Formal Methods and Functional Programming

Solutions of Exercise Sheet 10: States and Expressions

Assignment 1 (Simplifying State Updates)

Task 1.1: Let the state σ, the variable x, and the values v_{1} and v_{2} be arbitrary. We need to show $\forall y \cdot \sigma\left[x \mapsto v_{1}\right]\left[x \mapsto v_{2}\right](y)=\sigma\left[x \mapsto v_{2}\right](y)$. Using the definition of state update, for an arbitrary variable y, we have

$$
\begin{aligned}
\sigma\left[x \mapsto v_{1}\right]\left[x \mapsto v_{2}\right](y) & = \begin{cases}v_{2} & \text { if } y \equiv x \\
\sigma\left[x \mapsto v_{1}\right](y) & \text { if } y \not \equiv x\end{cases} \\
& = \begin{cases}v_{2} & \text { if } y \equiv x \\
\sigma(y) & \text { if } y \not \equiv x\end{cases} \\
& =\sigma\left[x \mapsto v_{2}\right](y) .
\end{aligned}
$$

Task 1.2: Let the state σ, the variables x and y with $x \not \equiv y$, and the values v and w be arbitrary. We need to show that $\forall z \cdot \sigma[x \mapsto v][y \mapsto w]=\sigma[y \mapsto w][x \mapsto v]$. Using the definition of state update, for an arbitrary z, we have

$$
\begin{aligned}
\sigma[x \mapsto v][y \mapsto w](z) & = \begin{cases}w & \text { if } z \equiv y \\
\sigma[x \mapsto v](z) & \text { if } z \not \equiv y\end{cases} \\
& = \begin{cases}w & \text { if } z \equiv y \\
v & \text { if } z \not \equiv y \text { and } z \equiv x \\
\sigma(z) & \text { if } z \not \equiv y \text { and } z \not \equiv x\end{cases} \\
& \stackrel{(*)}{=} \begin{cases}v & \text { if } z \equiv x \\
w & \text { if } z \not \equiv x \text { and } z \equiv y \\
\sigma(z) & \text { if } z \not \equiv x \text { and } z \not \equiv y\end{cases} \\
& = \begin{cases}v & \text { if } z \equiv x \\
\sigma[y \mapsto w](z) & \text { if } z \not \equiv x\end{cases}
\end{aligned}
$$

$$
=\sigma[y \mapsto w][x \mapsto v](z)
$$

Note that the rewriting of the cases in the step marked with $(*)$ only works because we assumed that $x \not \equiv y$. And, indeed, the overall result is not true with this condition, as we see from the counter-example with $v=1, w=2$, and $x \equiv y \equiv z$:

$$
\sigma[x \mapsto v][y \mapsto w](z)=w=2 \neq 1=v=\sigma[y \mapsto w][x \mapsto v](z)
$$

Task 1.3: Let the variable x, the values v_{1} and v_{2} be arbitrary. We define

$$
P(n) \equiv \forall \sigma, \vec{y}, \vec{w} \cdot\left(|\vec{y}|=|\vec{w}|=n \Longrightarrow \sigma\left[x \mapsto v_{1}\right][\vec{y} \mapsto \vec{w}]\left[x \mapsto v_{2}\right]=\sigma[\vec{y} \mapsto \vec{w}]\left[x \mapsto v_{2}\right]\right)
$$

and prove $\forall n \cdot P(n)$ by weak induction over n :

- Base Case: We show $P(0)$. We consider some arbitrary state σ and sequences \vec{y} and \vec{w} of variables and values, respectively. We assume $|\vec{y}|=|\vec{w}|=0$. In this case, the sequences \vec{y} and \vec{w} can only be empty. Thus, the claim to be proved is $\sigma\left[x \mapsto v_{1}\right]\left[x \mapsto v_{2}\right]=\sigma\left[x \mapsto v_{2}\right]$, which immediately follows from Task 1.1.
- Step Case: For some arbitrary n, we assume that $P(n)$ holds and aim to prove that $P(n+1)$ also holds. Let the state σ and the sequences \vec{y} and \vec{w} of variables and values, respectively, be arbitrary. We assume that $|\vec{y}|=|\vec{w}|=n+1$, i.e., that $\vec{y} \equiv\left\langle y_{1}, \ldots, y_{n+1}\right\rangle$ and $\vec{w}=\left\langle w_{1}, \ldots, w_{n+1}\right\rangle$ for some appropriate variables y_{i} and values w_{i}.
We proceed with a case analysis on the variable y_{1} :
- Case $y_{1} \equiv x$: By Task 1.1, we have $\sigma\left[x \mapsto v_{1}\right]\left[y_{1} \mapsto w_{1}\right]=\sigma\left[y_{1} \mapsto w_{1}\right]$ and therefore

$$
\begin{aligned}
& \sigma\left[x \mapsto v_{1}\right]\left[y_{1} \mapsto w_{1}\right]\left[y_{2} \mapsto w_{2}\right] \ldots\left[y_{n+1} \mapsto w_{n+1}\right]\left[x \mapsto v_{2}\right] \\
= & \sigma\left[y_{1} \mapsto w_{1}\right]\left[y_{2} \mapsto w_{2}\right] \ldots\left[y_{n+1} \mapsto w_{n+1}\right]\left[x \mapsto v_{2}\right],
\end{aligned}
$$

as required.

- Case $y_{1} \not \equiv x$: We have

$$
\begin{align*}
& \sigma\left[x \mapsto v_{1}\right]\left[y_{1} \mapsto w_{1}\right]\left[y_{2} \mapsto w_{2}\right] \ldots\left[y_{n+1} \mapsto w_{n+1}\right]\left[x \mapsto v_{2}\right] \\
= & \sigma\left[y_{1} \mapsto w_{1}\right]\left[x \mapsto v_{1}\right]\left[y_{2} \mapsto w_{2}\right] \ldots\left[y_{n+1} \mapsto w_{n+1}\right]\left[x \mapsto v_{2}\right] \tag{Task1.2}\\
= & \sigma\left[y_{1} \mapsto w_{1}\right]\left[y_{2} \mapsto w_{2}\right] \ldots\left[y_{n+1} \mapsto w_{n+1}\right]\left[x \mapsto v_{2}\right] \tag{IH}
\end{align*}
$$

where the first equality follows from Task 1.2, and the second equality follows from the induction hypothesis $P(n)$ (instantiating the quantifiers as follows: $\sigma \rightsquigarrow \sigma\left[y_{1} \mapsto w_{1}\right]$, $\vec{y} \rightsquigarrow\left\langle y_{2}, \ldots, y_{n+1}\right\rangle$, and $\vec{w} \rightsquigarrow\left\langle w_{2}, \ldots, w_{n+1}\right\rangle$; note that we are only able to conclude the desired claim since \vec{y} and \vec{w} are both instantiated with sequences of length n).

Assignment 2 (Substitution Properties)

Recall the definition of substitution on boolean expressions

$$
b[x \mapsto e] \equiv \begin{cases}e_{1}[x \mapsto e] \text { op } e_{2}[x \mapsto e] & \text { if } b \equiv e_{1} \text { op } e_{2} \tag{*}\\ \text { not } b^{\prime}[x \mapsto e] & \text { if } b \equiv \text { not } b^{\prime} \\ b_{1}[x \mapsto e] \circ b_{2}[x \mapsto e] & \text { if } b \equiv b_{1} \circ b_{2} \text { for some } \circ \in\{\text { and, or }\}\end{cases}
$$

and the lemma proved in the exercise session

$$
\begin{equation*}
\forall \sigma, e, e^{\prime}, x \cdot\left(\mathcal{A} \llbracket e\left[x \mapsto e^{\prime}\right] \rrbracket \sigma=\mathcal{A} \llbracket e \rrbracket\left(\sigma\left[x \mapsto \mathcal{A} \llbracket e^{\prime} \rrbracket \sigma\right]\right)\right) . \tag{**}
\end{equation*}
$$

Proof: Let the state σ, the variable x, and the expression e be arbitrary (note that we deal with the inner quantifiers first here; several consecutive for-all quantifiers can always be reordered). We define

$$
P(b) \equiv(\mathcal{B} \llbracket b[x \mapsto e \rrbracket \rrbracket \sigma=\mathcal{B} \llbracket b \rrbracket(\sigma[x \mapsto \mathcal{A} \llbracket e \rrbracket \sigma]))
$$

and prove $\forall b \cdot P(b)$ by structural induction on the boolean expression b :

- Or Case: We need to prove $P\left(b_{1}\right.$ or $\left.b_{2}\right)$, for some boolean expressions b_{1}, b_{2}, and may assume $P\left(b_{1}\right)$ and $P\left(b_{2}\right)$ as our induction hypothesis. We have

$$
\begin{align*}
\mathcal{B} \llbracket\left(b_{1} \text { or } b_{2}\right)[x \mapsto e \rrbracket \rrbracket \sigma & =\mathcal{B} \llbracket b_{1}[x \mapsto e] \text { or } b_{2}[x \mapsto e\rfloor \rrbracket \sigma \tag{*}\\
& =\mathcal{B} \llbracket b_{1}[x \mapsto e] \rrbracket \sigma \vee \mathcal{B} \llbracket b_{2}[x \mapsto e \rrbracket \rrbracket \sigma \tag{B}\\
& =\mathcal{B} \llbracket b_{1} \rrbracket(\sigma[x \mapsto \mathcal{A} \llbracket e \rrbracket \sigma]) \vee \mathcal{B} \llbracket b_{2} \rrbracket(\sigma[x \mapsto \mathcal{A} \llbracket e \rrbracket \sigma]) \tag{IH}\\
& =\mathcal{B} \llbracket b_{1} \text { or } b_{2} \rrbracket(\sigma[x \mapsto \mathcal{A} \llbracket e \rrbracket \sigma]), \tag{B}
\end{align*}
$$

where V denotes the function that maps to tt if at least one of its arguments is t .

- And Case: Analogous to the previous case.
- Not Case: We need to prove P (not b^{\prime}), for some boolean expression b^{\prime}, and may assume $P\left(b^{\prime}\right)$ as our induction hypothesis. We have

$$
\begin{align*}
\mathcal{B} \llbracket\left(\text { not } \quad b^{\prime}\right)[x \mapsto e\rfloor \rrbracket \sigma & =\mathcal{B} \llbracket \text { not } b^{\prime}[x \mapsto e] \rrbracket \sigma \tag{*}\\
& =\neg \mathcal{B} \llbracket b^{\prime}[x \mapsto e\rfloor \rrbracket \sigma \tag{B}\\
& =\neg \mathcal{B} \llbracket b^{\prime} \rrbracket(\sigma[x \mapsto \mathcal{A} \llbracket e \rrbracket \sigma]) \tag{IH}\\
& =\mathcal{B} \llbracket\left(\text { not } \quad b^{\prime}\right) \rrbracket(\sigma[x \mapsto \mathcal{A} \llbracket e \rrbracket \sigma]), \tag{B}
\end{align*}
$$

where \neg denotes the function that maps t to ff and ff to t .

- Relation Case: We need to show $P\left(e_{1}\right.$ op $\left.e_{2}\right)$, for some arithmetic expressions e_{1}, e_{2} and and arithmetic relation op. We have

$$
\begin{align*}
\mathcal{B} \llbracket\left(e_{1} \text { op } e_{2}\right)[x \mapsto e\rfloor \rrbracket \sigma & =\mathcal{B} \llbracket e_{1}[x \mapsto e] \text { op } e_{2}[x \mapsto e] \rrbracket \sigma \tag{*}\\
& =\mathcal{A} \llbracket e_{1}[x \mapsto e] \rrbracket \sigma \overline{o p} \mathcal{A} \llbracket e_{2}[x \mapsto e] \rrbracket \sigma \tag{B}\\
& =\mathcal{A} \llbracket e_{1} \rrbracket(\sigma[x \mapsto \mathcal{A} \llbracket e \rrbracket \sigma]) \overline{o p} \mathcal{A} \llbracket e_{2} \rrbracket(\sigma[x \mapsto \mathcal{A} \llbracket e \rrbracket \sigma]) \tag{**}\\
& =\mathcal{B} \llbracket e_{1} \text { op } e_{2} \rrbracket(\sigma[x \mapsto \mathcal{A} \llbracket e \rrbracket \sigma]), \tag{B}
\end{align*}
$$

where $\overline{o p}$ denotes the operation corresponding to $o p$.

Assignment 3 (Applying Big-Step Semantics)

We use the following abbreviations: l is the statement ($\mathrm{a}:=\mathrm{a}+\mathrm{n}$; $\mathrm{b}:=\mathrm{b} * \mathrm{n}$) ; $\mathrm{n}:=\mathrm{n}-1$ and w is the statement while $\mathrm{n} \# 0$ do l end. To save space, we also introduce the following abbreviation: The notation

$$
\left[v_{1}, v_{2}, v_{3}\right]
$$

where v_{1}, v_{2}, v_{3} are integer values, stands for the state

$$
\sigma\left[\mathrm{a} \mapsto v_{1}\right]\left[\mathrm{b} \mapsto v_{2}\right]\left[\mathrm{n} \mapsto v_{3}\right],
$$

where σ is the initial state mentioned in the exercise.
We construct the derivation tree shown in the following page.
$\overline{\langle\mathrm{a}:=\mathrm{a}+\mathrm{n},[0,1,2]\rangle \rightarrow[2,1,2]}\left(\operatorname{Ass}_{N S}\right) \quad \overline{\langle\mathrm{b}:=\mathrm{b} * \mathrm{n},[2,1,2]\rangle \rightarrow[2,2,2]}{ }_{\left(\operatorname{ASS}_{N S}\right)}^{\left(\operatorname{SEQ}_{N S}\right)}$

where T_{1} is the following derivation tree:
\langle while n\#0 do 1 end, $[2,2,1]\rangle \rightarrow[3,2,0]$

