Formal Methods

and Functional Programming
Linear Temporal Logic

Peter Muller

Programming Methodology Group
ETH Zurich

The slides in this section are partly based on the course Automata-based System Analysis by
Felix Klaedtke

Model Checking

O(p — €Q)

Property
Specification

Model
Checker

ETH:zurich Peter Miiller—Formal Methods and Functional Programming, SS23 p. 239

Motivation

@ Many interesting properties relate several states

@ Example: all opened files must be closed eventually

E'"ZUF/Ch Peter Muller—Formal Methods and Functional Programming, SS23 p. 240

Motivation

@ Many interesting properties relate several states

@ Example: all opened files must be closed eventually

e For a terminating program s

(s,0) =7 ¢’ and o(0) =0 then ¢'(0) =0

E'"ZUriCh Peter Muller—Formal Methods and Functional Programming, SS23 p. 240

Motivation

@ Many interesting properties relate several states

@ Example: all opened files must be closed eventually

e For a terminating program s

(s,0) =7 ¢’ and o(0) =0 then ¢'(0) =0

e For a deterministic, non-terminating program s

(s,0) >7 (s',0") and o(0) =0 and ¢'(0) =1 then there exist
s",c" such that (s’,0') =7 (s"”,0"”) and ¢"(0) =0

E'"ZUriCh Peter Muller—Formal Methods and Functional Programming, SS23 p. 240

Motivation

@ Many interesting properties relate several states

@ Example: all opened files must be closed eventually

e For a terminating program s

(s,0) =7 ¢’ and o(0) =0 then ¢'(0) =0

e For a deterministic, non-terminating program s

(s,0) >7 (s',0") and o(0) =0 and ¢'(0) =1 then there exist
s",c" such that (s’,0') =7 (s"”,0"”) and ¢"(0) =0

e For a non-deterministic, non-terminating program s

wc : Stm x State x N — Bool

wc(s,o,n) < o(o0) =0V
(for all s", 0" :if (s,0) =1 (s’,0") then there exists
m € N such that m < n and we(s’, o', m))

(s,0) =7 (s’,0") and o(0) =0 and o’(0) =1 then
there exists n € N such that wc(s’,o’, n)

E"HZUF/Ch Peter Muller—Formal Methods and Functional Programming, SS23 p. 240

6. Linear Temporal Logic

6.1 Linear-Time Properties

6.2 Linear Temporal Logic

E'"ZUF/Ch Peter Muller—Formal Methods and Functional Programming, SS23 p. 241

Transition Systems Reuvisited

@ We use a slightly different definition here (than earlier in the course)

@ A finite transition system is a tuple (I, 0/, —)

e [: a finite set of configurations
@ 0y: an initial configuration, oy €[
e —: a transition relation, —-c [x [

@ Difference: we have a fixed initial configuration

o In this section, transition systems model only one program /system, not
all programs of a programming language

@ Difference: we omit terminal configurations from the definition

e Simplifies theory
e Termination can be modelled by transition to a special extra sink state
(which allows further transitions only back to itself)

E"HZUF/Ch Peter Muller—Formal Methods and Functional Programming, SS23 p. 242

Transition System of a Promela Model

o Configurations: states (see previous section)

e Global variables, global channels
e Per active process: local variables, local channels, location counter

@ Initial configuration: initial state (see previous section)

@ Transition relation: defined by operational semantics of statements
e We keep semantics informal

@ A Promela model has a finite number of states

o Finite number of active processes (limited to 255)
e Finite number of variables and channels

e Finite ranges of variables

e Finite buffers of channels

E"HZUF/Ch Peter Muller—Formal Methods and Functional Programming, SS23 p. 243

Computations

@ Infinite sequences

e SY is the set of infinite sequences of elements of set S
o s denotes the i-th element of the sequence s € 5%

@ vel%is a computation of a transition system if:

Y[o] = 01

Vi1 = ir1] (for all i >0)

Note: we use o to range over the states [of a transition system
Note (notation above): if v = 09010203 .. then ;) = 0;

®© 6 6 ¢

@ C(TS) is the set of all computations of a transition system TS

E"HZUF/Ch Peter Muller—Formal Methods and Functional Programming, SS23 p. 244

Linear-Time Properties

@ Linear-time properties (LT-properties) can be used to specify the
permitted computations of a transition system

@ A linear-time property P over [is a subset of %
e P specifies a particular set of infinite sequences of configurations

@ TS satisfies LT-property P (over I')
TSEP ifandonly if C(TS)cP

e All computations of TS belong to the set P

@ By contrast: branching-time properties (not in this course) can also
express the existence of a computation
e Example: “lt is always possible to return to the initial state”

ETH:zurich Peter Miiller—Formal Methods and Functional Programming, SS23 p. 245

LT-Properties: Example

@ All opened files must be closed eventually

P:{fyerw|VI'ZOIV[,-](O)=1:>E|n>0:7[i+n](o):o}

@ LT-properties precisely express properties of computations

e Non-termination is handled by infinite sequences
e Non-determinism is handled by considering each computation separately

@ However, the explicit representation above (defining the set of
sequences) is not convenient

@ Logical formalism needed to simplify specification of LT-properties

E"HZUF/Ch Peter Muller—Formal Methods and Functional Programming, SS23 p. 246

From Configurations to (Sets of) Propositions

@ For a transition system TS, we additionally specify a set AP of atomic
propositions (of our choice)

e An atomic proposition is a proposition containing no logical connectives
o Example: AP = {open, closed} (for files)
o Example: AP ={x>0,y <x}

@ We must provide a labeling function that maps configurations to sets of
atomic propositions from AP

P L:|_—>77(AP)

{open} ifo(o)=1
o Example: L(o) =1 {closed} if o(0)=0
{} otherwise

@ We call L(o) an abstract state

@ From now on, we consider AP and L to be part of the transition system

E'"ZUriCh Peter Muller—Formal Methods and Functional Programming, SS23 p. 247

Traces

@ A trace is an abstraction of a computation

e Observe only the propositions of each state, not the concrete state itself
o Infinite sequence of abstract states (P(AP)“)

@ t € P(AP)¥ is a trace of a transition system TS if
t = L(v707)L(171)L(Y[21),- - - and v is a computation of TS

@ T(TS) is the set of all traces of a transition system TS

@ LT-properties are typically specified over infinite sequences of abstract
states, rather than over sequences of configurations:

P={teP(AP)“|Vi>0:openct;)=3In>0:closed € tf;,,}

E"HZUF/Ch Peter Muller—Formal Methods and Functional Programming, SS23 p. 248

Safety Properties

@ Intuition
e “Something bad is never allowed to happen (and can't be fixed)"

@ An LT-property P is a safety property if for all infinite sequences
t e P(AP)¥:
if t ¢ P then there is a finite prefix t of t such that for every infinite
sequence t’ with prefix t, t' ¢ P
o tis called a bad prefix; essentially, this finite sequence of steps already
violates the property (whatever happens afterwards)

@ Safety properties are violated in finite time and cannot be repaired

@ Examples
e State properties, for instance, invariants

P={teP(AP)* |Vi>0: open e tj;jV closed € t;1}

e "Money can be withdrawn only after correct PIN has been entered”

E'"ZUriCh Peter Muller—Formal Methods and Functional Programming, SS23 p. 249

Liveness Properties

@ Intuition

e “Something good will happen eventually”
e "“If the good thing has not happened yet, it could happen in the future”

@ An LT-property P is a liveness property if every finite sequence
t e P(AP)* is a prefix of an infinite sequence t € P

e A liveness property does not rule out any prefix
e Every finite prefix can be extended to an infinite sequence that is in P

@ Liveness properties are violated in infinite time

@ Examples
e All opened files must be closed eventually

P={teP(AP)*|Vi>0:openct;;=3n>0: closed € t[j,y)}

o “The program terminates eventually”

E'"ZUriCh Peter Muller—Formal Methods and Functional Programming, SS23 p. 250

6. Linear Temporal Logic

6.1 Linear-Time Properties

6.2 Linear Temporal Logic

E'"ZUF/Ch Peter Muller—Formal Methods and Functional Programming, SS23 p. 251

Linear Temporal Logic

@ Linear Temporal Logic (LTL) allows us to formalize LT-properties of
traces in a convenient and succinct way

@ We will see syntax and semantics for LTL (no inference rules, etc.)

@ Whether or not the traces of a finite transition system satisfy an LTL
formula is decidable (see next section)

E"HZUF/Ch Peter Muller—Formal Methods and Functional Programming, SS23 p. 252

LTL: Basic Operators
@ Syntax

p=p| ¢ | ord | dUd | O

e where p is a proposition from a chosen set of atomic propositions AP # &

@ Intuitive meaning of temporal logic formulas

pd
B N L

—> o> o> y—

Wy O—O—O—C— s 0 il v

o—
00 OO et 0

E"HZUF/Ch Peter Muller—Formal Methods and Functional Programming, SS23 p. 253

LTL: Semantics
@ t F ¢ expresses that trace t € P(AP)¥ satisfies LTL formula ¢

tEp iff pe t[o]

tE @ iff not tE ¢

teEony Iff tEgand tEY

tEoUy iff thereis a k >0 with t4) = and
t>j) E ¢ for all j such that 0 <j < k

te Q¢ iff teEo

o where t5 is the suffix of t starting at t;

p @—CU—0O—0—0C--

o—> o> o> yo
by O—O—O—O—(-~ o “until” 1

p true “now”

0 (O (oo next” ¢

E"HZUI‘/Ch Peter Miuller—Formal Methods and Functional Programming, SS23 p. 254

Derived Operators

@ true, false,v,=, < defined as usual
e Eventually: &¢ = (trueU ¢)

e Always (from now): O¢ = = & —¢

o—>

Od W g “eventually” ¢

= o> 9> > o

o Q_)Q_)Q_)Q_)Q' - “always” ¢

@ Precedence: unary operators always have highest precedence. So,
OS¢ = 1 means (O¢) = 1. We will usually use parentheses to
explicitly clarify other ambiguities.

E"HZUF/Ch Peter Muller—Formal Methods and Functional Programming, SS23 p. 255

Useful Specification Patterns

@ Strong invariant: O

e 1 always holds
o A file is always open or closed: T(open v closed)
e Safety property

@ Monotone invariant: O(vy = 0Ov)

e Once o is true, then 7 is always true

e For example, once information is public, it can never become secret again
(but it may always stay secret): O(public = TOpublic)

e Safety property

@ Establishing an invariant: & O

e Eventually ¥ will always hold
e For example, system initialization starts server: <& O serverRunning
e Liveness property

E"HZUF/Ch Peter Muller—Formal Methods and Functional Programming, SS23 p. 256

Useful Specification Patterns (cont’d)

@ Responsiveness: O(y = &)
e Every time that ¢ holds, ¢ will eventually hold
e For example, all opened files must be closed eventually:
0(open = <closed)
e Liveness property

@ Fairness: OC Y

e 7 holds infinitely often

e For example, producer does not wait infinitely long before entering the
critical section: O < critical

e Liveness property

E"HZUF/Ch Peter Muller—Formal Methods and Functional Programming, SS23 p. 257

Needham-Schroeder Protocol

@ If Alice and Bob have completed their protocol runs then Alice should
believe her partner to be Bob if and only if Bob believes to talk to Alice

O(statusA = 1 A statusB =1 =
(partnerA = agentB < partnerB = agentA))

@ If Alice completed the protocol talking with Bob, the intruder will not
know Alice’s nonce (and dually, swapping the A’s and B's):

O(statusA = 1 A partnerA = agentB = knows_nonceA = 0)

E"HZUF/Ch Peter Muller—Formal Methods and Functional Programming, SS23 p. 258

