
P. Müller and D. Basin

Formal Methods and Functional Programming

Session Sheet 12: Small Step Semantics

Assignment 1 (Applying Small-Step Semantics)

Let s be the following statement:

y := 1;

while x > 0 do

y := y * 2;

x := x - 1

end

Task. Let σ be a state with σ(x) = 2. Prove that there is a state σ′ with σ′(y) = 4 such that
⟨s, σ⟩ →∗

1 σ
′ using the SOS rules of IMP.

Assignment 2 (Equivalence Lemma)

In this exercise, we consider the two lemmas from the lecture that formalize the equivalence of
small-step and big-step semantics.

Task 2.1. We partially prove the following statement:

∀σ, σ′, s· ⊢ ⟨s, σ⟩ → σ′ =⇒ ⟨s, σ⟩ →∗
1 σ

′

Here, we only consider the AssNS-rule and the WhTNS-rule; the remaining cases are left for the
exercise sheet.

1



Task 2.2 We partially prove the following statement:

∀σ, σ′, s, k · ⟨s, σ⟩ →k
1 σ

′ =⇒ ⊢ ⟨s, σ⟩ → σ′

Here, we only consider the AssSOS-rule and the Seq1SOS, and Seq2SOS-rules; the remaining
cases are left for the exercise sheet.

Assignment 3 (break Statement)

In Assignment 4 of the optional exercises sheet 11, we defined big-step semantics rules for a
break statement.

Task. Define small-step semantics rules for a break statement.

Assignment 4 (Bonus: do-times Statements)

In a previous session we defined different NS rules for the IMP extension do e times s, where
e is an arithmetic expression and s a statement.

Task. We now would like to define SOS rules for this type of loop.

2


