
P. Müller and D. Basin

Formal Methods and Functional Programming

Optional Exercises 12: Small-Step Semantics

The solutions of the assignments can be found at the end of the file.

Assignment 3 (k-Step Execution Extension)

Task. Prove the following statement:

∀s1, s2, σ, σ′, k · ⟨s1, σ⟩ →k
1 σ

′ =⇒ ⟨s1; s2, σ⟩ →k
1 ⟨s2, σ′⟩

Assignment 4 (Adding revert-if Statements to IMP)

In this assignment, we add a statement to IMP that is related to a very simple form of
transaction management or conflict resolution as used, for instance, in databases: The state-
ment

revert s if b

executes the statement s; but if the boolean expression b is true after the execution of s, all effects
of executing s are reverted. For example, the statement revert x := 0 if x = 0 has no effect
while the statement revert x := 0 if x > 0 is equivalent to x := 0.

Task. Provide derivation rules in the small-step semantics for the revert-if statement.

Hint: You might want to consider the definition of states.

Hint: Ideally, your solution should support the possibility of revert-if statements being nested.
But you might find it easier to consider the non-nested case first.

Note: This exercise is a bit more involved.

1



Solution of assignment 3 (k-Step Execution Extension)

Let
P (k) ≡ ∀s1, s2, σ, σ′ · ⟨s1, σ⟩ →k

1 σ
′ =⇒ ⟨s1; s2, σ⟩ →k

1 ⟨s2, σ′⟩.
We prove ∀k · P (k) by strong induction on the length k of the derivation sequence. Thus,
for some arbitrary k, we get as induction hypothesis ∀k′ < k · P (k′), and need to prove
P (k).

Let s1, s2, σ and σ′ be arbitrary. In order to prove the implication, we assume ⟨s1, σ⟩ →k
1 σ

′ (A1)
and seek to show ⟨s1; s2, σ⟩ →k

1 ⟨s2, σ′⟩ (PO).

• Case k = 0: This contradicts our assumption (A1) because there doesn’t exist a zero-
length derivation sequence from a configuration into a final state.

• Case k = 1: To show: ⟨s1; s2, σ⟩ →1
1 ⟨s2, σ′⟩

Our assumption (A1) gives us that there is some T1 such that root(T1) ≡ ⟨s1, σ⟩ →1 σ′.
Now we can construct a derivation tree to justify ⟨s1; s2, σ⟩ →1

1 ⟨s2, σ′⟩:

A
A
AA

�
�
��

T1

⟨s1, σ⟩ →1 σ
′

(Seq1SOS)
⟨s1; s2, σ⟩ →1 ⟨s2, σ′⟩

• Case k ≥ 2: To show: ⟨s1; s2, σ⟩ →k
1 ⟨s2, σ′⟩.

From (A1) and the fact that k ≥ 2, we have that there is some intermediate configuration
⟨s′′, σ′′⟩, such that

⟨s1, σ⟩ →1
1 ⟨s′′, σ′′⟩ →k−1

1 σ′ (A2)

We apply our induction hypothesis to the (k − 1)-long derivation sequence of (A2), and
we get

⟨s′′; s2 , σ′′⟩ →k−1
1 ⟨s2, σ′⟩ (S1)

Thus, what remains to be proven is the first transition of our goal sequence:

⟨s1; s2, σ⟩ →1
1 ⟨s′′; s2 , σ′′⟩

From the first transition of (A2), we can conclude that there has to be some tree T2

with root(T2) ≡ ⟨s1, σ⟩ →1 ⟨s′′, σ′′⟩. Now we can construct a derivation tree to justify
⟨s1; s2, σ⟩ →1

1 ⟨s′′; s2, σ′′⟩:

A
A
AA

�
�
��

T2

⟨s1, σ⟩ →1 ⟨s′′, σ′′⟩
(Seq2SOS)

⟨s1; s2, σ⟩ →1 ⟨s′′; s2, σ′′⟩

2



Concatenating this with (S1) yields our goal sequence and concludes the proof.

Solution of assignment 4 (Adding revert-if statement to
IMP)

In order to maintain a backup of the state that existed before statement s in revert s if b end

had been executed, we extend our state to be a list of regular states:

State′ = [State]

The extended state is used as a stack of backups. The top-most state is the current state, i.e.,
the one that is used to evaluate expressions and that is changed by assigments, and the other
states are used to rollback actions, if necessary. We decompose a state by Haskell-like pattern
matching, σ′ = σ : σs means that the extended state σ′ consists of a head state σ and tail states
σs.

The first new rule pushes the current state as a backup onto the state stack, and inserts a marker
statement that is used to conditionally trigger a rollback.

(RevSOS )
⟨revert s if b, σ : σs⟩ →1 ⟨s;rollback-if b, σ : σ : σs⟩

The semantics of the marker statement are captured by the next two rules. The first one performs
a rollback by discarding the head state, whereas the second one keeps the head state and instead
removes the backup state. Note that rollback-if is assumed to not occur in the source
programs, i.e., it is only inserted into the program by RevSOS.

(RbiTSOS)
⟨rollback-if b, σ : σs⟩ →1 σs

B[[b]]σ = tt

(RbiFSOS)
⟨rollback-if b, σ : σ′ : σs⟩ →1 σ : σs

B[[b]]σ = ff

All other rules have to be adapted to the extended state. For some rules it is sufficient to
simply propagate the extended state, e.g. for SkipSOS or SeqSOS. For others, such as
AssSOS, we have to decompose the extended state in order to preserve the original seman-
tics.

(SkipSOS)
⟨skip, σs⟩ →1 σs

3



(AssSOS)
⟨x := e, σ : σs⟩ →1 σ[x 7→ A[[e]]σ] : σs

⟨s1, σs⟩ →1 σ
′
s

(Seq1SOS)
⟨s1;s2, σs⟩ →1 ⟨s2, σ′

s⟩

⟨s1, σs⟩ →1 ⟨s′1, σ′
s⟩

(Seq2SOS)
⟨s1;s2, σs⟩ →1 ⟨s′1;s2, σ′

s⟩

(IfTSOS)
⟨if b then s1 else s2 end, σ : σs⟩ →1 ⟨s1, σ : σs⟩ B[[b]]σ = tt

(IfFSOS)
⟨if b then s1 else s2 end, σ : σs⟩ →1 ⟨s2, σ : σs⟩ B[[b]]σ = ff

(WhileSOS)
⟨while b do s end, σs⟩ →1 ⟨if b then s;while b do s end else skip end, σs⟩

4


