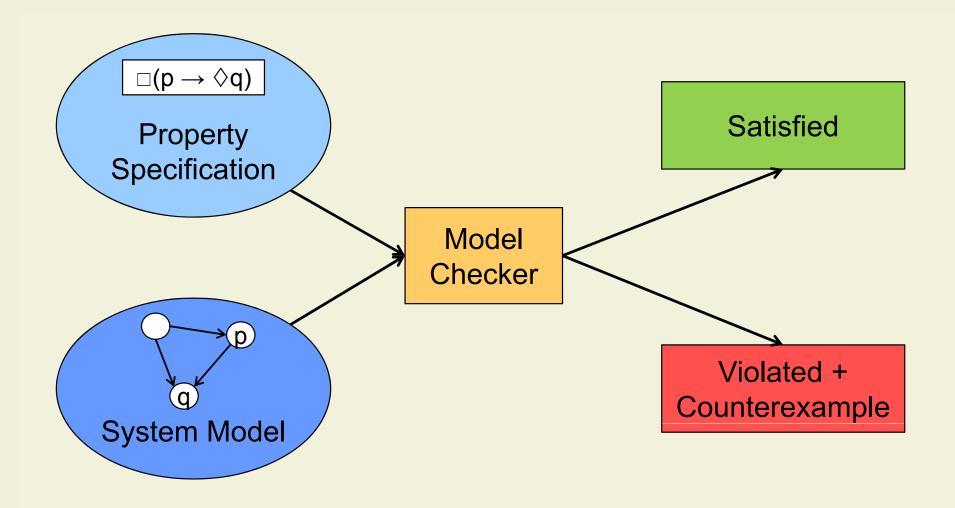
Formal Methods and Functional Programming Linear Temporal Logic

Peter Müller

Programming Methodology Group FTH Zurich

The slides in this section are partly based on the course *Automata-based System Analysis* by Felix Klaedtke

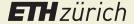
Model Checking



- Many interesting properties relate several states
- Example: all opened files must be closed eventually

- Many interesting properties relate several states
- Example: all opened files must be closed eventually
 - For a terminating program s

$$\langle s, \sigma \rangle \rightarrow_1^* \sigma'$$
 and $\sigma(o) = 0$ then $\sigma'(o) = 0$



- Many interesting properties relate several states
- Example: all opened files must be closed eventually
 - For a terminating program s

$$\langle s, \sigma \rangle \rightarrow_1^* \sigma'$$
 and $\sigma(o) = 0$ then $\sigma'(o) = 0$

For a deterministic, non-terminating program s

 $\langle s, \sigma \rangle \rightarrow_1^* \langle s', \sigma' \rangle$ and $\sigma(o) = 0$ and $\sigma'(o) = 1$ then there exist s'', σ'' such that $\langle s', \sigma' \rangle \rightarrow_1^* \langle s'', \sigma'' \rangle$ and $\sigma''(o) = 0$

- Many interesting properties relate several states
- Example: all opened files must be closed eventually
 - For a terminating program s

$$\langle s, \sigma \rangle \rightarrow_1^* \sigma'$$
 and $\sigma(o) = 0$ then $\sigma'(o) = 0$

For a deterministic, non-terminating program s

$$\langle s, \sigma \rangle \rightarrow_1^* \langle s', \sigma' \rangle$$
 and $\sigma(o) = 0$ and $\sigma'(o) = 1$ then there exist s'', σ'' such that $\langle s', \sigma' \rangle \rightarrow_1^* \langle s'', \sigma'' \rangle$ and $\sigma''(o) = 0$

• For a non-deterministic, non-terminating program s

```
wc: Stm \times State \times \mathbb{N} \to Bool
wc(s, \sigma, n) \Leftrightarrow \sigma(o) = 0 \vee
          (for all s', \sigma': if \langle s, \sigma \rangle \to_1 \langle s', \sigma' \rangle then there exists
          m \in \mathbb{N} such that m < n and wc(s', \sigma', m)
\langle s, \sigma \rangle \rightarrow_1^* \langle s', \sigma' \rangle and \sigma(o) = 0 and \sigma'(o) = 1 then
there exists n \in \mathbb{N} such that wc(s', \sigma', n)
```

6. Linear Temporal Logic

6.1 Linear-Time Properties

6.2 Linear Temporal Logic

Transition Systems Revisited

- We use a slightly different definition here (than earlier in the course)
- A finite transition system is a tuple $(\Gamma, \sigma_I, \rightarrow)$
 - Γ: a finite set of configurations
 - σ_I : an initial configuration, $\sigma_I \in \Gamma$
 - \rightarrow : a transition relation, $\rightarrow \subseteq \Gamma \times \Gamma$
- Difference: we have a fixed initial configuration
 - In this section, transition systems model only one program/system, not all programs of a programming language
- Difference: we omit terminal configurations from the definition
 - Simplifies theory
 - Termination can be modelled by transition to a special extra sink state (which allows further transitions only back to itself)

Transition System of a Promela Model

- Configurations: states (see previous section)
 - Global variables, global channels
 - Per active process: local variables, local channels, location counter
- Initial configuration: initial state (see previous section)
- Transition relation: defined by operational semantics of statements
 - We keep semantics informal
- A Promela model has a finite number of states
 - Finite number of active processes (limited to 255)
 - Finite number of variables and channels
 - Finite ranges of variables
 - Finite buffers of channels

Computations

- Infinite sequences
 - S^{ω} is the set of infinite sequences of elements of set S
 - $s_{[i]}$ denotes the *i*-th element of the sequence $s \in S^{\omega}$
- $\gamma \in \Gamma^{\omega}$ is a computation of a transition system if:
 - $\gamma_{[0]} = \sigma_I$
 - $\gamma_{[i]} \rightarrow \gamma_{[i+1]}$ (for all $i \ge 0$)
 - Note: we use σ to range over the states Γ of a transition system
 - Note (notation above): if $\gamma = \sigma_0 \sigma_1 \sigma_2 \sigma_3 \dots$ then $\gamma_{[i]} = \sigma_i$
- \circ $\mathcal{C}(TS)$ is the set of all computations of a transition system TS

Linear-Time Properties

- Linear-time properties (LT-properties) can be used to specify the permitted computations of a transition system
- A linear-time property P over Γ is a subset of Γ^{ω}
 - P specifies a particular set of infinite sequences of configurations
- TS satisfies LT-property P (over Γ)

$$TS \models P$$
 if and only if $C(TS) \subseteq P$

- All computations of TS belong to the set P
- By contrast: branching-time properties (not in this course) can also express the existence of a computation
 - Example: "It is always possible to return to the initial state"

LT-Properties: Example

All opened files must be closed eventually

$$P = \{ \gamma \in \Gamma^{\omega} \mid \forall i \geq 0 : \gamma_{[i]}(o) = 1 \Rightarrow \exists n > 0 : \gamma_{[i+n]}(o) = 0 \}$$

- LT-properties precisely express properties of computations
 - Non-termination is handled by infinite sequences
 - Non-determinism is handled by considering each computation separately
- However, the explicit representation above (defining the set of sequences) is not convenient
- Logical formalism needed to simplify specification of LT-properties

From Configurations to (Sets of) Propositions

- For a transition system TS, we additionally specify a set AP of atomic propositions (of our choice)
 - An atomic proposition is a proposition containing no logical connectives
 - Example: $AP = \{open, closed\}$ (for files)
 - Example: $AP = \{x > 0, y \le x\}$
- ullet We must provide a labeling function that maps configurations to sets of atomic propositions from AP
 - $L:\Gamma\to\mathcal{P}(AP)$

• Example:
$$L(\sigma) = \begin{cases} \{open\} & \text{if } \sigma(o) = 1 \\ \{closed\} & \text{if } \sigma(o) = 0 \\ \{\} & \text{otherwise} \end{cases}$$

- We call $L(\sigma)$ an abstract state
- ullet From now on, we consider AP and L to be part of the transition system

Traces

- A trace is an abstraction of a computation
 - Observe only the propositions of each state, not the concrete state itself
 - Infinite sequence of abstract states $(\mathcal{P}(AP)^{\omega})$
- $t \in \mathcal{P}(AP)^{\omega}$ is a trace of a transition system TS if $t = L(\gamma_{[0]})L(\gamma_{[1]})L(\gamma_{[2]}), \ldots$ and γ is a computation of TS
- \bullet $\mathcal{T}(TS)$ is the set of all traces of a transition system TS
- LT-properties are typically specified over infinite sequences of abstract states, rather than over sequences of configurations:

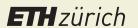
$$P = \{ t \in \mathcal{P}(AP)^{\omega} \mid \forall i \geq 0 : open \in t_{[i]} \Rightarrow \exists n > 0 : closed \in t_{[i+n]} \}$$

Safety Properties

- Intuition
 - "Something bad is never allowed to happen (and can't be fixed)"
- An LT-property P is a safety property if for all infinite sequences $t \in \mathcal{P}(AP)^{\omega}$:
 - if $t \notin P$ then there is a finite prefix \hat{t} of t such that for every infinite sequence t' with prefix \hat{t} , $t' \notin P$
 - \hat{t} is called a bad prefix; essentially, this finite sequence of steps already violates the property (whatever happens afterwards)
- Safety properties are violated in finite time and cannot be repaired
- Examples
 - State properties, for instance, invariants

$$P = \{t \in \mathcal{P}(AP)^{\omega} \mid \forall i \geq 0 : open \in t_{[i]} \lor closed \in t_{[i]}\}$$

"Money can be withdrawn only after correct PIN has been entered"

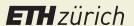


Liveness Properties

- Intuition
 - "Something good will happen eventually"
 - "If the good thing has not happened yet, it could happen in the future"
- An LT-property P is a liveness property if every finite sequence $\hat{t} \in \mathcal{P}(AP)^*$ is a prefix of an infinite sequence $t \in P$
 - A liveness property does not rule out any prefix
 - Every finite prefix can be extended to an infinite sequence that is in P
- Liveness properties are violated in infinite time
- Examples
 - All opened files must be closed eventually

$$P = \{ t \in \mathcal{P}(AP)^{\omega} \mid \forall i \geq 0 : open \in t_{[i]} \Rightarrow \exists n > 0 : closed \in t_{[i+n]} \}$$

"The program terminates eventually"



6. Linear Temporal Logic

6.1 Linear-Time Properties

6.2 Linear Temporal Logic

Linear Temporal Logic

 Linear Temporal Logic (LTL) allows us to formalize LT-properties of traces in a convenient and succinct way

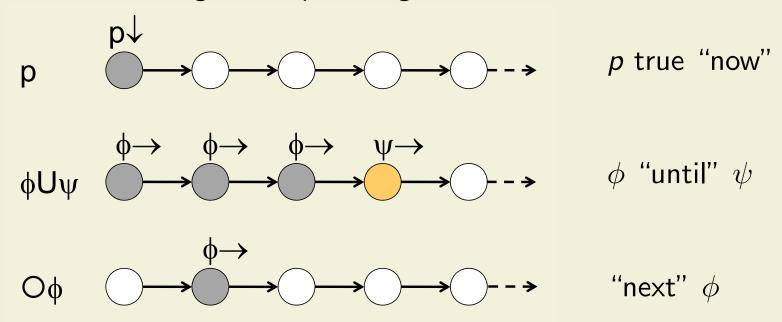
We will see syntax and semantics for LTL (no inference rules, etc.)

 Whether or not the traces of a finite transition system satisfy an LTL formula is decidable (see next section)

LTL: Basic Operators

Syntax

- where p is a proposition from a chosen set of atomic propositions $AP \neq \emptyset$
- Intuitive meaning of temporal logic formulas

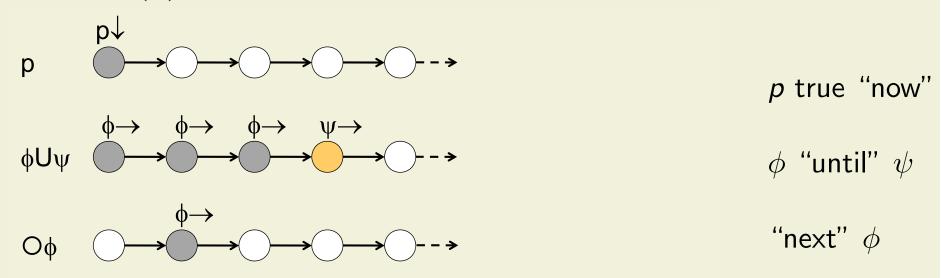


LTL: Semantics

• $t \models \phi$ expresses that trace $t \in \mathcal{P}(AP)^{\omega}$ satisfies LTL formula ϕ

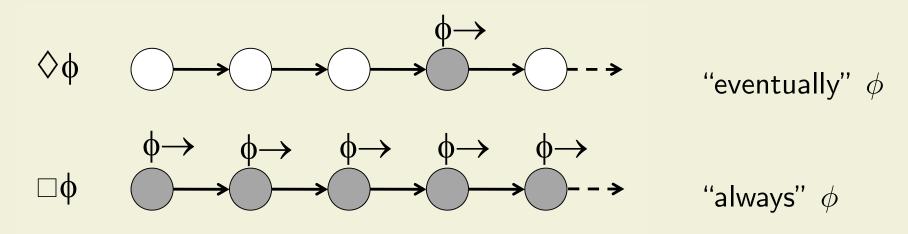
```
\begin{array}{lll} t \vDash p & \text{iff} & p \in t_{[0]} \\ t \vDash \neg \phi & \text{iff} & \text{not } t \vDash \phi \\ t \vDash \phi \land \psi & \text{iff} & t \vDash \phi \text{ and } t \vDash \psi \\ t \vDash \phi \ \mathsf{U} \ \psi & \text{iff} & \text{there is a } k \geq 0 \text{ with } t_{(\geq k)} \vDash \psi \text{ and } \\ & t_{(\geq j)} \vDash \phi \text{ for all } j \text{ such that } 0 \leq j < k \\ t \vDash \bigcirc \phi & \text{iff} & t_{(\geq 1)} \vDash \phi \end{array}
```

• where $t_{(\geq i)}$ is the suffix of t starting at t_i



Derived Operators

- true, false, \lor , \Rightarrow , \Leftrightarrow defined as usual
- Eventually: $\Diamond \phi \equiv (true \cup \phi)$
- Always (from now): $\Box \phi \equiv \neg \diamondsuit \neg \phi$



• Precedence: unary operators always have highest precedence. So, $\Diamond \phi \Rightarrow \psi$ means $(\Diamond \phi) \Rightarrow \psi$. We will usually use parentheses to explicitly clarify other ambiguities.

Useful Specification Patterns

- Strong invariant: $\Box \psi$
 - ullet ψ always holds
 - A file is always open or closed: \Box (open \lor closed)
 - Safety property
- Monotone invariant: $\Box(\psi \Rightarrow \Box \psi)$
 - ullet Once ψ is true, then ψ is always true
 - For example, once information is public, it can never become secret again (but it may always stay secret): $\Box(public \Rightarrow \Box public)$
 - Safety property
- ullet Establishing an invariant: $\Diamond \Box \psi$
 - ullet Eventually ψ will always hold
 - For example, system initialization starts server: $\Diamond \Box$ serverRunning
 - Liveness property

Useful Specification Patterns (cont'd)

- Responsiveness: $\Box(\psi \Rightarrow \Diamond \phi)$
 - ullet Every time that ψ holds, ϕ will eventually hold
 - For example, all opened files must be closed eventually: $\Box(open \Rightarrow \diamondsuit closed)$
 - Liveness property
- Fairness: $\Box \diamondsuit \psi$
 - ullet ψ holds infinitely often
 - For example, producer does not wait infinitely long before entering the critical section: $\Box \diamondsuit critical$
 - Liveness property

Needham-Schroeder Protocol

• If Alice and Bob have completed their protocol runs then Alice should believe her partner to be Bob if and only if Bob believes to talk to Alice

```
\Box(\textit{statusA} = 1 \land \textit{statusB} = 1 \Rightarrow \\ (\textit{partnerA} = \textit{agentB} \Leftrightarrow \textit{partnerB} = \textit{agentA}))
```

• If Alice completed the protocol talking with Bob, the intruder will not know Alice's nonce (and dually, swapping the A's and B's):

```
\Box(statusA = 1 \land partnerA = agentB \Rightarrow knows\_nonceA = 0)
```