been adapted to it, leaving hur-
dles regarding consent, ethics and the law. These obstacles make even the existing
offers unattractive as many companies will not see an advantage over the restrictions
of classical data-sharing options. As we have seen in the example of Estonia in the
previous chapter, public perception can have a great influence in overcoming such ob-
stacles. Public perception plays an even more significant role in the adoption rate of
new technologies, as we have seen in the example of contact-tracing apps. The gov-
ernment support for the Swiss Personalized Health Network (SPHN) demonstrates
that the shortcomings are known, but we believe it is crucial to increase the visibility
of their work and explain their necessity and prospects to the public to push a broad
adoption when the products are ready.

While secure computation promises new ways of collaboration and research on sensi-
tive data, it can not mitigate all human issues in security compliance. There are many
reasons why security programs can fail [86], including misjudgment of which assets
are at risk, or a lack of inclusion of the companies specific structure. Combined with an
aversion to deal with the complexity of security, decision-makers are tempted to buy
out-of-the-box solutions or outsource the responsibility, potentially leaving the most
important assets insufficiently secured. The same aversion might also lead to a lack
of verification of whether security mechanisms are correctly installed and maintained.
Since the responsibility for security is often attributed to the IT department, decision-
makers might be tempted to focus mainly on the technologies, instead of looking at
the whole picture of the organization, its assets and risks. Homegrown security solu-
tions might fall victim to the same issue as long as there is not enough investment in
building up the necessary know-how and responsibility and execution are not sitting
at the same table. Another reason for security to fail can be an over-focus on legal com-
pliance. Especially in hospitals, there is a strong focus on compliance with applicable
laws and regulations. In fact, some hospitals have their own well-crafted guidelines
that are even stronger than what the law requires. However, the law does not mention
all the numerous side-channels hackers can take to get what they want, leaving an
organization vulnerable even though they implemented everything they thought they
needed. There is no way around the classic security concerns like access controls, poli-
cies and compliance. Since every organization’s resources are finite, it is imperative
that a thorough threat assessment is conducted and security mechanisms are applied
accordingly, fit to the specific organization’s need with the help of professionals.

Security and its maintenance are and will always be a complex topic, which is why
trained professionals are important [86]. We believe this also holds for the deployment
of secure computation solutions since they often require on-site processing of sensitive
data, for example to encrypt them. Even cryptographically secure tools are still used
by humans and could be abused by unauthorized personnel or infected by malware.
This is why secure computation companies should consider extending their offerings
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in the direction of traditional compliance frameworks. Such a push could offer a more
gradual path to advanced security technologies rather than forcing an all-or-nothing
decision. This could help relieve the initial aversion we frequently observe in general
audiences because of the high complexity of cryptographic solutions.

5.3 Protocols and Threat Models

In this section, we will investigate what needs to change in secure computation re-
search in order to be a better fit for real-world and specifically health care applications.
Current data sharing efforts often require a lot of trust and paperwork, as well as a
considerable number of resources in a centralized data store, like the previously men-
tioned research databases. MPC promises to mitigate these challenges by omitting (at
least partially) the trusted party and keeping the inputs private, as well as distributing
the amount of resources needed over the participants. We could avoid data silos, legal
issues and country borders. This idea has paved the way for specialized companies
as we see currently in very early stages, and quite advanced research areas. However,
the offerings of these companies and researchers very often still rely on trusted third
parties [62] or can only offer 2-party-protocols [36], which might not bring enough
benefits for clients. Since clients will invest many resources in such a solution, we can
assume that they will not simply want to merge their silo with another but signifi-
cantly scale their coverage. The legal implications of a trusted third party are also a
delicate matter, especially in medical research.

Furthermore, we witness that the threat models used by cryptographers can be an
unnecessarily hard restraint when used in real-world applications. Most institutions
do not have to care about computationally unbounded enemies nor do they consider
scenarios where they can trust no-one except themselves. While critical infrastructure
should ideally be safe enough to keep out even nation-state actors, we believe such
threat models are too much of a limitation for medical research applications. Attackers
with such capabilities can usually find significantly easier ways to subvert an academic
research project than running infinite queries on an MPC setup. We thus believe it is
okay to trade, e.g., potential leakage in the case of infinite queries for efficiency.

We found that threat actors stronger than honest-but-curious do often not match the
participant’s perception of reality. In most cases, all parties are trusted, and MPC
is only used as a data protection measure to adhere to the law and not because the
parties would not trust each other. In the field of medicine, the trust is exceptionally
high, as they have to prove themselves over and over in handling sensitive data. This
does not mean that we should abandon threat models in MPC, on the contrary, we
should simply consider a different view. We usually assume the contributing parties
to each be a single entity. This is not necessarily true. If we come back to our example
of hospitals, from collecting the data to feeding it into an MPC algorithm, there might
be dozens of people involved, some even accessing the same computers. We do not
believe that all of these sub-entities will always act like trusted parties. A marketable
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threat model therefore needs to include a certain robustness when it comes to sub-
entities of a computing party.

Based on these insights, we consider two types of threat actors that are generally
not considered in secure computation but of significant importance in practice: A
byzantine-by-incompetence actor is (at least somewhat) technically illiterate. They do
not know what they are doing, turning computers and programs on and off and ran-
domly clicking on stuff they are not supposed to. Moreover, they might enter data
in the wrong order or load the wrong files. While this type of byzantine behavior is
technically captured in the actively malicious threat model, they have little in com-
mon in practice. A byzantine-by-incompetence actor can be mostly be mitigated by
employee training, access control, graceful shutdowns and general failure-tolerant de-
signs. However, few of the existing secure computation systems seem to consider such
users or provide the facilities to effectively deal with them. Our second actor, the
honest-but-incentive-driven actor technically follows the (MPC) protocol correctly but
has a different agenda than whoever set up the computation. They manipulate the in-
put to be valid, but not necessarily correct. They might selectively decide which data
to collect or exaggerate on parts of the data, resulting in biased and distorted inputs.
A more direct form of this adversary would simply manipulate the inputs directly to
hide, falsify or add inputs in accordance with their agenda. Such actors tend to arise
when systems are used for multiple, misaligned purposes (e.g., recording medical di-
agnoses and managing remuneration). While they can occur in traditional systems,
the reduced auditability of privacy-preserving systems makes them more likely. A
honest-but-incentive-driven actor is harder to mitigate, requiring good knowledge of
the systems around this actor, their motivation and roles. Ideally, misaligned incen-
tives are detected and discussed before a system is set up. Alternatively, performing
statistical analysis on different (aggregated) data sets from similar sources might also
reveal certain biases, but only if it is not an industry-wide problem.

29






Chapter 6

Conclusion

The goal of this thesis was to explore how medical data is collected, shared and pro-
cessed in care as well as research, analyze how secure computation could solve the
needs that arise from these procedures and find what is required to close remaining
gaps between secure computation offers and real-world health care and medical re-
search requirements. We used the example of health care because there are many
application scenarios with obvious societal benefits. It was also interesting because it
has seen very little exposure to advanced cryptographic technologies in comparison
to, e.g., the financial sector.

Our analysis of the current data handling in medical research has revealed several
significant challenges, primarily related to (a lack of) digitalization. When explor-
ing the fit between the medical and secure research communities, we found that sev-
eral exciting prospects exist, for example the SPHN tying technology and the medical
field together to develop MedCo, a secure operational system for hospitals. Further,
we found various possibilities to grow and extend medical researcher’s data sets in
privacy-preserving ways, collaboration opportunities, technologies like Rmind that
permit scalable, distributed data analysis, and others for automated data linking, de-
identification and anonymization. However, we also identified issues where secure
computation can not help, but that need to be solved on their own in the future in
order to truly progress digitalization in health care. This includes missing or mis-
aligned monetary incentives, lack of top-down enforcement of standardization, slow
adoption of technologies due to lack of understanding of their necessity as well as
their functionality and the optional, rare use of communication channels that result in
health care institutions working in isolation. We thus deduce that the existing secure
computation approaches in research and industry offer promising prospects but are
not enough to cover clients” needs on their own.

Subsequently, we examine misalignments between secure computation offers and real-
world health care and medical research requirements and reason what measures se-
curity companies and researchers could take to close these gaps. We determine that
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in research, usability is rarely taken into consideration and the companies need to
take into account the skill set of their clients in order to foster marketability. Further-
more, public perception and security concerns play a significant role in the adoption
of new technologies, which is why we propose to combine secure computation with
existing compliance-based solutions to facilitate market entry, create more visibility
and encourage transparency around these offers to reduce fear of contact. Moreover,
cryptographers should consider the circumstances in which their protocols are used,
for example in multi-party situations with many sub-parties that could cause issues
even within otherwise trusted entities. Such considerations will hopefully increase ro-
bustness as well as performance and thus also advance the usability of the protocols.
We conclude that solutions to the mentioned problems require a pragmatic attitude in
research and client-centered product development.

Finally, we want to consider also the social responsibility of people inventing new
technologies. Personal data should always be collected and processed responsibly and
one needs to be aware that new, unprecedented kinds of (medical) research on vast
amounts of data could have possibly unintended consequences. Simply applying cryp-
tographic techniques does not make questionable research morally acceptable, and it
is essential that ethics committees achieve a balance of appreciating additional pri-
vacy protections offered by cryptography without allowing it to be used to whitewash
questionable proposals.
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A.1 Medical Files

As we have seen from comparing the data sources, there is a massive lack of stan-
dardization, the data is scattered and stored in silos. There are however, multiple
competing standards on different levels, as there have been huge efforts in the past to
drive towards interoperability. So far, none of them was a panacea to these issues, but
it is crucial to understand their main selling points, what they are meant for and why
some of them failed in order to talk about new approaches.

A.1.1 FAIR Guiding Principles

The FAIR Guiding Principles [123] are meant to be a guideline to support the reuse
of research data. It states that to provide a good reusability, data has to be findable,
accessible, interoperable and reusable. These principles are not only meant for humans
managing data, but also for machine readability.

For each principle, the authors also state multiple subpoints that mainly focus on
machine readability. For findability, these mainly consider the presence of metadata,
indices and identifiers. Accessibility deals with clear communication protocols and
authentication and authorization procedures. Interoperability manages the language,
vocabulary and references used in the data collection. Finally, reusability means to
handle data attributes, data usage licenses, standards and a clear origin of the data.

As we will see, existing data standards in health care frequently do not align well with
these requirements.

A.1.2 Semantic Standards, Classification, ldentifiers and Conventions

While many patient files still contain free text, graphs and images, we will here show
some standards that have been at least partially adapted. We will focus on the few that
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during the research for this thesis seemed to be the most important in the Swiss hos-
pital environment and only shortly mention the others we found, but the list probably
still is not exhaustive.

The International Classification of Diseases (ICD) is a diagnostic tool maintained by
the WHO. The current revision version is version 10, called ICD-10. Version 11 will
be adopted in early 2022. The German modification of ICD-10, ICD-10 GM, is what
is currently in use in Switzerland and has been translated into French and Italian for
that matter. [106] ICD is a globally adopted standard for disease and health condi-
tion reporting. It promises easy sharing and comparing of reports and is suitable for
disease monitoring, death cause, external causes of illness and more. [66] These prop-
erties might be limited in Switzerland because they are using their own modification
together with Germany. While the ICD does not cover everything one might write
in a patient record, it is a great and functional tool for the purpose it was designed.
Its main drawback is the training of health care professionals to use it. Not only is it
costly, but with each version, there are more terms that are even more specific, such
that some physicians might not even know how to report unspecific statements from
their patients. Even worse, the more complex a standard, the more likely the people
using it will make mistakes. [14] Further, sometimes e.g. the cause of death of a patient
with comorbidity is not certain. The physicians are then forced to decide what to put
as the underlying cause of death and non-underlying cause of death, respectively. [65]
The general lack of multi-dimensionality can lead to a distortion in the data set, makes
databases hard to query (say you search for infections of the foot, you can only query
infections or foot, and the results depend on in which hierarchy the attending doctor
put it) and is also a reason why SNOMED CT has been introduced in Switzerland.

The Swiss Operation Classification (CHOP) is based initially on ICD-9 and is meant to
classify treatment. [100] CHOP and ICD-10 are used by Swiss Health Care providers,
especially hospitals, to get reimbursement from health insurances. [115] Thus, hos-
pitals are automatically forced to use them. In ambulant care it is allowed to use
International Classification of Primary Care (ICPC) or the Ticino Code, which are also
for diagnosis and treatment classification, but much more coarse-grained and thus cost
less time and training. [81] ICPC also allows to code why a patient visited a doctor,
before they got a diagnosis. This is why general practitioners mostly use these two.
There also exists conversion tables from ICPC-2 to ICD-10. [55] Because especially
ICD-10 is so detailed and complicated, people are employed just to translate medical
histories in ICD/CHOP. These do not have to be attending doctors but are responsible
that the hospital gets its money.

The Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) is a ma-
chine readable set of medical terms. It codes diagnosis, clinical findings, surgical,
therapeutic and diagnostic procedures, body structures, organisms, substances, phar-
maceutical products, physical objects, physical forces, specimens and even the occu-
pation of a patient. Its vast scope is meant to reduce the need for multiple systems
in health records. Next to descriptions, it also offers concepts and relationships and
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thus builds a whole logical model. It was built for EHRs, with the goal to increase
their efficiency. To be internationally operable, it was meant to be like a language,
that in turn can be translated into other, human-readable languages. Mappings of
existing standards to SNOMED CT allow the system to translate codings of differ-
ent standards into SNOMED CT in the background, which in turn allows to export
the codes into a third standard. [103, 13] Even though this system has been available
in Switzerland since 2016, it is not adopted widely enough. The reason for this is
a lack of incentives, since there is no law that enforces a better interoperability. [59]
Same as for ICD-10, implementing it in an institution costs time and money. For the
English version, SNOMED CT has NLP support which is increasingly extended. This
means that free text can be entered and the clinical NLP extracts the necessary parts as
SNOMED CT. [2] Being able to use free text in the reports would quite likely increase
its adoption, since everyone is already used to it. In Switzerland, similar efforts are
still in their early stages. [80] Since Germany joined SNOMED CT in January 2021 [48],
there is hope that the now broader adoption will also drive efforts in Switzerland.

The Logical Observation Identifiers Names and Codes (LOINC) is probably one of
the best-known coding systems, in Switzerland as well as internationally. Most EHRs
are able to support it and Health Level 7 (HL7) made it part of its Clinical Docu-
ment Architecture. In Switzerland, LOINC is mainly used to code laboratory results.
Even though the country is in dire need of nationwide adoption because of its multi-
linguality, its own linguistic versions lack support because they do not cover enough
terms. LOINC also has often been used for purposes it was not designed for, for
example representing correlated data. Joining data that is LOINC coded remains
challenging in many cases because of missing context and references. Backwards-
compatibility is another challenge with LOINC, as the codes become increasingly de-
tailed and specific, such that old, less specific codes would now map to multiple more
specific ones. There are efforts to map LOINC with SNOMED CT to mitigate some of
these issues. [30]

Other classification systems which are less important to us are presented in the fol-
lowing.

The Anatomical Therapeutic Chemical (ATC) Classification System is used in drug
classification, mainly in pharmacology. It classifies ingredients, the system they act in,
and their therapeutic, pharmacological and chemical properties. [90]

The Medical Dictionary for Regulatory Activities (MedDRA) was designed for reg-
istration, documentation and safety monitoring of medicinal products intended for
human use. [122]

The North American Nursing Diagnosis Association (NANDA) is an association that
designs a classification system for care diagnoses which is also called NANDA. It is co-
ordinated with the Nursing Interventions Classification (NIC) and Nursing Outcomes
Classification (NOCQ). [7]
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A.1.3 Data Models

Next to the semantic standards, there is also a need for data models that describe
how data should be structured, shared and especially accessed and queried. Multiple
organizations work on standardized data models, some of which we will mention here
to give the reader a better idea of where to look for further information.

The Clinical Data Interchange Standards Consortium (CDISC) developed a whole se-
ries of data sharing standards for data from clinical trials [23].

The Observational Medical Outcomes Partnership (OMOP) [97] offers a Common Data
Model (CDM) for the systematic analysis of observational data. The idea is to have
multiple databases with common format and representation, such that their data can
easily be compared and analyzed.

Another standard is the Digital Imaging and Communications in Medicine (DICOM) [33]
which is most commonly used to transmit medical images. It is the standard for med-
ical imaging information and its related data and involves transmission, storage, re-
trieval, printing, processing and displaying medical images. Today, it has been widely
adopted by hospitals and is increasingly also found in smaller practices.

An open-source approach is i2b2 [58], a clinical data warehousing and analytics re-
search platform that enables sharing, integration, standardization and analysis. In its
newer versions, it also makes use of the OMOP CDM.

The group that appears the most prominent is Health Level 7 (HL?7) [54]. They provide
a framework and standards for almost everything related to health information. All
HL7 standards have ANSI/ISO/HITSP approvals. Two of its most popular standards
are the Clinical Document Architecture (CDA) that provides a markup standard for
clinical document structure and semantics, and the HL7 Fast Healthcare Interoperabil-
ity Resources (FHIR) which facilitates the healthcare data exchange between all kinds
of health care professionals. HL7 has collaboration agreements with the developers of
SNOMED CT and LOINC, as well as several others.

An important pillar for most of these standards is the Resource Description Framework
(RDF) [93], a very general approach to describing data and metadata. Everything is
stored as a triple, consisting of subject, predicate and object. Here, the subject is a
resource, the predicate describes its attributes and the relationship between subject
and object. The goal of RDF is to represent interconnected data, which is something
the classical semantics standards like ICD-10 lack.

The SPHN is also working on an RDF-based semantic interoperability framework, but
because it is very new and still under development, we will only look at it later.

A.2 Legal Definitions

In this section, we present the most important definitions that frequently occur in
legal frameworks, e.g. identifiability, anonymization or sensitive data. We will not
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only consider Swiss law but also GDPR and HIPAA.

The Federal Act on Data Protection (FADP) regulates the protection of privacy and the
rights of a person whose data is processed by natural or legal persons. The Message
on the Federal Act on Data Protection describes how the law should be interpreted,
provides examples and historical context. We will also mention parts of the Swiss
Human Research Act (HRA) and the Message on the Human Research Act. The HRA
serves to protect human dignity and personality and complements certain parts of the
FADP.

In the FADP, personal data is described as all information relating to an identified or
identifiable person.

Sensitive personal data is personal data that is considered worthy of special protection
and includes health data.

Next to identifiability, the FADP also mentions a personality profile, which is a ”collec-
tion of data that permits and assessment of essential characteristics of the personality
of a natural person”. [110]

Identifiability is defined only in the Message on the Federal Act on Data Protection, as
if a person is not clearly identified from the data alone, but can be inferred from the
context or circumstances of the data.

However, this holds only if doable with manageable effort and does not enclose e.g.
a resourceful statistical analysis. [111] Here, the interpretation of the law does also
depends on the resources of the person having access to the data and whether they
would, within reason, “be able and willing to identify the subject”. [77]

The U.S. Health Insurance Portability and Accountability Act (HIPAA) offers much
clearer mechanisms. [77] Their risk- and rule-based approaches will be discussed later.

The EU General Data Protection Regulation (GDPR) in turn reasons that to evaluate
the identifiability of a person, all measures likely to be used (within reason) should be
taken into account. This likelihood depends on factors such as the cost and timeliness,
as well as available technologies. [77]

This is a slightly stronger statement than what we have seen from FADP, where we
only dealt with “manageable effort”, but the approach in general is similar, as it also
does not state any more specific rules or technologies that should be considered in the
process but binds the risk evaluation to its circumstances.

Note that GDPR affects institutions that offer their services to EU citizens, no matter
where they are operating from. [92, 99]

GDPR further offers a definition for pseudonymization, which the FADP ambiguously
calls “verschliisselt”, a term that can be translated with “encrypted” or “coded”. We
found that it means “coded” and refers to pseudonymization. [77]
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GDPR defines pseudonymization as a modification of personal data such that the data
cannot be linked to its data subject anymore without certain additional information
that should be kept separately.

While FADP and GDPR remain silent about adequate measures, HIPAA presents two
mechanisms for de-identification.

"Expert Determination” makes use of statistical methods that allow to modify data
such that individuals cannot be identified anymore. The process consists of about
three steps. First, the re-identification risk of the original data has to be evaluated.
Then, applicable methods that reduce that risk have to be found and applied to the
data. In the last step, the re-identification risk of the modified data set has to be
evaluated. The new risk has to be “very small”. The law relies on the expert to choose
an appropriate interpretation of “very small”, depending on the data set and its work
environment.

”Safe Harbor” is a much simpler but also controversial approach. It presents a list
of identifiers that have to be removed from an individual’s file or changed. This list
contains only 18 identifiers. The people modifying the data further should not have
clear knowledge that the remaining data can be used for re-identification, e.g. the
profession is none of the 18 identifiers, and some professions are quite unique, such
that they too would have to be removed.

Even though both approaches state a certain awareness of a remaining re-identification
risk, “Safe Harbor” has become controversial thanks to observations by Latanya Sweeney,
who stated in 2000 that 87 percent of the U.S. population is uniquely identified by
date of birth, gender, postal code” [108] and conducted further studies that heavily
contest the privacy claims of “Safe Harbor”. [109]
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