
P. Müller and D. Basin

Formal Methods and Functional Programming

Exercise Sheet 13: Axiomatic Semantics (Hoare Logic)

Submission deadline: May 30/31, 2023

Viper

Viper (viper.ethz.ch) is a verification project, providing a language and tools for verifying func-
tional properties of programs in that language. In particular, Viper supports verification of loops
via loop invariants, as you have learned in the course. In this exercise session, you can try out
Viper as a tool for helping to practice the important skill of finding loop invariants. There are two
simple ways of running Viper: the recommended way is to download the VSCode plugin for Viper,
as explained here: http://www.pm.inf.ethz.ch/research/viper/downloads.html (make
sure to install the “Viper” plugin, and that you have the right dependencies, as explained in the in-
structions). Alternatively, you can run the Viper tools through the (slower) web interface, available
at http://viper.ethz.ch/examples/blank-example.html.

The syntax of Viper programs is slightly different to that of IMP, but very similar. Syntax for
assignments is the same (although local variables must be declared with an explicit type, using
the syntax var x: Int. There is no skip command, but statement blocks (e.g., branches of
conditionals) may be left empty. Viper uses C/Java-like syntax for conditionals and loops. For
example, the IMP program

if x > 0 then x := x - 1; while x > 0 do x := x - 1 end else skip end

could be translated into Viper as follows:

if (x > 0) {

x := x - 1

while (x > 0) {

x := x - 1

}

} else { /* else branch can be omitted */ }

Loop invariants can be written between the while-condition and the open brace {, e.g.:

1

viper.ethz.ch
http://www.pm.inf.ethz.ch/research/viper/downloads.html
http://viper.ethz.ch/examples/blank-example.html


while (x > 0)

invariant x >= 0

{

x := x - 1

}

Assignment 1 (Total Correctness of Exponentiation)

Let s1 be the following statement:

y := 1;

z := 0;

while z < x do

y := y * 2;

z := z + 1

end

The Viper skeleton can be found on the course website: program 3 exponentiation.vpr.

Our goal is to prove that ⊢ { x = X ∧ X ≥ 0 } s1 { ⇓ y = 2X }.

Task 1.1. Find a suitable loop invariant and loop variant. You may use Viper to do so.

Hint: The invariant should mention all variables used in the loop.

Task 1.2. Give a proof outline for ⊢ { x = X ∧X ≥ 0 } s { ⇓ y = 2X }.

Assignment 2

Consider the following IMP program s2:

y := 0;

z := 0;

while y * y < n do

y := y + 1;

if y * y <= n then

z := z + 1

else

skip

end

end

The Viper skeleton can be found on the course website: program 4.vpr.

2



Task 2.1. Assume n ≥ 0 as pre-condition. What does this function compute (hint: the result
is stored in z)? Write a post-condition to ensure that z has the right value after termination.
Also add the pre-condition to the program.

Task 2.2. Find a suitable loop invariant which enables the verifier to prove the post-condition
given the pre-condition.

Task 2.3. Prove that

{ n = N ∧ n ≥ 0 } s1 { z2 ≤ N ∧N < (z+ 1)2 }

Task 2.4. Give a suitable variant (i.e., which can be used with the rule WhTotAx) to prove
that the program terminates, and explain why it is suitable.

3


