mzariCh P. Miller and D. Basin

Formal Methods and Functional Programming

Session Sheet 9: Induction

Background: Induction Schemas

Mathematical Induction:
e The rule for weak mathematical induction is given by:
LHP(0) L,P(n)FPn+1)

where n not free in I’
L'+Vn-P(n)

e The rule for strong mathematical induction is given by:

LVm <n-P(m)-P(n)  where n not free in [’
L+ V- P(n) and m not free in P(n)

Structural Induction:
e The rule for weak structural induction over lists is given by:
LHP(1) L,P(xs) - P(z:as)

where z, s not free in I’
[ F Vs - P(es)

e The rule for strong structural induction over lists is given by:

I\Vys Cas- Pys) E P(xs)  where s not free in [
T F Vas - P(zs) and ys not free in P(xs)

The subterm relation for lists, denoted by [, is defined as follows:

Ves,ys-xs Cys <= (Jr-ys=x:x8)V (Jzs-xs C 2s A\ zs C ys)



Assignment 1 (Prime Divisor)

An integer p is prime, which we write prime(p), if and only if it is only divisible by itself and by
1. Prove that all integers n > 2 are divisible by a prime number.

Solution. We define P(n) = 3d. prime(d) A d | n. We prove Vn > 2. P(n) with a strong
induction.

Let n be an integer such that n > 2. We assume P(k) for all integers k such that 2 < k < n,
and we prove P(n), by distinguishing two cases:

Case 1: prime(n), i.e. n is a prime number. Then n = n x 1, thus n is a prime divisor of n,
which concludes the case.

Case 2: —prime(n), i.e. n is not a prime number. Then, by definition, there must exist an integer
d such that 1 < d < n, and n is divisible by d. Since 2 < d < n, we know that P(d) holds, and
thus d has a prime divisor d’. Since d’ divides d and d divides n, d’ divides n. Moreover, d’ is
prime, which concludes the case.

Assignment 2 (Splitting a Chocolate Bar)

Consider a chocolate bar consisting of n squares arranged in a rectangular pattern:

Task: We want to split the bar into small squares. Assuming we only can cut the bar along a
line, how many cuts do we need?

Solution. n — 1.



Task: Prove that we can split the bar into small squares with n — 1 cuts along the lines. More
precisely, for an integer k, let C'(k) be the property "k — 1 cuts along the lines are sufficient to
split into small squares a chocolate bar containing k squares”. Prove C'(k) for all k£ > 1, with a
strong induction.

Solution. We prove Yk > 1. C(k) by strong induction.

Let £ > 1 be arbitrary, and let us assume C(j) for all 1 < j < k. Our goal is to prove C(k). To
do this, we consider two cases:

Case 1: k = 1. In this case, our chocolate bar is already split into a small square, so we need 0
cut. Moreover, Kk —1=1—1 = 0, which concludes the case.

Case 2: k > 1. In this case, the chocolate bar can be split into two pieces, with one cut. We
thus obtain two chocolate bars with k; > 1 and k; > 1 squares, and we know that ki 4+ ky = k.
It follows that k; < k and ky < k, and thus, C(ky) and C(ky) are true: We can cut the two
smaller bars into small squares with (k; — 1) + (ko — 1) cuts. Therefore, we can cut the original
chocolate bar into small squares with 1+ (k; — 1) + (ko — 1) = (ky + ko) — 1 = k — 1 cuts, which
concludes the proof.

Task: Any proof by strong induction can be done with a weak induction. To see this, prove
that we can split the bar into small squares with n — 1 cuts along the lines, this time with a weak
induction.

Solution. In the previous task, we used our induction hypothesis to obtain C'(k;) and C'(k2),
where ki and ko are strictly smaller than k. With a weak induction, we will have to prove P(k)
from P(k—1) (assuming k > 2), where P is the property we will prove by weak induction. Thus,
to mimic the previous proof, we need to be able to deduce C'(ky) and C(ks) from P(k—1). The
key idea is to put all C(j) into P(k), for j < k, as follows:

Let P(k) =Vj.1 < j <k = C(j) be our induction hypothesis, which we prove for all £ > 1 by
weak induction.

Base case: Let us prove P(1), i.e. Vj.1 < j <1 = C(j). To do this, let j be an arbitrary
integer, and let us assume that 1 < j < 1. j must be 1, so we need to prove C(1). We need
1 —1 = 0 cut to split into small squares a chocolate bar containing 1 square, which concludes
the proof.

Induction step: Let k£ > 1 be arbitrary. We assume P(k), and we have to prove P(k+ 1), i.e.,
Vil1<j<k+1= C(j).

Let j be an arbitrary integer such that 1 < 5 < k + 1. We distinguish two cases:
Case 1: 1 < j < k. In this case, we get C(j) from P(k), which proves the case.

Case 2: 7 = k+ 1. In this case, we do the same proof as in the strong induction: the chocolate
bar can be split into two pieces, with one cut. We thus obtain two chocolate bars with £; > 1 and
ko > 1 squares, and we know that k; + ko = k + 1. It follows that 1 < k; < k and 1 < ky < k.
Thus, from P(k) (with j = ky and j = k2), we know that C'(k;) and C'(k2) hold, i.e. we can cut



the two smaller bars into small squares with (k; — 1) 4 (k2 — 1) cuts. Therefore, we can cut the
original chocolate bar into small squares with 1+ (k; —1)+ (ko —1) = (k1 + ko) —1 = (k+1)—1
cuts, which proves C(j), and thus concludes the case.

Assignment 3 (Run-Length Encoding)

The background of this assignment is a simple run-length encoding schemeE]. In our case, the
input data is encoded as a list of natural numberd?] of even length. The encoded representation

n; consecutive occurrences of v;. For example, the input 1:1:1:5:5:5:5: [] will be encoded as
3:1:4:5:[].

The function dec decodes run-length encoded data represented as a list of natural numbers. The
function rep n v creates a list

dec [] = [] -- (DD
dec [n] =[] -- (D2)
dec (n:v:xs) = rep n v ++ dec xs -- (D3)
rep 0 v = [] -- (RD)
rep n v = v:(rep (n-1) v) -- (R2)

The function srclen computes the length of the source data from the encoded representa-
tion.

srclen [] =0 -- (81)
srclen [n] =0 -- (82)
srclen (n:v:xs) = n + srclen xs -- (83)

Note: The pathological cases (D2) and (S2) are only there to make the corresponding functions
total.

Lemmas: You may use the two following lemmas without proving them:

(L1) Vazs,ys-length (zs ++ ys) = length xs + length ys
(L2) Vz,y-length (rep = y) = x

Task: Prove that the length computed by srclen corresponds to the length of the decoded
data, i.e.,
Vxs - length (dec xs) = srclen xs

http://en.wikipedia.org/wiki/Run-length_encoding
2We include zero in the natural numbers.


http://en.wikipedia.org/wiki/Run-length_encoding

Solution. We observe that weak structural induction would fail in the case zs = (x:y:2s).
Therefore, we do the proof by strong structural induction.

We define P(zs) = length (dec xs) = srclen xs and prove Vas- P(xs) by strong structural
induction on xs. Thus, we have to show that P(zs) holds for some arbitrary xs :: [Nat] and may
assume Yys C xs - P(ys) as our induction hypothesis. We proceed by a case analysis on zs:

e Case zs = []:

length (dec []) =1length [] =0 = srclen [] (D1,S1)
e Case xs = [n] for some n :: Nat: Analogous to the previous case.
e Case zs = (n:v:zs) for some n,v :: Nat and zs :: [Nat]:

length (dec (n:v:zs))

= length (rep m v ++ dec zs) (D3)
= length (rep n v) + length (dec zs) (L1)
=n + length (dec zs) (L2)
=n + srclen zs (IH)
= srclen (n:v:zs) (S3)



