Formal Methods and Functional Programming

Optional Exercises 13: Axiomatic Semantics

As usual, the solutions can be found at the end of the file.

Assignment 3 (Zune Bug)

This question concerns termination and the Zune bug, as discussed in the lectures.

Task 3.1. Suppose that, for some statement s, the triple $\{$ true $\} s\{\Downarrow$ true $\}$ can be derived. What does this tell us about s ?

Task 3.2. Let s be the following (corrected) IMP statement:

```
while ((L(year) and 366 < days) or (not L(year) and 365 < days)) do
    if (L(year)) then
        days := days - 366
    else
        days := days - 365
    end;
    year := year + 1
end
```

Show that $\vdash\{$ true $\} s\{\Downarrow$ true $\}$.

Assignment 4 (Total Correctness of Division)

Consider the following IMP program s :

```
while \(r>=0\) do
    r : \(=r-d\);
    \(\mathrm{q}:=\mathrm{q}+1\)
end;
\(r:=r+d ;\)
\(\mathrm{q}:=\mathrm{q}-1\)
```

The program s computes the quotient q and remainder r resulting from the division of a given non-negative integer N (initially stored in the variable r) by a given positive integer D (stored in the variable d).

Task 4.1. Find a suitable loop invariant and variant

Task 4.2. Show that

$$
\vdash\{N \geq 0 \wedge D>0 \wedge \mathrm{~d}=D \wedge \mathrm{r}=N \wedge \mathrm{q}=0\} s\{\Downarrow N=\mathrm{q} \times D+\mathrm{r} \wedge \mathrm{r} \geq 0 \wedge \mathrm{r}<D\}
$$

Assignment 5 (Logarithm)

Let s be the following IMP program:

```
a := 1;
b := 0;
while a < n do
        a := a * 10;
        if (a <= n) then
            b := b + 1
        else
            skip
        end
end
```

The function computes $\left\lfloor\log _{10}(\mathrm{n})\right\rfloor$, storing the result in z . To express the floor of the logarithm, we will use two inequalities involving exponentiation.

Task 5.1. Try to find a loop invariant for this program.

Task 5.2. Using the loop invariant from the previous task, prove that the program computes $\log _{10}(\mathrm{n})$ rounded down, i.e., that

$$
\vdash\{\mathrm{n}=N \wedge \mathrm{n} \geq 1\} s\left\{10^{\mathrm{b}} \leq N \wedge N<10^{\mathrm{b}+1}\right\}
$$

Hint: If you are not able come up with an invariant, do a handstand:

$$
N=\mathrm{u} \vee \mathrm{u}>{ }_{\mathrm{q} 0 \mathrm{I}} \vee\left({ }_{\mathrm{I}+\mathrm{q} 0 \mathrm{I}}=\mathrm{e} \Leftarrow \mathrm{u}<\mathrm{e}\right) \vee\left({ }_{\mathrm{q}} 0 \mathrm{I}=\mathrm{e} \Leftarrow \mathrm{u}>\mathrm{e}\right)
$$

Solution of Assignment 3 (Zune Bug)

Task 3.1. If the triple $\{$ true $\} s\{\Downarrow$ true $\}$ can be derived, this means that the statement s is guaranteed to terminate (regardless of the initial state).

Task 3.2. We use true as the invariant for the loop, and days for the variant. The proof outline is:

```
\{true \(\}\)
    while ((L (year) and 366 < days) or (not L(year) and 365 < days)) do*
    \(\{((\mathrm{L}(\) year \() \wedge 366<\) days \() \vee(\neg \mathrm{L}(\) year \() \wedge 365<\) days \()) \wedge\) true \(\wedge\) days \(=V\}\)
        if (L (year)) then
        \(\{\mathrm{L}(\) year \() \wedge((\mathrm{L}(\) year \() \wedge 366<\) days \() \vee(\neg \mathrm{L}(\) year \() \wedge 365<\) days \()) \wedge\) true \(\wedge\) days \(=V\}\)
        三
        \(\{\) days \(-366<V\}\)
            days := days - 366
        \(\{\) days \(<V\) \}
        else
        \(\{\neg \mathrm{L}(\) year \() \wedge((\mathrm{L}(\) year \() \wedge 366<\) days \() \vee(\neg \mathrm{L}(\) year \() \wedge 365<\) days \()) \wedge\) true \(\wedge\) days \(=V\}\)
        \(\vDash\)
        \(\{\) days \(-365<V\}\)
            days := days - 365
        \(\{\) days \(<V\}\)
        end;
    \(\{\) days \(<V\}\)
        \(\mathrm{y}:=\mathrm{y}+1\)
    \(\{\Downarrow\) days \(<V\}\)
    \(\vDash\)
    \(\{\Downarrow\) true \(\wedge\) days \(<V\}\)
    end
\(\{\Downarrow \neg((\mathrm{L}(\) year \() \wedge 366<\) days \() \vee(\neg \mathrm{L}(\) year \() \wedge 365<\) days \()) \wedge\) true \(\}\)
\(\vDash\)
\(\{\Downarrow\) true \(\}\)
```

$\left(^{*}\right)$ side-condition: the while condition entails (\vDash) days ≥ 0

Solution of Assignment 4 (Total Correctness of Division)

Task 4.1. A suitable loop invariant is $N=\mathrm{q} \times \mathrm{d}+\mathrm{r} \wedge \mathrm{r}+\mathrm{d} \geq 0 \wedge \mathrm{~d}=D \wedge \mathrm{~d}>0$ and the loop variant is r.

Task 4.2. The proof outline is:

$$
\begin{aligned}
& \{N \geq 0 \wedge D>0 \wedge \mathrm{~d}=D \wedge \mathrm{r}=N \wedge \mathrm{q}=0\} \\
& \text { |= } \\
& \begin{array}{l}
\{N=\mathrm{q} \times \mathrm{d}+\mathrm{r} \wedge \mathrm{r}+\mathrm{d} \geq 0 \wedge \mathrm{~d}=D \wedge \mathrm{~d}>0\} \\
\text { while } \mathrm{r}>=0 \mathrm{do}^{*}
\end{array} \\
& \{\mathrm{r} \geq 0 \wedge N=\mathrm{q} \times \mathrm{d}+\mathrm{r} \wedge \mathrm{r}+\mathrm{d} \geq 0 \wedge \mathrm{~d}=D \wedge \mathrm{~d}>0 \wedge \mathrm{r}=Z\} \\
& \vDash \\
& \begin{array}{l}
\{N=(\mathrm{q}+1) \times \mathrm{d}+\mathrm{r}-\mathrm{d} \wedge \mathrm{r}-\mathrm{d}+\mathrm{d} \geq 0 \wedge \mathrm{~d}=D \wedge \mathrm{~d}>0 \wedge \mathrm{r}-\mathrm{d}<Z\} \\
\mathrm{r}:=\mathrm{r}-\mathrm{d} ;
\end{array} \\
& \{N=(\mathrm{q}+1) \times \mathrm{d}+\mathrm{r} \wedge \mathrm{r}+\mathrm{d} \geq 0 \wedge \mathrm{~d}=D \wedge \mathrm{~d}>0 \wedge \mathrm{r}<Z\} \\
& \left.\frac{\mathrm{q}:=\mathrm{q}+1}{\{\Downarrow N=\mathrm{q} \times \mathrm{d}}+\mathrm{r} \wedge \mathrm{r}+\mathrm{d} \geq 0 \wedge \mathrm{~d}=D \wedge \mathrm{~d}>0 \wedge \mathrm{r}<Z\right\} \\
& \text { end; } \\
& \{\Downarrow \neg(\mathrm{r} \geq 0) \wedge N=\mathrm{q} \times \mathrm{d}+\mathrm{r} \wedge \mathrm{r}+\mathrm{d} \geq 0 \wedge \mathrm{~d}=D \wedge \mathrm{~d}>0\} \\
& 1=(1) \\
& \{\Downarrow N=(\mathrm{q}-1) \times \mathrm{d}+\mathrm{r}+\mathrm{d} \wedge \mathrm{r}+\mathrm{d} \geq 0 \wedge \mathrm{r}+\mathrm{d}<\mathrm{d} \wedge \mathrm{~d}=D \wedge \mathrm{~d}>0\} \\
& \mathrm{r}:=\mathrm{r}+\mathrm{d} \text {; } \\
& \{\Downarrow N=(\mathrm{q}-1) \times \mathrm{d}+\mathrm{r} \wedge \mathrm{r} \geq 0 \wedge \mathrm{r}<\mathrm{d} \wedge \mathrm{~d}=D \wedge \mathrm{~d}>0\} \\
& \left.\frac{\mathrm{q}:=\mathrm{q}-1}{\{\Downarrow N=\mathrm{q} \times \mathrm{d}}+\mathrm{r} \wedge \mathrm{r} \geq 0 \wedge \mathrm{r}<\mathrm{d} \wedge \mathrm{~d}=D \wedge \mathrm{~d}>0\right\} \\
& \text { = } \\
& \{\Downarrow N=\mathrm{q} \times D+\mathrm{r} \wedge \mathrm{r} \geq 0 \wedge \mathrm{r}<D\}
\end{aligned}
$$

(*) side-condition: $(\mathrm{r} \geq 0 \wedge N=\mathrm{q} \times \mathrm{d}+\mathrm{r} \wedge \mathrm{r}+\mathrm{d} \geq 0 \wedge \mathrm{~d}=D \wedge \mathrm{~d}>0) \models \mathrm{r} \geq 0$
(1) $\neg(r \geq 0)$ implies $r+d<d$.

Solution of Assignment 5 (Logarithm)

Task 5.1. Our loop invariant is as follows:

$$
\left(\mathrm{a} \leq \mathrm{n} \Rightarrow \mathrm{a}=10^{\mathrm{b}}\right) \wedge\left(\mathrm{a}>\mathrm{n} \Rightarrow \mathrm{a}=10^{\mathrm{b}+1}\right) \wedge 10^{\mathrm{b}} \leq \mathrm{n} \wedge \mathrm{n}=N
$$

Task 5.2. Then the proof outline is:

$$
\begin{aligned}
& \{\mathrm{n}=N \wedge \mathrm{n} \geq 1\} \\
& \vDash \\
& \{\mathrm{n}=N \wedge \mathrm{n} \geq 1 \wedge 1=1 \wedge 0=0\} \\
& \text { a }:=1 \text {; } \\
& \{\mathrm{n}=N \wedge \mathrm{n} \geq 1 \wedge \mathrm{a}=1 \wedge 0=0\} \\
& \text { b := 0; } \\
& \{\mathrm{n}=N \wedge \mathrm{n} \geq 1 \wedge \mathrm{a}=1 \wedge \mathrm{~b}=0\} \\
& { }^{(}{ }^{(*)} \\
& \left\{\left(\mathrm{a} \leq \mathrm{n} \Rightarrow \mathrm{a}=10^{\mathrm{b}}\right) \wedge\left(\mathrm{a}>\mathrm{n} \Rightarrow \mathrm{a}=10^{\mathrm{b}+1}\right) \wedge 10^{\mathrm{b}} \leq \mathrm{n} \wedge \mathrm{n}=N\right\} \\
& \text { while } \mathrm{a}<\mathrm{n} \text { do } \\
& \left\{\mathrm{a}<\mathrm{n} \wedge\left(\mathrm{a} \leq \mathrm{n} \Rightarrow \mathrm{a}=10^{\mathrm{b}}\right) \wedge\left(\mathrm{a}>\mathrm{n} \Rightarrow \mathrm{a}=10^{\mathrm{b}+1}\right) \wedge 10^{\mathrm{b}} \leq \mathrm{n} \wedge \mathrm{n}=N\right\} \\
& \vDash \\
& \left\{\mathrm{a} * 10=10^{\mathrm{b}+1} \wedge 10^{\mathrm{b}}<\mathrm{n} \wedge \mathrm{n}=N\right\} \\
& \text { a := a*10; } \\
& \left\{\mathrm{a}=10^{\mathrm{b}+1} \wedge 10^{\mathrm{b}}<\mathrm{n} \wedge \mathrm{n}=N\right\} \\
& \text { if (} \mathrm{a}<=\mathrm{n} \text {) then } \\
& \left\{\mathrm{a} \leq \mathrm{n} \wedge \mathrm{a}=10^{\mathrm{b}+1} \wedge 10^{\mathrm{b}}<\mathrm{n} \wedge \mathrm{n}=N\right\} \\
& \text { F } \\
& \left\{\mathrm{a}=10^{\mathrm{b}+1} \wedge 10^{\mathrm{b}+1-1}<\mathrm{n} \wedge \mathrm{n}=N \wedge \mathrm{a} \leq \mathrm{n}\right\} \\
& \mathrm{b}:=\mathrm{b}+1 \\
& \left\{\mathrm{a}=10^{\mathrm{b}} \wedge 10^{\mathrm{b}-1}<\mathrm{n} \wedge \mathrm{n}=N \wedge \mathrm{a} \leq \mathrm{n}\right\} \\
& \neq(\star) \\
& \left\{\left(\mathrm{a} \leq \mathrm{n} \Rightarrow \mathrm{a}=10^{\mathrm{b}}\right) \wedge\left(\mathrm{a}>\mathrm{n} \Rightarrow \mathrm{a}=10^{\mathrm{b}+1}\right) \wedge 10^{\mathrm{b}} \leq \mathrm{n} \wedge \mathrm{n}=N\right\} \\
& \text { else } \\
& \left\{\neg(\mathrm{a} \leq \mathrm{n}) \wedge \mathrm{a}=10^{\mathrm{b}+1} \wedge 10^{\mathrm{b}}<\mathrm{n} \wedge \mathrm{n}=N\right\} \\
& \text { skip } \\
& \left\{\neg(\mathrm{a} \leq \mathrm{n}) \wedge \mathrm{a}=10^{\mathrm{b}+1} \wedge 10^{\mathrm{b}}<\mathrm{n} \wedge \mathrm{n}=N\right\} \\
& \neq(\star) \\
& \begin{array}{l}
\left\{\left(\mathrm{a} \leq \mathrm{n} \Rightarrow \mathrm{a}=10^{\mathrm{b}}\right) \wedge\left(\mathrm{a}>\mathrm{n} \Rightarrow \mathrm{a}=10^{\mathrm{b}+1}\right) \wedge 10^{\mathrm{b}} \leq \mathrm{n} \wedge \mathrm{n}=N\right\} \\
\text { end }
\end{array} \\
& \begin{array}{l}
\left\{\left(\mathrm{a} \leq \mathrm{n} \Rightarrow \mathrm{a}=10^{\mathrm{b}}\right) \wedge\left(\mathrm{a}>\mathrm{n} \Rightarrow \mathrm{a}=10^{\mathrm{b}+1}\right) \wedge 10^{\mathrm{b}} \leq \mathrm{n} \wedge \mathrm{n}=N\right\} \\
\text { end }
\end{array} \\
& \left\{\neg(\mathrm{a}<\mathrm{n}) \wedge\left(\mathrm{a} \leq \mathrm{n} \Rightarrow \mathrm{a}=10^{\mathrm{b}}\right) \wedge\left(\mathrm{a}>\mathrm{n} \Rightarrow \mathrm{a}=10^{\mathrm{b}+1}\right) \wedge 10^{\mathrm{b}} \leq \mathrm{n} \wedge \mathrm{n}=N\right\} \\
& \neq{ }^{(1)} \\
& \left\{10^{\mathrm{b}} \leq N \wedge N<10^{\mathrm{b}+1}\right\}
\end{aligned}
$$

(\star) For these steps we use that $\mathbf{P} \wedge \mathbf{R}$ entails $(\mathbf{P} \Rightarrow \mathbf{R}) \wedge(\neg \mathbf{P} \Rightarrow \mathbf{Q})$ for arbitrary assertions $\mathbf{P}, \mathbf{R}, \mathbf{Q}$.
(1) To justify this step, use the fact that $\mathrm{a} \geq \mathrm{n}$, and case split on $\mathrm{a}=\mathrm{n}$ or $\mathrm{a}>\mathrm{n}$: In the case where $\mathrm{a}=\mathrm{n}$ holds, from the first implication we deduce $\mathrm{a}=10^{\mathrm{b}}$. Therefore, in this case, we have
$N=\mathrm{n}=\mathrm{a}=10^{\mathrm{b}}$, from which the post-condition follows directly.
In the case where $\mathrm{a}>\mathrm{n}$ holds, we use the second implication to deduce $\mathrm{a}=10^{\mathrm{b}+1}$. Our assumption is that $\mathrm{a}>\mathrm{n}$, and so we have $N<10^{\mathrm{b}+1}$. From $10^{\mathrm{b}} \leq \mathrm{n}$, we deduce $10^{\mathrm{b}} \leq N$ as required.

