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Formal Methods and Functional Programming

Session Sheet 10: IMP States and Expressions

Assignment 1 (Simplifying State Updates)

Task 1.1: Prove that for all states σ and variables x, it holds that σ[x 7→ σ(x)] = σ.

Solution. Note that no induction is necessary here. We assume the state σ and the variable x be
arbitrary and need to show that ∀y · σ[x 7→ σ(x)](y) = σ(y). To do so, we assume the variable
y to be arbitrary. Using the definition of state update, we get

σ[x 7→ σ(x)](y) =

{
σ(x) if y ≡ x

σ(y) if y ̸≡ x

}
= σ(y).

Task 1.2: Assume that for all states σ, for all variables x, y, and for all values v, w:

x ̸≡ y =⇒ σ[x 7→ v][y 7→ w] = σ[y 7→ w][x 7→ v] (1)

The proof of this statement is left for the exercise sheet.

Prove that for all variables x, for all values v, for all natural numbers n, for all sequences of
length n of variables y⃗ ≡ ⟨y1, . . . , yn⟩ and corresponding values w⃗ ≡ ⟨w1, . . . , wn⟩, and for all
states σ:

x /∈ y⃗ =⇒ σ[x 7→ v][y⃗ 7→ w⃗] = σ[y⃗ 7→ w⃗][x 7→ v].

Note: By x /∈ y⃗, we mean that x ̸≡ yi, for all i ∈ {1, . . . , n}.

Note: We use σ[y⃗ 7→ w⃗] to denote the sequence of updates σ[y1 7→ w1] . . . [yn 7→ wn].

Solution. Let x and v be arbitrary and let

P (n) ≡ ∀σ, y⃗, w⃗ · |y⃗| = |w⃗| = n ∧ x /∈ y⃗ =⇒ σ[x 7→ v][y⃗ 7→ w⃗] = σ[y⃗ 7→ w⃗][x 7→ v],

where |y⃗| and |w⃗| denote the length of the sequences y⃗ and w⃗, respectively. We show ∀n · P (n)
by weak induction on n.
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• Base Case: We have to show that P (0) holds. Let σ, y⃗, and w⃗ be arbitrary. Since n = 0,
the sequences y⃗ and w⃗ can only be empty. Thus, after assuming (the vacuous property)
x /∈ y⃗, we are left with showing that σ[x 7→ v] = σ[x 7→ v], which is trivially true.

• Step Case: As our induction hypothesis, we assume that P (n) holds for some natural
number n. We have to show that P (n+ 1) holds. Let σ be arbitrary, and let y⃗, and w⃗ be
arbitrary sequences of length n+ 1. We need to show that

x /∈ y⃗ =⇒ σ[x 7→ v][y⃗ 7→ w⃗] = σ[y⃗ 7→ w⃗][x 7→ v].

We assume x /∈ y⃗ and seek to prove σ[x 7→ v][y⃗ 7→ w⃗] = σ[y⃗ 7→ w⃗][x 7→ v]. Since the
sequences are of length at least 1, there have to be first elements y1 and w1, respectively.
By (1), with x /∈ y⃗ =⇒ x ̸≡ y1, we obtain σ[x 7→ v][y1 7→ w1] = σ[y1 7→ w1][x 7→ v].
Thus, we have

σ[x 7→ v][y1 7→ w1][y2 7→ w2] . . . [yn+1 7→ wn+1]

= σ[y1 7→ w1][x 7→ v][y2 7→ w2] . . . [yn+1 7→ wn+1]

= σ[y1 7→ w1][y2 7→ w2] . . . [yn+1 7→ wn+1][x 7→ v], (IH)

as required (note that in the last step, we instantiated P (n) with σ ⇝ σ[y1 7→ w1], and
y⃗ ⇝ ⟨y2, . . . , yn+1⟩, w⃗ ⇝ ⟨w2, . . . , wn+1⟩, which are both sequences of length n).

Assignment 2 (Substitution on Arithmetic Expressions)

Intuitively, e[x 7→ e′] denotes the arithmetic expression e with all occurrences of x replaced with
the arithmetic expression e′. Recall the formal definition:

e[x 7→ e′] ≡


n if e ≡ n for some numerical value n

e′ if e ≡ y for some variable y with y ≡ x

y if e ≡ y for some variable y with y ̸≡ x

e1[x 7→ e′] op e2[x 7→ e′] if e ≡ e1 op e2, for some e1, e2, and op

Task: Prove the following statement:

∀σ, e, e′, x ·
(
A[[e[x 7→ e′]]]σ = A[[e]](σ[x 7→ A[[e′]]σ])

)
Hint: Define a suitable predicate P (e) and prove ∀e ·P (e) by either weak structural induction or
strong structural induction on the arithmetic expression e. If you choose to do a strong structural
induction, you have to prove P (e) for some arbitrary e and may assume ∀e′′ ⊏ e · P (e′′) as
your induction hypothesis. Note that, here, e′′ ⊏ e denotes that e′′ is a proper sub-expression
of e. Since arithmetic expressions are finite, the relation ⊏ is a well-founded ordering. Thus,
strong structural induction on arithmetic expressions can be seen as a special case of well-founded
induction.

2



Solution. Let σ, x and e′ be arbitrary. We define

P (e) ≡
(
A[[e[x 7→ e′]]]σ = A[[e]](σ[x 7→ A[[e′]]σ])

)
and prove ∀e. P (e) by strong structural induction on e (note that a weak structural induction
would also work). We have to show P (e) for some arbitrary arithmetic expression e and assume
∀e′′ ⊏ e · P (e′′) as our induction hypothesis. We proceed by a case analysis on e:

• Case e ≡ n, for some numerical value n: We have

A[[n[x 7→ e′]]]σ = A[[n]]σ = N [[n]] = A[[n]]
(
σ[x 7→ A[[e′]]σ]

)
.

• Case e ≡ y, for some variable y: We make a further case distinction:

– Subcase y ≡ x: We have

A[[x[x 7→ e′]]]σ = A[[e′]]σ =
(
σ[x 7→ A[[e′]]σ]

)
(y) = A[[x]]

(
σ[x 7→ A[[e′]]σ]

)
.

– Subcase y ̸≡ x: We have

A[[y[x 7→ e′]]]σ = A[[y]]σ = σ(y) =
(
σ[x 7→ A[[e′]]σ]

)
(y) = A[[y]]

(
σ[x 7→ A[[e′]]σ]

)
.

• Case e ≡ e1 op e2, for some arithmetic expressions e1, e2 and some arithmetic operator op:
Note that e1 ⊏ e and e2 ⊏ e. Thus, by the induction hypothesis, we get

A[[ei[x 7→ e′]]]σ = A[[ei]]
(
σ[x 7→ A[[e′]]σ]

)
, (2)

for i ∈ {1, 2}, and can conclude that

A[[(e1 op e2)[x 7→ e′]]]σ = A[[(e1[x 7→ e′] op e2[x 7→ e′])]]σ

= A[[e1[x 7→ e′]]]σ op A[[e2[x 7→ e′]]]σ

(??)
= A[[e1]]

(
σ[x 7→ A[[e′]]σ]

)
op A[[e2]]

(
σ[x 7→ A[[e′]]σ]

)
= A[[(e1 op e2)]]

(
σ[x 7→ A[[e′]]σ]

)
.

Assignment 3 (Big-Step Semantics)

Let s be the following statement:

y := 1;

while x > 0 do

y := y * 2;

x := x - 1

end
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Task 3.1. What function does the IMP statement s compute when the variable x initially
stores a non-negative integer?

Solution. The statement s stores 2X in variable y where X is the initial value of variable x. The
variable x is set to 0 by executing the statement s.

Task 3.2. Let σ be a state with σ(x) = 2. Prove that there is a state σ′ with σ′(y) = 4 such that
⟨s, σ⟩ → σ′ using the rules of the big-step semantics for IMP.

Solution.
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