
P. Müller and D. Basin

Formal Methods and Functional Programming

Session Sheet 13: Axiomatic Semantics (Hoare Logic)

Viper

Viper (viper.ethz.ch) is a verification project, providing a language and tools for verifying func-
tional properties of programs in that language. In particular, Viper supports verification of loops
via loop invariants, as you have learned in the course. In this exercise session, you can try out
Viper as a tool for helping to practice the important skill of finding loop invariants. There are two
simple ways of running Viper: the recommended way is to download the VSCode plugin for Viper,
as explained here: http://www.pm.inf.ethz.ch/research/viper/downloads.html (make
sure to install the “Viper” plugin, and that you have the right dependencies, as explained in the in-
structions). Alternatively, you can run the Viper tools through the (slower) web interface, available
at http://viper.ethz.ch/examples/blank-example.html.

The syntax of Viper programs is slightly different to that of IMP, but very similar. Syntax for
assignments is the same (although local variables must be declared with an explicit type, using
the syntax var x: Int. There is no skip command, but statement blocks (e.g., branches of
conditionals) may be left empty. Viper uses C/Java-like syntax for conditionals and loops. For
example, the IMP program

if x > 0 then x := x - 1; while x > 0 do x := x - 1 end else skip end

could be translated into Viper as follows:

if (x > 0) {

x := x - 1

while (x > 0) {

x := x - 1

}

} else { /* else branch can be omitted */ }

Loop invariants can be written between the while-condition and the open brace {, e.g.:

1

while (x > 0)

invariant x >= 0

{

x := x - 1

}

Assignment 1 (Adding the first n natural numbers)

Consider the following IMP program s1:

i := 0;

s := 0;

while i <= x do

s := s + i;

i := i + 1

end

You can find the corresponding Viper program on the course website: program 1 adding numbers.vpr.

Task 1.1. Assume x ≥ 0 initially (i.e. as a pre-condition). What is the value of s at the end
of the function? Write a post-condition to ensure that s has the right value after completion
(keyword ensures in Viper). Also add the pre-condition to the program (keyword requires in
Viper).

Solution. Mathematics tells us that s = (x+1)x
2

. See the solution program for the pre-condition
and post-condition in Viper.

Task 1.2. Find a suitable loop invariant which enables Viper to prove the post-condition given
the pre-condition.

Solution. A suitable loop invariant is:

s =
(i− 1)i

2
∧ i ≤ x+ 1

Observe that after the execution i equals x+1 to guess the first conjunct. The second conjunct
is needed to actually prove i = x + 1 after the execution (we get i ≥ x + 1 from the negated
loop condition).

2

Task 1.3. Prove that

{ x = X ∧ x ≥ 0 } s1 { s =
(X + 1)X

2
}

Solution. We choose the invariant to be

i ≤ x+ 1 ∧ s =
(i− 1)i

2
∧ x = X

The last conjunct expresses that x remains constant throughout the execution. It is not needed
in Viper as the method parameters cannot be modified.

{x = X ∧ x ≥ 0}
⊨
{0 ≤ x+ 1 ∧ 0 = 0(0−1)

2
∧ x = X}

i := 0;

{i ≤ x+ 1 ∧ 0 = i(i−1)
2

∧ x = X}
s := 0;

{i ≤ x+ 1 ∧ s = i(i−1)
2

∧ x = X}
while i <= x do

{i ≤ x ∧ i ≤ x+ 1 ∧ s = i(i−1)
2

∧ x = X}
⊨
{i ≤ x ∧ s+ i = i(i+1)

2
∧ x = X}

s := s + i;

{i ≤ x ∧ s = i(i+1)
2

∧ x = X}
⊨
{i+ 1 ≤ x+ 1 ∧ s = (i+1)(i+1−1)

2
∧ x = X}

i := i + 1

{i ≤ x+ 1 ∧ s = i(i−1)
2

∧ x = X}
end

{¬(i ≤ x) ∧ i ≤ x+ 1 ∧ s = i(i−1)
2

∧ x = X}
⊨
{s = X(X+1)

2
}

Task 1.4. So far, we have ignored termination. Does the program terminate? If so, how should
we adapt the proof outline from Task 1.3 to prove it?

Solution. The program terminates, because the loop body will be executed exactly x+1 times.
We can adapt the proof from Task 1.3 with the loop variant x − i, and the rules for total
correctness. Recall that the variant must decrease at each iteration, and be at least 0 (provided
that the loop condition holds). Thus, i, x, or −i are incorrect variants.

3

Assignment 2 (Greatest Common Divisor)

Consider the following program s computing the greatest common divisor (gcd) of two given
positive integers:

b := x;

c := y;

while b # c do

if b < c then

c := c - b

else

b := b - c

end

end;

z := b

You can find the corresponding Viper program on the course website: program 2 gcd.vpr.

Note: In case it helps you to think about the questions, you might want to recall the definition
of the total function gcd: For positive integers x and y, the number z is the greatest common
divisor of x and y iff z|x and z|y and there is no z′, with z′ > z, such that z′|x and z′|y. Here,
z|x means that z divides x, i.e., z · k = x, for some k ∈ N.

Note: For the tasks below, you can write gcd(m,n) in assertions, to denote the actual greatest
common divisor of two positive integers m and n. You may assume that ∀n · gcd(n, n) = n and
∀m,n ∈ N+ · gcd(m + n, n) = gcd(m,n) = gcd(m,m + n) (equivalently - ∀m,n ∈ N+ ·m >
n ⇒ gcd(m− n, n) = gcd(m,n) = gcd(m,m− n)).

Task 2.1. Formalise the claim that the above program computes the gcd of x and y as pre-
and postcondition P and Q, respectively.

Solution. The pre- and postconditions are:

P ≡ x = X ∧ y = Y ∧X > 0 ∧ Y > 0

Q ≡ z = gcd(X, Y)

Task 2.2. Find a suitable invariant for the loop.

Hint: Consider using a relationship between the input variables x, y and the ’loop’ variables b
and c as part of your loop invariant.

Solution. A suitable loop invariant is:

gcd(x, y) = gcd(b, c) ∧ b > 0 ∧ c > 0 ∧ x = X ∧ y = Y

4

Task 2.3. Give a suitable loop variant to prove that the program terminates.

Solution. b+ c: Either b or c decreases, while the other stays constant.

Task 2.4. Prove that

{ x = X0 ∧ y = Y0 ∧ X0 > 0 ∧ Y0 > 0 } s { ⇓ z = gcd(X0, Y0) }.

Solution.

{x = X0 ∧ y = Y0 ∧X0 > 0 ∧ Y0 > 0}
⊨

{gcd(X0, Y0) = gcd(x, y) ∧ x > 0 ∧ y > 0}
b := x;

{gcd(X0, Y0) = gcd(b, y) ∧ b > 0 ∧ y > 0}
c := y;

{gcd(X0, Y0) = gcd(b, c) ∧ b > 0 ∧ c > 0}
while b#c do∗

{b ̸= c ∧ gcd(X0, Y0) = gcd(b, c) ∧ b > 0 ∧ c > 0 ∧ b+ c = V }
if b < c then

{b < c ∧ b ̸= c ∧ gcd(X0, Y0) = gcd(b, c) ∧ b > 0 ∧ c > 0 ∧ b+ c = V }
⊨(1)

{gcd(X0, Y0) = gcd(b, c− b) ∧ b > 0 ∧ c− b > 0 ∧ b+ (c− b) < V }
c := c - b

{⇓ gcd(X0, Y0) = gcd(b, c) ∧ b > 0 ∧ c > 0 ∧ b+ c < V }
else

{¬(b < c) ∧ b ̸= c ∧ gcd(X0, Y0) = gcd(b, c) ∧ b > 0 ∧ c > 0 ∧ b+ c = V }
⊨(2)

{gcd(X0, Y0) = gcd(b− c, c) ∧ (b− c) > 0 ∧ c > 0 ∧ (b− c) + c < V }
b := b - c

{⇓ gcd(X0, Y0) = gcd(b, c) ∧ b > 0 ∧ c > 0 ∧ b+ c < V }
end

{⇓ gcd(X0, Y0) = gcd(b, c) ∧ b > 0 ∧ c > 0 ∧ b+ c < V }
end;

{⇓ ¬(b ̸= c) ∧ gcd(X0, Y0) = gcd(b, c) ∧ b > 0 ∧ c > 0}
⊨

{⇓ b = gcd(X0, Y0)}
z := b

{⇓ z = gcd(X0, Y0)}

5

(∗) The side condition holds: b > 0 ∧ c > 0 entails b+ c ≥ 0

(1) 0 < b < c implies gcd(b, c) = gcd(b, c− b)

(2) First, we have ¬(b < c) and b ̸= c implies c < b. Second, we have 0 < c < b implies
gcd(b, c) = gcd(b− c, c).

Assignment 3

Consider the following IMP program s:

i := 0;

r := 1;

while i < k do

i := i + 1;

r := r * n

end

The following incorrect total correctness proof outline contains various errors.

{k ≥ 1 ∧ k = K ∧ n ≥ 1 ∧ n = N}
i := 0;

{k ≥ 1 ∧ k = K ∧ n ≥ 1 ∧ n = N ∧ i = 0}
|=
{1 = ni ∧ n = N ∧ k = K}
r := 1;

{r = ni ∧ n = N ∧ k = K}
while i < k do

{i < k ∧ r = ni ∧ k− i = V }
|=
{r = ni}
i := i + 1;

{r = ni−1}
|=
{r ∗ n = ni}
r := r * n

{⇓ r = ni}
end

{⇓ i ≥ k ∧ r = ni ∧ k = K ∧ n = N}
|=
{⇓ r = NK}

6

Task 3.1. Find the errors in the above proof outline. For each error, include a short explanation
of what is missing or incorrect. Your explanation should include the name of the rule which is
wrongly applied. You do not need to correct the mistakes.

Solution. (a) First AssAX: Textual substitution is not correctly applied, 0 = 0 is needed in
the precondition

(b) WhTotAX: The loop invariant does not match up in all four relevant positions, i.e. before
the loop, at the beginning of the loop body, at the end of the loop body and after the loop

(c) Third AssAX: Textual substitution is not correctly applied, r = ni+1−1 is needed in the
precondition

(d) Last ConsAX: The postcondition of the loop does not entail the postcondition of the
program, i = k cannot be derived

(e) WhTotAX: Textual substitution is not correctly applied in the postcondition of the loop,
¬(i < k) is needed instead of i ≥ k

(f) WhTotAX: The side condition, i.e. b ∧P |= 0 ≤ e, is not checked

(g) WhTotAX: The loop variant is not shown to decrease, i.e. e < Z is missing from the
postcondition of the body of the loop

Task 3.2. Which of the errors that you identified in part (a) would also be errors in a partial
correctness proof outline?

Solution. Errors (a) up to and including (e).

7

