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Abstract

In this thesis, we analyze the Threema messaging application. Threema
has been proposed by the media as a more secure alternative to messen-
gers such as Whatsapp and Telegram, due to the emphasis on privacy
put by the developers. This led Threema to be chosen as the messenger
application of choice for the Swiss government and army, as well as
various other private companies.

However, to our knowledge, Threema has not received a deep cryp-
tographic analysis yet, despite being open-source and having received
two external audits. We show that the Threema cryptographic design
is flawed and we present multiple attacks against the protocols that
Threema uses in its functioning. More specifically, we present attacks
that break the confidentiality of messages between the client and the
server, we show that replay and reflection attacks are feasible on the
end-to-end level, and finally we show that an attacker can reveal long-
term private keys of users in some settings.

Overall, we show that Threema does not provide important security
properties that would be expected from a truly secure messaging ap-
plication, and that Threema is not suitable for high-risk users, such as
whistleblowers and political dissidents.

We conclude with an analysis of what, in our opinion, are the causes
of the security flaws found in Threema. In particular, we focus on the
deployment of new, custom protocols and we warn against careless
composition of secure protocols.
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Chapter 1

Introduction

Cryptography is a field of research that permeates through the daily lives
of an enormous share of the world’s population. The Transport Layer Se-
curity (TLS) protocol protects over 98% of the traffic from Chrome users
[63]. Whatsapp, one of the main secure messaging solutions for mobile, has
more than two billion active users each month [91]. Privacy concerns, exac-
erbated by the Snowden revelations, combined with the necessity to follow
regulations such as the GDPR, have pushed developers to embed stronger
cryptography in their applications. This is the case, for example, of What-
sapp and Facebook Messenger migrating to the Signal protocol [89, 82] or
Google doubling their share of traffic that is fully encrypted between 2014
and 2022 [63].

Open-source and provably secure cryptographic implementations such as
libsignal [83], libsodium [26], and the Noise Protocol Framework [73] are
nowadays publicly available for any developer to use, enabling the creation
of more secure applications. Yet, it is not hard to still find software “in the
wild” that implement cryptographic primitives and protocols incorrectly:
vulnerabilities were found in famous and widely-used products such as
Telegram [51, 6], Bridgefy [4, 5] and MEGA [10], and many pitfalls were
found in protocols such as TLS [2, 9, 17, 31, 79, 96, 65] , EMV [11] and IPSec
[25]. The impact of these attacks can be massive: people, companies, and
governments rely on these products, expecting them to provide security in
their communications. Not being able to provide such properties in practice
opens the possibility of an attacker exploiting such vulnerabilities at scale,
potentially endangering millions of people.

Messaging applications take a particular spotlight in this scenario: according
to Whatsapp CEO Will Cathcart: “Whatsapp is able to deliver roughly 100
billion messages every day” [19]. This means that every day an enormous
amount of personal information and media content is shared between peo-
ple through these messaging apps, and third parties have large incentives
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1. Introduction

to access the data that passes through those applications (e.g. governments
looking to spy on their citizens, advertisers who want to provide targeted
campaigns, or malicious parties searching for blackmailing material). It is,
however, unreasonable to ask users to understand the cryptographic con-
structions underlying the applications they use. It is even more unreason-
able to ask them to understand whether such constructions are secure. For
this reason, people often migrate from one application to the other accord-
ing to claims made by news outlets and competing applications, rather than
a sound security assessment. For example, millions of users migrated from
Whatsapp to Telegram due to the former’s change in Terms of Service [49,
67], despite the latter being shown to be less secure [51].

In this thesis, we analyze Threema, which has been proposed as an alter-
native secure messaging application to other mainstream messengers and
that has received the attention of the public due to Threema’s commitment
to anonymity and their focus on security. This aura of security has been
further strengthened by the fact that the servers of Threema are based in
Switzerland, a nation that is not part of the 5-eyes and 14-eyes intelligence
sharing agreements, that is required to follow the GDPR as well as not being
subject to the CLOUD act [46]. At the same time, they provide a different
cryptographic design than Signal, which has been formally analyzed [35,
21]. This usage of a new and under-analyzed protocol makes it a good “in
the wild” target for a cryptographic assessment. We begin with describing,
at a high level, the objectives and architecture of a secure messaging appli-
cation (Chapter 1.1). Then, we describe Threema and the security properties
it is claimed to provide (Chapter 1.2).

1.1 The Setting: Messaging Applications

A plethora of messaging applications exists, among which we can include
Whatsapp, Facebook Messenger, Signal, iMessage and Telegram, which are
used worldwide, but also nation-specific ones such as WeChat and QQ,
which are extremely common in China [77] and serve billions of users to-
gether [91].

All of them share the common goal of allowing users to send messages to
each other over the Internet and mostly rely on the same high-level architec-
ture: users download an application on their mobile devices (the clients) and
connect to a centralized server that manages the messages. More specifically,
users add other users to their contact list, often by giving the application
access to their phonebook or by manually adding contact information in the
app. Then, they are able to write to their contacts by sending a message to
the server, who will relay it to the correct receiver. Other applications exist
that rely on a different architecture, for example mesh networking messen-
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1.2. The Target: Threema

gers such as Bridgefy [50]. However, in this work, we will focus on the
centralized setting.

Evidently, the server plays a major role in the communications: in a central-
ized application, a server is always able to launch a Denial-of-Service (DoS)
attack by simply refusing to relay messages, which limits the guarantees that
one can ask about the availability of the application. If encryption keys of
other users are retrieved through the server, then the latter has the power to
execute a man-in-the-middle (MitM) attack on the conversation by replacing
the authentic keys with ones of which it knows the corresponding private
key. Even in this setting, we want to prevent the server from spying on or
interfering with the communication. This is the aim of end-to-end security:
preserving confidentiality, integrity and authenticity between the sender and
the receiver in the presence of a malicious or compromised central server.
Unfortunately, there are limits to the end-to-end privacy guarantees: to be
able to route messages, the server must have information about the user,
such as the time of their last access, the (possibly pseudonymized) social
graph of their communications and, often, their contact information. While
it is very hard to hide this data from the server, we still wish to protect it, at
least, from a network attacker that can analyze and interfere with the traffic
from the client to the server. To this goal, messaging applications will often
employ some encryption protocol such as TLS to establish a secure channel
between the client and the server to prevent any metadata leakage.

1.2 The Target: Threema

Threema is a messaging application that in 2021 has seen a sharp rise in the
number of users due to the change in Terms of Service of Whatsapp and
now boasts over ten million users for their paid application [37].

It was created in 2012 under the name of “End-to-End Encrypted Messaging
Application” or “EEEMA” and later renamed to “Threema” [43]. The app
was created by Manuel Kasper, Martin Blatter and Silvan Engeler [94], three
Swiss software developers, who later went on to found Threema GmbH, the
company that now owns Threema.

The application started as a closed-source application, later publishing the
source code in an effort to enable independent security reviews of Threema
[41]. Threema GmbH has since released a whitepaper describing their cryp-
tographic design [38]. Its code was also professionally audited twice, once
by the Lab for IT security of the Münster University of Applied Sciences
and once by Cure53 [39], the latter describing Threema’s code quality and
project structure as being “unusually solid”.

This transparency helped Threema foster a large community of users: by
2022 the Threema developers claimed to be serving “more than 10 mil-
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1. Introduction

lion users” worldwide, as well as more than 1000 companies that use their
enterprise-level messaging app, Threema Work [37]. In response to What-
sapp’s change in Terms of Service, Threema has been advertised as a more
secure messenger [45], and their success led to the Swiss government and
Arma Suisse declaring them as their recommended method for communicat-
ing internally [34, 93]. Reportedly, Olaf Scholz, the chancellor of Germany,
uses Threema as his main method of communication [78].

1.2.1 The Security Promises of Threema

The developers claim that Threema is a “secure messenger”. We now try to
describe at a high level what security properties Threema is claimed to have.
Later, we will discuss how they relate to the properties provided by other
messaging apps. The following are taken from the Threema Cryptographic
Whitepaper [38], with preserved wording:

1. End-to-End Encryption: Messages sent from one user to the other are en-
crypted so that anyone who sees the ciphertexts, including the server,
cannot decrypt them.

2. Integrity: No third party should be able to tamper with or forge mes-
sages between two users.

3. Local Group Handling: The server does not know which groups exist
and which users belong to which group.

4. Forward Secrecy at the Client-to-Server level: An external attacker who
collects Client-to-Server ciphertexts, and then leaks a long-term key of
either the client or the server, cannot decrypt any past message.

5. User Authentication at the Client-to-Server level: A user can only log in
with a Threema ID if they are in possession of the private key corre-
sponding to that ID.

6. Repudiability of Messages: Any recipient can forge a message that will
look as if it was generated by the purported sender.

7. Replay/Reflection Attack Prevention: A malicious server should not be
able to replay or reflect messages to a user without knowing their
private key.

8. Protection of Private Keys in Local Storage: Private keys should not be
accessible by other apps on the same device or by unauthorized users.

9. Anonymity of Threema Safe Backups: A Threema Safe backup server can-
not tell which backup belongs to which Threema user by looking at
the uploaded data.
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1.3 Related Work

Security Analysis of Threema To our knowledge, there are no in-depth
analyses of the entire cryptographic design of Threema. Threema itself
has released a description of some of their cryptographic choices [38], but
without formalizing the protocols they created. The two audits cited above
concern mostly secure programming within the application, while also dis-
cussing cryptographically relevant aspects such as constant-time program-
ming, but without deeply investigating the cryptographic protocols. Rösler
et al. [80] compare the security of group chats in Threema with other mes-
saging applications, finding a vulnerability that would allow an attacker to
replay messages to a group of users. The issue has been fixed since version
3.14 of the application. A security researcher who goes by the nickname
“Soatok”, has written a blog post about Threema [90], highlighting some
vulnerabilities in Threema. We discuss part of their findings in detail later,
when describing the list of vulnerabilities (Chapter 4).

Cross-Protocol Attacks Protocols that are secure independently of each
other may not preserve their security when used at the same time. Examples
of this emerged in SSL 3.0 [96], which was extended by [65] for TLS 1.2. A
cross-protocol attack allowing an adversary to decrypt TLS ciphertext by
downgrading connections to SSL 2.0 was presented in [9]. Similar issues
were found in TLS application-level protocols [17]. In Threema, we show
that a malicious actor can create payloads with different meaning depending
on the context, breaking client authentication.

Compression Side-Channel Attacks In 2002, Kelsey [54] described a side-
channel created by compression algorithms: by analyzing the length of the
ciphertext resulting from compressing and then encrypting a message, an
attacker can learn the contents of the latter. Duong and Rizzo used the
side-channel to steal cookies from HTTPS sessions, using the fact that the
TLS and SPDY protocols compress messages before encrypting them. This
same problem is found in Threema, where the client compresses and then
encrypts a backup, which it then sends to the server. We use a similar attack
method on Threema, in order to leak the long-term private key of users.

1.4 Contributions

We first analyze the code of the Threema Android application and extract a
formal abstraction of the protocols used to secure communications both end-
to-end and client-to-server (Chapter 3). We describe multiple vulnerabilities
that we discovered within the Threema application, both theoretical and
practical, analyzing multiple threat models and describing the impact of the
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attacks for end users (Chapter 4). Namely, we provide a description of the
following attacks, as well as including other security considerations about
Threema:

1. We show that leaking a single client ephemeral key leads to permanent
impersonation by the adversary.

2. We break client authentication in the client-to-server channel by ex-
ploiting a cross-protocol vulnerability, using messages from the end-
to-end protocol.

3. We show that Threema does not enforce message ordering and that
a malicious server is able to reorder messages, as well as replay and
reflect messages under certain conditions.

4. We use a compression side-channel to recover the long-term key of a
client that is using the cloud backup solution provided by Threema.

Lastly, we describe mitigations for the vulnerabilities found, both in the
short term, by non-invasively modifying their protocols, and the long term,
suggesting well-analyzed protocols as alternatives (Section 5).
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Chapter 2

Background

In this chapter, we present an overview of the notation used throughout this
work (Section 2.1) and of the cryptographic primitives used by Threema,
along with their properties (Section 2.2). Finally, we define the concept of
“secure messaging”, as well as desirable properties for a messaging applica-
tion from a cryptographic standpoint (Section 2.5).

2.1 Notation Used

We use the typical notation utilized in the literature to describe protocols in
pseudo-code.

• {0, 1}k: a bit-string of length k.

• ε: the empty string.

• {0, ..., 255}: the set of all possible values for a single byte.

• {0, ..., 255}∗: the set of all possible byte strings.

• a ⊕ b: the result of the eXclusive OR operation (XOR) between byte
strings a and b.

• |x|: if x is a (byte-)string, the number of characters (resp. bytes) in the
string. The character set will be clear from context. If x is a set, the
size of the set.

• x ←$ X : x is a value sampled uniformly at random from a set X . For
the purposes of this thesis, X will always have finite size and, thus, it
is always possible to sample uniformly at random.

• x ← y: x is assigned the same value as y.

• x ← A(y): x is assigned the value returned from the deterministic
algorithm A with input y.

7



2. Background

• x ←$ A(y): x is assigned the value returned from the probabilistic algo-
rithm A with input y.

• s1 ∥ s2: the concatenation of the strings s1 and s2, in that order.

• T[k]: assuming that T is a table that maps keys to values, the value
contained in T corresponding to key k. If there is no such value, then
T[k] returns ⊥. To assign the value v to the key k, we write T[k]← v.

• s[i]: assuming that s is a string or an array, the element of s at position
i. We assume that the initial index is 1.

Let G be a group and let g be a generator of G. For the remainder of this
work, we will use multiplicative notation, even though all operations are
done on an elliptic curve, where additive notation would be more appropri-
ate. We prefer doing so since the multiplicative notation is more common
and the choice of notation is not relevant for the purposes of this thesis.

As a convention, we use the letters a and b when referring to long-term secret
keys and we use A and B as the corresponding public keys (A = ga and
B = gb respectively). We use the letters x and y when referring to ephemeral
secret keys and we use X and Y as the corresponding public keys. This last
notation will extend to the case where the keys are not strictly ephemeral
but where they are reused across multiple runs of the protocol, but in a
limited span of time.

We now list the notation we use to describe the Threema protocols:

• When referring to users, we denote them with symbols A, B, C... or
Ui, i ∈N.

• The server is denoted with S .

• Each user is assigned an 8-character string by the server, called the
Threema ID. We denote the Threema ID of user U as IDU .

• We denote the function that the server uses to generate Threema IDs
as GenID().1 This function returns an 8-character string composed of
uppercase letters and digits.

• If not using other names, we will refer to the private-public keypair of
user U as (pkU , skU ).

2.2 The Threema Cryptographic Toolbox

Threema reuses few primitives to build multiple protocols. We now describe
the cryptographic libraries and functions used, highlighting their properties

1We do not know how the generation process is done server-side, as we do not have a
way to analyze the server code
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2.2. The Threema Cryptographic Toolbox

and interfaces. The primitives for authenticated encryption (Section 2.2.1)
and key exchange (Section 2.2.2) come from the usage of NaCl, a crypto-
graphic library created by Bernstein, Lange and Schwabe and described in
[14]. NaCl attempts to provide an easy-to-use interface, while at the same
time providing high speeds and high security margins. The main abstrac-
tion provided by the library is the crypto box function, which combines an
elliptic curve Diffie-Hellman key exchange and an authenticated encryption
algorithm. We study both of these components separately in the next sec-
tions. For a more detailed overview, we refer to [12] which describes how
cryptography is implemented in NaCl. Threema uses a pure Java porting of
the original C code, provided by the jnacl library. 2

Furthermore, we study additional primitives used by Threema, namely:
password hashing algorithms, key derivation functions and compression
methods.

2.2.1 Authenticated Encryption

To provide authenticated encryption, Threema relies on the nonce-based
XSalsa20-Poly1305 ciphersuite, composed of the XSalsa20 stream cipher and
the Poly1305 one-time authenticator. XSalsa20-Poly1305 is the composition
proposed by Bernstein in [12]. The ciphersuite provides the following inter-
face:

• c ← AEAD.Enc(k, m; n): given a 32 byte key k, a message m and a 24
byte nonce n, compute the ciphertext c.

• m ← AEAD.Dec(k, c; n): given a 32 byte key k, a ciphertext c and a 24
byte nonce n, compute the message m corresponding to the ciphertext
or ⊥, if the decryption fails. Assume that ⊥ is different from any value
returned from a successful decryption.

We denote the nonce space as N = {0, 1}192.

On a high level, the encryption algorithm works by combining the key and
the nonce in the Salsa20 streaming function3 to obtain a keystream, part of
which is used as key for the authenticator, while the rest is used to encrypt
the plaintext. More specifically, the second part of the keystream is XOR-ed
with the plaintext to obtain a ciphertext, which is then fed into the Poly1305
authentication algorithm, yielding a 16 byte authentication tag. When de-
crypting, the tag is checked, ensuring integrity, after which the ciphertext is
decrypted by XOR-ing the keystream again.

When using XSalsa20-Poly1305 nonces must be carefully handled: reusing
the same nonce to encrypt different messages under the same key may lead

2https://github.com/neilalexander/jnacl
3See Section 7 of [12] for further details
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2. Background

to loss of confidentiality and of integrity. This is because using the same key
and nonce leads to generating the same keystream. This means, on the one
hand, that one can XOR the two ciphertexts together to obtain the XOR of
the plaintexts, as the keystream will cancel out. On the other hand, this also
means that the authentication key is the same for both ciphertexts. Due to
the properties of the Poly1305 authenticator, this allows for a key-recovery
attack on the authentication key, which allows the attacker to forge new
tags under the same key-nonce pair. Thus, one must take into consideration
the possibility of a collision when choosing to sample nonces uniformly at
random, due to the birthday bound. It is often more convenient to initialize
a counter with a value C and increment it by 1 for each message encrypted.
Unless the counter wraps around and assuming that there exists a method
to reliably preserve state in the application, this ensures that no nonce is
used twice. We denote with ctr ← Ctr.Init(C) the creation of a new counter
ctr with a starting value C. In Threema, C is a 16 byte value called the cookie
which is set as the most significant part of the nonce. The least significant
part is initialized to the big-endian representation of the number 1. We
denote the generation of a new nonce n from the counter as n← ctr.Next(),
where the current value of the nonce is returned and the counter is increased
by 1.

We highlight some interesting properties of XSalsa20-Poly1305. First, as-
suming that the Salsa20 expansion function4 is a PRF and that Poly1305 is
ε-almost-∆-universal (for some suitable parameters ε and ∆), then the com-
position is provably AE-secure. A proof for ChaCha20-Poly1305 was given
by Degabriele et al. [24], which can be slightly modified to obtain a valid
proof for XSalsa20-Poly1305. Secondly, since XSalsa20 is a stream cipher,
encryption preserves information about the length of the plaintext m: the
resulting ciphertext c will satisfy |c| = |m|+ |τ|, where τ is the authentica-
tion tag for Poly1305, whose length is 16 bytes. This last fact enables our
attack in Section 4.3.2, since it allows us to infer the length of the plaintext
from the length of the ciphertext.

2.2.2 Curve25519

Curve25519 was proposed by Bernstein as an elliptic curve to enable fast
and secure Diffie-Hellman computations [13]. Curve25519 is a Montgomery
curve defined over the prime field Z/(2255− 19)Z and operates only on the
x-coordinate of points by use of the Montgomery ladder algorithm. This
allows to have both public keys and private keys of 32 bytes.

On a high level, the interface provided by Curve25519 is the following:

4As specified in [12], Section 7
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• (x, X) ←$ KeyGen(): generate a private key x and the corresponding
public key X.

• K ← DH(x, Y): given a private key x and a public key Y, compute
the shared Diffie-Hellman value K. More precisely, given a scalar x
and the x-coordinate Y of a point on the curve PY, compute the scalar
multiplication K′ ← [x]PY. Finally return K, the 32 byte big-endian
representation of K′. This function is also called the X25519 function
in [13].

Let g denote the base point for Curve25519 defined in [12] (namely, the
point with x = 9): we can compute a public key X for the private key x by
computing X ← DH(x, g). Before being multiplied, x is passed through a
clamping step, to ensure that the private key is large enough and that it is a
multiple of 8, the cofactor of the curve.5 For conciseness, we will abbreviate
the DH step to X = gx. Due to the preprocessing, this abbreviation is a
slight abuse of notation. However, since no part of our analysis of Threema
relies on the internals of Curve25519 operations, it is sufficient to consider
the entire DH(·, ·) operation as a standard Diffie-Hellman key exchange.

2.2.3 Encryption Without Authentication

In some instances, Threema does not use authenticated encryption, opting
to use encryption without an authentication mechanism. For example, this
is done when saving data locally on Android devices, where access control
is sufficient to prevent other applications or users from accessing and tam-
pering with the stored data. Depending on the context, one of the following
two options is used:

• XSalsa20: using only the stream cipher, without the authentication.

• AES-CBC [32]: the Cipher Block Chaining mode of operation applied
using the AES block cipher.

Due to the lack of authentication, neither encryption scheme is secure against
a chosen ciphertext attack. In particular, both options are malleable: since
the XSalsa20 keystream is XOR-ed directly to the plaintext, flipping a bit in
the ciphertext also flips the same bit in the plaintext. For CBC, flipping a bit
in a ciphertext block also flips the same bit in the next plaintext block, while
mangling the current plaintext block.

XSalsa20 provides the same interface as XSalsa20-Poly1305. On the other
hand, AES-CBC requires an IV in its operation, which we assume to be

5This is necessary because using a multiple of the cofactor as a private key in the X25519
function ensures that, if the public key of the other party received lies in a small subgroup,
the result of a Diffie-Hellman computation will be O, the point at infinity, leaking no infor-
mation about the private key.
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generated internally in the encryption function and is part of the outputted
ciphertext. Thus, the following will be the interfaces provided:

• c← XSalsa20.Enc(k, m; n): given a 32 byte key k, a message m and a 24
byte nonce n, compute the ciphertext c.

• m← XSalsa20.Dec(k, c; n): given a 32 byte key k, a ciphertext c and a 24
byte nonce n, compute the message m corresponding to the ciphertext.
Note that this decryption cannot fail, since no integrity check is done.

• c ← AES-CBC.Enc(k, m): given a 32 byte key k, a message m, compute
the ciphertext c. Internally, this generates a 16 byte IV and outputs it
as the first block of the ciphertext.

• m ← AES-CBC.Dec(k, c): given a 32 byte key k and a ciphertext c,
compute the message m corresponding to the ciphertext. Note that
this decryption cannot fail, since no integrity check is done.

2.2.4 Key Derivation Functions

A key derivation function (KDF) is used to obtain a cryptographic key start-
ing from another secret value, for example the output of a Diffie-Hellman
key exchange or a password. The objective of a KDF is twofold: a KDF
can be used to extract from a value unsuitable for immediate cryptographic
usage (e.g. a password) something that can be used for cryptographic pur-
poses, such as a fixed-length key for an encryption scheme. On the other
hand, a KDF can also be used in combination with a set of labels to gener-
ate multiple keys from some initial high-entropy secret value. In [66, Sec.
13.5.1], Menezes et al. have described the importance of using different keys
in different modes of operation, a piece of cryptographic good practice that
is commonly called the “Key Separation Principle”. Using a KDF with a set
of labels helps achieve this principle in practice. Formally, this requires that
an adversary that does not know the initial secret value cannot distinguish
outputs of the KDF from random bit strings, even with knowledge of the la-
bels used. A formal treatment of the security of KDFs is given by Krawczyk
in [58].

We now describe the different KDFs that are used by Threema. When deriv-
ing a key using a KDF, Threema takes as input either a password or another
cryptographic key. In the first instance, standardized implementations are
used, whereas to derive keys from other keys, Threema employs a keyed
hash function, calling the construction the “Threema KDF”.

The Threema KDF

To derive a key from another cryptographic key, Threema uses the BLAKE2b
hash function [8]. The interface used by Threema is the following:

12
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• K ← BLAKE2b(P, σ, τ): given a password P, a salt σ and a label τ,
compute a 32 byte value K to be used as cryptographic material.

This method is only used in one location in the code, namely to derive a
key for the encryption of the metadata box from the key used to encrypt the
plaintext (see Section 3.3). In that instance, the values of the salt σ and the
label τ are, respectively, the fixed strings “mm” and “3ma-csp”.

Password-based KDFs

In many places, Threema uses a user-defined password for cryptographic
purposes, such as encrypting data. This has the advantage that a password
is often more memorable than a string of random bytes, but, on the other
hand, has much lower entropy. To prevent brute-forcing, dictionary attacks,
and rainbow table-based attacks, a specialized password hashing algorithm
should be used, in combination with a random byte string called salt.

For Threema, scrypt [72] is the main algorithm of choice, superseding their
previous choice of PBKDF2 [69]. The former is often preferred, since it is
memory-hard [7] and, thus, hinders brute-force attacks on specialized hard-
ware. Where PBKDF2 was used, the Threema application tries to update the
key material in order to use scrypt.

The scrypt algorithm is called with the following fixed parameters: n =
65536 (the cost parameter), r = 8 (the block size), p = 1 (the paralleliza-
tion parameter). Since the parameters n, r, p are the same throughout the
application, we do not include them in the abstraction.

Similarly, the PBKDF2 algorithm is called with fixed parameters: 100000
for the number of iterations and “HmacSHA256” for the Pseudo-Random
Function (PRF) used.

In addition to those fixed parameters and for both algorithms, the caller
must provide a password P, a salt σ and the length of the output in bytes λ.

• K ← scrypt(P, σ, λ): given a password P and a salt σ, return a value K
of length λ bytes to be used as cryptographic material using the scrypt
algorithm.

• K ← PBKDF2(P, σ, λ): given a password P and a salt σ, return a value
K of length λ bytes to be used as cryptographic material using the
PBKDF2 algorithm.

The cryptographic material K can be safely used as a symmetric key for au-
thenticated encryption, assuming that the password P has sufficient entropy.
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2.2.5 Compression Algorithms

A compression algorithm is used on a document in order to decrease its
size by removing redundancy. Threema uses multiple methods to compress
data, but they all fundamentally rely on the DEFLATE algorithm [27]. On
a high level, the DEFLATE algorithm uses a sliding window and, whenever
a sequence of bytes appears twice within the window, the one that occurs
later is replaced with a backreference to the first occurrence. Afterwards,
the algorithm uses Huffman coding to replace symbols with a more efficient
representation.

Threema uses two different compression algorithms for different purposes:
for cloud backups, it uses the gzip algorithm provided by the Java stan-
dard library, while for local data backups it uses an external library, called
Zip4j [62], to create an encrypted ZIP archive, following the AE-2 WinZip
standard [23]. Both the gzip and the zip file formats rely on the DEFLATE
algorithm, with the difference that zip compresses the files separately, rather
than employing solid compression (i.e. concatenating the files together and
then passing them through DEFLATE). This difference does not matter for
our purposes, since whenever gzip is used, there is only one file that is
compressed.

We give an overview of the AE-2 WinZip standard. The user sets a pass-
word P for the archive. Then, each file to be inserted into the archive is
compressed separately by using the DEFLATE algorithm. For each file f ,
a random 16 byte salt is sampled6 and utilized to derive a file encryption
key Kenc, f and a file authentication key Kmac, f from the password P using
PBKDF2. The file is encrypted under Kenc, f using AES-CTR with null IV.
The ciphertext is then passed through HMAC-SHA1 under key Kmac, f in or-
der to derive an authentication tag. Finally, the salt, the ciphertext and the
tag are appended to the archive and the algorithm proceeds to the next file.
We note that file names are not encrypted in the zip metadata and thus will
be readable even without a password.

We only require the interface of the gzip(·) function and its inverse.

• m′ ← gzip(m): given a message m (byte string), return its compressed
version m′ using the DEFLATE algorithm.

• m ← gunzip(m′): given a compressed message m′, return its uncom-
pressed version m.

6This is assuming AES-256 is used, since different encryption algorithms cause different
lengths to be used for the salt
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2.2.6 Encodings

Threema uses multiple encodings for data, especially when representing
cryptographic keys. The three encodings used are hex encoding, base32
encoding and base64 encoding, a description of which can be found in [52].7

We use the following interface:

• m′ ← hex.Encode(m): given a message m (byte string), return its hex-
encoded version.

• m ← hex.Decode(m′): given a hex-encoded message m′, return a byte
string representing the decoded message.

• m′ ← b64.Encode(m): given a message m (byte string), return its
base64-encoded version.

• m ← b64.Decode(m′): given a base64-encoded message m′, return a
byte string representing the decoded message.

• m′ ← b32.Encode(m): given a message m (byte string), return its
base32-encoded version.

• m ← b32.Decode(m′): given a base32-encoded message m′, return a
byte string representing the decoded message.

For short, a value x has a base64 string representation denoted by xb64,
which is implicitly encoded and decoded as needed. Similarly, its hex string
representation is denoted by xhex and the base32 string representation is
denoted by xb32.

2.3 Transport Layer Security

Transport Layer Security (TLS) is a protocol used to protect communications
over TCP by establishing a secure channel between two parties. Its latest
version, TLS 1.3, is standardized in [75]. TLS has been extensively analyzed
in the literature throughout its history [15, 70, 59, 28] and is now reliably
used by billions of people.

Threema uses TLS to protect most, but not all, of their communications,
employing techniques such as certificate pinning within the application to
further prevent Man-in-the-Middle attacks.

2.4 Randomness Sources

Most cryptographic applications require a reliable and unpredictable source
of random bits. This is used, for example, to sample cryptographic keys,

7Hex encoding is called Base16 in the document.
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nonces or IVs in a way that is close as possible as sampling them uniformly
at random from the space of all their possible values. The Android and
iOS operating systems provide developers with functions that return bytes
sampled from a secure randomness source, which we usually call system
randomness.

In our analysis, we will mostly abstract away all explicit usage of a random-
ness source. For example, the key generations described in Section 2.2.2
implicitly use secure randomness. We assume that for all cryptographic pur-
poses, Threema samples by means of a secure randomness source. When-
ever we need to explicitly model usage of bits from secure randomness, we
use the following interface:

• s ←$ SecureRandom(λ): sample λ bits from system randomness and
return them.

2.5 Secure Messaging

Threema is but a single fish in a sea of competing messenger applications.
Each of them provides different properties and has a different cryptographic
design. The question we now turn our attention to is: which properties
should we strive for in a truly secure messaging application? Against which
sort of adversaries should we protect?

Confidentiality, integrity, and authenticity appear to be the baseline for se-
curity properties: a messenger cannot be considered secure if a third party,
or even the server itself, can observe messages in plaintext. Nor should it be
able to alter the conversation by injecting new messages or modifying mes-
sages in flight. Furthermore, an attacker should not be able to claim another
user’s identity as their own. However, we argue that these properties, while
essential, are not sufficient.

On the one hand, a passive attacker still has the possibility to store all mes-
sages in transit, waiting for the opportunity to decrypt them when they man-
age to obtain the secret key by some means. This directly implies that keys
must be periodically changed, in order to reduce the impact that a single key
leakage would have. On the other hand, we would also like to ensure that
if a single key is leaked to a passive adversary, then the protocol can “heal”
and provide confidentiality and integrity after some time, by injecting ran-
domness in the exchange. These two properties are commonly denominated
“forward secrecy” and “post-compromise security”, respectively. The term
“perfect forward secrecy” was first coined by Günther in [47] and has since
been a property that protocols such as Off-the-Records Messaging (OTR)
[16], and later Signal [84] have tried to achieve. Post-compromise security,
on the other hand, has been formalized in [22]. Signal manages to provably
provide both properties, as shown in [21].
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One might ask whether providing such strong properties may hinder usabil-
ity. For example, it may render desirable features impossible to implement
due to security constraints, making the developer unable to meet the user’s
needs. Additionally, it can be argued that leaking session keys or long-term
keys requires a very strong attacker and is a feat that is unlikely to hap-
pen in day-to-day communications. However, we note that Signal provably
provides both properties without affecting in any noticeable way the user
experience. This sets a baseline for any other messenger application, at least
from a security standpoint. For this reason, we argue that a secure mes-
senger should strive to obtain at least what is provided by Signal and, if
possible, even more.

Threat Models While an external attacker is the main concern when try-
ing to protect communications, we stress that all the properties cited above
must hold even in the case where the server has been compromised. Indeed,
as the server often acts as the message router and as a directory for public
keys, it would be a very strong assumption to believe the server to be a
trusted entity. Additionally, the companies that run large-scale messaging
applications are also susceptible to subpoenas, search warrants, and espi-
onage. A truly secure messaging protocol must account for this attack point
in its design. It is unclear if Threema assumes a compromised server to be
within their threat model.

2.5.1 Security Properties

When designing a new protocol it is of key relevance to assess which proper-
ties the future and potential users will desire. This is a non-trivial task which
presents multiple problems. Ermoshina et al. [33] highlight two problems
for secure messaging app developers. First, there is a disconnect between
users and developers in understanding which are the needs of the users,
since the former do not necessarily understand the security provided by a
protocol, while the latter may often have to speculate which properties will
be required by the users. Second, there exist high-risk users, such as whistle-
blowers and political dissidents, which have different needs from low-risk
users in terms of the security properties required. We argue that the same
issues apply to Threema, as their threat model is unclear, meaning that the
application might not be suitable for high-risk users. On the one hand, if
their application is not meant for high-risk users, they are not explicitly stat-
ing so in any of their documentation. On the other hand, if the Threema
developers believe their app to be used for high-risk users, we believe there
to be a mismatch between the security properties that Threema explicitely
provides, described in Section 1.2.1, and the ones that have been shown to
be needed by such users.
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In their Systematization of Knowledge paper, Unger et al. [95] give an overview
of properties that a secure messaging application may have. Among the
properties that they highlight, we stress that Threema does not claim to pro-
vide and, indeed, does not provide a few important features. First, forward
secrecy in Threema is only guaranteed at the client-to-server level, rather
than at the end-to-end, meaning that more trust is required towards the cen-
tral messaging server than usual. Second, it does not enforce any property
on ordering, neither causal (i.e. messages should be visualized to the user in
the order in which they were sent) nor global (i.e. all participants in a group
communication should see messages in the same order). Lastly, it does not
mention post-compromise security.

Signal and, more recently, Whatsapp manage to provide all of the aforemen-
tioned properties in their design. In particular, most of their cryptographic
design revolves around the double ratchet algorithm, which creates a chain of
KDF steps and of Diffie-Hellman key exchanges in order to securely gen-
erate new keys for each message that is sent. This ensures that the impact
of a single key leaking is minimal. Threema, on the other hand, relies on a
different cryptographic design which we will describe in the next chapter,
which lacks relevant security properties.
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Chapter 3

The Threema Cryptographic Design

Threema presents multiple protocols necessary for its functioning. We start
with an overview of the architecture of Threma, giving a bird’s eye view of
the servers and how the application is meant to be used. Then, we discuss
the cryptographic design. At its core, we find the messaging protocol, which
is responsible for encrypting messages end-to-end, securely sending them to
the server, and decrypting them at the other end. This protocol is split into
two parts, an end-to-end protocol that uses the long-term keys of the users
(Section 3.3), and a client-to-server protocol that establishes a secure channel
between the user and the server (Section 3.4). Additionally, a registration
protocol is necessary for users to create accounts and to record their public
key with the Threema server (Section 3.2). The contact discovery system
allows user to discover which of their contacts is also using Threema (Section
3.6). Furthermore, Threema allows the user to backup their personal data
in three different ways, which we analyze separately (Section 3.7). Finally,
we briefly describe the solution that Threema uses for multi-device support,
called by its developers “Threema Web” (Section 3.8).

3.0.1 Methodology of the Analysis

In order to analyze the architecture of the Threema application, we mainly
analyzed the source code of the mobile application, which has been pub-
lished by Threema on Github. We mainly analyzed the version of the An-
droid mobile operating system.1

The cryptographic description for the client was abstracted from the Java
code of the application. Since we did not have access to any server code,
we inferred its functionality from the replies to the client’s messages. In our
analysis, we tried to assume as little as possible of the server, which means
that its behaviour may differ from what would be expected from a honest

1https://github.com/threema-ch/threema-android
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server. Thus, in our analysis we must consider the possibility of the server
acting maliciously.

To test the results of our analysis we referred to a previous description of the
Threema protocol written by Jan Ahrens [3], which is limited to the client-
to-server protocol, and the Threema whitepaper [38], which describes the
architecture at a high level. Additionally, we wrote various scripts in Python
that simulated specific client functionalities in order to test the server’s be-
haviour.

3.1 The Threema Architecture

The high-level architecture of Threema is depicted in Fig. 3.1. Each user
has their own mobile device with the Threema application installed on
it. Throughout its functioning, this device connects to multiple Threema
servers, each of which serves a different purpose. The directory server con-
tains the list of all Threema users and is used at registration time to register
a new public key, as well as to receive other users’ public keys when con-
tacting them. The directory server exposes a REST API to the public, served
over HTTPS. The chat server is used to send and receive messages. A custom
client-to-server protocol is used by clients to securely connect to this server
over TCP. The Threema Safe server is used to upload and retrieve backups
created with the cloud backup feature of Threema (Section 3.7.1). Finally,
the media server is used to upload media messages meant for other users, in
encrypted form. The connection with the media server also happens over
HTTPS.

From now on we will often refer to a “server” without explicitly describing
which server we mean, since it is not relevant and the server we refer to
will be clear through context. Note that usually a single abstract server is
concretely composed of multiple physical servers, among which the load
is shared and that can communicate with each other. Since this aspect is
irrelevant for our work, we will only speak of a single server, even when
multiple servers are involved.

3.2 Registration Protocol

Whenever a user C first creates an account, they are prompted to move their
finger around the screen for a few seconds. This process is used to harness
entropy from the user, by regularly collecting the (x,y) position of the finger
along with the timestamp, and hashing all the positions and timestamps
collected using SHA-256. The result is a 32 byte string called “seed”. Let
SeedGen() be the procedure that generates the seed. Another random 32
byte string is sampled from system randomness and is XOR-ed together
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Figure 3.1: The high-level architecture of Threema.

with the seed to obtain the private key a. The corresponding public key
A = ga is then computed from the private key and sent to the server, along
with the license that proves that C has bought the app. The license can be
either bought from standard digital distribution services such as the Google
Play Store and the Apple App Store, or from Threema directly, through their
website. We note that whenever a license is bought, the user’s personal data
is linked to the license code, as it is required for completing the purchase.
Whenever the license code is sent to the server during registration, it would
be possible for Threema to match a Threema account to a particular identity,
breaking pseudonymity.

Algorithm 1 shows the key generation process in pseudocode.

Algorithm 1 Threema Long-term Key Generation (LongTermKeyGen)
1: procedure LongTermKeyGen( )
2: s←$ SeedGen()
3: s′ ←$ SecureRandom(256)
4: a← s⊕ s′

5: A← ga

6: return (a, A)

Afterwards, a challenge-response protocol is run between the user and the
server in order to register the newly generated public key. The protocol is
run over a TLS-protected connection, with the support of certificate pinning
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on the client to avoid MitM attacks. The server samples an ephemeral key-
pair (y, Y) and a random byte string m̃. Afterwards, it prepends a 0xff byte
to m̃ to obtain the challenge value chall, which is then encoded in base 64.
The reason for prepending the 0xff byte is to patch a vulnerability that we
will discuss in Section 4.2.3. The ephemeral public key Y and the encoded
challenge challb64 are both sent to the client. To prove possession of the pri-
vate key, the client derives a key from the long-term private key a and the
given ephemeral key Y: Kreg ← DH(a, Y). This key is then used to encrypt
chall with the fixed nonce “createIdentity response.”, sending the corre-
sponding ciphertext to the server. If the ciphertext decrypts correctly, and
the plaintext corresponds to the original challenge chall, then the protocol
succeeds. Finally, the server samples a new Threema ID and returns it to the
user. Internally, it will also map the public key to the Threema ID in its own
database. If the protocol fails at any point, the client can retry by sampling
a new key pair and restarting the protocol. Figure 3.2 shows the flow of the
registration protocol.

Assuming that the server has not been compromised, the only way by
which the client can pass the verification with non-negligible probability
is by knowing either the private key a or the private key y. Since (y, Y) is
randomly sampled by the server during the protocol and discarded imme-
diately after the protocol has run2, the latter case is unlikely to happen.

Multiple accounts can be created under the same license, however Threema
limits the number of Threema IDs that can be generated.

3.3 End-to-End Protocol

We now discuss the cryptographic core of the encrypted messaging pro-
vided by Threema. The messaging protocol itself is the result of the compo-
sition between two protocols: an end-to-end protocol, whose responsibility
is to provide confidentiality and authenticity between two users against any
third party, and a client-to-server protocol, which establishes a secure chan-
nel between the user and the server, in order to hide metadata from network
attackers. In practice, this means that packets are encrypted twice: the ac-
tual message is encrypted and placed within an end-to-end packet, which is
itself re-encrypted and placed within a client-to-server packet. We begin the
analysis by describing the former protocol, the End-to-End protocol (or E2E
Protocol).

Assume Alice (denoted A) and Bob (denoted B) want to communicate and
that each of them has the authentic long-term keypair of the other party.
We denote their keypairs as (a, A) and (b, B), respectively. Without loss of

2This is inferred by the fact that registering multiple times in a short timespan leads to
different keys being used.
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Client A Server S

(a, A)←$ LongTermKeyGen() A (y, Y)←$ KeyGen()

chall←$ {s ∈ {0, ..., 255}∗ : |s| > 32}

chall← 0xff ∥ chall
Yb64 ∥challb64

if chall[1] ̸= 0xff then abort

Kreg ← DH(a, Y) Kreg ← DH(y, A)

c← AEAD.Enc(Kreg, chall; n) cb64 chall′ ← AEAD.Dec(Kreg, c; n)

if chall′ ̸= chall then abort

IDC IDC ← GenID()

Figure 3.2: The Threema Registration protocol. Boxed statements come from a patch present
only on Android versions ≥ 4.62 and iOS versions ≥ 4.6.14. The nonce n is the fixed string
“createIdentity response.”. Not shown in the picture is the license-checking protocol, where the
client sends its license to the server as proof of purchase.

generality, we assume here that Alice is the sender, Bob is the receiver and
that Alice wants to send a message m.

3.3.1 Message Types and Serialization

In Threema, a message can be of many types. To distinguish between types
during serialization, a one-byte value is assigned to each of them (the type
byte). We now list a selection of the message types, along with their type
byte (in parenthesis) and a brief description on how they are serialized.

• Text message (0x01): The message content is serialized as a byte string
representing UTF-8 characters.

• Image/Video/Audio/File message (0x02, 0x13, 0x14, 0x17, respectively):
The media is encrypted using XSalsa20-Poly1305 under a random key
K and a random nonce n. The encrypted media is sent to the me-
dia server, which returns a blob ID. To serialize the message, the app
concatenates the blob ID, n and K.

• Delivery Receipt message (0x80): Given a list of message IDs of messages
to be ACK-ed, the receiver concatenates the messages IDs and sets the
resulting string as the serialized version.

• Typing Indicator message (0x90): The serialized message consists en-
tirely of a single byte, representing a boolean. If the value is 1, the
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user has started typing, while 0 means that the user has stopped typ-
ing.

Before encrypting, each message is serialized, the type byte is prepended
and a random amount of PKCS7 padding (as described in [53], Section 10.3)
is appended. The amount of padding is chosen randomly by sampling an
integer in the [1, 254] range from system randomness. We will refer to the
concatenation of the type byte, the serialized message and the padding as
the plaintext (ptxt for short).

3.3.2 Encryption and Dispatch

In the E2E protocol, the plaintext is encrypted using the long-term keys
of the users. In our example, Alice will derive KA,B ← DH(a, B) as the
encryption key. This key is then used to encrypt the plaintext using the
XSalsa20-Poly1305 AEAD, under a randomly sampled nonce n. We call the
resulting of this encryption the ciphertext (ctxt for short).

To create the packet that will be sent to the server, additional metadata has
to be added. We list here all the values contained in the packet, putting in
parenthesis the shorthand notation that we use for Figure 3.3:

• Threema ID of the sender (src).

• Threema ID of the receiver (dst).

• A random 8 byte message ID (msg-id).

• The little-endian representation of the time at which the message was
sent (timestamp).

• A set of single-bit flags that encode various characteristicss of the mes-
sage, such as whether a message should be ACK-ed or whether it is a
VoIP message. This field is irrelevant for our analysis. (flags).

• A zero byte.

• The little-endian representation of the length of the metadata box (See
below, metadata-len).

• The nickname of the sender (src-nickname).

• The metadata box itself (See below, metadata).

• The nonce n used to encrypt the message (nonce).

• The ciphertext (ctxt).

All the metadata listed above is inserted in the packet in plaintext, without
any integrity mechanism to prevent tampering by an adversary. Threema
prevents this, to a small extent, by including an optional value called the

24



3.3. End-to-End Protocol

src dst msg-id

msg-id

timestamp

timestamp src-nickname

flags 0x00 metadata-len src-nickname metadata nonce

nonce

ctxt

K KDF E E

ptxt

Figure 3.3: Structure of an E2E encrypted message. The input to the KDF is the key mate-
rial. The salt and label are implicitly input into the KDF, taking values “mm” and “3ma-csp”,
respectively.

metadata box. This value is constructed by concatenating the message ID, the
timestamp and the nickname of the sender and encrypting it using XSalsa20-
Poly1305, under the same nonce n that was used for the plaintext and under
the key Kmeta

A,B ← BLAKE2b(KA,B , “mm”, “3ma-csp”). Whenever a message is
decrypted, the data contained in the metadata box will take priority over the
data outside of it. This harnesses the integrity protection provided by the
AEAD scheme, which, at first, seems to prevent an attacker from tampering
with the values of the message ID, timestamp and nickname. However, as
the presence of the metadata box is optional, an attacker can set the length of
the metadata box (metadata-len) to 0, and remove the metadata box itself,
which in turn removes all integrity protection of the values cited earlier.

We remark that, since this protocol only uses long-term keys, it cannot pro-
vide forward secrecy at the end-to-end level. Threema attempts to mitigate
this by providing forward secrecy at the client-to-server level, an unsatisfy-
ing solution given that the server always sees the end-to-end packets and can
thus be considered a target by any adversary that wants to bypass forward
secrecy.

We summarise the encryption process pictorially in Figure 3.3.

Retrieving Long-Term Keys

Retrieving the authentic long-term key of another user is a non-trivial task
for a messaging application. This is due to the fact that users must be able
to add new contacts even if the other person is offline, to avoid impacting
the user experience, thus disallowing for interactive protocols. This leads to
the necessity of having a trusted server that holds all long-term public keys,
and can thus be queried when a user wants to contact another person for
the first time. In Threema, this role is taken on by the directory server.

When a user (the sender) wants to send a message to another user (the re-
ceiver), they must know the Threema ID of the latter. The sender client will
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fetch the public key of the receiver by sending a GET request to the server
over HTTPS, including the Threema ID of the receiver in the URL. The server
will reply with a JSON message containing the base64 encoding of the re-
ceiver’s public key if the user exist, or returning a 404 (Not Found) HTTP
error if no corresponding user was found. The key of the receiver is then
saved on the device storage, in order to be used in the future.

There is no guarantee, however, that the key returned from the server is
the authentic key of the receiver. A compromised server might decide to
return a different key, to which it knows the corresponding private key. If
this is done, then the server would be able to decrypt the communications,
effectively obtaining a Man-in-the-Middle position.

To combat this, Threema uses an out-of-band technique to check if the keys
that the server has distributed are correct, and assigns an indicator of the
trust level to each contact. This indicator is called the verification level by
Threema. We list the possible values of the verification level:

1. Level 1 (Red): The public key has been fetched from the Threema server
because a message has been received from this contact for the first time
or because the Threema ID of this contact was inserted manually. The
public key of the contact cannot be fully trusted.

2. Level 2 (Orange): The public key has been fetched by using the con-
tact’s email or phone number. Threema claims that this increases the
confidence in the authenticity of the public key, since the user can be
sure that if the server is honest, then they are talking to the owner
of that email or phone number. However, this is still vulnerable to a
malicious server providing non-authentic keys.

3. Level 3 (Green): The public key has been verified out-of-band. Assum-
ing no long-term key compromise has happened, the user can trust the
public key.

The out-of-band verification mechanism is based on users scanning each
other’s QR codes, which are contained in the app. We show in Fig. 3.4 the
QR code for a Threema user. Each QR code contains the Threema ID of the
user, as well as their public key. When the QR code is scanned, the public
key is checked against the key provided by the server by sending a HTTPS
request. If they match, the contact is automatically given a verification level
of 3. If there is a mismatch, the device will alert the user that there was
an error and that the QR code scanned was incorrect. We note that the
wording of the error does not mention the possibility that the key provided
by the server is incorrect, which may lead users to ignore the error even
if the server is acting maliciously. We also note that this method requires
the client who scanned a QR code to also fetch the key from the server,
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Figure 3.4: A screenshot of the Threema app for Android, with the QR code necessary to verify
the public key of the user

which forces the device to be connected to the internet when running the
out-of-band verification.

Nonce Handling

As stated earlier in Section 2.2.1, repeating the value of a nonce for the
encryption of two different plaintexts using XSalsa20-Poly1305 leads to a
loss of security, with the attacker gaining the ability of learning the XOR of
the plaintexts and of forging new valid ciphertexts for the same key-nonce
pair. In order to safely generate nonces, Threema stores all nonces, both for
outbound messages and for inbound messages. Whenever a new nonce n is
generated, its value is checked against all previously stored values, in order
to check its freshness. If the nonce has been seen before, a new nonce is
generated in up to five total attempts, after which the application returns an
error. This hedges against the possibility of the system randomness being
faulty and avoids the nonce-reuse vulnerability.

More specifically, instead of storing nonces, the application stores a keyed
hash of the nonces, using HMAC-SHA256 [56] and the Threema ID of the
user as key. This provides unlinkability between the nonce databases of
multiple users, since the same nonce will lead to different entries on differ-
ent devices. On the other hand, this increases the storage cost: a nonce is 24
bytes while the result of HMAC is 32 bytes in size.
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This mechanism also provides an important security property to the E2E
protocol: by checking nonces of inbound messages, the client can reject all
messages that contain an already-seen nonce. This automatically prevents
replay and reflection attacks on the E2E protocol. We note that, however,
this is not the most efficient way to defend against those attacks. For exam-
ple, the chain of key derivations in the Signal protocol, among other things,
ensures ordered delivery [87, Sec. 2.6] as well as replay protection with-
out having to increase local storage and without having to run a database
search for every message received. Another option that prevents reflection
attacks is to derive two different keys from the shared secret by use of a
KDF. Each key would be used for one direction of conversation, which ef-
fectively separates keys and is a technique that is widely employed in TLS
[75, Sec. 7.1]. Clearly, in the Threema cryptographic design the security
of the system against replay and reflection attacks entirely depends on the
nonce database, since deleting it would result in replay and reflection attacks
being viable again.

3.4 Client-to-Server Protocol

In order to disallow network adversaries from accessing the metadata in the
E2E messages, as well as preventing them from tampering with commu-
nications, a secure channel must be established between the client and the
server. In Threema, this channel is created by use of the Client-to-Server
protocol (C2S Protocol), which can be visualized as the composition of two
subprotocols:

• An authenticated key-exchange (AKE) protocol, which establishes an
ephemeral session key between the client and the server, as well as au-
thenticating each party to the other. We call this the handshake protocol.

• A transport protocol, which uses the session key established earlier to
encrypt and decrypt messages between the client and the server.

We analyze each subprotocol separately in the following sections.

3.4.1 The Handshake Protocol

The handshake protocol is executed after the user has registered, which
means that, at the time of the protocol execution, the server S has a database
which contains the long-term key of the user that has initiated the protocol.
We abstract this by defining a table Tusers[·] that maps Threema IDs to long-
term public keys. We also assume that every user knows the long-term key
of the server, since it is embedded within the application.

We remarked in Section 3.3 that the E2E protocol does not provide forward
secrecy: the C2S protocol is Threema’s attempt at providing it at the client-
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to-server level, disincentivizing a network attacker from storing messages
encrypted with long-term values. To do so, the handshake protocol must
establish a session key involving ephemeral keys, using the long-term keys
to authenticate the parties to each other.

We now describe the handshake protocol in detail. In our description, we
will refer to Fig. 3.5 for the message numbering. Assume user A, with long-
term keypair (a, A), wants to connect to the server S , with long-term keypair
(s, S). The client first generates an ephemeral keypair (x, X = gx) and a
16 byte value called the client cookie, and sends both values to the server
(Message 1). The purpose of the client cookie is to both provide freshness
to the exchange and to be later used to initialize the nonce counters for the
transport protocol. After receiving the client’s ephemeral public key and
the client cookie, the server generates its own ephemeral keypair (y, Y = gy)
and a 16 byte value called the server cookie. Then, it computes the first shared
symmetric key of the exchange K1 = DH(s, X), mixing the long-term key of
the server with the ephemeral key of the client, and uses it to encrypt its
ephemeral public key Y concatenated with the client cookie, using a random
nonce n. The server then sends the resulting ciphertext, along with their own
cookie (Message 2). When the client receives the message, it recomputes
K1 and checks if the ciphertext decrypts correctly. If so, the server also
checks if the client cookie in the plaintext corresponds to the one that the
client previously generated, aborting the protocol if there is a mismatch or
if decryption failed. At this point, both the client and the server derive
two additional keys: K, which is formed from the combination of the two
ephemeral keys and is used in the transport protocol as the session key,
and K2, which is the combination of the two long-term keys. Both also
initialize two counters: a counter for messages from the client to the server
ctrA (the client counter) and one for messages from the server to the client
ctrS (the server counter). The long-term symmetric key K2 is used by the
client to create the so called vouch box vouch ← AEAD.Enc(K2, X; n′) using
a random nonce n′. This vouch box acts as the authentication mechanism
between the client and the server since it relies on knowledge of the client
long-term private key and binds the client ephemeral key to the client’s
identity. The vouch box is concatenated with IDA and the server cookie
CS , and then encrypted using the session key using the first nonce from
the client counter ctrA (Message 3). The server decrypts the message with
K and tries to decrypt the vouch box with K2: if the decryption fails or
the value contained in the vouch box does not correspond to the client’s
ephemeral key, the server will abort the protocol. If the check succeeds,
the server sends a final confirmation message composed of 16 zero bytes,
encrypted with the session key and the first nonce from the server counter
ctrS (Message 4).

When the handshake is finished, the protocol yields the session key K, which
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will be used by the transport protocol.

3.4.2 The Transport Protocol

In the transport phase, the client and the server exchange messages, en-
crypted using the session key K established earlier and using nonces from
the client counter ctrC (for messages sent from the client to the server) and
the server counter ctrS (for messages sent from the server to the client).

If a decryption fails, the entire connection is dropped and a new handshake
is started. This prevents, for example, message reordering and message
removal by a network adversary, since either attack would require the client
or the server decrypting with a nonce different from the expected one.

Another instance in which the connection is dropped, this time by the server,
is when multiple devices try to connect to the server with the same Threema
ID. In this case, the older connection is dropped by the server, alerting the
dropped client that another device has connected. In fact, Threema expects
every Threema ID to login only from one device at a time and does not pro-
vide multi-device support, except for its own Threema Web solution (Section
3.8).

The behaviour of a client when the connection is dropped is to attempt
the connection again. Whenever the connection is dropped due to another
device connecting, up to 5 attempts are done for reconnecting, after which
the application will display an error to the user and will require a restart to
be able to connect to the server. If two devices are actively trying to connect
to the server, they will keep interfering with each other until one of them
relinquishes the connection. This is relevant for any attacker that wants to
attempt an impersonation attack, since using all 5 attempts will alert the
user that another device is trying to connect to the server with the same
Threema ID.

After a connection is established, the connection is kept alive until either
party decides to close the connection. In order to maintain the connection
and to check whether the connection has been dropped at the other end, the
client sends an echo request to the server every 180 seconds. If the server
does not reply within 20 seconds, the connection is deemed dead and a new
connection is attempted.

While the connection is alive, the server will send messages that are meant
for the user encrypted under the session key. Whenever the client receives a
message, it replies with an ACK in response to that specific message. If the
client does not send an ACK, the server will try to send the message again
when the client reconnects to the server. If the ACK has been received by
the server, the message will not be sent again by the server and we expect
the server to delete the message.
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Client A Server S
(sk, pk) = (a, A = ga) (sk, pk) = (s, S = gs)

(x, X)←$ KGen()

CA ←$ {0, 1}128

X, CA
(1)

(y, Y)←$ KGen()

CS ←$ {0, 1}128

K1 ← DH(x, S) K1 ← DH(s, X)

n←$ {0, 1}192

ctxt1 ← AEAD.Enc(K1, Y ∥ CA; n)

CS , n, ctxt1

(2)

Y ∥ C′A ← AEAD.Dec(K1, ctxt1; n)

if C′A ̸= CA then abort

K2 ← DH(a, S)

K ← DH(x, Y) K ← DH(y, X)

ctrA ← Ctr.Init(CA) ctrS ← Ctr.Init(CS )

n′ ←$ {0, 1}192

vouch← AEAD.Enc(K2, X; n′)

n1,A ← ctrA.Next()

ctxt2 ← AEAD.Enc(K, IDA ∥ n′ ∥ vouch ∥ CS ; n1,A)

ctxt2

(3)

IDA ∥ n′ ∥ vouch ∥ C′S ← AEAD.Dec(K, ctxt2; n1,A)

if CS ̸= C′S then abort

A← Tusers[IDA]

K2 ← DH(s, A)

X′ ← AEAD.Dec(K2, vouch; n′)

if X′ ̸= X then abort

n1,S ← ctrS .Next()

AEAD.Enc(K, 0128; n1,S )

(4)

Figure 3.5: The Threema Handshake Protocol. Counter-derived nonces are implicitly re-derived
on the receiving end and are not transmitted.
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3.5 The Group Messaging System

Threema provides users with the possibility of creating groups, similarly
to other messaging applications: when a message is sent to the group, it
is received by every group member. Threema’s implementation of group
messaging is based on client-side fan-out. Assume a group of k users G =
{U1, ...,Uk}: whenever a user wants to send a message m to the other users,
they encrypt the message against the public key of every other user, using
the E2E protocol.

We give a more technical explanation of the group messaging protocol.
Groups are handled exclusively on the clients, and the server is oblivious
to their organization. Without loss of generality, assume that a group is
created by user U1 and that the group includes all other users in G: U1 ran-
domly samples a group ID and creates a message which includes the group
ID, the identity of the creator, the name of the group, the list of all the mem-
bers, and the creation date. This message is then sent to all other users in G
in order to inform them of the group creation. Afterwards, all members will
have the same initial view of the group membership due to the information
contained in the message. Whenever there is the need for an update, such
as when removing or adding a member, an updating message is sent by U1
to all other members, who will, in turn, update their view of the group.

When sending a message, the process is similar to the standard E2E protocol,
except that it is encrypted against the public key of each user currently in
the group and that the plaintext also includes information about the group
to which the message belongs. More specifically, for each one-on-one mes-
sage type, there exists a group messaging counterpart, which also includes
the creator of the group and the group ID. Assume that Ui wants to send
a message m to the group: for each user u ∈ {Uj|j ̸= i}, the message m is
encrypted using the key KUi ,u ← DH(skUi

, pku) and a random nonce, sam-
pled independently for each recipient. All the messages are then sent to the
Threema server for dispatching.

While the update mechanism is enough to ensure that all users have the
same view of the group membership, there is no mechanism that ensures
that all users see the same messages in the same order, a property known
as transcript consistency. In fact, a user may modify their client to send the
message only to a subset of users in the group, without the other members
being able to notice. This is in contrast with Signal and Whatsapp, where
the protocol enforces transcript consistency among all users in a group.

32



3.6. Contact Discovery Protocol

3.6 Contact Discovery Protocol

Even though Threema can be used as an anonymous messaging app, users
have the possibility of linking their Threema account with an email or a
telephone number, which allows the user to be found via that contact infor-
mation.

Whenever a user wants to find which of their contacts is using Threema,
they can run what we call the contact discovery protocol. The protocol consists
of a simple set intersection, in which the user collects all the emails and
phone numbers in their phone book, hashes them and sends the hashes to
the Threema server.3 The server will then check which of those hashes are
also present in the Threema database, meaning that the contact information
corresponding to the hash belongs to a user of Threema. The server then
collects all the hashes found in the database, including the corresponding
identity and public key, and sends the information back to the client.

This is essentially the same system used by Signal [86] and Whatsapp, the
latter sending information in plaintext rather than hashing it [48]. In [48],
Hagen et al. raise privacy concerns in these types of system, since the server
will have a way of knowing the contacts of each person, including those that
may not even be aware of the app itself. Hashing phone numbers is also
insufficient, since they carry little entropy and can thus be bruteforced. The
impact for the privacy of the end users is that a server acting maliciously
could reconstruct their social graph, de-anonymizing them and their con-
tacts [20]. Signal tries to minimize the impact of this leakage by running the
contact matching protocol inside an Intel SGX enclave, which minimizes the
possibility of the server learning the results of the computation [86] and by
using privacy-preserving protocols [85]. This decreases the trust assump-
tions needed with respect to the server and increases confidence in the ser-
vice provided by Signal.

In order to prevent abuse of the system, the user must authenticate to the
server in order to obtain a string called a “match token”. This token can be
later used during the matching protocol to show that the user has previously
authenticated. The authentication protocol is the same that is used for the
registration protocol (Section 3.2), except that the nonce is now randomized
rather than being fixed.

3More precisely: the hash is implemented by using HMAC with one of two possible
keys, one of which is used for emails and one for phone numbers. We are not aware of any
reason behind this implementation.

33



3. The Threema Cryptographic Design

3.7 Backup Methods

In Threema there are three methods by which a user can backup their data
and, most importantly, their account, so that it can be later restored on
another device, or on the same device after having reset it.

1. Threema Safe: the cloud-based solution by Threema that enables users
to upload a backup to the Threema server, containing their private
key and information about their contacts. The user can later retrieve
and restore the backup with only the knowledge of a user-chosen
passphrase and of their Threema ID. This method does not include
chat history in the backup.

2. Data Backup: a method that allows the user to export all of their chat
history, their contacts, as well as the information necessary to recover
the account. This method creates an encrypted zip file that the user
can choose to store in another location, such as a computer or a cloud
storage service.

3. ID Export: this method exports only the private key of the user, allow-
ing the account to be easily restored on another device. This method
creates a string of text that can be imported into a new Threema instal-
lation and only requires the user to remember a passphrase of their
choice.

3.7.1 Threema Safe

When first creating an account, the user is prompted to activate Threema
Safe, in order to regularly backup their account information to the Threema
server. If a user wishes to do so, they may decide to initially skip the backup
process and opt-in at a later time by visiting the Backups section of the
application. To begin the protocol, the application prompts the user for
a passphrase, which is then checked against a local file of known weak
passphrases. If the passphrase is found to be weak, the user is asked to
confirm whether they wish to continue with that passphrase or if they want
to change it.4 After receiving a passphrase, the application builds the first
backup and sends it to the server.

To build a backup, the application collects the following information to build
a JSON string:

• General information about the device, such as the language and the
version of Android that is being run.

4Note that the file of weak passphrases is fairly short, given that it is stored locally in the
application. This implies that many weak passwords found in common weak password lists
will not be found in the one provided by Threema.
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• The private key of the user, encoded in base64.

• The current nickname of the user.

• Their phone number and email, if the user decided to link them to
their Threema account.

• A list of their contacts, containing for each contact:

– Their Threema ID.

– The time at which they were added as a contact.

– Their verification level.

– Their nickname.

– Other flags necessary for features of the messaging app: whether
the contact is verified in Threema Work, whether they send typing
indicators and read receipts, whether the contact has been hidden
in the application by the user and whether the contact is private.

– Their public key, only if the contact has been verified out-of-band
(Level 3 for the verification level).

• A list of groups to which the user belongs.

• A list of distribution lists5 to which the user belongs.

• A map of the settings chosen by the user for the functioning of the
app.

The app then uses scrypt with the chosen passphrase as input and the iden-
tity of the user as a salt to generate two 32 byte values. The first value is
the Backup ID and will be used to retrieve the backup without revealing the
identity of the user to the server, while the second value will be used as
the encryption key Kbkp for the backup. The JSON is compressed with gzip
and encrypted using the XSalsa20-Poly1305 AEAD using the key Kbkp and
a random nonce. The nonce and the AEAD ciphertext are then uploaded to
the Threema server, accompanied by the Backup ID.

To restore a backup, the user is prompted for their Threema ID and the
passphrase that was previously chosen. The application then re-derives the
Backup ID and the encryption key, using the former to recover the backup
and the latter to decrypt it. If the wrong passphrase was provided, then with
high probability the corresponding backup ID will be incorrect and will not
match any backup in the system.

5A distribution list is the method that Threema uses to create a broadcast channel, where
one user writes to many users at the same time. This differs from a group as it is unidirec-
tional and receivers do not know who else is in the distribution list.
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We describe the backup process in pseudocode in Algorithms 2 and 3. The
backup creation algorithm assumes that the JSON described above has al-
ready been created by the application and is given to the procedure as a
string bkp.

Algorithm 2 The backup procedure for Threema Safe
Input: A password (P), the Threema ID of the user (ID) and the JSON

backup (bkp)
Output: None

1: procedure ThreemaSafeBackupCreate(P, ID, bkp)
2: bkpID ∥ Kbkp ← scrypt(P, ID, 64) //|bkpID| = |Kbkp| = 32
3: bkpgzip ← gzip(bkp)
4: n←$N
5: bkpenc ← AEAD.Enc(Kbkp, bkpgzip; n)
6: SendBackup(bkpID, n ∥ bkpenc) //Send the backup to the Threema server

Algorithm 3 The backup restoring procedure for Threema Safe
Input: A password (P) and the Threema ID of the user (ID)
Output: None

1: procedure ThreemaSafeBackupRestore(P, ID)
2: bkpID ∥ Kbkp ← scrypt(P, ID, 64) //|bkpID| = |Kbkp| = 32
3: res← RetrieveBackup(bkpID) //Retrieve backup from the server
4: if res = ⊥ then abort
5: n ∥ bkpenc ← res
6: bkpgzip ← AEAD.Dec(Kbkp, bkpenc; n)
7: bkp← gunzip(bkpgzip)

8: RestoreFromJSON(bkp) //Restore backup to local device

We make a few observations about the Threema Safe backup protocol. First,
the backup data is uploaded to the Threema server via HTTPS, not enabling
a network adversary to recover the backup itself. Second, the backup itself
has no explicit connection to a given Threema ID, as it is identified by the
pseudorandom backup ID. However, the Threema server would often still
be able to link a backup to a Threema ID by observing the connections to
the messaging server (using the C2S protocol) and checking if the same IP
address has sent a backup. In that case, the server may also attempt an
offline brute-forcing attack, though the attack would still be hindered by
the memory requirements of scrypt. Third, although an attacker may not
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be able to recover the backup itself, the length of the backup will still be
visible through the TLS connection. Fourth, the client has a retry behaviour
whenever a backup fails. Usually, when Threema Safe is activated, a first
backup is started and backups are then regularly scheduled to be executed
every 24 hours. If, however, the backup fails for some reason, then the client
will attempt another backup as soon as the application is restarted. This
happens even if the application is behind a PIN or biometric login (but does
not happen if the entire application is protected with a passphrase, since
the passphrase protection locally encrypts the private key and must then be
unlocked to trigger a backup, see Section 3.9). These last two observations
are useful for our attack of Section 4.3.2, since they theoretically allow for a
weaker adversary to break the security of Threema.

3.7.2 ID Export

The most lightweight method to backup data in Threema is the ID export,
which allows the user to backup their Threema ID and their long-term pri-
vate key by using a passphrase. The result is a string that the user can save
or print, optionally in QR form, and restore at a later moment with only the
knowledge of the passphrase.

The application first prompts the user for a passphrase, which is then used
to derive a symmetric key by use of the PBKDF2 algorithm, using a random
8-byte salt. The symmetric key is then used to encrypt the concatenation
of the Threema ID and the long-term private key by using XSalsa20 with a
zero nonce. The resulting byte string is base32-encoded and split into sets
of 4 characters for better readability.

We show the pseudocode for the ID export process in Algorithms 4 and 5.

Because the choice of passphrase is free, an adversary that has control of
the device for a few minutes can create an export to which they know the
passphrase. This would allow them to clone the entire account, since they
would have control of the long-term private key. We discuss this further in
Section 4.3.1 and provide mitigations for this issue in Section 5.5.

3.7.3 Data Backup

As neither the Threema Safe method nor the ID export saves the chat history,
Threema provides an additional backup method that allows a user to export
the most of their local application storage. This includes all the information
backed up with Threema Safe as well as chat history and the public keys
of all contacts (recall that Threema Safe only stores public keys of verified
contacts). The result of the backup is a single encrypted zip file.
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Algorithm 4 The backup procedure for an ID Export
Input: A password (P), the Threema ID of the user (ID), the long-term

private key of the user sk
Output: The backup string

1: procedure IDExportCreate(P, ID, sk)
2: ptxt← ID ∥ sk
3: σ←$ {0, 1}64

4: Kbkp ← PBKDF2(P, σ, 32)
5: ctxt← σ ∥ XSalsa20.Enc(Kbkp, ptxt; 0192)

6: out← ε //Initialize out to the empty string
7: for i← 1 to |ctxtb32| do
8: out← out ∥ ctxtb32[i]
9: if i mod 4 = 0 then //Every four characters, add a hyphen

10: out← out ∥ “−′′

11: return out

Algorithm 5 The procedure to restore an ID Export
Input: A password (P), the exported ID backup (bkp)
Output: The Threema ID (ID) and the the long-term secret key sk

1: procedure IDExportRestore(P, bkp)
2: bkpdec← ε //Initialize bkpdec to the empty string
3: for i← 1 to |bkp| do
4: if i mod 5 ̸= 0 then //Skip the hyphens
5: bkpdec← bkpdec ∥ bkp[i]

6: bkpdec← b32.Decode(bkpdec)
7: σ ∥ ctxt← bkpdec //|σ| = 8
8: Kbkp ← PBKDF2(P, σ, 32)
9: ptxt← XSalsa20.Dec(Kbkp, ctxt; 0192)

10: ID ∥ sk← ptxt //|ID| = 8
11: return (ID, sk)
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To build the zip file, Threema follows the AE-2 WinZip standard [23], using
AES-256 as the base block cipher. We refer to Section 2.2.5 for an in-depth
explanation of the AE-2 standard.

The backup includes the following files:

• A settings file, containing basic application settings.

• A identity file, for the private key of the user, exported in the same for-
mat as the backup method of Section 3.7.2 and using the same pass-
word as the zip file.

• A contacts file, which is a CSV containing all information about the
contacts, including their long-term public key.

• For each contact, a CSV file for the conversation chat history with that
contact. Each file is named message <Threema ID>.csv, where <Threema
ID> is replaced by the actual ID of the contact.

• A groups file, which is a CSV containing all information about the
groups to which the user belongs.

• For each group, a CSV file for the group chat history in that group. Each
file is named group message <Group ID>.csv, where <Group ID> is
replaced by the actual ID of the group.

• A backup of all the distribution lists.

• A backup of all ballots and votes in ballots.

We note that, due to the way the zip format is built, all the file names are
accessible without the necessity of a password. This directly implies that an
adversary that has access to the encrypted zip file can see who the user has
as their contacts, due to the presence of the conversation chat history files.
Furthermore, this backup method suffers from the same deficiency as the
data backup: an adversary that has access to the device for a few minutes
can simply export all the user data and thus clone the account. The same
mitigations described above apply to this backup method.

3.8 Threema Web

As discussed earlier, Threema only allows one device to be connected to
the messaging server at any given time, for each Threema ID. To improve
user experience, however, Threema has provided the possibility to add other
devices that would be linked to a single “main” device, which would be, in
turn, connected to the messaging server. This solution is called Threema
Web, which is accessible via a web browser or via a desktop application. For
the rest of the discussion we will be focusing on the web browser setting,
although everything will apply similarly to the desktop application.
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Threema Web relies on the phone being connected to the messaging server
and relaying messages to the browser or the desktop device, allowing a
user to receive and send messages from any device. The relaying is done
in a peer-to-peer fashion, protected by a layer of DTLS [76] and another
custom protocol provided by the SaltyRTC library [81]. According to the
SaltyRTC documentation, the reason for using two encryption protocols is
that SaltyRTC “[...] is able to protect the clients’ signalling data even in case
the underlying TLS encryption [...] has been completely broken” [81].

We now describe, at a high-level, the architecture of Threema Web. The
three types of entities found are the main device, the signalling server and
the secondary devices. To connect devices on a peer-to-peer (P2P) level, it
is necessary to bypass common network functionalities such as NAT, which
normally prevents two devices from connecting directly to each other. In
order to solve this problem, Threema uses a signalling server to which the
single devices connect, exchanging handshake messages through the server.
This handshake establishes a session key that is used to create a secure P2P
channel between the web client and the main device and through which
the messaging of the Threema application can be relayed. We refer to the
Threema cryptography whitepaper for a more detailed explanation of the
protocol [38].

We hope that future work will analyze Threema Web more in depth, possi-
bly analyzing the interactions between Threema Web and the other Threema
protocols. In particular, SaltyRTC uses a design which is very similar to the
one used by Threema, which opens up the possibility of unwanted cross-
protocol interactions between the application and the library.

3.9 Application Access Control and Local Encryption

Messaging applications must take into consideration the threat posed by an
adversary that has control of the device. While the access control provided
by the device may seem enough, this would not include common scenarios
where the user forgets their phone in an unlocked state or where they are
handing their unlocked device to another person. For these scenarios, it
is convenient to include an additional access control mechanism, such as a
PIN, passphrase or a biometric login.

Threema provides two different types of protections. The first one is a sim-
ple UI lock, which does not cryptographically protect the device and is
meant for preventing an “occasional” adversary from accessing the appli-
cation data. This UI lock uses either a PIN, a passphrase or a biometric
login to protect the application by showing a login screen before the main
view of the application. In Section 4.3.2 we show that this protection is in-
sufficient against an adversary that has control of the device. The second
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is a stronger cryptographic protection that involves the use of a passphrase,
with the objective of encrypting the entire local storage of the application.
During the initial setup of the application, a 32 byte AES key is randomly
sampled by the application, which will be used to encrypt the local storage
of the application. We will call this key the master key. In order to protect
the master key, a user-chosen passphrase is used to derive a 32 byte secret
by use of scrypt (or PBKDF2, in previous versions of the application) with a
random salt. The resulting secret is XOR-ed with the master key in order to
encrypt it. The resulting encrypted key is stored in the application local stor-
age. Naturally, without the protection given by the passphrase, an attacker
with the ability to read the device storage could also read the unprotected
master key, making any encryption essentially useless.

To encrypt the application data, Threema uses AES-CBC which, as discussed
in Section 2.2.3, does not offer any integrity. This is done by either directly
encrypting files with the standard Java cryptography library or by encrypt-
ing the SQLite database [92] using the SQLCipher library [64]. To protect
the data against tampering, Threema entirely relies on the access control
provided by the operating system, which ensures that all data stored by
Threema is made inaccessible to other applications.
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Chapter 4

Attacks

In the previous chapter, we analyzed the choices that the Threema develop-
ers have made in creating their protocol. In this chapter, we show that some
of these choices are suboptimal and, in some cases, lead to both theoretical
and practical attacks. We consider three models:

• An external threat actor that has access to the network and can interact
with the victim. The attacker will often have some additional power
that we will state while discussing the attacks. We call this the external
threat actor model.

• A malicious actor that compromises the Threema server, gaining access
to the contents of the server as well as being able to act as the server
in protocol runs. We call this model the compromised Threema model.

• An agency that takes control of the unlocked device for a short amount
of time. This might be the case with border searches or when protesters
are arrested by police forces and searched for incriminating evidence.
Assuming that the device cannot be withheld for a long time and can-
not be invasively tampered with, the application should still provide
a certain amount of security. We call this model the compelled access
model.

We stress that any reasonable security analysis must consider the possibility
that the messaging server is acting maliciously. There are many incentives
for national security agencies, even ones outside Switzerland, to exert con-
trol over the users of Threema. As an example of a similar case, in 2020 it
was discovered that the CIA secretly owned the Swiss company Crypto AG,
which sold backdoored machines to other national governments [71].

While not all the attacks that we present are practical, theoretical attacks
are also relevant when discussing the security of a real-world software.
First, what might be an attack of theoretical interest at first, has the pos-
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sibility to escalate into a greater security danger after a few improvements.
Second, threat models differ between users: our compelled access model
makes strong assumptions about the situations in which an attacker is able
to achieve a break but, given the possible implications of an attack, this
might still not be acceptable for certain individuals, such as whistleblowers
and investigative journalists.

We now describe in detail the attacks that we found on the Threema appli-
cation, grouped by the threat model considered.

4.1 External Attacker Model

4.1.1 Attack 1 (Impersonation by Randomness Failure)

In this attack we show that a randomness failure on the client in the C2S
protocol can lead to a permanent impersonation attack. More specifically, if the
client generates a weak ephemeral key which an attacker can discover, then
the attacker can use information from the compromised session to create
new sessions with the server where they impersonate the victim. This allows
the attacker to discover the metadata attached to the messages intended
for the victim: namely the ID and the nickname of the sender, and the
timestamp of the message. In addition to this, the attacker can selectively
suppress messages intended for the victim, preventing them from ever being
received. Furthermore, the attacker can impersonate the server to the user as
long as the user keeps using the same ephemeral key, which for the Threema
Android application is up to one week. In our analysis, we refer to Fig. 3.5
for the numbering of the messages in the C2S protocol.

Attack Assumptions and Adversarial Capabilities

We assume that the attacker has the power to reveal the ephemeral secret
key x of the client, an adversarial ability which is commonly found in for-
mal security models for authenticated key-exchange protocols [18, 60]. We
further assume that the attacker has the transcript of a complete handshake.
This can be trivially done by any network adversary that can see and sub-
sequently store all the messages of the C2S protocol run between the victim
and the server.

Attack Description and Impact

Since the attacker has both the transcript and the ephemeral private key
of the client, they have all the material necessary to derive K1 and decrypt
message (3) of the C2S handshake, from which they can recover the value
of vouch. Because the attacker knows the ephemeral key, they can execute
a new instance of the C2S protocol where the same ephemeral key is used,
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derive the new session key, and the replay the vouch box, encrypted under
the new session key. Since the vouch box is valid for the ephemeral key used
and contains no way for the server to check its freshness, it will be accepted
by the server, making the handshake complete successfully.

This allows the attacker to impersonate the user while communicating with
the server, allowing the adversary to obtain access to all the end-to-end
encrypted messages meant for the victim. This, in turn, reveals all meta-
data in all communications directed towards the victim, allowing the at-
tacker to learn with whom they have been communicating, as well as all the
message timestamps. Most importantly, this attack sidesteps the forward-
secrecy property that the C2S protocol provides with respect to an external
attacker. Indeed, after the attack, the adversary sees E2E-encrypted mes-
sages, which only use long-term keys for the encryption, as described in
Section 3.3. Thus, while this attack in itself does not provide the attacker
with the ability of reading the inner plaintext, it provides the possibility of
storing E2E encrypted messages that could be decrypted in the future if the
adversary manages to reveal the long-term keys of the user.

In addition to this, the attacker gains the ablity to selectively drop messages
from the conversation by deciding which messages to ACK to the server. As
discussed in Section 3.4, if a message in the C2S protocol is ACK-ed by the
attacker, it will not be received by the victim when they next connect to the
server, virtually deleting that message from the conversation on the victim’s
end.

We stress that, as long as the attacker and the victim do not connect to the
server at the same time, this attack is not detectable by the client. If they
were to connect at the same time, the attacker will know this is the case,
since they will receive the error message from the server telling them that
another device has connected. At this point, the attacker would relinquish
the connection to the victim, in order to avoid detection.

The main weakness that is highlighted by this attack is that vouch does not
contain any fresh value that would prevent its replayability. In order to
prevent this class of attacks, the vouch box should not only depend on the
ephemeral key chosen by the client, but on a value decided by the server.
For instance, the server cookie could be included within the vouch box,
rather than being outside it. This attack also shows that, due to the way
the protocol is constructed, an ephemeral key becomes as important to pro-
tect as a long-term key, which is a very non-standard assumption for any
key-exchange protocol. Most notably, a similar vulnerability was present in
the Off-The-Record (OTR) protocol and was discussed by Raimondo et al. in
[74]. The authors highlight the consequent lack of session independence prop-
erty in OTR’s protocol: “the exposure of ephemeral session-specific secrets
should have no bearing on the security of other sessions”, a property that
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Threema also lacks due to this weakness.

Client-Side Ephemeral Key Misuse An additional problem with the C2S
protocol lies in how the ephemeral keys are handled client-side: if the ap-
plication is never restarted, then the same ephemeral key is used for up to
seven days before generating a new one. Leaking an ephemeral key allows
an attacker to impersonate the server to the user by forging message (2)
using the server’s public key and the compromised ephemeral key x. In
turn, this implies that the attacker has the power to also see the outbound
E2E-encrypted messages of the victim that are meant for the actual Threema
server. This reveals additional metadata, allows the adversary to drop ar-
bitrary messages, and allows other attacks in the “compromised Threema”
model such as the ones described in Sections 4.2.1 and 4.2.2. This is possi-
ble since, unlike other AKE protocols like in the Noise Protocol Framework
[73], the session key does not depend on the long-term keys but uniquely
on the ephemeral keys. In Threema, if ephemeral keys were to be freshly
generated for each handshake, this problem would be confined to the single
compromised session. However, by reusing the same ephemeral key for a
long time, the effect of this attack is amplified.

Server-Side Ephemeral Key Misuse Finally, we highlight a further prob-
lem with a similar reuse of ephemeral key on the server side. Whenever
the same ephemeral public key is used multiple times by the user within a
short span of time, the server will use the same ephemeral key as well. By
running experiments, we noticed that we could prolong the lifetime of the
server ephemeral by regularly running the C2S protocol with the same client
ephemeral key. In our observations, we prolonged the lifetime of the server
ephemeral key for multiple months at the time of writing, and we conjecture
that an attacker could possibly prolong it indefinitely. We hypothesize that
the server caches ephemeral keys in a structure similar to a key-value store,
where the client’s ephemeral key is mapped to a server ephemeral key and
where a Least Recently Used policy is applied. Whenever a client presents
an ephemeral public key that is found in the cache, the server will use the
corresponding server ephemeral key. On the other hand, if a key is not
used for a period of time longer than a certain threshold (approximately 24
hours) it is evicted from the cache and, if the same client ephemeral key is
presented again, the server will generate a new ephemeral keypair. Because
of this design, an attacker is able to force the same session key to be used
for an indefinite amount of time by regularly connecting to the server with
the same key, thus refreshing the value in the cache. This has various impli-
cations. First, if an adversary manages to reveal a session key, rather than
an ephemeral key, they are still able to impersonate the client to the server
indefinitely, since the attacker can force the server to never choose a differ-
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ent Diffie-Hellman share and the compromised session key will continue to
be valid. Second, assuming that the hypothesis of an ephemeral key cache
holds, compromising said cache leads to impersonation of multiple users
for an indefinite amount of time, as long as the attacker has recorded the
handshakes involving the revealed ephemeral keys. This would make the
hypothesized cache a weak point in the cryptographic design of Threema
and requires careful protection an security measures from the server.

4.1.2 Attack 2 (Vouch Box Forgery)

An alternative route to the previous attack is to forge a completely new
vouch box for a public key C to which the attacker knows the correspond-
ing private key c. We show that this is theoretically feasible due to a cross-
protocol interaction between the E2E protocol and the C2S protocol. In this
attack, the adversary acts as a Threema user and has to first convince the vic-
tim that the server’s public key is their own long-term public key and then
has to convince the user to send the attacker a specially crafted message. We
leave open the possibility that the first condition can be satisfied in different
ways. In our particular instantiation of the attack, we leverage a vulnerabil-
ity in a dependency used by the Android version of Threema. Similarly to
the previous attack, this method allows an adversary to impersonate a user
to the server for an indefinite amount of time.

Attack Assumptions and Adversarial Capabilities

Assume that an adversary can claim the server’s public key for the C2S
protocol (S, in Fig. 3.5) as their own long-term public key to the victim. This
means that whenever the user sends a message to the attacker, they will
use their own private key a and the server’s public key S, which the victim
believes to belong to the adversary.

Assume that the attacker manages to find a private key x such that the
corresponding public key X has the following form: a 0x01 byte, followed
by a string σ composed of 30 printable ASCII characters, followed by an-
other 0x01 byte. The latter assumption is reasonable if we consider the
distribution of public keys to be close to uniformly random, which approx-
imately holds since the public keys are x-coordinates of random points on
Curve25519. We discuss this point in Section 4.1.2 in more detail.

In order for an attacker to claim the server’s public key as their own, we
assume that the attacker has access to the user’s data backup (Section 3.7.3)
and knows the list of the victim’s contacts. We note that these assumptions
arise from our particular instantiation of the attack. In general, there might
be other ways for the attacker to claim the server’s public key as their own.
For example, the API that Threema provides to integrate other applications
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and clients with the Threema messaging architecture advises taking public
keys from other users’ QR codes. If a public key contained in a scanned QR
code is not checked against the directory server, an attacker could claim any
public key as their own.

Attack Description and Impact

The objective of the attacker is to convince the victim to send a message
that, other than being and E2E message, doubles as a valid vouch box,
containing the aforementioned public key X to which the attacker knows
the corresponding private key x. This means that the message that the at-
tacker receives should be the AEAD encryption AEAD.Enc(K, X; n), with
K ← DH(a, S) and n being a random nonce. By comparing the structure of
a vouch box with the one of an E2E-encrypted message, this means that the
victim must send a message to an account which has the server’s public key
as their own long-term key and that X has to begin with the message type
byte 0x01 and end with valid PKCS7 padding.

Let (a, A) be the long-term keypair of the victim and assume that the at-
tacker has successfully managed to claim the server’s public key as their
own long-term key. If the attacker manages to convince the victim to send
σ (the ASCII part of the public key X) as a text message to the attacker,
this would result in the victim deriving a key K = DH(a, S) and encrypting
the message using the AEAD. Since σ is sent as a text message, the plain-
text will include 0x01 as the type byte, followed by the string σ and the
PKCS7 padding at the end. The attacker hopes to obtain a ciphertext c equal
to AEAD.Enc(K, 0x01 ∥ σ ∥ 0x01; n) (for some value n), which has probabil-
ity 1/254 to occur due to the requirement of obtaining 0x01 as a PKCS7
padding. Because the adversary has claimed the server’s public key as their
own, K is the same as K2, the key that would be derived by the victim dur-
ing the C2S protocol to create the vouch box. Then, by construction, the
ciphertext c that was created and sent to the attacker is thus a valid vouch
box for X, which the attacker can now use to authenticate to the Threema
server.

The last limitation to discuss is how an attacker can claim S as their long-
term public key. To do so, we exploit a vulnerability in one of the dependen-
cies that Threema uses on the Android version of the app for creating data
backups (described in Section 3.7.3). The library used by Threema to create
zip files is Zip4j [62], which possesses a bug where, under certain condi-
tions, the Message Authentication Code (MAC) would not be checked when
decrypting the zip file. We discovered that these conditions are fulfilled
whenever a Threema backup is restored, meaning that any modification of
the zip would not be detected. In the context of Threema, this allows an at-
tacker that has access to the encrypted zip to modify the contacts file within
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it, allowing them to claim the server’s public key as theirs. For example,
a user might choose to save their zip in some shared storage (e.g. a cloud
service, or a folder on a computer which the attacker can access), believing
it to be stored securely.

More specifically, the attacker can leverage the malleability of AES-CTR,
which is used to encrypt the single files, to flip single selected bits in the
plaintext by flipping the same bits in the ciphertext. This means that an
adversary with knowledge of the plaintext can change it so that, after de-
cryption, the message will be modified to resemble a target plaintext of the
attacker’s choice. The message authentication code, if properly checked,
should prevent this malleability property from being exploited.

We note that, however, this attack requires that the attacker has knowledge
of which users are in the contact list of the victim, since the zip can only be
“blindly” modified after compression and encryption. While this is techni-
cally not a Threema vulnerability, we stress that a more robust design would
have prevented this from being escalated to client impersonation in the C2S
protocol. Furthermore, we cannot exclude the possibility that an alternative
method exists for an adversary to claim the server’s long-term key as their
own, for example targeting different client implementations.

We created a Python tool that given a zip file and a target file can change
the zip in order to replace a file with the target file.

Generating Valid Public Keys

Given that there are 95 printable ASCII characters among the 256 possible
values of a single byte, we evaluate the probability of a random byte string to
encode valid ASCII to be

( 95
256

)30, which, when multiplied by the probability
of obtaining two 0x01 bytes, yields a probability of obtaining a valid public
key of approximately ≈ 2−58.9. To decrease the complexity of the key search,
we initially tried to relax the validity condition by requiring the middle
section to consist of 30 valid UTF-8 characters, rather than ASCII. According
to the formulae in [1], we can compute the probability of a random byte
string of 30 characters to encode a valid UTF-8 string to be around ≈ 2−24.9.
Combined with the requirement of the 0x01 bytes, this yields a probability
of obtaining a valid public key of ≈ 2−40.9. Unfortunately, all keys that
we tried to generate in this manner turned out to be impossible to copy
and paste reliably, since some characters, such as ASCII control characters,
would be removed when the message was pasted in the chat box.

In order to look for keys, we have created a Rust script that generates many
private keys and checks if the corresponding public key matches the de-
sired pattern. When looking for UTF-8 strings rather than ASCII strings,
we found 12 valid public keys. The valid public keys, as well as the cor-
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responding private keys, can be found in Appendix A. Unfortunately, all
the generated keys contain ASCII control characters which make the public
keys unsuitable for copy-pasting. We ran the same script in order to find
public keys containing only printable ASCII in their middle section without
success yet. We expect that, given more time and computational resources,
a suitable key could be found.

4.2 Compromised Threema Model

For the following three attacks, we assume that the Threema servers have
been completely compromised. This means that the adversary has compro-
mised the long-term keys of the server S as well as their TLS keys, allowing
the adversary to impersonate the server to any user that tries to connect.
The expectation for a truly secure messenger is that, even in this setting,
the server is not able to read nor interfere with end-to-end communications
except for denying communications entirely. We present three attacks that
allow an attacker to change the semantics of the conversations between hon-
est users. Attack 5 has been discovered and patched in version 4.6.14 for
iOS and 4.62 for Android, prior to our analysis [40]. We choose to include
it regardless in order to highlight what we believe to be a lack of structural
soundness in the Threema cryptographic design.

4.2.1 Attack 3 (Message Reordering and Omission)

Strict message ordering is an important property in a messaging application:
the context in which messages are sent is important for the semantics of an
end-to-end conversation. Rearranging messages, possibly in an adversarial
way, has important consequences on the actual meaning that is conveyed.
We show that Threema lacks the capacity to enforce message ordering at the
E2E level, enforcing it uniquely at the C2S level. This directly implies that,
if the server is ever compromised by an adversary, then no ordered delivery
property can be guaranteed.

Attack Description and Impact

In the structure of an E2E packet (in Section 3.3), there is no inherent integrity-
protected mechanism for enforcing order, such as use of a monotonically
increasing counter. The timestamp in the message is not strictly protected
from tampering, since the integrity-protected metadata box is not manda-
tory. Thus, a malicious server can run a trivial reordering attack by storing
messages that are received from the client via the C2S channel and decide
the order with which to forward them to the intended recipient. If neces-
sary, the server can overwrite the timestamp with a plausible value, in order
to evade detection. Furthermore, the adversary can omit messages when
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forwarding them, effectively eliminating those messages from the conversa-
tion.

The behaviour of the Threema application is that incoming messages are
shown in the order in which they are received, rather than ordering by
timestamp. This means that an attacker that is unable to tamper with the
metadata would still be able to reorder messages with the granularity of a
minute, since the Threema app does not show the seconds in the message
information. Thus, protecting the timestamp from tampering and relying
on the fact that the user will visually detect message reordering, is an insuf-
ficient protection and there is a need for additional mechanisms to enforce
ordering.

We note that this attack is not feasible by a network attacker without control
of the server or without being able to impersonate the server. In fact, as
explained in Section 3.4, the C2S protocol encrypts messages using nonces
derived from a counter, which disallow any reordering since doing so would
lead to the (honest) server decrypting with the wrong nonce, leading to a
decryption error with overwhelming probability and thus to the termination
of the C2S connection. The same argument applies to message omission. In
Attack 1, however, we described how leaking a client ephemeral key can
lead to an attacker being able to impersonate the server for up to one week,
allowing for this attack to be executed by a network attacker.

4.2.2 Attack 4 (Replay and Reflection Attacks)

In Section 3.3 we explained how Threema tries to prevent replay and re-
flection attacks by storing nonces of both outgoing and incoming messages.
Fundamentally, this requires that the nonce database is always kept updated
and is never deleted. We show this cannot be guaranteed in some instances,
leaving the user vulnerable to replay and reflection attacks. Such attacks,
like the previous one, allow an attacker to change the semantics of the end-
to-end conversation between two parties.

Attack Description and Impact

Whenever the app is reinstalled or when the user changes device, the data
in the application can be restored by using the backup methods discussed in
Section 3.7. We note, however, that none of the backup methods include the
nonce database, making it impossible to restore it. As a consequence, when-
ever the app is reinstalled, the nonce database is irreversibly lost and, when
installing the app on a different device, there is no user-friendly method to
transfer the nonce database. Whenever the database is reset, a compromised
Threema server is able to replay messages that were received by the victim
in the past or reflect messages that the victim has sent.
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The underlying weakness that this attack shows is again the lack of integrity-
protected metadata that would specify the ordering of messages, preventing
a message to be delivered twice, as well as specifying the source and the
destination.

To make this attack more effective, we note that the Threema server can
easily notice when a user has most likely reset their nonce database, as long
as the victim has decided to use Threema Safe as their backup option. This
is a reasonable assumption, since Threema Safe is the default option and
the user is strongly encouraged to use it at registration time. After a user
restores a backup from Threema Safe, they will connect to the server with
the C2S protocol, most likely with the same IP address. Thus, not only can
the server learn the identity associated with a given address, but they will
also know that their nonce database has been deleted, making them a target
for the aforementioned attacks.

4.2.3 Attack 5 (Kompromat Forgery)

We present an attack that involves a cross-protocol interaction between the
registration protocol and the E2E protocol. This attack uses the registration
protocol to forge an arbitrary message that is unwittingly encrypted and
authenticated by the victim and that can be sent to a target user as a fresh
message. This attack has been patched in Threema version 4.6.14 for iOS and
4.62 for Android [40], so we initially present the attack for the unpatched
version of the application in order to discuss the weakness of the protocol
against cross-protocol attacks. While the patch does address the specific
attack, it does not address the more general problem, which is shown by
our other attacks.

Attack Description and Impact

Recall from Section 3.2 that, whenever a user A tries to register to Threema,
they must prove to the server that they own their public key. This is done
in the form of a challenge-response protocol where the user combines their
private key a with a public key provided by the server X = gx and encrypts
a message m chosen by the server, under a fixed nonce n. The main insight
of the attack is that the server does not have to own the private key x corre-
sponding to the provided ephemeral public key X. The adversary can then
put the long-term public key B = gb of any other Threema user B in place
of the challenge key X. This means that A will be encrypting the challenge
with K ← DH(a, B): the same key that they would use to communicate with
B. If the challenge has the correct shape of a text message (i.e. starting with
0x01 and ending with valid PKCS7 padding), the resulting encryption can
be used as a forged message to be sent to either A or B.
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There are a few caveats with the attack in the described form: first, as the
attack happens during registration, the server has no knowledge of the iden-
tity of the targeted victim. This means that the server must commit to the
public key B to use and to the message m for which forge a ciphertext. The
message can only be sent once to each of A and B, due to the nonce-based
replay prevention described in Section 3.3.

Enhanced Attack If a user enables the optional contact discovery feature,
this attack can be further enhanced: recall that each time the client wants
to run the contact discovery protocol, they must prove ownership of the
private key by using the same contact discovery protocol used for registra-
tion, except for the fact that the nonce is now randomized rather than being
fixed. If activated, the contact discovery is run once every 24 hours, allowing
a malicious server to forge a new message per day, with the possibility of
changing the public key and the message used, making this the most flexible
version possible of the attack. Since the nonce is always randomly selected,
each new encryption will be accepted by the victim (either A or B) as a
fresh message with overwhelming probability. The practical consequence of
multiple forgeries is that, for example, group chats can be forged and that
VoIP calls can be faked. This is because VoIP communications use a shared
key established in an initial signalling phase between the two parties, which
is run over the E2E protocol. If the attacker can forge signaling messages,
the victim A will believe that they are establishing a VoIP key with B even
though the actual communication will be established with the attacker.

Vulnerability Patch and Discussion Both the initial attack and the en-
hanced version have been fixed in Threema version 4.6.14 for iOS and 4.62
for Android [40] by requiring that the message chall provided by the server
start with 0xff, enforcing separation between message types and thus pre-
venting it from being recognized as any other type of valid message. We
highlight the patch in the description of the registration protocol in Fig. 3.2.
Nonetheless, this is another example of a dangerous cross-protocol inter-
action, in this case between the registration protocol and the E2E protocol.
While the fix does effectively prevent this attack, it does not tackle the other
cross-protocol attacks that we present. In Chapter 5 we discuss mitigations
that would better protect against these attacks.

4.3 Compelled Access Model

4.3.1 Attack 6 (Cloning via Threema ID Export)

The following attack allows the adversary to reveal the long-term private
key of the victim, assuming that the adversary has control of the unlocked
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phone and if no locking mechanism is set in Threema (we note that this
is the default behaviour for Threema and the locking mechanism must be
explicitly activated in the settings). As described before, the application pro-
vides the possibility of exporting the Threema ID (as explained in Section
3.7.2). However, this method accepts any password as valid, virtually allow-
ing an attacker to encrypt the private key with any password and decrypt it
on their own device.

This is an intentional feature in Threema, which we deem to be a grave
security danger: all the security in Threema relies on the knowledge of the
long-term private key, and this attack allows an adversary to recover it by
having access to the unlocked phone for a few minutes.

While similar mechanisms are present in other messengers, their impact
is much smaller: in Signal and Whatsapp, other devices can be linked to
the main device, allowing them to receive the same messages as the main
device, as well as accessing the history of messages [88]. However, this is
not only visible to the owner of the main device, but it is also reversible: by
invalidating the linked device, it will not receive new messages anymore.
This is in contrast with Threema, where losing the private key irreversibly
forfeits all security.

4.3.2 Attack 7 (Private Key Recovery through Compression Side-
Channel)

We now present an attack that also requires an unlocked phone to be ex-
ecuted. However, in contrast to the previous attack, the following attack
can also work in the case where the user used an access control mecha-
nism to protect the Threema application. Recall from Section 3.7.1 that a
Threema Safe backup contains the private key of the user, which allows it
to be retrieved when the user wants to set up their Threema account on
a new device. However, before being sent to the server for storage, the
backup is compressed and then encrypted. A well-known attack against
this compress-then-encrypt paradigm is the CRIME attack due to Rizzo and
Duong [79], which harnesses the fact that, if the attacker can control part of
the plaintext before compression, then it can also use that power to leak con-
tents of the plaintext through the length of the resulting compressed string.
As discussed in Section 2.2.1, XSalsa20 is a stream cipher, which allows an
adversary to infer the length of the plaintext from the length of the cipher-
text. Furthermore, TLS often does not hide the length of the payload, which,
as we conjecture, makes the attack viable even by an attacker that cannot see
the ciphertext directly but can see TLS-protected network traffic.

Our attack can recover most of the private key contained in the backup after
23k backup attempts from the user on average, which allows the remaining
part to be retrieved using offline techniques.
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We stress that leaking the private key leads to a complete loss of security: af-
ter doing so the attacker can impersonate the user in any action. The attacker
can send messages on behalf of the user, they can covertly receive a copy of
messages intended for the user using the same methods described in Attack
1. Furthermore, by incorporating the compromised Threema threat model,
this leads to an attacker being able to decrypt all past communications due
to the lack of forward secrecy on the E2E level.

Attack Description and Impact

We start by assuming that the attacker has managed to obtain the victim’s
unlocked device. We may also assume that the victim might be employ-
ing an access control mechanism such as one of the methods described in
Section 3.9, which would prevent the attacker to directly gain access to the
unencrypted messages or to send messages on behalf of the victim.

The structure of the JSON backup is described in Section 3.7.1. In Fig. 4.1 we
show an example JSON, with the private key redacted and fake data added.

The attacker can change the contents of the backup by simply sending a
message to the victim, containing a specific nickname within the E2E packet.
Since nicknames are handled client-side, this will automatically change the
nickname of the attacker in the victim’s local data model. The objective of
the attacker is to leverage this partial control in order to force a backlink to
be created from the attacker’s nickname in the contacts field to the private
key in the user field. If the attacker’s nickname and the private key are
sufficiently close together, they will both fall within the same sliding win-
dow of the zipping algorithm. This ensures that there is the possibility of a
backlink being created. However, in order to increase the chances of such a
backlink being created, we include a string called a canary which we know
is already included in the JSON backup, just before the string that we want
to leak. This induces the compression algorithm into finding redundancy
between the nickname and the private key, creating the compression side
channel.

The attacker starts by setting their username to their guess for the base64-
encoded key, along with the canary string “privatekey” at the start and the
“=” canary at the end of the nickname. The first one corresponds to the
name of the field that the attacker wants to leak, whereas the second one
is the final character of the base64-encoded string. We can be sure that the
equal sign will always be present since the length of the key (32 bytes) is not
divisible by 3, which requires padding with the base64 padding character,
the equal sign. In our experiments, both canary strings were necessary in or-
der to exploit the vulnerability, although we cannot explain why the second
canary is necessary. By following techniques similar to the ones described

55



4. Attacks

in the presentation of the CRIME attack, the attacker can leak one or two
characters at a time from the private key.

More specifically, the attacker begins by guessing one character at a time
from the base64 alphabet and then tries to induce the client into creating a
new backup. For example, the attacker can wait until a backup is scheduled
and make the backup fail. Then, the attacker can leverage the client’s retry
behavour and induce a backup every time the app is restarted. We abstract
this process by devising an oracle that can be queried with a JSON backup
returns the length of the corresponding encrypted gzip.

After querying the oracle with all 64 characters, the attacker checks which
character induces the shortest compressed ciphertext. Sometimes the short-
est ciphertext corresponds to only one character, at which point the attacker
knows that to be the correct guess. However, most times, multiple characters
can induce a ciphertext of minimal length, at which point the attacker can
retry with two-character combinations. After guessing either the correct sin-
gle character or two-character combination, the attacker updates their guess
by retaining those characters and prepending a new guess for the next char-
acter, until the entire key is leaked. One thing to note, however, is that the
size of the nickname field is limited to 32 characters. This implies that one
needs to “slide” our guess as the attack goes on.

We have made some tweaks that increase the probability of success in our
setting: we leak keys from the last byte to the first one. The reason is two-
fold: first, we already know the last character to be an equal sign, which
means that this method is feasible and, second, the last character of the en-
coded key represents a sextet whose last two bits are set to 0 due to padding.
This means that there are only 16 possible characters to search for when
looking for the last byte.

We give a concrete example which highlights the most important steps.

1. The attacker begins by querying privatekeya= to the oracle. Then
they query privatekeyb= and so on.

2. The attacker discovers that the letter s induces the shortest ciphertext.
This means that the key ends with s=. The next set of queries will then
be privatekeyas=, privatekeybs=, ..., privatekey9s=, privatekey+s=,
privatekey/s=

3. The attacker cannot find a single character that induces the short-
est ciphertext. The characters a and Z both induce the same length,
which is minimal among all queries. The attacker then proceeds to
query two-character sequences privatekeyaas=, ..., privatekey/as=,
privatekeyaZs=, ..., privatekey/Zs=.
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4. The last set of queries reveals that +a is the correct two-character se-
quence, at which point the attacker knows that the key ends with +as=.

5. The attack proceeds similarly, until the 32 character limit is reached.
Assume that the key known at this point is 2H/lXdIp5aMV0ZhR+I+as=.
Including the initial canary, this turns out to be 32 characters in length.
The next queries will “slide over” and will not include the last charac-
ter of the key. The attacker proceeds to query privatekeya2H/lXdIp5a

MV0ZhR+I+as, privatekeyb2H/lXdIp5aMV0ZhR+I+as and so on.

6. The attack continues until the attacker has collected a sufficient amount
of information on the private key.

Figure 4.2: The distribution of number of queries in our successful experiments(Over 10000
experiments). On the x-axis, we grouped the number of queries in ranges of width 2500. On the
y-axis, the number of experiments that fall within that range.

Our simple algorithm manages to reach a success rate of 47.27% over 10000
simulations. In our simulations, the number of oracle queries required was
23382 in the average case, 90176 in the worst case, and 1920 in the best case.
We expect that a more complex algorithm would be able to have a better
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success rate, at the expense of requiring more queries. We attempted to
execute a binary search on the characters, by using 32 users with different
guesses for the nickname, with inconclusive results due to the unreliability
of the side-channel. In Fig. 4.2 we show the distribution of the number
of queries among all our 10000 experiments. We did not include the 5273
experiments that did not succeed.

As previously described, to obtain this number of queries, it suffices for an
attacker to forcibly close the application and start it again, which induces
the application into retrying the upload of the backup. This can be done
by either using the debugging tools or by simulating user input on the un-
locked phone. Whenever an upload attempt happens, a network attacker
can make it fail by intercepting the network traffic and dropping the associ-
ated packets, allowing a new upload to be attempted at the next restart.

Not all bytes of the key have to be recovered, since there are offline tech-
niques such as Pollard’s Kangaroo algorithm or the parallelized Van Orschoot-
Wiener that can be used to recover the remaining bits [68]. Indeed, this cre-
ates a trade-off between the number of queries to the oracle and the amount
of offline work required by the attacker. Since the offline work can be paral-
lelized and does not require access to the device anymore, it is convenient to
execute just the sufficient amount of queries required to make the offline at-
tack feasible. For example, the complexity of Pollard’s Kangaroo algorithm
is O(2n/2), where n is the size of the set to be searched for the discrete log-

arithm, while for Van Orschoot-Wiener the complexity is O( 1
L

√
π2n

2 ), where
L is the number of parallel threads used. For example, if we recover 31
base64 characters, we are left with 13 characters, equivalent to 78 bits after
decoding. This means that the runtime of the offline step will be close to
278/2 = 239 with Pollard’s algorithm, which is within feasibility. At the pace
of one restart every two seconds, an attacker can recover 31 base64 charac-
ters of the private key in 50 hours in the worst case of our experiments and
1 hour in the best case.

As a proof-of-concept for the attack, we created a custom Threema server
and instrumented the client code in order to redirect requests to our server
rather than the actual Threema Safe server. This allows us to both see the
length of the backups and to make uploads fail by returning any HTTP error
code. To automatically induce a new backup, we use the Android debug-
ging tools which can force an application to stop (with the adb shell am

force-stop ch.threema.app command) and restart (with the adb shell

monkey -p ch.threema.app 1 command). We conjecture that this attack
could be executed by a network attacker with control of the unlocked de-
vice as well, although we have not tested this in practice. This is because
TLS-encrypted traffic usually does not hide the length of the payloads and
because the adversary can drop arbitrary packets, making the upload fail.
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4.3.3 Attack 8 (Invisible Salamanders in Group Messaging)

Due to the cryptographic design of the group messaging system described
in Section 3.5, it is possible for a user to send different messages to different
people. This lack of transcript consistency can be used by a malicious user
to misdirect other users in a group by sending them a different message
with respect to the other members of the group. This is a problem by itself,
since it can be used to deceive users, but it also leads to another attack that
exploits the lack of robustness of XSalsa20-Poly1305. This attack was first
described by the cryptography researcher nicknamed Soatok in one of their
blog posts [90].

Attack Description and Impact

Dodis et al. [29] have shown that it is possible to generate an AES-GCM
ciphertext that decrypts to two different plaintexts when using two different
keys. Later Len et al. [61] have shown that this same property holds for
XSalsa20-Poly1305. Recall the way media messages are sent in Threema: the
media is first encrypted using XSalsa20-Poly1305 with a random key, it is
then uploaded to the media server, who returns a blob ID. The user then
sends the blob ID, as well as the key, to the other user, encrypted using
the E2E protocol. By using the aforementioned techniques, an attacker can
create a ciphertext c which will decrypt to one of two different media files,
depending on which among two keys K1, K2 is used. Then, the attacker
uploads the ciphertext to the server, which will reply with a blob ID. The
attacker now sends an E2E-encrypted payload containing the blob ID and
one of the keys, depending on which media file the attacker wants the user
to see.

4.4 Discussion

As we discussed during the description of the E2E protocol (Section 3.3),
from the point of view of the Threema server, forward secrecy does not hold
in end-to-end communications. This is because the forward secrecy property
is only provided at the client-to-server level rather than the end-to-end level.
If the Threema server were to be compromised, this would mean that the
attacker could store all messages passing through the Threema server and
decrypt them at a later time, after having compromised the user’s long-term
private key.

This is explicitly acknowledged in the Threema security whitepaper, citing
that “The risk of eavesdropping on any path through the Internet between
the sender and the server [...] is orders of magnitude greater than the risk
of eavesdropping on the server itself”. While technically true in practice,
a messaging app cannot claim to have “maximum security” [42] unless it
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is also secure against strong attackers that may compromise the Threema
server. In fact, such claims give the illusion that the server merely acts as
a message router, which cannot read messages and has no gain in storing
the messages that it sees. If that were to be true, then it should also hold
when using Threema OnPrem [44], the on-premise solution for Threema,
where compromise might be easier and where the owner can always see
E2E-encrypted messages in transit. In a messaging app, compromising the
server should not reveal a significant amount of information to the attacker,
but, due to the lack of forward secrecy on the E2E level, this expectation is
not met for Threema.

Our attacks also show that this weak notion of forward security may be
insufficient: by harnessing one of our attacks on the custom C2S protocol,
the adversary gains access to E2E-encrypted messages, which are encrypted
with long-term keys. Furthermore, the reuse of ephemeral keys for a long
period of time further weakens the guarantees of forward secrecy, since an
attacker gains access to messages up to a week in the past. Comparing this
design to Signal’s, we note that in the latter each message is encrypted with
a different key, providing a much stronger notion of forward secrecy.
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{

"info": {

"version": 1,

"device": "4.64A\/en_US"

},

"user": {

"privatekey": <base64-encoded private key>,

"nickname": "user_nickname",

"links": []

},

"contacts": [

{

"identity": "ABCDEFGH",

"createdAt": 1647620663019,

"verification": 0,

"workVerified": false,

"nickname": "other_user_nickname",

"hidden": false,

"typingIndicators": 0,

"readReceipts": 0,

"private": false

},

],

"groups": [],

"distributionlists": [],

"settings": {

"syncContacts": true,

"blockUnknown": false,

"sendTyping": true,

"readReceipts": true,

"threemaCalls": true,

"locationPreviews": false,

"relayThreemaCalls": false,

"disableScreenshots": false,

"incognitoKeyboard": false,

"blockedContacts": [],

"syncExcludedIds": [],

"recentEmojis": []

}

}

Figure 4.1: Example of a JSON backup, with the private key redacted
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Mitigations

We now present an overall discussion on what we believe to be the under-
lying issues with the different parts of the Threema cryptographic design,
attempting to find multiple solutions. We initially present simple solutions
that would directly prevent our attacks but that do not tackle the issue them-
selves, since these solutions are often easier to implement in the short term
and thus useful to protect user data in the immediate future. We, how-
ever, also present solutions that require a greater engineering effort but that
would solve what we deem to be the weaknesses in the protocols. In the
long term, we hope that Threema will adopt these stronger mitigations in
order to provide better security guarantees for their users.

We discuss mitigations by tackling each issue separately: we begin by dis-
cussing mitigations against cross protocol attacks (Section 5.1), then we dis-
cuss how to protect the integrity of the metadata (Section 5.2), we find so-
lutions to the issues found in the C2S protocol (Section 5.3), we discuss
solutions to harden the application against cloning via the ID export feature
(Section 5.5), and, finally, we discuss how to add forward secrecy to the E2E
protocol (Section 5.4).

5.1 Mitigating Cross-Protocol Attacks

The attacks in Sections 4.1.2 (Vouch Box Forgery) and 4.2.3 (Kompromat At-
tack) exploited the fact that the same ”DH-then-Encrypt” paradigm is used
multiple times and for different purposes. For example, the E2E protocol
uses it for authenticated encryption among users, while the C2S protocol
and the registration protocol use it to authenticate the user to the server.
In these instances, one of the parties can be fooled into deriving and us-
ing a key that is also used in a different context. By using payloads from
a protocol in a different protocol, the adversary gains capabilities that they
would not possess when viewing the protocols separately. Furthermore, if
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unmitigated, these cross-protocol attacks create user-unfriendly and deeply
unintuitive situations, such as in the vouch box forgery attack, where send-
ing an E2E message manages to compromise client authentication. A secure
application must thus compartmentalize its protocols, taking a conservative
approach when using the same cryptographic material in different proto-
cols.

A common way to prevent these attacks is to treat the result of the Diffie-
Hellman computation as raw key material, not to be used directly as a
key, but from which the actual key is to be derived by using a key deriva-
tion function (Section 2.2.4). When deriving a key, different labels should
be used depending on the context where the key will be used e.g. “c2s-
authentication” and “e2e-encryption”. By using a suitable KDF, the proba-
bility of deriving the same key in two different contexts is negligible, pre-
venting the attacks we described. Differently from Threema’s usage of a
KDF (for example, in the E2E protocol to encrypt the metadata box) a key
that is used to derive another key should not be used for another purpose.
This is in accordance to the key separation principle: suppose, in the current
Threema implementation of key derivation in the E2E protocol, that the key
KA,B is compromised, then the metadata key KA,B is compromised as well.
On the other hand, suppose that we used the result of the Diffie-Hellman
computation as input to the KDF, using two different labels: compromising
one of the dervied keys does not directly lead to compromising the other
derived keys.

As a concrete example, we propose the usage of the HMAC-based KDF
(HKDF) proposed by Krawczyk in [58] and standardized in RFC 5869 [57],
since it is widely used in protocols such as TLS.

This solution, however, encounters a backwards compatibility problem: since
older clients will not run the additional key derivation step, they will not be
able to decrypt and encrypt messages correctly. Since the Kompromat attack
has already received a fix, we aim at finding a short-term solution for the
vouch box forgery attack as well, which allows patched clients to commu-
nicate with unpatched clients while preventing the attack at the same time.
For example, we can require clients to pad E2E messages to at least strictly
more than 32 bytes. This would ensure that these messages cannot be used
in lieu of a vouch box, since the latter is always 32 bytes in length. We give
another mitigation of the Vouch Box Forgery attack in Section 5.3.

5.2 Preventing Tampering with Metadata

The simplest way to prevent attacks 4.2.2 (Replay and Reflection Attacks)
and 4.2.1 (Message Reordering) is to protect the integrity of the metadata
contained in the E2E packet. In contrast with the usage of the metadata box,
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this should include the source and destination as well, which are necessary
to prevent reflection attacks. The most efficient way to do this is to use the
full AEAD construction, by adding all the metadata as the “additional data”
part. In the case of XSalsa20-Poly1305 this would mean that the metadata
is included in the computation of the Poly1305 tag, but is not encrypted.
This modification, thus, comes at zero message overhead and supersedes
the usage of the metadata box, eliminating both the need for an additional
ciphertext and tag, and the need of an additional key derivation to com-
pute the metadata key. Protecting the metadata in this way prevents any
malicious entity from swapping the source and destination of the message
and thus prevents any reflection attacks. This has also the added advantage
of not requiring the nonce storage used by Threema, significantly decreas-
ing the storage requirements of the application and requiring less database
accesses when receiving and sending messages.

To completely prevent replay attacks, message reordering, and omission,
the application could include a monotonically increasing counter with every
message and the receiving client must display messages to the user in the
order given by the counter and check for missing messages. This counter
must be included in the additional data of the AEAD in order to prevent
tampering.

A more immediate mitigation consists in enforcing the presence of a meta-
data box, which would at least protect the timestamp and allow the client
to enforce message ordering by timestamp. This is, however, insufficient
to protect against reflection attacks, which would require to add the source
and destination to the metadata box.

5.3 Mitigating Attacks on the C2S Protocol

The least invasive modification to the protocol that directly prevents our
attack of Section 4.1.1 (Impersonation by Randomness Failure), as well as
mitigating the attack of Section 4.1.2 (Vouch Box Forgery), is to include the
server cookie inside the vouch box. This ensures that, as long as the server
picks new cookies every time, the vouch box cannot be trivially replayed.
Furthermore, since the server cookie often contains non-printable characters,
it makes the vouch box forgery attack less likely to succeed, since some
characters cannot be copy-pasted by the victim. Even if the server cookie
consisted entirely of printable characters, the forgery has to happen while
the C2S protocol is running and a valid forged vouch box would be valid
only during that single handshake, mitigating the impact of the attack.

Nonetheless, we argue that these issues can be fixed while improving the
C2S protocol itself: while Threema claims the protocol to be optimal in term
of round-trips [38, p. 10], there are protocols which provide the same desired
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properties with less message overhead. An example is the IK protocol of the
Noise Framework [73], which works assuming that the client knows the
server long-term public key and vice versa, similarly to the current Threema
C2S protocol. The IK protocol allows for 0-RTT encrypted communications
between the client and the server and provides authentication and forward
secrecy. Furthermore, the Noise Framework has been formally analyzed and
proved to be secure by Dowling et al. [30].

Another option would be to use TLS [75], which is widely deployed and
supported. To decrease the communication overhead, a 0-RTT resumption
mode can be used.

5.4 Implementing Forward Secrecy in the E2E Protocol

In order to provide forward secrecy, a new key has to be periodically ne-
gotiated between the users. This ensures that, even though a shared key is
leaked to an attacker at some point, the previous keys will not be affected.

Unfortunately, we believe there to be no short-term and easy to implement
solution for Threema: to ensure forward secrecy at the E2E level a protocol
must use ephemeral keys, which the current E2E protocol is not designed
to handle. Any solution would require a re-design of the E2E protocol. We,
however, disagree with the statement by Threema that “providing reliable
Forward Secrecy on the end-to-end layer is difficult” [38]. In fact, we be-
lieve that the best course of action is to adopt the Signal protocol, whose
cryptographic API is available through the libsignal library [83]. The Sig-
nal protocol has received extensive security analysis throughout the years
[35, 22, 55] and provides forward secrecy and post-compromise security at
the end-to-end layer. Adopting the Signal protocol would allow Threema
to implement forward secrecy without impacting the user experience. On
this point, we stress that Whatsapp itself has transitioned towards using the
Signal protocol in the past [89], showing that such a change is feasible even
for a messaging app with an enormous user base such as Whatsapp.

5.5 Preventing Cloning via Threema ID Export

The ID export feature, while convenient for users, poses a great security risk
for users of the application. All security in Threema hinges on the security
of the long-term key, and allowing a user to choose an arbitrary passphrase
when creating an ID export gives an attacker the possibility of creating a
backup with a known passphrase, effectively handing the long-term key to
the attacker.

Solutions to this problem are, for example, forcing the choice of the passphrase
at the time of the creation of the account, which disables the possibility
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for an adversary to choose a passphrase when requesting an ID export.
This, however, comes at the cost of usability, since forgetting the passphrase
would block the user from creating new backups, as well as recovering old
ones. A more robust solution would be to require the user to input the PIN
of their phone or to go through a biometric login procedure.

In general, we believe that Threema should enforce better access control in
the application, leveraging the possibility of using biometrics to provide a
convenient method for users to access sensitive settings.

5.6 Mitigating the Compression Side-Channel

Given that every user is encouraged to activate the Threema Safe feature,
compressing the backups appears to be a sensible decision, since it allows
Threema to save on the storage requirements. However, we have showed in
Section 4.3.2 that this can be leveraged by an attacker to reveal long-term
private keys. In order to prevent the attack at its root, it is necessary for
Threema to completely avoid compression. However, this might not be fea-
sible, given the storage requirements. An alternative mitigation, that does
not remove the vulnerability but makes it harder to exploit is to pad the
length of the backup to a multiple of n characters, for a suitable value of n
(for example n = 256). This makes changes in the compression harder to in-
fer from the ciphertext length, thus mitigating the vulnerability. However, it
is known that CRIME-style attacks can still work with block ciphers, as long
as the attacker can find a “tipping point” where an incompressible character
overflows into an additional block [36], which means that the vulnerability
is still present, albeit harder to exploit.
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Chapter 6

Conclusions

We conclude by discussing the security promises of Threema, in light of the
attacks we found (Section 6.1). We then discuss, in a more general fashion,
why Threema fails to deliver their security promises despite their usage of
secure primitives and libraries (Section 6.2).

6.1 Revisiting Threema’s Security Promises

In Section 1.2.1 we discussed the promises that Threema tries to deliver with
their application. We now analyze them again, in order to see which ones
hold and which ones do not, in light of the attacks described in Chapter 4.
We begin with the ones that hold: promises number 3 (Local group han-
dling), 6 (Repudiability of messages), 8 (Protection of private keys in local
storage), and 9 (Anonymity of Threema Safe Backups) are not contraddicted
by any of our attacks. Most of the other promises, however, are affected by
our attacks: revealing the long-term private key of the user, for example
by using our Threema Safe compression-side channel, immediately breaks
all other promises.1 In a more targeted manner, property 5 (User Authenti-
cation at the Client-to-Server level) is broken by either the “Impersonation
by randomness failure” attack or by the vouch box forgery attack. Prop-
erty 4 (Forward Secrecy at the Client-to-Server level) is indirectly broken by
the same attacks, through the retry behaviour of the server when deliver-
ing messages to the user. Property 7 (Replay/Reflection Attack Prevention)
can be broken whenever the nonce database is reset, as described in Section
4.2.2.

1Technically, some of the properties are worded in a way that does not make this a break:
the properties hold as long as the attacker does not have the private key of the user. Clearly,
one would prefer to exclude the possibility of the attacker revealing the long-term private
key of the user.

69



6. Conclusions

Most importantly, we stress that even if the application delivered on all the
security promises stated, the security level might be insufficient for high-
risk users. For example, not providing forward secrecy at the E2E level
puts users at risk of being surveilled by a compromised Threema server.
The possibility of cloning the application quickly is also another issue with
Threema, as we discussed in Section 4.3.1. Noticeably, the application does
not claim to guarantee any sort of end-to-end ordering of message delivery
and we show in Section 4.2.1 that the application indeed does not provide
it.

6.2 Analyzing Threema’s Security Failures

We now try to analyze, in our opinion, why Threema fails to deliver on
its security promises despite using modern cryptographic primitives that
make it harder for the developer to introduce vulnerabilities. For example,
their usage of a secure AEAD such as XSalsa20-Poly1305, combined with a
modern elliptic curve such as Curve25519 would seem to put Threema in
a good position to deliver a secure product. However, we have shown that
Threema still presents various security vulnerabilities. We claim that the
way Threema fails is two-fold: custom protocols that lack important security
properties in their design, and cross-protocol interactions that create vulnera-
bilities that do not exist when considering protocols separately.

The former class of problems showcase how hard it is to create secure proto-
cols despite using secure basic primitives. The C2S protocol in Threema is a
clear example: the usage of crypto box from the NaCl library prevents triv-
ial attacks, but cannot protect the application from a flawed design. When
building applications that are meant to provide security, relying on the cryp-
tographic community is of utmost importance: developers should try to rely
upon protocols that have been already analyzed by the cryptographic com-
munity and that have provable security guarantees. Nonetheless, despite
using secure and well-tested protocols, it is still possible to create security
issues. This is the second class of problems that we found in Threema:
composing secure protocols does not directly lead to a secure application.
We have shown that this can and should be mitigated by separating the
cryptographic material used by each protocol, in accordance with the key
separation principle. What Threema shows is that, despite being widely
known as a piece of folklore in the cryptographic community, the key sep-
aration principle evidently fails to penetrate even in projects that try to use
state-of-the-art cryptography.

Clearly, when building a secure application that involves cryptography, there
is the necessity of allowing cryptographers and security researchers to an-
alyze the protocols and code. For this reason, we commend Threema for
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open-sourcing their code to aid with auditing their application. On the other
hand, we highlight that, despite the developers’ efforts in fostering external
auditing of the application, neither of the two official audits has focused
on the cryptographic design, even though Threema is an application whose
main value is derived from encrypted messaging.

6.3 Conclusions

We have analyzed the Threema messaging application and cryptographic
design, highlighting shortcomings in their security and providing attacks
against the Threema messaging protocol. The attacks that we provide show
the pitfalls of implementing and deploying a protocol that is not well-analyzed
despite usage of secure and modern cryptographic primitives. We finally
provided mitigations and discussion on how future development should
proceed.
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Appendix A

Generated Public Keys for the Vouch
Box Forgery Attack

All values of public and private keys are base64-encoded.

1. Public key 2OPjOxQAAAAAdGhyZWVtYS1wb2lzb25rZXktMDA2MgA=

Private key AWp0EDRfRUpmXF0i3pXemFIqcdeKLExnFkxhWngYGAE=

2. Public key: 2Pbsjg8AAAAAM21hLXZvdWNoLWJveC1rZXktMDA1MgA=

Private key: ASt3EEdQcH0vChjMovCRho/NmBZUd2JeQS1odC3LowE=

3. Public key: 0IYNsR0AAAAAM21hLXZvdWNoLWJveC1rZXktMDA1NwA=

Private key: AeqCjFkJUylXSCYlVURXC2zusqNQDVR0xIUwFxwQMwE=

4. Public key: kAp92SAAAAAAM21hLXZvdWNoLWJveC1rZXktMDExMwA=

Private key: AQdLCEx+2pgKVx99ax8GxLge54SuSQMH0qUeYTFHLgE=

5. Public key: 4M2PaSMAAAAAM21hLXZvdWNoLWJveC1rZXktMDEyNAA=

Private key: AR8OQRAbZMSqG1LDrG58QF9qFRZwSBkIcmEVAVglYwE=

6. Public key: 4OEok1AAAAAAM21hLXZvdWNoLWJveC1rZXktMDA2OQA=

Private key: ATPbgj0vWDlWX8qLb+yUntKKV393NHkpTm51TlkAEQE=

7. Public key: IOKxmlYAAAAAM21hLXZvdWNoLWJveC1rZXktMDAxNgA=

Private key: AXw6BhIZTO6+gRA83adfb1JtGWBsY2UlcVDCqnVxaAE=

8. Public key: wDqIXloAAAAAM21hLXZvdWNoLWJveC1rZXktMDA4OQA=

Private key: ASMcE2dRSjZqBlRuHTZhK0l857KnXkjQuh0yTwU7dAE=

9. Public key: OL4FnFsAAAAAM21hLXZvdWNoLWJveC1rZXktMDA0NwA=

Private key: AUYpCjgNRQsTRDoXH1V5L8WjSlRpaEUUeygeDjAAHgE=
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10. Public key: yOiy8VwAAAAAM21hLXZvdWNoLWJveC1rZXktMDAyMwA=

Private key: AX0DFF5mMwV2MCdMwqo+1ZDEovO2sa8GGG8WPiVBBwE=

11. Public key: QEJ7CGEAAAAAM21hLXZvdWNoLWJveC1rZXktMDAxNwA=

Private key: AWbQqyoD8LWOtGZfHDp/JQ3YlRwA2Y8OYw1qFGM1AwE=

12. Public key: AMP7H2oAAAAAM21hLXZvdWNoLWJveC1rZXktMDExMgA=

Private key: AQVoEsaUbAfQjk53Nk9FOwAMAyQpOgs9w5seN3V0agE=
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