Formal Methods and Functional Programming

Exercise Sheet 9: Induction

Submission deadline: May 2/3, 2023

Solutions should be submitted during the exercise class.

Assignment 1

Let U be a sequence of integers, defined by $U_{0}=U_{1}:=-1$, and, for all $n \geq 0, U_{n+2}=$ $5 \times U_{n+1}-6 \times U_{n}$.

Task 1.1: Prove that, for all natural numbers $n, U_{n}=3^{n}-2^{n+1}$ using strong induction.

Task 1.2: Prove that, for all natural numbers $n, U_{n}=3^{n}-2^{n+1}$ using weak induction.

Assignment 2 (Run-Length Encoding)

The background of this assignment is a simple run-length encoding schem ε^{17}. In our case, the input data is encoded as a list of natural numbers ${ }^{2}$ of even length. The encoded representation has the form $n_{1}: v_{1}: n_{2}: v_{2}: \ldots:[]$, where each pair $n_{i}: v_{i}$ denotes, that the input data contained n_{i} consecutive occurrences of v_{i}. For example, the input $1: 1: 1: 5: 5: 5: 5$ [[] will be encoded as 3:1:4:5: [].

The function enc computes the run-length encoding of a given list of natural numbers. It is defined in terms of the auxiliary function aux that performs the actual encoding.

[^0]```
enc [] = [] -- (E1)
enc (x:xs) = aux xs 1 x [] -- (E2)
aux [] n v ys = ys ++ [n,v] -- (A1)
aux (x:xs) n v ys
 | x == v = aux xs (n+1) x ys -- (A2)
 | otherwise = aux xs 1 x (ys ++ [n,v]) -- (A3)
```

The function dec decodes run-length encoded data represented as a list of natural numbers. The function rep $n v$ creates a list of length $n$ where each element is $v$.

```
dec [] = [] -- (D1)
dec [n] = [] -- (D2)
dec (n:v:xs) = rep n v ++ dec xs -- (D3)
rep 0 v = [] -- (R1)
rep n v = v:(rep (n-1) v) -- (R2)
```

The function srclen computes the length of the source data from the encoded representation.

```
srclen [] = 0
srclen [n] = 0 -- (S2)
srclen (n:v:xs) = n + srclen xs -- (S3)
```

Note: The pathological cases (D2) and (S2) are only there to make the corresponding functions total.

Lemmas: For the tasks below, you may use the following lemmas without proving them.
(L1) $\quad \forall x::$ Nat $\cdot \forall x s, y s::[N a t] \cdot(x: x s)++y s=x:(x s++y s)$
(L2) $\forall n, m, v::$ Nat $\cdot \forall x s, y s::$ [Nat].
aux (rep $m v++$ xs) $n v y s=\operatorname{aux} x s(n+m) v y s$
(L3) $\quad \forall n, v::$ Nat $\cdot \forall x s::$ [Nat].
length $x s \% 2=0 \Longrightarrow \operatorname{srclen}(x s++[n, v])=\operatorname{srclen} x s+n$
(L4) $\forall n, v::$ Nat $\cdot \forall x s::$ [Nat].
length $x s \% 2=0 \Longrightarrow$ length ( $x s++[n, v]$ ) \% $2=0$

Task 2.1: Prove the following statement:

```
\foralln,v :: Nat · \forallxs,ys :: [Nat] · length ys % 2 = 0 \Longrightarrow
srclen (aux (dec xs) n v ys) = srclen xs + n + srclen ys
```

Hint: We recommend using strong structural induction (as explained in the exercise session) on one of the list-typed variables. Alternatively, you could use a mathematical induction on the length of one of the lists.

Task 2.2: Use the result of the previous task to prove the following statement:

$$
\forall x s:: \text { [Nat] } \cdot \operatorname{srclen}(\operatorname{enc}(\operatorname{dec} x s))=\text { srclen } x s
$$


[^0]:    ${ }^{1}$ http://en.wikipedia.org/wiki/Run-length_encoding
    ${ }^{2}$ We include zero in the natural numbers.

