
P. Müller and D. Basin

Formal Methods and Functional Programming

Session Sheet 9: Induction

Background: Induction Schemas

Mathematical Induction:

• The rule for weak mathematical induction is given by:

Γ ⊢ P (0) Γ, P (n) ⊢ P (n+ 1)

Γ ⊢ ∀n · P (n)
where n not free in Γ

• The rule for strong mathematical induction is given by:

Γ,∀m < n · P (m) ⊢ P (n)

Γ ⊢ ∀n · P (n)

where n not free in Γ
and m not free in P (n)

Structural Induction:

• The rule for weak structural induction over lists is given by:

Γ ⊢ P ([]) Γ, P (xs) ⊢ P (x:xs)

Γ ⊢ ∀xs · P (xs)
where x, xs not free in Γ

• The rule for strong structural induction over lists is given by:

Γ,∀ys ⊏ xs · P (ys) ⊢ P (xs)

Γ ⊢ ∀xs · P (xs)

where xs not free in Γ
and ys not free in P (xs)

The subterm relation for lists, denoted by ⊏, is defined as follows:

∀xs, ys · xs ⊏ ys ⇐⇒ (∃x · ys = x:xs) ∨ (∃zs · xs ⊏ zs ∧ zs ⊏ ys)

1



Assignment 1 (Prime Divisor)

An integer p is prime, which we write prime(p), if and only if it is only divisible by itself and by
1. Prove that all integers n ≥ 2 are divisible by a prime number.

Solution. We define P (n) ≡ ∃d. prime(d) ∧ d | n. We prove ∀n ≥ 2. P (n) with a strong
induction.

Let n be an integer such that n ≥ 2. We assume P (k) for all integers k such that 2 ≤ k < n,
and we prove P (n), by distinguishing two cases:

Case 1 : prime(n), i.e. n is a prime number. Then n = n × 1, thus n is a prime divisor of n,
which concludes the case.

Case 2 : ¬prime(n), i.e. n is not a prime number. Then, by definition, there must exist an integer
d such that 1 < d < n, and n is divisible by d. Since 2 ≤ d < n, we know that P (d) holds, and
thus d has a prime divisor d′. Since d′ divides d and d divides n, d′ divides n. Moreover, d′ is
prime, which concludes the case.

Assignment 2 (Splitting a Chocolate Bar)

Consider a chocolate bar consisting of n squares arranged in a rectangular pattern:

Task: We want to split the bar into small squares. Assuming we only can cut the bar along a
line, how many cuts do we need?

Solution. n− 1.

2



Task: Prove that we can split the bar into small squares with n− 1 cuts along the lines. More
precisely, for an integer k, let C(k) be the property ”k − 1 cuts along the lines are sufficient to
split into small squares a chocolate bar containing k squares”. Prove C(k) for all k ≥ 1, with a
strong induction.

Solution. We prove ∀k ≥ 1. C(k) by strong induction.

Let k ≥ 1 be arbitrary, and let us assume C(j) for all 1 ≤ j < k. Our goal is to prove C(k). To
do this, we consider two cases:

Case 1 : k = 1. In this case, our chocolate bar is already split into a small square, so we need 0
cut. Moreover, k − 1 = 1− 1 = 0, which concludes the case.

Case 2 : k > 1. In this case, the chocolate bar can be split into two pieces, with one cut. We
thus obtain two chocolate bars with k1 ≥ 1 and k2 ≥ 1 squares, and we know that k1 + k2 = k.
It follows that k1 < k and k2 < k, and thus, C(k1) and C(k2) are true: We can cut the two
smaller bars into small squares with (k1 − 1) + (k2 − 1) cuts. Therefore, we can cut the original
chocolate bar into small squares with 1+(k1− 1)+ (k2− 1) = (k1+k2)− 1 = k− 1 cuts, which
concludes the proof.

Task: Any proof by strong induction can be done with a weak induction. To see this, prove
that we can split the bar into small squares with n− 1 cuts along the lines, this time with a weak
induction.

Solution. In the previous task, we used our induction hypothesis to obtain C(k1) and C(k2),
where k1 and k2 are strictly smaller than k. With a weak induction, we will have to prove P (k)
from P (k−1) (assuming k ≥ 2), where P is the property we will prove by weak induction. Thus,
to mimic the previous proof, we need to be able to deduce C(k1) and C(k2) from P (k− 1). The
key idea is to put all C(j) into P (k), for j ≤ k, as follows:

Let P (k) ≡ ∀j. 1 ≤ j ≤ k ⇒ C(j) be our induction hypothesis, which we prove for all k ≥ 1 by
weak induction.

Base case: Let us prove P (1), i.e. ∀j. 1 ≤ j ≤ 1 ⇒ C(j). To do this, let j be an arbitrary
integer, and let us assume that 1 ≤ j ≤ 1. j must be 1, so we need to prove C(1). We need
1 − 1 = 0 cut to split into small squares a chocolate bar containing 1 square, which concludes
the proof.

Induction step: Let k ≥ 1 be arbitrary. We assume P (k), and we have to prove P (k+ 1), i.e.,
∀j. 1 ≤ j ≤ k + 1 ⇒ C(j).

Let j be an arbitrary integer such that 1 ≤ j ≤ k + 1. We distinguish two cases:

Case 1 : 1 ≤ j ≤ k. In this case, we get C(j) from P (k), which proves the case.

Case 2 : j = k + 1. In this case, we do the same proof as in the strong induction: the chocolate
bar can be split into two pieces, with one cut. We thus obtain two chocolate bars with k1 ≥ 1 and
k2 ≥ 1 squares, and we know that k1 + k2 = k + 1. It follows that 1 ≤ k1 ≤ k and 1 ≤ k2 ≤ k.
Thus, from P (k) (with j = k1 and j = k2), we know that C(k1) and C(k2) hold, i.e. we can cut

3



the two smaller bars into small squares with (k1 − 1) + (k2 − 1) cuts. Therefore, we can cut the
original chocolate bar into small squares with 1+(k1−1)+(k2−1) = (k1+k2)−1 = (k+1)−1
cuts, which proves C(j), and thus concludes the case.

Assignment 3 (Run-Length Encoding)

The background of this assignment is a simple run-length encoding scheme1. In our case, the
input data is encoded as a list of natural numbers2 of even length. The encoded representation
has the form n1:v1:n2:v2:. . .:[], where each pair ni:vi denotes, that the input data contained
ni consecutive occurrences of vi. For example, the input 1:1:1:5:5:5:5:[] will be encoded as
3:1:4:5:[].

The function dec decodes run-length encoded data represented as a list of natural numbers. The
function rep n v creates a list

dec [] = [] -- (D1)

dec [n] = [] -- (D2)

dec (n:v:xs) = rep n v ++ dec xs -- (D3)

rep 0 v = [] -- (R1)

rep n v = v:(rep (n-1) v) -- (R2)

The function srclen computes the length of the source data from the encoded representa-
tion.

srclen [] = 0 -- (S1)

srclen [n] = 0 -- (S2)

srclen (n:v:xs) = n + srclen xs -- (S3)

Note: The pathological cases (D2) and (S2) are only there to make the corresponding functions
total.

Lemmas: You may use the two following lemmas without proving them:

(L1) ∀xs, ys · length (xs ++ ys) = length xs + length ys

(L2) ∀x, y · length (rep x y) = x

Task: Prove that the length computed by srclen corresponds to the length of the decoded
data, i.e.,

∀xs · length (dec xs) = srclen xs

1http://en.wikipedia.org/wiki/Run-length_encoding
2We include zero in the natural numbers.

4

http://en.wikipedia.org/wiki/Run-length_encoding


Solution. We observe that weak structural induction would fail in the case xs ≡ (x:y:zs).
Therefore, we do the proof by strong structural induction.

We define P (xs) ≡ length (dec xs) = srclen xs and prove ∀xs ·P (xs) by strong structural
induction on xs. Thus, we have to show that P (xs) holds for some arbitrary xs :: [Nat] and may
assume ∀ys ⊏ xs · P (ys) as our induction hypothesis. We proceed by a case analysis on xs:

• Case xs ≡ []:

length (dec []) = length [] = 0 = srclen [] (D1,S1)

• Case xs ≡ [n] for some n :: Nat: Analogous to the previous case.

• Case xs ≡ (n:v:zs) for some n, v :: Nat and zs :: [Nat]:

length (dec (n:v:zs))

= length (rep n v ++ dec zs) (D3)

= length (rep n v) + length (dec zs) (L1)

= n + length (dec zs) (L2)

= n + srclen zs (IH)

= srclen (n:v:zs) (S3)

5


