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Abstract

The potential development of large-scale quantum computers threat-
ens modern-day public-key encrypted communication methods. As
a response, the National Institute of Standards and Technology (NIST)
has initiated a standardization process for post-quantum cryptography.
We take a look at SIKE, which is one of the Key Encapsulation Mech-
anisms submitted to NIST, and discuss how the underlying protocol
(SIDH) works. Up until recently, it was believed that the best approach
to break SIKE is to use the state-of-the-art collision search algorithm
(vOW) by van Oorschot and Wiener (J. Cryptology, 1999). The vOW
algorithm benefits fully from parallelism. Therefore, we investigate im-
plementing vOW on GPUs. After providing an in-depth explanation of
the vOW algorithm, we present an implementation of vOW for GPUs
using CUDA and the C language. The collision search attack is run
against a toy function based on SHA256. We discuss the problems and
performance issues that arise when implementing such an algorithm
for GPUs and compare the execution speed with an already existing
CPU implementation. An attempt to run an attack on SIKE using our
implementation of vOW and existing code for SIDH was made but was
unsuccessful.
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Chapter 1

Introduction

There has been much research on developing large-scale quantum com-
puters in the last few years. Such a device could perform calculations
that would overwhelm any regular supercomputer. More specifically, us-
ing Shor’s algorithm [27], quantum computers can factor large integers
and solve the discrete logarithm problem in polynomial time. Since these
two mathematical problems were assumed to be challenging to solve, most
of today’s public-key cryptography relies on their hardness. An attacker
equipped with the immense computing power of such quantum technol-
ogy can easily break current security protocols. Quantum computers are,
therefore, a real threat to the security of modern public-key cryptosystems.

As a response, cryptographers worldwide have been actively researching
methods to develop public-key cryptographic schemes secure even with the
existence of quantum computers. In 2016 NIST initiated a standardization
process for post-quantum cryptography. In total, 23 signature and 59 en-
cryption schemes were submitted, out of which only 4 made it to the fourth
and final round of evaluation and four are already up for standardization
(one KEM and three signature schemes). One of the remaining protocols
is SIKE. It is the only submitted protocol based on supersingular elliptic
curves. Compared with other submissions, SIKE has the advantage of a
fairly small key size but the disadvantage of a rather high computational
burden on the protocol users.

Remark 1.1 (Efficient attack on SIDH) In early August, a few weeks before the
hand-in of this thesis, Wouter Castryck and Thomas Decru released a paper in-
troducing an efficient key recovery attack on SIDH [4]. Their attack relies on the
auxiliary torsion point information that Alice and Bob share during the execution
of the protocol (see Section 2.1). This attack breaks SIKE and (at least for the time
being) renders it useless. However, the vOW algorithm existed way before SIKE
and is therefore still a relevant topic for efficiently finding collisions. Apart from
this remark, the thesis is written without knowledge of this attack.
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1. Introduction

Analyzing the security of SIKE by determining the cost of the best possible
(known) attack against it is crucial to determine the necessary key size for
the protocol to reach a certain security level. A larger key size implies better
security but also more computation and larger overhead. Cryptanalysis of
SIKE [15] suggests that the best known attack is a classical secret-key re-
covery using the van Oorschot and Wiener parallel golden collision search
algorithm (vOW) [30].

Cost estimations of the attack assume a fully parallel implementation with
instant synchronization of data across any number of cores. It also assumes
that memory is free to access and available in constant time. In practice,
however, fully synchronizing cores can be difficult, especially on a larger
scale, and memory accesses might be a performance bottleneck.

Attacks on SIKE using the vOW algorithm have already been implemented
using CPUs [8] however to the best of our knowledge there exists no imple-
mentation of the vOW algorithm on GPUs with available source code.

The contribution of this thesis is a implementation of the vOW algorithm on
GPUs using CUDA and C. We analyze different challenges of implement-
ing the algorithm on GPUs, such as core synchronization, memory accesses,
and communication between the host and the device. We analyze the cost
of running an attack against a SHA256 based toy function using our imple-
mentation of the vOW algorithm. We also attempted to run the algorithm
against SIKE, but failed for reasons explained in Chapter 4. We compare our
results with the expected runtime of vOW [30] and other implementations
of vOW on CPUs.

The remainder of this paper is organized as follows. Chapter 2 provides
relevant background on SIKE, the vOW algorithm and CUDA. Chapter 3
presents the implementation of the vOW algorithm against an arbitrary hash
function. An attempt of implementing an attack against SIKE using our
vOW implementation is described in Chapter 4. Finally, Chapter 5 makes
some concluding remarks.
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Chapter 2

Background

This chapter is meant to give the reader all the necessary background re-
quired to follow the implementation details and results. It starts by intro-
ducing the SIKE protocol in Section 2.1. Afterward, in Section 2.2 the paral-
lel golden collision search algorithm by van Oorschot and Wiener (vOW) is
presented. The chapter concludes by providing an introduction to CUDA in
Section 2.3.

2.1 SIKE

SIKE (Supersingular Isogeny Key Encapsulation) is a Key Encapsulation
Mechanism (KEM) which is based on the Supersingular Isogeny Diffie-
Hellman (SIDH) protocol which was first introduced by de Feo, Jao, and
Plût in 2011 [11]. SIKE is one of the 15 remaining third-round candidate
PKE proposals submitted to NIST’s post-quantum cryptography standard-
ization process. Recently NIST announced that SIKE would advance to the
fourth round of evaluation [2]. SIKE is the sole proposal whose security
relies on the difficulty of the computational supersingular isogeny (CSSI)
problem (see Section 2.1.2). Compared to other proposals, the SIKE proto-
col has the advantage that it has a relatively small key size, hence a small
communication overhead. A disadvantage is the rather high computational
burden the SIKE protocol has on both users.

A implementation of SIKE developed by Microsoft Research in 2017 can be
found in [25].

2.1.1 Mathematical Foundations

This section is meant to introduce some of the mathematical concepts used
in the SIKE or SIDH protocol. A reader familiar with these concepts is
welcome to jump to Section 2.1.2.
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2. Background

Finite Fields

A finite field is a field consisting of a finite number of elements. For any
positive integer r, there exists a finite field Fr of order r if and only if r is a
power of a prime. SIKE makes use of quadratic extension fields of a finite
field Fp where the extension field is denoted as Fp2 .

Elliptic Curves

There exist multiple forms of elliptic curves. The form which we are in-
terested in is the Montgomery curve. Let A, B ∈ Fp be elements satisfying
B(A2− 4) 6= 0. A Montgomery curve E over a finite field Fp is defined as the
set S such that all elements (x, y) ∈ S where x, y ∈ Fp satisfy the equation

By2 = x3 + Ax2 + x (2.1)

Additionally S contains the “point at infinity” O. E forms a group under
group addition, and O is the identity element. The main reason SIDH uses
Montgomery curves is that with them, it is possible to compute using ef-
ficient x-only arithmetic, i.e., when computing isogenies, we only need to
consider the x-component.

There exist ordinary and supersingular elliptic curves [28]. For us, it is not
essential to know the difference. SIDH uses supersingular elliptic curves
because they have a specific property that makes it harder for an attacker
to break SIDH, i.e., there exist subexponential attacks against SIDH using
ordinary elliptic curves [5]. However, no such attack exists against SIDH
using supersingular elliptic curves.

Another important mathematical construct used in SIDH is the j-invariant
of an elliptic curve. Given an elliptic curve E in Montgomery form, its j-
invariant is defined by

j(E) =
256(A2 − 3)3

(A2 − 4)
(2.2)

The j-invariant of an elliptic curve defined over a field Fp is unique (up to
isomorphisms between two elliptic curves, which preserve the j-invariant).

Torsion Groups

Let E be an elliptic curve defined over a finite field Fp. For any positive
integer d, we define the torsion group E[d] to be the set of points
{P ∈ E|ord(P) = d} , i.e., it holds that [d]P = O
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2.1. SIKE

Isogenies

An isogeny φ : E1 → E2 is a non-constant map defined over a finite field
Fq, where E1 and E2 are two elliptic curves defined over Fq. It is also a
group homomorphism from E1 to E2, i.e., for two points A, B ∈ E1 we have
φ(A + B) = φ(A) + φ(B).

There exist separable and non-separable isogenies. Knowing the difference
is out of scope for this thesis. A interested reader can find an explanation
in [19, §2.2]. SIKE uses separable isogenies for the following reason: For
every subgroup G ⊆ E of an elliptic curve E, there exists a unique (up to
isomorphisms) separable isogeny φ : E → E/G whose kernel is G. The
kernel of an isogeny consists of all elements e ∈ E such that φ(e) = O.
Another important aspect is that the degree of such an isogeny matches the
number of elements in the kernel, i.e., deg(φ) = |G|. For the rest of this
thesis, when talking about isogenies, we always refer to separable isogenies.

Given an elliptic curve E and a subgroup G ⊆ E, one can use Vèlu’s formula
to calculate the isogeny φ : E → E/G. It is important to note that Vèlu’s
formula is polynomial in the degree of the isogeny φ. Therefore it is not
feasible to calculate high-degree isogenies using Vèlu’s formula. In SIKE,
we solve this problem by using the following property of isogenies:

The composition of two isogenies φA : E → E′ and φB : E′ → E′′ is another
isogeny (φB ◦ φA) : E → E′′ and it holds that deg(φB ◦ φA) = deg(φA) ·
deg(φB). Therefore the computation of a high-degree isogeny can be broken
down into a series of computations of low-degree isogenies.

Lastly, unlike isomorphisms, isogenies generally do not preserve the j-invariant
of an elliptic curve. This property gives rise to isogeny graphs, a fundamen-
tal part of the SIKE protocol.

Isogeny Graphs

Given a finite field Fp2 where p is some large prime, we are interested in a
subset of about size b p

12c, namely the set of all supersingular j-invariants in
Fp2 . Every elliptic curve has a unique j-invariant (up to isomorphisms). The
nodes of an isogeny graph are exactly these j-invariants.

We now define the d-isogeny graph as the graph with nodes as mentioned
above. An edge exists between two nodes if and only if there exists a
d-isogeny (an isogeny of degree d) between the two elliptic curves repre-
sented by the j-invariants of the two nodes. Such isogeny graphs have
some interesting properties: They are undirected graphs, as for each isogeny
φ : E → E′ there exists a dual isogeny φ̂ : E′ → E of the same degree. The
d-isogeny graph is (d + 1)-regular (apart from a few exceptions) and it has
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2. Background

an extremely short diameter (O(log p)) [11, §2]. Recall that a graph is called
d-regular if all nodes in the graph have degree d.

In SIKE, we only utilize two isogeny graphs, namely the 2-isogeny and the 3-
isogeny graph (It is not necessary to choose these two graphs for the protocol
to work, but choosing the two smallest primes currently provides the most
efficient version of SIKE).

2.1.2 SIDH

SIDH is one of the first isogeny-based key-agreement protocols. It is called
Supersingular Isogeny Diffie-Hellman because it uses supersingular isoge-
nies as a basis. Its core idea is the same as in the well-known Diffie-Hellman
protocol: Each user creates their private key. Using their private key and
globally defined parameters, they compute their public key. Both users pro-
ceed by exchanging their public keys. Lastly, they compute the final shared
secret key using their private and the other’s public key.

High-Level Overview

As usual, we will let Alice and Bob be the two participants in the protocol.

Let p = 2eA 3eB − 1 be a prime and let Fp2 be the respective quadratic exten-
sion field. Let E be an elliptic curve in Mongomery form defined over Fp2 .
eA, eB, p and E are fixed and publicly known. For example in SIKEp434 we
have eA = 216 and eB = 137 such that 2216 ≈ 3137 and p is a 434 bit long
prime (hence the name). The reason we want 2216 ≈ 3137 is that both Alice
and Bob have about the same computational expense.

Let PA, QA ∈ E be two points such that the set {PA, QA} is a basis for
the torsion group E[2eA ]. Similarly, the set {PB, QB} is a basis for E[2eB ].
PA, QA, PB, QB are also publicly known and fixed.

In the first step of the protocol, Alice computes a secret linear combination
RA of her two public basis points, i.e., Alice computes

RA = [mA]PA + [nA]QA with mA, nA ∈R [0, 2eA) (2.3)

Similarly Bob computes

RB = [mB]PB + [nB]QB with mB, nB ∈R [0, 3eB) (2.4)

Let GA = 〈RA〉 be the subgroup generated by RA. Alice now computes her
secret isogeny φA : E → EA where EA = E/GA. As mentioned, computing
a isogeny of degree d using Vélu’s formula is polynomial in d. Since φA has
degree 2eA , directly computing φA is not feasible. Instead, Alice computes
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2.1. SIKE

eA isogenies of degree 2 by taking eA steps (defined by RA) in the respective
2-isogeny graph. Alice’s public key is then defined by

PKA = (EA, P′B, Q′B) = (φA(E), φA(PB), φA(QB)). (2.5)

Bob follows the same steps, except that he computes an isogeny of degree
3eB by computing eB isogenies of degree 3 by taking eB steps (defined by RB)
in the respective 3-isogeny graph. Bob’s public key is similarly defined as

PKB = (EB, P′A, Q′A) = (φB(E), φB(PA), φB(QA)). (2.6)

The second and third part of Alice’s public key contains the images of Bob’s
basis points PB, QB under Alice’s secret isogeny φA (and vice versa for Bob’s
public key). This information is essential so that in the next step of the
protocol, both parties can do the same computation again on their “new”
basis points so that, in the end, both end up with the same shared secret.

After exchanging their public keys, Alice proceeds by computing a second
linear combination R′A = [mA]P′A + [nA]Q′A using the same secret values
mA, nA. Let G′A = 〈R′A〉 and let EAB = EB/G′A. Alice computes another
secret isogeny φ′A : EB → EAB in the same way as before. Bob performs
analogous computations. Using R′B = [mB]P′B + [nB]Q′B and G′B = 〈R′B〉 he
computes his second secret isogeny φ′B : EA → EBA where EBA = EA/G′B.

In a final step both Alice and Bob compute their shared secret ss = j(EAB) =
j(EBA) by taking the j-invariant of the respective elliptic curve. Alice and
Bob compute the same secret ss since φ′′A := φ′A ◦ φA and φ′′B := φ′B ◦ φB both
have kernel 〈RA, RB〉, hence φ′′A and φ′′B are the same isogeny over Fp2 (up to
composition with an isomorphism over E/〈RA, RB〉). It follows that EAB and
EBA are isomorphic over Fp2 resulting in them having the same j-invariant.

A more detailed description of the SIDH, including toy examples, can be
found in [7].

CSSI

In the same way that the classical Diffie-Hellman scheme relies on the hard-
ness of the discrete logarithm problem, SIDH relies on the hardness of the
Computational SuperSingular Isogeny problem (CSSI). One of the main as-
sumptions made in the SIDH protocol is that the extra information given
in the public keys (φA(PB), φA(QB), φA(PB), φA(QB)) do not help a passive
adversary to solve the CSSI problem. Hence CSSI is defined as follows:

Definition 2.1 (CSSI) Given the SIDH parameters eA, eB, p, E, PA, QA, PB, QB
and E/A, compute a degree-2eA isogeny φA : E → E/A. Or equivalently: de-
termine a generator for A.

7



2. Background

That assumption still holds today, and no known passive attacks exist that
use the extra information to break CSSI. Some potential active attacks which
use this “torsion-point information” are mentioned in [16].

SIDH vs SIKE

One can build a PKE scheme based on SIDH (for example by using a modi-
fication of Hashed ElGamal [10]), that is secure against passive adversaries,
i.e., IND-CPA secure. However, when using static (long-term) keys, attacks
exist such that an active adversary can figure out the secret values and break
the protocol. An example of such an attack is mentioned in [7].

Hence, in the first round of the NIST PQC standardization process, SIKE
has been proposed as a secure key encapsulation mechanism to eliminate
this static-key vulnerability. SIKE is an optimized, IND-CCA secure version
of SIDH. The Fujisaki-Okamoto Transformation [12] [14], along with some
other minor technical changes, was used to transform SIDH into SIKE. One
technical change for example, is that the secret generator RA is of the form
RA = PA + [nA]QA for some (almost) randomly selected nA ∈R [0, 2eA) (and
similarly for RB).

2.2 vOW Algorithm

The vOW algorithm is a parallel collision search algorithm introduced by
Paul C. van Oorschot, and Micheal J. Wiener in 1996 [30].

Let S be a finite set with |S| = n finite, and let f : S→ S be a function where
finding collisions is of interest. A collision is a pair of values xa, xb ∈ S such
that xa 6= xb and f (xa) = f (xb). In cryptography we usually work with
random functions which sometimes might not be of the form f : S → S.
When applying the vOW algorithm in practice, one would have to adapt the
function for which one wants to find collisions in order to create a matching
f for the algorithm. For simplicity, we assume f to be an arbitrary random
function in this section.

There exist various kinds of algorithms to find collisions for a function f
(such as Meet-In-The-Middle (MITM) attacks), altough they tend to require
at least O(

√
n) memory [13, §5.4]. In any realistic scenario, n is such a

massive value that it is infeasible to have that amount of storage.

The vOW algorithm solves this issue by only using a variable amount of stor-
age. It uses so-called distinguished points and only stores these in memory.
A point xd ∈ S is a distinguished point if it fulfills some easily verifiable
property. This property could, for example, be a certain number of leading
zeros. Depending on the amount of available memory, one can choose the
probability of a point being distinguished to be higher or lower.
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2.2. vOW Algorithm
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Figure 2.1: Two trails colliding, reaching the same distinguished point (left) and a trail entering
a cycle (right). An edge denotes one iteration of the function f

Denote θ as the probability of a point being distinguished. The algorithm
now proceeds by performing multiple walks in parallel as follows: Each
processor starts its walk at a randomly selected point x0 ∈R S and continues
by repeatedly applying f such that we get a sequence xi = f (xi−1) for i =
1, 2, . . . until a distinguished point xd is found. The algorithm then stores
the triple (x0, xd, d) in memory.

It is important to note that while generating a trail of points, a processor
can enter a cycle of points that do not contain a distinguished point (See
Figure 2.1). van Oorschot and Wiener handle this in their paper by setting a
maximum path length of 20

θ . Whenever a path exceeds this length without
finding a distinguished point, the processor aborts and restarts at a new
randomly selected starting point.

Let w be the number of triples that fit in memory. To simplify memory
access, it makes sense to store the triple at a memory location which is a
fixed function of the distinguished point.

When storing the triple (x0, xd, d) in memory, one of the following three
cases can occur:

1. The location we want to store the triple in is empty: In this case, we
store the triple and proceed.

2. The location we want to store the triple in already contains another
triple (x′0, x′d, d′) with xd 6= x′d: This can be the case since we may have
more distinguished points than fit into memory, i.e., multiple distin-
guished points map to the same memory address. Since the distin-
guished points are not equal, we found no collision. We replace the
old triple with the new one.

9



2. Background

x1
x2

x3
x4

x5 x6
x7 x8

Initial point Distinguished point Regular point

Figure 2.2: Example of a “Robin-Hood”

3. The location we want to store the triple in already contains another
triple (x′0, x′d, d′) with xd = x′d: In this case we detected a collision
(assuming x0 6= x′0). We can now use these two triples to locate the
collision.

We detected a collision w.r.t. the two triples (x0, xd, d) and (x′0, x′d, d′) with
xd = x′d, x0 6= x′0. Assume w.l.o.g. that d > d′ (if d = d′ we can skip this next
step). We can locate the collision by iteratively applying x0 ← f (x0) and d←
d− 1 until d = d′. If at this point we have x0 = x′0 than a so-called “Robin
Hood” occured (see Figure 2.2). A “Robin Hood” is when one sequence
collides with the starting point of another sequence, such that both end up
at the same distinguished point. Trivially this isn’t a real collision that we
care about, but van Oorschot and Wiener mention that in practice θ is such
a small value that, since these point sequences have expected length 1

θ , this
happens rarely. Whenever it does happen, we ignore the found “collision”
and move on.

However, if at this point we have x0 6= x′0 since both points are now equally
far away from the same distinguished point (d = d′), we can “walk along”
both trails step-by-step simultaneously until we end up at the same value,
which means we found our collision.

In the simple case, one is only interested in finding any collision of the
function f , in which case the algorithm terminates at this point.

The more challenging case is if one is interested in finding a specific “golden
collision”. A random function f : S → S is expected to have roughly n

2
collisions1. Therefore, assuming all collisions are equally likely to occur,

1This is the case because there are n(n−1)
2 pairs of points in S and the chance of two

points colliding is 1
n . Multiplying these two terms gives approximately n

2

10



2.2. vOW Algorithm

we need to find n
2 collisions in expectancy before succeeding, and we also

require an efficient way to test if a located collision is the golden one. The
algorithm continues to generate distinguished points and locate collisions
until the golden collision is found.

One key aspect of the vOW algorithm, if we are looking for a “golden-
collision”, is that we must repeat the process described above multiple times
(finding and locating a certain number of distinguished points and colli-
sions), often having to exchange the function f with a new version that still
preserves the “golden collision”. The reason is that for a specific function
version fi, where the i denotes the i-th version, the probability of detecting
the golden collision may be very low. This might be because one or both
of the two points which form the golden collision have very few (or no)
pre-images under fi or because the trails leading up to these points are very
short. Hence we have a small chance of finding them.

According to van Oorschot and Wiener, the best average runtime is achieved
by finding a fixed number of distinguished points for every version of f ,
restarting the algorithm each time we reach that number without locating
the golden collision.

Some details must be considered when implementing this algorithm in prac-
tice (especially on GPU). We will talk more about those in Chapter 3.

2.2.1 Runtime Analysis

Van Oorschot and Wiener provide an approximate runtime analysis of their
algorithm to get a general idea of the runtime formula. They then examine
the performance using various simulations to obtain the unknown constants
in their formula. We will still include their approximate analysis for com-
pleteness:

Assume the available memory is fully occupied, holding w distinguished
points. Each path leading up to a distinguished point has expected length
1
θ , hence the total amount of points on these paths is about w

θ . Each time any
processor finds a new point (either by starting a trail at a new randomly se-
lected point, or by performing an iteration of the function f on the previous
point), the chance of that point lying on any of the trails stored in memory is
1
n ·

w
θ = w

nθ . It follows that in expectancy nθ
w new points need to be generated

in order to find a collision. Locating a collision requires 2
θ steps on average,

as we need to walk along both paths up to the colliding point. The total cost
of detecting and locating a collision is therefore nθ

w + 2
θ function iterations.

Setting θ =
√

2w/n minimizes this term to
√

8n/w. As previously men-
tioned, in expectancy we need to find n

2 collisions before finding the golden
collision, leading to a total cost of n

2 ·
√

8n/w =
√

2n3/w function iterations.
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2. Background

As mentioned, this analysis has a few flaws. For example, the analysis
does not consider the time the algorithm needs to fill the memory. During
that phase, we have fewer points in memory; hence, the odds of finding a
collision are worse than when the memory is full. Other flaws will not be
discussed here but can be found in their paper [30, §4.2].

Let α, β > 0 be some constants and let θ = α
√

w/n. In their experiments,
they let each function version run for the amount of time it takes to find βw
distinguished points. For each function version, they counted the number
of function iterations (i) and the amount of distinct collisions found (c). Us-
ing these variables, the expected number of function versions before finding
the golden collision is then n

2c implying a runtime of in
2c function iterations.

Running simulations for multiple values of α, β revealed that the runtime is
minimized for α = 2.25 and β = 10. Using these values in further simula-
tions, their analysis concludes by stating that for w ≥ 210 the runtime T can
be overestimated by

T =
2.5t
m

√
n3

w
(2.7)

where the 2.5 is a constant which they determined heuristically and was
verified multiple times (for example by Adj et al. [1] or by Craig Costello et
al. [8] using an AES-based XOF as f ). m denotes the number of processors
and t the time needed for one iteration of the function f . Note how in theory,
this algorithm parallelizes perfectly, while in practice, this is not the case
(especially for large m and n) due to memory access and synchronization
issues.

2.2.2 Attacking SIKE Using vOW

Let E denote the initial elliptic curve in SIKE and let E/A denote the curve
onto which Alice’s secret isogeny φA : E → E/A maps. The length of
the path between E and E/A in the 2-isogeny graph (which is eA) is much
smaller than the average distance between two nodes in the graph; hence
it is incredibly likely that the path Alice took to get from E to E/A (by
computing 2-isogenies) is the shortest path connecting these two nodes [7,
§7]. Therefore, the most efficient attacks for computing φA are meet-in-
the-middle (MITM) attacks, where we compute paths of length eA

2 starting
from E and E/A until two of these paths “meet in the middle”. It is then
exceedingly likely that these two connecting paths of length eA

2 form the
exact path of length eA that Alice took to compute φA. By finding that path,
the attack is completed as we can quickly compute Alice’s secret isogeny φA.

The standard version of a MITM attack works as follows: The algorithm
works on the 2-isogeny graph defined over the field Fp2 for a given prime p.

In the first step, we compute all elliptic curves, which are 2
eA
2 -isogenous to

12



2.2. vOW Algorithm

Figure 2.3: MITM attack on a 2-isogeny graph. The red path symbolizes the collision we are
looking for

‘

E and store them in memory. We do this by computing all possible paths of
length eA

2 starting from E in the 2-isogeny graph. Next, we compute paths
of length eA

2 starting from E/A and compare the elliptic curves they end
on with those stored in memory. As soon as we found a collision, i.e., we
found a curve E/S′ which is isomorphic to another curve E/S stored in
memory, we found the path connecting E and E/A and hence we found
φA = φS′ ◦ ψ ◦ φS, where φS : E → E/S and φS′ : E/S′ → E/A are 2

eA
2 -

isogenies and ψ : E/S → E/S′ denotes the isomorphism between the two
“colliding” elliptic curves E/S and E/S′. Figure 2.3 illustrates the MITM
attack described above. Recall that the 2-isogeny graph is (almost) 3-regular.
Hence, computing a path of length eA

2 starting from E (or E/A) is like fol-
lowing a random path down a binary tree of depth eA

2 (except for the first
step), where each step corresponds to computing one possible 2-isogeny.

In a paper from 2018 [1], Adj et al. showed that this generic version of a
MITM attack is not the best algorithm for attacking SIKE. Although it has a
reasonably good runtime complexity, its exponential memory requirements
are unrealistic and impractical. They proposed to set a limit of w = 280

(which corresponds to multiple yottabytes) for the amount of available mem-
ory in order to be able to analyze the security of SIKE correctly. Their anal-
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ysis concluded that, although it has a worse runtime complexity, the vOW
algorithm is the best-known algorithm for finding Alice’s secret isogeny φA
due to its smaller (and variable) memory usage.

Defining the Function f

In order to apply the vOW algorithm, we need a set of functions { fv : S →
S} where v ∈ N such that they all have the “golden collision” and they all
act like random functions.

For the simplicity of notation let E0 := E and E1 := E/A. Let Gi denote the
set of all order-2

eA
2 subgroups of Ei[2eA ] for i ∈ {0, 1}. Let I = {1, 2, . . . , N}

and S = {0, 1} × I, where N = |G0| = |G1|. Intuitively, N is the number of
elliptic curves which are 2

eA
2 -isogenous to E0 (E1) and therefore N is also the

number of possible paths of length eA
2 starting from E0 (E1). Let Ji denote

the set of all j-invariants of elliptic curves that are 2
eA
2 -isogenous to Ei and

let J = J0 ∪ J1.

Let gn : J → S for n ∈ N be a set of random functions, let ki : Gi → Ji be
defined by ki(G) = j(Ei/G) where G ∈ Gi and finally let hi : I → Gi be two
bijections. We can now define our set of random-acting functions fv : S→ S
as

fv(i, x) = gv(ki(hi(x))) (2.8)

where fv denotes the v-th function version. By construction, each function
version fv has multiple individual collisions, which occur due to the ran-
domness of the function gv (and because |J | > |S|), but they all share the
same “golden collision” that is of interest, which occurs due to ki ◦ hi. We
now expect to have two unique subgroups G0 ∈ G0 and G1 ∈ G1 such that
j(E0/G0) = j(E1/G1). Let zi = h−1

i (Gi) where h−1
i exists since hi are bijec-

tions for i ∈ {0, 1}. The “golden collision” we want to locate is then defined
by the points (0, z0) and (1, z1).

2.3 CUDA

CUDA (Compute Unified Device Architecture) is a computing platform and
programming model introduced by NVIDIA in 2006. Its purpose is to enable
general-purpose programming on GPUs. CUDA can be used with many
programming languages, including C, C++, or Python. It is a heterogeneous
programming language, as its code runs on the CPU (referred to as the host)
and the GPU (referred to as the device).

14
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This section provides an introduction to CUDA and its programming model.
It is based on the CUDA toolkit documentation by NVIDIA [23]. An inter-
ested reader can find more detailed descriptions there.

2.3.1 GPU Programming in General

As mentioned above, CUDA is supposed to enable general-purpose pro-
gramming on GPUs. However, why would we want that? Originally, GPUs
were designed as specialized processors to accelerate graphics and image
rendering in, e.g., gaming or video editing. They had a relatively narrow
range of applications. This changed quite a bit over the last few years, par-
tially due to the shift towards parallel programming. The most famous
example is probably the extensive use of GPUs for mining cryptocurrency
[3]. In general, GPUs seem to become more in use in several scientific fields,
one of which is cryptography [21] [20] [24].

The CPU and GPU were designed with entirely different goals in mind.
The CPU was modeled to handle various tasks quickly but suffers from
lousy parallelizability. This is where the GPU comes in. GPUs are per-
fect for monotonous (few branches) and highly-parallel computation. They
provide way higher instruction throughput and memory bandwidth than a
CPU with a similar price. Hence, using GPUs might be desirable for well
parallelizable applications.

2.3.2 Programming Model

Kernels

Kernels are the part of CUDA code that executes on the GPU. They are a
special kind of function that the host can call. A kernel is defined by using
the global keyword. Kernels run on the device using so-called CUDA
threads. The main difference between CUDA threads and CPU threads is
that the former are incredibly lightweight, and kernels can run on thou-
sands of CUDA threads simultaneously. In contrast, multi-core CPUs usu-
ally only run a few threads simultaneously. In the CUDA programming
model, threads organize into groups of threads called thread blocks.

When calling a kernel, one has to specify the number of blocks B and threads
per block T to execute the kernel on. Each thread (block) running the kernel
is then given a unique thread-id (block-id) within the kernel, which can be
used to, e.g., access memory locations with a specific offset.

1 // Kernel definition

2 __global__ void VecMult(int* a, int* b, int* r) {

3 int i = threadIdx.x;

4 r[i] = a[i] * b[i];

5 }
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6

7 int main() {

8 ...

9 // Kernel invocation with 1 block and n threads

10 VecMult <<<1, n>>>(a, b, r);

11 ...

12 }

Listing 2.1: Kernel example

Listing 2.1 shows a code example of a small kernel, which given two vectors
a, b of length n calculates the coefficient-wise product r. The two values
inside the triple-brackets denote B and T.

Kernels are the only function type that allows device code to be called from
the host code. Of course, there also exist “normal” functions being called
and executed on the host or device directly. These must be declared with
the host or device keywords, respectively. These keywords instruct
the compiler to compile the function as host or device code. Using both
keywords simultaneously is also possible, causing the compiler to compile
the functions as both. A function is compiled as host code per default when
no keyword is used.

1 //device -callable function

2 __device__ void multBy2(int* a, int i) {

3 a[i] = 2*a[i];

4 }

5

6 //host -callable function

7 void hostFunction () {

8 ...

9 }

10

11 // Kernel definition

12 __global__ void VecMult(int* a, int* b, int* r) {

13 int i = threadIdx.x;

14 r[i] = a[i] * b[i];

15 multBy2(a, i);

16 }

17

18 int main() {

19 ...

20 // Kernel invocation with 1 block and n threads

21 VecMult <<<1, n>>>(a, b, r);

22 hostFunction ();

23 ...

24 }

Listing 2.2: Device-callable and host-callable functions

Listing 2.2 shows a code example including one device-callable function
invoked by the kernel and one host-callable function invoked by the main

16



2.3. CUDA

function. Notice how the host-callable function does not necessarily require
the host tag.

Usually a kernel launch is divided into three main steps:

• Transfer data from host memory to device memory

• Load and execute the kernel code

• Transfer data from device memory back to host memory

Memory must first be allocated both on the host and the device. Allo-
cating memory on the device can be achieved using the cudaMalloc func-
tion. The cudaFree function can free the allocated memory afterward. The
cudaMemcpy function is used to copy memory from the host to the device or
vice versa. cudaMemcpy is a synchronous function, so the CPU halts execu-
tion until the function returns. Listing 2.3 shows an example of a complete
CUDA program, multiplying coefficient-wise two vectors of length N.

1 #include <stdio.h>

2

3 // Kernel definition

4 __global__ void VecMult(int *a, int *b, int *r) {

5 int i = threadIdx.x;

6 r[i] = a[i] * b[i];

7 }

8

9 int main() {

10 int n = 1000;

11 // allocate host memory

12 int* a = (int*) malloc(n*sizeof(int));

13 int* b = (int*) malloc(n*sizeof(int));

14 int* r = (int*) malloc(n*sizeof(int));

15

16 for (int i = 0; i < n; i++)

17 a[i] = b[i] = 2;

18

19 // allocate device memory

20 int *a_d , *b_d , *r_d;

21 cudaMalloc (&a_d , n*sizeof(int));

22 cudaMalloc (&b_d , n*sizeof(int));

23 cudaMalloc (&r_d , n*sizeof(int));

24

25 //copy memory from host to device

26 cudaMemcpy(a_d , a, n*sizeof(int), cudaMemcpyHostToDevice);

27 cudaMemcpy(b_d , b, n*sizeof(int), cudaMemcpyHostToDevice);

28

29 // Kernel invocation with 1 block and N threads

30 VecMult <<<1, n>>>(a_d , b_d , r_d);

31

32 //copy memory from device to host

33 cudaMemcpy(r, r_d , n*sizeof(int), cudaMemcpyDeviceToHost);

34

35 // prints out "4" n times
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36 for (int i = 0; i < n; i++) {

37 printf("%d", r[i]);

38 }

39

40 //free allocated memory

41 free(a);

42 free(b);

43 free(r);

44 cudaFree(a_d);

45 cudaFree(b_d);

46 cudaFree(r_d);

47 }

Listing 2.3: Complete CUDA program (without error handling)

Another essential aspect of kernels is that they are asynchronous to the CPU.
If one were to call multiple Kernels in succession, they would be called
immediately without waiting for the prior ones to finish. On the GPU side,
however, the invoked kernels will be executed serially in the order the host
called them. However, running multiple kernels in parallel using CUDA
streams is possible, as we will see in Section 2.3.3.

Thread Hierarchy

As previously mentioned, threads organize into groups of threads called
thread blocks. These blocks can be one, two, or three-dimensional, meaning
the respective thread indices are 3-component vectors. In Listing 2.3, we
only used one dimension for the thread indices (threadIdx.x). The thread
index being a 3-component vector provides an easy and more natural way
of performing computations using vectors, matrices, or volumes. Thread
blocks are similarly grouped into a grid and can be addressed using their
block-id.

1 // Kernel definition

2 __global__ void MatrixAdd(int* a, int* b, int* r, int m, int n) {

3 int i = blockIdx.x * blockDim.x + threadIdx.x;

4 int j = blockIdx.y * blockDim.y + threadIdx.y;

5 if (i < m && j < n)

6 r[i*n+j] = a[i*n+j] + b[i*n+j];

7 }

8

9 int main() {

10 ...

11 // Kernel invocation using 2-dimensional indices

12 dim3 threadsPerBlock (16 ,16);

13 dim3 blocks(m/threadsPerBlock.x, n/threadsPerBlock.y);

14 MatrixAdd <<<blocks , threadsPerBlock >>>(a_d , b_d , r_d , m, n);

15 ...

16 }

Listing 2.4: Matrix addition
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Figure 2.4: Illustrating the programmer’s perspective (left) and the hardware perspective (right)
of the GPU.

Listing 2.4 shows an example of a kernel computing the addition of two
mxn-matrices using thread and block indices such that each thread only
needs to calculate one element of the resulting matrix.

Threads within the same block share some resources of the GPU; hence
limiting thread block sizes is crucial for performance. The CUDA toolkit
documentation [23] recommends using block sizes of 128 or 256, though
it might depend on the application. Current GPUs support thread blocks
containing up to 1024 threads. A GPU contains multiple streaming multi-
processors (SM). A SM consists of multiple general purpose processors and
it’s main task is to execute several thread blocks in parallel. When starting
a CUDA program, all thread blocks are distributed among available SMs.
Threads within a thread block execute concurrently only on their given SM.
Within a thread block, threads are grouped into warps (typically of size 32).
Threads within a warp are then scheduled and executed as a warp unit,
executing the exact instructions simultaneously. Suppose, for some reason,
threads within a warp unit end up executing different instructions at the
same time. In that case, a warp-divergence occurs, and the execution be-
comes serialized, drastically decreasing the performance. Hence it is crucial
that threads within a warp unit execute the same instructions on different
data to maximize performance.

Figure 2.4 shows the correlation between the programmer’s perspective and
the hardware perspective of the GPU.

19



2. Background

Figure 2.5: Illustration of the CUDA memory model

Memory Hierarchy

CUDA threads can read or write to various memory spaces during their
lifetime. Figure 2.5 illustrates these memory spaces and their scope.

Each thread has its dedicated registers and local memory to which it can
read and write. Threads within the same thread block have access to com-
mon shared memory, while all threads have access to the global memory
of the GPU. There are also two globally scoped read-only memory spaces
called texture memory and constant memory. The texture memory is opti-
mized for spatial access patterns (i.e. it improves performance in graphics
applications where memory access patterns have a lot of spatial locality, for
example when loading textures), while the constant memory is where con-
stants and kernel arguments are stored.

Registers and shared memory have the fastest access time by far, implying
that threads within the same block can communicate more efficiently than
threads from different blocks, as they would be required to use global mem-
ory. It is also important to note that local memory might have a misleading
name. Even though it is local, it has about the same throughput and latency
as global memory (it is also off-chip). It is called local memory because it
is only accessible by one thread. Local memory is mainly used for register
spilling. Register spilling occurs during compilation (specifically during the
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register allocation phase) whenever there are more live variables than avail-
able registers. Therefore, the compiler has to ”spill” some variables from
registers into memory (in our case, into the local memory).

2.3.3 CUDA streams

It is possible to run multiple kernels in parallel using CUDA streams. Each
stream represents a queue of device work; the host can add work to these
queues asynchronously. The device then schedules work from these streams
whenever resources become available. CUDA operations in different streams
are unordered and may overlap. Unless otherwise specified, all calls to
the device, including kernels and memory copies, are placed into a de-
fault stream. In order to run parallel kernels or any other device calls,
one can create and destroy non-default streams using cudaStreamCreate and
cudaStreamDestroy.

In order to execute kernels in parallel, they must be in different non-default
streams. This is because the default stream is always synchronous to all
other streams, i.e., it can not overlap with others. Also, enough resources on
the device must be available for all kernels to run simultaneously. For mem-
ory copies to execute in parallel, the same conditions as above apply, but
additionally, we need to use the asynchronous function cudaMemcpyAsync.
Also, we need to ensure there is no other memory copy happening in the
same direction (i.e., host to device) contemporaneously and that the copy
uses pinned memory on the host. Pinned memory can not be paged out
by the operating system and can be allocated using cudaMallocHost or
cudaHostAlloc.

2.3.4 CUDA Events

CUDA Events are synchronization markers and can be used to notify the
host when certain operations have happened in a stream. They help measure
timings or synchronize CUDA streams, for example. Events have a boolean
state, meaning they are either “occurred” or “not-occurred”. cudaEventCreate
creates an event and sets it to “occurred” by default. cudaEventDestroy can
be used to destroy events, and cudaEventRecord adds an event to the spec-
ified stream and sets it to “not-occurred”. The event gets set to “occurred”
as soon as it reaches the front of the stream.

2.3.5 Synchronization

There are many ways to perform synchronization in CUDA. Some functions
are implicitly synchronized like for example cudaMemcpy or cudaMalloc.

There are 3 ways to explicitely synchronize the device with the host:
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• cudaDeviceSynchronize blocks the host until all threads are done exe-
cuting on the device.

• cudaStreamSynchronize blocks the host until all threads of a specific
stream are done executing.

• cudaEventSynchronize blocks the host until the specified event“occured”

Synchronization within the device between threads of the same block can
be achieved by calling syncthreads. Synchronization between non-default
streams is done using cudaStreamWaitEvent.

2.3.6 Profiling

Since CUDA programming is highly parallel, getting code to work can be
frustrating. Fortunately, there exist profiling tools that help analyze and
optimize the program.

One such profiling tool is The NVIDIA Visual Profiler. The NVIDIA Visual
Profiler was introduced in 2008 and is part of the CUDA Toolkit [23]. It is a
GUI-based profiling tool and provides information like a unified CPU and
GPU timeline of the program, a guided application analysis that advises on
possible optimizations, and much more. A complete overview can be found
on the NVIDIA webpage [22].

Figure 2.6 shows a screenshot of the Visual Profiler GUI showing the unified
CPU and GPU timeline and the guided application analysis.

Another profiling tool is nvprof, which allows users to collect and view
profiling data directly from the command line. Nvprof is extremely useful
for fast sanity checks during programming or short summaries to get an
overview of the program’s GPU kernels and memory copies as displayed in
Figure 2.7.
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Chapter 3

General vOW Implementation

In this chapter, we provide an implementation of the vOW algorithm using
CUDA and C. We discuss the challenges and pitfalls that arise while im-
plementing vOW for GPUs. After discussing the specific implementation
details, we evaluate the implementation by providing some benchmarks.
We also compare our algorithm with the run-time of a vOW implementa-
tion for CPUs [18]. In the last section, we discuss possible improvements of
our code, as it is by no means perfect.

3.1 Implementation for CPUs

Before we discuss how to implement vOW for GPUs, let us look at how one
would implement the vOW algorithm for CPUs on a high level. As men-
tioned in Section 2.2, the vOW algorithm parallelizes well. If we have N
CPU cores at our disposal, we can let each core run the algorithm (i.e., find
distinguished points and locate potential collisions) more or less indepen-
dently. Cores would not be running fully independently, as synchronization
on the currently used function version is required. Managing access to the
memory containing the (at most w) stored distinguished points is also nec-
essary.

Figure 3.1 illustrates the general concept of a CPU implementation. Each
core more or less independently runs the algorithm until one of the cores
finds the golden collision.

3.2 Concept

We have seen how one could implement the vOW algorithm for CPUs. Now
let us look at what we are interested in: Implementing vOW for GPUs.
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3. General vOW Implementation

Figure 3.1: Illustration showing the concept of a CPU implementation of the vOW algorithm.

The first idea that comes to mind is to try and use the same concept for
CPUs: Write one huge kernel where each thread executes the algorithm
independently, similar to Figure 3.1. One immediately runs into several
complications and performance issues when attempting to implement it
this way. First, as we have seen in Section 2.3, the GPU has a completely
different architecture than the CPU. Hence code gets executed in entirely
different ways. On a GPU, threads can not simply execute code indepen-
dently (unlike CPU threads) since they are executed in warps. Hence if
one were to implement the algorithm described above, every single warp
would experience huge warp divergence. This is the case because different
threads will execute different instructions simultaneously (by the nature of
the algorithm, as some threads will find distinguished points earlier than
others, for example). Due to this divergence, barely any work will be done
in parallel, and the execution will boil down to essentially a serial execution.
Another problem with this implementation is that the memory model in a
GPU setting differs. The above implementation would require us to store all
our found distinguished points in the global memory located on the device.
This is the case because it needs to be accessible by all threads executing
the kernel. However, typically a GPU only has 1-16 GB of global memory,
which is certainly not enough for large w (and n). It follows that we can not
simply implement the algorithm for GPUs in the same way as for CPUs.

We apply two key changes in order to make our GPU implementation fea-
sible and more efficient:

• Split up the algorithm into multiple kernel calls: Instead of running
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Figure 3.2: Illustration showing the concept of a GPU implementation of a single function
version of the vOW algorithm.

the entire algorithm inside a huge kernel, we split the execution into
smaller kernels and invoke these multiple times. This change mitigates
warp divergence as we can minimize the number of branches inside a
kernel, and threads are less likely to diverge.

• Store the distinguished points in host memory: Host memory is gen-
erally much more extensive than device memory. Hence we have a
better chance of possessing enough memory to store our distinguished
points. We make the CPU responsible for writing distinguished points
into host memory and checking if a collision occurs. The GPU is re-
sponsible for finding distinguished points and locating the (potential)
collisions found by the CPU.

Figure 3.2 illustrates the general concept of a GPU implementation. It only
shows the execution for one function version, i.e., until β · w distinguished
points are found. This process will be repeated until the golden collision is
discovered. Notice how the threads do not execute the algorithm indepen-
dently anymore. Instead, they execute the same part of the algorithm simul-
taneously. Also, note how the execution is split up into multiple kernel calls
and how the CPU is responsible for managing the memory containing the
distinguished points and checking for collisions.

Listing 3.1 shows the implementation of the main function following the
concept shown in Figure 3.2. Note that any error handling and collecting
statistics have been removed to make the code more readable. The full code
can be inspected on GitLab [9].
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1 i n t main ( ) {
2
3 srand ( time (NULL) ) ;
4 //generate random golden c o l l i s i o n
5 GOLDENCOLLISION gc = getGoldenCol l i s ion ( ) ;
6
7 // i n i t i a l i z e funct ionVers ion to zero
8 unsigned i n t funct ionVers ion = 0 ;
9

10 // a l l o c a t e memory
11 curandState * d s t a t e s ;
12 DIST POINT * memory ;
13 DIST POINT * points ;
14 DIST POINT * d points ;
15 DPCOLLISION* c o l l i s i o n s ;
16 DPCOLLISION* d c o l l i s i o n s ;
17 VALUECOLLISION* c o l l i s i o n r e s u l t s ;
18 VALUECOLLISION* d c o l l i s i o n r e s u l t s ;
19
20 memory = ( DIST POINT * ) c a l l o c (W, s i z e o f ( DIST POINT ) ) ;
21 points = ( DIST POINT * ) c a l l o c (THREADS, s i z e o f ( DIST POINT ) ) ;
22 c o l l i s i o n s = (DPCOLLISION * ) c a l l o c (THREADS* 2 , s i z e o f (DPCOLLISION) ) ;
23 c o l l i s i o n r e s u l t s = (VALUECOLLISION* ) c a l l o c (THREADS, s i z e o f (VALUECOLLISION) ) ;
24
25 cudaMalloc(& d s t a t e s , THREADS* s i z e o f ( curandState ) ) ;
26 cudaMalloc(& d points , THREADS* s i z e o f ( DIST POINT ) ) ;
27 cudaMalloc(& d c o l l i s i o n s , THREADS* s i z e o f (DPCOLLISION) ) ;
28 cudaMalloc(& d c o l l i s i o n r e s u l t s , THREADS* s i z e o f (VALUECOLLISION) ) ;
29
30 //run the algorithm f o r NUMBER OF FUNCTIONVERSIONS funct ion vers ions
31 while ( funct ionVers ion < NUMBER OF FUNCTIONVERSIONS) {
32
33 // s t o r e s the number of found points per funct ion vers ion
34 unsigned long long t o t a l P o i n t s = 0 ;
35 // s t o r e s the number of found c o l l i s i o n s which we haven ’ t l oca te d yet
36 unsigned long num col l i s ions = 0 ;
37
38 // r e s e t the array conta in ing the found dis t inguished points to zero
39 cudaMemset ( d points , 0 , THREADS* s i z e o f ( DIST POINT ) ) ;
40
41 //invoke to setup the s t a t e f o r fu ture randomizations
42 setupState<<<B , T>>>(d s t a t e s , rand ( ) , funct ionVers ion ) ;
43 cudaDeviceSynchronize ( ) ;
44
45 // f o r each funct ion vers ion we f ind 10*W dis t inguished points
46 do {
47
48 // s t o r e s the number of found points f o r t h i s i t e r a t i o n
49 unsigned long pointsFound = 0 ;
50
51 //invoke kernel
52 f indDis t inguishedPoint<<<B , T>>>(d s t a t e s , d points , funct ionVersion , gc ) ;
53
54 //copy r e s u l t s from device memory to host memory
55 cudaMemcpy ( points , d points , THREADS* s i z e o f ( DIST POINT ) , cudaMemcpyDeviceToHost ) ;
56
57 //wri te the dis t inguished points we found i n t o the memory and s t o r e p o t e n t i a l

c o l l i s i o n s in the c o l l i s i o n s array
58 i n t t u p l e r es = wri teBackPoints (memory , points , c o l l i s i o n s , THREADS, pointsFound ,

num col l i s ions ) ;
59 pointsFound = re s . a ;
60 num col l i s ions = re s . b ;
61 t o t a l P o i n t s += pointsFound ;
62
63 // i f we found enough c o l l i s i o n s , or i t s the l a s t i t e r a t i o n , run the c o l l i s i o n −f ind

kernel
64 i f ( num col l i s ions >= THREADS | | t o t a l P o i n t s >= BETA*W) {
65 cudaMemcpy ( d c o l l i s i o n s , c o l l i s i o n s , THREADS* s i z e o f (DPCOLLISION) ,
66 cudaMemcpyHostToDevice ) ;
67 l o c a t e C o l l i s i o n<<<B , T>>>(d c o l l i s i o n s , MIN(THREADS, num col l i s ions ) ,
68 d c o l l i s i o n r e s u l t s , funct ionVersion , gc ) ;
69
70 // a f t e r copying to device memory , we put the excess c o l l i s i o n s found to the

s t a r t of the array
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71 i f ( num col l i s ions > THREADS)
72 memcpy( c o l l i s i o n s , ( c o l l i s i o n s + THREADS) ,
73 ( num col l i s ions − THREADS) * s i z e o f (DPCOLLISION) ) ;
74
75 cudaMemcpy ( c o l l i s i o n r e s u l t s , d c o l l i s i o n r e s u l t s ,
76 THREADS* s i z e o f (VALUECOLLISION) , cudaMemcpyDeviceToHost ) ;
77
78 f o r ( i n t j = 0 ; j < MIN(THREADS, num col l i s ions ) ; j ++) {
79
80 //check i f i t s a robin hood
81 i f ( equal ( c o l l i s i o n r e s u l t s [ j ] . a , c o l l i s i o n r e s u l t s [ j ] . b ) ) {
82 continue ;
83 }
84
85 i f ( i sGoldenCol l i s ion ( c o l l i s i o n r e s u l t s [ j ] , gc ) ) {
86 p r i n t f ( ”SUCCEDED” ) ;
87 goto end ;
88 }
89 }
90
91 num col l i s ions = num col l i s ions % THREADS;
92 }
93
94
95 } while ( t o t a l P o i n t s < BETA*W) ;
96
97 }
98
99 end :

100
101 // f r e e a l l a l l o c a t e d memory .
102 f r e e (memory) ;
103 f r e e ( points ) ;
104 f r e e ( c o l l i s i o n r e s u l t s ) ;
105 f r e e ( c o l l i s i o n s ) ;
106 cudaFree ( d points ) ;
107 cudaFree ( d s t a t e s ) ;
108 cudaFree ( d c o l l i s i o n r e s u l t s ) ;
109 cudaFree ( d c o l l i s i o n s ) ;
110
111 return 0 ;
112 }

Listing 3.1: Implementation of the main function

3.2.1 Datatypes

Before we explain the code example in Listing 3.1 any further, we introduce
the utilized datatypes, mostly structs. Figure 3.3 shows the four structs used
in the code examples. BYTE denotes an unsigned char while SIZE denotes
the size of the values we work with in bytes. It holds that SIZE = d log2 n

8 e.
We use DIST POINT to represent distinguished points. The struct is sim-
ilar to the tuple-representation (x0, xd, d) used in Section 2.2, but addition-
ally we also have the valid field. The purpose of the valid field will be
explained in Section 3.5. We use the GOLDENCOLLISION struct to rep-
resent our hard-coded golden collision, as further explained in Section 3.3.
The VALUECOLLISION and DPCOLLISION structs represent two collid-
ing values or two potentially colliding DIST POINTs, respectively.

Let us now look at Listing 3.1. In lines 3-28, we initialize our variables and
allocate the memory we need. As a convention, all variables starting with
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1 typedef s t r u c t {
2 BYTE s t a r t [ SIZE ] ;
3 BYTE end [ SIZE ] ;
4 BYTE val id ;
5 unsigned i n t s teps ;
6 } DIST POINT ;

1 typedef s t r u c t {
2 BYTE value1 [ SIZE ] ;
3 BYTE value2 [ SIZE ] ;
4 BYTE r e s u l t [ SIZE ] ;
5 } GOLDENCOLLISION;

1 typedef s t r u c t {
2 BYTE a [ SIZE ] ;
3 BYTE b [ SIZE ] ;
4 } VALUECOLLISION ;

1 typedef s t r u c t {
2 DIST POINT a ;
3 DIST POINT b ;
4 } DPCOLLISION ;

Figure 3.3: Datatypes

”d “ denote variables that refer to memory on the device. One iteration
of the while loop in line 31 corresponds to executing the vOW algorithm
for one function version. After initializing other variables, we invoke the
setupState kernel, which essentially sets up the states d states, which we
require so that each thread can randomly sample starting points to find dis-
tinguished points. More details about the setupState kernel are given in Sec-
tion 3.4. In line 46 we enter a do-while loop, which executes until we found
β ·w distinguished points, i.e., totalPoints ≥ β ·w. In each loop iteration, we
execute the f indDistinguishedPoint kernel in line 53, where each thread at-
tempts to find a distinguished point. These points are stored in the d points
array and copied back to host memory in line 56. In line 59-62, the CPU
writes the found points into memory and checks for potential collisions, as
described in Section 2.2. We store the number of potential collisions found
in num collisions and the number of valid distinguished points found in
totalPoints. Note that during the execution of the f indDistinguishedPoint
kernel, not every thread necessarily succeeds in finding a distinguished
point, as we will see in section Section 3.5. Until now, the code executes
precisely as illustrated in Figure 3.2. Instead of invoking the locateCollision
kernel each time after invoking f indDistinguishedPoint, as shown in Fig-
ure 3.2, we add the conditional statement in line 65. We only invoke the
locateCollision kernel if we have found enough potential collisions such that
each thread has a collision to locate (num collisions ≥ THREADS). This
change improves performance because if we invoke the locateCollision ker-
nel each time, many threads would be idle since after calling the
f indDistinguishedPoint kernel, not all threads have found a distinguished
point. Also, not every distinguished point leads to a potential collision.
Hence num collisions� THREADS holds after one iteration (especially for
small w). If the condition on line 65 holds, we invoke the locateCollision
kernel and copy the array of colliding values back to host memory in lines
66-77. Lastly, in lines 79-90, we check if any collisions we found correspond
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to our golden collision.

3.3 The Function f

Recall from Section 2.2 that in order to apply the vOW algorithm, we require
a function f of the form f : S→ S for some set S where |S| = n. Since we are
merely interested in providing a generic algorithm implementation in this
chapter, there are plenty of options for f . We use SHA256 as the underlying
cryptographic hash function to define f since it appears to behave as a ran-
dom function. Luckily there already exists an implementation of SHA256
for GPUs by Brad Conte [6], which we used for our implementation. Addi-
tionally, we define S as the set of all n-bit strings. We trim the output of the
SHA256 algorithm to only the first n bits. For f to have a single golden col-
lision, the call to SHA256 is wrapped with additional logic, which enforces
a collision with only two input values.

1 d e v i c e void f (BYTE* indata , BYTE* outdata , unsigned i n t
funct ionVersion , GOLDENCOLLISION gc ) {

2 //hard−coded golden c o l l i s i o n
3 i f ( equal ( indata , gc . value1 ) | | equal ( indata , gc . value2 ) )

{
4 f o r ( i n t i = 0 ; i < SIZE ; i ++)
5 outdata [ i ] = gc . r e s u l t [ i ] ;
6

7 } e l s e {
8 //SHA256 with the funct ion vers ion as a s a l t
9 CUDA SHA256 CTX c t x ;

10 c u d a s h a 2 5 6 i n i t (& c t x ) ;
11 cuda sha256 update (& ctx , (BYTE * )&funct ionVersion , 4 )

;
12 cuda sha256 update (& ctx , indata , SIZE ) ;
13 c u d a s h a 2 5 6 f i n a l (& ctx , outdata ) ;
14

15 //apply a b i t mask , in case n i s n ’ t d i v i s i b l e by 8
16 outdata [ SIZE −1] = outdata [ SIZE −1] & MASK;
17

18 //ensures t h a t the golden c o l l i s i o n i s unique , i . e . ,
no other value maps to i t .

19 i f ( equal ( outdata , gc . r e s u l t ) )
20 outdata [ 0 ] += 1 ;
21 }
22 }

Listing 3.2: Function f based on SHA256

Listing 3.2 shows the implementation of f . The function takes as input
indata (which is the value we want to apply f to), gc (which is the golden col-
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lision we want to hard-code into f ) and f unctionVersion (the current func-
tion version). f outputs outdata which contains f (indata). In lines 3-5, we
hard-code the golden collision. In lines 9− 13, we apply SHA256 to indata
(Notice how in line 11 we use the function version as a salt, such that for
each function version, f is different). Line 16 applies a bit-mask to the out-
put in case log2 n is not divisible by 8. Finally, in lines 19-20, we ensure that
the golden collision is unique.

3.4 setupState Kernel

The setupState kernel is responsible for creating a state of type curandState
for every thread. This state enables each thread to generate random starting
points to find distinguished points. Listing 3.3 shows the implementations
of the setupState kernel. In line 3, we call the curand init function, which
initializes a state, given a seed, sequence, and offset. The exact implementa-
tion details of the curand-functions are not important here but can be found
in the CUDA toolkit documentation [23]. What is important for us is that we
make the state of each thread dependent on the thread-id and the function
version. Hence each thread generates different starting points compared
to other threads or function versions. That is the case because the state
fully determines the sequence of pseudorandom numbers that the function
curand uni f orm returns. curand uni f orm returns a sequence of pseudoran-
dom floats uniformly distributed between 0.0 and 1.0, and we will need this
function to implement the f indDistinguishedPoint kernel, as we will see in
Section 3.5.

1 g l o b a l void s e t u p S t a t e ( curandState * s t a t e , unsigned long
seed , unsigned i n t funct ionVers ion ) {

2 i n t idx = blockIdx . x * blockDim . x + threadIdx . x ;
3 c u r a n d i n i t ( seed + funct ionVersion , idx , 0 , &s t a t e [ idx ] ) ;
4 }

Listing 3.3: setupState Kernel

3.5 f indDistinguishedPoint Kernel

When executing the f indDistinguishedPoint kernel, each thread should be
(attempting to) find a distinguished point and return it to the CPU as part
of an array. In Section 2.2, we discussed how a processor would sample
a starting point and then repeatedly apply f until it finds a distinguished
point. We also discussed how after at most 20

θ steps (where θ denotes the
probability of a point being distinguished), the processor ”gives up“ and
samples a new starting point in order to avoid being trapped inside a cycle.
When implementing the vOW algorithm for CPUs, this approach is what is
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Figure 3.4: Illustration showing how threads that find a distinguished point quickly become idle

used. For GPUs, however, this approach is very inefficient. The reason is
similar to before: Since threads are scheduled and executed in warps, they
cannot simply execute the algorithm fully independently. Also, the kernel
does not return until all threads are done executing. Hence, if we have many
threads, chances are high that one thread will not find a distinguished point,
i.e., it will apply f the maximum amount of times ( 20

θ ). Most other threads
will have found a distinguished point and are idle, waiting for the slower
threads to finish execution. Figure 3.4 illustrates this scenario: Thread 2 is
unsuccessful in finding a distinguished point. Threads 1,3, and 4 are idle,
waiting for thread 2 to finish.

The key idea to boost performance is to split the process into multiple it-
erations. Instead of allowing a thread to perform up to 20

θ applications of
f , we limit the amount to (for example) only 1

θ steps. If a thread does not
succeed in 1

θ steps, it stores the current point it is at and continues the search
from the same point in the next invocation of the kernel. If a thread has not
found a distinguished point after 20 such iterations, in the next iteration, it
does not resume from where it left off, but instead, it samples a new start-
ing point. This way, the maximum amount of steps a thread performs per
starting point is still 20

θ . Hence we still avoid cycles. This change boosts
performance, as kernel execution is much shorter now, and thread-idleness
is mitigated. Of course, some threads will still be faster than others, and
some idleness is unavoidable. There is a tradeoff between making the ker-
nel shorter (allowing fewer steps per iteration to reduce idleness) and the
overhead of invoking a kernel and copying memory from the host to the
device and vice versa.

In our implementation, we introduce the GAMMA FACTOR variable. A
thread performs at most 1

θ /GAMMA FACTOR steps per iteration and at
most GAMMA · GAMMA FACTOR iterations per sampled starting point,
where GAMMA is defined to be 20 (as specified in the vOW algorithm).
A higher GAMMA FACTOR value implies shorter kernels, less thread-
idleness, and more kernel-overhead. A lower GAMMA FACTOR value
implies longer kernels and more thread-idleness but, therefore, less kernel-
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Figure 3.5: Graph showing the tradeoff between thread idleness and kernel invocation overhead
for different values of GAMMA FACTOR. The x-axis shows the value of GAMMA FACTOR
while the y-axis shows the average time for finding the golden collision in seconds (with n =
220, w = 210).

overhead. In order to find the optimal value for GAMMA FACTOR we ran
the full attack using the parameters n = 220 and w = 210 for different val-
ues of GAMMA FACTOR. Figure 3.5 shows that GAMMA FACTOR = 1
seems to be the optimal value. In our implementation, we define GAMMA FACTOR
to be equal to 1.

Let us now look at the concrete implementation details. Recall from Sec-
tion 3.2.1 the definition of the DIST POINT struct. We now make use of
the valid field. The valid field is a single byte, where the MSB is 1 if the
corresponding DIST POINT represents a valid distinguished point and 0
otherwise. The other 7 bits are used as a counter, as depicted in Figure 3.6.

Figure 3.6: Illustration of the valid field in the DIST POINT struct.

Let us go through an example: Let (x0, xd, d, c, v) denote an instance of
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DIST POINT where x0 is the starting point, xd the current point, d the
number of steps performed, c denotes the current counter value and v de-
notes the valid bit (the MSB of valid). Let m denote the maximum number of
steps per iteration. A thread samples a starting point x′0 and starts executing
with (x′0, x′0, 0, 1, 0). If after m steps, the thread couldn’t find a distinguished
point, it stores (x′0, xm, m, 1, 0) in the array (where xm is the result of applying
f m times to x′0), and in the next iteration it resumes execution while increas-
ing the counter by 1, i.e., we have (x′0, xm, m, 2, 0). However, If the thread is
successful after m′ ≤ m steps, it stores (x′0, x′m, m′, 0, 1) in the array. Notice
how this tuple now represents a valid distinguished point. Lastly, assume
the thread hasn’t found anything in 20 iterations, i.e., after the 20th iteration,
the thread stored (x′0, x20m, 20m, 20, 0) in the array. In the next iteration, the
thread notices that the counter value is 20 and samples a new starting point.

Listing 3.4 provides an implementation of the f indDistinguishedPoint ker-
nel. In line 6, we set maxSteps as the maximum number of steps per it-
eration. DIST BITS denotes the number of bits that determine whether a
point is distinguished or not and is derived from θ. As mentioned above,
it holds that GAMMA FACTOR = 1 and thereforemaxSteps = 1

θ and we
allow at most 20 iterations with the same starting point. We will discuss the
distinguishedness property in Section 3.7. In lines 13-27, we sample a new
starting point and initialize the fields. Note how we sample a new point if:

• We found a distinguished point in the last iteration, i.e., the MSB of
valid is 1 (p.valid ≥ 20)

• The counter contained in the valid field exceeds 20 (p.valid ≥ 20)

• This is the first time we run the kernel for this specific function version
(p.valid = 0)

The third reason is why we set the counter to 1 initially. It enables us to
distinguish the case where we run the kernel for the first time and therefore
trivially need to sample a starting point (when the counter is 0) from the case
where the counter is smaller than 20, and we resume with the same start-
ing point. We use the curand uni f orm function to sample pseudo-random
floats between 0.0 and 1.0 as mentioned in Section 3.4. In lines 36-47, we
repeatedly apply f until we find a distinguished point. The second condi-
tion in line 38 enforces that we do not consider an instance of DIST POINT
to represent a valid distinguished point if the sampled starting point is a
distinguished one. This is helpful since the tuple (x0, x0, 0, 0, 1), where x0 is
distinguished, is useless for finding collisions. Also, consider the case where
either preimage of the golden collision is a distinguished point (for a spe-
cific function version). It would be impossible to find the golden collision,
as there would be no way to ”pass through “ the golden collision (we would
always stop the search at one of the preimages). By adding the second con-
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dition, we at least have a chance of finding the golden collision by directly
sampling one of the preimages.

1 g l o b a l void f indDis t inguishedPoint ( curandState * s t a t e s , DIST POINT * d points ,
unsigned i n t funct ionVersion , GOLDENCOLLISION gc ) {

2
3 //number of s teps in current i t e r a t i o n
4 unsigned long long numSteps = 0 ;
5 //maximum number of s teps per i t e r a t i o n
6 unsigned long long maxSteps = pow( 2 , DIST BITS ) / GAMMA FACTOR;
7 i n t idx = blockIdx . x * blockDim . x + threadIdx . x ;
8 curandState l o c a l S t a t e = s t a t e s [ idx ] ;
9

10 DIST POINT p = d points [ idx ] ;
11
12 // i f p i s val id , expired , or new : sample
13 i f ( p . va l id >= GAMMA * GAMMA FACTOR | | p . va l id == 0) {
14 //sample s t a r t i n g point using curand uniform
15 f o r ( i n t i = 0 ; i < SIZE ; i ++) {
16 f l o a t myRandF = curand uniform(& l o c a l S t a t e ) ;
17 myRandF *= 2 5 5 . 9 9 9 9 9 9 ;
18 p . s t a r t [ i ] = p . end [ i ] = (BYTE) t r u n c f (myRandF) ;
19 }
20 //apply mask
21 p . s t a r t [ SIZE −1] = p . s t a r t [ SIZE −1] & MASK;
22 p . end [ SIZE −1] = p . end [ SIZE −1] & MASK;
23
24 //when s t a r t i n g a t new sampled point , r e s e t s teps and i n i t i a l i z e va l id to 1
25 p . s teps = 0 ;
26 p . va l id = 1 ;
27
28 } e l s e {
29 //we resume from where we l e f t o f f , increment counter
30 p . va l id += 1 ;
31 }
32
33 //write s t a t e back such t h a t we only need to setup the s t a t e once
34 s t a t e s [ idx ] = l o c a l S t a t e ;
35 //”walk” along the random funct ion u n t i l we f ind a dis t inguished point or reach

maxSteps
36 while ( numSteps < maxSteps ) {
37 // i f the point i s not d is t inguished or we j u s t seeded a new point , commence
38 i f ( ! d i s t inguished ( p . end , (BYTE * )&funct ionVers ion ) | | ( p . s teps == 0 &&

numSteps == 0) ) {
39 f ( p . end , p . end , funct ionVersion , gc ) ;
40 numSteps ++;
41 } e l s e {
42 // i f we f ind a dis t inguished point , s e t the val id − b i t and the s teps f i e l d
43 p . s teps += numSteps ;
44 p . va l id = 0x80 ;
45 break ;
46 }
47 }
48
49 //a d j u s t the s teps f i e l d i f we didn ’ t f ind a dis t inguished point yet .
50 i f ( numSteps >= maxSteps ) {
51 p . s teps += maxSteps ;
52 }
53
54 //write back the ”saved” points to g loba l memory
55 d points [ idx ] = p ;
56 }

Listing 3.4: Implementation of the f indDistinguishedPoint kernel
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3.6 locateCollision Kernel

Our implementation of the locateCollision kernel is straightforward. Given
an array of DPCOLLISIONs and its length, we locate the potential collisions
by performing the exact process described in Section 2.2. Listing 3.5 shows
an implementation of locateCollision.

1 g l o b a l void l o c a t e C o l l i s i o n (DPCOLLISION* d c o l l i s i o n s , i n t num cols , VALUECOLLISION
* r e s u l t s , unsigned long funct ionVersion , GOLDENCOLLISION gc ) {

2 i n t idx = blockIdx . x * blockDim . x + threadIdx . x ;
3
4 //only the case i f we found l e s s c o l l i s i o n s than we have threads
5 i f ( idx >= num cols ) {
6 return ;
7 }
8
9 DPCOLLISION c o l = d c o l l i s i o n s [ idx ] ;

10
11 //these w i l l s t o r e the two values making up the c o l l i s i o n
12 BYTE c o l l i d i n g v a l u e 1 [ SIZE ] ;
13 BYTE c o l l i d i n g v a l u e 2 [ SIZE ] ;
14 //these w i l l s t o r e the current values we are a t while walking along the paths
15 BYTE curr va lue1 [ SIZE ] ;
16 BYTE curr va lue2 [ SIZE ] ;
17
18 //copy the s t a r t i n g values i n t o the v a r i a b l e s
19 f o r ( i n t cp = 0 ; cp < SIZE ; cp++) {
20 curr va lue1 [ cp ] = c o l . a . s t a r t [ cp ] ;
21 curr va lue2 [ cp ] = c o l . b . s t a r t [ cp ] ;
22 }
23
24 //walk along ” longer ” path u n t i l the pathlengths are equal
25 while ( c o l . a . s teps < c o l . b . s teps ) {
26 f ( curr value2 , curr value2 , funct ionVersion , gc ) ;
27 c o l . b . s teps −= 1 ;
28 }
29
30 //Robin hoods : i f we have equal ly many s teps l e f t and the current points match , i t s

not a r e a l c o l l i s i o n
31 i f ( equal ( curr value1 , curr va lue2 ) ) {
32 f o r ( i n t cp = 0 ; cp < SIZE ; cp++) {
33 r e s u l t s [ idx ] . a [ cp ] = 0 ;
34 r e s u l t s [ idx ] . b [ cp ] = 0 ;
35 }
36 return ;
37 }
38
39 //resume by walking along both paths step by step u n t i l we f ind the c o l l i s i o n
40 while ( notEqual ( curr value1 , curr va lue2 ) && c o l . a . s t eps > 0) {
41 f o r ( i n t cp = 0 ; cp < SIZE ; cp++) {
42 c o l l i d i n g v a l u e 1 [ cp ] = curr va lue2 [ cp ] ;
43 c o l l i d i n g v a l u e 2 [ cp ] = curr va lue1 [ cp ] ;
44 }
45 f ( curr value2 , curr value2 , funct ionVersion , gc ) ;
46 f ( curr value1 , curr value1 , funct ionVersion , gc ) ;
47 c o l . a . s teps −= 1 ;
48 }
49
50 //no c o l l i s i o n occured .
51 i f ( notEqual ( curr value1 , curr va lue2 ) ) {
52 f o r ( i n t cp = 0 ; cp < SIZE ; cp++) {
53 r e s u l t s [ idx ] . a [ cp ] = 0 ;
54 r e s u l t s [ idx ] . b [ cp ] = 0 ;
55 }
56 return ;
57 }
58
59 //copy the found c o l l i s i o n i n t o g loba l memory
60 f o r ( i n t cp = 0 ; cp < SIZE ; cp++) {
61 r e s u l t s [ idx ] . a [ cp ] = c o l l i d i n g v a l u e 1 [ cp ] ;
62 r e s u l t s [ idx ] . b [ cp ] = c o l l i d i n g v a l u e 2 [ cp ] ;
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63 }
64 }

Listing 3.5: Implementation of the locateCollision kernel

In lines 5-7, we need to check if the index of a thread is out of bounds
for the array. This can only occur during the last execution of the kernel
for a given function version since, for all other iterations, we wait to in-
voke the locateCollision kernel until enough collisions are found. In lines
25-28, we ”walk“ along the longer path until both path lengths are equal.
The way writeBackPoints in Listing 3.1 is implemented, the a field of a
DPCOLLISION instance always contains the longer path, hence we have
the loop condition col.a.steps < col.b.steps. In lines 31-37, we check whether
a ”Robin Hood“occurs. In that case, we return two equal values (in our case
0) such that the CPU in Listing 3.1 in line 81 can detect that it is not a valid
collision. In lines 39-64, we simultaneously ”walk“ along both paths until
the collision is found, which we then write into the results array. Lines 51-57
are necessary in order to detect ”false collisions“ (see Section 3.7).

3.7 Distinguishedness Property

Any easily verifiable feature could be used as a distinguishedness property.
For example, we could require a distinguished point to have a certain num-
ber of leading zeros (depending on θ). In our implementation, we use a
similar property: A point is said to be distinguished if the first DIST BITS
bits are equal to DIST BITS specifically chosen bits of the current function
version. The implementation of the distinguished function shown in List-
ing 3.4 is given in Listing 3.6.

1 d e v i c e i n t d is t inguished (BYTE* point , BYTE*
funct ionVers ion ) {

2 //check t h a t the required number of bytes are equal
3 f o r ( i n t i = 0 ; i < DIST BITS / 8 ; i ++) {
4 i f ( point [ i ] != funct ionVers ion [ i ] ) {
5 re turn 0 ;
6 }
7 }
8 //check t h a t the remaining number of b i t s are equal
9 i n t j = DIST BITS % 8 ;

10 BYTE p = point [ DIST BITS / 8] >> (8 − j ) ;
11 BYTE f = funct ionVers ion [ DIST BITS / 8] >> (8 − j ) ;
12

13 re turn p == f ;
14 }

Listing 3.6: Implementation of the distinguished function
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In lines 3-7, we check whether the first bDIST BITS/8c bytes are equal,
and in lines 9-11 we check whether the higher DIST BITS%8 bits of the
bDIST BITS/8c-th byte are equal. If both conditions hold, we return 1. We
make the property dependent on the function version for two reasons. First,
we avoid the ”bad case“ where one or both of the preimages of the golden
collision are distinguished, as each function version has a different set of dis-
tinguished points. Second, we do not need to zero out our memory between
function versions, as, with a very high probability, the points stored in mem-
ory from the previous function version will not be distinguished anymore.
Hence, they will be replaced in time. Even if a stored point is distinguished
for two consecutive function versions, in the worst-case scenario, we waste
a bit of computation trying to locate a collision that is not there. For this
reason, we require lines 51-57 in Listing 3.5.

Note that f unctionVersion is only 32 bits long. For DIST BITS > 32 this
approach can still work by, for example, by defining f unctionVersion64 =
f unctionVersion|| f unctionVersion, where || denotes concatenation, and then
use f unctionVersion64 for comparison.

3.8 Core Synchronization

When implementing vOW for CPU, synchronization across cores, such that
each core runs the algorithm using the same function version, is non-trivial.
Costello et al. mention synchronization strategies in their paper [8, Ap-
pendix C]. On the scale of a single GPU, synchronization is trivial. Threads
do not run the entire algorithm independently. Instead, the execution is split
up into multiple kernel calls. Therefore, the threads are constantly ”syn-
chronized“. When attempting to implement this algorithm in a distributed
fashion, i.e., on a scale of multiple GPUS (in possibly multiple different
geographical locations), the synchronization and memory access issues are
identical for CPUs or GPUs. However, a distributed implementation of vOW
is out of the scope of this thesis.

3.9 Evaluation

In this section, we will evaluate the performance of our implementation. The
GPU used to run our algorithm is the GeForce GTX 1080 Ti by NVIDIA. It
has 3072 = 3 · 210 CUDA cores, i.e., it supports a maximum of 3072 threads
executing simultaneously. The GPU has a clock frequency of 1480 MHz.
The CPU used to run our algorithm (and in Section 3.10 to compare the
performance with a CPU implementation) is the Intel Core i7-4790K CPU. It
has a clock frequency of 4 GHz.
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3. General vOW Implementation

n
w

28 210 212 214 216

218 2.41 2.46 3.32 2.96 −

220 2.43 2.15 2.43 3.19 3.12

222 2.52 2.63 2.55 2.47 3.31

224 2.71* 2.17 2.53 2.51 2.61

226 − 2.81* 2.18 2.49 2.6

Table 3.1: Run-time results of running the vOW algorithm

Recall from Section 2.2 that the expected run-time to find the golden colli-
sion using the vOW algorithm can be estimated by:

2.5t
m

√
n3

w
(3.1)

where t denotes the time required for an iteration of f , and m denotes the
number of cores used. van Oorschot and Wiener heuristically found the
constant factor 2.5 by running the full attack for multiple values of n and w
while counting the number of function iterations (calls to f ) required to find
the golden collision. They created a table where each entry is the coefficient
of
√

n3/w in the number of function iterations required (see Table 1 in [30]).

We would like to replicate part of that table to verify that our implementa-
tion follows the same run-time formula. We ran the full attack for multiple
values of n and w and counted the number of required iterations of f . For
each pair of values n and w, we ran the attack 200 times to get an average.
Table 3.1 shows the replicated table. Entries marked with an asterisk denote
that the entry was averaged over 100 runs instead of 200 runs due to the
amount of computation (and time) required. Pairs of values n and w which
would lead to θ = 2.25 ·

√
w/n > 1 have an empty entry, denoted by ”−“.

We can see that our implementation follows the same run-time formula (at
least for the chosen values of n and w), as we can approximately replicate
the values shown in Table 1 of [30]. van Oorschot and Wiener mention that
there is minimal variance across different values of n for each particular
value of w. For us, this is not the case. Entries, where w isn’t much smaller
than n (i.e. for w = 216 and n = 220), seem to be higher (≈ 3), although there
doesn’t seem to be an obvious explanation for this. Luckily in a realistic
scenario, w is orders of magnitude smaller than n.
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3.10. Comparison with a CPU Implementation

As mentioned in Section 2.2, the vOW algorithm parallelizes perfectly in a
theoretical sense. We now analyze the parallelizability of our implementa-
tion. We run the vOW algorithm for one function version for certain values
of n and w while varying the number of cores utilized. Figure 3.7 shows
the results of running the attack using w = 210 and n = 220 (red line),
n = 226 (blue line), or n = 230 (yellow line). Note that the plot uses log-
arithmic scales on both axes (also called a log-log plot). In a log-log plot,
perfect parallelizability is represented by a straight line. When looking at
Figure 3.7, we see that our implementation parallelizes well, as the lines are
almost straight. The more cores we use, the more the line starts to ”flat-
ten out“. This behavior is to be expected since when utilizing thousands of
cores, things like memory access and copies become bottlenecks. Note that
for larger n, the line appears to be ”more straight“, i.e., it parallelizes better
(the yellow line is noticeably straighter than the red line). This is because
for large n, the CPU overhead (all the work the CPU does) is significantly
smaller compared to the work the GPU does. When n is small, the GPU
does not do much work (it is easy to find distinguished points and locate
collisions for small n). However, for small n, and when utilizing many cores,
the CPU must perform many memory copies and writebacks. Therefore the
CPU-overhead dominates, and we experience less performance gain when
using more cores for small n. Luckily, in any practically relevant scenario, n
is large.

3.10 Comparison with a CPU Implementation

The goal of this section is to compare the performance of our vOW imple-
mentation with the performance of the CPU implementation by Longa et al.
[18] to see if our implementation is viable. We first run one function version
of the vOW algorithm for multiple values of n and w using a single CPU
core running the CPU implementation. We then do the same using a single
CPU core and a GPU with 3072 CUDA cores. We use the same CPU and
GPU as described in Section 3.9. Table 3.2 shows the results. Each entry rep-
resents how much faster the GPU implementation is compared to the CPU
implementation. The cells are color-coded in order to make the patterns
more visible.

We get the smallest speedup for n small and w large (upper right corner of
Table 3.2). This holds for the same reason as explained in Section 3.9: When
n is small, and w is relatively large, the CPU overhead dominates (copying
memory, writing back points, setting up kernels). In a realistic scenario, n
is much larger than w. Hence, the CPU overhead should be negligible for
practical values of n and w. Additionally, we can see that the speedup is
also low for very small w (in our case, w = 28). This is because of how we
implemented vOW. As we are running the f indDistinguishedPoint kernel
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Figure 3.7: Plot showing the parallelizability of our implementation. The x-axis denotes the
number of CUDA cores utilized. The y-axis shows the time required to complete one function
version. (with w = 210).

n
w

28 210 212 214 216 218

218 11.5 6.6 3.4 1.7 1.3 −

222 10.6 12.9 9.0 5.2 2.7 1.6

226 13.8 22.0 21.2 14.4 8.2 4.6

230 16.5 26.6 26.2 26.6 19.9 13.0

234 16.6 25.5 28.5 31.1 28.8 24.0

238 16.0 27.4 34.4 32.4 32.3 31.2

242 18.6 28.1 32.0 32.4 32.7 32.6

Table 3.2: Performance comparison of CPU and GPU implementation of the vOW algorithm
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3.10. Comparison with a CPU Implementation

with 3072 threads, for each call to f indDistinguishedPoint we locate approx-
imately 1900 distinguished points1. For w = 28 we are only supposed to
find 10w = 2560 distinguished points. When using 3072 threads, however,
we can only find a multiple of 1900 distinguished points per function ver-
sion, i.e., we find approximately 3800 instead of 2560 distinguished points
per function version. As this is way more than the optimal amount of 10w
as discovered by van Oorschot and Wiener [30], the algorithm has a non-
optimal run time, and therefore we experience a smaller speedup. This
phenomenon only occurs for very small w (when w is about the same size
or smaller than the number of threads per GPU). In practice, w will be much
larger. We get the biggest speedup of all measured values for greater values
of n and n � w (lower right corner of Table 3.2). The maximal speedup
we observe lies around 32, i.e., our GPU implementation executing on 3072
CUDA cores is 32 times faster than a CPU implementation running on a
single core. The speedup might be even better for practical values of n and
w, as the speedup seems to increase for greater values.

There are several reasons why we ”only“ experience a speedup of about 32
(not 3072). As we have seen in Figure 3.7, our implementation does not
parallelize perfectly. Therefore a speedup of 3072 is unrealistic. We com-
pared our implementation with the run-time of a single CPU core. Trivially,
when running the CPU implementation on a single CPU core, we do not ex-
perience any synchronization or memory access issues that could diminish
the performance. It is, therefore, not fair to say that 32 CPU cores would
perform as well as 3072 GPU threads, as the CPU implementation might
also not parallelize perfectly. Warp divergence within the GPU threads (due
to the branch-rich vOW algorithm) also limits the speedup factor. Also,
it would be unrealistic to assume that a single GPU thread running on a
CUDA core performs similarly to a CPU thread running on a CPU core.
GPU threads are lightweight and have fewer resources per core, as men-
tioned in Section 2.3. Finally, the vOW algorithm is not typical code that
runs on GPUs. Some amount of divergence is unavoidable, and coalesced
reads/writes are not always possible (due to branches and memory access
patterns). Also, some GPU features are not used in our implementation. For
example, we do not use shared memory at all, as GPU threads do not share
any data during execution (whether they are in the same block or not).

Considering all the above reasons, it makes sense that we ”only“ get a
speedup of 32 instead of 3072. Of course, our implementation is not perfect.
Perhaps a much higher speedup can be achieved by using better-optimized
code or maybe even a completely different approach to implementing vOW
for GPUs.

1the value 1900 was taken from measurements and is independent from the value of n
or w. It could be shown stochastically, which we will not do here.
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To see if our implementation is financially viable, we compare the equip-
ment cost for both the GPU and the CPU implementation. For the prior, we
require a GPU, in our case the GeForce GTX 1080 Ti by NVIDIA, which has
a MSRP (Manufacturer’s suggested retail price) of $699 and a CPU (techni-
cally only a single core), in our case the Intel Core i7-4790K, which has an
MSRP of $350. Hence, we get a total cost of $1049. For the latter, we re-
quire 32 CPU cores (assuming perfect parallelizability). As each Intel Core
i7-4790K has 4 cores, we require 8 of them, reaching a cost of $2800. In this
specific scenario, using the GPU implementation would make more sense
financially. The CPU and GPU used in this cost analysis were released in
early 2014 and early 2017, respectively. As the CPU is 3 years older, one
might think that this is not a fair comparison. In recent years, CPUs did not
get much faster. A benchmark comparison [29] of our CPU with the Intel
Core i7-7700K CPU, released in early 2017, shows that there was only an in-
crease in speed of about 7%, i.e., our cost analysis is still somewhat accurate,
even with the difference of the release dates. A caveat of the cost analysis is
that MSRPs might not accurately represent the actual retail price.

3.11 Possible Improvements

As mentioned in the previous section, our implementation is imperfect.
There are plenty of other design choices that one could have come up with
and multiple approaches to further optimize our implementation. There-
fore, we would like to mention some potential improvements in this section.

3.11.1 Improve locateCollision Kernel

The locateCollision kernel suffers from the same issue the f indDistinguishedPoint
kernel did before we split it up into multiple iterations: Some collisions are
found faster than others, as the number of steps to perform in order to lo-
cate the collision differs. This leads to the same problem of threads being
idle after finding ”their“ collision. We could split up the process into mul-
tiple iterations using a similar approach as with the f indDistingiushedPoint
kernel. In each iteration, we only perform a specific number of steps. If we
have not located the collision by then, we store the current points we are
at and resume in the next iteration. Implementing this change would be a
bit harder for the locateCollision kernel, as we would not only have to store
”not yet found“ collisions but also somehow identify which threads found
a collision in the last iteration and which threads did not. We then only as-
sign to the successful threads a new collision to locate. There are also other
details one would need to consider, which we will not discuss here.
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3.11.2 Tailor Implementation to Specific Parameters

In a practical scenario, where we would want to apply our implementation
of the vOW algorithm to a problem at hand, the parameters n and w (and
therefore θ) are usually fixed. The function f of which we want to find the
golden collision has a fixed domain and co-domain size, and our available
amount of memory w is also known and fixed. In this case, we could op-
timize the data types and structures we use in our implementation to use
minimal space. To give a simple example: If n = 241, we could use the last
7 bits of a stored value (which uses 6 bytes, as d41/8e = 6) for the counter
and the valid bit. Additionally, we could experiment with different values
for α, β, γ, or θ, as for fixed n and w (and when running the attack on GPU
instead of CPU), the values specified by van Oorschot and Wiener [30] might
be non-optimal.

3.11.3 Approach Using Streams and Events

In the final subsection of this chapter, we briefly discuss an alternative way
of implementing the vOW algorithm for GPUs. The key difference in this
approach is that we dedicate a certain number of CUDA cores to finding
distinguished points and a certain number of CUDA cores to locating col-
lisions. This creates a pipeline as illustrated in Figure 3.8. Note that only
part of the CUDA cores execute stage 2 of the pipeline, and the other part
executes stage 4. Also, note that this implementation requires at least 3 CPU
threads rather than just one.

CUDA streams and CUDA events, as discussed in Section 2.3, can be used
to implement such a pipeline. Both kernels would need to be executed on
separate non-default streams, and events would be used to communicate
when kernels have finished executing. Careful evaluation is needed to de-
termine how to split the available resources among the second and fourth
pipeline stage such that they have approximately equal length and we can
avoid pipeline stalling. It is uncertain how such an implementation would
perform compared to ours.
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3. General vOW Implementation

Figure 3.8: Implementing the vOW algorithm using a pipeline of depth 5.
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Chapter 4

SIKE vOW Implementation

For this chapter, our goal was to use our implementation of the vOW al-
gorithm to run an attack on SIKE using GPUs. This would require us to
implement most of the functionalities used in the SIDH protocol. This in-
cludes functions performing basic operations in finite extension fields, such
as addition or multiplication. It includes functions that calculate 2-isogenies,
4-isogenies, or the j-invariant of a given elliptic curve. Also, multiple data
types and structures would be required to represent and store elliptic curves
or j-invariants efficiently. Implementing all this from scratch would be a
tremendous effort beyond this thesis time frame. Therefore, our goal was
to find an already existing implementation of SIDH, which we could profit
from to implement the attack. There already exists an implementation of
SIKE on GPUs [26]. However, no source code was made available. The
Microsoft Research repository for optimized implementations of SIDH [17]
contains architecture-specific implementations of SIDH for the AMD64 and
ARM64 platforms. However, it also includes a portable version written in
pure C. The code for the portable implementation of SIDH is written in a
modular fashion. At the “bottom” are functions that perform basic arith-
metics in Fp. These are used to build functions that perform arithmetics in
Fp2 . Lastly, we have the top-layer functions that perform isogeny computa-
tions, convert between representations, or calculate j-invariants.

The plan was to “convert” the existing portable code into code that runs on
GPUs such that we get a working attack on SIKE using our implementation
of the vOW algorithm. In a second step, we would optimize the bottom-layer
functions performing the modular field arithmetics for GPUs (for example,
by using inline PTX assembly).

It turns out that translating “CPU code” into code that executes well on
GPUs is not as easy as one might think. The converted but non-optimized
code of the portable SIDH version ran slowly and improperly. Although the
exact reasons are unknown, as we have not analyzed the issue in-depth, the
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most probable reason for the bad performance is the immense computation
done in the SIKE protocol. As mentioned in Section 2.1, SIKE puts a rel-
atively high computational burden on its users, which also reflects on the
attack. When attacking SIKE using vOW on GPUs, each thread must per-
form some of these computations, requiring many resources. GPU cores do
not have the same quantity of designated resources as a CPU core. There-
fore, executing the same code will likely lead to excessive register spilling
and other performance-draining issues.

These issues do not imply that attacking SIKE using vOW on GPUs is im-
possible. They imply that one would have to implement such an attack with
code written to be run on GPUs explicitly.

Rewriting a big part of the SIDH functionality could have fixed these issues,
but due to limited time, we were unable to do so. We still decided to leave
this chapter in the thesis to warn that, generally, one can not expect crypto-
graphic code designed to run on consumer CPUs to run well on GPUs.
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Chapter 5

Conclusion

We introduced the reader to SIKE, which is a KEM submitted to the post-
quantum cryptography standardization process initiated by NIST and dis-
cussed the mathematical details underlying the SIDH protocol. We gave an
overview of the GPU architecture and provided an introduction to CUDA,
an API by NVIDIA, which allows for general-purpose programming on
NVIDIAs GPUs. An in-depth explanation of the vOW algorithm was given,
including a description of an attack on SIKE using vOW. The central part
of the thesis was an implementation of the vOW algorithm for GPUs using
CUDA and the programming language C. We discussed several implemen-
tation details and challenges. By measuring the performance of our imple-
mentation on a single GPU with 3072 cores, we discovered that our imple-
mentation is approximately 32 times faster than a CPU implementation of
vOW running on a single CPU core. Although the speedup is limited, our
cost analysis suggests it could be worth using GPUs to run the vOW algo-
rithm. Possible improvements and problems with our code were discussed,
and alternative design choices were presented. Finally, we attempted to at-
tack SIKE using our vOW implementation for GPUs but failed to implement
it in our first attempts and ran out of time to complete the implementation.
In conclusion, using GPUs as a resource to solve cryptographic problems
can be beneficial but requires building extensive knowledge of the underly-
ing architecture and careful programming. Not all code that executes fine
on CPUs will perform equally well on GPUs.
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Glossary

AES Advanced Encryption Standard.
API Application Programming Interface.

CPU Central Processing Unit.
CSSI Computational SuperSingular Isogeny.
CUDA Compute Unified Device Architecture.

GHz Gigahertz.
GPU Graphics Processing Unit.
GUI Graphical User Interface.

IND-CCA Indistinguishability under adaptive Chosen-Ciphertext Attack.
IND-CPA Indistinguishability under Chosen-Plaintext Attack.

KEM Key Encapsulation Mechanism.

MHz Megahertz.
MITM Meet-In-The-Middle.
MSB Most Significant Bit.
MSRP Manufacturer’s suggested retail price.

NIST National Institute of Standards and Techonology.

PKE Public Key Encryption.
PQC Post-Quantum Cryptography.
PTX Parallel Thread Execution.

SIDH Supersingular Isogeny Diffie-Hellman.
SIKE Supersingular Isogeny Key Encapsulation.
SM Streaming Multiprocessor.

vOW van Oorschot and Wiener.

XOF eXtendable-Output Function.
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