
Actually Good Encryption?
Confusing Users by Changing

Nonces

Semester Project

Mirco Stäuble

July 12, 2022

Advisors: Prof. Dr. Kenny Paterson

Applied Cryptography Group

Institute of Information Security

Department of Computer Science, ETH Zürich

Abstract

Age is a command line encryption tool designed by Filippo Valsorda,
which is gaining popularity. Using Age a user can encrypt arbitrary
files into so called Age-files. Thereby, each file can be encrypted for
multiple parties. Each party is then able to decrypt the file.

In this report we provide an overview of the encryption and decryption
process performed in Age. We take a closer look at the AEAD scheme
ChaCha20-Poly1305, which is used in Age as a Stream cipher.

We describe why ChaCha20-Poly1305 is not a robust encryption scheme
by showing how we can compute an ambiguous ciphertext which de-
crypts correctly under two different keys.

Making use of this property we describe an attack against Age, in
which an adversary creates two Age-files, differing in as little as one
bit, which will decrypt to two different valid plaintexts.

We explore different scenarios under which this attack can be exploited
by a malicious party to create confusion over the contents of Age-files.

i

Contents

Contents iii

1 Introduction 1

1.1 Notation . 3

2 How Age Works 5

2.1 Key Derivations . 6
2.2 File Format . 6

2.2.1 Header Format . 6
2.2.2 Recipient Stanzas . 8
2.2.3 File Key Restrictions . 10

2.3 ChaCha20-Poly1305 . 10
2.3.1 ChaCha20 . 11
2.3.2 Poly1305 . 11

2.4 Encryption in Age . 12
2.5 Decryption in Age . 14

3 Collisions in ChaCha20-Poly1305 19

3.1 High-Level Overview of Poly1305 19
3.2 Creating Collisions in ChaCha20-Poly1305 20
3.3 Pseudocode Implementation 22
3.4 Remarks . 24

4 Polyglot Files 25

4.1 Constraints . 26
4.2 Polyglot Files . 27
4.3 Characteristics of File Formats 28
4.4 Remarks . 29

5 HKDF and HMAC 31

5.1 HMAC . 31

iii

Contents

5.2 HKDF . 32
5.3 Implications for Age . 33

5.3.1 Changing Nonces . 33

6 Attacking Age 35

6.1 Threat Model . 35
6.1.1 Attack Scenario . 36

6.2 Key Derivations in Age . 37
6.3 File Preparation . 37
6.4 Attack Implementation . 38

6.4.1 File Encryption . 38
6.4.2 Tag Collisions . 39
6.4.3 Header Generation . 39
6.4.4 Final File Construction 41

6.5 Remarks . 41
6.6 Attack Statistics . 42

7 Fixes 45

7.1 Why Age is Designed in this Way 45

8 Conclusion 47

A Appendix 49

A.1 Attack Example . 49

Bibliography 53

iv

Chapter 1

Introduction

Keeping data secure is a common need in today’s world. One way to secure
confidential data is to encrypt it. There exist many different tools, such as
PGP, GPG, or OpenSSL, which allow users to encrypt their files such that
they can be safely stored on device or in the cloud, or be safely sent over an
untrusted channel.

One such command line encryption tool is Age, designed by Filippo Val-
sorda [2]. Age encrypts files using the Authenticated Encryption with As-
sociated Data (AEAD) scheme ChaCha20-Poly1305 [20]. A file encrypted
using Age is stored in a custom file format, so called Age-files. Each file can
be encrypted to multiple parties, called recipients, such that each of them
can decrypt the resulting encrypted file.

Age aims to improve over the current command line encryption tools by
providing smaller key components. PGP supports key lengths up to 4096
bits, whereby most commonly 1024-bit keys are used. Similarly, OpenSSL
uses 1024-bit keys per default but also supports 2048 or 4096-bit keys. Sim-
ilar key sizes are used in GPG. Age on the other hand makes use of 256-bit
keys per default, which is significantly smaller. Additionally, Age allows to
encrypt to SSH keys with a built-in support for GitHub keys. Age is be-
coming more and more popular. Up until the time of writing this report it
managed to collect over 10800 GitHub stars.

In this report we take a closer look at the cryptographic functionality of Age.
We investigate how Age uses different cryptographic components for pay-
load encryption, authentication of data and key derivation and their effect
on the security of Age.

The ultimate goal we tried to achieve is to break the robustness of Age. Ro-
bustness is a concept usually applied only to Authenticated Encryption with
Associated Data or Public Key Encryption (PKE) schemes [4, 9]. An AEAD
or PKE scheme is called robust, if it is hard to produce a ciphertext which

1

1. Introduction

decrypts to valid plaintexts under multiple keys. We apply this concept to
the entire construction making up Age, combining key derivation, PKE and
Key Encapsulation Mechanisms (KEMs) with AEAD. This means, we try to
create an Age-file, which can be decrypted to two different plaintexts. This
would allow an adversary to craft ciphertexts validly decrypting to a mali-
cious and harmless payload, thereby allowing the attacker to always claim
that the original data encrypted is non-malicious.

However, we were not able to break the robustness of Age. Instead, we
found that the way in which Age uses the different cryptographic compo-
nents allows us to craft nearly identical Age-files, which decrypt to different
valid plaintexts. This allows an adversary to minimally alter an Age-file on
transit from on recipient to another such that the two parties decrypt the
seemingly identical file to different plaintexts.1 This can be dangerous in
scenarios like reporting a suspicious file to a supervisor for examination or
completing an abuse report in a messenger system. In these cases, an at-
tacker can craft an Age-file such that the first recipient receives an abusive
image and the second one decrypts it to a harmless picture of a dog.2

The attack makes use of the fact that we can interleave two different file
formats into one single file without them interfering with each other [8, 5]
and combines it with the non-robustness of ChaCha20-Poly1305 to create an
ambiguous ciphertext, which decrypts to different plaintexts using different
keys. Additionally, it abuses a lack of authentication of certain bits in the
Age-file format, which therefore can be altered without detection.3

Before describing the attack in detail (see Chapter 6), we provide the relevant
background on Age’s design and the involved cryptographic components,
such as ChaCha20-Poly1305, HMAC [13], and HKDF [14].

We start by taking a closer look at the internal functionality of Age, i.e. we
provide a detailed analysis of the encryption and decryption process of Age-
files, in Chapter 2. This includes a brief overview of the AEAD scheme
ChaCha20-Poly1305 and a detailed description of the Age-file format. In
Chapter 3, we describe how we can abuse the lack of key commitment in
ChaCha20-Poly1305 to create so called ambiguous ciphertexts, which can
be decrypted to valid plaintexts using different keys. Chapter 4 discusses
how two different file formats can be interleaved into one single file, called
a polyglot file, and how an ambiguous ciphertext can be constructed from
such a polyglot file. In Chapter 5, we take a closer look at the key deriva-

1The files are in fact not identical but differ in at least one bit.
2Of course the attack is possible in the both directions, i.e. the first recipient decrypts the

file to a harmless payload whilst the second party decrypts it to a malicious file.
3Only by comparing the original with the altered file two users could detect the change.

However, without additional information they can not deduce which of the two versions is
the original and which the altered file.

2

1.1. Notation

tion function HKDF and the MAC algorithm HMAC. We describe how an
adversary having control over the key used in an HMAC computation can
efficiently create collisions and how this translates to HKDF. We combine
our insights from all these chapters in Chapter 6, where we describe an at-
tack against Age. In Chapter 7, we present two possible solutions, which
when implemented will prevent the attack we found. Finally, we present
our conclusion in Chapter 8.

1.1 Notation

Throughout this report we will use ”||” to denote the concatenation of either
byte- or character-strings. Using the symbol ”�” we denote the bit-wise xor
operation between two given bit- or byte-strings. By making use of an array-
like notation, x[n� 1], we refer to the n-th byte of a given byte array x. We
use index 0 to refer to the first byte of an array. We slightly deviate from this
notation in Chapter 3, where x[n� 1] does not refer to the n-th byte of x but
instead denotes the n-th 16-byte block of the byte-string.

In all presented pseudocodes, the statement a b denotes the assignment
of value b to the variable a. We denote random sampling of a variable x
from a set Y by x $ Y and use // to indicate a comment.

3

Chapter 2

How Age Works

Age being a command line encryption tool allows a user to encrypt arbitrary
files for one or multiple parties, called recipients. Each recipient is then able
to decrypt the file to get access to the original plaintext. Each Age-file has
a header, storing data for the selected recipients. In Age, a 128 bit master
key, called file key, is used, from which all further keys for authentication
of the header and encryption of the plaintext are derived. The user has no
control over the file key used, instead it is selected randomly in the process
of creating the Age-file.

The header of an Age-file contains the encryption of the file key for the
respective recipient(s). Depending on which recipient type is used, from
which there exist four in total, the key is encrypted in a different way. This
process is called wrapping and the final wrapped file key, including a recip-
ient type identifier, is called a recipient stanza.

For derivation of the different keys, the key derivation function HKDF [14]
is used. The derivation of the actual encryption key involves a randomly
sampled nonce, which is placed inside an Age-file directly after the header,
such that the correct key can be derived in the decryption process.

The final part of an Age-file consists of the actual encryption of the pay-
load data. The Authenticated Encryption with Associated Data scheme
ChaCha20-Poly1305 [20] is used for this process.

We will now present a detailed overview of the key derivations in Age, the
file format and its various components, and the use of ChaCha20-Poly1305
for encryption and decryption of the payload. The observations are based
on the meanwhile superseded as well as the new Age documentation [24, 1]
and the actual source code [2].

5

2. How Age Works

2.1 Key Derivations

Recall, the key used to authenticate the header is derived from the file key
using HKDF [14], using SHA256 [11] as the hash function. We will call the
key used in this process MAC-Key and it is derived as follows:

MAC-Key = HKDF(SHA256, ikm = f ile key, salt = none, info = ”payload”) .

The salt value being set to ’none’ results in an all-zero byte-string being used
as specified in the HKDF RFC [14].

Similarly, the key provided to ChaCha20-Poly1305 for payload encryption,
which we will call payload key, is derived from the file key using the sam-
pled nonce as follows:

payload key = HKDF(SHA256, ikm = f ile key, salt = nonce, info = ”payload”) .

The key derivations allow Age to achieve proper key separation between
payload encryption and header authentication.

2.2 File Format

An Age-file consists of a triple of header, nonce, and encrypted payload.
In this section we focus on the format of the file header, which contains
the so called recipient stanzas. The nonce, as already mentioned, is sam-
pled randomly and is 16 bytes long. The encrypted payload consists of
the ChaCha20-Poly1305 ciphertext generated using the payload key by en-
crypting the desired plaintext. We will discuss the encryption process in
more detail in later sections. See Section 2.3 for a high level overview of
ChaCha20-Poly1305 and Section 2.4 for an overview of the encryption pro-
cess in Age making use of ChaCha20-Poly1305.

An abstracted illustration of an Age-file can be seen in Figure 2.1.

2.2.1 Header Format

The header starts with a fixed string ”age-encryption.org/” followed by a
string indicating the version used. The current version of Age at the point
of writing this report is version ”v1”.

The rest of the header consists of one or more recipient stanzas. Each stanza
starts with the indicator "->" at the start of the line. It is followed by a string
identifying the stanza type, which is one of the four ”X25519”, ”scrypt”,
”ssh-rsa”, or ”ssh-ed25519”. Following the identifier there is stanza-dependent
information, like public-key components, in base64 encoded format accord-
ing to RFC 4648 [12]. Finally, each stanza is concluded with the canonical
base64 encoding of the encrypted file key.

6

2.2. File Format

Figure 2.1: Abstracted illustration of an Age-file consisting of a header, containing di↵erent

recipient stanzas, a nonce, and the encrypted payload.

age-encryption.org/v1

-> X25519 yOonyHn7BtHqEnrM7GhSC9r1iXvA3+Xv5LP1O6R/M0g

EULvz7nIydiOafyareYPqsgyvIztiIu/9jj4Gcv8ed4

-> X25519 yOonyHn7BtHqEnrM7GhSC9r1iXvA3+Xv5LP1O6R/M0g

2kfiNEfWKXX0StNwZRTi7OGeEqjOTDmenh7jZWXL1Wk

--- JTv1JdUpYSrX5WvJwyCvbdlBNCk6hGTtfiAoBRZfvvQ

Figure 2.2: Illustration of an exmaple Age-file-header containing recipient stanzas for two dif-

ferent X25519 recipients.

Note that the encryption (or wrapping) of the file key is dependent on the
stanza type. In the following subsection we discuss each of them in more
detail.

The last part of the header consists of an authentication tag, computed over
the entire header using HMAC [13] making use of the MAC-key derived
from the original file key. The start of the MAC-tag is indicated by the
string ”---”, followed by the base64 encoding of the computed tag. Note
that everything up until, and including, the indication string ”---” is au-
thenticated. Therefore, no recipient can be added nor removed from the
header without recomputation of the header MAC.

An illustration of an Age-file-header containing two X25519 recipient stan-
zans up until the corresponding MAC-tag is shown in Figure 2.2.

7

2. How Age Works

2.2.2 Recipient Stanzas

Recall, for each recipient the file key is wrapped in one recipient stanza.
Different types of stanzas can be present in the same file, except for scrypt
recipients. As in that case the file key is encrypted using a key derived from
a password [21], a stronger notion of authentication is assumed. Therefore,
if an scrypt recipient is present, it must be the only recipient in the Age file.
Trying to encrypt a file for multiple recipients, one of which being an scrypt
recipient, will fail.

This restriction makes sense, as every recipient, for which a file is encrypted,
can tamper with the file. Assuming an adversary Eve is together with Bob
part of the recipient list of a file Alice encrypted using Age, then, if Eve can
intercept the file sent to Bob, she can decrypt it, change its content, encrypt
it again, attach the header of the original file and forward it to Bob, who will
successfully decrypt the file and see the modified plaintext chosen by Eve.1

We will use the following functions in the description of the recipient stanzas
as they are defined in the Age documentation [24, 1].

• encode(data) performes canonical base64 encoding without padding
as defined in RFC 4648 [12].

• encrypt[key](ptxt) encrypts the plaintext under the provided key us-
ing ChaCha20-Poly1305 encryption as defined in RFC 7539 [20].

• X25519(secret, point) as used for ECDH (Elliptic Curve Diffie-Hellman)
from RFC 7748 [16].

• HKDF[salt, label](key) returns 32 bytes of HKDF with SHA-256 as
defined in RFC 5869 [14].

• HMAC[key](message) computes the HMAC of the given message under
the provided key using SHA-256.

• scrypt[salt, N](password) outputs 32 bytes of scrypt using r = 8
and P = 1 as it is defined in RFC 7914 [21].

• RSAES-OAEP[key label](plaintext) using SHA-256 and MFG1, from
RFC 8017 [19].

• random(n) outputs a string of n random bytes.

X25519 Recipient Stanza

The general structure of an X25519 recipient stanza is illustrated in Fig-
ure 2.3.

1Note the same can be done by any party knowing the password used for an scrypt
recipient.

8

2.2. File Format

-> X25519 encode(X25519(ephemeral secret, basepoint))

encrypt[HKDF[salt, label](X25519(ephemeral secret, public

key))](file key)

Figure 2.3: Generall structure of an X25519 recipient stanza as used in an Age-file-header.

-> scrypt encode(salt) log2(N)
encrypt[scrypt["age-encryption.org/v1/scrypt" + salt,

N](password)](file key)

Figure 2.4: Generall structure of an scrypt recipient stanza as used in an Age-file-header.

-> ssh-rsa encode(SHA256(SSH key)[:4])

RSAES-OAEP[public key, "age-encryption.org/v1/ssh-rsa"](file key)

Figure 2.5: Generall structure of an ssh-rsa recipient stanza as used in an Age-file-header.

The ephermal secret is set to be a random 32 byte value and must be new for
every new file key. For the HKDF used, the salt is defined to be

X25519(ephemeral secret, basepoint) || public key ,

and the label is specified to be the string ”age-encryption.org/v1/X25519”.

Scrypt Recipient Stanza

Figure 2.4 illustrates the general format of an scrypt recipient stanza.

N is defined as the scrypt cost parameter in decimal form, salt is a random
16 byte string. A new salt needs to be generated for every new file key.

SSH-RSA Recipient Stanza

An ssh-rsa recipient stores the encoding of the SHA256 hash of a SSH public
key according to RFC 8332 [7], called SSH key. Thereby, the public key must
be at least 2048 bits long. Figure 2.5 illustrates the general format of an
ssh-rsa recipient stanza.

SSH-ED25519 Recipient Stanza

Illustrated in Figure 2.6 is the general structure of an ssh-ed25519 recipient
stanza as used in Age.

The tag corresponds to the base64 encoding of the hashed ssh public key as
done for ssh-rsa recipients, e.g.

tag = encode(SHA256(SSH key)[:4]) .

9

2. How Age Works

-> ssh-ed25519 tag encode(X25519(ephemeral secret, basepoint))

encrypt[HKDF[salt, label](X25519(ephemeral secret, tweaked

key))](file key)

Figure 2.6: Generall structure of an ssh-ed25519 recipient stanza as used in an Age-file-header.

For every new file key, a new ephemeral secret must be sampled, which is
a random 32 byte string. The salt used in HKDF corresponds to

X25519(ephemeral secret, basepoint) || converted key ,

whereby converted key is the ED25519 public key converted to the Mont-
gomery curve.2 The label corresponds to the string

”age-encryption.org/v1/ssh-ed25519”

and the SSH key is the binary representation of the ssh public key. The
tweaked key is defined as X25519(tweak, converted key), whereby tweak

is computed as

HKDF[SSH key, "age-encryption.org/v1/ssh-ed25519"]("") .

2.2.3 File Key Restrictions

Recall, the file key wrapped in the recipient stanzas is a randomly sampled
128 bit value. However, Age does not check the length of the file key for
all recipient types. In fact, only for X25519 and scrypt recipients is a length
check on the unwrapped file key performed in the decryption process of the
Age-file. This is especially interesting as Age uses HKDF for key deriva-
tions and HMAC for header authentication. By having control over the key
length, it is easy to create collisions in HMAC (see Chapter 5). We will later
on come back to this property when we try to break the robustness of Age.

2.3 ChaCha20-Poly1305

For payload encryption Age uses the AEAD scheme ChaCha20-Poly1305 [20].
It is a combination of the ChaCha20 stream cipher and the polynomial MAC
Poly1305.

In this section we present a high level overview of the scheme to give rele-
vant background on the payload encryption done in Age.

2The procedure of using ED25519 signing keys for encryption is described by the Age
author, Filippo Valsorda, in one of his blog posts [25] in more detail.

10

2.3. ChaCha20-Poly1305

2.3.1 ChaCha20

ChaCha20 is a 20-round stream cipher. Compared to other ciphers, such
as the block cipher AES [18], it is faster and easier to implement in regards
to power or timing side-channel attacks [6], as the round function involved
takes constant time to execute for each round, independent of the provided
input.

The cipher takes on input a 32-byte key k and an arbitrary byte sequence,
ptxt, representing the plaintext to be encrypted. Using the initial key, a
12-byte nonce, a 4-byte block counter and a fixed 16-byte constant value,
ChaCha20 computes 20 iterations of its round function to expand k to a new
64-byte key. The result is then used to encrypt one 64-byte block of the
given plaintext in one-time-pad fashion, by xoring the ptxt bytes with the
key bytes. After one block of data has been encrypted, the block counter is
incremented by one and the process is repeated for the next block until the
entire plaintext is encrypted.

Note that ChaCha20 does not perform any padding on the provided input
plaintext, i.e. the outputted ciphertext does leak the length of the underlying
plaintext.

2.3.2 Poly1305

Poly1305 is a polynomial message authentication code. It takes on input
a 32-byte key k and a message m, interpreted as a sequence of bytes, of
arbitrary length and computes a 16-byte tag, which is used to authenticate
the message.

When used in ChaCha20-Poly1305 AEAD, the key used for tag computation
is normally generated using ChaCha20. To be precise, the key used for the
MAC computation corresponds to the first 32 bytes of the key-stream gener-
ated by ChaCha20. The next 32 bytes of the key-stream are thrown away and
plaintext encryption starts using the next 64 bytes, now generated using a
block counter equal to 1. This mechanism is used in the ChaCha20-Poly1305
implementation used in Age and is formally defined in RFC 7539 [20, Ap-
pendix A.4].

Regardless of the key generation method used, the key is partitioned into
two 16-byte keys r and s. Normally r and s correspond to the first and
second 16 bytes of the provided key, such that r||s = k . Before being used,
r needs to be preprocessed, also called clamped. Treating r as a 16-octet
little-endian number, the following conditions have to be fulfilled:

• r[3], r[7], r[11], and r[15] are required to be smaller than 16 (top four
bits need to be 0)

11

2. How Age Works

• r[4], r[8], and r[12] are required to be divisible by 4 (bottom two bits
need to be 0)

This can be achieved by computing an AND operation between r and an
appropriate mask as follows:

clamp(r) = r AND 0x0 f f f f f f c0 f f f f f f c0 f f f f f f c0 f f f f f f f .

The provided message than is processed in 16-byte blocks, where the last
block might be shorter. Each is interpreted as a little-endian number and
one bit is added beyond the number of octets, i.e. for a full 16-byte block,
this corresponds to adding 2128 to the number. For the last block the bit
added beyond the number of octets can correspond to any power of two
that is evenly divisible by 8, depending on the length of the block. Note that
this is always possible as we assume a message to be non-empty. Therefore,
the minimum number added is 28, in the case were the entire message fits
into one octet, i.e. is not more than one byte long. The resulting number
is added to an accumulator variable, initialized to be 0 at the start of the
computation. The accumulator is then multiplied with r and the result is
taken modulo P for P = 2130 � 5.

After performing this computation for the entire message, the second part of
the key, s, is added to the result. The final outputted tag then consists of the
128 least significant bits of the result interpreted as a little-endian integer.
Taking the 128 least significant bits is equivalent to performing a mod 2128

operation.

In Figure 2.7 we show a pseudocode implementation of the Poly1305 tag
computation.

In ChaCha20-Poly1305 the message authenticated using Poly1305 consists of
the associated data, AD, the ChaCha20 ciphertext C, and the lengths of AD
and C interpreted as eight byte little-endian integers respectively. The final
output corresponds to the concatenation of the ciphertext and the computed
Poly1305 tag.

2.4 Encryption in Age

Having covered the relevant background, we are now able to present a high
level overview of the encryption procedure in Age.

The encryption function takes as input an input file, i.e. the data to be en-
crypted, an output destination, another file or the command terminal if none
is specified, and a list of recipients. The output is either the encrypted data,
if no output file is specified or nothing, i.e. the encrypted plaintext is written
into the specified output file.

12

2.4. Encryption in Age

Poly1305(K, M)

1 : (r, s) K
2 : r clamp(r)
3 : acc 0

4 : P 2130 � 5
5 : // Iterate over the message in 16-byte blocks

6 : for block in M do

7 : acc acc + block
8 : acc (r ⇤ acc) mod P
9 : endfor

10 : acc acc + s
11 : return tagBytes(acc)

Figure 2.7: Pseudocode implementation of the Poly1305 algorithm. Given a 32-byte key K
and an arbitrary message M, it outputs a 16-byte tag. The function clamp(·) performs the

necessary precomputation on r, tagBytes(·) outputs the first 128 least significant bits of the

number given to it as input, interpreted as a little-endian integer. For all computations, the key

and message bytes are interpreted as little-endian integers.

Recall, the user has no control over the file key used to encrypt a file, as it is
chosen at random at the start of the encryption procedure. After sampling
a file key, the file header is generated. This process involves the wrapping
of the file key for each recipient specified in the given recipient list (as de-
scribed in Section 2.2.2). This process can be costly, as it involves asymmetric
cryptography. Also recall that if an scrypt recipient is present, it must be the
only one. If this restriction is not met, the program returns an error and
terminates.

As soon as the complete header is generated, it is authenticated using HMAC,
which uses a MAC-key derived from the file key using HKDF (as described
in Section 2.1). The resulting tag then is append to the header and the result
is written to the specified output.

In a next step, the function samples a random 16-byte nonce value and uses
it to derive the payload key used for ChaCha20-Poly1305. Using the derived
key the payload is encrypted in chunks of 216 bytes. Thereby, each chunk
uses a different ChaCha20-Poly1305 instance, i.e. they use the same key but
a different AEAD nonce, which is defined to be a counter starting at zero
and which is incremented by one for each new chunk being encrypted. This
also means that each chunk is authenticated independently from all other
chunks. To prevent truncation attacks, the eight least significant bits of the
AEAD nonce used for ChaCha20-Poly1305 are set to be equal to 0x00 for all

13

2. How Age Works

chunks except the last one, for which they are set to 0x01. Therefore, the
AEAD nonce has the following format: ctr||0x0b for b 2 {0, 1}. This design
implicitly prevents truncation attacks, as if the last chunk would be missing,
the decryption procedure will use the incorrect AEAD nonce, ending in 0x01
instead of 0x00, to decrypt the last chunk of the truncated payload, which
results in a decryption failure.3

Note that truncations smaller than the size of a chunk are prevented by the
design of ChaCha20-Poly1305, as in such a case, the Poly1305 verification of
the truncated chunk will fail by design.

The first encrypted payload chunk is prepended by the nonce used to derive
the payload key, such that the same key can be derived in the decryption
process. Finally, each encrypted chunk is written to the designated output.

Note that each chunk of 216 bytes is immediately written to the designated
output file once it is encrypted. As a result, if an error occurs during encryp-
tion of chunk i, all chunks j for j < i will already be written to the output
file. Using the command line, a user will be notified that the encryption of
a chunk has failed. However, if a user ignores the error message or an ap-
plication using Age does not properly handle the error, it could be possible
that a user believes that the output file contains the encryption of the entire
payload although this might not be the case.

Figure 2.8 shows a pseudocode implementation of the Age encryption func-
tion.

2.5 Decryption in Age

The Age decryption function reverses the steps performed during encryp-
tion. It takes as input an input file, now assumed to be an Age-file generated
using the encryption function, an optional output destination, and a list of
identities. If no output destination is specified, the output is written directly
into the terminal. An identity is the complement to a recipient, i.e. only us-
ing the identity matching to a recipient the corresponding recipient stanza
can be unwrapped to retrieve the file key. Typically, an identity contains the
private key components matching the public key components of the respec-
tive recipient.

In a first step, the function parses the input file into the file header and the
payload. In this step, the nonce, which lies between the header and the
encrypted data is considered to be part of the payload. The function then
reads out the stanzas from the header and tries to find a matching stanza

3To be precise, the Poly1305 authentication of the last chunk for the truncated payload
will fail.

14

2.5. Decryption in Age

ENCRYPTION(input, out, recipients)

1 : // Generation of the Age-file header
2 : f ilekey $ {0, 1}128

3 : if onlyOneScrypt(recipients) = False do

4 : return ?
5 : endif

6 : header ”age� encryption.org/v1”
7 : for recipient in recipients do

8 : stanza Wrap(f ilekey, recipient)
9 : header header||stanza

10 : endfor

11 : MACKey HKDF(SHA256, f ileKey, none, ”header”)
12 : tag HMAC(MACKey, header)
13 : header header||tag
14 : nonce $ {0, 1}128

15 : out.write(header||nonce)
16 : payloadkey HKDF(SHA256, f ilekey, nonce, ”payload”)
17 : chachaCtr 0 // 11 bytes

18 : // Encryption of Payload
19 : for chunk in input do // Iterate over input in 216 byte chunks

20 : chachaNonce chachaCtr||0x00
21 : if chunk is last chunk do // Check if chunk is the last chunk to be encrypted

22 : chachaNonce chachaCtr||0x01
23 : endif

24 : c ChaCha20-Poly1305Enc(payloadkey, chachaNonce, chunk)
25 : out.write(c)
26 : chachaCtr chachaCtr + 1
27 : endfor

Figure 2.8: Pseudocode, describing the encryption process in Age on a high-level, using

ChaCha20-Poly1305. The function .write(·) writes the given byte sequence to the designated

file. The Wrap(·, ·) function wraps the file key for the corresponding recipient as defined in

Section 2.2.2. The function onlyOneScrypt(·) returns true, i↵ when an scrypt recipient is

present it is the only one in the provided recipient list. Using ?, we denote a general error.

15

2. How Age Works

for one of the identities provided. If no match can be found, the program
terminates with an error.

Once a match has been found, the info provided from the identity is used to
unwrap the file key from the stanza.

Using the same methods as for encryption, the MAC-key is derived from
the file key. Using the MAC-key, the MAC-tag authenticating the header is
verified. If verification fails, the program terminates with an error.

After successful MAC verification, the nonce, used to derive the payload
key, is read out as the first 16 bytes of the payload. Using it, the function
derives the payload key and starts decrypting the encrypted payload using
ChaCha20-Poly1305.

As for encryption, decryption operates in chunks, now of size 216 + 16 bytes
to account for the additional 16 bytes taken up by the Poly1305 tag. Each
chunk is decrypted using the same key but a different nonce. As for encryp-
tion, the nonce consists of an 11-byte counter and an extra byte, indicating
if the current chunk is the last payload-chunk. If decryption of a chunk is
successful, it is written directly to the specified output. If an error occurs
during the decryption process, the function returns an error and terminates.

Note that if an error occurs whilst decrypting chunk i, for example tag veri-
fication fails, the decryption of all chunks j with j < i will already be written
to the output file.

As it is the case during encryption, also during decryption a user is in-
formed with an error being displayed in the command line if decryption or
authentication of a chunk fails. If a user ignores the error or an application
using Age does not properly handle it, truncation of Age-files is possible.
Especially, if an application does not correctly handle a decryption error,
a user could decrypt a truncated Age-file and believe the resulting output
corresponds to the non-truncated payload.

Recall that the last payload-chunk is encrypted using a nonce ending in 0x01
to prevent truncation attacks. As there is no explicit length field in an Age-
file, the decryption function has no way of knowing if the current chunk is
the last one to be decrypted. To be precise, if the current chunk is not full,
i.e. less than 216 + 16 bytes long, the function assumes it is the last chunk
and directly tries decryption using the nonce ending in 0x01. If however the
last chunk is a full chunk, i.e. exactly 216 + 16 bytes long, decryption fails,
as the wrong nonce, ending in 0x00 will be used for its decryption.

To account for this problem, Age retries decryption for the first chunk, for
which decryption returns an error, with the nonce ending in 0x01, assuming
it must be the last chunk of payload. Therefore, in the case the last chunk is

16

2.5. Decryption in Age

a full chunk, Age performs one additional decryption operation of a 216 + 16
byte chunk than would be necessary.4

For ease of understanding, we abstracted this functionality into a black-
box ”is last chunk” if-statement in the pseudocode describing the decryption
procedure in Age shown in Figure 2.9.

4Note that after trying decryption with a nonce ending in 0x01, i.e. assuming to de-
crypt the last chunk, no additional decryption will be performed no matter if the attempted
decryption succeeded.

17

2. How Age Works

DECRYPTION(input, out, identities)

1 : // Parse the Age-file header
2 : hdr, payload ParseInput(input) // separate header from payload

3 : stanzas, MAC ParseHeader(header) // read stanzas, MAC-tag from header

4 : f ilekey ?
5 : for identity in identities do

6 : f ilekey Unwrap(stanzas, identity)
7 : endfor

8 : if f ilekey = ? do // No matching identity found

9 : return ?
10 : endif

11 : MACKey HKDF(SHA256, f ileKey, none, ”header”)
12 : tag HMAC(MACKey, header)
13 : if tag 6= MAC do // check validity of MAC

14 : return ?
15 : endif

16 : nonce||payload payload // |nonce| = 12 bytes

17 : payloadkey HKDF(SHA256, f ilekey, nonce, ”payload”)
18 : chachaCtr 0 // 11 bytes

19 : // Decryption of Payload
20 : for chunk in payload do // Iterate over input in 216 + 16 byte chunks

21 : chachaNonce chachaCtr||0x00
22 : if chunk is last chunk do // Check if chunk is the last chunk to be decrypted

23 : chachaNonce chachaCtr||0x01
24 : endif

25 : p ChaCha20-Poly1305Dec(payloadkey, chachaNonce, chunk)
26 : if p = ? do // Check for decryption error

27 : return ?
28 : endif

29 : out.write(p)
30 : chachaCtr chachaCtr + 1
31 : endfor

Figure 2.9: Pseudocode, describing the decryption process in Age on a high-level, using

ChaCha20-Poly1305. The ParseInput(·) function parses the given input into the header and

payload section. The ParseHeader(·) function splits a given Age-file-header into the individ-

ual stanzas and the MAC-tag. The function .write(·) writes the given byte sequence to the

designated file. The Unwarp(·, ·) function tries to unwrap the given stanzas using the provided

identity and returns the unwrapped file key on success or ?. Using ?, we denote a general error.

18

Chapter 3

Collisions in ChaCha20-Poly1305

Several widely used authenticated encryption (AE) schemes, such as AES-
GCM [22], AES-GCM-SIV [10], ChaCha20-Poly1305 and OCB3 [15] suffer
from a lack of key commitment. This has been shown by Len et al. [17] and
Albertini et al. [5]. Not committing to a key means that it is easy to come
up with a ciphertext C, which decrypts correctly under two different keys
K1 and K2.

In this chapter we will show in detail how one can create such a ciphertext
for ChaCha20-Poly1305. We will use this later on in an attack against Age,
where this property allows us to encrypt a polyglot file (see Chapter 4) with
two different keys such that using either one of the keys the ciphertext is
decrypted to one of the two valid files making up the polyglot file.

Our computation is inspired by the general construction for polynomial
MAC schemes given by Albertini et al. [5, Section 3.4.1].

3.1 High-Level Overview of Poly1305

The one-time authenticator Poly1305 was designed by Bernstein and is for-
mally specified in RFC 7539 [20]. It takes as input a 256-bit key, K, and a
message, M, of arbitrary length and outputs a 128-bit tag authenticating the
message. For simplicity we assume that all the messages M have a length,
which is a multiple of 16 bytes.1 This allows us to simplify the computation.
Additionally, in Age there is never a case in which the Poly1305 algorithm
will receive a message input which is not a multiple of 16 bytes. This is due
to the way in which ChaCha20-Poly1305 is defined. The additional data and
ChaCha20 cipherext each are padded using zeros until their lengths are a

1If a block is shorter, it will be padded using zeros after one bit is added beyond the
number of octets. I.e. in Step 4. below, M0[j] = M[j] + 2x, where x 2 {1 x < 128, x mod 8 =
0}. We refer to the RFC for more details.

19

3. Collisions in ChaCha20-Poly1305

multiple of 16 bytes. An additional 16-byte block is added, which contains
the encoding of the lengths of the additional data and the ChaCha20 cipher-
text (see Section 3.4 for more details on the structure of the authenticated
data).

The tag is computed using the following steps:

1. Generate two 128-bit keys r and s from K

2. Clamp r such that it has the appropriate format:2

r = r AND 0x0 f f f f f f c0 f f f f f f c0 f f f f f f c0 f f f f f f f

3. Divide the message into 16-byte blocks: M[0], . . . , M[n� 1]

4. Compute the tag t0 as follows:

t0 = s +

"
n�1

Â
i=0

M0[i] · rn�i

#
mod 2130 � 5

where M0[j] = M[j] + 2128

5. Compute final 128-bit tag t:

t = t0 mod 2128

Each message block is interpreted as a little-endian number. In all of the
following we use P = 2130 � 5.

3.2 Creating Collisions in ChaCha20-Poly1305

To guarantee that a ciphertext C decrypts correctly under two different keys
K1 and K2 in ChaCha20-Poly1305, we have to ensure that the authenticator
t, computed over C, is the same using either of the keys K1 or K2. This
is required, as decryption will fail if verification of the authenticity of the
ciphertext does not succeed. Assuming the Poly1305 instance derives keys
r1, s1 and r2, s2 from the keys K1, K2 respectively, and C = C[0], . . . , C[n� 1],
|C[i]| = 16 bytes, this gives us the following equation which needs to be
satisfied:

"
s1 +

"
n�1

Â
i=0

C0[i] · rn�i
1

#
mod P

#
mod 2128

=

"
s2 +

"
n�1

Â
i=0

C0[i] · rn�i
2

#
mod P

#
mod 2128 ,

(3.1)

2We will not discuss the reasons behind the clamping, as it does not affect the computa-
tions we will do. We refer the interested reader to the RFC or Bernstein’s original article to
learn more about this design decision.

20

3.2. Creating Collisions in ChaCha20-Poly1305

where C0[j] = C[j] + 2128.

We can now fix all but one block of the ciphertext, C[t]. This is not a problem
in the context of creating meaningful plaintexts. Most file formats allow for
appended data, can start at different offsets or have special blocks, which
will be ignored by the parser. As such blocks do not affect the representation
of the file, modification of blocks in those positions do not impose a problem,
as although they will decrypt to random strings, the parser will ignore them
(see Chapter 4 for more details).

Fixing ciphertext block C[t] gives us the following equation:
"

s1 +

"
C0[t] · rn�t

1 +
n�1

Â
i=0,i 6=t

C0[i] · rn�i
1

#
mod P

#
mod 2128

=

"
s2 +

"
C0[t] · rn�t

2 +
n�1

Â
i=0,i 6=t

C0[i] · rn�i
2

#
mod P

#
mod 2128

(3.2)

As all the variables above are known, we would like to rearrange the equa-
tions to find the value of the target ciphertext block C0[t]. To make it easier
to work with the equations, we drop the mod 2128 reduction and consider
the equations to hold over the integers. As a result we may lose some solu-
tions. However, if the equations hold over the integers, they are guaranteed
to hold over the original equations including the mod 2128 reduction.

⇥
C0[t] · rn�t

1 � C0[t] · rn�t
2

⇤
mod P

=s2 � s1 +

"
n�1

Â
i=0

C0[i] · rn�i
2 � C0[i] · rn�i

1

#
mod P

(3.3)

⇥
C0[t] · (rn�t

1 � rn�t
2)

⇤
mod P

=s2 � s1 +

"
n�1

Â
i=0

C0[i] · rn�i
2 � C0[i] · rn�i

1

#
mod P

(3.4)

To extract C0[t] we need to get rid of the term (rn�t
1 � rn�t

2). This cannot
easily be done, as we cannot multiply both sides of the equation with the
modulo P inverse of (rn�t

1 � rn�t
2). To solve this problem, we consider a

reduction mod P for both sides of the equation, to arrive at:
⇥
C0[t] · (rn�t

1 � rn�t
2)

⇤
mod P

=

"
s2 � s1 +

n�1

Â
i=0

C0[i] · rn�i
2 � C0[i] · rn�i

1

#
mod P

(3.5)

The resulting Equation 3.5 is not ’correct’ in all cases. With a small proba-
bility, the right-hand-side of Equation 3.5 will either be greater than P� 1
or smaller than 0. In both cases the resulting ciphertext block C[t] will not

21

3. Collisions in ChaCha20-Poly1305

correct the tag correctly and the resulting tags computed using either of the
keys K1 or K2 will not collide.

In Figure 6.1 we analysed our proof-of-concept implementation and found
that in 100000 runs we encountered the right-hand-side of Equation 3.5 be-
ing negative 4518 times and 4549 times it was greater than P � 1. This
resulted in a total of 2.5% of all retry attempts being caused by our incorrect
transformation.

As only a small percentage of all retry attempts are caused by our incorrect
transformation, we accepted the additional overhead and extract C0[t] from
Equations 3.5 as follows:

C0[t] mod P

=

""
s2 � s1 +

n�1

Â
i=0

C0[i] · rn�i
2 � C0[i] · rn�i

1

#
· (rn�t

1 � rn�t
2)�1

#
mod P

(3.6)

Equation 3.6 fully determines C0[t]. But, as in ChaCha20-Poly1305 C0[t] =
C[t] + 2128, we need to additionally check if the new ciphertext block we
computed is in the range [2128, 2129 � 1]. If this is not the case, we need to
try again, using either a new target block or new keys. Our analysis shown
in Section 6.6 shows that an average of roughly 3 retries are required due to
this. Otherwise, the new ciphertext Ĉ = C[0], . . . C[t� 1], C0[t]� 2128, C[t +
1], . . . , C[n� 1] will result in the same tag t being computed using either of
the keys K1 or K2.

Note that the original ciphertext block at position t will be replaced by the
newly computed block C0[t]� 2128 and therefore the decryption of this block,
under either of the keys, will be random.

3.3 Pseudocode Implementation

In Figure 3.1 we present a pseudocode implementation, which given on
input a ciphertext C, a multiple of 16 bytes long, two 32-byte keys K1 and
K2, and an integer t, indicating the ciphertext block to be modified, outputs
a new ciphrtext Ĉ, such that the Poly1305-tag computed over Ĉ is the same
for both keys K1 and K2 and Ĉ is identical to C except for block t.

If the result of the computation does not fulfil the requirement of being in
range [2128, 2129 � 1] or the computed block does not succeed in correcting
the tag due to an incorrect calculation coming from our mod P transforma-
tion, the function returns an error denoted as ?.

22

3.3. Pseudocode Implementation

Collide(C, K1, K2, t)

1 : if |C| mod 16 6= 0 do

2 : return ?
3 : endif

4 : N |C|/16
5 : if N = 1 or t < 0 or t > N � 1 do

6 : return ?
7 : endif

8 : P 2130 � 5
9 : r1, s1 GeneratePoly1305Keys(K1)

10 : r2, s2 GeneratePoly1305Keys(K2)

11 : counter 0
12 : sum1, sum2 0

13 : inv (rN�t
1 � rN�t

2)�1P

14 : // Iterate over ciphertext in 16 byte blocks

15 : for block in C do

16 : if counter = t do // Skip block to be modified

17 : counter counter + 1
18 : continue
19 : endif

20 : c LEBytesToNum(block)
21 : c c + 2128 // Equivalent to appending 0x01 to a full block

22 : sum1 sum1 + c · rN�counter
1 mod P

23 : sum2 sum2 + c · rN�counter
2 mod P

24 : counter counter + 1
25 : endfor

26 : temp (s2 � s1 + sum2 � sum1) · inv
27 : newCt temp
28 : newCt newCt mod P
29 : // Check if result is in range [2128, 2129 � 1] and correct

30 : if InRange(newCt) and 0 temp < P do

31 : newC ReconstructNewC(C, newCt, t)
32 : return newC
33 : endif

34 : return ?

Figure 3.1: Pseudocode given on input a ciphertext C, two keys K1 and K2 and an integer t,
outputs a new ciphertext newC identical to C except for block t such that the Poly1305 tags

computed over newC are identical for both keys K1 and K2. The notation x�1P denotes the

inverse of x mod P. The function GeneratePoly1305Keys(·) computes the two Poly1305-

key-components r and s given a 32-byte key. LEBytesToNum(·) returns the little-endian

integer interpretation of a given byte sequence, InRange(·) returns True, if the given integer

is in the range [2128, 2129 � 1], and ReconstructNewC(·,·,·) generates the new ciphertext by

replacing block t in C with newCt� 2128
.

23

3. Collisions in ChaCha20-Poly1305

3.4 Remarks

ChaCha20-Poly1305 being an authenticated encryption scheme also allows
to authenticate additional data, which will not be encrypted. We ignored
this fact in the description and construction of our code as in the use-case of
Age command line encryption, no associated data will be used. However,
our code can easily be adapted to also allow the presence of associated data.

As described in RFC 7539 [20, Section 2.8], the data authenticated in ChaCha20-
Poly1305 is constructed as follows:

macData = aad||pad16(aad)||ctxt||pad16(ciphertext)||len(aad)||len(ctxt) ,

where pad16(·) is a function, which returns between zero and fifteen 0-
bytes, such that len(x||pad16(x))mod 16 = 0 , where ’||’ denotes the concate-
nation of bytes.

Replacing the input C of our Collide(·,·,·,·) function with macData allows
the computation of a collision even when associated data is present.

Note that the last authenticated block consists of the lengths of associated
data and the ciphertext, both interpreted as eight byte little-endian integers.
In consequence, the last 16-byte block of input to the Poly1305 algorithm can
not be modified to create collisions, as doing so will change the ”authenti-
cated lengths” and would therefore cause authentication to fail once trying
to decrypt the new ciphertext with overwhelmingly high probability.

Recall that to create a collision we need at least one block of freedom in
either the ciphertext or associated data, i.e. one block of 16 bytes, which can
be arbitrarily changed.

Using the same high-level technique we showed here, it is also possible to
create ciphertexts which decrypt correctly, i.e. without an error, for more
than two keys. This however requires multiple blocks of freedom for tag
correction. We refer to Len et al. [17] for more details on such an approach.

24

Chapter 4

Polyglot Files

In Chapter 3 we described how an attacker can create a ciphertext C which
decrypts correctly under two different keys K1 and K2 using ChaCha20-
Poly1305. We will call ciphertexts with this property ambiguous ciphertexts.

The pseudocode described in Figure 3.1 shows how we can create an am-
biguous ciphertext from a given ciphertext and two keys. However, we did
not address the problem of ensuring that the ciphertext decrypts to mean-
ingful plaintexts under both keys. Crafting ambiguous ciphertexts, whilst
making certain that the decryption under both keys is meaningful, requires
controlling the bits in the resulting plaintexts.

In this chapter we will show how to construct ambiguous ciphertexts, which
decrypt to different valid file formats. The main idea behind the approach
is to combine two different files into one single file such that the respective
parsers ignore the additional content of the other file. Such a construct then
allows us to encrypt each file with its own key such that on decryption only
one of the two files will be decrypted correctly, whilst the decryption of
the relevant parts corresponding to the other file result in random looking
values. As we made sure that the content of the other file is ignored by the
respective parser, this imposes no problem, as the random values will be
ignored and therefore have no effect on the correctly decrypted file. This
requires understanding the file formats used, their relation to one another
and the constraints enforced by the computation of the tag-collision.

We will describe the high-level idea behind the approach and refer the in-
terested reader to Dodis et al. [8] and Albertini et al. [5] for more details and
insights into specific file format combinations.

25

4. Polyglot Files

4.1 Constraints

Random blocks for tag correction

As shown in Chapter 3, for ChaCha20-Poly1305 we require a single block of
16 bytes to ”correct” the tag computed under the two keys such that they
collide. The position of this block can be chosen by the attacker but is the
same for both keys. Its decryption will be random, i.e. can not be controlled
by the adversary, but different for each of the keys used.

The two resulting plaintexts therefore need to be able to handle a random
block at the same position, i.e. both file formats need to be able to ”ignore”
the random block while parsing the file.

Fixing parts of the plaintext(s)

If the decryption of an ambiguous ciphertext C under K1 results in P1 and the
decryption under K2 in P2, the following relation between P1 and P2 holds:
P1� S1 = P2� S2 = C, where S1, S2 are the key-streams used to en-/decrypt
C under K1, K2 respectively, whereby � denotes the ’xor’ operation. As the
attacker selects the keys K1 and K2 in our attack scenario, both S1 and S2 are
known to the adversary.

Fixing a part of the plaintext P1 determines the corresponding bits in the ci-
phertext and therefore the analogous part in P2. If we have no requirement
on the resulting bits in P2 in that part, we can just fix the bits in P1 and de-
termine the corresponding part of C (and therefore the part in P2). However,
if we need to control a bit at the same position in P1 and P2, we are required
to find two key-streams such that if p1, p2 denote the bit in the plaintexts P1
and P2, s1, s2 the bit in the key-streams S1 and S2 and c the corresponding
bit in the ciphertext C, then p1 � s1 = p2 � s2 = c.

The chosen file formats will impose constraints on the structure of the plain-
texts P1 and P2. If the overlap of bits which are constrained for the plaintexts
becomes larger, attacks become more infeasible, as there is no efficient way
of computing keys which satisfy constraints on the resulting key-streams,
i.e. they need to be brute-forced. Assuming key-streams are uniformly ran-
dom, if we are required to satisfy constraints for x bits, the probability that
a second key-stream fulfills the constraints with respect to a first key-stream
will be 2�x. The constraints imposed by the file formats therefore need to
be minimized.1

1In fact, it is possible to have co-existing files without any overlap. We will use such a
file in our proof-of-concept implementation of an attack against Age, as without the need of
finding collisions in the key-streams the attack becomes a lot more efficient.

26

4.2. Polyglot Files

4.2 Polyglot Files

A binary string which is valid when it it is interpreted as two different
file types is called a polyglot file. We use the terms introduced by Alber-
tini et al. [5] and distinguish between binary polyglots and near polyglots.

If two file formats can co-exist without any overlap, for example by starting
at different offsets, we call the resulting file a binary polyglot file.

Not all combinations of file formats are able to co-exist in one file in such a
way. For example, changing some bits of the header of a file may be required
to turn it from one to another file format. We call a pair of files, describing
different file formats, which differ only in a few bits, near polyglots. We will
use the term overlap to refer to the bits/bytes for which both files impose
different constraints, i.e. the bits which need to be a fixed, but different,
value in both files at the same positions.

An ambiguous ciphertext can be created from a binary polyglot by encrypt-
ing the ranges corresponding to one of the files using one of the key-streams,
S1 resulting from key, K1, chosen by the attacker and encrypting the parts
corresponding to the second file using the second key-stream, S2 resulting
from the chosen key K2. The same can be done for near polyglots, where
now the creation becomes harder as we are required to find key-streams
resulting in the correct bits for the overlap of the files.

Figure 4.1 shows an abstracted illustration of the process of creating an am-
biguous ciphertext from a polyglot file without any overlap. In the first step,
the two files are ’combined’ into a single byte-string, which is valid under
both formats. Interpreting the resulting byte-string as one of the file types
involved in its creation will display the respective file. The byte-string is
constructed in such a way that the parser ignores the content making up the
second file contained within the byte-string. Next, the key-streams S1 and
S2 are computed, such that each stream is long enough to encrypt the entire
polyglot file. The final ambiguous ciphertext consists of the encryption of
the parts corresponding to file 1 and file 2 using the respective key-stream
S1 or S2.

Decrypting the ambiguous ciphertext using either of the key-streams S1 or
S2 will not result in a polyglot file. Only the parts corresponding to one
of the files will be decrypted correctly, depending on the key-stream used.
Therefore, the resulting byte-string is only valid for one file type.

Albertini et al. [5] found more than 280 working combinations to create
binary polyglots and over 50 combinations for near polyglots, such that the
key-streams can be brute-forced with a reasonable amount of effort. We
refer to their work for more details.

27

4. Polyglot Files

Figure 4.1: Abstract illustration of the process of creating an ambiguous ciphertext from a

polyglot file.

4.3 Characteristics of File Formats

The creation of binary and near polyglots heavily relies on the different
characteristics of various file formats. In this section we briefly discuss the
main features used in the creation of polyglot files and refer to the paper by
Albertini et al. [5, Section 4] for more insights in the creation of binary and
near polyglots.

O↵sets

Most file formats enforce the file structure to start at offset zero. However,
there exist file formats which allow the file structure to start at any offset.
This feature can be use to prepend one file in front of another.

Appending Data

If a parser determines that the file has ended, for example by reading a
file specific end-of-file (EOF) sequence, any possibly appended data will be
ignored. Therefore it is possible to append a file, allowing the file structure
to start at any offset, to a file tolerating appended data.

Parasites

In most file formats we can include ”parasitic data”, which will be ignored
by the parser. As an example, the reader may consider comments in a
python script, which will be ignored by the compiler. This can be used

28

4.4. Remarks

to interleave one file as parasitic data into another one to create a polyglot
file.

4.4 Remarks

In this chapter we briefly described the high-level idea behind polyglot files
and how they could be constructed. It is not meant to serve as documenta-
tion on how to create polyglot files but should convey intuition on what a
polyglot file is, how it could be constructed, which problems may arise in
the process of their creation and how they can be used to create ambiguous
ciphertexts.

We will use a binary polyglot file in the proof-of-concept implementation of
our attack in Chapter 6. The file we will use is a binary polyglot combining
a small .jpg and a small .pdf file. We created the file making use of the Mitra
tool [3] developed by Albertini et al. . For more information on the creation
of polyglot files and the implementation of the tool, we refer to the original
paper by Albertini et al. [5] and the Mitra GitHub page [3].

29

Chapter 5

HKDF and HMAC

We have seen in Chapter 2 that Age uses HKDF for key derivations and
HMAC for the MAC computation on the file header. In this chapter we will
show that it is easy to compute collisions in HMAC if we have control over
the size of the key used. Recall from Section 2.2.3 that the size of the file key
is not checked for all recipient types in the decryption process of an Age-file.

Having control over the size of the file key could allow us to create collisions
in HMAC. However, the file key is not directly used as a key in HMAC.
Instead, it is used in HKDF, which internally uses HMAC to derive different
keys. We explore the possibility of creating collisions in HKDF, by having
control over the size of the used keys.

In the context of Age, being able to create collisions in HKDF would allow
an adversary, who has control over the file keys, to force different recipients
of the same Age-file to derive the same MAC-key but different payload
keys. In consequence, such an adversary could create a single Age-file which
decrypts to different plaintexts for different recipients, thereby breaking the
robustness of Age.

5.1 HMAC

HMAC is a message authentication code (MAC) making use of a crypto-
graphic hash function, H. It is formally specified in RFC 2104 [13]. Given a
secret key K and a message M, it computes an output t, which can be used
to authenticate the message.

In this section we do not describe the functionality of HMAC but rather take
a closer look at how it treats the provided secret key K. HMAC is defined to
accept keys of any length up to B bytes, where B denotes the block-length of
the used hash function H. If a key is shorter than B bytes, it will be padded
with zeros until it is B bytes long.

31

5. HKDF and HMAC

This directly leads to a possible collision attack. Assume we have con-
trol over the secret key K used for the HMAC computation on some mes-
sage M. We can set K to be random, such that |K| < B, i.e. K will be
padded with zeros before use. It should be clear that by setting K0 = K||0
the result of the HMAC computation using keys K and K0 will be equal,
i.e. HMAC(H, K, M) = HMAC(H, K0, M), due to HMAC being determinis-
tic.

On the other hand, if an application uses keys that are longer than B bytes,
then RFC 2104 states that the key is hashed using the hash function H before
being used as the secret key in HMAC.1 This again leads to a trivial collision
attack. Choosing a random key K with |K| > B we can compute K0 = H(K).
As HMAC is defined, all computations done using K result in the same out-
puts as if they are done using K0, i.e. HMAC(H, K, M) = HMAC(H, K0, M)
for all M.2

We conclude that, having control over the size of the key used for an HMAC
computation, it is easy to create collisions in HMAC. Note that these colli-
sions are on keys, not on messages - messages are always the same.

5.2 HKDF

HKDF is a key derivation function based on HMAC, which is formally spec-
ified in RFC 5869 [14]. It is split up into two main steps, the ’Extract’ step
and the ’Expand’ step. We focus on the extract step in this section as it de-
rives a key used in the expand step from the initially provided key material
using HMAC. Therefore, if we are able to create a collision in this step, we
have crated a collision in HKDF as the the same key results in the same
output due to the deterministic nature of the expand step.

The extract step takes as input a salt value and the initially provided key
material, called IKM in all of the following. It outputs a pseudorandom key,
called PRK, by performing the following HMAC computation:

PRK = HMAC(H = H, K = salt, M = IKM) ,

where H is a secure hash function.

Observe that the initial key material IKM is not used as the key input of
the HMAC computation but rather as the message input. Therefore, having
control over the key material provided to HKDF does not lead to a collision
attack in the same way it is possible for HMAC. However, if the salt value

1Depending on the block size B and the output length of the hash function H, the hash
of the key might require padding with zeros to get to a length of B bytes.

2Note that this is independent of the hash function used and the detailed functionality
of HMAC.

32

5.3. Implications for Age

provided to HKDF is under adversarial control, a collision attack becomes
possible again, as the salt is used as the key input for the HMAC computa-
tion and therefore the same techniques can be applied to create a collision.3

5.3 Implications for Age

Sections 5.1 and 5.2 show that it is easy to compute collisions in HMAC and
HKDF if we can control the key or salt respectively, i.e. not only the value
but also the length of the key or salt.

Recall that if we are able to create collisions in HKDF we could break the
robustness of Age. Wrapping different file keys, which result in HKDF
collisions for the derivation of the MAC-key, for different recipients would
allow all recipients to verify the authenticity of the file header but derive
different payload keys. By using an ambiguous ciphertext as the payload
of such an Age-file all recipients would derive a different plaintext from the
same payload. Therefore, the same Age-file would be decrypted to different
plaintexts by different recipients, breaking the robustness of Age.

Although we are able to control the file key used in HKDF in Age, we can
not perform a collision attack as described. Recall that HKDF uses the initial
key material, in the case of Age the file key, as the message input for HMAC
and not as the HMAC-key. As the salt value for the derivations is fixed to be
the all-zero string or a random nonce, creating collisions using the described
methods is impossible.

5.3.1 Changing Nonces

However, recall from Chapter 2 that the payload key is derived from the file
key using the following HKDF computation:

payload key = HKDF(SHA256, ikm = f ile key, salt = nonce, info = ”payload”) .

As one can see, the salt value is set to the randomly sampled nonce value.
As the nonce is placed between the header and the encrypted payload of an
Age-file, it is not authenticated. Therefore, any change to the nonce results
in a different payload key being derived, whilst still allowing to correctly
authenticate the header. This is because neither the file key nor the derived
MAC-key are affected by a change in the nonce.

If Age is used normally, an accidental change of the nonce would not be
detected directly as such. Rather, the decryption of the first payload block
will fail, as the Poly1305 authentication done in ChaCha20-Poly1305 will not
succeed with high probability.

3Note that the attacker needs to be able to insert different sized salts to create a collision.

33

5. HKDF and HMAC

An attacker can however carefully craft a ciphertext, which will correctly
verify for two different payload keys used due to the possibility of calcu-
lating collisions in ChaCha20-Poly1305 as we showed in Chapter 3. It is
therefore easy for an adversary to create multiple Age-files, which only dif-
fer in the nonce values used, such that each recipient decrypts the payload
to a different plaintext. We discuss the details of such an attack in the next
chapter.

34

Chapter 6

Attacking Age

Combining our insights on Age (see Chapter 2), the absence of key com-
mitment using ChaCha20-Poly1305 (see Chapter 3) and the ability to create
ambiguous ciphertexts from polyglot files (see Chapter 4), we are able to
perform an attack which allows an adversary to create two nearly identi-
cal Age-files for (at least) two recipients such that each recipient decrypts
the payload to a different valid file format, i.e. they end up with different
plaintexts.

The attack also works if only one recipient is present. However, the most
realistic attack scenarios involve at least two different parties, as the goal
of the attack is to confuse the users into believing they have decrypted the
same file but ended up with different plaintexts.

We consider an attack scenario, where an adversary Mallory creates an Age-
file intended for two recipients Alice and Bob and sends it to one of them.
The first recipient, Alice, will decrypt the payload to a (malicious) plaintext
P1. If Alice forwards the file to the second recipient, Bob, Mallory can flip
one bit in the Age-file sent by Alice to force Bob to decrypt the payload to
another (non malicious) plaintext P2.

Think of Alice submitting an abuse report and Bob needing to verify the
reported message. In such a scenario Mallory could send malicious data to
Alice without Bob ever witnessing the malicious payload.

6.1 Threat Model

In its current specification, the nonce value used for the derivation of the
payload key is a randomly selected 16-byte string and is stored in-between
the header and the encrypted payload of an Age-file. Recall, this means
that the nonce is not integrity protected and any change to it, malicious or
accidental, will not be detected as such on payload decryption

35

6. Attacking Age

We consider an active man-in-the-middle (MitM) attacker who is able to in-
tercept, alter and delay all traffic. As for our attack the adversary knows the
involved keys, it would also be possible that the attacker completely replaces
a sent Age-file with a different one. Although this possibility exists for this
threat model, our attack has certain benefits over a simple replacement of
the sent file.

The two Age-files created in our attack are confusingly similar. As the dif-
ference between the files can be as small as one bit, it can easily get unno-
ticed by an unsophisticated user inspecting the two files. Note however that
advanced users most probably will compare fingerprints of the files after
noticing the difference in the plaintexts. In this case, the one bit difference
between the files will be amplified and the fingerprints of the two files will
be completely different.

More importantly, an active MitM attacker can not replace an Age-file if it
is sent over an encrypted channel, as the adversary does not have access to
the encryption key. On the other hand, it can be possible, depending on
the encryption scheme used, that an active MitM adversary can flip bits of
encrypted Age-file sent over the channel. In such a case, our attack can still
succeed whilst a simple replacement can not.

6.1.1 Attack Scenario

We briefly describe a possible attack scenario to provide more intuition on
where our attack could be applied.

Assume a company ’Age-Shopping’ uses Age-files for incoming orders sent
by customers and uses the same Age-files internally for further processing
of the order. If Mallory is an active MitM attacker on the internal system
used by Age-Shopping, she could perform the following attack.

Mallory can craft two Age-files, differing in exactly one bit, containing two
different orders for some products offered by Age-Shopping. Assume the
first file contains an order for cheap products and the second file corre-
sponds to an order for more expensive products. Mallory can now send the
first Age-file as an order to Age-Shopping. Assume the employees of Age-
Shopping decrypt the incoming order, prepare the bill and relay the Age-file
to an internal server for delivery preparation.

Mallory being an active MitM attacker on Age-Shopping’s internal network
can flip the correct bit in the sent Age-file to turn it into the second version
she prepared, now containing the order for the more expensive products.
The employees decrypting the file to prepare the delivery of the products
will now send Mallory the expensive products whilst she only gets a bill for
the cheap ones.

36

6.2. Key Derivations in Age

This is only a toy example illustrating how the attack could be applied. It
should help the reader to imagine similar scenarios where an adversary can
fool an abuse reporting system into believing an original abusive message
is harmless, or how an attacker could embed malicious code into one of
the Age-files created, potentially allowing installation of an adversarial con-
trolled program on user devices.

6.2 Key Derivations in Age

Recall that all keys used in Age are derived from a randomly selected 16-
byte file key in the following way:

• Header-MAC-Key, 32-bytes: HKDF(SHA256, None, file key, ”header”)

• Payload key, 32-bytes: HKDF(SHA256, Nonce, file key, ”payload”)

• Poly1305 Key(s), two times 16-bytes: First 32-bytes of ChaCha20 key-
stream generated using the payload key, as described in RFC 7539 [20,
Section 2.6].

For two parties to decrypt the payload of an Age file to two different plain-
texts, the derived payload keys must be different. However, both parties
need to compute the same header-MAC-key to verify the integrity of the
file header. Due to the specification of HKDF, we can not efficiently find
collisions for the derivation of the header-MAC-key and therefore both re-
cipients must have access to the same file key, i.e. in the header the same
key is encapsulated in the recipient stanzas. We described a method of effi-
ciently computing collisions in HKDF and the underlying HMAC function
and why it cannot be applied for Age in Chapter 5.

This restriction only leaves the option of providing a different nonce value
to each recipient. A different nonce will guarantee that both parties derive
a different payload key from the same file key. However, this leads to the
situation where the two Age-files differ in the nonce and are therefore not
identical.

6.3 File Preparation

Our attack makes use of a binary polyglot file, interleaving a small .pdf (482
bytes) and .jpg file (238 bytes) into a single polyglot file. The file formats are
able to co-exist in the same file without any overlapping bits, simplifying
the attack implementation.

We created the file using the Mitra tool [3]. Given the two files as in-
put, it outputs a polyglot file named P(6-1e8)-JPG[PDF].6b90e1cc.jpg.pdf. In-
between the brackets ”()” are hex-encoded byte positions, indicating at

37

6. Attacking Age

which byte offsets the content switches form one file to the other. In the
example we used, we only have two switches at offsets 0x6 and 0x1e8. We
will extract this information from the file name and use it in our attack code
to create an ambiguous ciphertext from the polyglot file, by encrypting bytes
6 up to 488 with key K2 and all other bytes with key K1.

In the following we will refer to the positions extracted out of the file name
as switching positions and assume they are available to us in an array called
SwitchingPositions.

6.4 Attack Implementation

In this section we describe our proof-of-concept implementation of the attack
against Age. We split up the code into four main parts, File Encryption, Tag
Collision, Header Generation and Final File Construction. For each part of
the attack we briefly describe the main functionality of our code and provide
a pseudocode interpretation of its functionality.

6.4.1 File Encryption

Recall that the payload of an Age-file is encrypted with ChaCha20-Poly1305
using a payload key derived from the file key using HKDF. To be able to
create the ambiguous ciphertext from a polyglot file we first need to derive
the two different payload keys that the recipients will derive during the
decryption process of the final Age-file.

Key Derivation

In a first step, we select a random 16-byte file key, FK, and a 16-byte random
nonce, N1. By flipping the last bit of N1 we create a second 16-byte nonce
N2. This bit-flip simulates the affect of an adversary modifying the nonce
value in the final file once it is sent from one recipient to another. Note that
it does not matter which bit of the 16-byte nonce is flipped and it is also
possible to alter more than one bit of the nonce. However, it is important
that the bit(s) altered are at a well known position to the adversary such that
the correct nonce N2 can be generated for payload key derivation.

Using HKDF, we derive the two different payload keys as follows:

1. SK1 = HKDF(SHA256, N1, FK, ”payload”)

2. SK2 = HKDF(SHA256, N2, FK, ”payload”)

The derived keys allow us to compute the ChaCha20 key-streams which
will be used to en-/decrypt a file using the corresponding key. For both SK1
and SK2 we compute the resulting ChaCha20 key-stream, such that each

38

6.4. Attack Implementation

stream is long enough to encrypt the entire file. We will refer to them as
ChaChaStream1 and ChaChaStream2 respectively.

File Encryption

Now, we can encrypt the payload. To do so, we iterate over the plaintext
byte by byte and start encrypting the payload using ChaChaStream1. If we
arrive at a switiching position, i.e. an offset at which the contents switches
from one file to the other, we switch the key-stream used for encryption
from ChaChaStream1 to ChaChaStream2 and vice versa. After iterating over
all plaintext bytes, we have an ambiguous ciphertext, which we will refer to
as Ctxt.

A pseudocode implementation of the key derivation and file encryption pro-
cess is shown in Figure 6.1.

6.4.2 Tag Collisions

Recall that to guarantee that both recipients are able to decrypt the ambigu-
ous ciphertext correctly, i.e. without an error, we need to add an additional
block, or modify an existing one, to ”correct” the tag computed under both
Poly1305 keys such that they collide.

We use the same techniques as described in Chapter 3. The pseudocode
implementation computing the new ciphertext block and outputing the new
ciphertext is illustrated in Figure 3.1.

The binary polyglot file we selected for the attack allows for appended data,
i.e. any additional data added to the end of the file will be ignored by the
parsers. This allows us to insert the ”correction block” directly after the last
encrypted plaintext block. Note that this is not possible for all combinations
of file formats. If no additional block can be appended for the selected file
formats, the block for tag correction must be inserted in another position
such that it will be ignored by the respective parsers.1

6.4.3 Header Generation

Recall from Chapter 2 that the encrypted payload of an Age-file is prepended
by a randomly selected nonce value and a header, containing the recipient
stanzas, i.e. the wrapped file key.

In the process of our attack, we select a file key ourself and therefore need
to generate the corresponding recipient stanzas for the victims.

1For example, the block could be prepended or inserted as parasitic data into one of the
files making up the polyglot file.

39

6. Attacking Age

FileEncryption(Ptxt, SwitchingPositions)

1 : FK $ randBytes(16)
2 : N1 $ randBytes(16)
3 : Mask 0x00000000000000000000000000000001
4 : N2 N1 �Mask // Flip last bit of N1

5 : SK1 HKDF(SHA256, N1, FK, ”payload”)
6 : SK2 HKDF(SHA256, N2, FK, ”payload”)
7 : ChaChaStream1 GetChaCha20KeyStream(SK1, len(Ptxt) + 1)
8 : ChaChaStream2 GetChaCha20KeyStream(SK2, len(Ptxt) + 1)
9 : counter 0

10 : stream ChaChaStream1

11 : Ctxt b”” // Initialize ciphertext as empty byte string

12 : // Iterate over the plaintext byte by byte

13 : for byte in Ptxt do

14 : if counter in SwitchingPositions do // Switch key-streams

15 : stream SwitchStreams(stream, ChaChaStream1, ChaChaStream2)

16 : endif

17 : // Encrypt plaintext-byte with current stream-byte

18 : Ctxt Ctxt||(byte� stream[counter])
19 : counter counter + 1
20 : endfor

21 : return Ctxt, FK, N1, N2

Figure 6.1: Pseudocode encrypting a given plaintext under two keys, switching between the

keys at the positions indicated by SwitchingPositions. randBytes(n) is a function, given

an integer n, returning n random bytes, len(x), returns the length in bytes of its input x,

GetChaCha20KeyStream(n, K) returns the first n bytes of the ChaCha20 key-stream gen-

erated using key K, SwitchStream(x, y, z) returns y if x = z and x if y = z.

40

6.5. Remarks

Following the Age specification [1, 24], we were able to create valid Age-file-
headers containing a wrapped file key of our choosing, where we used the
Header-MAC-key, derived from the file key (see Section 6.2), to compute the
MAC over the header.

6.4.4 Final File Construction

The final Age-file consists of a header, containing the recipient stanzas for
the selected file key, followed by the MAC-tag authenticating it. The next
16 bytes are occupied by the normally randomly chosen nonce value, which
in our case is replaced by the nonce(s) we selected.2 Finally, the encrypted
payload data, in our case the ambiguous ciphertext is appended, after com-
puting the now colliding Poly1305 tag.

Note that as the files used in our proof-of-concept implementation are small,
we can compute the single Poly1305 tag after performing the necessary
changes to the ciphertext.

A pseudocode descryption of the entire attack code is presented in Figure 6.2

6.5 Remarks

Key Derivation

Note that in our proof-of-concept implementation we did not care about
which recipient will derive which file key. In a real attack scenario, an adver-
sary would need to carefully select which nonce will be delivered to which
recipient such that the correct file can be encrypted using the correspond-
ing key-stream. In most cases, an attacker would want the first recipient to
decrypt the payload to the malicious file. This also requires careful moni-
toring whilst creating the polylgot file to be able to identify which parts of
the polyglot correspond to which file.

Header Generation

We only considered X25519 recipients in the scope of our attack. Note the
same techniques can be used against ssh-rsa and ssh-ed25519 recipients, or
combinations of the three respectively.

In the case of an scrypt recipient, the Age-files can only contain one recipient
stanza. This does not prevent our attack, as changing the nonce will still
result in the derivation of a different payload key, therefore a second user,

2Once the file is relayed to the second party, the mask changing the nonce must be
applied to guarantee decryption to the second plaintext.

41

6. Attacking Age

Attack(Ptxt, SwitchingPositions, Recipients)

1 : NewCtxt ?
2 : // Iterate until collision succeeds

3 : while NewCtxt = ? do

4 : Ctxt, FK, N1, N2 FileEncryption(Ptxt, SwitchingPositions)
5 : pos |Ctxt|/16 // Modify second to last block

6 : Ctxt Ctxt||016 // Append 16 0-bytes for tag correction

7 : Ctxt Ctxt||LengthEncoding(Null, ptxt)
8 : NewCtxt Collide(Ctxt, K1, K2, pos)
9 : endwhile

10 : tag Poly1305Tag(Ctxt, K1)

11 : Header GenerateHeader(FK, Recipients)
12 : f ile1 Header||N1||NewCtxt||tag
13 : f ile2 Header||N2||NewCtxt||tag
14 : return f ile1, f ile2

Figure 6.2: Pseudocode describing the creation of the two di↵erent Age files used in the at-

tack. FileEncryption(·, ·) is as described in Figure 6.1, LengthEncoding(·, ·) returns the

encoded length of plaintext and associated data as described in Section 3.4, Collide(·, ·, ·, ·)
as in Figure 3.1, GenerateHeader(·, ·) generates the Age-file header and header MAC-tag,

Poly1305Tag(·, ·) computes the Poly1305 tag over a given message unsing the provided key.

or the same user for that matter, knowing the password can be tricked into
decrypting the file to a different plaintext.

In Appendix A.1, we provide two example Age-files, differing in exactly
one nonce-bit, and an X25519 identity, which illustrate the attack described
in this chapter.

6.6 Attack Statistics

We analysed the performance of our proof-of-concept implementation to
show the practicality of the attack. All calculations were done on a Win-
dows 10 machine using an Intel Core i9-10900K processor. The code is writ-
ten in Python and compiled using Python 3.10.4.

First, only considering the generation of an ambiguous ciphertext from a
polyglot file, i.e. the computation of a collision for ChaCha20-Poly1305. Fig-
ure 6.1 summaries the statistics after running the attack 100000 times. Shown
are the minimum and maximum runtime in milliseconds as well as the mean
runtime and its standard deviation. Recall, that the computation of the ’tag-
correction block’ can fail, if the result is not in the correct range or due to the

42

6.6. Attack Statistics

ChaCha20-Poly1305 Collision Attack Statistics
Min Max Mean Std

Runtime (ms) 0.51212 66.82038 5.34495 4.68059
Total Retry Attempts 0 54 3.3644 3.8396

Range Errors 0 50 3.2737 3.7622
Remapping Errors 0 4 0.0907 0.3150

Table 6.1: Performance statistics of our attack code only considering the generation of the

ambiguous ciphertext, i.e. computing a collision in ChaCha20-Poly1305. The initial plaintext file

is 724 bytes in size. The runtime is given in milliseconds.

Attack Statistics
Min Max Mean Std

Runtime (ms) 92.51 437.81 109.19 9.63

Table 6.2: Performance statistics of our entire attack code including output Age-file generation.

The initial plaintext file is 724 bytes in size. The runtime is given in milliseconds.

mod P remapping resulting in an incorrect result. Similarly to the runtime,
we analysed the minimum and maximum number of retry attempts needed
to find a collision as well as its mean and standard deviation. The polyglot
file used for the analysis is 724 bytes in size.

We made a similar analysis for the entire proof-of-concept implementation
of our attack. This includes the computation of the ChaCha20-Poly1305
collision, as well as the construction and writing of the final Age-file(s).
This time, we ran the attack 10000 times and only measured its runtime in
milliseconds. The results are presented in Figure 6.2.

The analysis shows that the attack is indeed practical for small enough files.
An average runtime of roughly 110 milliseconds for the entire (unoptimised)
code is fast. Doing some rough estimation, this results in an average time of
close to 0.15 milliseconds per byte of plaintext.3

However, if files become larger, which in consequence means that the poly-
glot file will be bigger, the attack becomes less practical, as it will require
more runtime. Doing a rough estimation, an attack involving a 65 kB poly-
glot file will take around 10 seconds to complete. As each chunk is authen-
ticated on its own, the code can be parallelized to speed up computation.

Our analysis shows that we need between 3 and 4 retry attempts before the

3The plaintext here is the original polyglot file given to the code as input.

43

6. Attacking Age

attack succeeds for one-chunk-payloads. Recall that this means we need to
select a different block for tag correction or select new keys to get new key-
streams. Assuming each chunk is independent of all other chunks, and we
only have one block of freedom in each chunk for tag correction, then the
success probability rapidly decreases the larger the file becomes. For a file
consisting of n chunks, i.e. a file of size n · 216 bytes, the success probability
will be somewhere between 3�n and 4�n. This means that already for a file
consisting of 4 chunks, the success probability will be around 1%. However,
multiple blocks of freedom per chunk, i.e. more flexibility in the polyglot
file creation, can significantly improve the success probability.

44

Chapter 7

Fixes

We came up with two possible solutions to adapt Age in a minimal way to
mitigate the attack shown in Chapter 6.

The first approach would integrate the selected nonce into the header, there-
fore it would be authenticated by the MAC generated over the header and
the attack, as it is described, will not work any more, as a change in the
nonce would require a MAC tag forgery to result in valid decryption.

The second solution would be to set the nonce to a fixed value, hardcoded
into Age. This is already done for the generation of the header MAC key.
Recall that in this case the nonce is set to ’none’, which results in the all-
zero-string being used as the nonce value for the HKDF key derivation. In
a similar way, the nonce value for the derivation of the payload key can be
set to a constant value, other than the all-zero-string, to mitigate the attack.

Note that both solutions could be implemented in a next version of Age, but
would not be backward compatible with the current ’v1’ version.

7.1 Why Age is Designed in this Way

We informed Filippo Valsorda, the author of Age, about the attack we found,
proposed our two solution ideas and asked what led to the design decision
of placing the nonce between the header and the encrypted payload, in an
unauthenticated manner.

In his response [23], he mentioned that for our second solution, having a
fixed nonce value, an attacker, having access to 264 Age-files with a known
prefix, could find one decryption in an average time of 264. Having a longer
file key would increase the number of needed files as well as the average
time required to find a decryption, but a larger file key would increase the
overhead on a per-recipient basis instead of per-file, as the file key is en-
crypted for each recipient in its own recipient stanza.

45

7. Fixes

Our first solution, placing the nonce inside the header, maybe should have
been the way to go [23]. There were two main reasons which led to the
decision of not to do so.

First, the nonce can be seen as part of the output of a stream encryption,
similarly to how a nonce is part of the output of an AEAD encryption oper-
ation. Secondly, users may reuse the same header to encrypt multiple files,
although this is discouraged in the specification, to save on the expensive
asymmetric computations done in header generation. By placing the nonce
outside the header, such a re-use can safely work, as a new nonce will be
selected for each file, while if the nonce is part of the header, the same pay-
load key will be derived for all files using the same header, which leads to
a serious vulnerability as it allows an attacker having access to two files to
recover the key-stream used to encrypt the files.

Regarding the second point, one could allow users to re-use headers, by
sampling a random nonce and recomputing the header MAC value. This
would allow users to still save on the expensive operations done for header
generation and only add a small overhead, as the HMAC computation for
the new MAC-tag is cheap.

46

Chapter 8

Conclusion

We presented a high level overview of Age in Chapter 2, showed a possi-
ble attack in Chapter 6 and proposed solutions to mitigate the problem in
Chapter 7.

Although we were able to find an attack against Age, it is only applicable
in a limited attack scenario. An adversary needs to know the file key in
order to perform the attack and additionally needs to be able to force a
second recipient to receive an altered version of the Age-file sent to the first
recipient.

The files constructed in our attack are not identical. To trick two different
users into decrypting the seemingly same file to different plaintexts, we
needed to change the nonce in the files. The required difference in the
nonces can be as small as one bit. Therefore, we were not able to break the
robustness of Age.

This project shows that one needs to take great care designing encryption
protocols. Every design decision needs to be thought through carefully as
every single bit can be the root of a potential vulnerability against the entire
design.

In conclusion, Age seems to be a very well designed command line encryp-
tion tool. As a continuation of this project, a formal security analysis of Age
can be done in an appropriate security model, to either prove Age secure
or to discover new vulnerabilities. For this we suggest moddeling Age as a
public key encryption scheme and try proving that the modelled scheme is
robust.

47

Appendix A

Appendix

A.1 Attack Example

In this section we briefly present two Age-files, which we generated using
our proof-of-concept implementation described in Chapter 6.

Figure A.1 shows the two Age-files output by our implementation. The
two files differ only in the last bit of the nonce. Decrypting the original or
modified version of the files results in the output either being a valid .jpg file
displaying the word ’JPG’ or the output corresponding to a .pdf file showing
the word ’PDF’ as shown in Figure A.2.

To verify that our attack works, we provide the identity corresponding to
one of the recipients of the files shown, in Figure A.3. This identity can be
used to decrypt the provided Age-files and can therefore be used to verify
that the files decrypt to the claimed outputs.

49

A
.

A
ppen

dix

(a) Original Age-file.

(b) Modified Age-file, di↵ering in exactly one bit of the nonce.

Figure A.1: The two di↵erent Age-files generated by our attack code, di↵ering in exactly one nonce-bit and decrypting to two di↵erent valid files, a .jpg

file showing the word ’JPG’ and a .pdf file showing the word ’PDF’.

50

A.1. Attack Example

(a) A .jpg file showing the word ’JPG’. (b) A .pdf file showing the word ’PDF’.

Figure A.2: The two di↵erent output files resulting from decrypting the original and modified

Age-file.

Figure A.3: The identity corresponding to one of the recipients of the shown Age-files, which

can be used to decrypt the files and verify their outputs.

51

Bibliography

[1] Age Format Specification. https://github.com/C2SP/C2SP/blob/

main/age.md. Accessed: 2022-12-05.

[2] Age Sourcecode. https://github.com/FiloSottile/age. Accessed:
2022-23-02.

[3] Mitra: A tool to generate binary polyglots. https://github.com/

corkami/mitra. Accessed: 2022-14-04.

[4] Michel Abdalla, Mihir Bellare, and Gregory Neven. Robust encryption.
Journal of Cryptology, 31(2):307–350, apr 2018.

[5] Ange Albertini, Thai Duong, Shay Gueron, Stefan Kölbl, Atul Luykx,
and Sophie Schmieg. How to abuse and fix authenticated encryption
without key commitment. In 31st USENIX Security Symposium (USENIX
Security 22), Boston, MA, August 2022. USENIX Association.

[6] Swarup Bhunia and Mark Tehranipoor. Chapter 8 - Side-Channel At-
tacks. In Swarup Bhunia and Mark Tehranipoor, editors, Hardware Se-
curity, pages 193–218. Morgan Kaufmann, 2019.

[7] Denis Bider. Use of RSA Keys with SHA-256 and SHA-512 in the Secure
Shell (SSH) Protocol. RFC 8332, March 2018.

[8] Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and Joanne
Woodage. Fast message franking: From invisible salamanders to en-
cryptment. In Advances in Cryptology – CRYPTO 2018, volume 10991 of
Lecture Notes in Computer Science, pages 155–186. Springer, 2018.

[9] Pooya Farshim, Benoı̂t Libert, Kenneth G. Paterson, and Elizabeth A.
Quaglia. Robust encryption, revisited. Cryptology ePrint Archive, Pa-
per 2012/673, 2012. https://eprint.iacr.org/2012/673.

53

https://github.com/C2SP/C2SP/blob/main/age.md
https://github.com/C2SP/C2SP/blob/main/age.md
https://github.com/FiloSottile/age
https://github.com/corkami/mitra
https://github.com/corkami/mitra
https://eprint.iacr.org/2012/673

Bibliography

[10] Shay Gueron, Adam Langley, and Yehuda Lindell. AES-GCM-SIV:
Nonce Misuse-Resistant Authenticated Encryption. RFC 8452, April
2019.

[11] Tony Hansen and Donald E. Eastlake 3rd. US Secure Hash Algorithms
(SHA and SHA-based HMAC and HKDF). RFC 6234, May 2011.

[12] Simon Josefsson. The Base16, Base32, and Base64 Data Encodings. RFC
4648, October 2006.

[13] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC: Keyed-
Hashing for Message Authentication. RFC 2104, February 1997.

[14] Hugo Krawczyk and Pasi Eronen. HMAC-based Extract-and-Expand
Key Derivation Function (HKDF). RFC 5869, May 2010.

[15] Ted Krovetz and Phillip Rogaway. The OCB Authenticated-Encryption
Algorithm. RFC 7253, May 2014.

[16] Adam Langley, Mike Hamburg, and Sean Turner. Elliptic Curves for
Security. RFC 7748, January 2016.

[17] Julia Len, Paul Grubbs, and Thomas Ristenpart. Partitioning oracle at-
tacks. In 30th USENIX Security Symposium (USENIX Security 21), pages
195–212. USENIX Association, August 2021.

[18] Fabio Maino, Uri Blumenthal, and Keith McCloghrie. The Advanced
Encryption Standard (AES) Cipher Algorithm in the SNMP User-based
Security Model. RFC 3826, June 2004.

[19] Kathleen Moriarty, Burt Kaliski, Jakob Jonsson, and Andreas Rusch.
PKCS #1: RSA Cryptography Specifications Version 2.2. RFC 8017,
November 2016.

[20] Yoav Nir and Adam Langley. ChaCha20 and Poly1305 for IETF Proto-
cols. RFC 7539, May 2015.

[21] Colin Percival and Simon Josefsson. The scrypt Password-Based Key
Derivation Function. RFC 7914, August 2016.

[22] Joseph A. Salowey, David McGrew, and Abhijit Choudhury. AES Galois
Counter Mode (GCM) Cipher Suites for TLS. RFC 5288, August 2008.

[23] Filippo Valsorda. Personal Communication. 25 May 2022.

54

Bibliography

[24] Filippo Valsorda. Superseded Age Documentation. https://docs.

google.com/document/d/11yHom20CrsuX8KQJXBBw04s80Unjv8zCg_

A7sPAX_9Y/preview. Accessed: 2022-14-04.

[25] Filippo Valsorda. Using ed25519 signing keys for encryption. Blog
Post, 2019, Accessed: 2022-12-05. https://words.filippo.io/

using-ed25519-keys-for-encryption/.

55

https://docs.google.com/document/d/11yHom20CrsuX8KQJXBBw04s80Unjv8zCg_A7sPAX_9Y/preview
https://docs.google.com/document/d/11yHom20CrsuX8KQJXBBw04s80Unjv8zCg_A7sPAX_9Y/preview
https://docs.google.com/document/d/11yHom20CrsuX8KQJXBBw04s80Unjv8zCg_A7sPAX_9Y/preview
https://words.filippo.io/using-ed25519-keys-for-encryption/
https://words.filippo.io/using-ed25519-keys-for-encryption/

