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Formal Methods and Functional Programming

Solutions of Exercise Sheet 10: States and Expressions

Assignment 1 (Simplifying State Updates)

Task 1.1: Let the state o, the variable x, and the values v; and vy be arbitrary. We need to
show Vy - o[z +— vi]|[z — v3](y) = o[z — v3](y). Using the definition of state update, for an
arbitrary variable y, we have

Vg ify=x
olz—unlly) fy#zx

_ v ify=x
oly) fy#uw

olz — vz — v](y) = {

Task 1.2: Let the state o, the variables = and y with x # y, and the values v and w be
arbitrary. We need to show that Vz - o[z — v|[y — w] = o[y — w][x +— v]. Using the definition
of state update, for an arbitrary z, we have

uw if z=y
a[xl—>v][y>—>w]<z)—{U[x,_ﬂ,](z) if 2%y
(w IfZEy
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=qw fzZzxand z=y
(0(2) ifzZxandzZy

v fz=x
oy wl(z) ifz#a



= oly = w][z = v](2)

Note that the rewriting of the cases in the step marked with () only works because we assumed
that x #Z y. And, indeed, the overall result is not true with this condition, as we see from the
counter-example with v =1, w =2, and x =y = z:

olx =y w|(z)=w=2#1=v=o0ly— wlz— v|(2)

Task 1.3: Let the variable x, the values v; and v, be arbitrary. We define
P(n) =Vo,g,4 - (|7 = @] =n = oz — vi][§— @[z — vo] = o[§ — @[z — vo])

and prove Vn - P(n) by weak induction over n:

e Base Case: We show P(0). We consider some arbitrary state o and sequences ¢ and « of
variables and values, respectively. We assume |¢| = |@| = 0. In this case, the sequences ¥/
and @ can only be empty. Thus, the claim to be proved is o[z +— v1][z — v3] = o[z — vy],
which immediately follows from Task 1.1.

e Step Case: For some arbitrary n, we assume that P(n) holds and aim to prove that
P(n + 1) also holds. Let the state o and the sequences ¢ and w of variables and values,
respectively, be arbitrary. We assume that |¢] = |W| =n +1, i.e, that ¥ = (Y1, .., Yni1)
and W = (wy, ..., w,y1) for some appropriate variables y; and values w;.

We proceed with a case analysis on the variable y;:
— Case y; = x: By Task 1.1, we have o[z — v1][y; — w1] = o[y; — w;] and therefore
olz — vi]yr = wi][ye = wa] . [Yne1 = Wpaa] [T vg)
= olyr — wi][y2 = wa] . .. [Yny1 > Wpa][T = o],
as required.

— Case y; # x: We have

olz = vilyr = willye = wal .. [Yns1 = Wopa][T Vo)
= oy — wi][z = vi]ye = W] .. [Yna1 = Waia][T > v (Task 1.2)
= olyr = wil[yz = wal . [Ynr1 = W ][z = vy (1H)

where the first equality follows from Task 1.2, and the second equality follows from the
induction hypothesis P(n) (instantiating the quantifiers as follows: o ~~ oly; — wy],
U~ (Y2, ..., Ynr1), and W ~> (wy, ..., w,11); note that we are only able to conclude
the desired claim since i and « are both instantiated with sequences of length n).



Assignment 2 (Substitution Properties)

Recall the definition of substitution on boolean expressions
e1|r—e| op eg[xr—e] ifb=ejopey
blxr—e] = { not V[v—e] if b=not (*)
bi[xre] o by[r—e]  if b= by o by for some o € {and, or}
and the lemma proved in the exercise session

Vo,e, €,z (Alelz—e]]o = Ale](oz—Ale']0])). (**)

Proof: Let the state o, the variable x, and the expression e be arbitrary (note that we deal with
the inner quantifiers first here; several consecutive for-all quantifiers can always be reordered).
We define

P(b) = (B[blz—e]]o = B[b](o[z—Ale]o]))

and prove Vb- P(b) by structural induction on the boolean expression b:

e Or Case: We need to prove P(b; or by), for some boolean expressions by, bs, and may
assume P(by) and P(by) as our induction hypothesis. We have

B[(by or by)[z—e]]|o = B[bi[z+—re] or by[r—e]]o (*)
= B[bi[z—e]]o V B]bz[ze]]o (B)
= B[b1](o[z—Ale]o]) V Bbs](o[x—Ale]o]) (IH)
= B[b; or by](o[r—Ale]o]), (B)

where V denotes the function that maps to tt if at least one of its arguments is tt.
e And Case: Analogous to the previous case.

e Not Case: We need to prove P(not ¥'), for some boolean expression ¥, and may assume
P(¥') as our induction hypothesis. We have
B[(not b')[z+e]]o = Blnot V[z—el]o
= B[V [z—e]]o
= =B[V](c[z—Ale]o]) (IH
= B[(not V)](c[z—Ale]o]),

where — denotes the function that maps tt to ff and ff to tt.

—~ =~
) = =
— — ~— —

e Relation Case: We need to show P(e; op es), for some arithmetic expressions eq, e5 and
and arithmetic relation op. We have

B[(e1 op e9)[z+—e]|o = Bley[xre] op es[z—el]o (*)
= Ale;[z—e]]o op Alex[xr—e]]o (B)
= Aled] (o[ Ale]o]) op Alea] (oz—Ale]o]) (**)
= Ble;y op 3] (c[x—Ale]o]), (B)

where op denotes the operation corresponding to op.



Assignment 3 (Applying Big-Step Semantics)

We use the following abbreviations: [ is the statement (a := a+n; b := b*n); n := n-1
and w is the statement while n#0 do [ end. To save space, we also introduce the following
abbreviation: The notation

[’Ul,UQ,Ug],

where vy, v9, v3 are integer values, stands for the state
ola — vi][b — vs][n > vs],

where o is the initial state mentioned in the exercise.

We construct the derivation tree shown in the following page.
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