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Abstract

Puncturable Key Wrapping (PKW) was recently outlined in [1]. It ex-
tends the symmetric primitive of key wrapping [2] with an additional
operation, called puncture, which, when used on a wrapped key, makes
that key irrecoverable. In this work, a functional implementation is re-
alized. The goal is to determine the feasibility of parameters allowing
for real-world usage and to gather insights from practical issues. To
that end, an abstract application programming interface (API) is de-
fined and instantiated with two concrete realizations in C++. The first
is a naı̈ve approach, and amounts to an indexed collection of keys. The
second is an approach put forward by [1] and based on puncturable
pseudo-random functions (PPRFs) [3] and utilizes an AEAD scheme
[4]. Considerations are made regarding exportability of secrets and
secure operation of the library.

The library is made available under the MIT license.
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Chapter 1

Introduction

Key-wrapping [2] describes a symmetric cryptographic primitive which pro-
vides protection of keys under some secret master key, for example during
their transport and storage. The protection is defined in terms of confiden-
tiality and integrity. As put forward by [1], key-wrapping can be extended to
provide fine-grained forward security for the wrapped keys. They call this
scheme puncturable key-wrapping (PKW). In addition to the usual wrap-
ping and unwrapping operations, it provides the possibility to puncture the
secret key on wrapped keys, rendering them irrecoverable (i.e., they can-
not be unwrapped) with the updated secret key produced by this operation.
This is of interest in a number of settings, and the authors put forward
two examples: TLS ticketing and protected file storage (PFS) in the cloud.
To provide some intuition, consider the cloud storage setting: a data en-
cryption key (DEK) is be used to encrypt a file, the DEK is wrapped and
stored in the cloud alongside the encrypted file. To read the file, it is down-
loaded alongside the corresponding wrapped DEK, the DEK is unwrapped
and used to decrypt the file. To delete a file, the (wrapped) DEK is punc-
tured. Because the DEK now is irrecoverable, the file it encrypts cannot be
decrypted anymore; whether the file is physically deleted is irrelevant. The
forward security of the wrapped DEK provides secure deletion for the file.

The goal of this work is to implement the puncturable key-wrapping scheme:
to design an appropriate API and to realize the scheme. We provide two
instantiations: one, called naı̈ve PKW and another which combines a punc-
turable pseudo-random function (PPRF) [5, 6, 7] and an AEAD [4] scheme.

A number of obstacles were encountered in the process and they are out-
lined in this report.

The first obstacle to overcome was the choice of a programming language.
There were different aspects to be weighed against each other, including
the reuse of this work in future projects, the extent to which results could be
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1. Introduction

produced (depending on the author’s familiarity with the programming lan-
guage, more, or less, time would be spent on understanding the language,
rather than implementing and testing the scheme). In an exploratory phase,
the design of the API was started in Python. It became clear quickly that
there is a necessity of being able to manipulate memory directly in order to
reliably scrub secrets from memory, as the forward security properties if the
PKW scheme depend on the reliable deletion of old secret keys. This led to
a choice being made for C++, as it is a widely used language and provides
the required access to memory. Once the choice was made, subtle problems
like dead store elimination [8] (a compiler optimization, which removes code
during compilation) posed a challenge. The realization of the functionalities
of the scheme in a functioning library led to considerations of key man-
agement and attack vectors. The secret keys have to be stored and loaded
between different sessions. During this time they have to be stored securely;
to enable this, an encryption functionality was included alongside serializa-
tion. In the first prototype, implemented in Python, serializing an object was
simple. In C++, a library could be used or it could be done manually – both
were more time-consuming than anticipated, but manual serialization was
selected as it guarantees full control of the process. Finally, some considera-
tion had to be given to licensing. If software is to be made available to the
world, which is the goal for a library, a license has to be specified, declaring
which use of the software is permitted.

This report starts by providing some preliminaries, introduces the PKW
scheme and shows how it was implemented, also presenting some bench-
marks for the implementation. It then explains choices made about the pro-
gramming environment and general considerations about library design,
describes some of the intricacies of memory sanitization in C++ and consid-
ers copyright questions and software licenses.

Further work is needed to analyze the efficiency as well as evaluate the
function of the library in applications, such as protected file storage.
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Chapter 2

Preliminaries

We present some notation used throughout the report and provide the syn-
tax of AEAD.

2.1 Notation

Throughout the report, there are some passages with formal definitions.
In those, we use the symbol || to denote concatenation, u ← v to denote
assignment of value v to variable u, x ←$ X to denote that x is sampled
from the set X uniformly at random, {0, 1}n and {0, 1}∗ to denote bitstrings
of length n or of any length (including the empty string), respectively. The
special symbol ⊥ (pronounced bot) is used to denote rejection.

2.2 AEAD

We restate the definition of AEAD [4] as it is presented in [1].

Definition 2.1 (AEAD scheme). An authenticated encryption with associ-
ated data scheme, AEAD = (Enc,Dec), is a pair of algorithms with four
associated sets; the secret-key space SK, the nonce space N , the associated
data space AD and the message spaceM. Further associated with AEAD is
a ciphertext-length function cl : N → N. The algorithms of AEAD operate
as follows.

• Via C ← Enc(sk, N, ad, M), the deterministic encryption algorithm Enc
on input the secret key sk ∈ SK, a nonce N ∈ N , associated data ad ∈
AD and a message M ∈ M produces a ciphertext C ∈ {0, 1}cl(|M|).

• Via M/⊥ ← Dec(sk, N, ad, C), the deterministic decryption algorithm
Dec on input the secret key sk ∈ SK, a nonce N ∈ N , associated data
ad ∈ AD and a ciphertext C ∈ {0, 1}∗ produces a message M ∈ M or,
to indicate failure, the special symbol ⊥.

3



2. Preliminaries

Correctness of a nonce-based AEAD scheme stipulates that Dec(sk, N, ad,
Enc(sk, N, ad, M)) = M for all sk ∈ SK, N ∈ N , ad ∈ AD and M ∈ M.

4



Chapter 3

Puncturable Key Wrapping

Puncturable key wrapping (PKW) is a primitive providing fine-grained for-
ward security properties in symmetric key hierarchies. It is of interest in dif-
ferent applications, e.g. protected file storage (PFS) [1]. The goal is to have
key wrapping with an additional puncturing operation, which allows mod-
ifying the main secret key in such a way that makes a previously wrapped
key irrecoverable. In doing so, the confidentiality of punctured (wrapped)
keys is maintained after the compromise of the main secret key.

3.1 Defining the API

We repeat the formal definition, as stated in [1] and derive corresponding
C++ function signatures:

Definition 3.1 (PKW scheme). A puncturable key-wrapping scheme consists
of four algorithms PKW = (Keygen,Wrap,Unwrap,Punc) with four associ-
ated sets: the secret-key space SK, the tag space T , the header space H and
the wrap-key space K

• Via sk←$ KeyGen(), the probabilistic key generation algorithm KeyGen,
taking no input, outputs a secret key sk ∈ SK.

• Via C/⊥ ← Wrap(sk, T, H, K), the deterministic wrapping algorithm
Wrap on input a secret key sk ∈ SK, a tag T ∈ T , a header H ∈ H and
a key K ∈ K outputs a ciphertext C ∈ {0, 1}cl(|K|) or, to indicate failure,
⊥.

• Via K/⊥ ← Unwrap(sk, T, H, C), the deterministic unwrapping algo-
rithm Unwrap on input a secret key sk ∈ SK, a tag T ∈ T , a header
H ∈ H and a ciphertext C ∈ {0, 1}∗ returns a key K ∈ K or, to indicate
failure, ⊥.
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3. Puncturable Key Wrapping

• Via sk′ ← Punc(sk, T), the deterministic puncturing algorithm Punc on
input of a secret key sk ∈ SK and a tag T ∈ T returns a potentially
updated secret key sk′ ∈ SK.

Translated into C++ function definitions, the function signatures of Wrap,
Unwrap and Punc look as follows:

1 template <class T, class C>

2 class AbstractPKW {

3 public:

4

5 virtual C

6 wrap(T tag , std::vector <unsigned char > &header ,

std::vector <unsigned char > &key) = 0;

7

8

9 virtual std::vector <unsigned char >

10 unwrap(T tag , std::vector <unsigned char > &header , C &c)

= 0;

11

12 virtual void punc(T tag) = 0;

13 }

T is the type of the tag, C is the type of the ciphertext, usually a variable-
length byte array (std::vector<unsigned char>). The functions are de-
fined as pure (the assignment of the value 0) virtual functions, virtual
meaning they must be overridden in subclasses and pure designating that
AbstractPKW is an abstract class, so no objects of this type can be created.
Subclasses must provide an implementation for these functions, otherwise,
they are considered abstract too.

Additionally, there is a necessity to be able to store the secret key: some-
times a machine running the library may need to be updated, or the key
has to be moved to a different machine. Depending on the instantiation of
the scheme, keys may come in quite different forms. The most general to
which to serialize a key was considered a byte string. The API functions for
importing and exporting were therefore defined as:

1 virtual SecureByteBuffer serializeKey () = 0;

2

3 virtual SecureByteBuffer serializeAndEncryptKey(const

std:: string &password) = 0;

For an explanation of the usage of SecureByteBuffer, see Chapter 5.

For deserialization the function signatures are

1 virtual std:: shared_ptr <AbstractPKW <T, C>>

fromSerialized(SecureByteBuffer &serialized) = 0;

2
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3.2. Naı̈vePKW

3 std:: shared_ptr <AbstractPKW <T, C>>

fromSerializedAndEncrypted(SecureByteBuffer

&serializedAndEncrypted , const std:: string &password);

As the reader will have noticed, there is the option to encrypt the exported
key (with a password-derived encryption key). This offers a layer of protec-
tion to programmers when unloading a key. Still, care should be taken in
handling it. Especially after the deserialization (i.e., loading) of a key, it is
vital that the exported key is deleted. It is vital because the forward security
properties of the PKW scheme can only be maintained if the key is updated
in a timely fashion; if an old key is still available after punctures were made,
it can be loaded again, nullifying the punctures.

The return type for deserialization was elected to be an AbstractPKW<T,C>,
to remain general. Because it is an abstract class, it cannot be instantiated,
so the return type is a (smart) pointer to an AbstractPKW<T,C>.

We present two implementations of the PKW API.

3.2 NäıvePKW

A simple, or maybe naı̈ve, instantiation of the PKW scheme is to use a list of
keys used for wrapping, with one key per tag. If a tag is punctured, the key
indexed by that tag is erased. While it is conceptually simple to understand,
space efficiency is an issue, as all the keys must be stored. Still, it may be
a valid scheme for applications with a small tag space. It also proved a
useful way of ensuring that the API is sensible as it was easy to implement
and perform basic tests on. In the C++ implementation, the list of keys is
organized as a map:

1 #define MAC_LEN 12

2 #define NONCE_LEN 16

3 #define KEY_LEN 16

4

5 using Key = std::map <long , std::array <unsigned char , KEY_LEN > *>;

6

7 class NaivePKW : public AbstractPKW <long , std::vector <unsigned

char >> {

8 ...

9 };

Listing 3.1: naive pkw.h

3.3 PKW construction from a PPRF and AEAD scheme

As described by [1] in Chapter 4.2, a PKW can be instantiated with a PPRF
and an Authenticated Encryption with Associated Data (AEAD) [4] scheme.
For completeness, we repeat it in full in Figure 3.1.

7



3. Puncturable Key Wrapping

PKW[PPRF,AEAD] :

PKW.KeyGen():

1 Return PPRF.KeyGen()

PKW.Wrap(skp, T, H, K):

1 ska ← PPRF.Eval(skp, T)
2 C ← AEAD.Enc(ska, N0, H, K)
3 Return C

PKW.Unwrap(skp, T, H, C):

1 ska ← PPRF.Eval(skp, T)
2 K ← AEAD.Dec(ska, N0, H, C)
3 Return K

PKW.Punc(skp, T):

1 sk′p ← PPRF.Punc(skp, T)
2 Return sk′p

N0 is a fixed nonce, for simplicity it is set to 0 in the implementation.

Figure 3.1: PKW from composition of PPRF and AEAD

The PPRF used in this project is the one described in Chapter 3.3.1. For the
AEAD scheme, Crypto++’s [9] implementation of AES in GCM mode was
chosen.

To wrap and unwrap, the PPRF is used to obtain the key-encryption key
(ska), which is then used by the AEAD scheme for encryption or decryp-
tion, respectively. Puncturing is delegated to the PPRF and is performed as
described in Chapter 3.3.1.

Listing 3.3 is a C++ code excerpt, showing the use of the PPRF and the
AEAD scheme.

1 using ciphertext = std::vector <unsigned char >;

2

3 ciphertext PPRF_AEAD_PKW ::wrap(Tag tag , vector <unsigned char >

&header , vector <unsigned char > &key) {

4 SecureByteBuffer wrapping_key = pprf.eval(tag);

5 try {

6 CryptoPP ::GCM <CryptoPP ::AES >:: Encryption e;

7 vector <unsigned char > iv(16, 0);

8 e.SetKeyWithIV(wrapping_key.data(), wrapping_key.size(),

iv.data(), iv.size());

9 ciphertext cipher;

10 CryptoPP :: AuthenticatedEncryptionFilter ef(

11 e,

12 new CryptoPP :: VectorSink(cipher),

13 false ,

14 TAG_SIZE /* MAC_AT_END */);

15 ef.ChannelPut(CryptoPP :: AAD_CHANNEL , header.data(),

header.size());

16 ef.ChannelMessageEnd(CryptoPP :: AAD_CHANNEL);

17

18 // Confidential data comes after authenticated data.

19 ef.ChannelPut(CryptoPP :: DEFAULT_CHANNEL , key.data(),

key.size());
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3.3. PKW construction from a PPRF and AEAD scheme

20 ef.ChannelMessageEnd(CryptoPP :: DEFAULT_CHANNEL);

21 return cipher;

22 } catch (CryptoPP :: Exception &e) {

23 throw WrappingException ();

24 }

25 }

Listing 3.2: composition.]Implementation of wrap in the [PPRF, AEAD] composition.

3.3.1 Puncturable Pseudo-Random Functions (PPRF)

The PKW scheme can also be instantiated with a PPRF and an AEAD scheme
(see Chapter 3.3). To that end, a PPRF based on the PRF from PRG con-
struction defined by Goldreich, Goldwasser & Micali (GGM) [3] was imple-
mented.

Again, we provide the definition of PPRFs from [1]:

Definition 3.2 (PPRF). A puncturable pseudo-random function, PPRF =
(KeyGen,Eval,Punc), is a triple of algorithms with three associated sets; the
secret-key space SK, the domain X and the range Y .

• Via sk←$ KeyGen(), the probabilistic key generation algorithm KeyGen,
taking no input, outputs the secret key sk ∈ SK.

• Via y/⊥ ← Eval(sk, x), the function evaluation algorithm Eval, on in-
put the secret key sk and an element x ∈ X outputs y ∈ Y or, to
indicate failure, ⊥.

• Via sk′ ← Punc(sk, x), the deterministic puncturing algorithm Punc,
on input the secret key sk and an element x ∈ X outputs an updated
secret key sk′ ∈ SK.

For correctness we require that for all sk ∈ SK and all x, y ∈ X :

• Pr[Eval(sk0, x) ̸= ⊥|sk0 ←$ KeyGen()] = 1.

• If sk′ ← Punc(sk, x)andy ̸= x, thenEval(sk, y) = Eval(sk′, y).

• If sk′ ← Punc(sk, x), then Eval(sk′, x) = ⊥.

The GGM construction lends itself to being made puncturable [7]. In the
original version, a pseudo-random generator (PRG) with input size s and
output size 2s is used to derive the output. The construction defines a bi-
nary tree structure through which an element is evaluated by its bit-string
representation. Depending on the bit at index i, the left or right half of the
PRG’s output is used for the next evaluation. At the root is a secret key of
length s.

Defining the PRG as G : {0, 1}s → {0, 1}2s, G(x) = G0(x)||G1(x), where
G0 and G1 denote the left and right half of G, respectively, and || denotes
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3. Puncturable Key Wrapping

concatenation, then the evaluation of x = 10010 ∈ X = {0, 1}5 can be
written as F(x) = F(10010) = G0(G1(G0(G0(G1(sk))))).

To implement the PPRF in code, for the PRG a pseudo-random function for
which the output length can be chosen was selected. The chosen function
is HKDF.Expand, which takes as input a key (randomness), a context infor-
mation string, and the output length [10]. The context information string is
used for the right and left derivations, with the info string either being set
to ’r’ or ’l’, respectively. The construction of our PRG with output length
2s is then: G(x) = HKDF.Expand(x, ′l′, s)||HKDF.Expand(x, ′r′, s).

Puncturing

For correctness of the scheme (see the definition), when the secret key is
punctured on input x, the key has to be adapted in such a way that x can
no longer be evaluated, but all other previously evaluable elements still can.
This demands that the root of the key must be deleted after the first punc-
ture and it makes sense to think of the secret key as a collection of nodes
defining their respective subtrees in the tree, initially containing only the
root. To achieve reachability for all nodes except the one which was punc-
tured, during the evaluation of x, first, the node which defines the subtree
needed to evaluate x has to be found. Then the co-path is captured during
the evaluation of x in the subtree; this collection of nodes then replaces the
node which previously defined the subtree in the new secret key sk′.

Looking at the example in Figure 3.2, using the blue nodes, all leaf nodes
can still be reached, except for the one red node that was punctured.

Implementation

The crucial part being the key, a data structure containing a list of nodes
and information about the key was defined. the information consists of the
length of tags, the length of keys and the number of punctures performed
on the key.

1 class PPRFKey {

2 int keyLen;

3 int tagLen;

4 int puncs;

5 std::vector <SecretRoot > nodes;

6 };

7

8 class SecretRoot {

9 std:: string prefix;

10 SecureByteBuffer value;

11 };

The nodes contain a prefix and a value. The prefix is the bitstring which
indicates the path to the node in the tree, with 0 meaning left and 1 meaning

10



3.3. PKW construction from a PPRF and AEAD scheme

right. The value is the partial evaluation of the PPRF on the prefix. In Figure
3.2, the middle blue node has prefix 10 and contains the value G0(G1(sk)).

0

00

000 001

01

010 011

1

10

100 101

11

110 111

Figure 3.2: Example of a puncturing operation on the element 110, the co-path indicated in
blue.

The nodes are ordered lexicographically based on the path that was taken to
reach them (the prefix, in Figure 3.2 it is shown inside the nodes), and this
ordering is maintained during all operations which change the key.

Initially, a key contains a single node, which in turn contains an empty prefix
and the secret keying material (a byte string).

Eval As the key can grow substantially (at least initially), a quick evalua-
tion function was necessary. To allow for quick evaluation, a binary search
was implemented to find the node for which the prefix is indeed a pre-
fix to the element which is being evaluated. A binary search is possible
because the ordering invariant is maintained. There is always at most one
”matching-prefix” node since no node is contained in the subtree defined by
another node (which would give the nodes a common prefix). After finding
the correct node, the remainder of the bitstring representation of the element
is used to derive the key.

1 long GGM_PPRF :: findMatchingPrefix(Tag tag) {

2 std:: string tagString = tag.to_string ().substr(MAX_TAG_LEN -

key.tagLen , MAX_TAG_LEN);

3 long min = 0;

4 long max = key.nodes.size();

5 while (max > min) {

6 long index = (max + min) / 2;

7 std:: string pref = key.nodes[index]. getPrefix ();

8 if (pref == tagString.substr(0, pref.length ())) {

9 return index;

10 } else if (pref < tagString) {

11 min = index + 1;

12 } else {

13 max = index;

14 }

15 }

16 return -1;

11



3. Puncturable Key Wrapping

17 }

Listing 3.3: Find the index of the node with a matching prefix for a tag.

Looking at Figure 3.2 again, let’s assume the key consists of the three blue
nodes. When evaluating the element 010, first the node which shares the
prefix with the tag to be evaluated among the set of nodes in the key has
to be found. This is the root of the subtree in which the leaf node for the
tag resides. If no such node exists, the tag must have been punctured and
evaluation is not possible. In this example, the node is not punctured and
is the left-most node in Figure 3.2. To evaluate, the value stored in the node
v = G0(sk) is used to obtain the result by evaluating the tag in the subtree:
F(010) = G0(G1(v)).

Punc As in Eval, a binary search is performed to find the node n with a
matching prefix to the tag. If no such node exists, as in Eval, the key has
been punctured on tag and there is nothing to be done. If the node is found,
then during the evaluation of the remainder of the tag (the tag without the
prefix), the co-path in the subtree is captured. Finally, n is replaced by
the co-path, while maintaining the invariant that the nodes in the key are
ordered lexicographically.

1 static const std::vector <unsigned char > RIGHT ({’r’});

2 static const std::vector <unsigned char > LEFT({’l’});

3 using Tag = std::bitset <MAX_TAG_LEN >;

4

5 SecureByteBuffer evalAndGetCoPath(Tag tag , const SecretRoot

&node , std::vector <SecretRoot > &coPath) const {

6 const int keyLenByte = key.keyLen / 8;

7 CryptoPP ::HKDF <CryptoPP ::SHA256 > hkdf;

8

9 std::deque <SecretRoot > left;

10 std::deque <SecretRoot > right;

11

12 SecureByteBuffer curr(node.getValue ());

13 SecureByteBuffer derived_right(keyLenByte);

14 SecureByteBuffer derived_left(keyLenByte);

15 std:: string pref = node.getPrefix ();

16 for (size_t i = node.getPrefix ().size(); i < key.tagLen;

i++) {

17 Tag mask;

18 mask.set(key.tagLen - i - 1, true);

19 hkdf.DeriveKey(derived_right.data(),

derived_right.size(), curr.data(), curr.size(), nullptr , 0,

RIGHT.data(), RIGHT.size());

20 hkdf.DeriveKey(derived_left.data(), derived_left.size(),

curr.data(), curr.size(), nullptr , 0, LEFT.data(),

LEFT.size());

21 if ((mask & tag).count () > 0) {

22 left.emplace_back(pref + "0", derived_left);

23 curr = derived_right;

12



3.3. PKW construction from a PPRF and AEAD scheme

24 pref += "1";

25 } else {

26 right.emplace_front(pref + "1", derived_right);

27 curr = derived_left;

28 pref += "0";

29 }

30 }

31 coPath.insert(coPath.end(), left.begin (), left.end());

32 coPath.insert(coPath.end(), right.begin (), right.end());

33 return curr;

34 }

Listing 3.4: Excerpt showing the function evalAndGetCoPath, which evaluates a tag by starting
at node and gathers the nodes in the co-path in the list coPath.

Listing 3.4 shows how two deques, left and right, are used to gather the
nodes of the co-path, depending on the bits of the tag (lines 21-29). The two
deques are used in order to obtain the co-path in lexicographical ordering,
so as to avoid an additional sorting operation at the end.

In Figure 3.2, initially the key contains the node at the root. After puncturing
the key on tag 110, it contains the three blue nodes ordered as they appear
in the figure, from left to right (’0’ < ’10’ < ’111’).

3.3.2 PPRF Benchmarks

Some basic benchmarking was performed in order to judge the efficiency
of the library. It was carried out on a machine with a 2.3 GHz 8-Core Intel
Core i9 processor and access to 16 GB of memory.

A PPRF with tag lengths of 64, 32, and 16 bits and a key length of 128
bits was instantiated and repeatedly punctured on random tags (generated
beforehand). After ten punctures, the time was recorded and the key was
serialized to measure the growth in size.

Serialization size

The PKW API requires a serialization function for the key. In the [PPRF,
AEAD] construction, the secret PKW key is really the secret key of the PPRF
scheme. Serialization is therefore delegated to the PPRF implementation.
This section shows how the key changes in size, relative to the number of
punctures.

Figure 3.3 seems to show linear growth, but the line is actually convex.
This is to be expected, since, with an increasing number of punctures, the
matching prefix of a tag will be found ”lower” in the tree, leading to a
shorter co-path to be inserted into the key. At some point there will be
mostly leaf nodes in the key, leading to decreasing key size with increasing
punctures, as becomes visible with a small tag space, see Figure 3.4.
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3. Puncturable Key Wrapping

Figure 3.3: Size of the serialized (PPRF) key with tag size 64 bits

Figure 3.4: Size of the serialized (PPRF) key with tag size 16 bits

Comparing the size of the serialized key after a fixed number (215) of punc-
tures for different tag lengths (Table 3.1), it becomes clear that larger tags
lead to disproportionately larger key sizes after a fixed number of punc-
tures. This may be because the larger the tag space, the more linear (smaller
curvature) the curve up to 215 punctures will appear. Or in other words,
for smaller tag spaces, the curve already flattens out at this number of punc-
tures (which can also be observed very clearly by comparing Figures 3.3 and
3.4). So, for shorter tag spaces the flattening-out effect is already visible at
215 punctures, while with larger tag spaces the effect is not as present yet.
As an illustration, we provide Figure 3.5, which compares the linear interpo-
lation of the growth based on the first 20 punctures (orange) with the actual
growth (blue) for a tag length of 16 bits.
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3.3. PKW construction from a PPRF and AEAD scheme

tag length size [MB]
16 0.90
32 11.78
64 44.97

128 155.29

Table 3.1: Serialization size of (PPRF) key after 15000 punctures

Figure 3.5: Serialization size for tags of 16 bits (blue) and linear interpolation of first 20
punctures (orange)

Time usage of puncturing

Figure 3.6 seems to be showing a linear relationship between the number
of performed punctures and the time to perform additional punctures. This
apparently linear growth in time usage was perplexing at first, however,
when considering that the insertion time of nodes into the list is most prob-
ably the leading contributor, the observed behavior becomes more obvious.
When the tag space is large, e.g. 128 bits, the key will contain many nodes
after just a few punctures. For each puncture, during insertion of the co-
path, the right part of the list has to be shifted, as the C++ vector keeps
its elements in contiguous memory to allow access to elements in constant
time. This ”big shift” introduces a time overhead in direct correlation to the
key size, dwarfing any other time consumption during puncturing and as
the size of the key is growing almost linearly, so is the time consumption.
This seems inefficient, and a different data structure may be more suited to
store the nodes.

Some very basic micro-benchmarking showed that most time (> 90%) was
spent inserting nodes (the co-path) and deleting the old node. This con-
cretizes that there may be data structures more suited for the key. Further
investigation into this issue is warranted. It also indicates that the time spent

15



3. Puncturable Key Wrapping

in evaluation is not as excessive, but, this too requires a closer analysis.

As can be seen in Figure 3.7, the time for puncturing eventually stays in
a certain range. This is because the size of the key has reached its maxi-
mum value, so the time of insertion of new nodes is no longer the leading
contributor, but rather finding the node with a matching prefix for the tag.

Figure 3.6: Duration of Punc with tag size of 64 bits)

Figure 3.7: Duration of 10 punctures in PPRF with tag size of 16 bits

Comparison to NäıvePKW

No benchmarking was done for Naı̈vePKW. However, we provide a table
listing the theoretical approximate serialization sizes (only the keying mate-
rial is counted) for key sizes of 128 bits.

After 215 punctures, the size would be about 4 MB smaller than the theo-
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tag length size [MB]
16 8
32 524288
64 2.25 ∗ 1015

Table 3.2: Theoretical serialization size with 0 punctures

retical values in Table 3.2 (the key size decreases with punctures). As can
be seen, the relationship of the key size with respect to the tag length is
exponential since all the keys have to be stored. Since the time for evalua-
tion and puncturing are constant in this construction (access to elements in
a std::vector), there is a trade-off to be considered for short tag sizes. If
larger tags are required, Naı̈vePKW disqualifies itself because of its exces-
sive memory needs.
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Chapter 4

API and programming environment

4.1 Choice of programming language

When choosing a programming language for a project, one should be aware
of the trade-off between ease of writing, readability, and maintainability
(among many others). Some languages, such as Python, are easy to write,
leading to a quick production of results, but offer no type safety. Other
languages, among others Java and C++, require more boilerplate code but
are easier to read and maintain because the required types provide docu-
mentation by themselves. Especially in a cryptographic library it is sensible
to choose a language which preempts some problems by design, because
it forces the developer to write more stable code (in the case of C++ this
mostly refers to strong types for variables). Moreover, there are require-
ments that will disqualify some languages completely. As an example, in
Java one cannot manipulate the memory underlying the variables directly.

4.1.1 Python vs. C++

The first objective was defining the abstract API – since the author was fa-
miliar with Python, and it is a widely used language, it seemed a sensible
choice to start. However, it soon became apparent that the language did not
offer as much control over memory as was required to guarantee the secure
operation of the library (see Chapters 5, 6). Because of the requirement that
memory be manageable, some previous experience with C and the popular-
ity of C++, the project was continued in C++. Even then there were issues
to overcome (cf. secure memory erasure, Chapter 5).
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4.1.2 C++ environment

Build system CMake

Complex systems using many different files in C++ lead to complex build
procedures where the files have to be linked during compilation. This can
be done ”by hand” by specifying Makefiles, or a number of tools can be
used to automate some of the work. In this project, the popular open-source
tool CMake [11] was used. It uses a custom language for build specification,
which presented a challenge in terms of time spent exploring its functional-
ities. However, it proved a capable tool once it was integrated.

Crypto++

Crypto++ [9] is an open-source, in part community-driven cryptographic
library, from which standard cryptographic components needed for the im-
plementation, among which AEAD and HKDF, were taken.

4.2 API considerations

In the design of a cryptographic library, many aspects are worth some
deeper consideration. The authors of Developers are Not the Enemy!: The
Need for Usable Security APIs [12] outline ten principles to which to adhere,
in order to create secure and usable cryptographic APIs. One principle, for
example, asks for cryptographic functionality to be integrated into (non-
security) standard APIs, hiding the cryptography from developers. Another
puts forward that the API should be easy to use, even without reading any
documentation. While these and some others make sense for widely used
cryptographic functionalities, where developers might not be familiar with
cryptography, PKW seems like a scheme where developers should under-
stand the underlying cryptography to use it. Depending on the construc-
tion, efficiency diminishes with continued use (with increasing punctures,
operations take a longer time to complete, see chapter 3.3.2) and the library
takes no steps to mitigate this. Furthermore, care must be taken in key
handling to ensure the forward security properties are not broken.

Other principles demand general good practice, for example, that the API
be understandable without reliance on documentation. To that end, care
was taken in naming functions and files in a way that makes construction
and serialization as straightforward as possible, as well as providing clear
and concise function documentation. Additionally, we provide a demo file,
demonstrating the usage (see Appendix A.2).
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Chapter 5

Handling of secrets

Throughout the report, the class SecureByteBuffer is used to store key-
ing material. This chapter provides an explanation for its conception and
adoption.

5.1 Secure memory erasure

C++ offers developers strong control over memory, which is the key reason
the language was chosen for this project. The compiler, however, introduces
many optimizations, among which is the elimination of dead stores [8]. This
means, that if a programmer explicitly sets a portion of memory to 0 by us-
ing memset, and does not read from the location at a later point, the compiler
will remove the dead store in an effort to render the program more efficient.
For security-critical applications this is an issue, since erasing secrets is not
usually optional, but rather a requirement. There are a few workarounds to
“trick” the compiler, and the authors of [8] have compiled them into a func-
tion called secure_memzero. Since C++11 there is the function memset_s,
however, the authors of [8] point out that there is ”no standard-compliant
implementation”, so even if the function was used the behavior would not
be clearly defined for all compilers. In the current draft for C++23 there is
the new function memset_explicit [13] with the same goal of providing a
safe scrubbing method. As both memset_s and memset_explicit appear to
be unusable at this time, secure_memzero is used instead.

5.1.1 SecureByteBuffer

The class SecureByteBuffer was conceived as a wrapper for a std::vector

<unsigned char> (a variable-length list of bytes), which, during deconstruc-
tion, calls secure_memzero, thereby setting the occupied memory of the vec-
tor to zero before it is de-allocated. This way, the functionalities provided
by a std::vector can be utilized, but it is still ensured that data be erased
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once objects are no longer needed. Composition was chosen instead of spe-
cialization because it is generally not recommended to inherit from standard
library (STL) classes.

1 class SecureByteBuffer {

2 public:

3 virtual ~SecureByteBuffer () {

4 secure_memzero(vec.data(), vec.size());

5 }

6

7 private:

8 std::vector <unsigned char > vec;

9 };

Deconstruction occurs any time an object has reached the end of its lifetime,
for instance, if it is defined inside the scope of a function and the function
returns. By using the SecureByteBuffer to store keys, their erasure can be
guaranteed when an object is no longer used.
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Chapter 6

Serialization

The structure of PKW keys is highly dependent on the used scheme, hence
it was important to define a method to export and import a key. The most
straightforward approach was to serialize the key objects into bytes, which
is the method used in this project.

6.1 Boost

The Boost library [14] offers a serialization component. However, its use
necessitates the addition of a function to each class which is to be serialized:

1 class ExampleClass {

2 private:

3 Key key;

4 friend class boost :: serialization :: access;

5

6 template <class Archive >

7 void serialize(Archive &arch , const unsigned int

version);

8 };

There are a few problems here. Firstly, it requires the class access to be
defined as a friend class, to allow access to the private field key. Secondly,
during serialization, one cannot be sure to which places in memory the
sensitive key was copied and, thirdly, there is no way to ensure its removal
after serialization has been completed.

Because of this opacity in the library’s functioning, keys are serialized manu-
ally. To ensure secrets do not linger in memory, the SecureByteBuffer (Chap-
ter 5.1.1) class is used.
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6.2 Manual serialization

6.2.1 Integers and endianness

Integers are stored in fixed-length memory, with their length depending on
their type and the compiler. Depending on the endianness of the underlying
machine, the bytes representing the integer are stored either from right to
left or left to right (when considering the most significant byte).

For serialization this poses an issue if the serialized object has to be deseri-
alizable on other machines. For that reason, the decision was made to store
integers in network order. The file <arpa/inet.h>, provided by UNIX-like
systems (Windows provides similar functionalities), contains macros which
can reorder the bytes from machine (host) to network order (htonll for a 64-
bit integer) and from network to machine order (ntohll). Listing 6.1 shows
the handling of integers.

1 void writeInteger(std::vector <unsigned char > &buffer , uint64_t

t1) {

2 uint64_t t2 = htonll(t1);

3 for (int i = 0; i < sizeof(uint64_t); ++i) {

4 unsigned char byte = (t2 >> (8 * i)) & 0xFF;

5 buffer.push_back(byte);

6 }

7 }

8

9 int getInt(SecureByteBuffer b, size_t offset) {

10 uint64_t ret = getUInt64(b, offset);

11 return ntohll(ret);

12 }

13 size_t getUInt64(SecureByteBuffer &b, size_t offset) {

14 if (b.size() < offset + sizeof(uint64_t)) {

15 throw PPRFDeserializationError ();

16 }

17 uint64_t ret = 0;

18 for (int i = 0; i < sizeof(uint64_t); i++) {

19 uint64_t byte = b.data()[offset + i];

20 ret = ret | (byte << (i * 8));

21 }

22 return ret;

23 }

Listing 6.1: Serialization and deserialization of integers.

6.2.2 Byte arrays

Byte arrays are stored by first encoding their size (the number of elements)
and then the content of the arrays. If the length of the array is fixed, the
length encoding is omitted.
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Chapter 7

Licensing

In Switzerland, software is copyright protected from the moment it is writ-
ten down (see Art. 29 in [15]). To enable reuse of the library created in this
project, a license has to be specified. The MIT license1 was chosen, because it
is very permissive and allows complete code reuse. The only requirement is
that the original copyright text be included in derivative works. Since ETH
may not be mentioned in student works [16], only the author is mentioned
as copyright holder.

Listing 7.1: MIT license text.

Copyright <YEAR > <COPYRIGHT HOLDER >

Permission is hereby granted , free of charge , to any person

obtaining a copy of this software and associated documentation

files (the "Software "), to deal in the Software without

restriction , including without limitation the rights to use ,

copy , modify , merge , publish , distribute , sublicense , and/or

sell copies of the Software , and to permit persons to whom the

Software is furnished to do so, subject to the following

conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND ,

EXPRESS OR IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY , FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM , DAMAGES OR OTHER LIABILITY ,

WHETHER IN AN ACTION OF CONTRACT , TORT OR OTHERWISE , ARISING

FROM , OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR

OTHER DEALINGS IN THE SOFTWARE.

1The name MIT licence is not an official name, but is commonly used to refer to this
license.
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Chapter 8

Conclusion

We outlined our process of the implementation of a PKW library, and pro-
vide two realizations of the scheme, a naı̈ve PKW and one constructed from
a PPRF and an AEAD scheme. In this process, we encountered a number of
questions which had previously not surfaced, e.g. the serialization of keys
and memory sanitization. Also, questions about software distribution were
considered and a choice of a license was made.

We showed that, essentially, PKW can be implemented with realistic key and
tag lengths. There remain a number of open questions, and more bench-
marks could help in formulating more. The basic benchmarks which were
performed indicate that the data structure in the PPRF + AEAD construction
which stores the PPRF secret key merits further exploration. This would
hopefully lead to a significant speedup of the puncturing operation. Dif-
ferent PPRF constructions may also be interesting to compare to the GGM
construction used here. Possible applications, such as protected file storage
(Chapter 6 in [1]), may also reveal more requirements, necessitating changes
or additions to, and further solidifying the API.
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Appendix A

Appendix

A.1 Additional benchmarks

Shown below are figures of size and timing benchmarks for a PPRF key
with a tag size of 32 bits and a key size of 128 bits. Figure A.1 shows similar
behavior to Figure 3.6 (tag size 64 bits) in Chapter 3.3.2.

Figure A.1: Duration of 10 punctures in PPRF with tag size 32

The size of the key shows quasi-linear growth (but it is sub-linear, see Chap-
ter 3.3.2) and the graph is very similar to the one for a tag size of 64 bits
(Figure 3.3 in Chapter 3.3.2).
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Figure A.2: Serialization size of PPRF with tag size 32

A.2 Demo of PKW API usage

We provide a demonstration file, showing the instantiation, serialization,
deserialization and operations of the PKW scheme.

1 #include <iostream >

2 #include <pkw/PPRF_AEAD_PKW.h>

3 #include <pkw/exceptions.h>

4 #include <pkw/pkw.h>

5 void print(const std::vector <unsigned char > &v) {

6 for (auto val: v)

7 std::cout << val;

8 }

9

10 int main() {

11 // Construct a new PKW abject with fresh randomness and

tag -lenth 256, key -length 196

12 PPRF_AEAD_PKW pkw(256, 196);

13

14 // Define a header and a key to be wrapped

15 std::vector <unsigned char > header ({0, 2, ’a’, ’b’});

16 std::vector <unsigned char > key({

17 ’s’,

18 ’e’,

19 ’n’,

20 ’s’,

21 1,

22 ’t’,

23 1,

24 ’v’,

25 ’e’,

26 });

27

28 int tag = 12;

29 // Wrap the key using the tag and the header
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A.2. Demo of PKW API usage

30 std::vector <unsigned char > wrapped_key = pkw.wrap(tag ,

header , key);

31

32 std::cout << "The ciphertext produced after wrapping key = ";

33 print(key);

34 std::cout << " with header = ";

35 print(header);

36 std::cout << " and tag = " << tag << ":" << std::endl;

37 print(wrapped_key);

38 std::cout << std::endl;

39

40 // Unwrapping with a different tag or header will lead to an

error

41 try {

42 pkw.unwrap (11, header , wrapped_key);

43 } catch (PuncturableKeyWrappingException &e) {

44 std::cout << "Unwrapping with a wrong tag fails." <<

std::endl;

45 }

46 try {

47 std::vector <unsigned char > other_header ({0, 2, ’a’, ’b’,

’c’});

48 pkw.unwrap(tag , other_header , wrapped_key);

49 } catch (UnwrappingException &e) {

50 std::cout << "Unwrapping with a wrong header fails." <<

std::endl;

51 }

52

53 // Unwrap with the correct parameters:

54 std::vector <unsigned char > unwrapped_key = pkw.unwrap(tag ,

header , wrapped_key);

55 std::cout << "Unwrapping reveals the original key: ";

56 print(unwrapped_key);

57 std::cout << std::endl;

58

59 // Puncturing a tag

60 pkw.punc(tag);

61 std::cout << "Punctured on tag = " << tag << std::endl;

62

63 // Now wrapping and unwrapping using the tag will fail

64 try {

65 pkw.unwrap(tag , header , wrapped_key);

66 } catch (PuncturableKeyWrappingException &e) {

67 std::cout << "Unwrapping with a punctured tag fails." <<

std::endl;

68 }

69 try {

70 pkw.wrap(tag , header , key);

71 } catch (PuncturableKeyWrappingException &e) {

72 std::cout << "Wrapping with a punctured tag fails." <<

std::endl;

73 }

74

75 // To offload the key for storage it can be serialized
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76 SecureByteBuffer serialized_pkw = pkw.serializeKey ();

77

78 // It can also be protected by a password derived key

79 SecureByteBuffer serialized_encrypted_pkw =

pkw.serializeAndEncryptKey("securepassword");

80

81 // Deserialization is handled by a factory , which constructs

a shared pointer to the object

82 auto deserialized =

PPRF_AEAD_PKW_Factory ().fromSerialized(serialized_pkw);

83 auto deserialized_with_password =

PPRF_AEAD_PKW_Factory ().fromSerializedAndEncrypted(

84 serialized_encrypted_pkw ,

85 "securepassword");

86

87 // Wrapping and unwrapping using the tag will still fail

88 try {

89 deserialized ->unwrap(tag , header , wrapped_key);

90 } catch (PuncturableKeyWrappingException &e) {

91 std::cout << "Unwrapping with a punctured tag fails

after export and import." << std::endl;

92 }

93 try {

94 deserialized_with_password ->wrap(tag , header , key);

95 } catch (PuncturableKeyWrappingException &e) {

96 std::cout << "Wrapping with a punctured tag fails after

export and import." << std::endl;

97 }

98 }

Listing A.1: demo.cpp
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