

Formal Methods and Functional Programming Exercise Sheet 9: Induction

Submission deadline: May 2/3, 2023

Solutions should be submitted during the exercise class.

Assignment 1

Let U be a sequence of integers, defined by $U_0 = U_1 := -1$, and, for all $n \ge 0$, $U_{n+2} = 5 \times U_{n+1} - 6 \times U_n$.

Task 1.1: Prove that, for all natural numbers n, $U_n = 3^n - 2^{n+1}$ using *strong* induction.

Task 1.2: Prove that, for all natural numbers n, $U_n = 3^n - 2^{n+1}$ using weak induction.

Assignment 2 (Run-Length Encoding)

The background of this assignment is a simple run-length encoding scheme¹. In our case, the input data is encoded as a list of natural numbers² of even length. The encoded representation has the form $n_1:v_1:n_2:v_2:\ldots:[]$, where each pair $n_i:v_i$ denotes, that the input data contained n_i consecutive occurrences of v_i . For example, the input 1:1:1:5:5:5:5:[] will be encoded as 3:1:4:5:[].

The function enc computes the run-length encoding of a given list of natural numbers. It is defined in terms of the auxiliary function aux that performs the actual encoding.

¹http://en.wikipedia.org/wiki/Run-length_encoding

²We include zero in the natural numbers.

enc [] = [] -- (E1) enc (x:xs) = aux xs 1 x [] -- (E2) aux [] n v ys = ys ++ [n,v] -- (A1) aux (x:xs) n v ys | x == v = aux xs (n+1) x ys -- (A2) | otherwise = aux xs 1 x (ys ++ [n,v]) -- (A3)

The function dec decodes run-length encoded data represented as a list of natural numbers. The function rep n v creates a list of length n where each element is v.

dec [] = []	(D1)
dec [n] = []	(D2)
dec (n:v:xs) = rep n v ++ dec xs	(D3)
rep 0 v = []	(R1)
rep n v = v:(rep $(n-1)$ v)	(R2)

The function srclen computes the length of the source data from the encoded representation.

srclen []	= 0	(S1)
srclen [n]	= 0	(S2)
<pre>srclen (n:v:xs</pre>) = n + srclen xs	(S3)

Note: The pathological cases (D2) and (S2) are only there to make the corresponding functions total.

Lemmas: For the tasks below, you may use the following lemmas without proving them.

(L1)	$\forall x :: \text{Nat} \cdot \forall xs, ys :: [\text{Nat}] \cdot (x:xs) + ys = x: (xs + ys)$
(L2)	$\forall n, m, v :: \texttt{Nat} \cdot \forall xs, ys :: \texttt{[Nat]} \cdot$
	aux (rep $m v$ ++ xs) $n v ys$ = aux xs (n + m) $v ys$
(L3)	$\forall n, v :: \texttt{Nat} \cdot \forall xs :: \texttt{[Nat]} \cdot$
	length $xs \ % \ 2 = 0 \implies $ srclen ($xs + [n,v]$) = srclen $xs + n$
(L4)	$\forall n, v :: \texttt{Nat} \cdot \forall xs :: \texttt{[Nat]} \cdot$
	length xs % 2 = 0 \implies length (xs ++ [n,v]) % 2 = 0

Task 2.1: Prove the following statement:

 $\forall n, v :: \text{Nat} \cdot \forall xs, ys :: [\text{Nat}] \cdot \text{length } ys \ \% \ 2 = 0 \implies$ srclen (aux (dec xs) $n \ v \ ys$) = srclen xs + n + srclen ys

Hint: We recommend using strong structural induction (as explained in the exercise session) on one of the list-typed variables. Alternatively, you could use a mathematical induction on the length of one of the lists.

Task 2.2: Use the result of the previous task to prove the following statement:

 $\forall xs :: [Nat] \cdot srclen (enc (dec xs)) = srclen xs$