

Formal Methods and Functional Programming Solutions of Exercise Sheet 10: States and Expressions

Assignment 1 (Simplifying State Updates)

Task 1.1: Let the state σ , the variable x, and the values v_1 and v_2 be arbitrary. We need to show $\forall y \cdot \sigma[x \mapsto v_1][x \mapsto v_2](y) = \sigma[x \mapsto v_2](y)$. Using the definition of state update, for an arbitrary variable y, we have

$$\sigma[x \mapsto v_1][x \mapsto v_2](y) = \begin{cases} v_2 & \text{if } y \equiv x \\ \sigma[x \mapsto v_1](y) & \text{if } y \not\equiv x \end{cases}$$
$$= \begin{cases} v_2 & \text{if } y \equiv x \\ \sigma(y) & \text{if } y \not\equiv x \end{cases}$$
$$= \sigma[x \mapsto v_2](y).$$

Task 1.2: Let the state σ , the variables x and y with $x \not\equiv y$, and the values v and w be arbitrary. We need to show that $\forall z \cdot \sigma[x \mapsto v][y \mapsto w] = \sigma[y \mapsto w][x \mapsto v]$. Using the definition of state update, for an arbitrary z, we have

$$\sigma[x\mapsto v][y\mapsto w](z) = \begin{cases} w & \text{if } z\equiv y\\ \sigma[x\mapsto v](z) & \text{if } z\not\equiv y \end{cases}$$

$$= \begin{cases} w & \text{if } z\equiv y\\ v & \text{if } z\not\equiv y \text{ and } z\equiv x\\ \sigma(z) & \text{if } z\not\equiv y \text{ and } z\not\equiv x \end{cases}$$

$$\overset{(*)}{=} \begin{cases} v & \text{if } z\equiv x\\ w & \text{if } z\not\equiv x \text{ and } z\equiv y\\ \sigma(z) & \text{if } z\not\equiv x \text{ and } z\not\equiv y \end{cases}$$

$$= \begin{cases} v & \text{if } z\equiv x\\ \sigma[y\mapsto w](z) & \text{if } z\not\equiv x \end{cases}$$

$$= \sigma[y \mapsto w][x \mapsto v](z)$$

Note that the rewriting of the cases in the step marked with (*) only works because we assumed that $x \not\equiv y$. And, indeed, the overall result is not true with this condition, as we see from the counter-example with v=1, w=2, and $x\equiv y\equiv z$:

$$\sigma[x \mapsto v][y \mapsto w](z) = w = 2 \neq 1 = v = \sigma[y \mapsto w][x \mapsto v](z)$$

Task 1.3: Let the variable x, the values v_1 and v_2 be arbitrary. We define

$$P(n) \equiv \forall \sigma, \vec{y}, \vec{w} \cdot (|\vec{y}| = |\vec{w}| = n \implies \sigma[x \mapsto v_1][\vec{y} \mapsto \vec{w}][x \mapsto v_2] = \sigma[\vec{y} \mapsto \vec{w}][x \mapsto v_2]$$

and prove $\forall n \cdot P(n)$ by weak induction over n:

- Base Case: We show P(0). We consider some arbitrary state σ and sequences \vec{y} and \vec{w} of variables and values, respectively. We assume $|\vec{y}| = |\vec{w}| = 0$. In this case, the sequences \vec{y} and \vec{w} can only be empty. Thus, the claim to be proved is $\sigma[x \mapsto v_1][x \mapsto v_2] = \sigma[x \mapsto v_2]$, which immediately follows from Task 1.1.
- Step Case: For some arbitrary n, we assume that P(n) holds and aim to prove that P(n+1) also holds. Let the state σ and the sequences \vec{y} and \vec{w} of variables and values, respectively, be arbitrary. We assume that $|\vec{y}| = |\vec{w}| = n+1$, i.e., that $\vec{y} \equiv \langle y_1, \dots, y_{n+1} \rangle$ and $\vec{w} = \langle w_1, \dots, w_{n+1} \rangle$ for some appropriate variables y_i and values w_i .

We proceed with a case analysis on the variable y_1 :

- Case $y_1\equiv x$: By Task 1.1, we have $\sigma[x\mapsto v_1][y_1\mapsto w_1]=\sigma[y_1\mapsto w_1]$ and therefore $\sigma[x\mapsto v_1][y_1\mapsto w_1][y_2\mapsto w_2]\dots[y_{n+1}\mapsto w_{n+1}][x\mapsto v_2]$ $=\sigma[y_1\mapsto w_1][y_2\mapsto w_2]\dots[y_{n+1}\mapsto w_{n+1}][x\mapsto v_2],$

as required.

- Case $y_1 \not\equiv x$: We have

$$\begin{split} &\sigma[x\mapsto v_1][y_1\mapsto w_1][y_2\mapsto w_2]\dots[y_{n+1}\mapsto w_{n+1}][x\mapsto v_2]\\ &=\sigma[y_1\mapsto w_1][x\mapsto v_1][y_2\mapsto w_2]\dots[y_{n+1}\mapsto w_{n+1}][x\mapsto v_2]\\ &=\sigma[y_1\mapsto w_1][y_2\mapsto w_2]\dots[y_{n+1}\mapsto w_{n+1}][x\mapsto v_2] \end{split} \tag{Task 1.2}$$

where the first equality follows from Task 1.2, and the second equality follows from the induction hypothesis P(n) (instantiating the quantifiers as follows: $\sigma \leadsto \sigma[y_1 \mapsto w_1]$, $\vec{y} \leadsto \langle y_2, \dots, y_{n+1} \rangle$, and $\vec{w} \leadsto \langle w_2, \dots, w_{n+1} \rangle$; note that we are only able to conclude the desired claim since \vec{y} and \vec{w} are both instantiated with sequences of length n).

Assignment 2 (Substitution Properties)

Recall the definition of substitution on boolean expressions

$$b[x\mapsto e] \equiv \begin{cases} e_1[x\mapsto e] \ op \ e_2[x\mapsto e] & \text{if } b \equiv e_1 \ op \ e_2 \\ \text{not} \ b'[x\mapsto e] & \text{if } b \equiv \text{not} \ b' \\ b_1[x\mapsto e] \circ b_2[x\mapsto e] & \text{if } b \equiv b_1 \circ b_2 \text{ for some } \circ \in \{\text{and, or}\} \end{cases}$$
 (*)

and the lemma proved in the exercise session

$$\forall \sigma, e, e', x \cdot (\mathcal{A}\llbracket e[x \mapsto e'] \rrbracket \sigma = \mathcal{A}\llbracket e \rrbracket (\sigma[x \mapsto \mathcal{A}\llbracket e' \rrbracket \sigma])). \tag{**}$$

Proof: Let the state σ , the variable x, and the expression e be arbitrary (note that we deal with the inner quantifiers first here; several consecutive for-all quantifiers can always be reordered). We define

$$P(b) \equiv (\mathcal{B}[\![b[\![x \mapsto e]\!]] \sigma = \mathcal{B}[\![b]\!] (\sigma[x \mapsto \mathcal{A}[\![e]\!]] \sigma])$$

and prove $\forall b \cdot P(b)$ by structural induction on the boolean expression b:

• Or Case: We need to prove $P(b_1 \text{ or } b_2)$, for some boolean expressions b_1, b_2 , and may assume $P(b_1)$ and $P(b_2)$ as our induction hypothesis. We have

$$\mathcal{B}[\![(b_1 \text{ or } b_2)[x \mapsto e]]\!]\sigma = \mathcal{B}[\![b_1[x \mapsto e] \text{ or } b_2[x \mapsto e]]\!]\sigma \tag{*}$$

$$= \mathcal{B}[\![b_1[x \mapsto e]\!]] \sigma \vee \mathcal{B}[\![b_2[x \mapsto e]\!]] \sigma \tag{B}$$

$$= \mathcal{B}\llbracket b_1 \rrbracket (\sigma[x \mapsto \mathcal{A}\llbracket e \rrbracket \sigma]) \vee \mathcal{B}\llbracket b_2 \rrbracket (\sigma[x \mapsto \mathcal{A}\llbracket e \rrbracket \sigma]) \tag{IH}$$

$$= \mathcal{B}[\![b_1 \text{ or } b_2]\!](\sigma[x \mapsto \mathcal{A}[\![e]\!]\sigma]), \tag{B}$$

where \lor denotes the function that maps to tt if at least one of its arguments is tt.

- And Case: Analogous to the previous case.
- Not Case: We need to prove P(not b'), for some boolean expression b', and may assume P(b') as our induction hypothesis. We have

$$\mathcal{B}[(\text{not } b')[x \mapsto e]] \sigma = \mathcal{B}[\text{not } b'[x \mapsto e]] \sigma \tag{*}$$

$$= \neg \mathcal{B} \llbracket b'[x \mapsto e] \rrbracket \sigma \tag{B}$$

$$= \neg \mathcal{B} \llbracket b' \rrbracket (\sigma [x \mapsto \mathcal{A} \llbracket e \rrbracket \sigma]) \tag{IH}$$

$$= \mathcal{B}\llbracket (\text{not } b') \rrbracket (\sigma[x \mapsto \mathcal{A}\llbracket e \rrbracket \sigma]), \tag{B}$$

where \neg denotes the function that maps tt to ff and ff to tt.

• **Relation Case:** We need to show $P(e_1 \ op \ e_2)$, for some arithmetic expressions e_1, e_2 and and arithmetic relation op. We have

$$\mathcal{B}\llbracket (e_1 \ op \ e_2)[x \mapsto e] \rrbracket \sigma = \mathcal{B}\llbracket e_1[x \mapsto e] \ op \ e_2[x \mapsto e] \rrbracket \sigma \tag{*}$$

$$= \mathcal{A}\llbracket e_1[x \mapsto e] \llbracket \sigma \ \overline{op} \ \mathcal{A} \llbracket e_2[x \mapsto e] \rrbracket \sigma \tag{B}$$

$$= \mathcal{A}\llbracket e_1 \rrbracket (\sigma[x \mapsto \mathcal{A} \llbracket e \rrbracket \sigma]) \ \overline{op} \ \mathcal{A} \llbracket e_2 \rrbracket (\sigma[x \mapsto \mathcal{A} \llbracket e \rrbracket \sigma]) \tag{**}$$

$$= \mathcal{B}\llbracket e_1 \text{ op } e_2 \rrbracket (\sigma[x \mapsto \mathcal{A}\llbracket e \rrbracket \sigma]), \tag{B}$$

where \overline{op} denotes the operation corresponding to op.

Assignment 3 (Applying Big-Step Semantics)

We use the following abbreviations: l is the statement (a := a+n; b := b*n); n := n-1 and w is the statement while n#0 do l end. To save space, we also introduce the following abbreviation: The notation

$$[v_1, v_2, v_3],$$

where v_1, v_2, v_3 are integer values, stands for the state

$$\sigma[\mathtt{a}\mapsto v_1][\mathtt{b}\mapsto v_2][\mathtt{n}\mapsto v_3],$$

where σ is the initial state mentioned in the exercise.

We construct the derivation tree shown in the following page.

$$\frac{\langle \mathtt{a} := \mathtt{a+n}, [0,1,2] \rangle \to [2,1,2]}{\langle \mathtt{a} := \mathtt{a+n}; \ \mathtt{b} := \mathtt{b+n}, [2,1,2] \rangle \to [2,2,2]} \frac{\langle \mathtt{Ass}_{\mathsf{NS}} \rangle}{\langle \mathtt{s} := \mathtt{a-n}, [0,1,2] \rangle \to [2,2,2]} \frac{\langle \mathtt{Ass}_{\mathsf{NS}} \rangle}{\langle \mathtt{n} := \mathtt{n-1}, [0,1,2] \rangle \to [2,2,1]} \frac{\langle \mathtt{Ass}_{\mathsf{NS}} \rangle}{\langle \mathtt{n} := \mathtt{n-1}, [0,1,2] \rangle \to [2,2,1]} \frac{\langle \mathtt{Ass}_{\mathsf{NS}} \rangle}{\langle \mathtt{n+ile} \ \mathtt{n+0} \ \mathtt{do} \ \mathtt{1} \ \mathtt{end}, [2,2,1]} \frac{\langle \mathtt{Ass}_{\mathsf{NS}} \rangle}{\langle \mathtt{n+ile} \ \mathtt{n+0} \ \mathtt{do} \ \mathtt{1} \ \mathtt{end}, [0,1,2] \rangle \to [2,2,1]} \frac{\langle \mathtt{Ass}_{\mathsf{NS}} \rangle}{\langle \mathtt{n+ile} \ \mathtt{n+0} \ \mathtt{do} \ \mathtt{1} \ \mathtt{end}, [0,1,2] \rangle \to [2,2,1]} \frac{\langle \mathtt{Ass}_{\mathsf{NS}} \rangle}{\langle \mathtt{n+ile} \ \mathtt{n+0} \ \mathtt{do} \ \mathtt{1} \ \mathtt{end}, [0,1,2] \rangle \to [2,2,1]} \frac{\langle \mathtt{Ass}_{\mathsf{NS}} \rangle}{\langle \mathtt{n+ile} \ \mathtt{n+0} \ \mathtt{do} \ \mathtt{1} \ \mathtt{end}, [0,1,2] \rangle \to [2,2,1]} \frac{\langle \mathtt{Ass}_{\mathsf{NS}} \rangle}{\langle \mathtt{n+ile} \ \mathtt{n+0} \ \mathtt{do} \ \mathtt{1} \ \mathtt{end}, [0,1,2] \rangle \to [2,2,1]} \frac{\langle \mathtt{Ass}_{\mathsf{NS}} \rangle}{\langle \mathtt{n+ile} \ \mathtt{n+0} \ \mathtt{do} \ \mathtt{1} \ \mathtt{end}, [0,1,2] \rangle \to [2,2,1]} \frac{\langle \mathtt{Ass}_{\mathsf{NS}} \rangle}{\langle \mathtt{n+ile} \ \mathtt{n+0} \ \mathtt{do} \ \mathtt{1} \ \mathtt{end}, [0,1,2] \rangle \to [2,2,1]} \frac{\langle \mathtt{Ass}_{\mathsf{NS}} \rangle}{\langle \mathtt{n+ile} \ \mathtt{n+0} \ \mathtt{do} \ \mathtt{1} \ \mathtt{end}, [0,1,2] \rangle \to [2,2,1]} \frac{\langle \mathtt{Ass}_{\mathsf{NS}} \rangle}{\langle \mathtt{n+ile} \ \mathtt{n+0} \ \mathtt{do} \ \mathtt{1} \ \mathtt{end}, [0,1,2] \rangle \to [2,2,1]} \frac{\langle \mathtt{Ass}_{\mathsf{NS}} \rangle}{\langle \mathtt{n+ile} \ \mathtt{n+0} \ \mathtt{do}, [0,1,2] \rangle \to [2,2,1]} \frac{\langle \mathtt{Ass}_{\mathsf{NS}} \rangle}{\langle \mathtt{n+ile} \ \mathtt{n+0} \ \mathtt{do}, [0,1,2] \rangle \to [2,2,1]} \frac{\langle \mathtt{Ass}_{\mathsf{NS}} \rangle}{\langle \mathtt{n+1} \ \mathtt{n+1}$$

where T_{1} is the following derivation tree:

$$\frac{\langle \mathtt{a} := \mathtt{a+n}, [2,2,1] \rangle \to [3,2,1]}{\langle \mathtt{a} := \mathtt{a+n}; \ \mathtt{b} := \mathtt{b*n}, [3,2,1] \rangle \to [3,2,1]} \frac{\langle \mathtt{ASS}_{\mathsf{NS}} \rangle}{\langle \mathtt{SEQ}_{\mathsf{NS}} \rangle} \frac{\langle \mathtt{ASS}_{\mathsf{NS}} \rangle}{\langle \mathtt{n} := \mathtt{n-1}, [3,2,1] \rangle \to [3,2,0]} \frac{\langle \mathtt{ASS}_{\mathsf{NS}} \rangle}{\langle \mathtt{n} := \mathtt{n-1}, [3,2,1] \rangle \to [3,2,0]} \frac{\langle \mathtt{ASS}_{\mathsf{NS}} \rangle}{\langle \mathtt{NHF}_{\mathsf{NS}} \rangle} \frac{\langle \mathtt{ASS}_{\mathsf{NS}} \rangle}{\langle \mathtt{n} := \mathtt{a+n}; \ \mathtt{b} := \mathtt{b*n} \rangle; \ \mathtt{n} := \mathtt{n-1}, [2,2,1] \rangle \to [3,2,0]} \frac{\langle \mathtt{ASS}_{\mathsf{NS}} \rangle}{\langle \mathtt{n+11e} \ \mathtt{n+0} \ \mathtt{d} \ \mathtt{0} \ \mathtt{1} \ \mathtt{end}, [2,2,1] \rangle \to [3,2,0]} \frac{\langle \mathtt{ASS}_{\mathsf{NS}} \rangle}{\langle \mathtt{n+1}, \mathtt{$$