
P. Müller and D. Basin

Formal Methods and Functional Programming

Optional Exercises 14: Modeling in Promela

As usual, the solutions can be found at the end of the file.

Assignment A (Leader Election Protocol)

Consider the following leader election protocol. For n ≥ 1,
the processes P1, . . . , Pn are located in a ring topology,
where each process is connected by an unidirectional chan-
nel to its neighbor as outlined in the figure to the right.

P4

P5

P6

P7

P1
P2

P3

nP

−1nP

To distinguish the processes, each process has a unique identifier id with 1 ≤ id ≤ n. The aim
is to elect the process with the highest identifier as the leader within the ring. Therefore, each
process executes the following algorithm:

send message id
loop

receive message m
if m = id then stop
if m > id then send message m

end loop

Task A.1. Model this leader election protocol for n processes in Promela.

Hint: Use an array of n channels of length 1, i.e.,

#define n 5 // number of processes

#define l 1 // length of channel

chan c[n] = [l] of { byte }

Model a process in Promela as

1



proctype pnode(chan _in, out; byte id) {

/* ... algorithm for electing the leader ... */

}

Task A.2. Assume that the channels are of length n + 1 instead of length 1 in your Promela
model. Is there a state in some execution in which a channel stores more than n messages? Use
Spin to verify your claim for some fixed values of n. What happens if the channels have length
0?

Assignment B (Dekker’s Algorithm)

Dekker’s algorithm is said to be the first known algorithm that (really) solves the mutual ex-
clusion problem for two concurrent processes. In the algorithm, the critical section is protected
by two bit-valued flags. The first one is actually a pair that is used to signal that the first
and second, respectively, process is interested in entering the critical section. The other flag
alternates and is used to decide which process may enter the critical section in case both are
interested.

The algorithm guarantees mutual exclusion to the critical section as well as deadlock and star-
vation freedom. Instead of relying on low-level test-and-set instructions or interrupts, or on
signal/wait thread operations, each process uses busy waiting to detect when it may enter the crit-
ical section. This makes the algorithm highly portable between different languages and hardware
architectures, but also less efficient in case of lots of contention.

Task B.1. Implement Dekker’s algorithm in Promela and verify exclusivity using Spin.

Hint: In order to verify the exclusivity of the critical section, let mutex count the number of
processes that are currently in the critical section. Then, use the following supervisor process
(also known as monitor or watchdog) to assert exclusivity:

proctype supervisor() {

assert(mutex != 2)

}

Task B.2. Prove the property that a process enters the critical section of Dekker’s algorithm
infinitely often.

2

https://en.wikipedia.org/wiki/Dekker%27s_algorithm


Assignment C (Mole Game)

Consider the following game between a mole (Maulwurf ) and a hunter. The mole has five holes
as in the above figure. At the beginning of the game, the mole hides in one of these holes. Now
the game proceeds in rounds of the following form: the hunter checks one hole to see whether
the mole is inside. If it is, the hunter wins the game. If not, the mole must move one hole to the
left or right (if it is in the leftmost hole already, it must move to the right and conversely for the
rightmost hole). After the mole has moved, the next round starts.

It turns out that the hunter has a strategy to win the game, no matter how the mole moves. One
sure winning strategy for the hunter is to check holes in the sequence 2-3-4-2-3-4.

Your task is to model this game in Promela. Your model has to contain the data structure for
the holes, the set-up of the initial state (the hiding of the mole), the behaviour of the mole, the
implementation of the hunter’s winning strategy, and an assertion that ensures that after executing
the strategy, the hunter has definitely caught the mole.

3



Solution of assignment A (Leader Election Protocol)

Task A.1. See leader 1.pml. Note that this version doesn’t terminate all processes – only
the leader. We could also send a special “finished” message to each process to tidy up. As
it is, we get “invalid endstate” failures if we search for them (but the computed leader ID is
correct).

Task A.2. See leader 2.pml. It is not possible for one node to receive more than n messages
(one per node). We formalise the property of interest as a single assertion, and placed it into a
so-called watchdog process. Spin will test all possible interleavings of the pnode processes and the
watchdog process. The resulting set of interleavings will contain those where the single assertion
is checked after every possible state change involving the channels. Hence, the assertion must
always hold, or Spin will complain.

The assertion will fail if you reduce the channel capacity, e.g., set it back to one again, as used
in part a) of the assignment.

In case of a channel length l = 0, we have synchronous message sending, which means that sends
are blocking. For the protocol under study, l = 0 leads to a deadlock (we do not detect this
explicitly below, but could do so with extra instrumentation and an LTL formula checking that
at it is always the case that at least one process has either terminated or will reach the beginning
of its loop again.

Note that, unlike in Task A.1, we do not get invalid endstate errors for this model – this is just
because the “watchdog” is never stuck.

Solution of assignment B (Dekker’s Algorithm)

Task B.1. See dekker 1.pml. A comment about the supervisor thread: Let mutex denote
the number of processes in the critical section. It might be tempting to model the supervisor
as

proctype supervisor() {

do

:: assert mutex != 2

od

}

in order to capture the idea that the assertion is checked in each possible state. The loop,
however, is not necessary, that is,

proctype supervisor() {

assert mutex != 2

}

4



suffices. Assume that there exists a state in which the assertion is violated. Since Spin generates
every possible interleaving, it also generates one in which the assertion is executed in exactly this
violating state.

In terms of performance, the loop-approach can even be considered a poor solution because it
unecessarily increases the state space.

Task B.2. The first try is to introduce a variable critical whose value is equal to the id of
the process that is inside the critical section (2 if none is) (the new file is called dekker 2.pml).
Then model check the LTL properties []<>(critical==0) and ([]<>(critical==1) for the
first and second process, respectively. Both are expected to fail.

The problem with the property is fairness: we must ensure that each process gets executed
infinitely often (otherwise a process can starve the other). It is possible to model check only
fair paths in Spin, using the -f switch. We run the analysis again with -f and the property
verifies.

Another way to have this work is to simulate some notion of fairness into our model. We introduce
a pair of counters, one per process. A process decrements its counter when it enters its critical
section and resets the counter of the other process. Once a counter is 0, the corresponding process
blocks and then the other process may proceed. Modelling fairness this way makes our property
go through (it is questionable as to whether a real implementation should work this way, since we
could block processes unnecessarily, in cases where other threads are not interested in entering the
critical section). A full solution can be found in dekker 3.pml.

Instructions for model checking in command line (use -f only for fair model checking):

spin -a dekker_3.pml

gcc pan.c

./a.exe -a -f

In the GUIs, this can be chosen by choosing “With Weak Fairness” in the Verification Op-
tions.

Solution of assignment C (Mole Game)

See mole.pml.

5


