
P. Müller and D. Basin

Formal Methods and Functional Programming

Session Sheet 12: Small Step Semantics

Assignment 1 (Applying Small-Step Semantics)

Let s be the following statement:

y := 1;

while x > 0 do

y := y * 2;

x := x - 1

end

Task. Let σ be a state with σ(x) = 2. Prove that there is a state σ′ with σ′(y) = 4 such that
⟨s, σ⟩ →∗

1 σ
′ using the SOS rules of IMP.

Solution. Let sb be the statement y := y * 2; x := x - 1, and let sw be the statement
while x>0 do sb end. Then, we can derive:

⟨y := 1; sw, σ⟩
→1

1 ⟨sw, σ[y 7→ 1]⟩
→1

1 ⟨if x>0 then sb ; sw else skip end, σ[y 7→ 1]⟩
→1

1 ⟨sb ; sw, σ[y 7→ 1]⟩
≡ ⟨(y := y * 2; x := x - 1) ; sw, σ[y 7→ 1]⟩
→1

1 ⟨x := x - 1 ; sw, σ[y 7→ 2]⟩
→1

1 ⟨sw, σ[y 7→ 2][x 7→ 1]⟩
→1

1 ⟨if x>0 then sb ; sw else skip end, σ[y 7→ 2][x 7→ 1]⟩
→1

1 ⟨(y := y * 2; x := x - 1) ; sw, σ[y 7→ 2][x 7→ 1]⟩
→1

1 ⟨x := x - 1 ; sw, σ[y 7→ 4][x 7→ 1]⟩
→1

1 ⟨sw, σ[y 7→ 4][x 7→ 0]⟩
→1

1 ⟨if x>0 then sb ; sw else skip end, σ[y 7→ 4][x 7→ 0]⟩
→1

1 ⟨skip, σ[y 7→ 4][x 7→ 0]⟩
→1

1 σ[y 7→ 4][x 7→ 0]

1



The first four single-step transitions are justified by the following four derivation trees:

(AssSOS)
⟨y := 1, σ⟩ →1 σ[y 7→ 1]

(Seq1SOS)
⟨y := 1;sw, σ⟩ →1 ⟨sw, σ[y 7→ 1]⟩

(WhileSOS)
⟨sw, σ[y 7→ 1]⟩ →1 ⟨if x > 0 then (sb;sw) end, σ[y 7→ 1]⟩

(IfTSOS)
⟨if x > 0 then (sb;sw) end, σ[y 7→ 1]⟩ →1 ⟨sb;sw, σ[y 7→ 1]⟩

Where the side condition for IfTSOS namely B[[x > 0]]σ[y 7→ 1] = tt holds.

(AssSOS)
⟨y := y ∗ 2, σ[y 7→ 1]⟩ →1 σ[y 7→ 2]

(Seq1SOS)
⟨y := y ∗ 2;x := x− 1, σ[y 7→ 1]⟩ →1 ⟨x := x− 1, σ[y 7→ 2]⟩

(Seq2SOS)
⟨(y := y ∗ 2;x := x− 1);sw, σ[y 7→ 1]⟩ →1 ⟨x := x− 1;sw, σ[y 7→ 2]⟩

Assignment 2 (Equivalence Lemma)

In this exercise, we consider the two lemmas from the lecture that formalize the equivalence of
small-step and big-step semantics.

Task 2.1. We partially prove the following statement:

∀σ, σ′, s· ⊢ ⟨s, σ⟩ → σ′ =⇒ ⟨s, σ⟩ →∗
1 σ

′

Here, we only consider the AssNS-rule and the WhTNS-rule; the remaining cases are left for the
exercise sheet.

Solution. We define

P (T ) ≡ ∀σ, σ′, s ·
(
root(T ) ≡ (⟨s, σ⟩ → σ′) =⇒ ⟨s, σ⟩ →∗

1 σ
′)

and prove ∀T · P (T ) by strong induction on the shape of the derivation tree T . Thus, for some
arbitrary T , we get as induction hypothesis ∀T ′ ⊏ T · P (T ′), and need to prove P (T ).

Let σ, σ′, s be arbitrary. We assume root(T ) ≡ (⟨s, σ⟩ → σ′) and prove ⟨s, σ⟩ →∗
1 σ

′. The proof
proceeds by case splitting on the last rule applied on T .

2



• Case AssNS: Then T is of the form:

⟨x := e, σ⟩ → σ[x 7→ A[[e]]σ]
(AssNS)

for some x, e such that s ≡ x := e and σ′ = σ[x 7→ A[[e]]σ]. Now we can construct a
derivation tree to justify ⟨s, σ⟩ →1

1 σ
′:

⟨x := e, σ⟩ →1 σ[x 7→ A[[e]]σ]
(AssSOS)

• Case WhTNS: Then T is of the form

A
A
AA

�
�

��

T4

⟨s′, σ⟩ → σ′′

A
A
AA

�
�

��

T5

⟨while b do s′ end, σ′′⟩ → σ′

(WhTNS)
⟨while b do s′ end, σ⟩ → σ′

for some b, s′, σ′′, T4, T5, such that s ≡ while b do s′ end and B[[b]]σ = tt.

We apply (IH) twice. From P (T4) we learn ⟨s′, σ⟩ →∗
1 σ′′. From P (T5) we learn

⟨while b do s′ end, σ′′⟩ →∗
1 σ′. ⟨s′, σ⟩ →∗

1 σ′′ gives us ⟨s′, σ⟩ →k
1 σ′′ for some k.

We can apply the result of Assignment 3 from the optional exercises sheet on it to get

⟨(s′; while b do s′ end), σ⟩ →k
1 ⟨while b do s′ end, σ′′⟩

We conclude this case with the following derivation sequence:

⟨while b do s′ end, σ⟩
→1

1 ⟨if b then (s′; while b do s′ end) else skip, σ⟩
→1

1 ⟨(s′; while b do s′ end), σ⟩
→∗

1 ⟨while b do s′ end, σ′′⟩
→∗

1 σ′

The second transition is justified by IfTSOS, since B[[b]]σ = tt.

Task 2.2 We partially prove the following statement:

∀σ, σ′, s, k · ⟨s, σ⟩ →k
1 σ

′ =⇒ ⊢ ⟨s, σ⟩ → σ′

Here, we only consider the AssSOS-rule and the Seq1SOS, and Seq2SOS-rules; the remaining
cases are left for the exercise sheet.

Solution. We define

Q(k) ≡ ∀σ, σ′, s ·
(
⟨s, σ⟩ →k

1 σ
′ =⇒ ⊢ ⟨s, σ⟩ → σ′)

and prove ∀k ·Q(k) by strong mathematical induction on k.

3



For arbitrary k assume ∀k′ < k ·Q(k′) and prove Q(k). Let σ, σ′, s be arbitrary. Case splitting on
the condition k > 0 immediately proves the case for k = 0 (the assumptions lead to ⟨s, σ⟩ →0

1 σ
′,

which is a contradiction). So we are left with case k > 0. Assume ⟨s, σ⟩ →k
1 σ′ and prove

⊢ ⟨s, σ⟩ → σ′.

We unroll the derivation sequence once to ⟨s, σ⟩ →1
1 γ →k−1

1 σ′. Let T be the derivation tree
which justifies the first transition. We inspect the last rule applied to T .

• Case AssSOS: Then T is of the form

⟨x := e, σ⟩ →1 σ[x 7→ A[[e]]σ]
(AssSOS)

for some x, e such that s ≡ x := e and γ = σ[x 7→ A[[e]]σ]. Since γ is a final state there
is no further derivation sequence (k = 1), and hence σ′ = γ = σ[x 7→ A[[e]]σ]. Now we
can construct a derivation tree for ⟨x := e, σ⟩ → σ′:

⟨x := e, σ⟩ → σ[x 7→ A[[e]]σ]
(AssNS)

• Case Seq1SOS, Seq2SOS: Then we must have root(T ) ≡ ⟨s1; s2, σ⟩ →1 γ and hence
⊢ ⟨s1; s2, σ⟩ →1 γ for some statements s1, s2, such that s ≡ s1; s2.

Returning to our original assumption, we apply the lemma proven on the lecture slides on
⟨s1; s2, σ⟩ →k

1 σ′. We get ⟨s1, σ⟩ →k1
1 σ′′ and ⟨s2, σ′′⟩ →k2

1 σ′, for some σ′′, k1, k2, such
that k1 + k2 = k.

Note that k1 ̸= 0 and k2 ̸= 0 (otherwise, by the definition of →0
1 we would have to have a

non-final configuration equal to a state, e.g. ⟨s1, σ⟩ ≡ σ′′, which is impossible). Therefore,
we must have k1 < k and k2 < k.

Since k1, k2 < k we can apply the IH twice. From Q(k1) we learn ⊢ ⟨s1, σ⟩ → σ′′ and from
Q(k2) we learn ⊢ ⟨s2, σ′′⟩ → σ′. Let T1, T2 be the corresponding derivation trees, such
that root(T1) ≡ ⟨s1, σ⟩ → σ′′ and root(T2) ≡ ⟨s2, σ′′⟩ → σ′

Now we can construct the derivation tree for ⊢ ⟨s1; s2, σ⟩ → σ′ as follows:

A
A
AA

�
�
��

T1

⟨s1, σ⟩ → σ′′

A
A
AA

�
�
��

T2

⟨s2, σ′′⟩ → σ′

(SeqNS)
⟨s1;s2, σ⟩ → σ′

Assignment 3 (break Statement)

In Assignment 4 of the optional exercises sheet 11, we defined big-step semantics rules for a
break statement.

4



Task. Define small-step semantics rules for a break statement.

Solution. We again assume that break only occurs inside loop bodies, and extend the state
with a flag that indicates whether the currently executed loop should be exited. We define a new
set of states State ′ that contains this additional flag:

State ′ = {tt,ff} × State

Let τ, τ ′, . . . range over elements of set State ′ and σ, σ′, . . . over elements of set State.

The behavior of the break statement is to set this flag to true:

(BreakSOS)
⟨break, (q, σ)⟩ →1 (tt, σ)

When the flag is true, this means that a break statement has been activated in the current while
body. No change to the state must happen, until the flag is reset to false. This changes the rules
for the assignment as follows:

(AssSOS)
⟨x := e, (ff, σ)⟩ →1 (ff, σ[x 7→ A[[e]]σ])

(AssInBreakSOS)
⟨x := e, (tt, σ)⟩ →1 (tt, σ)

Skipping should not change the state, regardless of the flag:

(SkipSOS)
⟨skip, τ⟩ →1 τ

The sequential composition should behave as before, regardless of the flag. In case the flag is
true, this propagates to the end of the sequential composition:

⟨s1, τ⟩ →1 τ
′

(Seq1SOS)
⟨s1; s2, τ⟩ →1 ⟨s2, τ ′⟩

⟨s1, τ⟩ →1 ⟨s′1, τ ′⟩
(Seq2SOS)

⟨s1; s2, τ⟩ →1 ⟨s′1; s2, τ ′⟩

Conditionals are treated similarly, that is, the flag is simply propagated and the rule is otherwise
unchanged (w.r.t. the standard SOS rules):

(IfTSOS)
⟨if b then s1 else s2, τ⟩ →1 ⟨s1, τ⟩ B[[b]]σ = tt

(IfFSOS)
⟨if b then s1 else s2, τ⟩ →1 ⟨s2, τ⟩ B[[b]]σ = ff

Note, that the rules for sequential composition and for conditionals could be optimised, in the
sense that s1;s2 is skipped if the break flag is set, and similarly for the conditional.

5



Loops are skipped if the condition doesn’t hold or if the break flag is set, which corresponds to
the case that another while loop is inside the body of a while loop where the breakflag was set:

(WhFSOS)
⟨while b do s end, (v, σ)⟩ →1 (v, σ)

v = tt or B[[b]]σ = ff

The above rules were all rather straightforward, and also similar to the previously defined NS
rules. The next while rule, however, is quite different and makes use of an additional statement
leave that is only used internally and must not occur anywhere else in the program.

(WhTSOS)
⟨while b do s end, (ff, σ)⟩ →1 ⟨s; (leave;while b do s end), (ff, σ)⟩ B[[b]]σ = tt

The leave statement is used as a marker to indicate that a loop is not only to be skipped –
which would be possible already with WhFSOS – but also, that the flag must be reset to false,
in order to not skip all of the remaining program statements:

(LeaveTSOS)
⟨leave;while b do s end, (tt, σ)⟩ →1 (ff, σ)

If the break flag is not set, then leave behaves just like skip, i.e. it does not exit the loop by
skipping it:

(LeaveFSOS)
⟨leave;while b do s end, (ff, σ)⟩ →1 ⟨while b do s end, (ff, σ)⟩

6



Assignment 4 (Bonus: do-times Statements)

In a previous session we defined different NS rules for the IMP extension do e times s, where
e is an arithmetic expression and s a statement.

Task. We now would like to define SOS rules for this type of loop.

Solution. There is nothing to be done if e does not evaluate to a positive integer:

(DoFSOS)
⟨do e times s end, σ⟩ →1 σ

B[[e > 0]]σ = ff

Otherwise, we could either proceed by the rule

(DoTSOS)
⟨do e times s end, σ⟩ →1 ⟨s;do e-1 times s end, σ⟩ B[[e > 0]]σ = tt

which would result in an infinite derivation sequence for a loop such as

do x times x := x+1 end,

or we proceed by the rule

(DoTSOS)
⟨do e times s end, σ⟩ →1 ⟨do e-1 times s end;s, σ⟩ B[[e > 0]]σ = tt

which would result in a finite derivation sequence for the same loop (assuming the starting state
maps x to a non-negative value).

7


