Formal Methods and Functional Programming

Session Sheet 10: IMP States and Expressions

Assignment 1 (Simplifying State Updates)

Task 1.1: Prove that for all states σ and variables x, it holds that $\sigma[x \mapsto \sigma(x)]=\sigma$.
Solution. Note that no induction is necessary here. We assume the state σ and the variable x be arbitrary and need to show that $\forall y \cdot \sigma[x \mapsto \sigma(x)](y)=\sigma(y)$. To do so, we assume the variable y to be arbitrary. Using the definition of state update, we get

$$
\sigma[x \mapsto \sigma(x)](y)=\left\{\begin{array}{ll}
\sigma(x) & \text { if } y \equiv x \\
\sigma(y) & \text { if } y \not \equiv x
\end{array}\right\}=\sigma(y) .
$$

Task 1.2: Assume that for all states σ, for all variables x, y, and for all values v, w :

$$
\begin{equation*}
x \not \equiv y \Longrightarrow \sigma[x \mapsto v][y \mapsto w]=\sigma[y \mapsto w][x \mapsto v] \tag{1}
\end{equation*}
$$

The proof of this statement is left for the exercise sheet.
Prove that for all variables x, for all values v, for all natural numbers n, for all sequences of length n of variables $\vec{y} \equiv\left\langle y_{1}, \ldots, y_{n}\right\rangle$ and corresponding values $\vec{w} \equiv\left\langle w_{1}, \ldots, w_{n}\right\rangle$, and for all states σ :

$$
x \notin \vec{y} \Longrightarrow \sigma[x \mapsto v][\vec{y} \mapsto \vec{w}]=\sigma[\vec{y} \mapsto \vec{w}][x \mapsto v] .
$$

Note: By $x \notin \vec{y}$, we mean that $x \not \equiv y_{i}$, for all $i \in\{1, \ldots, n\}$.
Note: We use $\sigma[\vec{y} \mapsto \vec{w}]$ to denote the sequence of updates $\sigma\left[y_{1} \mapsto w_{1}\right] \ldots\left[y_{n} \mapsto w_{n}\right]$.
Solution. Let x and v be arbitrary and let

$$
P(n) \equiv \forall \sigma, \vec{y}, \vec{w} \cdot|\vec{y}|=|\vec{w}|=n \wedge x \notin \vec{y} \Longrightarrow \sigma[x \mapsto v][\vec{y} \mapsto \vec{w}]=\sigma[\vec{y} \mapsto \vec{w}][x \mapsto v],
$$

where $|\vec{y}|$ and $|\vec{w}|$ denote the length of the sequences \vec{y} and \vec{w}, respectively. We show $\forall n \cdot P(n)$ by weak induction on n.

- Base Case: We have to show that $P(0)$ holds. Let σ, \vec{y}, and \vec{w} be arbitrary. Since $n=0$, the sequences \vec{y} and \vec{w} can only be empty. Thus, after assuming (the vacuous property) $x \notin \vec{y}$, we are left with showing that $\sigma[x \mapsto v]=\sigma[x \mapsto v]$, which is trivially true.
- Step Case: As our induction hypothesis, we assume that $P(n)$ holds for some natural number n. We have to show that $P(n+1)$ holds. Let σ be arbitrary, and let \vec{y}, and \vec{w} be arbitrary sequences of length $n+1$. We need to show that

$$
x \notin \vec{y} \Longrightarrow \sigma[x \mapsto v][\vec{y} \mapsto \vec{w}]=\sigma[\vec{y} \mapsto \vec{w}][x \mapsto v] .
$$

We assume $x \notin \vec{y}$ and seek to prove $\sigma[x \mapsto v][\vec{y} \mapsto \vec{w}]=\sigma[\vec{y} \mapsto \vec{w}][x \mapsto v]$. Since the sequences are of length at least 1 , there have to be first elements y_{1} and w_{1}, respectively. By (1), with $x \notin \vec{y} \Longrightarrow x \not \equiv y_{1}$, we obtain $\sigma[x \mapsto v]\left[y_{1} \mapsto w_{1}\right]=\sigma\left[y_{1} \mapsto w_{1}\right][x \mapsto v]$. Thus, we have

$$
\begin{align*}
& \sigma[x \mapsto v]\left[y_{1} \mapsto w_{1}\right]\left[y_{2} \mapsto w_{2}\right] \ldots\left[y_{n+1} \mapsto w_{n+1}\right] \\
= & \sigma\left[y_{1} \mapsto w_{1}\right][x \mapsto v]\left[y_{2} \mapsto w_{2}\right] \ldots\left[y_{n+1} \mapsto w_{n+1}\right] \\
= & \sigma\left[y_{1} \mapsto w_{1}\right]\left[y_{2} \mapsto w_{2}\right] \ldots\left[y_{n+1} \mapsto w_{n+1}\right][x \mapsto v], \tag{IH}
\end{align*}
$$

as required (note that in the last step, we instantiated $P(n)$ with $\sigma \rightsquigarrow \sigma\left[y_{1} \mapsto w_{1}\right]$, and $\vec{y} \rightsquigarrow\left\langle y_{2}, \ldots, y_{n+1}\right\rangle, \vec{w} \rightsquigarrow\left\langle w_{2}, \ldots, w_{n+1}\right\rangle$, which are both sequences of length n).

Assignment 2 (Substitution on Arithmetic Expressions)

Intuitively, $e\left[x \mapsto e^{\prime}\right]$ denotes the arithmetic expression e with all occurrences of x replaced with the arithmetic expression e^{\prime}. Recall the formal definition:

$$
e\left[x \mapsto e^{\prime}\right] \equiv \begin{cases}n & \text { if } e \equiv n \text { for some numerical value } n \\ e^{\prime} & \text { if } e \equiv y \text { for some variable } y \text { with } y \equiv x \\ y & \text { if } e \equiv y \text { for some variable } y \text { with } y \not \equiv x \\ e_{1}\left[x \mapsto e^{\prime}\right] \text { op } e_{2}\left[x \mapsto e^{\prime}\right] & \text { if } e \equiv e_{1} \text { op } e_{2}, \text { for some } e_{1}, e_{2}, \text { and } o p\end{cases}
$$

Task: Prove the following statement:

$$
\forall \sigma, e, e^{\prime}, x \cdot\left(\mathcal{A} \llbracket e\left[x \mapsto e^{\prime}\right] \rrbracket \sigma=\mathcal{A} \llbracket e \rrbracket\left(\sigma\left[x \mapsto \mathcal{A} \llbracket e^{\prime} \rrbracket \sigma\right]\right)\right)
$$

Hint: Define a suitable predicate $P(e)$ and prove $\forall e \cdot P(e)$ by either weak structural induction or strong structural induction on the arithmetic expression e. If you choose to do a strong structural induction, you have to prove $P(e)$ for some arbitrary e and may assume $\forall e^{\prime \prime} \sqsubset e \cdot P\left(e^{\prime \prime}\right)$ as your induction hypothesis. Note that, here, $e^{\prime \prime} \sqsubset e$ denotes that $e^{\prime \prime}$ is a proper sub-expression of e. Since arithmetic expressions are finite, the relation \sqsubset is a well-founded ordering. Thus, strong structural induction on arithmetic expressions can be seen as a special case of well-founded induction.

Solution. Let σ, x and e^{\prime} be arbitrary. We define

$$
P(e) \equiv\left(\mathcal{A} \llbracket e\left[x \mapsto e^{\prime}\right] \rrbracket \sigma=\mathcal{A} \llbracket e \rrbracket\left(\sigma\left[x \mapsto \mathcal{A} \llbracket e^{\prime} \rrbracket \sigma\right]\right)\right)
$$

and prove $\forall e . P(e)$ by strong structural induction on e (note that a weak structural induction would also work). We have to show $P(e)$ for some arbitrary arithmetic expression e and assume $\forall e^{\prime \prime} \sqsubset e \cdot P\left(e^{\prime \prime}\right)$ as our induction hypothesis. We proceed by a case analysis on e :

- Case $e \equiv n$, for some numerical value n : We have

$$
\mathcal{A} \llbracket n\left[x \mapsto e^{\prime} \rrbracket \rrbracket \sigma=\mathcal{A} \llbracket n \rrbracket \sigma=\mathcal{N} \llbracket n \rrbracket=\mathcal{A} \llbracket n \rrbracket\left(\sigma\left[x \mapsto \mathcal{A} \llbracket e^{\prime} \rrbracket \sigma\right]\right) .\right.
$$

- Case $e \equiv y$, for some variable y : We make a further case distinction:
- Subcase $y \equiv x$: We have

$$
\mathcal{A} \llbracket x\left[x \mapsto e^{\prime} \rrbracket \rrbracket \sigma=\mathcal{A} \llbracket e^{\prime} \rrbracket \sigma=\left(\sigma\left[x \mapsto \mathcal{A} \llbracket e^{\prime} \rrbracket \sigma\right]\right)(y)=\mathcal{A} \llbracket x \rrbracket\left(\sigma\left[x \mapsto \mathcal{A} \llbracket e^{\prime} \rrbracket \sigma\right]\right) .\right.
$$

- Subcase $y \not \equiv x$: We have

$$
\mathcal{A} \llbracket y\left[x \mapsto e^{\prime} \rrbracket \rrbracket \sigma=\mathcal{A} \llbracket y \rrbracket \sigma=\sigma(y)=\left(\sigma\left[x \mapsto \mathcal{A} \llbracket e^{\prime} \rrbracket \sigma\right]\right)(y)=\mathcal{A} \llbracket y \rrbracket\left(\sigma\left[x \mapsto \mathcal{A} \llbracket e^{\prime} \rrbracket \sigma\right]\right) .\right.
$$

- Case $e \equiv e_{1} o p e_{2}$, for some arithmetic expressions e_{1}, e_{2} and some arithmetic operator op: Note that $e_{1} \sqsubset e$ and $e_{2} \sqsubset e$. Thus, by the induction hypothesis, we get

$$
\begin{equation*}
\mathcal{A} \llbracket e_{i}\left[x \mapsto e^{\prime}\right] \rrbracket \sigma=\mathcal{A} \llbracket e_{i} \rrbracket\left(\sigma\left[x \mapsto \mathcal{A} \llbracket e^{\prime} \rrbracket \sigma\right]\right), \tag{2}
\end{equation*}
$$

for $i \in\{1,2\}$, and can conclude that

$$
\begin{aligned}
\mathcal{A} \llbracket\left(e_{1} \text { op } e_{2}\right)\left[x \mapsto e^{\prime} \rrbracket \rrbracket \sigma\right. & =\mathcal{A} \llbracket\left(e_{1}\left[x \mapsto e^{\prime} \rrbracket o p \quad e_{2}\left[x \mapsto e^{\prime}\right]\right) \rrbracket \sigma\right. \\
& =\mathcal{A} \llbracket e_{1}\left[x \mapsto e ^ { \prime } \rrbracket \rrbracket \sigma \overline { o p } \mathcal { A } \llbracket e _ { 2 } \left[x \mapsto e^{\prime} \rrbracket \rrbracket \sigma\right.\right. \\
& \stackrel{(? ?)}{=} \mathcal{A} \llbracket e_{1} \rrbracket\left(\sigma\left[x \mapsto \mathcal{A} \llbracket e^{\prime} \rrbracket \sigma\right]\right) \overline{o p} \mathcal{A} \llbracket e_{2} \rrbracket\left(\sigma\left[x \mapsto \mathcal{A} \llbracket e^{\prime} \rrbracket \sigma\right]\right) \\
& =\mathcal{A} \llbracket\left(e_{1} \text { op } e_{2}\right) \rrbracket\left(\sigma\left[x \mapsto \mathcal{A} \llbracket e^{\prime} \rrbracket \sigma\right]\right) .
\end{aligned}
$$

Assignment 3 (Big-Step Semantics)

Let s be the following statement:

```
y := 1;
while x > 0 do
    y := y * 2;
    x := x - 1
end
```

Task 3.1. What function does the IMP statement s compute when the variable x initially stores a non-negative integer?

Solution. The statement s stores 2^{X} in variable y where X is the initial value of variable x . The variable x is set to 0 by executing the statement s.

Task 3.2. Let σ be a state with $\sigma(\mathrm{x})=2$. Prove that there is a state σ^{\prime} with $\sigma^{\prime}(\mathrm{y})=4$ such that $\langle s, \sigma\rangle \rightarrow \sigma^{\prime}$ using the rules of the big-step semantics for IMP.

Solution.

We use the following abbreviations: s^{\prime} is the statement $\mathrm{y}:=\mathrm{y} * 2 ; \mathrm{x}:=\mathrm{x}-1$ and s_{w} the statement while $\mathrm{x}>0$ do s^{\prime} end. Moreover, we abbreviate a state $\sigma\left[\mathrm{x}_{1} \mapsto v_{1}\right] \ldots\left[\mathrm{x}_{k} \mapsto v_{k}\right]$ as $\sigma\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{k} \mapsto v_{1}, \ldots, v_{k}\right]$. Finally, we also use the simplifying properties of state updates from task 1 and the fact that $\mathrm{x} \not \equiv \mathrm{y}$.

$\langle s, \sigma\rangle \rightarrow \sigma[\mathrm{x}, \mathrm{y} \mapsto 0,4] \quad$ (SEQNS)
$(s, \sigma) \rightarrow \sigma[x, y \mapsto 0,4]$
where T_{1} is the derivation tree:

[^0]
[^0]: $\underline{\left\langle s^{\prime}, \sigma[\mathrm{x}, \mathrm{y} \mapsto 1,2]\right\rangle \rightarrow \sigma[\mathrm{x}, \mathrm{y} \mapsto 0,4]}$
 $\overline{\left\langle s_{w}, \sigma[\mathrm{x}, \mathrm{y} \mapsto 0,4]\right\rangle \rightarrow \sigma[\mathrm{x}, \mathrm{y} \mapsto 0,4]}\left(\mathrm{WHF}_{N S}\right)$
 $\left\langle s_{w}, \sigma[\mathrm{x}, \mathrm{y} \mapsto 1,2]\right\rangle \rightarrow \sigma[\mathrm{x}, \mathrm{y} \mapsto 0,4] \quad\left\langle s_{w}, \sigma[\mathrm{x}, \mathrm{y} \mapsto 0,4]\right\rangle \rightarrow \sigma[\mathrm{x}, \mathrm{y} \mapsto 0,4]\left(\mathrm{WHT}_{N S}\right)$
 $\overline{\langle\mathrm{y}:=\mathrm{y} * 2, \sigma[\mathrm{x}, \mathrm{y} \mapsto 1,2]\rangle \rightarrow \sigma[\mathrm{x}, \mathrm{y} \mapsto 1,4]}\left(\mathrm{ASS}_{N S}\right) \quad \overline{\langle\mathrm{x}:=\mathrm{x}-1, \sigma[\mathrm{x}, \mathrm{y} \mapsto 1,4]\rangle \rightarrow \sigma[\mathrm{x}, \mathrm{y} \mapsto 0,4]}\left(\operatorname{ASS}_{N S}\right)$

