
How Practical is Single-Server
Private Information Retrieval?

Master semester project

Sophia Artioli

February 14, 2023

Supervisor: Prof. Dr. Kenny Paterson, Co-supervisor: Dr. Tianxin Tang

Applied Cryptography Group

Institute of Information Security

Department of Computer Science, ETH Zürich

Contents

Contents i

1 Introduction 1
1.1 Motivation . 1
1.2 Protocol Overview . 2
1.3 Performance Re-Evaluation and Results 2

2 Cryptographic Background 5
2.1 Homomorphic Encryption . 5
2.2 Lattice-based Homomorphic Encryption 5
2.3 The Learning with Errors Assumption 6
2.4 (R)LWE-based Encryption Schemes 6

2.4.1 HE Composition in Spiral 7

3 Protocol Overview 9
3.1 Database Representation and Intuition 9
3.2 Hint Generation and Query Processing 10

3.2.1 Online Phase . 10
3.2.2 Offline Phase . 12

4 Protocol Descriptions and Theoretical Costs 15
4.1 Overview of Theoretical Costs 15

4.1.1 Parameter Selection . 16
4.2 Offline Phase: Detailed Process and Theoretical Cost Analysis 17

4.2.1 Database Representation and Query Generation 18
4.2.2 Hint Generation . 20

4.3 Online Phase: Detailed Process and Theoretical Cost Analysis 22
4.3.1 Query Processing . 22
4.3.2 Response Decoding . 24

5 Performance Re-Evaluation and Results 27

i

Contents

5.1 Offline Phase . 28
5.1.1 Hint Size . 29
5.1.2 Hint Generation Time 30

5.2 Online Phase . 31
5.2.1 Query Generation Time 31
5.2.2 Query Size . 32
5.2.3 Query Processing Time 32
5.2.4 Response Size . 33
5.2.5 Rate . 34
5.2.6 Decoding Time . 35

5.3 Summary of Experimental Results 35

6 Handling Database Updates and Multiple Clients 37
6.1 Handling Database Updates . 37
6.2 Handling Multiple Clients . 38

7 Applications 39
7.1 Private Search on Wikipedia . 39
7.2 Private DNS Lookup . 40
7.3 Private Bitcoin Balance Search 40
7.4 Certificate Transparency Private SCT Auditing 41

8 Conclusion 43

A Appendix 45
A.1 Additional Algorithms . 45

Bibliography 47

ii

Chapter 1

Introduction

1.1 Motivation

A private information retrieval (PIR) protocol allows a client to retrieve a record
from a public database without the database server knowing which record
has been requested. In other words, the main objective of PIR is to protect
query privacy. The definition can also be extended to private databases, mak-
ing PIR an appealing cryptographic primitive for building various privacy-
enhancing applications, such as private media consumption, web browsing,
anonymous messaging, and certificate auditing [1].

PIR schemes can be divided into two categories: multi-server PIR, where the
database is distributed across multiple servers, and single-server PIR, where
the database is hosted on a single server. Multi-server PIRs [4, 5, 6] are typ-
ically much more efficient than single-server ones, but they come with the
assumption of non-colluding servers, which can be difficult to achieve in the
real world. This is because, in many cases, only one company provides the
PIR service and therefore has access to all data stored on the servers. In
comparison, single-server PIRs do not require such an assumption, but ex-
isting ones usually have higher computational costs. For instance, a ”naive”
single-server PIR involves the client downloading the entire database to re-
trieve the desired record. It was believed that this approach could not be
surpassed due to the strict PIR security property, but this solution is clearly
infeasible for practical use.

This underscores the challenges faced by prior PIR protocols, as they either
suffer from poor performance in a single-server setting or require unrealis-
tic trust assumptions of non-colluding servers. However, the situation has
changed dramatically with the introduction of the offline-online PIRs. During
the offline phase, some information about the database is precomputed and
exchanged to optimize the server’s processing time during the online phase.
This information, known as the ”hint”, allows the client to make unlimited

1

1. Introduction

PIR queries with improved efficiency.

With the hope of getting closer to a single-server PIR that could possibly
be deployed soon, we study the practicality of three recent state-of-the-art
single-server offline-online PIR schemes: Simple [1], Double [1], and Spiral [2].
Given the limited evaluation results presented in their respective papers, we
have established our own evaluation metrics to reassess their efficiency and
determine if they are ready for deployment.

1.2 Protocol Overview

Before delving into performance evaluation, we first provide a high-level
overview of the three protocols and highlight their similarities and differ-
ences.

Both Simple and Double organize a N-record database as a
p

N ⇥
p

N ma-
trix. In Simple, the client first downloads a hint from the server and can then
make an unlimited number of PIR queries. To reduce the size of the hint,
which grows linearly with

p
N, Double is introduced as a more efficient al-

ternative when N becomes sufficiently large. Double is built on Simple and
stores an additional hint on the server, so that the client only needs to down-
load a smaller hint that does not depend on N. The client can then make
PIR queries using the downloaded hint and through recursive use of Simple,
with similar server-side processing costs.

On the other hand, Spiral organizes the database as a hypercube. The client
does not download the hint, but instead generates and uploads some public
parameters (referred to as the hint in our work) to the server, which are
used during the online phase. Additionally, Spiral compresses the queries to
reduce the communication cost.

Despite these differences, the three offline-online PIR schemes share some
key properties. The database is stored in plaintext on the server and they all
use lattice-based encryption schemes as building blocks. Simple and Double

use Regev encryption under the Learning With Errors (LWE) assumption,
where each record is represented as a sequence of elements in some finite
field. To achieve query compression and limit noise growth, Spiral uses both
Regev and GSW encryption under the Ring Learning with Errors (RLWE)
assumption, representing each database record as an element in some poly-
nomial ring.

1.3 Performance Re-Evaluation and Results

We now briefly describe how we conduct our performance evaluation and
provide an overview of our results. We emphasize that the original eval-

2

1.3. Performance Re-Evaluation and Results

uations in the Simple, Double and Spiral papers were limited in scope. For
example, [1] only showed results for specific database configurations with a
fixed total database size for comparison.

This motivated us to re-evaluate their performance under our own perfor-
mance metrics. Specifically, we evaluate the performance of these protocols
under a broader range of database configurations (by varying the number
of records and the record size), which simulate many practical settings. We
run the experiments on the provided open-source implementations, which
involve the full execution of the protocols, but in the local setting omitting
the network cost.

We also present theoretical concrete expressions for communication costs,
such as hint, query, response sizes, as well as asymptotic computational
complexity. These theoretical results are compared with our experimental
results. A detailed description of the evaluation process and results can be
found in Chapter 5, but we provide a brief overview of the findings here.

Our experimental results indicate that during the offline phase, for some
database configurations, both Simple and Double may result in significant
latency, but this issue can be mitigated in multi-client scenarios by sharing
the hint, as discussed in Chapter 6.1. The communication cost during the
offline phase, which is related to exchanging the hint, is low for Spiral, ac-
ceptable for Simple, but infeasible for Double. During the online phase, the
communication cost is manageable for Simple and Spiral, but not for Double

in certain cases. The computational time is feasible for all protocols, as long
as the record size is relatively small, in the hundreds of bytes range. For
larger record sizes (e.g, > 1 KB), however, substantial latency may occur,
especially for Spiral.

In Chapter 7, we also examine the application of our experimental findings
to practical PIR scenarios and evaluate their feasibility.

In conclusion, we found that the hint size and record size play critical roles
in the performance of the three PIR protocols. While the hint size of Double
is independent of the number of database records, it is only of theoreti-
cal interest as the hint size is prohibitively large, even larger than the total
database size in our experiments! For relatively small record sizes, Sim-

ple and Spiral can be indeed practical. However, for large record sizes, query
processing relies on homomorphic operations on each record, represented as
a sequence of field/ring elements, which results in significant performance
issues. Nevertheless, by taking into account parallelization, hardware accel-
eration, and optimization for batched access, there may still be potential for
single-server offline-online PIRs to have a wider range of applications in the
future.

3

Chapter 2

Cryptographic Background

In this chapter, we lay out the cryptographic primitives used in Simple, Dou-
ble, and Spiral.

2.1 Homomorphic Encryption

Homomorphic encryption enables performing operations, such as multipli-
cation or addition, on ciphertexts, resulting in equivalent operations on the
underlying plaintexts. We list the following homomorphic operations sup-
ported by the schemes employed in Simple, Double and Spiral. We omit the
specification of the homomorphic encryption schemes and the plaintext do-
mains for simplicity.

Addition Let ciphertexts c1 and c2 encrypt m1 and m2, respectively. Then
the encryption algorithm which takes as input c1 and c2 outputs a
ciphertext c

0 such that c
0 encrypts the addition of the plaintexts m1 +

m2.

Furthermore, Spiral utilizes homomorphic encryption schemes that support
multiplication, referred to as fully homomorphic encryption. We define the
multiplication between ciphertexts and plaintexts as follows,

Multiplication Let ciphertexts c1 encrpyt m1 and let m2 be another message
in plaintext, then c

0 = c1 · m2 encrypts the multiplication m1 · m2.

2.2 Lattice-based Homomorphic Encryption

Over an n-dimensional vector space, a lattice is an infinite set of points rep-
resented by a collection of vectors. These vectors make up a finite set called
the lattice basis, making storing the entire lattice grid in memory possible.

5

2. Cryptographic Background

Simple, Double, and Spiral are built on homomorphic encryption schemes,
relying on the computational hardness of some lattice problems. We discuss
the learning with errors problem in detail in Section 2.3.

2.3 The Learning with Errors Assumption

To build encryption using LWE, we rely on the hardness of distinguishing
between a message with added noise and a random sample. The indistin-
guishability is formally defined, with the goal of ensuring the security of the
encryption scheme: for matrices A and B, secret s, an error vector e sampled
from the error distribution c and a random vector r, the LWE assumption
claims that the following distributions are computationally indistinguish-
able:

(A, As + e)
c⇡ (A, r) (2.1)

Simple, Double and Spiral rely on this assumption. However, Spiral uses its
Ring Learning With Errors (RLWE) variant. In Table 2.1, we compare the
algorithms and parameters used by the three protocols.

Spiral Simple/Double

Assumption and parameters
RLWE-(d, m, q, c) with ring R = Z[x]

(xd+1) ,
d is a power of 2,
ring modulus (or encoding modulus) q 2 N

LWE-(n, m, q, c), n 2 N the dimension of the secret i.e.
the lattice dimension,
ciphertext modulus q 2 N

Random matrix (or vector) A (or a) a
R R

m
q A

R Zm⇥n
q

Error distribution c c over Rq c over Zn
q

Secret s s
R c s

R Zn
q

Error vector e e
R cm

e
R cm

Random vector r r
R R

m
q r

R Zm
q

Table 2.1: Comparing parameters of the LWE assumption across various protocols. We note
that m refers to the number of samples used. Furthermore, parameters m, q and c serve the
same purpose in the (R)LWE assumption. However, they have di↵erent values in each protocol.

2.4 (R)LWE-based Encryption Schemes

Simple and Spiral utilize lattice-based encryption schemes based on Learning
With Errors (LWE) and Ring Learning With Errors (RLWE) assumptions,
respectively. We first introduce Regev’s encryption scheme as follows.

Regev’s additive homomorphic encryption scheme encrypt a message µ with
the parameters defined in Table 2.1 as follows:

(a, c) = (a, a
>

s + e + µ) (2.2)

The decryption of the ciphertext c follows for anyone knowing the
secret key s by computing c � a

>
s. Furthermore, we can exploit the

6

2.4. (R)LWE-based Encryption Schemes

additive property of this encryption; given the ciphertexts (a1, c1) and
(a2, c2), the resulting sum is (a1 + a2, c1 + c2). The decryption of (a1 +
a2, c1 + c2) yields (c1 + c2) � (a1 + a2)>s = c1 � a

>
1 s + c2 � a

>
2 s =

µ1 + e1 + µ2 + e2. Hence, we observe that this result is the sum of
the plaintexts and the sum of noises, demonstrating the homomorphic
addition property of the scheme.

2.4.1 HE Composition in Spiral

Supported homomorphic operations Noise growth for addition Noise growth for multiplication
BFV Addition and multiplication Linear in the number of additions Exponential in the number of multiplications
GSW Multiplication Linear in the number of additions Linear in the number of additions

Table 2.2: Comparison of noise growth between BFV and GSW.

In this section, we discuss why Spiral uses a composition of two lattice-based
homomorphic encryption schemes.

(R)LWE-based encryption schemes have a significant drawback due to noise
growth. As previously mentioned, the ciphertexts produced by these schemes
are noisy encodings of the plaintext, and homomorphic operations between
ciphertexts increase the magnitude of the noise. If the noise exceeds a cer-
tain threshold, the correctness of the decryption may no longer hold. For
example, as shown in In Table 2.2, the noise introduced by Brakerski and
Fan-Vercauteren (BFV) scheme [7, 8] scales exponentially in the number of
multiplications. The table also compares the scaling of noise between BFV
and Gentry, Sahai, and Waters (GSW) with respect to the number of addi-
tions and multiplications. In this case, GSW increases linearly in the multi-
plicative depth rather than exponentially for BFV.

For this reason, Spiral uses a composition of two lattice-based schemes:
Regev and GSW [3]. The latter achieves full homomorphism, which means
it supports both multiplication and addition operations. This combination
enables fully homomorphic encryption and control over noise growth.

7

Chapter 3

Protocol Overview

This chapter provides a comprehensive overview of Simple, Double, and Spi-

ral, focusing on their similarities and differences. We divide the chapter into
the following sections: Section 3.1, database representation and intuition;
Section 3.2.1, the online phase for server-side query processing; Section 3.2.2,
the offline phase for pre-processing.

3.1 Database Representation and Intuition

Instead of using a one-dimensional mechanism, namely, an N-element array,
for storing the database, Simple, Double, and Spiral employ alternative data
structures. Furthermore, the database is maintained in its plaintext form on
the server, and the queries are generated based on the database’s structure,
optimizing both query generation and server-side computations.

Simple

An N-record database is represented as
p

N⇥
p

N matrix. The query is a 2-
dimensional vector (i, j) that selects values from both database dimensions.
The client generates the query in the following way:

Query transformation The client first builds a
p

N-dimensional unit vector
consisting of zeroes everywhere, except at index j a ’1’. We denote it
by uj = (0, 0, . . . , 1, . . . , 0)T, which indicates the desired record lies in
the j-th column of the database matrix.

Query encoding The unit vector is then encrypted with Regev’s LWE-based
homomorphic encryption scheme.

9

3. Protocol Overview

Double

Double organizes the database in the same way as Simple. The query genera-
tion process involves generating two unit vectors that select the row and the
column of the location of the requested record, and then encrypting these
two unit vectors using the Regev encryption scheme.

Spiral

Spiral, on the other hand, organizes the N-record database as a hypercube.
Suppose N = 2r+s, then it becomes a hypercube with dimensions 2r⇥
2⇥ · · ·⇥ 2| {z }

s

. To generate a query, the following steps are taken: first, cre-

ate a query vector that selects each dimension of the database, represented
by (i, j1, . . . , js), where i 2 [0, 2r � 1] and j1, . . . , js 2 {0, 1}. Then, the query
vector is compressed into a single scalar and encrypted with Regev’s RLWE-
based homomorphic encryption scheme.

3.2 Hint Generation and Query Processing

Upon receiving the client’s encrypted query, the server performs computa-
tions between the query and the database to retrieve the requested record.
To improve the efficiency of the server-side computations, some of these
computations can be performed in advance, before the query is generated,
as they do not depend on the queries.

The three PIR schemes comprise two phases: the offline phase, which in-
cludes pre-computations and the exchange of hints, and the online phase,
which involves query processing on the server and response decoding on
the client.

In Section 3.2.1, we will first outline the steps involved in server-side query
processing, disregarding the offline phase. This allows us to identify com-
putations that do not rely on the query and can be performed in advance,
which are described in detail in Section 3.2.2.

3.2.1 Online Phase

Simple

We have seen in Section 3.1 that the query is the encryption of the unit-
vector uj consisting of all zeros except at index j, selecting for the column
where the record lies in the database.

The server then performs the matrix product between the database D and
the unit-vector uj, which outputs the j-th column. A simplified version
of the computation process is provided to understand which computations

10

3.2. Hint Generation and Query Processing

can be performed in advance. Let A be a random matrix and e sampled
randomly from the error distribution. As seen in Section 2.4, the encryption
of uj is Enc(uj) = As + uj + e. The server then computes D ⇥ Enc(uj) =
D ⇥ (As + uj + e) = DAs + Duj + De. It is observed that the computation
of D⇥ A is not tied to the query and can be moved to the offline phase.

Double

Double’s online phase uses Simple recursively. The first level operates simi-
larly to Simple: the server executes the protocol as in Simple over the query,
selecting the database column, which outputs a response vector. The second
level of Simple is then executed over the response vector (which contains the
whole column of the record) and the unit vector that selects the row. It is
worth noting that, similar to Simple, certain computations can be performed
beforehand in Double, but in this case, two computations can be pushed to
an offline phase.

Spiral

We have seen in Section 3.1 that the query is represented as (i, j1, . . . , js)
where i 2 [0, 2r � 1] and j1, . . . , js 2 {0, 1}. Upon receiving the encrypted
query from the client, i.e. the Regev encoding of a scalar, the server performs
the following steps:

Query expansion The server expands the received scalar c to the following
representation:

1. Represent the first coordinate i of the query: the scalar is ex-
panded into a collection of matrices representing the bits 0 and
1, where the i-th matrix represents the plaintext ’1’ and all other
matrices represent the plaintext ’0’.

2. Represent subsequent components of the query: the query is fur-
ther expanded into a second collection of matrices created to rep-
resent the components j1, . . . , js 2 {0, 1}.

Query processing With the two collections of matrices, the server can re-
trieve the requested database record:

1. Process the first dimension of the query by multiplying the ma-
trices representing ’0’s and a ’1’ with the database. This will yield
a sub-database containing all the records with i as their first co-
ordinate.

2. Multiply the above sub-database with the components (j1, . . . , js)
of the original query.

11

3. Protocol Overview

Combining lattice-based homomorphic schemes From the query expansion
step, we have 2r matrices of Regev encodings and s matrices of GSW
encodings. By using an external product algorithm [9][10], we can mul-
tiply ciphertexts from two different schemes when the two encodings
are encoded with respect to the same key. In the query processing
phase, the query is encrypted as such respectively:

1. The server expands each Regev-encoded component of the vector
containing a ’1’ at position i and 0’s elsewhere to matrices.

2. The vector (j1, . . . , js) is encoded with Regev and is then expanded
to matrices as in the step above. These Regev matrices are then
transformed to GSW-encoded matrices.

Finally, perform homomorphic multiplication between the Regev and
GSW ciphertexts:

1. Multiply the Regev matrix ciphertexts with the database and ob-
tain the sub-database of records that have as first coordinate i.
After multiplication, the sub-database is no longer in plaintext.

2. Multiply the resulting sub-database with each GSW matrix in or-
der to retrieve the desired record.

The multiplication between Regev and GSW matrices relies on the ex-
ternal product. This homomorphic encryption results in a linear noise
growth in the multiplicative depth of the computation rather than ex-
ponential if other schemes were used, as noted in Table 2.2.

3.2.2 O✏ine Phase

From the online phase, we identify computations that are independent of the
client’s query and can therefore be executed prior to the query being made.
These computations are transferred to the offline phase of the scheme, and
the following presents the details of how this phase is carried out.

Simple

In the online phase of Simple, we observed that the matrix multiplication
between the database D and the matrix A does not depend on the client’s
query. Hence, this matrix multiplication can be moved to the offline phase to
improve performance. We refer to hintc = D⇥ A as the hint matrix, which
the client downloads at the start of the protocol before making any queries.

Double

Double’s offline phase involves creating two hints, one for each level of Sim-

ple. In the first level, the server generates a hint dependent on the database

12

3.2. Hint Generation and Query Processing

and stores it. In the second level, another hint is generated and sent to the
client, which does not need to depend on the database size anymore, as
the first-level hint already accounts for it. This makes the second-level hint
smaller in size than the first-level hint.

Spiral

The online phase of Spiral involves an expansion and matrix conversion,
which require the generation of multiple parameters to carry out these trans-
formations. Hence, the offline phase of Spiral consists of generating this set
of parameters and uploading them to the server before the client starts mak-
ing queries. The set of parameters generated are:

Automorphism keys These keys serve as key-switching matrices to enable
the expansion of Regev-encoded polynomials as in Section 3.2.1.

Conversion keys The server needs Regev to GSW conversion keys ck to
translate the Regev ciphertexts into GSW matrix ciphertexts as in Sec-
tion 3.2.1.

13

Chapter 4

Protocol Descriptions and Theoretical
Costs

We now provide the description of each step of the protocols and compute
their theoretical computational and communication costs. This will enable
us to compare the theoretical results with the experimental results that we
will present in Chapter 5.

4.1 Overview of Theoretical Costs

The communication cost, which is analyzed in Table 4.5, refers to the amount
of data exchanged between the server and client. The sizes are defined in
terms of the number of records N in the database and the record size r in
bits, as well as protocol-specific parameters that determine the size of hints,
queries, and responses. Furthermore, in Table 4.5, it is assumed that the
record size is larger than an element in Zp (i.e. r � log(p)), which is typical
in most relevant applications. If the record size is not larger than an element
in Zp, we can replace the term d r

log(p)e by 1. As a result, the cost depends on
the number of elements in Zp stores the database. Additionally, we provide
Table 4.2 that shows the asymptotic computational costs of different phases
of the protocols.

The parameters necessary for computing the theoretical values are defined
as follows:

Simple & Double The ciphertext modulus q = 232 and defines Zq. The
plaintext modulus p defines Zp. The lattice parameter np is set to
1024.

Spiral Given N, the number of records in the database, the database pa-
rameters n1 and n2 satisfy N = 2n1+n2 with n1, n2 2 N. The polynomial
ring R is defined as R = Z[x]/(x

d + 1), where d is a power of 2 and set

15

4. Protocol Descriptions and Theoretical Costs

to 2048. The modulus q is set as q = 256, and it defines the polynomial
ring modulus Rq. The plaintext modulus p defines the polynomial
ring modulus Rp. The plaintext dimension nd represents the database
records in R

nd⇥nd

p and is set to nd = 2. Additionally, we define the
decomposition bases that allow switching from Regev to GSW. That is,
tcoe f f , tconv and tGSW , that are further discussed in Section 4.1.1.

We notice that for Simple and Double the costs depend on the term Nd r

log(p)e,
which represents the number of Zp elements in the database.

4.1.1 Parameter Selection

In this section, we define additional parameters for Spiral that are important
for understanding the costs associated with different stages of the protocol.
Additionally, we explain in detail the decomposition bases used for transi-
tioning from one encryption scheme to another.

Simple & Double

In Section 4.1, the parameters have been previously defined, however, the
plaintext modulus p is not fixed like the other parameters, and its value
depends on the number of elements in Zp that stores the database. These
values are presented in Table 4.1.

Number of field elements that represents the database 226 228 230 234 238 242

Simple plaintext modulus p 991 833 701 495 350 247
Double plaintext modulus p 929 781 657 464 328 231

Table 4.1: The parameters are selected to achieve the highest possible throughput while preserv-
ing correctness and security properties. These parameters are specified in the implementation of
Simple and Double.

Spiral

The performance of Spiral depends on various parameters that must be ad-
justed to balance communication and computation costs. To determine the
optimal values for these parameters, an automatic parameter selection tool
is used to find the parameters that minimise the server computation time:

The first database dimension n1 The parameter n1 determines the number
of rounds of query expansion the server needs to perform during the
query processing phase.

The subsequent database dimensions n2 The parameter n2 determines the
number of rounds needed to select for each dimension of the sub-
database during the query processing phase.

16

4.2. Offline Phase: Detailed Process and Theoretical Cost Analysis

Decomposition bases Spiral uses a combination of two cryptographic pro-
tocols: Regev and GSW. Both protocols operate under different decom-
position bases.

• zcoe f f evaluates the automorphism in the expansion algorithm in
used in Section 3.2.1. Define tcoe f f = blog

zcoe f f
(q)c+ 1 and is fixed

at tcoe f f = 56.

• zconv is the decomposition base that translates scalar Regev en-
codings into matrix Regev encodings. Specifically, this is done
in step 1 of the query processing to handle the first dimension
of the query. Furthermore, we define tconv = blog

zconv
(q)c + 1 2

{2, 4, 8, 16, 32, 56}.

• zGSW is the decomposition base used to translate scalar Regev
ciphertexts into matrix GSW encodings in step 2 of the query
processing process, to translate subsequent components of the
query. We define tGSW = blog

zGSW
(q)c+ 1 2 {2, 4, 8, 16, 32, 56}.

Gadget matrices To translate ciphertexts from one encryption scheme to
another, we need to be able to switch decomposition bases. To ac-
complish so, we define gadget matrices that allow switching from one
basis to another.

Formally, let z 2 N, and g
>
z = [1, z, z

2, . . . , z
blog

z
(q)c] 2 R

blog
z
(q)c+1

q , the
gadget matrix is defined as Gn,z = In⌦ g

>
z . We write g

�1
z , which allows

transforming a high-norm vector into a low-norm vector of a higher
dimension. We also expand the notation to matrices and define G

�1
n,z

which applies g
�1
z to each column of a matrix.

Asymptotic computational cost Spiral Simple Double

Hint generation O(log N) O(ndNd r

log(p)e) O(ndNd r

log(p)e+ n
2
d

p
N)

Query generation O(log N) O(nd

q
Nd r

log(p)e) O(nd

q
Nd r

log(p)e)

Query processing O(max(2n1 , 2n2)) O(Nd r

log(p)e) O(Nd r

log(p)e+ nd

q
Nd r

log(p)e)
Response decoding O(n2

p) O(nd) O(nd)

Table 4.2: This table summarizes the asymptotic computational costs of each step in the PIR
protocols. The record size, denoted by r, is measured in bits, and the number of records in the
database is represented by N.

4.2 O✏ine Phase: Detailed Process and Theoretical
Cost Analysis

In this section, we assess the cost of each phase of the protocol by con-
sidering the database representation and addressing the treatment of large
records, as outlined in Section 4.2.1.

17

4. Protocol Descriptions and Theoretical Costs

4.2.1 Database Representation and Query Generation

The asymptotic computational cost of generating the query for each protocol
is presented in Table 4.2. We summarize the findings in terms of query
generation computational cost and query size:

Simple We observe in Table 4.3 the query size after encryption grows with
the number of field elements that represent the database. Table 4.2
compares the asymptotic cost for query generation against other pro-
tocol stages.

Double As seen in Table 4.3, the size of the query increases in proportion
to the number of field elements in the database, which is multiplied by
a factor of 2 due to the presence of two queries. The same reasoning
applies to the generation time of the query.

Spiral In terms of computational cost, most operations require constant
time except for the subsequent dimensions encoding, which requires
n2 · tGSW operations in Rq.

We now delve into each step of the query generation process, analyzing its
cost and providing a thorough explanation of the database representation.

Simple & Double

For an N-record database, the server stores the database as a matrix of di-
mension

p
N ⇥
p

N, with each matrix element representing a single record
from the database. Each record is an element of the set of integers modulo
p, denoted as Zp. However, it is worth noting that in many practical ap-
plications of private information retrieval (PIR), the size of the records may
exceed that of a single element in Zp (i.e. r � dlog(p)e). To accommo-
date such scenarios, Simple and Double supports larger records by breaking
each record into multiple elements in Zp, and subsequently stacking them
vertically within the same column of the database matrix.

When a client requests a specific record from the database, the requested
index is decomposed into a pair of coordinates (i, j), where i, j 2 [

p
N].

To generate the query, the client follows the following steps:

Query generation The client creates a dimension-
p

N unit-vector uj from
the query (i, j), where the vector contains zeroes everywhere except
for a ’1’ at index j.

Query encoding The client encrypts the unit-vector using Regev’s LWE-

based encryption scheme. Let A
R Z

p
N⇥np

q , secret s
R Z

p
N

q , and

error vector e
R c:

Enc(uj) = (A, c) = (A, As + e + bq/pc · uj) 2 Z

p
N⇥np

q .

18

4.2. Offline Phase: Detailed Process and Theoretical Cost Analysis

Double. Double’s query generation and encryption procedure are similar
to those of Simple. However, it incorporates an additional unit vector ui that
encodes the row of (i, j) as part of the query.

Simple Double

Query size [bits]
q

Ndlog(r

log(p))e · dlog(q)e 2 ·
q

Ndlog(r

log(p))edlog(q)e

Response size [bits]
q

Ndlog(r

log(p))e · dlog(q)e (2n + 1)dlog(q)/ log(p)ed r

log(p)edlog(q)e

Table 4.3: The table shows that for Simple, both the theoretical query and response size increase
with the number of Zp elements in the database and are equal. On the other hand, for Double,
the query size is twice the query of Simple due to the execution of two levels of Simple.

Spiral

The database is represented as D = {d1, . . . , dN} with N = 2n1+n2 the num-
ber of records in the database, as a (n2 + 1)-dimensional hypercube with
dimensions 2n1⇥ 2⇥ · · ·⇥ 2| {z }

n2

.

Furthermore, each database record di is represented as an element in the
ring R

n⇥n
p .

Large records Let r be the database record size in bits. We qualify a record
as ’large’ when r � d · n

2 log(p). In this case, each plaintext element
can encode at most one record, and we require 2n1+n2 � N.

Small records When r < d · n
2 log(p), we can pack multiple records into a

single plaintext element.

The elements of the database are indexed using either the tuple (i, j1, . . . , jn2)
where i 2 [0, 2n1 � 1] and j1, . . . , jn2 2 {0, 1}, or the tuple (i, j) where i 2
[0, 2n1 � 1] and j 2 [0, 2n2 � 1].

The query generated is represented in plaintext and is matched with the
database representation outlined in Section 4.2.1. The client selects each
database dimension, i, j1, . . . , jn2 , where i 2 [0, 2n1 � 1] and j1, . . . , jn2 2 {0, 1},
and encodes the vector, and subsequently compacts it into a single scalar
Regev ciphertext as follows:

First dimension encoding The client encodes the first component of the
query, i from the query vector (i, j1, . . . , jn2), and defines the polyno-
mial µi(x) = bq/pc · x

i.

Subsequent dimensions encoding For n2, we define the polynomial µj =

Âl2[n2] µjl
where µjl

= jl Âk2[tGSW] (zGSW)k�1
x
(l�1)tGSW+k.

Query compression We then compress the query to a single Regev scalar
by computing µ(x) := 2�r1 µi(x

2) + 2�r2 xµj(x
2) 2 Rq.

19

4. Protocol Descriptions and Theoretical Costs

Query encryption We proceed to encode the scalar from the previous step
with Regev’s RLWE-based encryption scheme as such: let s be the
secret key, and a a random vector. The compressed query µ is encoded
as (a, c) = (a, a

>
s + e + µ).

As shown in Table 4.4, the query size with and without compression is
reported, and it can be observed that the query size is reduced by a factor
of (n1 + n2).

Spiral Query before encryption Query size after Regev encryption
Encrypted query size without compression (n2 + 1)-dimensional vector 2 · (n1 + n2)ddlog(q)e bits

Encrypted query size with compression scalar µ 2 Rq 2 · d · dlog(q)e bits

Table 4.4: In the Spiral protocol, the client performs query compression to reduce the commu-
nication cost before encrypting the query. This results in the encoded query being reduced to
the Regev encryption of a scalar in Rq.

4.2.2 Hint Generation

Spiral Simple Double

Hint size ddlog qe · 2tcoe f f · max (n1, dlogtGSWn2e)
+(np + 1)(2tconv + tGSW(1 + tGSW(np + 1))) nddlog qe ·

q
Nd r

log(p)e d r

log(p)edlog(q)/ log(p)edlog(q)en2
d

Query size d · dlog qe dlog(q)e ·
q

Nd r

log(p)e 2dlog(q)e ·
q

Nd r

log(p)e

Response size d(n2 log q1 + n log q2) dlog qe ·
q

Nd r

log p
e d r

log p
edlog q/ log pe dlog qe(2n + 1)

Table 4.5: We present the theoretical sizes of the PIR schemes we have evaluated as a function
of the number of records N and the record size r. We assume the general case of PIR where
the record size is larger than the size of a single field element (i.e. Zp for Simple and Rp for
Spiral). It is important to note that the variables in the table are defined within the context of
their respective protocols and may not have the same values across di↵erent schemes.

The asymptotic computational cost of the query processing phase for each
protocol is presented in Table 4.2 and the hint size for all protocols can be
observed in Table 4.5. We summarize the findings below:

Simple The offline phase enables the server to push 2npN operations in
Zq from the online phase to the offline phase. Furthermore, Table 4.2
shows the computational cost of the hint generation time scales with
the total number of field elements in Zp that represents the database.

Double By implementing the offline phase, the computation of

2nN + 2dlog q/ log pen2
p

p
N operations in Zq can be moved from the

online phase to the offline phase. Additionally, the hint generation
time contains an additional term compared with Simple, which corre-
sponds to the second-level hint generation, enabling the client not to
download the first-level hint.

Spiral The overall cost of the offline phase is expressed as max (n1, log tGSWn2) ·
5tcoe f f + 4n(tconv + tGSW + 4tGSW + (n + 1)2

tGSW , with the main factor

20

4.2. Offline Phase: Detailed Process and Theoretical Cost Analysis

being max (n1, log tGSWn2), which can be approximated by log(N).

We now provide a detailed account of the computational costs during the
offline phase.

Simple

The server first generates a random matrix A 2 Z

p
N⇥np

q and then computes
the hint as hintc = D⇥ A, where D is the database matrix. This computation
does not depend on the queried index or any other parameters. Therefore,
the client can download the hint before making queries, improving the effi-
ciency of server-side query processing.

Double

In Double, two hints are generated, with the first being referred to as the
server hint. The server hint is calculated by multiplying a random LWE

matrix, A1 2 Znp⇥
p

N , with database D, to obtain hints = A1⇥D 2 Z
np⇥
p

N

q .
This hint is stored on the server, and its size depends on the database’s size.
The second hint referred to as the client hint, is obtained by multiplying the

server hint with another random LWE matrix, A2 2 Z

p
N⇥np

q , resulting in
hintc = hints ⇥ A2 2 Z

np⇥np

q . We can observe that the client hint no longer
depends on the database size.

Spiral

In the online phase of Spiral, most calculations are specific to the given query
and must be carried out after the query has been generated. However, cer-
tain operations require using various types of keys, which are computation-
ally expensive to generate.

Automorphism keys During query processing, automorphism keys are es-
sential to expand the Regev scalar (i.e. the packed query). To im-
prove efficiency, the generation of these keys is moved to the offline
phase, where the client generates them in advance. The cost of gen-
erating each key is Wi for i 2 [0, max(n1, log tGSWn2)] and requires
(max(n1, log tGSWn2)) · 5(blog

zcoe f f
qc+ 1) ring operations in Rq.

Conversion keys In step 2 of the query processing phase, the server is re-
quired to convert Regev scalar ciphertexts into GSW encoded matri-
ces. To accomplish this, conversion keys ck are utilized, which are
composed of three components:

V The matrix V acts as the key-switching matrix to translate Regev-
encoded matrices to GSW-encoded matrices. The process of gen-
erating V takes 4(n(tconv + tGSW) + tGSW) operations in Rq.

21

4. Protocol Descriptions and Theoretical Costs

P The permutation matrix P is utilized in this step to transform a
matrix into a gadget matrix, which is particularly useful in the
process of translating scalar Regev-encoded ciphertexts to GSW-
encoded matrices.

W In step 1 of the query processing phase, the matrix W is used
to convert scalar Regev ciphertexts to Regev matrices. W is the
key-switching matrix to translate the scalar ciphertext with the
corresponding matrix ciphertext. The process of generating ma-
trix W takes n(blog

zconv
qc+ 1)(4 + n) operations in Rq.

4.3 Online Phase: Detailed Process and Theoretical
Cost Analysis

4.3.1 Query Processing

The asymptotic computational cost of the query processing phase for each
protocol is presented in Table 4.2 and is summarized below:

Simple As observed in Table 4.2, the server-side query processing compu-
tation time grows with the number of field elements in the database
and is concretely equivalent to 2N operations in Zq.

Double The query processing phase also grows asymptotically with the
number of field elements in the database, as observed in Table 4.2.
Precisely, the number of operations for the online phase is 2N + 2(2n+
1) ·
p

Ndlog q/ log pe operations in Zq.

Spiral The cost of converting Regev scalars to Regev matrices and Regev
scalars to GSW matrices are reported in Table 4.6. As a result, after
considering all steps of Spiral’s server-side computation, the overall
computational cost is determined by the largest value between 2n1 or
2n2 .

We now elaborate on the computations carried out by the server to process
the queries.

Simple

After receiving the encrypted query c 2 Z
p

N of the query vector uj, the
server computes the product D⇥ c, where D 2 Z

p
N⇥
p

N is the database.

Double

Double first performs an iteration of Simple using the hint stored on the
server and the query vector to encrypt the j-th column of the database where

22

4.3. Online Phase: Detailed Process and Theoretical Cost Analysis

the record is located. Then, it performs a second iteration of Simple on the
transposed server hint matrix and response vector, thereby retrieving the
encrypted record at entry (i, j) in the database.

Spiral

From the client’s query c 2 R
2
q, the server constructs the response contain-

ing the requested database record in its encrypted form as follows, with
algorithms for ScalToMat and RegToGSW provided in Appendix A.1.

Query expansion The server begins by expanding the initial query c, using
an algorithm that takes as input polynomial from Rq and outputs a
vector containing the coefficients of the polynomial. This algorithm
makes use of the automorphism keys defined in Section 4.2.2:

• First, the server uses one iteration of the homomorphic evaluation
of the coefficient expansion algorithm on c 2 R

2
q. The algorithm’s

output consists of the two encodings cReg and cGSW 2 R
2
q.

• Then, evaluate cReg for n1 iterations, which will output 2n1 Regev
ciphertexts.

• Finally, use a Scalar-To-Matrix (ScalToMat) algorithm that con-
verts scalars into a matrix representation: convert the 2n1 packed
Regev scalar ciphertexts to Regev ciphertext matrices by comput-
ing for each i 2 [0, 2n1 � 1],

C
(Reg)
i

= ScalToMat(W, c
(Reg)
i

).

Then, 2n1 number of Regev matrix ciphertexts are constructed
from the public parameters W and scalar ciphertexts c

(Reg)
i

.

After that, proceed in the same way as above to expand the GSW ci-
phertext:

• First, run the homomorphic expansion algorithm for dlog
tGSW

n2e
iterations on cGSW and discard any encodings when tGSWn2 is not
a power of 2.

• Next, rely on the Regev to GSW translation algorithm (Regev-
ToGSW) to compute n2 GSW matrix ciphertexts from the public
parameter’s Regev-to-GSW conversion keys and the GSW scalar
ciphertexts. Namely, compute

C
(GSW)
j

= RegevToGSW(ck, c
(GSW)
(j�1)tGSW+1, . . . , c

(GSW)
jtGSW

).

Homomorphic encryption Now proceed by homomorphically multiplying
the Regev and GSW ciphertexts:

23

4. Protocol Descriptions and Theoretical Costs

Operations Theoretical computational cost
Scalar to Matrix 2n1 n(n + 1)(n(blog

zconv
(q)c+ 1) + 1 + n) + 2n)

Regev to GSW tGSW · n(n + 1)((n(blog
zconv

(q)c+ 1) + 1 + n) + 2n) + 2tGSWn + (n + 1)2tconvtGSW + (n + 1)3
t
2
GSW

Table 4.6: Theoretical cost of the operations used for query processing in the Spiral protocol.

• First, the first dimension i of the query is processed. For every
j 2 [0, 2n2 � 1]: C

(0)
j

= C
(Reg)
0 · d0,j and for every i 2 [0, 2n1 � 1],

update C
(0)
j

= C
(0)
j

+ C
(Reg)
i

· di,j.

• Then, multiply GSW matrix ciphertext with an Regev matrix ci-
phertext. For every r 2 [n2] and j 2 [0, 2n2�r � 1],
C
(r)
j

= (Gn+1,z(GSW)
C
(GSW)
r) · C

(r�1)
j

+ C
(GSW)
r · C

(r�1)
2n2�r+j

.

Modulus switching Finally, the protocol scales the ciphertext matrix C down
to a smaller ring element while preserving the encoded message. This
is called modulus switching. Namely, let q1 = 4p and q2 be the smaller
modulus associated with the PIR response. We scale the first dimen-
sion of the response by q2/q and the subsequent dimensions by q1/q.
The server can then send the encoded response in a more compact
representation to the client.

4.3.2 Response Decoding

Upon receiving the encrypted record computed by the server, the client de-
crypts it using the relevant decryption algorithm. Table 4.2 demonstrates
that the decoding time for Simple, Double, and Spiral is asymptotically con-
stant.

Simple

The client receives an encoded response vector, which is the product of
the database and the query, resulting in obtaining the j-th column of the
database in its encrypted form. To obtain the element i from the response
vector, the client calculates the difference between the i-th component of the
response vector and the i-th row of the hint, using the secret key s 2 Zn

q :
d = ans[i]� hintc[i, :] · s. This difference is rounded to the nearest multiple
of bq/pc and divided by bq/pc. This component corresponds to the record
query (i, j) and allows the client to retrieve the requested record.

Double

Double works similarly. The client retrieves the encrypted record using the
downloaded client-side hint.

24

4.3. Online Phase: Detailed Process and Theoretical Cost Analysis

Spiral

The client retrieves the original record by first undoing the modulus switch-
ing procedure on the received response. This is done by recalculating the
response in modulus q. Next, the client utilizes Regev-RLWE decryption
algorithm to obtain the requested record.

25

Chapter 5

Performance Re-Evaluation and
Results

As mentioned in the introduction, we are interested in re-evaluating the
performance of Simple, Double, and Spiral, under different database config-
urations that vary the number of records and record size. Our experiments
examine both the offline and online phases, focusing on both computational

costs and communication costs. During the offline phase, we measure the hint

generation time and hint size. In the online phase, we assess the query genera-

tion time and query size, as well as the query processing time and response size.
The efficiency of the response size is measured using the rate, which rep-
resents the ratio between the plaintext record size and the actual response
size.

In the first section of this chapter Section 5.1.1, we analyze the communica-
tion cost incurred during the offline phase. Our results show that Spiral has
a small hint size that never exceeds 13 MB, while Simple has a hint size that
is smaller than the database size but still substantial at 915 MB for a 32 GB
database. On the other hand, Double has a large hint size that surpasses the
database size, with the smallest tested database being 4 MB and the smallest
hint size being 3 GB. As a result, Double is unlikely to be practical for use.

We also assess the communication cost of the online phase in terms of query
size, response size, and response rate in Section 5.3, Section 5.2.4, and Sec-
tion 5.2.5, respectively. Our results indicate that these schemes are accept-
able in this regard, except for Double, which generates responses of a large
size and infeasible rate for practice. For example, the response size of Double
reaches 3.7 GB for a single response on a 32 GB database.

Regarding the computational costs, Section 5.1.2 shows that hint generation
for Simple and Double may result in substantial query latency. In contrast,
query generation time only contributes a small part of the overall query la-
tency, as discussed in Section 5.2.1. In addition, in Section 5.2.3, we demon-

27

5. Performance Re-Evaluation and Results

strate that the query processing time for Spiral can become unreasonable
(i.e., > 30 s) when the record size is larger than 64 KB. On the other hand,
all three protocols have query processing times of less than 1 second when
the record size is smaller than 1 KB.

Our experiments were conducted under different database configurations,
with the number of records N ranging from 214 to 220 and record size r

ranging from 64 B to 256 KB. However, it is important to note that the com-
putational times for some configurations with high numbers of records (219

and 220) together with large record sizes (above 64 KB) were not reported
as the experiments were unable to output results due to constraints in the
implementations and computing resources.

The experiments were conducted locally, ignoring network transmission
times, on 4vCPUs as part of Daisen, a computing cluster with 2⇥ 28 Core,
Intel Xeon Gold 6258R 2.7GHz Processor, and 384GB DDR4 ECC Memory.
The experiments were conducted using a single thread of execution. The
statistics reported are an average of 5 experimental runs, replicating the set-
tings used in previous works [1, 2].

We believe that our experimental results provide an understanding of the
practicality of these PIR schemes, which will be further discussed in Chap-
ter 7.

5.1 O✏ine Phase

The offline phase of Simple, Double, and Spiral involves computing and ex-
changing a hint between the client and the server, to improve the efficiency
of query processing during the online phase. In our evaluation, we measure
the hint size and hint generation time under various database configurations.
The hint size plays a critical role in the communication cost of the offline
phase, while the hint generation time can affect the query latency.

Hint Size vs Total Database Size

In Table 4.5, we presented the theoretical expression for computing the hint
size for Simple, which increases with the number of records and the size of
records. However, we noticed that in some cases, the hint size exceeds the
total database size. We provided examples of such scenarios in Table 5.1.

To address this issue, we established a requirement for the database config-
urations, which guarantees Simple’s hint size is less than the total database
size. This requires the total database size N · r � 32KB

dlog pe , where p is the
plaintext field modulus, as defined in Table 4.1.

In contrast, for Double, the hint size has never been smaller than the to-
tal database size in any of the configurations tested, rendering it infeasi-

28

5.1. Offline Phase

Number of records ⇥ record size Total DB size Simple hint size

214⇥ 256 B 4.0 MB 7.2 MB
215⇥ 256 B 8.0 MB 10.4 MB
217⇥ 64 B 8.0 MB 10.3 MB
214⇥ 920 B 14.4 MB 14.1 MB
217⇥ 128 B 16.0 MB 14.0 MB

Table 5.1: The first three rows present the database configurations where the hint size of Simple
is greater than the total size of the database. The last two rows show database configurations
where the di↵erence between the database size and the hint size is not substantial for practical
use.

ble. We have found that theoretically, for Double’s hint to be smaller than
the database size, the number of records must be N � 227

dlog pe , with the
record size smaller or equal to that of a field element (log p). Thus, Dou-
ble’s intended objective of reducing the hint size download by the client and
creating a hint independent from the number of records still falls short of
addressing the practicality of the scheme.

However, Spiral does not face the same limitations as Simple and Double,
as its hint size can be bounded. The database configurations used in our
experiments are within the parameters defined in the respective paper, with
a lower bound of approximately 3 MB and an upper bound of 40 MB. It
is also worth mentioning that Spiral utilizes an automatic selection tool to
optimize the parameters and minimize the server computation time.

5.1.1 Hint Size

Our experimental results confirmed the theoretical analysis of the hint size
as follows:

Simple The experimental results validated that Simple’s hint size increases
linearly with the square root of the number of elements in Zp, repre-
senting the database, which is consistent with our theoretical findings.

Double If the record size is larger than an element in Zp, the client hint size
is estimated to be approximately 16 · r MB. On the other hand, if the
record size is less than or equal to an element in Zp, the client hint size
for Double is consistently 16 MB, regardless of the number of records.

Spiral Spiral’s hint size is primarily influenced by the logarithm of the
database dimension and the parameters defined in 4.1.1, yielding the
smallest hint size.

Figure 5.1 demonstrates that the hint size for Spiral is significantly smaller
than that of Simple and Double. Specifically, Simple’s hint size is at least two
times larger, while Double’s hint size is at least 400 times larger than Spiral.

29

5. Performance Re-Evaluation and Results

Both Spiral and Simple maintain reasonable hint sizes for all database con-
figurations, particularly since the offline phase only needs to be performed
once to support an unlimited number of queries for static databases.

In contrast, our experimental results revealed that none of the tested database
configurations allowed Double to have a smaller hint size than the total
database size. It is worth mentioning that Double requires storing an addi-
tional hint on the server. This server hint is reduced by nd = 1024 compared
with the client hint, ranging from approximately 3 MB to 1 GB for large
databases (i.e. 220 ⇥ 32 KB).

Figure 5.1: The left table displays the hint sizes for various database configurations. The right
plot illustrates the trend for hint sizes by varying the record size while fixing the number of
records.

5.1.2 Hint Generation Time

As shown in Table 4.2, the asymptotic hint generation time depends on the
total database size. Specifically, we observed that Spiral’s hint generates
much faster than Simple and Double: under the various database configu-
rations tested, Spiral’s hint generation is up to 300 times faster than Simple

and Double. As seen in Figure 5.2, Spiral exhibits slower growth as its com-
putational complexity grows logarithmically in the number of records and
is primarily affected by other parameters, such as the decomposition bases.
The trend observed in Figure 5.2 can be generalized for all record sizes.

It is important to note that the hint generation time is a factor in the overall
latency of the protocol for only offline phases, or in other words, the first PIR
query with a static database, and it does not affect the latency of subsequent
queries. Therefore, Spiral has a low hint generation time and only accounts
for a minor portion of the latency for the first PIR query. As illustrated
in Figure 5.1, Simple and Double’s hint generation time increases with the
number of records and their size. It may result in significant latency for

30

5.2. Online Phase

certain combinations, reaching up to 2 minutes for Simple and 4 minutes
for Double for a database configuration of 220⇥ 32 KB. The practicality of
the hint generation time depends on the specific application, as it can be
distributed over multiple queries or clients if there are minimal database
updates, as discussed in Chapter 6.1.

Figure 5.2: In the plot on the right, we observe the trend of the hint generation time as a
function of the record size with a specific number of records (N = 219) for Simple and Double.
The table on the left displays the hint generation time for various database configurations,
excluding Spiral because its hint generation time is consistently less than 0.4 seconds in all
experiments, significantly faster than both Simple and Double.

5.2 Online Phase

Since the offline phase is to precompute the data for more efficient query
processing, we now discuss the server-side query processing times in the
online phase.

5.2.1 Query Generation Time

Query generation time can significantly impact the overall efficiency, espe-
cially when multiple queries need to be made. Our experiments showed
that for all three protocols, the query generation times are acceptable and
only account for a small portion of the total latency. We observed that the
query generation time for Spiral remains consistent, around 440 µs, which is
consistent with the query size. This is because Spiral computes a polynomial
of degree nd and compresses it to a single scalar, while Simple and Double

involve constructing and encrypting a vector with a size linear in
p

N. It
is worth noting that the query generation time for Simple and Double is a
minor component of the total latency and does not surpass 400 ms for every
database configuration.

31

5. Performance Re-Evaluation and Results

5.2.2 Query Size

The query size refers to the amount of the data a client must send to a server
for every PIR query. We now examine the query size for each of the three
protocols.

Simple The theoretical query size grows as the square root of the number
of field elements that represent the database. This is consistent with
the experimental results shown in Figure 5.3. We consider the results
reasonable. For example, the largest query size for Simple is 682 KB
when the total database size is 32 GB.

Double The theoretical query size of Double also increases with the square
root of the number of field elements that represent the database. How-
ever, our experimental results show that the query size remains con-
stant at 256 KB for all database configurations, with a total size under 8
GB. This is due to the fact that the database is represented as a matrix,
and Double’s implementation fixes the number of columns and adjusts
the number of rows accordingly to the number of records and field
elements per record. This means that the query size is fixed at 256 KB,
regardless of the database configuration. On the other hand, for larger
databases, such as a 219 ⇥ 64 KB configuration with a total size of 32
GB, the query size can reach 1 GB, which is excessively large. Even for
small databases with few records and a small record size (i.e. 214⇥ 256
bytes), the query size is still at 256 KB.

Spiral The theoretical query size for Spiral is constant, as shown in Table
4.5. This is in line with the experimental results, which show that the
query size remains constant at 16 KB, regardless of the database size.
This consistency is achieved by compressing each query into a scalar
representation.

5.2.3 Query Processing Time

Query processing time is a key metric for PIR because it directly affects the
overall query latency.

Our findings show that the query processing time of Spiral is significantly
higher compared with Simple and Double, as depicted in Figure 5.4, which
displays the processing times for a fixed number of records of 219. This trend
holds for other numbers of records as well. This difference in processing
time is a result of the query compression/expansion technique utilized by
Spiral. The compression reduces the communication cost by converting the
query from a vector to a scalar, but it also increases the query processing
time on the server side.

32

5.2. Online Phase

Figure 5.3: On the left side of the figure, we display the query sizes for Simple for various
database configurations. On the right, we observe a trend where the query size increases pro-
portionately to the square root of the total number of elements in Zp.

In contrast, Simple and Double mainly involve matrix multiplication, and
their computational time increases with the database size, as shown in Table
4.2. As shown in Figure 5.4, when the number of records is high, Simple and
Double can handle larger record sizes than Spiral with a similar processing
time. Spiral has reasonable processing times (less than 1 second) for smaller
record sizes (less than 256 bytes), regardless of the number of records. For
the 220 ⇥ 32 database, the experimental results show that Simple and Double

have processing times of 7.5 seconds and 9.4 seconds, respectively. However,
Spiral has a processing time of 25.2 seconds, three and two times higher
than Simple and Double, respectively. Additionally, Spiral requires 2 minutes
for processing a 218 ⇥ 128 KB query, whereas Simple and Double require 5
seconds and 8 seconds, respectively.

Our experiments also showed that the query processing times of Simple,
Double, and Spiral are similar when the record size is below 1KB, regardless
of the number of records. However, as the record size increases, Simple and
Double demonstrate much faster query processing time than Spiral.

5.2.4 Response Size

During the query processing, the server computes the response, and Fig-
ure 5.5 shows the trend of the response size under different database con-
figurations. We observe that the response size for the Simple and Spiral pro-
tocols is much more reasonable than the substantial response size in Double.
We discuss this in more detail below:

Simple We observe that Simple’s response size equals to the query size, as
shown in Table 4.5. However, the results may vary by a few KB due to
the uneven division of an N-record database into a

p
N ⇥
p

N matrix.

33

5. Performance Re-Evaluation and Results

Figure 5.4: The left table shows the query processing time for various database configurations.
The right plot shows the query processing time for 219 records is displayed.

The response size depends on the number of rows, while the query
size depends on the number of columns.

Double The difference in response size of Double and Simple is substantial,
with Double reaching 3.7 GB for a 219⇥ 128 KB, while Simple only
weighs in at 706 KB, yielding a 5000-fold difference. This correlation
is in line with the findings in Table 4.5. The response size formula
is devised by substituting fixed values from the paper, and we obtain
32 KB ·dr/ log pe, where r is the record size, and p’s value is listed in
Table 4.1. The minimum response size of Double is 32 KB and varies
linearly in the number of field elements per record.

Spiral The query response is compacted using modulus switching. The
size is determined by selecting q1 and q2, as seen in Table 4.5. The
results show that the response size ranges from 11 KB for a 214 ⇥ 256
B database to a maximum of 400 KB for database configurations 214 �
217 ⇥ 256 KB.

5.2.5 Rate

We refer to the rate as the ratio between the plaintext record and the size
of the (query) response. A high rate in a PIR scheme indicates efficient use
of communication and storage resources. Conversely, a low rate indicates a
significantly larger response than the record size, leading to higher commu-
nication costs.

Figure 5.5 shows the response sizes among the three protocols. It can be seen
that as the record size increases, the rate also increases, which is the desired
outcome. Our experimental results show that Double has a significantly low
rate: the response size is at least 3 · 105 times larger than the plaintext record.
For a record size of 256 bytes, Double’s rate is 100 times smaller than Simple

34

5.3. Summary of Experimental Results

Figure 5.5: The left table presents the rates for Simple and Spiral. It should be noted that the
rate for Double is fixed at 3 · 10�5, which is why it was not included in the table.

or Spiral. Figure 5.2.5 also presents a table of rates of Simple and Spiral. It
can be seen that the rate of Spiral is significantly higher than that of Simple;
however, for both protocols, the rate is low for records smaller than 128 KB.

5.2.6 Decoding Time

We observe that the decoding time for all three protocols is very short and
can be ignored. For Simple and Double, it is less than 1 microsecond, and
for Spiral, it is less than 10 milliseconds, making it insignificant in terms of
end-to-end latency.

5.3 Summary of Experimental Results

The hint size for Simple is typically in the range of hundreds of MB, while
for Spiral, it is only in the tens of MB. These sizes are acceptable, making
PIR a feasible option. However, the hint size for Double is always larger
than the database size, measured in a few GB, making it impractical for
use. The query sizes of all three protocols are sufficiently small for prac-
tice. The response sizes for both Simple and Spiral are similar to their query
sizes, but Double’s can reach substantial values, leading to a much lower rate
compared with Simple and Spiral.

The generation of hints for Simple and Double leads to substantial query
latency, making it the primary source of query latency for the first PIR query
on a static database. The query processing time for Simple, Double, and
Spiral is low when the record size is small, ranging from tens to hundreds
of milliseconds. However, for larger record sizes above 1 KB, the processing
time increases to minutes for Spiral or tens of seconds for Simple and Double.

35

5. Performance Re-Evaluation and Results

In Chapter 6, we will examine how Simple and Double can compensate for
the cost of their hint size and, in particular, their hint generation time in the
presence of infrequent database updates and multiple clients.

36

Chapter 6

Handling Database Updates and
Multiple Clients

In the previous chapters, we evaluated the performance of Simple, Double,
and Spiral with various database configurations, but the databases remained
static. However, in many PIR applications, the database is subject to changes
over time, and the frequency of these changes can vary depending on the
specific use case. Two types of updates can occur: modifications to existing
records in the database and the addition or deletion of records.

In this chapter, we examine how Simple, Double, and Spiral handle these
changes and the resulting consequences. Furthermore, since multiple par-
ties often access PIR applications simultaneously, we also investigate the
scalability of these protocols in handling multiple clients.

6.1 Handling Database Updates

In both Simple and Double, any modification to an existing record requires
a corresponding modification to the hint, as the hint is generated through
the multiplication of a random LWE matrix and the database, as seen in
Section 4.2.2.

In the case of the Simple protocol, the cost of recomputing the hint is pro-
portional to the number of modified records, and the server only needs to
send back the rows of the hint that have been modified rather than the entire
hint, allowing the client to update the hint locally.

When considering a database with N records structured as a
p

N⇥
p

N ma-
trix, with nd = 1024 as the lattice dimension, and p as the plaintext modulus
defined in Table 4.1, and assuming c is the number of modified records, the
cost of hint recomputation is

p
Ndlog(r

log(p))e · nd · c. However, it should be

37

6. Handling Database Updates and Multiple Clients

noted that if c �
p

N, the size of the hint would be the same as in Table 4.5,
requiring the entire hint to be recomputed.

For Double, the update of the client hint works similarly to Simple. The
server needs to recompute the hint and send back a minimum of cdlog p/ log qe ·
nd or dlog p/ log qe · n

2
d

bits. However, if the number of modified records c

is greater than or equal to nd, then the entire hint must be recomputed.
Additionally, the server’s stored hint must also be updated. The cost of re-
computing the server’s hint requires c ·

q
Ndlog(r

log(p))e · nd operations in
Zq.

The addition and deletion of records are similarly handled in Simple and
Double. Upon the addition of a record, the server will calculate the hint
for the added record and send it to the client, who will then incorporate
the added rows hint into the initial hint matrix. For a deletion, the client
updates the corresponding row from the hint matrix.

For Spiral, as described in Section 4.2.2, the hint only depends on the dimen-
sions of the database representation. As a result, modifications to records
in the database do not require recomputing the hint. However, to handle
record additions or deletions, since the dimension of the database represen-
tation changes, it is necessary for the client to recompute the hint.

6.2 Handling Multiple Clients

As discussed in Section 4.2.2, both Simple and Double require the server to
compute the hint by multiplying a random LWE matrix A with the database.
When multiple clients use the application, the computational cost of gener-
ating the hint can be reduced by distributing the same matrix A among the
clients.

In contrast, Spiral requires the server to store a separate hint for each client,
as it is based on individual keys. This can become impractical for the server
when the number of clients grows, as it would require a large amount of
storage to keep the individual hints. Although the size of the Spiral hint, as
discussed in Section 5.1.1, is only in the tens of MB, it can still result in a
significant overhead for a large number of clients. On the other hand, Simple

and Double have larger hint sizes than Spiral, but since the hint is shared
among clients, the overhead is reduced.

38

Chapter 7

Applications

In this chapter, we delve into the practical applications of our experimental
results of Simple, Double, and Spiral. Our focus is on four specific use cases
that showcase the versatility and practicality of PIR.

The first use case we examine is a private article search on Wikipedia. Within
this application, users can access Wikipedia articles without revealing to the
server which articles they are accessing. The second use case we examine
is a private DNS lookup service, allowing users to perform domain look-
ups without revealing the websites they are visiting. The third is a private
search for Bitcoin balances, enabling users to search for a specific Bitcoin
address’s balances and recent transactions without revealing their identity
or the address they are searching for. Finally, we investigate using PIR for
Certificate Transparency (SCT auditing) from Simple and Double’s paper [1].
This system enables users to verify the authenticity of TLS certificates with-
out revealing for which certificates they are checking the signed certificate
timestamp.

In Table 7.1, we present a comprehensive summary of the computational
costs related to each protocol for each application. The cost of executing the
first query (i.e the offline phase and the online phase) comprises the time
for hint generation, query generation, and query processing. However, the
cost of subsequent queries (i.e the online phase) only includes the time for
query generation and processing. We also note that the decoding time is
considered negligible.

7.1 Private Search on Wikipedia

A PIR-based Wikipedia article search system enhances privacy by keeping
users’ search queries and accessed articles confidential from the server.

The English version of Wikipedia is estimated to contain over 6 million

39

7. Applications

articles, which translates to approximately 222. The size of an article on
Wikipedia can vary, but an average text-only article is around 30 KB, result-
ing in a total database size of 120 GB.

As shown in Table 7.1, the cost of executing the first PIR query using Spiral

is significantly faster than both Simple and Double. Spiral takes 31 seconds,
while the other two take a few minutes. This cost can be divided among
multiple clients in the setting described in Section 6.1. However, recomput-
ing the hint may not be practical, resulting in long query latency for the
subsequent queries, particularly for Spiral.

Hint size is also an important metric to consider. The hint for Double is
massive, with a size of 460 GB, making it an unfeasible choice. On the
other hand, the hint for Simple is 1 GB, which may be reasonable given the
presence of multiple clients and limited database updates. Spiral’s hint size
is extremely small, at just 12 MB, providing a significant advantage in terms
of efficiency and practicality.

7.2 Private DNS Lookup

A private DNS lookup service enhances privacy by allowing users to resolve
domain names without revealing the websites they access.

Our estimation shows that a typical DNS server contains approximately
16,000 records, corresponding to 214, with an average record size of 256
B. The query latency for all three protocols, Double, Simple, and Spiral is un-
der 1 second. In terms of hint size, our research shows that Double has a
significant size of 3 GB for a 4 MB database. Likewise, the hint sizes for
Simple and Spiral are 7 MB and 8 MB, respectively, which are still larger than
the database size. Therefore, Simple, Double, and Spiral are not practical for
this specific application since the client could simply download the entire
database and perform local queries.

7.3 Private Bitcoin Balance Search

A private Bitcoin balance search allows users to search for Bitcoin wallet
addresses without revealing the addresses they search for to the server.

The number of active bitcoin addresses is estimated to be around 30 million.
Each address is associated with recent transactions that have taken place
within a limited time frame, which can be stored in a 512-byte record. The
results of our analysis, presented in Table 7.1 indicate that the time for the
first PIR query is relatively high for Simple and Double, taking several min-
utes, whereas Spiral only takes 2.4 seconds. However, as transactions occur
in real-time, it is essential to evaluate the efficiency of these PIR protocols

40

7.4. Certificate Transparency Private SCT Auditing

under frequent database updates. This may, unfortunately, lead to a long
querying time if the hint needs to be recomputed entirely.

Despite this, the online phase time of all protocols is close to 2 seconds,
which is reasonable. In terms of hint size, we found in this particular
database configuration, Double has a smaller hint size than the total database
size, at 7.2 GB for a 16 GB database, while Simple’s hint size is 484 MB,
which is still 15 times smaller than that of Double. Meanwhile, the hint size
for Spiral is estimated to be approximately 9 MB. Although this hint size is
relatively small, it can still lead to substantial storage overhead if a large
number of clients simultaneously use the application.

7.4 Certificate Transparency Private SCT Auditing

Certificate Transparency is a program that aims to provide a public log of
public-key certificates issued by all certificate authorities. The certificates are
submitted to log operators, who then provide a signed certificate timestamp
(SCT), promising to log the certificate within a specified time. By verifying
SCTs, clients can confirm that the certificate will eventually be logged by
honest log operators.

Henzinger et al. [1] have demonstrated the effectiveness of Simple and Dou-

ble for certificate auditing in a setting with 5 billion active SCTs, with 6
million being added or removed daily. Their approach incorporates Bloom
filters [11] and uses PIR for private set membership, resulting in a database
that stores only 1-bit entries indicating the presence of specific SCTs. The
first PIR query computational time for Simple and Double is 4 and 12 seconds,
respectively, which is acceptable considering it can be amortized across mul-
tiple clients. The authors recommend updating the hint periodically to re-
duce computation time and mention that the hint sizes for Simple and Double

are 120 MB and 16 MB for a 1 GB database, respectively, with Double having
a smaller client hint size than Simple. No results are presented for Spiral, as
the parameter selection was made through an automatic tool, which resulted
in a high variation of results in this case, making it impossible to make an
accurate estimation.

41

7. Applications

Application Simple Double Spiral

Private Wikipedia article search
222⇥ 30 KB

1st PIR query
Following queries

2 min
8 s

4 min
9 s

31 s
30 s

Private DNS lookup
214⇥ 256 B

1st PIR query
Following queries

13 ms
5 ms

0.2 s
15 ms

0.4 s
0.2 s

Private Bitcoin address search
225⇥ 512 B

1st PIR query
Following queries

1 min
1.8 s

2 min
2.2 s

2.4 s
2.3 s

Private SCT auditing
233⇥ 1bit

1st PIR query
Following queries

3.7 s
0.1 s

11.6 s
0.1 s

-
-

Table 7.1: In the table, four applications of PIR are presented. The table displays the time for
both the o✏ine phase plus online phase, which is the time for the first PIR query and the online
phase, which is the time for the following queries. It is important to note that Spiral does not
have any results as it does not support databases larger than 222.

42

Chapter 8

Conclusion

In this work, we employed several key metrics to assess the efficiency of PIR
schemes in terms of computational and communication costs. We evaluated
the performance of three state-of-the-art single-server (offline-online) PIR
protocols: Simple, Double, and Spiral, under various database configurations
by changing the record size and the number of records. Our experimen-
tal results provide valuable insights into the efficiency and practicality of
deploying these PIR schemes in real-world scenarios.

In terms of the communication cost, as analyzed in Chapter 5, we have eval-
uated the size of data transmitted between the client and the server. Our
findings indicate that the hint size for Simple ranges from hundreds of MB,
while the hint size for Spiral is only in tens of MB. These sizes are often
small enough compared with the total database size considering the config-
urations where Simple’s hint is smaller than the database size, making PIR a
feasible option. On the other hand, the hint size for Double is always larger
than the database size for the configurations we tested. Double’s hint is at
least measured in a few GB, making it unsuitable for practical use.

Regarding the query size, our results show that Simple varies between 7 KB
for a 214⇥ 256 B database to 682 KB for a 220⇥ 32 KB database. Meanwhile,
the query size for Spiral is fixed at 16 KB, and that of Double is fixed at 256
KB for most database configurations. These sizes are acceptable for most
database configurations and applications. The response size follows a similar
magnitude as the query size for both Simple and Spiral. However, for Double,
it can reach significant sizes, such as 3.7 GB for a 219⇥ 128 KB database,
resulting in a much lower rate for Double compared with Simple and Spiral.

In regards to the computational cost, we observed that generating hints for
Simple and Double resulted in substantial query latency for some database
configurations, but this may be tolerable in scenarios with infrequent database
updates and when multiple clients are using the system, as the time can be

43

8. Conclusion

spread out. Query generation time only constitutes a small portion of the
total latency. However, when it comes to query processing time, we have
seen that Simple, Double, and Spiral have low processing times (in the range
of tens to hundreds of milliseconds) when the record size is small ( 1 KB),
but for Spiral, processing time increases to minutes when the record size is
larger than 1 KB. Meanwhile, Simple and Double reach tens of seconds of
processing time.

In conclusion, our findings indicate that the practicality of PIR-based ap-
plications is primarily impacted by the query processing time and the hint
exchange phase. Our experimental results and case studies demonstrate
that for small record sizes less than 1 KB, Simple, Double, and Spiral perform
well, even with large numbers of records, e.g., billions of 1-bit entries as
in the SCT auditing for the Certificate Transparency application [1]. How-
ever, as record size increases, we observe that both Simple and Double scale
better than Spiral, but still has significant query processing times. These
results emphasize the need for further optimizations and advancements in
PIR schemes to handle queries efficiently in a database with large records.

44

Appendix A

Appendix

A.1 Additional Algorithms

We present below the algorithms used in Section 4.3.1 to convert Regev
scalars to Regev matrices (ScaltToMat) and to GSW matrices (RegevToGSW):

ScalToMat: This method allows us to expand a Regev encoding of a scalar
µ into a Regev matrix encoding µIn 2 R

n⇥n
q and relies on the conversion

key W defined in Section 4.2.2. On input key W from the client’s public
parameters, the packed Regev encoding c = (c0, c1) 2 R

2
q of a scalar and a

gadget matrix G
�1
n,zconv

.

We compute WG
�1
n,z (c0 In) +


0n

c1 In

�

RegevToGSW: This method allows us to construct a GSW encoding of a
message µ 2 Rq with decomposition base zGSW from a collection of scalar
Regev encodings, using the conversion keys ck = (V, W, P) defined in 4.2.2.
On input of the conversion keys and c1, . . . ctGSW

2 R
2
q. For each ci, i in [tGSW],

compute Ci = ScalToMat(W, ci). Then, output C =
⇥
Vg
�1
zconv

(Ĉ)|C1| . . . |CtGSW

⇤
·

P, with C =
⇥
c1| . . . |ctGSW

⇤
2 R

2⇥tGSW

q .

45

Bibliography

[1] Alexandra Henzinger, Henry Corrigan-Gibbs, Matthew M. Hong,
Sarah Meiklejohn, Vinod Vaikuntanathan. One Server for the Price of
Two: Simple and Fast Single-Server Private Information Retrieval. In
Usenix Security, 2023.

[2] Samir Jordan Menon and David J. Wu. Spiral: Fast, high-rate single-
server PIR via FHE composition. In IEEE S&P, 2022.

[3] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based. In CRYPTO, 2013.

[4] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Pri-
vate information retrieval. In FOCS, 1995.

[5] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Im-
provements and extensions. In CCS, 2016.

[6] Niv Gilboa and Yuval Ishai. Distributed point functions and their ap-
plications. In EUROCRYPT, 2014.

[7] Zvika Brakerski. Fully homomorphic encryption without modulus
switching from classical GapSVP. In CRYPTO, 2012.

[8] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homo-
morphic encryption. IACR Cryptol. ePrint Arch. , 2012.

[9] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-
abachène. TFHE: fast fully homomorphic encryption over the torus.
In IACR Cryptol. ePrint Arch., 2018.

47

Bibliography

[10] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-
abachène. TFHE: fast fully homomorphic encryption over the torus.
J. Cryptol., 33(1), 2020.

[11] Burton H Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 1970.

48

	Contents
	Introduction
	Motivation
	Protocol Overview
	Performance Re-Evaluation and Results

	Cryptographic Background
	Homomorphic Encryption
	Lattice-based Homomorphic Encryption
	The Learning with Errors Assumption
	(R)LWE-based Encryption Schemes
	HE Composition in Spiral

	Protocol Overview
	Database Representation and Intuition
	Hint Generation and Query Processing
	Online Phase
	Offline Phase

	Protocol Descriptions and Theoretical Costs
	Overview of Theoretical Costs
	Parameter Selection

	Offline Phase: Detailed Process and Theoretical Cost Analysis
	Database Representation and Query Generation
	Hint Generation

	Online Phase: Detailed Process and Theoretical Cost Analysis
	Query Processing
	Response Decoding

	Performance Re-Evaluation and Results
	Offline Phase
	Hint Size
	Hint Generation Time

	Online Phase
	Query Generation Time
	Query Size
	Query Processing Time
	Response Size
	Rate
	Decoding Time

	Summary of Experimental Results

	Handling Database Updates and Multiple Clients
	Handling Database Updates
	Handling Multiple Clients

	Applications
	Private Search on Wikipedia
	Private DNS Lookup
	Private Bitcoin Balance Search
	Certificate Transparency Private SCT Auditing

	Conclusion
	Appendix
	Additional Algorithms

	Bibliography

