Formal Methods and Functional Programming

 Solutions of Exercise Sheet 11: Big-Step Semantics
Assignment 1 (Reversing Loop-Unrolling)

The proof is direct, that is we do not need induction here. Let $\sigma, \sigma^{\prime}, b, s$ be arbitrary. To prove the implication, we assume $\vdash\langle$ if b then s; while b do s end else skip end, $\sigma\rangle \rightarrow \sigma^{\prime}$ and we just need to prove $\vdash\langle$ while b do s end, $\sigma\rangle \rightarrow \sigma^{\prime}$, which we will do by providing a suitable derivation tree.

From our assumption, it follows that there is some derivation tree T such that

$$
\operatorname{root}(T) \equiv\langle\text { if } b \text { then } s \text {; while } b \text { do } s \text { end else skip end, } \sigma\rangle \rightarrow \sigma^{\prime} .
$$

We consider two cases with respect to the last rule applied in the derivation tree T :

- Case IfT $\mathrm{T}_{N S}$: Then T has the form:

for some derivation tree T^{\prime}. From the side condition we learn $\mathcal{B} \llbracket b \rrbracket \sigma=t t$. In the subderivation T^{\prime}, the last rule applied must be the rule for sequential composition. Thus, we learn further that T has the form:

$$
\frac{T_{2}}{\left\langle\frac{T_{1}}{\langle s, \sigma\rangle \rightarrow \sigma^{\prime \prime}}\right.} \frac{\left\langle\text { while } b \text { do } s \text { end, } \sigma^{\prime \prime}\right\rangle \rightarrow \sigma^{\prime}}{\langle\text { if } b \text { then } s \text {; while } b \text { do } s \text { do } s \text { end, } \sigma\rangle \rightarrow \sigma^{\prime}}\left(\operatorname{SEQ}_{N S}\right)
$$

for some derivation trees T_{1}, T_{2} and state $\sigma^{\prime \prime}$. Using this information, including the fact that $\mathcal{B} \llbracket b \rrbracket \sigma=t t$, we can construct the following derivation tree (with the desired root):

- Case $\mathrm{IFF}_{N s}$: Then T has the form:

$$
\frac{T^{\prime}}{\langle\text { if } b \text { then } s \text {; while } b \text { do } s \text { end else skip end, } \sigma\rangle \rightarrow \sigma^{\prime}}\left(\operatorname{IFF}_{N S}\right)
$$

for some derivation tree T^{\prime}. From the side condition we learn $\mathcal{B} \llbracket b \rrbracket \sigma=f f$. Since the last rule applied in T^{\prime} must be $\operatorname{SkIP}_{N S}$, we conclude that in fact $\sigma=\sigma^{\prime}$. Thus the following derivation tree actually has the desired root:

$$
\overline{\langle\text { while } b \text { do } s \text { end, } \sigma\rangle \rightarrow \sigma}\left(\mathrm{WHF}_{N S}\right)
$$

Assignment 2 (Execution only Affects Free Variables)

Define $P(T)$ to be the statement:

$$
\left.\forall s, \sigma, \sigma^{\prime}, x \cdot\left(\operatorname{root}(T) \equiv\langle s, \sigma\rangle \rightarrow \sigma^{\prime}\right) \wedge x \notin F V(s) \Longrightarrow \sigma^{\prime}(x)=\sigma(x)\right)
$$

We prove $\forall T \cdot P(T)$ (which is equivalent to the statement to be proved) by induction on the shape of the derivation tree T. Thus, for an arbitrary tree T, we get as the induction hypothesis $\forall T^{\prime} \sqsubset T \cdot P\left(T^{\prime}\right)$, and need to prove $P(T)$.

Let $s, \sigma, \sigma^{\prime}, x$ be arbitrary, and assume $\operatorname{root}(T) \equiv\langle s, \sigma\rangle \rightarrow \sigma^{\prime}$ and $x \notin F V(s)$. Then, we need to prove $\sigma^{\prime}(x)=\sigma(x)$. We consider all the cases with respect to the last rule applied in the derivation tree T :

- Case Skip ${ }_{N S}$: Then T must be of the form:

$$
\overline{\langle\text { skip }, \sigma\rangle \rightarrow \sigma}\left(\operatorname{SKIP}_{N S}\right)
$$

i.e., we must have $s \equiv$ skip and $\sigma^{\prime}=\sigma$. Thus, $\sigma^{\prime}(x)=\sigma(x)$ trivially follows.

- Case $\mathrm{Ass}_{n s}$: Then T must be of the form:

$$
\overline{\langle y:=e, \sigma\rangle \rightarrow \sigma[y \mapsto \mathcal{A} \llbracket e \rrbracket \sigma]}\left(\mathrm{Ass}_{N S}\right)
$$

for some y and e, and thus we must have $s \equiv y:=e$ and $\sigma^{\prime}=\sigma[y \mapsto \mathcal{A} \llbracket e \rrbracket \sigma]$. Since $F V(s)=\{y\} \cup F V(e)$ and we assumed $x \notin F V(s)$, we must have $x \not \equiv y$. Thus, by the definition of state update, $\sigma^{\prime}(x)=\sigma[y \mapsto \mathcal{A} \llbracket e \rrbracket \sigma](x)=\sigma(x)$ as required.

- Case $\mathrm{IfT}_{N S}$: Then T must be of the form:

$$
\frac{T_{1}}{\left\langle\text { if } b \text { then }^{\prime} s^{\prime} \text { else } s^{\prime \prime} \text { end, } \sigma\right\rangle \rightarrow \sigma^{\prime}}\left(\text { IFT }_{N S}\right)
$$

for some derivation tree T_{1} and some $b, s^{\prime}, s^{\prime \prime}$ such that $s \equiv$ if b then s^{\prime} else $s^{\prime \prime}$ end. Since $T_{1} \sqsubset T$, we can obtain $P\left(T_{1}\right)$ from our I.H., i.e., we know (renaming quantified variables to avoid confusion):

$$
\forall s_{1}, \sigma_{1}, \sigma_{1}^{\prime}, x_{1} \cdot\left(\left(\operatorname{root}\left(T_{1}\right) \equiv\left\langle s_{1}, \sigma_{1}\right\rangle \rightarrow \sigma_{1}^{\prime}\right) \wedge x_{1} \notin F V\left(s_{1}\right) \Longrightarrow \sigma_{1}^{\prime}\left(x_{1}\right)=\sigma_{1}\left(x_{1}\right)\right)
$$

To get something useful from this statement, we need to instantiate the quantified variables so that the left-hand side of the implication is true. Given that we know the root of T_{1} already, we instantiate s_{1} to be s^{\prime}, and σ_{1} to be σ, and σ_{1}^{\prime} to be σ^{\prime}. Additionally, we instantiate x_{1} to be x, since this is the only variable about which we have useful information (in particular, from our assumption $x \notin F V(s)$, we can obtain $x \notin F V\left(s^{\prime}\right)$, since $F V\left(s^{\prime}\right) \subseteq F V(s)$). From these instantiations, we obtain

$$
\left.\left(\operatorname{root}\left(T_{1}\right) \equiv\left\langle s^{\prime}, \sigma\right\rangle \rightarrow \sigma^{\prime}\right) \wedge x \notin F V\left(s^{\prime}\right) \Longrightarrow \sigma^{\prime}(x)=\sigma(x)\right)
$$

Since the left-hand side of the implication holds, we conclude that $\sigma^{\prime}(x)=\sigma(x)$, which is what we needed to prove.

- Case IfF $\mathrm{I}_{N S}$: Analogous to the case $\mathrm{IFT}_{N s}$.
- Case $\mathrm{WhT}_{N S}$: Then T must be of the form:

for some derivation trees T_{1}, T_{2}, some $b, s^{\prime}, \sigma^{\prime \prime}$, and we must have $s \equiv$ while b do s^{\prime} end.
From our I.H. (since $T_{1} \sqsubset T$), instantiating the quantified variables to match the known root of T_{1}, we can obtain $\left(\operatorname{root}\left(T_{1}\right) \equiv\left\langle s^{\prime}, \sigma\right\rangle \rightarrow \sigma^{\prime \prime}\right) \wedge x \notin F V\left(s^{\prime}\right) \Longrightarrow \sigma^{\prime \prime}(x)=\sigma(x)$. The left-hand side of this implication holds (in particular, we have $x \notin F V\left(s^{\prime}\right)$ since $F V\left(s^{\prime}\right) \subseteq F V(s)$), and thus we conclude the right-hand side $\sigma^{\prime \prime}(x)=\sigma(x)$.

Next, we can similarly apply the induction hypothesis to the derivation tree T_{2} in order to obtain that $\left(\operatorname{root}\left(T_{2}\right) \equiv\left\langle s^{\prime \prime}, \sigma^{\prime \prime}\right\rangle \rightarrow \sigma^{\prime}\right) \wedge x \notin F V\left(s^{\prime \prime}\right) \Longrightarrow \sigma^{\prime}(x)=\sigma^{\prime \prime}(x)$, where $s^{\prime \prime} \equiv$ while b do s^{\prime} end, and thus (since the left-hand side of the implication holds), we conclude $\sigma^{\prime}(x)=\sigma^{\prime \prime}(x)$. Combining the two equalities, we have $\sigma^{\prime}(x)=\sigma(x)$, as required.

- Case $\mathrm{WhF}_{n s}$: Analogous to the case $\operatorname{SKIP}_{\text {NS }}$.
- Case $\mathrm{SEQ}_{N S}$: Analogous to the case $\mathrm{WhT}_{N S}$.

