

Formal Methods and Functional Programming Session Sheet 9: Induction

Background: Induction Schemas

Mathematical Induction:

• The rule for *weak mathematical induction* is given by:

$$\frac{\underline{\Gamma} \vdash \underline{P}(0) \quad \underline{\Gamma}, \underline{P}(\underline{n}) \vdash \underline{P}(\underline{n}+1)}{\underline{\Gamma} \vdash \forall \underline{n} \cdot \underline{P}(\underline{n})} \quad \text{where } \underline{n} \text{ not free in } \underline{\Gamma}$$

• The rule for *strong mathematical induction* is given by:

$$\frac{\underline{\Gamma}, \forall \underline{m} < \underline{n} \cdot \underline{P}(\underline{m}) \vdash \underline{P}(\underline{n})}{\Gamma \vdash \forall n \cdot P(n)} \qquad \text{where } \underline{n} \text{ not free in } \underline{\Gamma}$$

and $\underline{m} \text{ not free in } \underline{P}(\underline{n})$

Structural Induction:

• The rule for *weak structural induction* over lists is given by:

$$\frac{\underline{\Gamma} \vdash \underline{P}([\underline{I}]) \quad \underline{\Gamma}, \underline{P}(\underline{xs}) \vdash \underline{P}(\underline{x}:\underline{xs})}{\underline{\Gamma} \vdash \forall \underline{xs} \cdot \underline{P}(\underline{xs})} \quad \text{where } \underline{x}, \underline{xs} \text{ not free in } \underline{\Gamma}$$

• The rule for *strong structural induction* over lists is given by:

$$\frac{\underline{\Gamma}, \forall \underline{ys} \sqsubset \underline{xs} \cdot \underline{P}(\underline{ys}) \vdash \underline{P}(\underline{xs})}{\underline{\Gamma} \vdash \forall \underline{xs} \cdot \underline{P}(\underline{xs})} \qquad \text{where } \underline{xs} \text{ not free in } \underline{\Gamma} \\ \text{and } \underline{ys} \text{ not free in } \underline{P}(\underline{xs})$$

The subterm relation for lists, denoted by \Box , is defined as follows:

$$\forall xs, ys \cdot xs \sqsubset ys \iff (\exists x \cdot ys = x : xs) \lor (\exists zs \cdot xs \sqsubset zs \land zs \sqsubset ys)$$

Assignment 1 (Prime Divisor)

An integer p is *prime*, which we write prime(p), if and only if it is only divisible by itself and by 1. Prove that all integers $n \ge 2$ are divisible by a prime number.

Solution. We define $P(n) \equiv \exists d. prime(d) \land d \mid n$. We prove $\forall n \geq 2. P(n)$ with a strong induction.

Let n be an integer such that $n \ge 2$. We assume P(k) for all integers k such that $2 \le k < n$, and we prove P(n), by distinguishing two cases:

Case 1: prime(n), i.e. n is a prime number. Then $n = n \times 1$, thus n is a prime divisor of n, which concludes the case.

Case 2: $\neg prime(n)$, i.e. n is not a prime number. Then, by definition, there must exist an integer d such that 1 < d < n, and n is divisible by d. Since $2 \le d < n$, we know that P(d) holds, and thus d has a prime divisor d'. Since d' divides d and d divides n, d' divides n. Moreover, d' is prime, which concludes the case.

Assignment 2 (Splitting a Chocolate Bar)

Consider a chocolate bar consisting of n squares arranged in a rectangular pattern:

Task: We want to split the bar into small squares. Assuming we only can cut the bar along a line, how many cuts do we need?

Solution. n-1.

Task: Prove that we can split the bar into small squares with n-1 cuts along the lines. More precisely, for an integer k, let C(k) be the property "k-1 cuts along the lines are sufficient to split into small squares a chocolate bar containing k squares". Prove C(k) for all $k \ge 1$, with a *strong* induction.

Solution. We prove $\forall k \geq 1$. C(k) by strong induction.

Let $k \ge 1$ be arbitrary, and let us assume C(j) for all $1 \le j < k$. Our goal is to prove C(k). To do this, we consider two cases:

Case 1: k = 1. In this case, our chocolate bar is already split into a small square, so we need 0 cut. Moreover, k - 1 = 1 - 1 = 0, which concludes the case.

Case 2: k > 1. In this case, the chocolate bar can be split into two pieces, with one cut. We thus obtain two chocolate bars with $k_1 \ge 1$ and $k_2 \ge 1$ squares, and we know that $k_1 + k_2 = k$. It follows that $k_1 < k$ and $k_2 < k$, and thus, $C(k_1)$ and $C(k_2)$ are true: We can cut the two smaller bars into small squares with $(k_1 - 1) + (k_2 - 1)$ cuts. Therefore, we can cut the original chocolate bar into small squares with $1 + (k_1 - 1) + (k_2 - 1) = (k_1 + k_2) - 1 = k - 1$ cuts, which concludes the proof.

Task: Any proof by strong induction can be done with a weak induction. To see this, prove that we can split the bar into small squares with n-1 cuts along the lines, this time with a *weak* induction.

Solution. In the previous task, we used our induction hypothesis to obtain $C(k_1)$ and $C(k_2)$, where k_1 and k_2 are strictly smaller than k. With a weak induction, we will have to prove P(k) from P(k-1) (assuming $k \ge 2$), where P is the property we will prove by weak induction. Thus, to mimic the previous proof, we need to be able to deduce $C(k_1)$ and $C(k_2)$ from P(k-1). The key idea is to put all C(j) into P(k), for $j \le k$, as follows:

Let $P(k) \equiv \forall j. 1 \le j \le k \Rightarrow C(j)$ be our induction hypothesis, which we prove for all $k \ge 1$ by weak induction.

Base case: Let us prove P(1), i.e. $\forall j. 1 \leq j \leq 1 \Rightarrow C(j)$. To do this, let j be an arbitrary integer, and let us assume that $1 \leq j \leq 1$. j must be 1, so we need to prove C(1). We need 1 - 1 = 0 cut to split into small squares a chocolate bar containing 1 square, which concludes the proof.

Induction step: Let $k \ge 1$ be arbitrary. We assume P(k), and we have to prove P(k+1), i.e., $\forall j. 1 \le j \le k+1 \Rightarrow C(j)$.

Let j be an arbitrary integer such that $1 \le j \le k+1$. We distinguish two cases:

Case 1: $1 \le j \le k$. In this case, we get C(j) from P(k), which proves the case.

Case 2: j = k + 1. In this case, we do the same proof as in the strong induction: the chocolate bar can be split into two pieces, with one cut. We thus obtain two chocolate bars with $k_1 \ge 1$ and $k_2 \ge 1$ squares, and we know that $k_1 + k_2 = k + 1$. It follows that $1 \le k_1 \le k$ and $1 \le k_2 \le k$. Thus, from P(k) (with $j = k_1$ and $j = k_2$), we know that $C(k_1)$ and $C(k_2)$ hold, i.e. we can cut the two smaller bars into small squares with $(k_1 - 1) + (k_2 - 1)$ cuts. Therefore, we can cut the original chocolate bar into small squares with $1 + (k_1 - 1) + (k_2 - 1) = (k_1 + k_2) - 1 = (k+1) - 1$ cuts, which proves C(j), and thus concludes the case.

Assignment 3 (Run-Length Encoding)

The background of this assignment is a simple run-length encoding scheme¹. In our case, the input data is encoded as a list of natural numbers² of even length. The encoded representation has the form $n_1:v_1:n_2:v_2:\ldots:[]$, where each pair $n_i:v_i$ denotes, that the input data contained n_i consecutive occurrences of v_i . For example, the input 1:1:1:5:5:5:5:[] will be encoded as 3:1:4:5:[].

The function dec decodes run-length encoded data represented as a list of natural numbers. The function rep n v creates a list

[]	(D1)
[]	(D2)
rep n v ++ dec xs	(D3)
	(R1)
ep (n-1) v)	(R2)
	[] rep n v ++ dec xs

The function srclen computes the length of the source data from the encoded representation.

${\tt srclen}$	[]	= 0	(S1)
srclen	[n]	= 0	(S2)
srclen	(n:v:xs)	= n + srclen xs	(S3)

Note: The pathological cases (D2) and (S2) are only there to make the corresponding functions total.

Lemmas: You may use the two following lemmas without proving them:

(L1) $\forall xs, ys \cdot \text{length} (xs ++ ys) = \text{length} xs + \text{length} ys$ (L2) $\forall x, y \cdot \text{length} (\text{rep } x y) = x$

Task: Prove that the length computed by srclen corresponds to the length of the decoded data, i.e.,

 $\forall xs \cdot \text{length} (\text{dec } xs) = \text{srclen } xs$

¹http://en.wikipedia.org/wiki/Run-length_encoding

²We include zero in the natural numbers.

Solution. We observe that weak structural induction would fail in the case $xs \equiv (x:y:zs)$. Therefore, we do the proof by strong structural induction.

We define $P(xs) \equiv \text{length}$ (dec xs) = srclen xs and prove $\forall xs \cdot P(xs)$ by strong structural induction on xs. Thus, we have to show that P(xs) holds for some arbitrary xs :: [Nat] and may assume $\forall ys \sqsubset xs \cdot P(ys)$ as our induction hypothesis. We proceed by a case analysis on xs:

• Case $xs \equiv []$:

$$\texttt{length (dec []) = length [] = 0 = srclen []} \tag{D1,S1}$$

- Case $xs \equiv [n]$ for some n :: Nat: Analogous to the previous case.
- Case $xs \equiv (n:v:zs)$ for some n, v:: Nat and zs:: [Nat]:

length (dec
$$(n:v:zs)$$
)

= length (rep
$$n v$$
 ++ dec zs) (D3)

- = length (rep n v) + length (dec zs) (L1)
- = n + length (dec zs) (L2)
- = n + srclen zs (IH)

$$= \operatorname{srclen} (n:v:zs) \tag{S3}$$