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Example 1: Protocol Verification

Protocol for resource access with primitives open, close, write

Task: verify that a program obeys the following (informal) rules:

A. All opened resources must be closed eventually
B. An opened resource must be closed before the next open and vice versa

For simplicity, we assume there is only one resource (a file), which is
initially closed

Problem is typical for verification of protocols

Locking (acquire, access, release)
Authentication (authenticate, access)
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Example 1: Encoding in IMP

File is represented by variable f

Write is encoded by assignment to f

Variable o counts how often file was opened/closed

Encoding of primitives:

open: o := o + 1
close: o := o − 1
write: f := e

Informal rules:

A. After o has been set to one, it must eventually be re-set to zero
B. In all execution states, o is zero or one

Variable o is initially zero
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Example 1: Specification in NS and Hoare Logic

A. For a terminating program s, o must be zero in the terminal state

If ⊢ ⟨s, σ⟩ → σ′ and σ(o) = 0 then σ′(o) = 0

⊢ { o = 0 } s { o = 0 }

Property cannot be expressed for non-terminating programs

B. In all execution states, o is zero or one

Natural semantics and Hoare logic can express properties of initial and
terminal states, but not of intermediate states

Peter Müller—Formal Methods and Functional Programming, SS23 p. 186
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Example 1: Specification in SOS (A)

A: After o has been set to one, it must eventually be re-set to zero

For a terminating program s

If ⟨s, σ⟩ →∗1 σ′ and σ(o) = 0 then σ′(o) = 0

For a deterministic, non-terminating program s

If ⟨s, σ⟩ →∗1 ⟨s ′, σ′⟩ and σ(o) = 0 and σ′(o) = 1 then there exist
s ′′, σ′′ such that ⟨s ′, σ′⟩ →∗1 ⟨s ′′, σ′′⟩ and σ′′(o) = 0

For a non-deterministic, non-terminating program s

wc ∶ Stm × State ×N→ Bool
wc(s, σ,n) ⇔ σ(o) = 0 ∨

(for all s ′, σ′ ∶ if ⟨s, σ⟩ →1 ⟨s ′, σ′⟩ then there exists
m ∈ N such that m < n and wc(s ′, σ′,m))

If ⟨s, σ⟩ →∗1 ⟨s ′, σ′⟩ and σ(o) = 0 and σ′(o) = 1 then
there exists n ∈ N such that wc(s ′, σ′,n)
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Example 1: Specification in SOS (B)

B: In all execution states, o is zero or one

If ⟨s, σ⟩ →∗1 ⟨s ′, σ′⟩ and σ(o) = 0 then σ′(o) = 0 or σ′(o) = 1

Peter Müller—Formal Methods and Functional Programming, SS23 p. 188



Example 1: Verification

A. For a terminating program s

If ⟨s, σ⟩ →∗1 σ′ and σ(o) = 0 then σ′(o) = 0

Proof needs to consider all possible derivation sequences ⟨s, σ⟩ →∗1 σ′ to
find all possible terminal states
Problematic in the presence of non-determinism or parallelism

B. In all execution states, o is zero or one

If ⟨s, σ⟩ →∗1 ⟨s ′, σ′⟩ and σ(o) = 0 then σ′(o) = 0 or σ′(o) = 1
Proof needs to consider all possible multi-step executions

Peter Müller—Formal Methods and Functional Programming, SS23 p. 189
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Example 2: Verification of Parallel Programs

A (simplified) Java program

class Cell {
int x = 0;

static void main(...) {
Cell c = new Cell();
Thread t1 = new Even(c);
Thread t2 = new Even(c);
t1.start(); t2.start();
t1.join(); t2.join();
System.out.println(c.x);

}
}

class Even extends Thread {
Cell c;

Even(Cell c) {
this.c = c;

}

void run() {
c.x = c.x + 1;
c.x = c.x + 1;

}
}
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Example 2: Encoding in IMP

The following program s represents the core of the Java program

x represents shared variable c.x
y and z represent thread-local state

(y := x; y := y + 1; x := y;
y := x; y := y + 1; x := y)

par
(z := x; z := z + 1; x := z;
z := x; z := z + 1; x := z)

Desired property:
If x is zero in the initial state then x is even in the terminal state

NS and Hoare logic cannot handle parallelism

SOS specification:

If ⟨s, σ⟩ →∗1 σ′ and σ(x) = 0 then σ′(x)mod 2 = 0
(this is not true for the code above)

Peter Müller—Formal Methods and Functional Programming, SS23 p. 191



Example 2: Verification

In this case, spotting the counterexample is easy, but how to attempt a
formal proof?

Induction does not work because there is no suitable induction
hypothesis

Observation also holds for corrected example

Proof strategy: enumerate all possible derivations of ⟨s, σ⟩ →∗1 σ′ and
inspect terminal state σ′

Number of derivations grows exponentially in number of executed
statements

Here, 12!
6!×6!

= 924 possible derivations!

Manual enumeration not feasible, especially for programs with loops

Peter Müller—Formal Methods and Functional Programming, SS23 p. 192



Examples: Observations

Specification challenge

How to specify properties of sequences of states concisely

Verification challenges

Concurrent systems: How to prove properties of all possible program
executions

Reactive systems: How to automatically prove properties of infinite
derivation sequences

Peter Müller—Formal Methods and Functional Programming, SS23 p. 193



Model Checking

Model checking is an automated technique that, given
a finite-state model of a system and a formal property,
systematically checks whether this property holds for
(a given state in) that model. [Baier and Katoen]

Model checkers enumerate all possible states of a system:

Explicit state model checking:
represent state explicitly through concrete values

Symbolic model checking:
represent state through (boolean) formulas

We focus on explicit state model checking

Peter Müller—Formal Methods and Functional Programming, SS23 p. 194



Model Checking

(p → q)

Property
Specification

Satisfied

Model 

Specification

Checker

p

S t M d l
q

p
Violated +

Counterexample
System Model
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Model Checking Process

Modeling phase

Model the system under consideration using the description language of
your model checker (possibly a programming language)
Formalize the properties to be checked

Running phase

Run the model checker to check the validity of the property in the
system model

Analysis phase

If property is satisfied, celebrate and move on to next property
If property is violated, analyze counterexample
If out of memory, reduce model and try again

Peter Müller—Formal Methods and Functional Programming, SS23 p. 196



Main Purposes of Model Checking

Model checking is mainly used to analyze system designs (as opposed
to implementations)

Typical properties to be analyzed include

Deadlocks
Reachability of undesired states
Protocol violations

Peter Müller—Formal Methods and Functional Programming, SS23 p. 197



Modeling Concurrent Systems

Systems are modeled as finite transition systems

We model systems as communicating sequential processes (agents)

Finite number of processes
Interleaved process execution

Processes can communicate via:

Shared variables
Synchronous message passing
Asynchronous message passing

Peter Müller—Formal Methods and Functional Programming, SS23 p. 198



Protocol Meta Language Promela

Input language of the Spin model checker

Main objects are processes, channels, and variables

C-like syntax

init {
printf("Hello World!\n")

}

Spin can “execute” (simulate) models

References

Quick reference: www.spinroot.com/spin/Man/Quick.html
Further references: www.spinroot.com/spin/Man/index.html

Peter Müller—Formal Methods and Functional Programming, SS23 p. 199
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Promela Programs
Constant declarations

#define N 5
mtype = { ack, req };

Structure declarations

typedef vector { int x; int y };

Global channel declarations

chan buf = [2] of { int };

Global variable declarations

byte counter;

Process declarations

proctype myProc(int p) { ... }

Peter Müller—Formal Methods and Functional Programming, SS23 p. 200



Promela Process Declarations

Simple form

proctype myProc(int p) { ... }

Body consists of a sequence of variable declarations, channel
declarations, and statements
No arrays as parameters

Active processes

active [N] proctype myProc(...) { ... }

Start N instances of myProc in the initial state

init process is started in the initial state

Peter Müller—Formal Methods and Functional Programming, SS23 p. 201
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Promela Types

Primitive types

Type Value range

bit or bool 0 . . .1
byte 0 . . .255
short −215 . . .215 − 1
int −231 . . .231 − 1

No floats or mathematical (unbounded) integers

User-defined types

Arrays: int name[4]

Structures
Type of symbolic constants: mtype

Channel type: chan

Peter Müller—Formal Methods and Functional Programming, SS23 p. 202



Promela Variable and Channel Declarations
Variable declarations

byte a, b = 5, c;
int d[3], e[4] = 3;
mtype msg = ack;
vector v;

Variables are initialized to zero-equivalent values

Channel declarations

chan c1 = [2] of { mtype, bit, chan };
chan c2 = [0] of { int };
chan c3;

c1 can store up to two messages
Messages sent via c1 consist of three parts (triples)
c2 models rendez-vous communication (no message buffer)
c3 is uninitialized; must be assigned an initialized channel before usage

Variable and channel declarations are local to a process or global

Peter Müller—Formal Methods and Functional Programming, SS23 p. 203
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State Space of a Promela System

Global Variables
x=1  y=0 z=3

Global Variables

Global Channels
buf 0 6 2 0

Active Processes
Location counter

init P1

Location counter

Local Variables

Local Channels

P3P2

Local Channels
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State Space of Sequential Programs

Number of states

#program locations × ∏
variable x

∣ dom(x) ∣

where ∣ dom(x) ∣ denotes the number of possible values of variable x

Example: sequential program with 10 locations and 3 boolean variables

10 × 2 × 2 × 2 = 10 × 23 = 80

Adding two integer variables yields 80 × 232 × 232 = 80 × 264

Number of states grows exponentially in the number of variables

State space explosion

Peter Müller—Formal Methods and Functional Programming, SS23 p. 205
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State Space of Concurrent Programs

The number of states of P ≡ P1∥ . . . ∥PN is at most

#states of P1 × . . . × #states of PN =
N

∏
i=1
(#program locationsi × ∏

variable xi

∣ dom(xi) ∣)

Number of states grows exponentially in the number of processes

State space explosion
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State Space of Promela Models

The number of states of a system with N processes and K channels is
at most

N

∏
i=1
(#program locationsi × ∏

variable xi

∣ dom(xi) ∣) ×
K

∏
j=1
∣ dom(cj) ∣cap(cj)

∣ dom(c) ∣ denotes the number of possible messages of channel c
cap(c) is the capacity (buffer size) of channel c

Number of states grows exponentially in the number and capacity of
channels

State space explosion
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Initial State

Global Variables
Specified initial value 

or default valueGlobal Variables

Global Channels
Channels are empty

Active Processes init and processes 
declared active

init P1 Location counter at 
first statement

P3P2

first statement

Local Variables

Local ChannelsLocal Channels

Peter Müller—Formal Methods and Functional Programming, SS23 p. 208



State Transitions

A statement can be executable or blocked

Send is blocked if channel is full
s1;s2 is blocked if s1 is blocked
timeout is executable if all other statements are blocked

A transition is made in three steps:

Determine all executable statements of all active processes

If no executable statement exists, transition system gets stuck

Choose non-deterministically one of the executable statements

Non-determinism models concurrency through interleaving

Change the state according to the chosen statement

Peter Müller—Formal Methods and Functional Programming, SS23 p. 209



Promela Expressions

Variables, constants, and literals

Structure and array accesses

Unary and binary expressions with operators

+ - * / % >

>= < <= == != !

& || && | ~ >>

<< ^ ++ --

Function applications

len() empty() nempty() nfull() full()

run eval() enabled() pcvalue()

Conditional expressions: (E1 -> E2 : E3)
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Promela Statements

skip

Does not change the state (except the location counter)
Always executable

timeout

Does not change the state (except the location counter)
Executable if all other statements in the system are blocked

assert(E)

Aborts execution if expression E evaluates to zero; otherwise equivalent
to skip

Always executable

Assignment

x = E assigns the value of E to variable x
a[n] = E assigns the value of E to array element a[n]
Always executable
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Promela Statements (cont’d)

Sequential composition

s1;s2 is executable if s1 is executable

Expression statement

Evaluates expression E

Executable if E evaluates to value different from zero
E must not change state (no side effects)
Examples:

run myProcess;
x > 0;

Peter Müller—Formal Methods and Functional Programming, SS23 p. 212



Motivation: Verification of Parallel Programs

A (simplified) Java program

class Cell {
int x = 0;

static void main(...) {
Cell c = new Cell();
Thread t1 = new Even(c);
Thread t2 = new Even(c);
t1.start(); t2.start();
t1.join(); t2.join();
System.out.println(c.x);

}
}

3

class Even extends Thread {
Cell c;

Even(Cell c) {
this.c = c;

}

void run() {
c.x = c.x + 1;
c.x = c.x + 1;

}
}
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Example: Modeling Even.run

class Even extends Thread {
Cell c;

Even(Cell c) {
this.c = c;

}

void run() {
c.x = c.x + 1;
c.x = c.x + 1;

}
}

int x;

proctype EvenRun() {
x = x + 1;
x = x + 1;

}

int x;

proctype EvenRun() {
int y = x;
y = y + 1;
x = y;
y = x;
y = y + 1;
x = y;

}
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Example: Modeling Cell.main

class Cell {
int x = 0;

static void main(...) {
Cell c = new Cell();
Thread t1 = new Even(c);
Thread t2 = new Even(c);
t1.start(); t2.start();
t1.join(); t2.join();
System.out.println(c.x);

}
}

init {
x = 0;

run EvenRun();
run EvenRun();

/* wait for termination */
_nr_pr == 1;

printf("x: %d\n", x);
assert x % 2 == 0;

}

_nr_pr is a predefined global variable that yields the number of active
processes

Simulation in Spin shows the possible outcomes 2, 3, and 4
(like Java program)
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Promela Statements: Selection

if
:: s1 /* option 1 */
:: ...
:: sn /* option n */
fi

Executable if at least one of its options it executable

Chooses an option non-deterministically and executes it

if /* Move a sprite */
:: x < maxX -> x = x + 1;
:: x > minX -> x = x - 1;
:: y < maxY -> y = y + 1;
:: y > minY -> y = y - 1;
:: color = color + 1;
fi

Statement else is executable if no other option is executable (may
occur at most in one option)
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Promela Statements: Repetition

do
:: s1 /* option 1 */
:: ...
:: sn /* option n */
od

Executable if at least one of its options it executable

Chooses repeatedly an option non-deterministically and executes it

Terminates when a break or goto is executed

/* compute factorial of n */

int r = 1;

do
:: n > 1 -> r = r*n; n = n-1;
:: else -> break
od

/* deadlock detection */
active proctype watchDog() {

do
:: timeout ->

/* reset the state */
od

}
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Promela Statements: Atomic

Basic statements are executed atomically

No interleaving during execution of statement
skip, timeout, assert, assignment, expression statement

atomic { s } executes s atomically

Executable if the first statement of s is executable
If any other statement within s blocks once the execution of s has
started, atomicity is lost

Example: Binary semaphores (locks)

bit locked; /* global */

/* lock */
locked == 0;
locked = 1;

/* critical section */
locked = 0; /* unlock */

/* lock */
atomic {

locked == 0;
locked = 1;

}
/* critical section */
locked = 0; /* unlock */
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Promela Macros

Promela does not contain procedures

Effect can often be achieved using macros

inline lock() {
atomic {
locked == 0;
locked = 1

}
}

inline swap(a, b) {
int tmp;
tmp = a;
a = b;
b = tmp

}

A macro just defines a replacement text for a symbolic name, possibly
with parameters

The inline call lock() is replaced by the body of the definition
No new variable scope
No recursion
No return values

Define macro globally before its first use
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Motivation: Deadlock

Threads are
synchronized via
locks

Interleaved
execution of
a.transfer(b,n)

and
b.transfer(a,m)

might deadlock

Multi-threaded
programs are
extremely hard
to test

class Account {
int balance;

void transfer(Account to, int amount) {
acquire this;
acquire to;
this.balance -= amount;
to.balance += amount;
release this;
release to;

}
}
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Promela Model: Account

We need to model accounts and clients

General approach: omit all irrelevant details to reduce complexity

Account

Balance is not relevant for potential deadlocks
Only model the locks of accounts

#define N 5

bit Account_locks[N];

inline lock(n) {
atomic {

Account_locks[n] == 0;
Account_locks[n] = 1;

}
}
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Promela Model: Client

Idea: model the most generic client and run several instances in parallel

Pick two arbitrary accounts non-deterministically
Lock both accounts
Unlock both accounts

Choosing accounts

inline choose(a, l, u) {
a = l;
do
:: (a < u) -> a++
:: break
od

}

inline chooseAccounts(f, t) {
do
:: (f != t) -> break
:: (f == t) -> choose(f, 0, N-1);

choose(t, 0, N-1)
od

}
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Promela Model: Client Process

active [C] proctype transfer() {
byte from, to;

/* choose accounts non-deterministically */
chooseAccounts(from, to);

/* acquire locks */
lock(from);
lock(to);

/* actual transfer omitted */

/* release locks */
Account_locks[from] = 0;
Account_locks[to] = 0;

}

Peter Müller—Formal Methods and Functional Programming, SS23 p. 223



Alternative Account Selection

Idea: instead of looping until two different accounts are found, restrict
range for second choice

do
:: (f != t) -> break
:: (f == t) -> choose(f, 0, N-1);

choose(t, 0, N-1)
od

choose(f, 0, N-2);
choose(t, f+1, N-1)
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Alternative Account Selection

Idea: instead of looping until two different accounts are found, restrict
range for second choice

do
:: (f != t) -> break
:: (f == t) -> choose(f, 0, N-1);

choose(t, 0, N-1)
od

choose(f, 0, N-2);
choose(t, f+1, N-1)

Alternative model is less general

It guarantees from < to
So locks are acquired in order and deadlock is prevented!
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Alternative Account Selection

Idea: instead of looping until two different accounts are found, restrict
range for second choice

do
:: (f != t) -> break
:: (f == t) -> choose(f, 0, N-1);

choose(t, 0, N-1)
od

choose(f, 0, N-2);
choose(t, f+1, N-1)

Alternative model is less general

It guarantees from < to
So locks are acquired in order and deadlock is prevented!

General strategy

Start with most general model
If model contains errors that cannot occur in real system (spurious
errors), revise model
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Promela Channels

chan ch = [d] of { t1, ..., tn } declares a channel

Channel can buffer up to d messages

d > 0: buffered channel (FIFO)
d = 0: unbuffered channel (rendez-vous)

Each message is a tuple whose elements have types t1, ..., tn

Example

mtype = { req, ack, err };

chan ch = [5] of { mtype, int }
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Send and Receive: Buffered Channels

chan ch = [5] of { mtype, int }

ch ! e1, ..., en sends message

Type of ei must correspond to ti in channel declaration
Send is executable iff buffer is not full

ch ? a1, ..., an receives message

ai is a variable or constant of type ti
Receive is executable iff buffer is not empty and the oldest message in
the buffer matches the constants ai
Variables ai are assigned values of the message

ch ! req, 7;
ch ! ack, 1

int n;
ch ? req, n;
printf("Received: %d\n", n);
ch ? req, n;
printf("Received: %d\n", n);
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Send and Receive: Unbuffered Channels

chan ch = [0] of { int };

ch ! e1, ..., en sends message

Send is executable if there is a receive operation that can be executed
simultaneously

ch ? a1, ..., an receives message

Receive is executable if there is a send operation that can be executed
simultaneously

Unbuffered channels model synchronous communication (rendez-vous)
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Motivation: Needham-Schroeder Protocol

Establish a common secret over an insecure channel

1. Alice sends random number NA to Bob, encrypted with Bob’s public key:
⟨A,NA⟩B

2. Bob sends random number NB to Alive, encrypted with Alice’s public
key: ⟨NA,NB⟩A

3. Alice responds with ⟨NB⟩B

Intruders may:

Intercept, store, and replay messages
Initiate or participate in runs of the protocol
Decrypt messages only if encrypted with intruder’s public key

Error: intruder can pretend to be another party
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Promela Model: Network

We model the protocol for two agents plus intruder

Agents communicate synchronously

chan network = [0] of {
mtype, /* tag: msg1, msg2, msg3 */
mtype, /* intended receiver: agentA, agentB, agentI */
Crypt /* message */

};

We use enumeration type mtype for all constants
Spin treats mtype constants as symbols, not values
Speeds up model checking
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Promela Model: Messages

Message consists of key and up to two contents

typedef Crypt {
mtype key, /* public key used to encrypt */

content1, /* agent or nonce */
content2 /* nonce or don’t care */

};

We model encryption by putting the public key into the message

Agent a will only look at message content if message key is a’s public key
No need to model private keys and encryption

Constants for message tag, public keys, agents, and nonces

mtype = { msg1, msg2, msg3,
keyA, keyB, keyI,
agentA, agentB, agentI,
nonceA, nonceB, nonceI };
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Promela Model: Alice

Alice starts a protocol run

mtype partnerA;
bit statusA; /* 1 = success */

active proctype Alice() {
mtype pkey; /* the partner’s public key */
mtype pnonce; /* nonce that we receive from partner */
Crypt message; /* Alice’s message to the partner */
Crypt data; /* received message */

if /* choose a partner for this run */
:: partnerA = agentB; pkey = keyB;
:: partnerA = agentI; pkey = keyI;
fi;

/* Protocol run below */
statusA = 1; /* Success */

}
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Promela Model: Alice’s Protocol Run

/* Prepare and send first message */
build(message, pkey, agentA, nonceA);
network ! msg1, partnerA, message;

/* Wait for answer */
network ? (msg2, agentA, data);

/* Proceed only if the key matches keyA and the
nonce is the one that we have sent earlier */

(data.key == keyA) && (data.content1 == nonceA);

/* Obtain partner’s nonce */
pnonce = data.content2;

/* Prepare and send the last message */
build(message, pkey, pnonce, 0);
network ! msg3, partnerA, message;
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Intruder

Intruders may:

Intercept messages
Store one message
Replay messages
Initiate or participate in runs of the protocol
Decrypt messages only if encrypted with intruder’s public key

How can we model the most powerful attack using these capabilities?

Solution: Model intruder fully non-deterministically

Intruder has no intellegence whatsoever
Model checker will explore all possible behaviors of intruder
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Promela Model: Intruder

bool knows_nonceA, knows_nonceB;

active proctype Intruder() {
mtype tag; /* message tag */
mtype recpt; /* recipient for Intruder’s message */
Crypt data /* received message */
Crypt intercepted; /* stored message */

do
:: /* Receive and learn */

:: /* Replay or send */
od

}
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Promela Model: Intruder Receives

do
:: network ? (tag, _, data) ->

if /* perhaps store the message */
:: copy(data, intercepted);
:: skip;
fi;
if /* record newly learnt nonces */
:: (data.key == keyI) ->

knows_nonceA = knows_nonceA ||
(data.content1 == nonceA) ||
(data.content2 == nonceA);

knows_nonceB = knows_nonceB ||
(data.content1 == nonceB) ||
(data.content2 == nonceB);

:: else -> skip;
fi;

:: /* Replay or send */
od
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Promela Model: Intruder Sends

do
:: /* Receive and learn */
:: /* Replay or send */

if /* choose message type */
:: tag = msg1;
:: tag = msg2;
:: tag = msg3;
fi;
if /* choose recipient */
:: recpt = agentA;
:: recpt = agentB;
fi;
if /* replay intercepted message or assemble it */
:: copy(intercepted, data);
:: /* assemble new message */
fi;
network ! tag, recpt, data;

od
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Promela Model: Intruder Sends (cont’d)

:: /* assemble new message */
if
:: data.key = keyA;
:: data.key = keyB;
fi;
if
:: data.content1 = agentA;
:: data.content1 = agentB;
:: data.content1 = agentI;
:: knows_nonceA -> data.content1 = nonceA;
:: knows_nonceB -> data.content1 = nonceB;
:: data.content1 = nonceI;
fi;
if
:: knows_nonceA -> data.content2 = nonceA;
:: knows_nonceB -> data.content2 = nonceB;
:: data.content2 = nonceI;
fi;
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Summary

Models are abstractions of the real world

Omit irrelevant details to reduce complexity

Example: balance in account example

Keep model small to avoid state space explosion

As few processes as possible
As little data as possible

Non-determinism is a powerful modeling tool

Let model checker explore all options

Typical sources of non-determinism are:

Abstraction
Modeling of the environment
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