
P. Müller and D. Basin

Formal Methods and Functional Programming

Session Sheet 11: Big-Step Semantics

Assignment 1 (Substituting for Absent Variables)

Task: Prove that substituting absent variables has no effect, i.e., prove that

∀e, e′, x ·
(
x /∈ FV(e) =⇒ e[x 7→ e′] ≡ e

)
.

Solution. Let x, e′ be arbitrary. We define

P (e) ≡
(
x /∈ FV(e) =⇒ e[x 7→ e′] ≡ e

)
and prove ∀e · P (e) by strong structural induction on e. Thus, we have to prove P (e) for some
arbitrary arithmetic expression e and assume ∀e′′ ⊏ e · P (e′′) as our induction hypothesis. We
proceed by a case analysis on e:

• Case e ≡ n, for some numerical value n: By the definition of substitution, we have
n[x 7→ e′] ≡ n from which the claim immediately follows.

• Case e ≡ y, for some variable y: We assume x /∈ FV(y) and seek to prove y[x 7→ e′] ≡ y.
Note that, since FV(y) = {y}, our assumption implies x ̸≡ y. Thus, by the definition of
substitution, we have y[x 7→ e′] ≡ y.

• Case e ≡ e1 op e2, for some arithmetic expressions e1, e2 and some arithmetic operator op:
We assume x /∈ FV(e1 op e2) and seek to prove (e1 op e2)[x 7→ e′] ≡ e1 op e2. Since e1 ⊏ e
and e2 ⊏ e, we can apply the induction hypothesis twice to get P (e1) and P (e2), i.e., that

x /∈ FV(e1) =⇒ e1[x 7→ e′] ≡ e1 and x /∈ FV(e2) =⇒ e2[x 7→ e′] ≡ e2.

Note that FV(e1 op e2) = FV(e1)∪FV(e2) ⊇ FV(e1) and therefore, by our assumption, we
have x /∈ FV(e1). Analogously, we get x /∈ FV(e2). Using these facts along our induction
hypothesis, we obtain that e1[x 7→ e′] ≡ e1 and e2[x 7→ e′] ≡ e2. Thus, by the definition
of substitution, we can obtain our desired result:

(e1 op e2)[x 7→ e′] ≡ e1[x 7→ e′] op e2[x 7→ e′] ≡ e1 op e2

1



Assignment 2 (do-times statement)

Consider the statement
do e times s end

where s is a statement and e is an arithmetic expression. The intuitive semantics of this statement
is to execute s for e times.

Task. Give rules for the natural semantics that capture the semantics of this loop construct

Note: There is more than one possible solution.

Solution. Below, we present three different solutions..

• If e is greater than zero, we can define it as the execution of s followed by the execution
of do e− 1 times s end. The formal definition is as follows:

(Times1F)
⟨do e times s end, σ⟩ → σ

if B[[e > 0]]σ = ff

⟨s, σ⟩ → σ′′ ⟨do e− 1 times s end, σ′′⟩ → σ′

(Times1T)
⟨do e times s end, σ⟩ → σ′

if B[[e > 0]]σ = tt

Intuitively, this means that if e > 0, the arithmetic expression e−1 is evaluated in the state
resulting from the execution of s. If s modifies some variables involved in e, then this may
affect its evaluation, and the termination of the execution is not necessarily guaranteed,
e.g., consider do x times x :=x+1 end.

• If the arithmetic expression e is greater than zero, we can define the execution of the
construct as the execution of do e− 1 times s end followed by the execution of s. The
formal definition is as follows:

(Times2F)
⟨do e times s end, σ⟩ → σ

if B[[e > 0]]σ = ff

⟨do e− 1 times s end, σ⟩ → σ′′ ⟨s, σ′′⟩ → σ′

(Times2T)
⟨do e times s end, σ⟩ → σ′

if B[[e > 0]]σ = tt

Intuitively, this means that the arithmetic expression e − 1 is evaluated only in the initial
state. Then the termination of the execution is guaranteed. For instance, the execution of
do x times x :=x+1 end from a state in which the value of x is 3 will end in a state in
which the value of x is 6.

2



• The last solution we propose is to evaluate the arithmetic expression if it is not a numeral,
and to iterate the loop n times (where the numeral n and the expression e evaluate to the
same value) without re-evaluating the arithmetic expression each time.

⟨do n times s end, σ⟩ → σ′

⟨do e times s end, σ⟩ → σ′ (Times3Eval)(∗)

⟨do e times s end, σ⟩ → σ
(Times3F) if A[[e]]σ ≤ 0

⟨do n′ times s end, σ⟩ → σ′′ ⟨s, σ′′⟩ → σ′

⟨do n times s end, σ⟩ → σ′ (Times3T)(∗∗)

where the side conditions are:

(∗) if e is not a numeral and A[[e]]σ > 0 and A[[e]]σ = N [[n]]
(∗∗) if N [[n]] > 0 and N [[n′]] = N [[n]]− 1

Assignment 3 (time statement)

Task. Extend the natural semantics of IMP to support the statement x := time s, where
time s returns an integer that counts the number of assignments executed during the execution
of the statement s.

Solution. We have to modify the structure of the state in order to count the number of assign-
ments. The new state could be a state or a pair composed by a state and an integer counting
the number of assignments: ExtendedState = State ∪ (State× Z).

We extend the natural semantics of IMP with the following rules:

⟨s, (σ, 0)⟩ → (σ′, n)

⟨x := time s, σ⟩ → σ′[x 7→ n]
(Time)

⟨s, (σ, 0)⟩ → (σ′, n′)

⟨x := time s, (σ, n)⟩ → (σ′[x 7→ n′], n+ n′ + 1)
(TimeExt)

⟨s, (σ, 0)⟩ → (σ′, n′)

⟨x := time s, (σ, n)⟩ → (σ′[x 7→ n′], n+ 1)
(TimeExt′)

⟨x := e, (σ, n)⟩ → (σ[x 7→ A[[e]]σ], n+ 1)
(AssExt)

Note that

• the rule (Time) uses n in the state update (for x) without usingN (semantics of numerals)
since n is already an integer value

3



• the rule (TimeExt) could return a count of assignments that is n + n′ + 1 or n + 1.
Both solutions are reasonable interpretations of the verbal description: in the first case we
take into account the number of assignments also in nested time statements, while in the
second case we do not consider them

We now have to define rules over the extended states which are pairs of “old” states and integer
values. The extended rules simply duplicate the semantics defined on “old” states.

⟨skip, (σ, n)⟩ → (σ, n)
(SkipExt)

⟨s1, (σ, n)⟩ → (σ′′, n1) ⟨s2, (σ′′, n1)⟩ → (σ′, n′)

⟨s1; s2, (σ, n)⟩ → (σ′, n′)
(SeqExt)

⟨s1, (σ, n)⟩ → (σ′, n′)

⟨if b then s1 else s2 end, (σ, n)⟩ → (σ′, n′)
(IfTExt) if B[[b]]σ = tt

⟨s2, (σ, n)⟩ → (σ′, n′)

⟨if b then s1 else s2 end, (σ, n)⟩ → (σ′, n′)
(IfFExt) if B[[b]]σ = ff

⟨s, (σ, n)⟩ → (σ′′, n1) ⟨while b do s end, (σ′′, n1)⟩ → (σ′, n′)

⟨while b do s end, (σ, n)⟩ → (σ′, n′)
(WhTExt) if B[[b]]σ = tt

⟨while b do s end, (σ, n)⟩ → (σ, n)
(WhFExt) if B[[b]]σ = ff

Assignment 4 (repeat-until and while loops)

Consider the extension of the programming language IMP with the statement

repeat s until b

where s is a statement and b is a Boolean expression. In the natural semantics, the semantics of
this new statement is captured by the following two rules:

⟨s, σ⟩ → σ′

⟨repeat s until b, σ⟩ → σ′ (RepT) if B[[b]]σ′ = tt

⟨s, σ⟩ → σ′′ ⟨repeat s until b, σ′′⟩ → σ′

⟨repeat s until b, σ⟩ → σ′ (RepF) if B[[b]]σ′′ = ff

Task. Prove that, for all σ, σ′, b, s, if

⊢ ⟨repeat s until b, σ⟩ → σ′

then
⊢ ⟨s; while not b do s end, σ⟩ → σ′.

4



Solution. We define

P (T ) ≡ ∀σ, σ′, b, s ·
(
root(T ) ≡ ⟨repeat s until b, σ⟩ → σ′

=⇒ ⊢ ⟨s; while not b do s end, σ⟩ → σ′)
and prove ∀T. P (T ) (which is equivalent to the statement to be proved) by induction on the
shape of the derivation tree T . Thus, for arbitrary T , our I.H. is ∀T ′ ⊏ T. P (T ′), and we need
to prove P (T ).

Let σ, σ′, b, s be arbitrary and assume the left-hand side of the implication. We show the right-
hand side of the implication (PO) by a case analysis of the last rule applied in T , which must be
either (RepT) or (RepF):

• Case (RepT): Then T has the form:

A
A
AA

�
�
��

T1

⟨s, σ⟩ → σ′

⟨repeat s until b, σ⟩ → σ′ (RepT)

for some derivation tree T1, and we must have B[[b]]σ′ = tt, which implies B[[not b]]σ′ = ff.

We can construct a suitable derivation tree to justify (PO) as follows:

A
A
AA

�
�

��

T1

⟨s, σ⟩ → σ′
(WhFNS)

⟨while not b do s end, σ′⟩ → σ′

(SeqNS)
⟨s; while not b do s end, σ⟩ → σ′

• Case (RepF): In this case, the derivation tree T has the form:

A
A
AA

�
�

��

T1

⟨s, σ⟩ → σ′′

A
A
AA

�
�
��

T2

⟨repeat s until b, σ′′⟩ → σ′

(RepF)
⟨repeat s until b, σ⟩ → σ′

for some state σ′′ and derivation trees T1, T2 where B[[b]]σ′′ = ff. Thus B[[not b]]σ′′ = tt.

Since T2 is a proper subtree of the derivation tree T , we can use the I.H. to obtain P (T2).
Instantiating the quantified variables appropriately, we can ensure that the left-hand side
of the implication holds. Thus, we get ⊢ ⟨s; while not b do s end, σ′′⟩ → σ′, i.e., there
exists some derivation tree, say T3, with root(T3) ≡ ⟨s; while not b do s end, σ′′⟩ → σ′.

The last rule applied in T3 must be SeqNS, so T3 must have the form:

A
A
AA

�
�
��

T4

⟨s, σ′′⟩ → σ′′′

A
A
AA

�
�

��

T5

⟨while not b do s end, σ′′′⟩ → σ′

(SeqNS)
⟨s; while not b do s end, σ′′⟩ → σ′

5



for some state σ′′′ and derivation trees T4, T5.

We can now construct a derivation tree to justify (PO) as follows:

A
A
AA

�
�

��

T1

⟨s, σ⟩ → σ′′

A
A
AA

�
�
��

T4

⟨s, σ′′⟩ → σ′′′

A
A
AA

�
�

��

T5

⟨while not b do s end, σ′′′⟩ → σ′

(WhTNS)
⟨while not b do s end, σ′′⟩ → σ′

(SeqNS)
⟨s; while not b do s end, σ⟩ → σ′

6


