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Abstract
In June 2022, MongoDB released Queryable Encryption
(QE), an extension of their flagship database product, en-
abling keyword searches to be performed over encrypted
data. This is the first integration of such searchable en-
cryption technology into a widely-used database system.

We provide an independent security analysis of QE.
We show that certain logs, fundamental to the operation
of QE and accessible to a real-world snapshot adversary,
contain statistical information about the queries and
data. This information can be extracted and exploited
by our new inference attacks to recover both the queries
and data, assuming adversarial access to an auxiliary
dataset with a similar distribution to the original data.

Our analysis highlights the challenges of integrating
searchable encryption technology into modern, complex
database systems. In particular, our attacks stem from
the interplay between QE and MongoDB’s existing log-
ging system. They show how such interactions can com-
promise query and data privacy.

1 Introduction

Encrypted Databases. Databases serve as the back-
bone of numerous applications. Cloud-hosted databases,
in particular, have become increasingly popular due to
their seamless deployment and high scalability. However,
outsourcing client data to third-party cloud providers
presents significant privacy risks.

To address these risks, we seek encryption methods
for databases ensuring that, even when the encrypted
database is outsourced to an untrusted server, the server
is capable of efficiently answering client queries. Specifi-
cally, we aim for query privacy and data privacy. This
means that the server learns neither the client’s queries
nor the contents of the database.
Searchable Symmetric Encryption / Structured
Encryption. A long line of research has been conducted

on searchable symmetric encryption (SSE) [5, 6, 8, 9, 13,
14,26,30,31] and its generalization, structured encryption
(STE) [10, 11]. These both focus on enhancing query
and data privacy for outsourced data. A well-studied
SSE/STE setting is searching on encrypted documents
(or records), with each containing a set of keywords. In
this setting, the most basic query type, equality search,
returns all encrypted documents containing matching
keywords in the queries. Data privacy pertains to the
documents or records, while query privacy applies to the
queried keywords.

MongoDB and QE. Despite two decades of research in
SSE/STE, no SSE/STE schemes had been integrated into
widely-used modern database systems. This landscape
changed recently, when MongoDB introduced Queryable
Encryption (QE) in their 6.0 official release for public
preview. QE is an SSE/STE scheme that supports equal-
ity searches and has been integrated into MongoDB as
a system component. QE operates on JSON-like doc-
uments, with each document containing a list of pairs
of field names and field values (collectively referred to
as “fields”). QE enables the client to specify which field
names have their associated field values encrypted to
support equality searches. Within QE, field values are
treated similarly to keywords in SSE/STE.

As an SSE/STE scheme, QE aims to provide query and
data privacy. MongoDB states that QE “adds another
layer of security for your most sensitive data, where data
remains secure in-transit, at-rest, in memory, in logs,
and in backups.”1

As the fifth-largest database vendor by market share,
with around 13,000 business customers [12], MongoDB’s
pioneering effort to enhance database privacy through
QE have far-reaching impact.

However, MongoDB has not, to date, provided a white
paper or security proof to support the security claims.

1https://www.mongodb.com/products/queryable-encryptio
n
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This is cause for concern, as there is a rich body of
literature on leakage-abuse attacks targeting SSE/STE
[4,7,17,20,22,28], and it is unclear if QE is resilient to
these attacks.

Moreover, QE has complex interactions with Mon-
goDB. These interactions have not been considered in
the SSE/STE literature [5, 8, 10, 11, 13, 26]. More specifi-
cally, unlike the stand-alone schemes that are typically
considered in the SSE/STE literature, QE is designed
to be a system component of MongoDB. An immediate
consequence of this design is that queries in QE may trig-
ger events such as caching, logging, and backing up in
MongoDB. These events are part of MongoDB’s complex
database system and it is unclear how they impact QE’s
security. We believe that this is a reasonable concern, as
highlighted by Grubbs et al. [18].
Our Contributions. MongoDB’s approach to inte-
grating an SSE/STE scheme as a system component
is likely to become the most popular approach for new
SSE/STE products in the future. This is because this
approach requires minimal engineering effort and entails
minimal changes to the existing database system.

In this paper, we investigate whether MongoDB’s ap-
proach yields secure SSE/STE systems and if this ap-
proach should be generally adopted. In this light, we ask
the following question:

Is it intrinsically difficult to integrate SSE/STE
schemes into modern database systems to pro-
vide query and data privacy?

We answer this question affirmatively, using QE as
concrete evidence. We discover devastating attacks that
result from the interplay between QE and MongoDB’s
logging system. In particular, we find that MongoDB un-
intentionally leaks critical statistical information about
the queries and data from the logs as a result of opera-
tions in QE. We exploit the statistical information in our
inference attacks to achieve database reconstruction. We
stress that our attacks only require a weak attack setting:
we assume a “snapshot” attacker that has access to a
snapshot of the encrypted database and some auxiliary
information.

We analyse countermeasures to our attacks, conclud-
ing that, unfortunately, there is no simple fix to protect
QE. Considering that modern database systems contain
many other components besides the logging system, we
conclude that it is fundamentally challenging to con-
struct and securely integrate SSE/STE schemes into
these systems.
QE and its Leakage. At a high-level, a QE operation
starts with the client generating encrypted tokens using
the field value from the query. These tokens are then sent
to the server. The server continues with token derivation

and utilizes the freshly generated tokens to read from
or write to certain document collections, known as the
metadata collections. These collections preserve a map-
ping between field-value-dependent encrypted tokens and
their related document identifiers. With the document
identifiers, the server can fulfill client query by operating
on the corresponding encrypted documents. Due to the
complexity of QE, we provide a detailed explanation,
using a running example in Section 2. Notably, as a
system component, QE interacts with MongoDB’s log-
ging system. During QE operations, the logging system
records both reads and writes performed by the server
in the mongod log (later referred to as queryLog) and
records only writes in the operation log opLog. While
the queryLog is optional for maintenance, the opLog
is essential to ensure data consistency in deployments.
These logs are crucial to our attacks as they offer a source
of leakage about the queries and the data. Specifically,
we exploit the equality leakage, which reveals whether
two encrypted documents share identical field values in
the same field. We elaborate on how we extract this
equality leakage from logs in Section 4. To properly eval-
uate our attacks, which are statistical in nature, we need
to repeat them many times on freshly built encrypted
databases. But the insertion sub-protocol of QE proved
too inefficient to meet our needs.2 So we had to resort to
simulated leakage in our experiments. More details about
how we generate simulated leakage and the correctness
of the procedure are presented in Appendix A.
Inference Attacks on QE. Our attacks rely on one
of following two assumptions on the logs: a snapshot of
queryLog and the encrypted documents are obtained af-
ter a sufficient number of find queries have been executed
(we explore later how many are needed); a snapshot of
opLog is obtained after a compaction operation — a
specialized procedure of QE that reduces the metadata
size (cf. Section 2). We justify these assumptions in Sec-
tion 6, addressing that the leakage due to compaction is
inevitable in QE’s current design. In addition, we assume
the attacker has access to a reference distribution for the
plaintext database that is distributed in approximately
the same way as the actual plaintext. This is a common
assumption in the attack literature [4, 20,23,24].

The techniques used in our attacks are similar to those
in Gui et al. [19], except that we fine-tune the attack
techniques for relational databases as opposed to free-
text databases in [19]. Specifically, given an assignment
of field values to encrypted tokens, we use the auxiliary
distribution to compute a likelihood estimate for that
assignment. We then use simulated annealing to modify

2In particular, for anonymized person-level American Commu-
nity Survey data (ACS) datasets used in our experiments, QE
takes three to four days to insert 3 million records from ACS on a
fast server.
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the assignment in a step-by-step manner. Significant
novelty in the attacks come in handling the complications
of QE, which essentially allows multiple valid tokens
per field value, and exploiting the length leakage in an
integrated manner. We also use a refinement strategy
in which we initially work with one field at a time in
updating the assignment, but later switch to updates
based on computing likelihoods across multiple fields at
once, thus exploiting statistical correlations across fields.
A broadly similar approach was used in [4]. Our attacks
can also be seen as a concrete instance of the type of
attack proposed by Grubbs et al. [18], where the logs of
a database system played a central role.

Experimental Validation. For our attack against
queryLog, we try to recover field values from 3M docu-
ments from American Community Survey (ACS) 2013
after seeing 100, 300 or 500 queries on each field, where
the queries follow either the uniform distribution or a
Zipf distribution. We use ACS 2012 as auxiliary data.
For our attack against opLog, we try to recover field val-
ues from 30K, 300K or 3M documents from ACS 2013,
using ACS 2012 as auxiliary data. Our attack achieves
between 20% and 100% recovery rate on the field values
with respect to the number of unique identifiers in the
leakage, or between 40% and 100% recovery rate on the
field values with respect to the documents. In the pro-
cess, we also demonstrate that the length leakage (in the
current implementation of QE) has a significant positive
impact on the recovery rate of the attack, suggesting
that using AES-CTR$ is a bad design decision.

Ethical Considerations. In our experiments, we use
the anonymized American Community Survey (ACS)
micro data on the person level from 2012 and 2013 and
the corresponding codebook, publicly available from [1].
Our attacks do not in any way attempt to deanonymize
this data.

On security notions. The assumptions we made for
our attacks align with a weaker variant of the single
snapshot model. The (multi-)snapshot security has been
explored in previous works [2,21,27]. Typically, snapshot
security requires that even when temporary states (e.g.,
memory) of the server are included in the snapshot along
with the encrypted database, the adversary still cannot
learn any information about the underlying queries and
data beyond some limited leakage. In contrast, the adver-
sary in our attacks is only able to obtain a copy of all the
data stored on the server at a single point in time, but
has no access to server state (e.g. its working memory
or the tokens sent by the client). Our attacks do require
access to the server logs, which are usually not included
in snapshot security models but are common components
of modern database systems. In view of their general
availability and utility to attackers (as exposed by our

attacks), we argue that such logs should be included in
formal models for snapshot security.

These snapshot security definitions sharply contrast
with stronger security notions in recent advances in
SSE/STE [3,14–16,25,29]. They model the untrusted
server, hosting the encrypted database, as an honest-
but-curious adversary. This can be further divided into
two categories: a passive-persistent adversary, who gains
access to the encrypted database and is able to persis-
tently observe the transcripts between the client and
server; and an active adversary, who, in addition to the
information above, can adaptively pick the queries.

Indeed, our attacks with the logs underscore the critical
need for strong security notions when designing and
deploying SSE/STE in the real world.

Countermeasures. We offer a detailed discussion of
countermeasures in Section 8, including ideas such as
disabling the logs, perturbing/batching the log entries,
and encrypting the logs. However, all of these fixes come
with disadvantages, making the development of practical
countermeasures a challenging task. Because of this, we
argue that a major rethink of the QE architecture may
be needed.

Disclosure. We informed MongoDB of our analysis on
14.10.2022. They acknowledged receipt and we agreed on
a 90-day disclosure period. During the disclosure period,
we reached out to MongoDB to ask about their plans for
implementing countermeasures to our attacks, but Mon-
goDB did not respond to us with any concrete plans in
this respect. The 90-day period concluded on 12.01.2023
and our obligations to MongoDB were discharged at that
point. We made the paper public on 05.06.2023.

2 Overview of QE

Notation and Convention. For any n ∈ N, we let
[n] denote the discrete range [1,n]. We use out←$ A to
indicate out is generated by some algorithm A using its
internal randomness.

A Running Example. We give an overview of QE using
a running example. In this example, the client encrypts
a collection of documents containing demographic infor-
mation using QE. The values under “job” are encrypted
by QE and later referred to as an indexed encrypted field.
This enables equality searches on this field. The values
under “address” are encrypted without search function-
ality (using a standard symmetric encryption scheme,
denoted as EncK(·) with some secret key K). In the fol-
lowing, we use “DJ” and “Chef” as short abbreviations
for “job: DJ” and “job: Chef”, respectively, omitting the
“job” field name.

We next explain token derivation (Figure 1) and server
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Figure 1: Simplified QE Token Derivation.
Document Collection

doc1

{ "job": "DJ",
"address": "157 Electric Ave.",
"safeContent" : (1) }

doc2

{ "job": "DJ",
"address": "123 Happy St.",
"safeContent" : (2) }

doc3

{ "job": "Chef",
"address": "10th St.",
"safeContent" : (1) }

ESC
Key Value
Desc

1 EncV esc (1)
Desc

2 EncV esc (2)
Cesc

1 EncF esc (1)
ECC

Key Value
Decc

1 EncV ecc (1∥1)
Decc

2 EncV ecc (2∥2)

Encrypted Document Collection (eDocColl)

edoc3

{ "job": *** (219),
"address": *** (24),
"safeContent": (PRFF edc(1)) }

*** (length in bytes)
ECOC
Value

EncECOCToken(ESCDataTokenD|| ECCDataTokenD)
EncECOCToken(ESCDataTokenD|| ECCDataTokenD)
EncECOCToken(ESCDataTokenC || ECCDataTokenC )

Metadata Collections After Compaction
ESC’

Key Value
Desc

null EncV esc (2)
Cesc

null EncF esc (1)
ECC’

Key Value
Decc

4 EncV ecc (1∥2)

Figure 2: QE Example: server state, including metadata data collections and encrypted document collection after inserting
doc1,doc2,doc3 and deleting documents doc1,doc2, then finding “job”: “DJ”.

state (Figure 3), both fundamental to QE operations. In
Figure 1, thee separator divides the token derivation
process carried out by the client in the upper section
and the server in the lower section. The server state is
composed of three metadata collections (ESC, ECC, and
ECOC) and the encrypted document collection eDocColl.
Each document/metadata collection can be seen as a
dictionary, with entries being pairs of dictionary keys
and values. In our example, the client will insert docu-
ments doc1,doc2 (with “DJ”), doc3 (with “Chef”), sub-
sequently delete doc1,doc2 (i.e., documents with “DJ”),
and finally find documents with “DJ”. Figure 3 shows
the server state after these operations.

We continue with our example, examining six sub-
protocols of QE: Init, Connect, Insert, Delete, Find, and
Compact. Referring to Figure 1, we represent QE’s PRF-
based token derivation process, using an arrow that
points from some (upper-level) token k to a (lower-level)
token y, with the PRF input x noted next to the arrow.
This notation is equivalent to y← PRFk(x).

Init. The client generates a master secret key msk, and
stores it either locally or using a cloud key management
service (KMS). For field name “job” that supports equal-
ity searches, the client generates an index key ikeyjob
uniformly at random. This key, ikeyjob, is stored in
a dedicated document collection called keyVault. The

keyVault collection is encrypted using msk and sent to
the server.

Connect. To make queries, the client connects to the
server, downloads the keyVault, decrypts it, and keeps
ikeyjob in memory throughout the active connection.

Insert. The client is connected, retaining ikeyjob. It
then derives CollEncToken and ServerEncToken, using
ikeyjob with hard-coded values 1 and 3, respectively (to
ensure key separation), as shown from level 0 to level 1 in
Figure 1. The client further derives EDCToken, ESCToken,
ECCToken, and ECOCToken using values 1, 2, 3, and 4 (cf.
level 1 to level 2 in Figure 1).

When inserting doc1 with “DJ”, the client gen-
erates tokens EDCDataTokenD, ESCDataTokenD,
ECCDataTokenD using EDCToken,ESCToken,ECCToken
as PRF keys, respectively, and “DJ” (under “job”) from
doc1 as PRF input (cf. level 2 to level 3 in Figure 1).
The client sends EDCDataTokenD, ESCDataTokenD,
ECCDataTokenD, and ECOCToken to the server. When in-
serting doc2 (also with “DJ”), the client sends the same
tokens; when inserting doc3 (with “Chef”), the client
generates and sends EDCDataTokenC , ESCDataTokenC ,
ECCDataTokenC , and ECOCToken (cf. levels 2 and 3 in
Figure 1).

(ESC) After receiving the tokens from the client, the
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server adds entries to ESC. We start by describing the
values stored in ESC before encryption. When inserting
doc1 with “DJ”, the server initializes a counter ctr←
1, and stores 1. When inserting doc2 with “DJ”, the
server increments ctr← 2 and stores 2. This counter is
referred to as document counter, indicating the number
of document insertions that have occurred with “DJ”.
When inserting doc3 with “Chef”, the server initializes
another counter ctr′← 1, and stores 1. To encrypt these
counter values, the server generates encryption tokens
V esc for doc1 and doc2 (with “DJ”), and F esc for doc3
(with “Chef”), referring to level 3 to level 4 in Figure 1.

The server also needs to determine the dictionary keys
used to insert these encrypted document counter val-
ues into ESC. To generate the dictionary keys, it first
derives tokens: ESCTagTokenD for doc1 and doc2; and
ESCTagTokenC for doc3 (cf. level 3 to level 4 in Fig-
ure 1). Next, for doc1 with “DJ”, it derives dictionary
key Desc

1 using ESCTagTokenD and pos = 1 as PRF input
(cf. Figure 1); and inserts (Desc

1 ,EncV esc(1)) to ESC.
For doc2 with “DJ”, the server needs to insert into

ESC with a dictionary key different from Desc
1 . To do

this, the server determines a fresh pos value. This is
done by finding posmax, the maximum value of pos used
so far in relation to “DJ” in ESC. This is implemented
using binary search on some bounded range in QE. At
this point, the server recovers posmax = 1. Decrypting
ESC’s entry at posmax = 1, the server gets the maximum
document counter value ctrmax = 1 that has been used
before with “DJ”. For this new insertion, doc2, the server
sets pos← 2,ctr← 2, derives Desc

2 with pos = 2, and
adds (Desc

2 ,EncV esc(2)) to ESC.
Similarly, for doc3 with “Chef”, the server adds

(Cesc
1 ,EncF esc(1)) to ESC.
(eDocColl) Using the document counter value previ-

ously inserted into ESC as the PRF input, the server
relies on the EDC token (cf. Figure 1) to produce a PRF
output. This PRF output is then added to the encrypted
document being inserted to eDocColl. Its purpose is to
help the server locate this exact document based on the
document counter value, while protecting the counter
value in the encrypted document from a snapshot ad-
versary. This specialized PRF output is referred to as
safeContent in QE.3

In our example, beginning with token derivation, the
server derives V edc for doc1 and doc2; and F edc for
doc3 (cf. level 3 to level 4 in Figure 1). The server then
generates safeContent values, namely PRFV edc(1) for
doc1, PRFV edc(2) for doc2, and PRFF edc(1) for doc3, and
adds each to encrypted documents edoc1, edoc2, and
edoc3, respectively.

3The safeContent field contains a list of values, with the list
length being equal to the number of indexed fields (in our example,
there is only one value).

(ECOC) The ECOC metadata collection stores ESC and
ECC tokens used in document insertion (cf. level 3 tokens
in Figure 1), encrypted using ECOCToken. We expand on
this discussion in the Compact sub-protocol.

Delete. We will now demonstrate the deletion of docu-
ments doc1,doc2 with “DJ”, using the “Find-And-Delete”
method implemented in QE. Assuming that the client is
connected and retains ikeyjob, the server has already ob-
tained document counter values 1 and 2 associated with
“DJ” from ESC (through Find with “DJ”). The server
then uses the EDC token to compute safeContents with
1 and 2; and subsequently uses them to locate and delete
encrypted documents edoc1 and edoc2. After that, the
server adds entries to ECC to record the document dele-
tions associated with 1 and 2. These values are stored in
the format of contiguous range x∥y, with x and y being
the start and the end points. As a result, 1∥1 and 2∥2 are
to be stored, and they are encrypted using V ecc (cf. level
3 in Figure 1). Similarly to ESC insertions, the server
uses pos ∈ {1,2}, and derives the associated dictionary
keys: it generates Decc

1 for doc1, Decc
2 for doc2; and then

adds (Decc
1 ,EncV ecc(1∥1)), (Decc

2 ,EncV ecc(2∥2)) to ECC
(cf. Figures 1 and 3).

Find. The client is connected, retaining ikeyjob. To
find encrypted documents with “DJ”, it generates
EDCDataTokenD, ESCDataTokenD, and ECCDataTokenD

(cf. level 0 to level 3 in Figure 1), and sends them to the
server. The server proceeds with the token derivation for
ESC and ECC (cf. level 3 to level 4 in Figure 1). With these
tokens, in ESC, it applies the same procedure as in ESC
insertion, finding the maximum value of pos, posmax = 2,
maximum counter value ctrmax = 2. By enumerating
from 1 to ctrmax, the server obtains document counter
values 1 and 2 for all inserted documents with “DJ”. In
ECC, it finds the maximum posmax = 2 associated with
the number of deletions associated with “DJ”, and then
decrypts ECC entries at pos ∈ {1,2} to obtain 1 and 2.
These are deleted document counter values associated
with “DJ”. After removing the deleted set {1,2} from
the inserted set {1,2}, the server returns an empty result
to the client.

If a find query on “Chef” were performed by the client
instead, similar operations would yield document counter
value 1. The server would then compute safeContent
with 1 as the PRF input using token V edc as the PRF
key, locate edoc3, and return it to the client.

Compact. The sizes of the metadata collections ESC, ECOC,
and ECC grow linearly with the number of document in-
sertions and deletions. Since these sizes can become quite
large,4 QE implements a Compact procedure to reduce

4In our experiments, described later, ECOC reached 1GB in size
when only inserting around 650K records.
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them. We now describe this Compact procedure contin-
uing with our running example. Assuming the client is
connected and retains ikeyjob, it generates ECOCToken,
initiates Compact, and sends ECOCToken to the server.

Previously, during document insertion, we
omitted the description of the tokens stored
in ECOC. We now provide this information:
EncECOCToken(ESCDataTokenD∥ECCDataTokenD) is
added twice during the insertion of doc1 and doc2;
EncECOCToken(ESCDataTokenC∥ECCDataTokenC) is
added when inserting doc3 (cf. Figure 3).

Continuing the Compact process, the server decrypts
the ECOC entries sequentially with ECOCToken. It first
obtains ESCDataTokenD∥ECCDataTokenD (from insert-
ing doc1 with “DJ”). With ESCDataTokenD, the server
compacts “DJ”-related entries in ESC. It first identifies
the maximum document counter value 2 stored for “DJ”
in ESC (using the same approach described in docu-
ment insertion). Next, it encrypts and inserts only the
maximum document counter value 2 into ESC, removing
individual entries 1, 2 as they can be recovered using
2 by enumeration. This maximum counter value 2 is
then encrypted using F edc, and is stored at a special
position null in ESC. Specifically, ESC now only stores
(Desc

null,EncV esc(2)) for “DJ”. With ECCDataTokenD, the
server compacts “DJ”-related entries in ECC. Entries
1∥1 and 2∥2 are regrouped as a single contiguous
range 1∥2. ECC now only stores (Decc

4 ,EncV ecc(1∥2))
for “DJ”.5 The server then processes the second en-
try, obtaining ESCDataTokenD∥ECCDataTokenD. Since
the server has already performed the compaction
subroutine using the same tokens, this ECOC entry
is skipped. Finally, the server gets the third entry
ESCDataTokenC∥ECCDataTokenC (from inserting doc3
with “Chef”). By performing similar operations, the
server “compacts” ESC by removing the previous entry
at pos = 1 with maximum counter value 1, and inserts
(Cesc

null,EncF esc(1)) to ESC. No compaction is performed
on ECC for “Chef”, as no documents with “Chef” have
been deleted.

The server has now completed the compaction process
on ESC and ECC, using every ESC and ECC token stored
in ECOC. Finally, the server can clear ECOC. Figure 3
also shows the state of the metadata collections after
compaction.

It is worth emphasizing that the lack of technical docu-
mentation for QE has posed significant challenges in our
analysis. We managed to understand QE’s inner workings
through access only to source code and presentations.6

5The positional value used for this entry is 4 due to a small
complication: a placeholder record is inserted at position 3.

6https://github.com/mongodb/mongo; https://www.youtube.
com/watch?v=0TuCB1pSWZE

3 System Integration of QE

MongoDB builds QE on top of native MongoDB opera-
tions, and integrates it as a system component. Thus, QE
inevitably interacts with multiple system components
of MongoDB. Notably, we focus on its comprehensive
logging system. In particular, two types of logs produced
by the system, both stored on the server’s hard drive: the
mongod log file (referred to as the query log queryLog),
and operation log opLog.

For better understanding, we provide simplified out-
puts of queryLog and opLog in Figure 2. These outputs
are generated by the execution of the QE example we
discussed before.7

In queryLog at verbosity level 1,8 QE records all server
operations that incur write/read changes to the server
state (e.g., the metadata collections and encrypted doc-
ument collection) using transactions. For example, when
inserting doc1, transaction 101 records dictionary key
Desc

1 , used for ESC insertion, followed by identifier edoc1,
used for inserting encrypted document to the encrypted
document collection eDocColl. Inserting doc2 results in
transaction 105. Similarly, it records ESC dictionary key
Desc

2 and identifier edoc2. We omitted the transaction for
inserting doc3 in queryLog for simplicity, which records
dictionary key F esc

1 and identifier edoc3. Finally, trans-
action 503 records the find operation, incurring reads on
ESC, with dictionary keys Desc

1 and Desc
2 .

In comparison, opLog only records write changes to
server state and does not capture any information re-
lated to the read operations. For simplicity, the provided
opLog omits the document insertion part. Instead, we
focus on the write transactions, incurred from the com-
paction process on ESC. Recall that this compaction
process involves running a compaction subroutine on
every unique inserted field value (“DJ” and “Chef”).
Specifically, the maximum document counter values for
“DJ” and “Chef” are kept, and the remaining individual
entries are removed. In our example, transaction 211
records the write operations, occurring during the com-
paction subroutine on “DJ”, and transaction 212 records
those corresponding to “Chef”.

4 Leakage Extraction from Logs

We now proceed to discuss our method for extracting
certain frequency information related to the (indexed)
field values from either queryLog or opLog.

In our example, this (extracted) frequency information
7These logs are only for illustration purposes; e.g., we use txnid

to denote the transaction ids, which are different from what are
used in the actual logs; in opLog, “i” and “d” are used to denote
“Insert” and “Delete”, respectively.

8The maximum level is 5.
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queryLog

1 { " Insert ": "ESC",
2 "_id": Desc

1 ,
3 "txnid": "101" }
4

5 { " Insert ": "eDocColl",
6 "_id": "edoc1 ",
7 "txnid": "101" }
8

9 { " Insert ": "ESC",
10 "_id": Desc

2 ,
11 "txnid": "105" }
12

13 { " Insert ": "eDocColl",
14 "_id": "edoc2 ",
15 "txnid": "105" }
16

17 // Find ----------
18

19 { "Find": "ESC",
20 "_id": Desc

1 ,
21 "txnid": "503" }
22

23 { "Find": "ESC",
24 "_id": Desc

2 ,
25 "txnid": "503" }
26

opLog

// Compaction only

{ "op": " Delete ",
"ns": "ESC",
"_id": Desc

1 ,
"txnid": "211" }

{ "op": " Delete ",
"ns": "ESC",
"_id": Desc

2 ,
"txnid": "211" }

{ "op": " Insert ",
"ns": "ESC",
"_id": Desc

null ,
"txnid": "211" }

{ "op": " Delete ",
"ns": "ESC",
"_id": F esc

1 ,
"txnid": "212" }

{ "op": " Insert ",
"ns": "ESC",
"_id": F esc

null ,
"txnid": "212" }

Figure 3: Simplified Logs: queryLog and opLog.

includes the fact that two unique values have been in-
serted under “job”; and that for “job”, edoc1 and edoc2
share the same field value, while edoc3 has a different
field value from the other two. The extracted frequency
information will be used later in our inference attack.

Our leakage extraction process has two steps. (1) Iden-
tifying which ESC tokens are for the same field values;
this information can be extracted by exploiting either
queryLog or opLog. (2) Mapping the information ex-
tracted in step 1 onto encrypted documents. We demon-
strate this process using the same log examples as before.
We refer to a (logging) transaction with txnid = x as
transaction x.

(Step 1 with queryLog.) Let us look at how to identify
ESC tokens with the same underlying field values in
queryLog. For the purpose of this step, it is sufficient
to focus on the transactions for the Find operations. In
particular, in txnid = 503, Desc

1 and Desc
2 appear together.

Since a Find operation only returns documents containing
the same field value, we can deduce that Desc

1 and Desc
2

must have the same underlying field value. On the other
hand, since F esc

1 did not appear in txnid = 503, it must
have a different underlying field value.

(Step 1 with opLog.) We can infer which ESC tokens
have the same underlying field values from opLog in
a similar manner. Consider the opLog in Figure 2. In
the transactions for txnid = 211, Desc

1 and Desc
2 appear

together again. And this tells us that these two ESC
tokens are for the same field value. We can omit Desc

null in
this process as it is an Insert operation due to compaction
as opposed to a Delete one; and only the deleted ones
are used during document insertion. Similarly, we can

identify F esc
1 as an ESC token for a different field value.

(Step 2.) Using the extracted information from Step 1
(from either queryLog or opLog), we can now map the
information onto the encrypted documents. This is done
by exploring a different segment of the logs.

Concretely, for queryLog, we see that the insertion
for ESC token Desc

1 and encrypted document edoc1 both
appear under transaction txnid = 101. This means that
Desc

1 is for edoc1. Similarly, we can link Desc
2 with edoc2

and F esc
1 with edoc3 (the latter transaction has been

omitted in the example).
Similarly, there are transactions for inserting encrypted

documents in opLog. These allow us to link the ESC
tokens to the encrypted documents they belong to. Due
to limitations on space, these transactions are not shown
in the opLog example in Figure 2.

Tying everything together, the information on which
ESC tokens have the same underlying field values, and
the knowledge of which ESC token belongs to which
encrypted document allow us to obtain a type of leak-
age. This leakage tells us which of the encrypted docu-
ments share the same field values. Formally, we call this
leakage field-value equality leakage. We can represent
it as follows. Let m be the number of encrypted docu-
ments; we define this leakage as Lfield-value-eq : [m]→ N.
In our example, the field-value equality leakage can be
represented as Lfield-value-eq(1) = 1, Lfield-value-eq(2) =
1,Lfield-value-eq(3) = 2. We expand on the leakage repre-
sentation in Section 5.

Length Leakage. We can also extract length leakage
for individual encrypted fields that arises as a result of
QE’s unfortunate choice of using AES-CTR$ encryption
without any length padding. This is because the byte
length of an indexed encrypted field value is equal to the
sum of the plaintext length and a constant (for storing
content such as fixed-size tokens, fixed at “215” in QE).
In fact, the length leakage can be obtained from either
eDocColl or opLog. For example, in Figure 3, in edoc3,
the encrypted field value under “job” has 219 bytes,
meaning the plaintext length is 4 bytes. We formally
represent the length leakage by Llength : [m]× [τ ]→ N,
with m and τ defined before, and the output is the length
of the encrypted field value in bytes.

5 Further Details on QE and Implica-
tions for Leakage Extraction

Thus far, we have provided an overview of QE’s six sub-
protocols: Init, Connect, Insert, Delete, Find, using a run-
ning example. In this section, we turn our attention to
the details of QE omitted so far, and discuss how they
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affect our leakage extraction.9

Contention Factor. Note that the Insert protocol
we described in Section 2 can only support document
insertions for documents with the same field value se-
quentially. This is because the ESC dictionary values
depend on how many documents containing that field
value has been inserted. So if two clients try to insert
documents containing the same field value at the same
time, the Insert queries can only be executed one by one,
leading to undesired latency. To circumvent the short-
coming, QE introduced contention factor between level 3
and level 4 in the token derivation process (cf. Figure 1).

To demonstrate how contention factor helps with the
problem described above, consider an example where
two clients want to insert a document containing field
value “DJ” each. Instead of deriving ESCDataTokenD

(level 3) and sending it directly to the server, the first
client generates a small random number cf (called
contention factor) and computes ESCDataCfTokenD←
PRFESCDataTokenD

(cf). It then sends ESCDataCfTokenD

in place of ESCDataTokenD to the server in the Insert
sub-protocol. Similarly, the second client generates a con-
tention factor cf′, derives token ESCDataCfToken′

D and
sends ESCDataCfToken′

D in its Insert query. By setting
a reasonable valid range for the contention factor,10 the
chance of the two clients generating the same contention
factor is low. So with high probability, the server can
process the two insertions concurrently, thus reducing
query latency.

Of course, the Find sub-protocol needs to be modi-
fied to support contention factors. We elaborate how it
can be done by considering a Find query on field value
“DJ”. Here, since the client does not know which con-
tention factors it is looking for, it delegates the search
over the contention factors by sending ESCDataTokenD

and the maximum possible contention factor cf_max
to the server. The client also sends EDCDataTokenD

and ECCDataTokenD (as in the unmodified Find sub-
protocol) to the server. The server can then derive
all possible ESCDataCfTokenD tokens and perform
search with EDCDataTokenD, ESCDataCfTokenD and
ECCDataTokenD in the same way as the unmodified Find
sub-protocol.

Multiple Indexed Encrypted Fields. In practice,
QE supports more than one equality-searchable field per
document. This is achieved by using different index keys
ikeyjob (cf. level 0 of Figure 1) for each field and field
value. This complication does not affect how leakage can
be extracted from the logs. The rationale behind this
is that the Insert sub-protocol processes field insertions

9Full syntax and pseudocode are provided in the full version of
our paper.

10The default range for the contention factor is 0 to 4, inclusive.

sequentially; as a result, an attacker can identify the
dictionary keys used for each field by associating them
with the order of field insertions in the logs.

Effects on Leakage Extraction. For the complica-
tion due to multiple indexed encrypted fields, we gener-
alize the Lfield-value-eq representation (cf. Section 2) to
accommodate τ indexed encrypted fields. Let m be the
number of encrypted documents; we define Lfield-value-eq :
[m]× [τ ]→ N. Suppose now we also index the second
“address” field in our example, then τ = 2, and we can
write the field-value equality leakage for the first indexed
field “job” as Lfield-value-eq(1,1) = 1,Lfield-value-eq(2,1) =
1,Lfield-value-eq(3,1) = 2.

As an abuse of notation, we let Lfield-value-eq(i) de-
note the tuple of enumerated field values for (en-
crypted) document i. Let 1,2,3 be the enumeration
of the second “address” field, as this information is
distinct for all documents. Then, using this notation,
we can write Lfield-value-eq(1) = (1,1),Lfield-value-eq(2) =
(1,2),Lfield-value-eq(3) = (2,3).

We continue discussing how the contention factor
mechanism affects leakage extraction. Suppose doc1,
doc2, and doc3 are now inserted into ESC with tokens
generated with distinct cf. With queryLog, we can still
extract the field-value equality leakage using the same
method described in Section 2. This is due to the cor-
rectness requirement of Find protocol, which returns all
encrypted documents with the same indexed field value,
even if they are inserted with different cf-dependent to-
kens; at the same time, queryLog records all dictionary
keys (generated with different cf values) used in this
Find query.

However, with opLog alone, we now cannot learn that
edoc1 and edoc2 have identical field value. This is
because, the compaction process now only groups en-
crypted fields inserted with tokens generated using the
same field value and cf value, while edoc1 and edoc2
are inserted with tokens derived using different cf val-
ues. Hence, we define Lfield-value-cf-eq : [m]× [τ ]→ N to
represent this type of equality leakage, referred to as
field-value-contention-factor equality leakage. In this ex-
ample, Lfield-value-cf-eq(1,1) = 1,Lfield-value-cf-eq(2,1) = 2,
Lfield-value-cf-eq(3,1) = 3.

We provide the pseudocode for leakage extraction
in Figures 7 and 8 in Appendix B. It is important to
emphasize that the leakage extraction methods in our
implementation are far more complex than what we have
described. This is because raw logs are “messy” (See
Appendix F). For example, we need techniques to obtain
a unique transaction id for use in leakage extraction,
and ensure that our leakage extraction methods remain
memory-efficient when dealing with large logs.
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6 Adversarial Models

As briefly discussed in Section 1, we consider a snapshot
adversary with access to all of the data stored in the
encrypted database — this include three metadata col-
lections (ESC, ECC and ECOC), the encrypted document
collection and logs (queryLog and opLog). We devise two
attacks, one for each log. These attacks demonstrate how
the log can be exploited to reveal sensitive information
about the encrypted documents.

6.1 Snapshot Adversary with Encrypted
Document Collection and queryLog

Attack Setting. Recall that queryLog is used to store
database events. At verbosity level 1 and above, details
of queries appear in the log. We consider an attacker
who has access to a snapshot of the encrypted docu-
ment collection and queryLog. The attacker here can
be a database administrator, an external attacker who
manages to gain access to the encrypted database, or an
attacker who steals the hard drive from the server.
Attack Goal. With a copy of the encrypted docu-
ment collection and queryLog, the goal of the attacker
is to recover the field values in the encrypted document
collection.
Attack Requirements. The attack requires a suffi-
cient number of queries to be made by the client. Here,
sufficiency depends on the distribution of the field val-
ues and the query distribution. In Section 7.2, we show
that 300 uniformly random queries on each field of the
American community survey 2013 dataset (6 fields in
total) enables the attacker to recover between 40% and
80% of the field values (see Figure 4 in Section 7.2).

6.2 Snapshot Adversary with opLog

Attack Setting. The opLog stores all write operations
(but not read operations) on the database. The opLog
must always be enabled in the current implementation
of QE. Even if this log were to be made optional in QE,
in production deployments, opLog is typically necessary
because the database would need to be instantiated
as a replica set11 and opLog is required for database
maintenance. In this paper, we investigate the security
impact of a snapshot attack where an adversary manages
to obtain a copy of opLog. In practice, this adversary
can be a database administrator, an attacker who gains

11That is, alongside a primary server, at least one other server in-
stance maintains the same database to cope with emergencies such
as a temporary power outages; opLog contains a list of write oper-
ations and is essential for ensuring that the databases maintained
in the replica set are kept in sync.

access to the encrypted database (if the connection to
the database is unauthenticated or the access keys are
leaked), or an attacker who steals the hard drive from
the server.

Attack Goal. With a copy of opLog, the goal of the
attacker is to recover the field values in the encrypted
document collection.

Attack Requirements. The attack requires a Compact
operation to take place on the database. We emphasize
that the compaction procedure is inevitable in the design
of QE, as the scheme incurs significant storage blow-up
in the size of metadata, and it is advised to perform
compaction every time the metadata reaches 1GB.12 On
the other hand, the attack does not require any query
to be made on the database.

7 Snapshot Attack with queryLog or
opLog

In this section, we show how the information leakage from
queryLog and opLog can be exploited to reconstruct the
plaintexts in the encrypted document collection. We start
with an overview of our attack technique in Section 7.1,
and follow this with an empirical evaluation of our attack
in Section 7.2.

7.1 Inference Attack

We begin by showing how we model the distribution the
field values in the document collection. We then derive
the likelihood function used in our attack. Finally, we
show how the likelihood function can be used to find
the most likely assignment between the identifiers in
the leakage and the unencrypted field values by using
simulated annealing.

Field value distribution. We represent a document
with doc = (val1, . . . ,valτ ), where vali is a particular
field value in the i-th field. We can view the tuple of
field values as a realisation of a random variable T ,
where the support of the variable T is the Cartesian
product of the set of possible field values across all fields.
Without loss of generality, we assume that the tuple of
field values ti has probability pi to occur in the document
collection every time a new document is added. Then,
given n1, . . . ,nl as the number of occurrences of tuples
t1, . . . , tl, we can compute the probability of observing

12More specifically, it is the size of the ECOC collection. Currently,
compaction is triggered manually, but it is planned to be automated
by the server in a future release. See https://www.mongodb.com/
docs/manual/core/queryable-encryption/reference/limitati
ons/#manual-compaction.
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the document collection as

Pr[(n1, . . . ,nl) ] = C ·
l∏

i=1
pni

i ,s

where C is a normalization constant that depends on
n1, . . . ,nl.

We define marginal field value tuple distribution on an
index set I = {i1, . . . , is} as the probability

PrI [(n1, . . . ,nis)] =
∑

xj ,j∈[τ ]\I

Pr[(x1, . . . ,n1, . . . ,nis ,xτ ) ] .

As an example, if the document collection contains
two fields and I = {1}, then the marginal distribution
on I is essentially the field value frequency of first field.
More formally, it can be computed as

PrI [(n1)] =
∑
x2

Pr[(n1,x2) ] .

Reduced Tuple. Let I be an index set (i.e. a set of
integers), we use t[I] to denote the reduced tuple of t
indexed by I, that is, the i-th component is in t[I] if
and only if i is in I. For example, if I = {1,2,3}, then
t[I] = (t1, t2, t3).
Identifier-field value Assignment. Recall
that after extracting the leakage Lfield-value-eq (and
Lfield-value-cf-eq), we know which of the documents
contain the same field values (and field value with
contention factor, respectively), but we do not know the
exact value of the field values. For this reason, the field
values are enumerated by identifiers. Our goal in the
attack is to map these identifiers to actual field values.
This map P is formally defined as P : [τ ]×N→N where
τ is the number of fields in the document collection,
and P(i, j) = k means that the j-th identifier (in either
field-value-contention-factor equality or field-value
equality leakage) in the i-th field is assigned to the k-th
field value.

For field-value-contention-factor equality leakage, the
assignment is many-to-one, meaning that there are mul-
tiple identifiers assigned to the same field value. For
field-value equality leakage, the assignment is one-to-one,
meaning that each identifier is assigned to a unique field
value.
Likelihood function. The formalism above allows
an attacker to compute the probability of observing
the leakage given a particular assignment. However, the
attacker is interested in the likelihood L of an assignment
given the observed leakage L. To compute the latter, we
use Bayes’ rule as follows:

L [P | L ]∝Pr[P ] ·Pr[L |P ]
=Pr[P ] ·Pr[DB|DB(i, j) = P(j,L(i, j))∀i, j ] .

We assume that the assignments are uniformly dis-
tributed so Pr[P ] do not have any real contribution
in the likelihood. Regarding Pr[L |P ], we can apply the
assignment P on the leakage L to obtain a guess of the
plaintext document collection DB. The probability can
then be calculated with what we have described in "Field
Value Distribution".

Let I be an index set, then, similar to marginal plain-
text tuple distribution, we define marginal likelihood as

LI [P | L]∝Pr[P] ·PrI [L |P].

Simulated Annealing. Recall that the goal of the
attacker is to find the most likely assignment given the
leakage and auxiliary distribution. We have just estab-
lished how likelihood score can be calculated for any as-
signment. However, the number of possible assignments
is exponential in size and it is impossible for the attacker
to compute the likelihood score for every possible assign-
ment and pick the best one. To achieve the latter, we
propose to use simulated annealing [32].

On a high-level, (standard) simulated annealing works
as follows. The algorithm is initialised with a temperature
T and a random assignment P. Then, for each iteration,
the temperature T is reduced according to a cooling
schedule cooling(). A new assignment P′ is generated by
using a neighbourhood generation algorithm neighbour().
This new assignment is supposed to be almost identical
to the old assignment except for a small number of differ-
ences. A likelihood score s′ = L(P′ | L) is computed on
the new assignment and is compared to the likelihood
score s computed on the old assignment. If the score
improves, we replace the old assignment by the new one
unconditionally. Otherwise, the new assignment is ac-
cepted with a small and decreasing probability specified
by the algorithm acceptProb() which takes as input the
old likelihood score s, the new likelihood score s′ and the
temperature T . After the set number of iterations have
been completed, the algorithm returns the assignment
that it is currently holding and terminates.
Adapting simulated annealing to our attack.
Applying simulated annealing naively to the above like-
lihood function turns out to be ineffective at finding the
most likely assignment. This is because the search space
is too large for the assignment to converge properly (it
grows exponentially with the number of fields). To tackle
the problem, we use a technique similar to that in [4].

The idea is that before running simulated annealing
on multiple fields, we run it on the individual fields so
that we have a better starting point for the algorithm.
We find that simulated annealing works the best when
the neighbourhood algorithm is constrained to changing
at most 6 identifier-field value pairs in the assignment
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(across 3 fields, 2 pairs in each field).
In terms of the score function, we use the marginal

likelihoods over the fields that have been changed by
the neighbourhood function. This allows the algorithm
to ignore the other fields and produce a more infor-
mative likelihood function over the chosen fields. The
pseudocode of our attack is provided in Appendix C.

7.2 Empirical Evaluation
In this section, we present an empirical evaluation of the
attack described above.

Experimental Data. We use American community
survey (ACS) from 2013 as the target dataset in our
experiments. Detailed information about the dataset
and how it is processed can be found in Appendix D.

We pick six fields from ACS as the target fields in our
experiments, namely race (RAC3P), state (ST), place of
birth (POBP), place of work (POWSP), class of worker
(COW) and occupation (OCCP). In the original ACS
dataset, all of the fields are numerically encoded, which
means there is no length leakage to be exploited. To
demonstrate the security impacts of length leakage, we
run additional experiments where the field values are re-
placed with the actual plaintexts and their length leakage
is given to the attacker.

To investigate the effect of size of the database on
our attack, we run separate experiments for 30K, 300K
and 3M documents sampled uniformly randomly from
the whole dataset. Due to scalability issues with QE, we
decided to generate leakages from the dataset through
simulation, also discussed in Appendix A.

Auxiliary Data. We use ACS 2012 as our auxiliary
data. Since ACS samples different households every year,
ACS 2012 provides a good approximation for ACS 2013.

Parameters for Our Attack. As for the parameters
of our attack, we run simulated annealing on the individ-
ual fields for 107 iterations when the leakage comes from
opLog and 5× 107 iterations when the leakage comes
from queryLog. We then run simulated annealing across
all fields (the number of fields picked in the neighbour-
hood algorithm is uniform random between 1 and 3)
for 104 iterations when the leakage comes from opLog
and 2× 104 iterations when the leakage comes from
queryLog. These parameters allow us to complete each
attack within a day.

Accuracy Metrics. We use two accuracy metrics to
measure the performance of our attack. Both metrics are
field-based. The first metric is the percentage of correctly
guessed plaintexts in a field with respect to the unique
identifiers in the field-value equality leakage or field-
value-contention-factor equality leakage for that field.

This metric disregards the frequencies of the underlying
plaintexts and it focuses on the raw performance of the
attack. The second metric is the percentage of correctly
guessed plaintexts in a field with respect to the actual
encrypted documents. This metric gives weights to the
frequencies of the plaintexts and it reflects the amount
of privacy loss on the encrypted document collection due
to our attack.

Experiment Overview. For our attack on opLog, we
use datasets of size 30K, 300K and 3M documents. For
each choice of the dataset size, we generate 100 inde-
pendent encrypted databases through simulation and
extract from them field-value-contention-factor equality
Lfield-value-cf-eq and length leakages Llength with the pro-
cedures detailed in Sections 4 and 5. This gives us 100
inputs to our attack with Lfield-value-eq (by removing the
contention factor) and another 100 inputs to our attack
with Lfield-value-cf-eq and length leakage.

For our attack on queryLog, we use datasets of
size 30K, 300K and 3M documents. For each choice
of the dataset size, we generate 100 independent en-
crypted databases through simulation. For each en-
crypted database, we run 100, 300 or 500 random queries
(either uniform or Zipf) on each field and generate field-
value equality leakage through simulation. We also gener-
ate length leakage from the encrypted database directly.
This gives us 100 inputs to our attack with field-value
equality leakage only and another 100 inputs to our at-
tack with field-value equality leakage and length leakage
for each query size and query distribution.

Query Distribution. We consider two distributions
of queries, namely the uniform distribution and a Zipf
distribution for the experiment above. For the uniform
distribution, we simply draw 100, 300 or 500 field values
uniformly randomly for each field and use them as the
field values for the queries.

For the Zipf distribution, we generate the queries as
follows. Focusing on one of the fields, suppose that the
field values are val1, . . . ,valk. We randomly permute the
field values to obtain a new order, say vali1 , · · · ,valik

.
We treat vali1 as the most likely field key to be queried
and valik

to be the least likely field key to be queried,
modelling the query frequency of the field values to be:

j−1∑k
n=1 n−1

.

for field value valij . We draw 100, 300 or 500 field values
from the said distribution and use them as the field values
for the queries.

Experimental Results. For queryLog, we report our
experimental results on 3M documents and 300 queries in
Figure 4. For results on other query sizes, see Appendix E.
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As the figures are quite complicated, we provide the fol-
lowing guide for readers. Each figure shows six groups
of experimental results, one for each field. For each field,
we show four results, for two accuracy metrics in two
different experimental settings. The results for the exper-
iments without length leakage from the field values are
shown in the left pair and the results for the experiments
with length leakage from the field values are shown in
the right pair. Within the pairs, the plaintext recovery
rate by the number of unique field value identifiers is
shown on the left and the plaintext recovery rate by the
number of documents is shown on the right. As we use
random queries in our experiments, these queries do not
necessary touch all field values in the database (hence,
the attacker does not observe the corresponding leakage
in queryLog). The proportions of field values touched by
the queries are shown as white bars in the figures. This
allows one to read off the relative plaintext recovery rates
of our attack in addition to absolute plaintext recovery
rates. For example, in the setting of 300 uniform queries
on each field on 3M documents (top figure in Figure 4),
for the experiment without length leakage, the attacker
observe 75.2% of the field values in the field POBP on
average. It is able to recover 12.0% of the field values.
This corresponds to 12.0/75.2 = 16.0% relative plaintext
recovery rate.
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Figure 4: Experimental results on queryLog with 3M docu-
ments and 300 random queries on each field. “NL” indicates
“no length leakage”; “WL” indicates “with length leakage”.

Our attack has lower recovery rate on the field values
when length leakage is not given. This is not surprising
as the attacker has not observed all the (encrypted) field
values yet (per the white bars), and it makes it hard for
the attacker to recover the field values. Even then, the re-
covered field values covers the majority of the documents,
indicating that QE offers very little protection for data
privacy. Furthermore, our attack performs significantly
better when length leakage is accessible by the attacker.

We observe that the performance of our attack on

different fields varies significantly. This is because the
difficulty of performing inference is different for different
fields. For example, the field state (ST) is relatively easy
to infer as it can only take one of 51 possible values.
40% of the states have a reasonably distinct distribution
as compared to other states, which allows our attack
to recover them easily. On the other hand, our attack
only managed to recover less than 20% of place of birth
(POBP). This is because there are 215 possible place of
birth in total and our target database has very skewed
distribution of POBP. In particular, being the third most
frequent field value for POBP, “Texas” occurs in 6.06%
of the documents. This makes “Texas” very easy to iden-
tify from a frequency analysis perspective. Furthermore,
people born in Texas are likely working in nearby states
(shown in the auxiliary information), which allows the
attacker to use correlation between different fields (ST
and PoBP) to improve the accuracy of the recovery fur-
ther. On the other hand, for minorities born in foreign
countries, say Cyprus, the frequency of the field value
is too low and its correlation with other fields is too
weak to provide any meaningful statistical information
for recovery.

For opLog, we report our experimental results on 3M
documents in Figure 5. For results on other database
sizes, see Appendix E.
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Figure 5: Experimental results on opLog against 3M docu-
ments. “NL” indicates “no length leakage”; “WL” indicates
“with length leakage”.

Our attack on opLog has similar performance as com-
pared to our attack on queryLog. We observe that the
presence of length leakage has a significant positive im-
pact on the recovery rate. Another interesting observa-
tion is that even though the leakage of opLog is more
“noisy" due to the presence of contention factor, our exper-
imental results are not worse than those using queryLog.
This indicates that contention factor (a relatively small
one, e.g. 4, as used in QE) offers limited protection against
leakage-abuse attacks.

8 Countermeasures

MongoDB’s Plan. During the disclosure process, we
asked MongoDB about their plan for deploying counter-
measures to our attacks. They said that they are still
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actively developing QE and did not give us a concrete
plan for their deployment of countermeasures. We have
tested our attacks up to tag r6.2.1-rc113 (released on
17.02.2023) and confirmed that they still work.

On one hand, we understand MongoDB’s position as
there are many uncertainties in the development of QE
and it does not make sense to try to “hit a moving target”.
On the other hand, we believe that the vulnerabilities
we have identified should be addressed before general
availability (GA) as their presence defeats the purpose
of QE otherwise.

Challenges in designing a countermeasure. We
consider three natural countermeasures to our attacks
below. While these countermeasures do defeat our at-
tacks, we consider them to be either hard to implement
(not aligned with the interest of MongoDB) or that they
hinder the usability of the database system.

Disable the logs. The most naive countermeasure to
our attacks is to simply not use the logs. For queryLog,
while it is acceptable to not enable it in most cases, the log
contains important information for debugging purposes.
For that reason, queryLog needs to be supported by
QE, and the best possible defence against our attack is
to implement access control over who can turn on or
access queryLog. For opLog, disabling the log renders
QE completely unusable in practical deployments. This
is because opLog is essential in synchronising different
servers in a replica set, which in turn is needed to ensure
high data availability.

Perturb/batch the log entries. One less aggressive
countermeasure is perturbing or batching the entries of
the logs. Although this countermeasure can certainly
confuse our attacks, it may cause usability problems
with the logs as well. In particular, if the query events in
queryLog are not logged in order or are batched, it will
be difficult for an engineer to use the log for debugging.
Similarly, if the write events in opLog are shuffled and/or
batched, it will be much harder to synchronise the servers
within a replica set. Given the complexity of logging and
synchronisation systems, it may take MongoDB several
person-years of efforts to implement such a change.

Encrypt the logs. Finally, we consider the possibility
of encrypting the logs. There are two main ways this can
be implemented. In the first approach, the key used to
encrypt the logs is stored on the server and the server
uses it to encrypt the new entries of the logs as they
are generated. This will not make QE secure against a
standard snapshot adversary, as the key would be visible
to such an attacker.

In the alternative approach, the key used to encrypt
13https://github.com/mongodb/mongo/releases/tag/r6.2.1

-rc1

the logs is stored on the client and made available to
the server on request. There are two main problems
with this approach. Firstly, this would be a significant
architectural change requiring significant recoding.

Secondly, modern databases only dumps log events to
disks whenever the load on the server is low. This means
that the client may need to remain online for a long time
to send the log encryption key to the server.14

9 Conclusions

In this section, we discuss what went wrong with the QE
design process and what might be learned from this. Our
discussion is necessarily speculative given the limited
information available in the public domain.

On the security notion. None of the security models
in the SSE/STE literature [5,6,8,9,13,14,26,31] includes
leakage from logs. This may explain why MongoDB ap-
parently overlooked them in any internal security analy-
ses they may have conducted. Indeed, the only discussion
of the sensitivity of logs in the SSE/STE context is in [18].
Our inference attack concretely demonstrates the need
to include logs in formal security analyses of SSE/STE
schemes intended for actual deployment.

On the gap between theory and practice. On
MongoDB’s website for QE, it is stated clearly that
“. . . data remains secure in-transit, at-rest, in memory,
in logs, and in backups”.15 On the other hand, if logs
were included in the security model, then it would be
impossible to formally prove the security of QE with
respect to a snapshot adversary (because of our attacks).
This leads us to speculate that there may have been
miscommunication between MongoDB cryptography re-
searchers and engineers, leading to different expectations
of security.

This in turn hints at useful lessons for different ac-
tors. Cryptographers need to understand the relevant
infrastructure (e.g. whether the system generates logs,
and if so, what is exactly in the logs) before building
cryptographic protocols on top of it. Engineers need to
carefully interpret what cryptographers mean by their
security guarantees, and be prepared to challenge those
guarantees when they do not match reality. Above all,
cross-domain communication is key in building a secure
system, especially a complex one like QE.

14It is possible for the client to send the log encryption key with
the query itself, but how this key should be temporarily stored by
the server only creates another key management challenge.

15https://www.mongodb.com/products/queryable-encryptio
n
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A Leakage Simulation

We made the decision to switch to using simulated leak-
age in place of leakage from real executions because of
the scalability limitations of QE. Consider the 2013 ACS
dataset containing 3 million records with six encrypted
field names. For a single experiment, with default set-
tings, inserting the 3 million ACS records into MongoDB
took at least 4 days (with queryLog) or 2 days (without)
on an 8-core machine. Parallelizing across cores did not
help as the bottleneck is intrinsic to the throughput of
disk read/write.
Notation and Convention. For any vector or ordered
set v, we let v[i] denote the i-th element and let |v|
denote the number of elements in v. Given number of
indexed encrypted fields τ ∈N, we define encrypted field
header by eFieldHeader = {(fieldNamei,keyIdi)}i∈[τ ],
where fieldNamei ∈ {0,1}∗ and keyIdi ∈ {0,1}128.
With the eFieldHeader fixed, we use doc =
(val1, . . . ,valτ ) as a short-hand abbreviation of
((fieldName1,val1), . . . ,(fieldNameτ ,valτ )), where
vali ∈ {0,1}∗, and doc[fieldNamei] = vali, for all
i ∈ [τ ], representing a JSON-like document natively
supported by MongoDB.
Simulating the Leakage. We describe briefly how we
simulated the leakage and refer the details to the pseu-
docode provided in Figure 6. For preparation, we extract
a list of unique field values across all field names from
the ACS 2013 dataset, and sort those by alphabetical
order. For additional length leakage, we compile a length
look-up map lenMap using sorted unique encoding and
the length of their associated text value. When simulat-
ing the field-value equality leakage, we first generate a
random permutation and apply it to the (sorted) unique
field values. Then we generate the leakage map by exam-
ining every document, compiling a unique tuple. When
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GenSimulatedLeakage(docColl,eFieldHeader,lenMap,cf_max) :
1: {(fieldNamei,keyIdi)}i∈[τ ]← eFieldHeader
2: for i from 1 to τ do
3: v← ExtractSortedUniqueFieldValues(docColl[fieldNamei])
4: (vi

R,rmapi
v)←$ GenRandomPermutation(v)

5: (Ii
R,rmapi

I)←$ GenRandomPermutation([|v|× (cf_max+1)])
6: end for
7: id⊥← |v|+1
8: Lfield-value-eq,Lfield-value-cf-eq,Llength← ()
9: ctr← 0

10: for every doc in docColl do
11: idListv,idListvc← ()
12: for i from 1 to τ do
13: v← doc[fieldNamei]
14: cf←$ [0,cf_max]
15: idvc← rmapi

I [v.Index(v)× (cf_max+1)+cf]
16: idListvc[i]← idvc
17: if v =⊥ then
18: idv← id⊥
19: Llength[idv]← 215
20: else
21: idv← rmapi

v[vR.Index(v)]
22: Llength[idv]← lenMap[v]+215
23: end if
24: idListv[i]← idv
25: idListvc[i]← idvc
26: end for
27: Lfield-value-eq[ctr]← idListv

28: Lfield-value-cf-eq[ctr]← idListvc

29: ctr← ctr+1
30: end for
31: return Lfield-value-eq,Lfield-value-cf-eq,Llength

Figure 6: GenSimulatedLeakage algorithm.

simulating the field-value-contention-factor equality leak-
age, we increase the size of the random permutation
to take into account the contention factor, and parse
the plaintext documents, for each field insertion, select
a random contention factor.

In the pseudocode as in Figure 6, we assume there ex-
ists an ExtractSortedUniqueFieldValues algorithm, which
takes as input a list of values and returns a set un-
der alphabetical order; a GenRandomPermutation algo-
rithm that takes as input a set v, and returns vR which
equals to v permuted under some random permutation
rmapv : [|v|] → [|v|]. We abuse the notation and use
docColl[fieldNamei] to denote all field values under
some fieldNamei from docColl.

Correctness of the Simulated Leakage. The cor-
rectness of the simulated length leakage Llength straight-
forwardly follows from the fact that the same length
leakage map is used in leakage extraction and simula-
tion.

Regarding the field-value equality leakage: the equiva-
lence of the simulated leakage and the real leakage can
be verified by asserting the exact match of frequency
information on the unique tuples versus the plaintext

distribution.
Verifying the equivalence of field-value-contention-

factor equality leakage is trickier since the contention
factor is randomly generated on each field value insertion.
Due to the scalability issues that we discussed in Sec-
tion 7, we cannot gather enough statistics for the dataset
with 3M records. Instead, we check the consistency be-
tween the number of unique field-value-contention-factor
identifiers appearing in the real leakage, and the simu-
lated ones across the field names (since for cf_max = 4
and 3 million documents, all unique identifiers will be
used with high probability).

B Pseudocode of Leakage Extraction

We include the pseudocode of leakage extraction with
queryLog and opLog in Figures 7 and 8, respectively.
We omit the parsing and optimization details.

In the ExtractQueryLeakage algorithm in Figure 7, for
simplicity, we only include the case where after insertions,
for each i, there are exactly ki find operations on unique
field values for fieldNamei. However, it can be easily
extended to cope with the case where some field values
are queried more than once: suppose for the j-th find
operation with some field name, we are trying to assign
the inserted documents with some id∗ by examining the
field-value-equality matrix M ; we find some M(x,j) = 1,
but Lfield-value-eq(x,j) is not zero, already assigned with
some id, then we abort this assignment and continue
with the next find operation. The id∗ will be reused for
the subsequent find operation with the same field name.

C Pseudocode of Our Inference Attack

The pseudocode of the modified simulated annealing
algorithm is shown in Figure 9 and the pseudocode of
our attack is shown in Figure 10. For simplicity, we
do not include length leakage in the pseudocodes. In
practice, if length leakage is given to the attacker too, the
initial assignment will be picked such that all identifiers
and the field values they are assigned to have the same
(unencrypted) length; the new identifier-field value pairs
generated in the neighbourhood subroutine neighbour()
must satisfy that relation too. In addition to what we
have described above, the other subroutines we choose
for simulated annealing are as follows. We use 0.995T

as our cooling scheme and exp
(

s′−s
T

)
as the acceptance

probability.

D Experimental Data and Statistics

Overview. As in [4], we use anonymized American Com-
munity Survey (ACS) microdata at the person level [1]
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ExtractQueryLeakage(queryLog) :
1: Extract (txnidi,doci)i∈[m] from queryLog for inserting docu-

ments to eDocColl.
2: Extract (txnidi)i∈[m+1,u] from queryLog for find operations on

eDocColl.
3: Extract every used ESC dictionary key set Si associated with

txnidi for all i ∈ [u].
4: Construct a u×u field-value-equality zero matrix M .
5: for i from 1 to u do
6: for j from 1 to u do
7: if Si∩Sj ̸= ∅ then
8: M(i, j)← 1
9: M(j, i)← 1

10: end if
11: end for
12: end for
13: Assign every i-th find operation under some fieldNamej , a

unique id ∈ [kj ], i ∈ [m+1,u].
14: for i from m+1 to u do
15: Suppose the i-th find operation under fieldNamey

16: indexed by id ∈ [ky].
17: for x from 1 to m do
18: if M(i,x) = 1 then
19: if fieldNamey ̸∈ doci then
20: Lfield-value-eq(x,y)← ky +1
21: else
22: Lfield-value-eq(x,y)← id

23: end if
24: end if
25: end for
26: end for
27: return Lfield-value-eq

Figure 7: ExtractQueryLeakage algorithm.

in our experiments; specifically, we use ACS 2023 as the
target dataset encrypted by QE for recovery and ACS
2022 as the auxiliary data. Since QE supports neither
range query nor floating-point types, we select six text-
based fields listed in Table 1, which were also studied
in [4]. Note that the ACS 2012 and ACS 2013 datasets
are both random samples of microdata from their re-
spective years, and the data of the same persons are not
necessarily included in both.

Data Processing. In the provided ACS 2013 raw data
sets, we use ss13pusa.csv and ss13pusb.csv that con-
tain the ACS 2013 microdata samples across the US,
and extract the six attributes (also as field names) listed
in Table 1, and export them to JSON files. These are all
text-based fields, and the encoding length of the raw field
value for each field name is the same. To demonstrate
the risk of additional length leakage allowed by QE’s
selection of AES-CTR$ mode, we also compile the length
leakage map lenMap using the codebook available in [1]
that maps the encoded values to the length of actual
text values.

General Statistics. The ACS 2013 dataset contains
3,132,795 records, and the ACS 2012 dataset contains

ExtractCompactLeakage(opLog,cf_max) :
1: Extract (txnidi)i∈[m] from opLog for inserting documents to

eDocColl.
2: Extract (txnidi)i∈[m+1,u] from opLog for the compaction proce-

dure.
3: Extract every used ESC dictionary key set Si associated with

txnidi for all i ∈ [u].
4: Construct a u× u field-value-contention-factor equality zero

matrix M .
5: for i from 1 to u do
6: for j from 1 to u do
7: if Si∩Sj ̸= ∅ then
8: M(i, j)← 1
9: M(j, i)← 1

10: end if
11: end for
12: end for
13: Assign every i-th compaction subroutine for some fieldNamej ,

a unique id ∈ [(kj +1)× (cf_max+1)], i ∈ [m+1,u].
14: for i from m+1 to u do
15: Suppose the i-th compaction subroutine under fieldNamey

16: is indexed by id ∈ [(ky +1)× (cf_max+1)].
17: for x from 1 to m do
18: if M(i,x) = 1 then
19: Lfield-value-cf-eq(x,y)← id

20: end if
21: end for
22: end for
23: return Lfield-value-cf-eq

Figure 8: ExtractCompactLeakage algorithm.

3,113,030 records. We take the empty string into account
as one field value for computing the statistics shown in
Table 1. In addition, we also plot the frequency informa-
tion of the field values for every field name in Figure 11,
where the x-axis represents the rank of the most-frequent
(top-30) field values, and y-axis represents their frequency
(i.e., counts) on a logarithmic scale.

Combined with Table 1, Figure 11 illustrates the data
distribution and reveals how it affects the accuracy of our
attacks. For example, the detailed racial profile RAC3P is
skewed relative to the rest, with the top-30 most frequent
values dominating the data distribution. It explains why
even though the unique recovery rate (by unique field id)
is not high for RAC3P, the recovery rate at document-
level is close to 100% for all leakage profiles.

Detailed name Encoded name Encoded
length

# Unique
field values

# Unique
lengths

Type III Race RAC3P 3 100 56
State ST 2 51 12
Place of birth POBP 3 215 29
Place of work POWSP 3 60 16
Class of work COW 1 10 9
Occupation code OCCP 4 480 91

Table 1: Statistics for ACS 2013.

Storage Overhead. Consider the 2013 ACS dataset
with 3 million records with 6 encrypted field names. The
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SimulatedAnnealing(P,L, I,rMax,cf_max, itermax) :
1: T ← T0
2: for i from 1 to itermax do
3: T ← 0.995T ▷ Cooling scheme
4: r←$ a random integer between 1 and rMax (inclusive)
5: Ilocal←$ r random elements from I (without replacement)
6: P′←$ neighbour(P, Ilocal,cf_max)
7: s← LIlocal(P,L)
8: s′← LIlocal(P

′,L)
9: if acceptProb(s,s′,T ) > rand(0,1) then

10: P←P′

11: end if
12: end for
neighbour(P, I,cf_max) :

1: P′←P
2: for i in I do
3: id1←$ a random identifier in the i-th field of P
4: val1←$ a random (plaintext) field value in the i-th field
5: if There are cf_max identifiers assigned to val1 then
6: id2←$ a random identifier that is assigned to val1
7: val2←P(i, id1)
8: end if
9: P′(i, id1)← val1

10: if id2 exists then
11: P′(i, id2)← val2
12: end if
13: end for
acceptProb(s,s′,T ) :

1: return exp
(

s′−s
T

)
Figure 9: Pseudocode for Simulated Annealing

Attack(L, τ, iterfield, iterall) :
1: P←$ a random assignment between the identifiers

in L and the field values
2: for i from 1 to τ do
3: SimulatedAnnealing(P,L,{i},1, iterfield)
4: end for
5: SimulatedAnnealing(P,L,{1, . . . , τ},3, iterall)
6: return P

Figure 10: Pseudocode for our attack.

size of plaintext dataset is 264 MB. After encryption
and compaction using QE, the total storage is 8.03 GB,
a 30 times increase. This is broken down into a 6.19 GB
encrypted document collection and a 1.84 GB compacted
metadata ESC (with ECOC dropped). The accumulated
(compressed) opLog is approximately 10 GB and 29 GB
when exported, and the size of query log is about 497
GB.
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Figure 11: Frequencies of field values.

E Additional Experiments

In this section, we present additional experimental results.
The experimental results on opLog with 30K documents
and 300K documents can be found in Figure 12. The
experimental results on queryLog with 3M documents,
and 100 and 500 queries can be found in Figure 13.
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Figure 12: Experimental results on opLog with 30K and
300K documents.

The attack follows the expected behaviour: it works
better when more queries are made and when the
database is larger; the plaintext recovery rate on dif-
ferent fields vary greatly due to having different field
value distributions.

For the attacks against opLog and queryLog, we ob-
serve higher plaintext recovery rates when the database
contain more documents. This is to be expected as larger
databases contain more meaningful statistical informa-
tion. Furthermore, for the attacks against queryLog, we
see that 100 queries (either uniform or Zipf) are not
enough to recover field values in some fields such as
POBP. This is mainly because the number of queries is
not large enough to cover a large proportion of field val-
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Figure 13: Experimental results on queryLog with uni-
form and Zipf query distributions and 100 and 500 queries
on each field.

ues. On the other hand, our attacks perform noticeably
better when 500 queries are issued per field. This can be
explained by the fact that the queries cover significantly
more field values.

F Sample Output of queryLog and opLog

We include raw output samples of queryLog (Figure 14)
and opLog (Figure 15) after inserting a small set of
documents in the processed ACS 2012 dataset. This
queryLog sample output records a find operation: line
14 indicates the find operation was performed on ESC,
with ESC dictionary key listed at line 18 under “base64”
field name. In opLog’s sample output, at line 2, “op”:
i, indicates this is an insertion operation to the ESC
collection (specified at line 3), with ESC’s dictionary key
listed at line 13, and inserted value listed at line 19.
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{
"t": {

" $date ": "2022-10-01T23:11:46.417+02:00"
},
"s": "I",
"c": " COMMAND ",
"id": 51803,
"ctx": "FLECrud -3",
"msg": "Slow query ",
"attr": {

"type": " command ",
"ns": " acspum . enxcol_ .2012.esc",
" command ": {

"find": " enxcol_ .2012.esc",
" filter ": {

"_id": {
" $binary ": {

"base64": "zwRc/i0 NKENwvZoK 1rRF32WORy2
nVgK4c1jY6cyB8ns =",

" subType ": "0"
}

}
},
" singleBatch ": true,
"lsid": {

"id": {
" $uuid ": "b54443de -6079-4291-912b-108d0eae

38b5"
},
"uid": {

" $binary ": {
"base64": "47 DEQpj 8HBSa +/ TImW+5 JCeuQeRkm

5 NMpJWZG 3 hSuFU =",
" subType ": "0"

}
},
" txnNumber ": 2,
" txnUUID ": {

" $uuid ": "e0f24e1e-f6eb -4fe0-ba18-ac278006
8f0b"

}
},
" txnNumber ": 0,
" autocommit ": false ,
"$db": " acspum "

},
" planSummary ": " CLUSTERED_IXSCAN ",
" keysExamined ": 0,
" docsExamined ": 2,
" cursorExhausted ": true,
" numYields ": 0,
" nreturned ": 0,
" queryHash ": "740C02B0",
" planCacheKey ": "740C02B0",
" queryExecutionEngine ": " classic ",
" reslen ": 237,
" locks ": {},
" readConcern ": {

" level ": " local ",
" provenance ": " clientSupplied "

},
" storage ": {},
" protocol ": " op_msg ",
" durationMillis ": 0

}
}

Figure 14: Raw queryLog.

{
"op": "i",
"ns": " acspum . enxcol_ .2012.esc",
"ui": {

" $binary ": {
"base64": " KjjJhamdQQGWJ 5WAoN0pLg ==",
" subType ": "04"

}
},
"o": {

"_id": {
" $binary ": {

"base64": " dNwnzydHRFS / kOoeX 4GwJa0g6 JEoMTYP 3
+1F0p6Ayos =",

" subType ": "00"
}

},
" value ": {

" $binary ": {
"base64": " omWtaSSemsfK 1x3 WjdVq + mGwqRBGK 6X9

PmkKvhM 77Yg =",
" subType ": "00"

}
}

},
"o2": {

"_id": {
" $binary ": {

"base64": " dNwnzydHRFS / kOoeX 4GwJa0g6 JEoMTYP 3
+1F0p6Ayos =",

" subType ": "00"
}

}
},
" stmtId ": 0

},
}

Figure 15: Raw opLog.
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