
P. Müller and D. Basin

Formal Methods and Functional Programming

Session Sheet 14: Modeling and LTL

Installing and Running Spin

To run the Promela models, you will need to install the Spin model-checker as well as a C compiler.
There are multiple ways to install Spin on your machine:

• Windows: You can download the archive from the following link and follow the readme:
https://polybox.ethz.ch/index.php/s/cQifMKXUW3G2iAI

• Ubuntu: Run sudo apt-get install spin in a terminal to install the spin package.

• Mac: Use Homebrew (https://brew.sh) to install Spin by running brew install

spin.

• Executables: Download pre-compiled executables from Spin’s GitHub page:
https://github.com/nimble-code/Spin/tree/master/Bin.

• Compiling: You can compile Spin from source from:
https://github.com/nimble-code/Spin.

Short re-cap for running Spin:

• spin filename.pml will carry out a simulation of the model, yielding one random trace.
This does not perform an exhaustive check the model.

• spin -a filename.pml will create a file pan.c, that must be compiled and run to exhaus-
tively check a model. In case of failure, a corresponding trail file (filename.pml.trail)
is typically generated, containing the information about the failing trace.

• spin -t filename.pml will replay the trace from the corresponding trail file.

1

https://polybox.ethz.ch/index.php/s/cQifMKXUW3G2iAI
https://brew.sh
https://github.com/nimble-code/Spin/tree/master/Bin
https://github.com/nimble-code/Spin


Assignment 1 (Modeling in Promela)

Task 1.1. Consider the statement

y := 0;

while x > 0 do

y := y + x;

x := x - 2

end

and write a model in Promela to check if the statement, starting in a state σ with σ(x) = 3 will
reach a state σ′ with σ′(y) = 4.

Task 1.2. Write a model in Promela to verify that executing the statement

x := 1 x := 2; x := x + 2

will result in a state σ where either σ(x) = 1 or σ(x) = 4.

Task 1.3. Now, consider the statement

x := 1 par (x := 2; x := x + 2)

and write a model verifying that its execution results in a state σ with σ(x) ∈ {1, 3, 4}.

Task 1.4. Consider the following program:

x := 5;

y := 1;

(while x > 1 and y < 5 do

(x := x - y [] y := y + 1)

end

par

while x > 0 do

y = y + 1;

x = x - 1

end)

Assume that we start the program in some state. Can we reach a final state σ with σ(x) = −7?
What is the minimal value of the variable x after executing the program?

2



Task 1.5. Consider the Promela model below and use spin to identify a deadlock.

int x

proctype left() {

do

:: x > 0 -> x = x - 1

od

}

proctype right() {

do

:: x < 0 -> x = x + 1

od

}

init {

x = 2

run left()

run right()

}

Assignment 2 (Modeling Traffic Lights)

Consider a traffic light with a green, a yellow and a red light. We wish to check the safety
property “red is always preceded by yellow”. Which atomic propositions do you need? State the
LTL property.

Assignment 3 (Linear Temporal Logic)

Task 3.1. Consider a transition system with two states s1, s2, where s1 is the initial state,
transitions back and forth from s1 to s2 and a loop from s2 to itself. Let p be true in and only in
state s2. Discuss the difference between □♢p (holds) and ♢□p (does not hold – counter example
s1s2s1s2s1s2...).

Task 3.2. Now consider a transition system with three states s1, s2, s3, where s1 is the initial
state. There are the following transitions: s1 → s2, s1 → s3, s2 → s3, s2 → s2 and s3 → s3.
Let p be true in and only in s2. Discuss the LTL formula ⃝p ⇒ □p. The formula is false in
the model. However, under the wrong interpretation of |= one might think it is true (⃝p is false
in the model; therefore ⃝p ⇒ □p appears to be vacuously true). Notice that ⃝¬p ⇒ □¬p
happens to be true.

3



Task 3.3. In the same transition system, discuss the formula ♢p ∨ □¬p, which is true, but
may be considered false (neither of the disjuncts is true).

Assignment 4 (Liveness and Safety Properties)

Let p be an atomic proposition.

Task 4.1. Prove that both□♢p and ♢□p express liveness properties.

Task 4.2. Prove that □p expresses a safety property.

4


