
P. Müller and D. Basin

Formal Methods and Functional Programming

Exercise Sheet 9: Induction

Submission deadline: May 2/3, 2023

Solutions should be submitted during the exercise class.

Assignment 1

Let U be a sequence of integers, defined by U0 = U1 := −1, and, for all n ≥ 0, Un+2 =
5× Un+1 − 6× Un.

Task 1.1: Prove that, for all natural numbers n, Un = 3n−2n+1 using strong induction.

Task 1.2: Prove that, for all natural numbers n, Un = 3n−2n+1 using weak induction.

Assignment 2 (Run-Length Encoding)

The background of this assignment is a simple run-length encoding scheme1. In our case, the
input data is encoded as a list of natural numbers2 of even length. The encoded representation
has the form n1:v1:n2:v2:. . .:[], where each pair ni:vi denotes, that the input data contained
ni consecutive occurrences of vi. For example, the input 1:1:1:5:5:5:5:[] will be encoded as
3:1:4:5:[].

The function enc computes the run-length encoding of a given list of natural numbers. It is de-
fined in terms of the auxiliary function aux that performs the actual encoding.

1http://en.wikipedia.org/wiki/Run-length_encoding
2We include zero in the natural numbers.

1

http://en.wikipedia.org/wiki/Run-length_encoding


enc [] = [] -- (E1)

enc (x:xs) = aux xs 1 x [] -- (E2)

aux [] n v ys = ys ++ [n,v] -- (A1)

aux (x:xs) n v ys

| x == v = aux xs (n+1) x ys -- (A2)

| otherwise = aux xs 1 x (ys ++ [n,v]) -- (A3)

The function dec decodes run-length encoded data represented as a list of natural numbers. The
function rep n v creates a list of length n where each element is v.

dec [] = [] -- (D1)

dec [n] = [] -- (D2)

dec (n:v:xs) = rep n v ++ dec xs -- (D3)

rep 0 v = [] -- (R1)

rep n v = v:(rep (n-1) v) -- (R2)

The function srclen computes the length of the source data from the encoded representa-
tion.

srclen [] = 0 -- (S1)

srclen [n] = 0 -- (S2)

srclen (n:v:xs) = n + srclen xs -- (S3)

Note: The pathological cases (D2) and (S2) are only there to make the corresponding functions
total.

Lemmas: For the tasks below, you may use the following lemmas without proving them.

(L1) ∀x :: Nat · ∀xs, ys :: [Nat] · (x:xs) ++ ys = x:(xs ++ ys)

(L2) ∀n,m, v :: Nat · ∀xs, ys :: [Nat]·
aux (rep m v ++ xs) n v ys = aux xs (n+m) v ys

(L3) ∀n, v :: Nat · ∀xs :: [Nat]·
length xs % 2 = 0 =⇒ srclen (xs ++ [n,v]) = srclen xs + n

(L4) ∀n, v :: Nat · ∀xs :: [Nat]·
length xs % 2 = 0 =⇒ length (xs ++ [n,v]) % 2 = 0

Task 2.1: Prove the following statement:

∀n, v :: Nat · ∀xs, ys :: [Nat] · length ys % 2 = 0 =⇒
srclen (aux (dec xs) n v ys) = srclen xs + n + srclen ys

Hint: We recommend using strong structural induction (as explained in the exercise session) on
one of the list-typed variables. Alternatively, you could use a mathematical induction on the
length of one of the lists.

2



Task 2.2: Use the result of the previous task to prove the following statement:

∀xs :: [Nat] · srclen (enc (dec xs)) = srclen xs

3


