
P. Müller and D. Basin

Formal Methods and Functional Programming

Solutions of Exercise Sheet 11: Big-Step Semantics

Assignment 1 (Reversing Loop-Unrolling)

The proof is direct, that is we do not need induction here. Let σ, σ′, b, s be arbitrary. To prove the
implication, we assume ⊢ ⟨if b then s; while b do s end else skip end, σ⟩ → σ′ and we
just need to prove ⊢ ⟨while b do s end, σ⟩ → σ′, which we will do by providing a suitable
derivation tree.

From our assumption, it follows that there is some derivation tree T such that

root(T ) ≡ ⟨if b then s; while b do s end else skip end, σ⟩ → σ′.

We consider two cases with respect to the last rule applied in the derivation tree T :

• Case IfTNS: Then T has the form:

A
A
AA

�
�
��

T ′

⟨s; while b do s end, σ⟩ → σ′

(IfTNS)
⟨if b then s; while b do s end else skip end, σ⟩ → σ′

for some derivation tree T ′. From the side condition we learn B[[b]]σ = tt . In the sub-
derivation T ′, the last rule applied must be the rule for sequential composition. Thus, we
learn further that T has the form:

A
A
AA

�
�
��

T1

⟨s, σ⟩ → σ′′

A
A
AA

�
�
��

T2

⟨while b do s end, σ′′⟩ → σ′

(SeqNS)
⟨s; while b do s end, σ⟩ → σ′

(IfTNS)
⟨if b then s; while b do s end else skip end, σ⟩ → σ′

1



for some derivation trees T1, T2 and state σ′′. Using this information, including the fact
that B[[b]]σ = tt , we can construct the following derivation tree (with the desired root):

A
A
AA

�
�
��

T1

⟨s, σ⟩ → σ′′

A
A
AA

�
�

��

T2

⟨while b do s end, σ′′⟩ → σ′

(WhTNS)
⟨while b do s end, σ⟩ → σ′

• Case IfFNS: Then T has the form:

A
A
AA

�
�
��

T ′

⟨skip, σ⟩ → σ′

(IfFNS)
⟨if b then s; while b do s end else skip end, σ⟩ → σ′

for some derivation tree T ′. From the side condition we learn B[[b]]σ = ff . Since the last
rule applied in T ′ must be SkipNS, we conclude that in fact σ = σ′. Thus the following
derivation tree actually has the desired root:

(WhFNS)
⟨while b do s end, σ⟩ → σ

Assignment 2 (Execution only Affects Free Variables)

Define P (T ) to be the statement:

∀s, σ, σ′, x ·
(
root(T ) ≡ ⟨s, σ⟩ → σ′) ∧ x ̸∈ FV (s) =⇒ σ′(x) = σ(x)

)
We prove ∀T · P (T ) (which is equivalent to the statement to be proved) by induction on the
shape of the derivation tree T . Thus, for an arbitrary tree T , we get as the induction hypothesis
∀T ′ ⊏ T · P (T ′), and need to prove P (T ).

Let s, σ, σ′, x be arbitrary, and assume root(T ) ≡ ⟨s, σ⟩ → σ′ and x ̸∈ FV (s). Then, we need
to prove σ′(x) = σ(x). We consider all the cases with respect to the last rule applied in the
derivation tree T :

• Case SkipNS: Then T must be of the form:

(SkipNS)
⟨skip, σ⟩ → σ

i.e., we must have s ≡ skip and σ′ = σ. Thus, σ′(x) = σ(x) trivially follows.

• Case AssNS: Then T must be of the form:

(AssNS)
⟨y := e, σ⟩ → σ[y 7→ A[[e]]σ]

2



for some y and e, and thus we must have s ≡ y := e and σ′ = σ[y 7→ A[[e]]σ]. Since
FV (s) = {y} ∪ FV (e) and we assumed x ̸∈ FV (s), we must have x ̸≡ y. Thus, by the
definition of state update, σ′(x) = σ[y 7→ A[[e]]σ](x) = σ(x) as required.

• Case IfTNS: Then T must be of the form:

A
A
AA

�
�
��

T1

⟨s′, σ⟩ → σ′

(IfTNS)
⟨if b then s′ else s′′ end, σ⟩ → σ′

for some derivation tree T1 and some b, s′, s′′ such that s ≡ if b then s′ else s′′ end.
Since T1 ⊏ T , we can obtain P (T1) from our I.H., i.e., we know (renaming quantified
variables to avoid confusion):

∀s1, σ1, σ
′
1, x1 ·

(
(root(T1) ≡ ⟨s1, σ1⟩ → σ′

1) ∧ x1 ̸∈ FV (s1) =⇒ σ′
1(x1) = σ1(x1)

)
To get something useful from this statement, we need to instantiate the quantified variables
so that the left-hand side of the implication is true. Given that we know the root of
T1 already, we instantiate s1 to be s′, and σ1 to be σ, and σ′

1 to be σ′. Additionally,
we instantiate x1 to be x, since this is the only variable about which we have useful
information (in particular, from our assumption x ̸∈ FV (s), we can obtain x ̸∈ FV (s′),
since FV (s′) ⊆ FV (s)). From these instantiations, we obtain

(root(T1) ≡ ⟨s′, σ⟩ → σ′) ∧ x ̸∈ FV (s′) =⇒ σ′(x) = σ(x))

Since the left-hand side of the implication holds, we conclude that σ′(x) = σ(x), which is
what we needed to prove.

• Case IfFNS: Analogous to the case IfTNS.

• Case WhTNS: Then T must be of the form:

A
A
AA

�
�
��

T1

⟨s′, σ⟩ → σ′′

A
A
AA

�
�
��

T2

⟨while b do s′ end, σ′′⟩ → σ′

(WhTNS)
⟨while b do s′ end, σ⟩ → σ′

for some derivation trees T1, T2, some b, s′, σ′′, and we must have s ≡ while b do s′ end.

From our I.H. (since T1 ⊏ T ), instantiating the quantified variables to match the known
root of T1, we can obtain (root(T1) ≡ ⟨s′, σ⟩ → σ′′) ∧ x ̸∈ FV (s′) =⇒ σ′′(x) = σ(x).
The left-hand side of this implication holds (in particular, we have x ̸∈ FV (s′) since
FV (s′) ⊆ FV (s)), and thus we conclude the right-hand side σ′′(x) = σ(x).

Next, we can similarly apply the induction hypothesis to the derivation tree T2 in order
to obtain that (root(T2) ≡ ⟨s′′, σ′′⟩ → σ′) ∧ x ̸∈ FV (s′′) =⇒ σ′(x) = σ′′(x), where
s′′ ≡ while b do s′ end, and thus (since the left-hand side of the implication holds), we
conclude σ′(x) = σ′′(x). Combining the two equalities, we have σ′(x) = σ(x), as required.

3



• Case WhFNS: Analogous to the case SkipNS.

• Case SeqNS: Analogous to the case WhTNS.

4


