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Formal Methods and Functional Programming

Solutions of Exercise Sheet 12: Small Step Semantics

Assignment 1 (Applying Small-Step Semantics)

Let s’ be the body of the loop.

(s,0) —1 (if n # 0 then s’; s else skip end, o)
((a := atn; (b := b*n; n := n-1)); s,0)

((b := b*n; n := n-1); s,ola— 2])

(n :=n-1; s,o[a,b— 2,2])

(s,ola,b n|—>2,2,1}>

(if n # 0 then s’; s else skip end,o[a,b,n+— 2,2 1])
((a := at+n; (b := b*n; n :=n-1)); s,ola,bn— 2,2 1])
((b := b*n; n := n-1); s,ola,b,n+— 3,2,1])

(n := n-1; s,ola,b,n+— 3,2,1])

(s,ola,b,n+— 3,2,0])

i
(
(
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—1 (if n # 0 then s’; s else skip end, o[a,b,n+— 3,2,0])
—1 (skip,ofa,b,n > 3,2,0])
—>10[abnr—>3 2,0]

The first three single-step transitions are justified by the following three derivation trees:

(WHILEs0s)
(s,0) =1 (if n # 0 then s’;s else skip end, o)

, ) (IFTs0s)
(if n # O then s’;s else skip end,0) = ((a:=a+n;(b:=b*n;n:=n—1));s,0)



Where the side condition for IFT o5 namely B[n # 0]o = tt holds.

Ass
(a:=a+n,0) —>10[a»—>2]( s05)

(SEQls05)

(a:=a+n;(b:=bx*xn;n:=n—1),0) =1 (b:=b*n;n:=n—1),0[a— 2|)
(SEQ2505)

((a:=a+mn;(b:=bxn;n:=n—1));s,0) = ((b:=b*n;n:=n—1);s,0[a— 2|)

Assignment 2 (Proof of Equivalence Lemmas)

Task 2.1 We define
P(T)=Vo,0',s (root(T) = ((s,0) = 0') = (s,0) =] ')

and prove VT'- P(T') by strong induction on the shape of the derivation tree T. Thus, for some arbi-
trary T, we get as induction hypothesis V1"  T-P(T"), and need to prove P(T).

Let 0,0, s be arbitrary. We assume root(T') = ((s,0) — o¢’) and prove (s,o) —1 ¢’. The proof
proceeds by case splitting on the last rule applied in T'.

e Case AsSyg: Then T is of the form:

(o = e0) > oz Alelo] )

for some z, e such that s = = := e and 0’ = o[z — A]e]o]. Now we can construct a
derivation tree to justify (s, o) —1 o”:

(x := e,0) =1 oz — Ale]o] (AsSsos)

e Case SKiPyg: Analogous to ASSys.

e Case WHF\g: Then T is of the form

WHF
(while b do §' end,0) —» 0 ( Ns)

for some b, s’ such that s = while b do s’ end, 0’ = o and B[b]o = ff.

We conclude with the following derivation sequence:

(while b do §' end,o)
—1 (if b then s';while b do s’ end else skip end, o)
—; (skip,0)
—1 O

The second transition is justified by IFFgog, since B[b]o = ff.



Case SEQng: Then T is of the form

Ty 15

/

(s9,0") = o
(SEQns)

(s1;80,0) = 0

for some sq, s9,0”,T1,T5, such that s = s1; 9.

We apply the IH twice. From P(T7) we learn (s;,0) —7 ¢” and from P(T5) we learn
(s9,0") =7 0. (s1,0) =71 0" gives us (s1,0) —% o for some k. We can apply the results
from Assignment 3 (optional exercises) on (s1,0) =% 0" to get (s1; 52, 0) =5 (s9,0").

We conclude this case with the following derivation sequence:

(81589, 0) =7 (s9,0") =7 o

Case IFT'yg: Then T is of the form
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(s1,0) = o’

(IFTNs)
(if b then s; else sy end, o) — o’

for some b, sy, s2, T3, such that s = if b then s; else sy end and B[b]o = tt.
From P(T3) we learn (s1,0) —7 o’

We conclude this case with the following derivation sequence:
(if b then s; else sy end, o) —1 (s1,0) =% o’

The first transition is justified by IFTs0g, since B[b]o = tt.
Case IFFns: Analogous to IFTys.

Case WHT'yg: Then T is of the form

T4 T5

(s',o) = d” (while b do s end,o”) — o

- , ; (WHTNs)
(while b do s end,0) — 0

for some b, s', 0", Ty, T5, such that s = while b do s’ end and B[b]o = tt.

7

We apply (IH) twice. From P(T;) we learn (s’,0) —i o¢”. From P(T5) we learn
(while b do &' end,o”) —% o'. (s/,0) —% 0" gives us (s',0) —% o” for some k.



We can apply the result of Assignment 3 (optional exercises) on it to get
((s';while b do s’ end),o) —¥ (while b do &' end,o”).

We conclude this case with the following derivation sequence:

(while b do §' end,o)
—1 (if b then (s;while b do s’ end) else skip,o)
—1 {((s';while b do s end),o)
—% (while b do s’ end,o”)
—7 o

The second transition is justified by IFTs0g, since B[b]o = tt.

Task 2.2 We define

Q(k) =Vo,0',5-(s,0) =¥ o/ = F (s,0) = o

and prove VEk - Q(k) by strong mathematical induction on k.

For arbitrary k assume V&' < k-Q(k’) and prove Q(k). Let o, 0’, s be arbitrary. Case splitting on
the condition k£ > 0 immediately proves the case for k = 0 (the assumptions lead to (s, o) —9 ¢/,
which is a contradiction). So we are left with case k > 0. Assume (s,0) —% o’ and prove
F(s,0) = o'

We unroll the derivation sequence once to (s,0) —1 v —%"! ¢/, Let T be the derivation tree

which justifies the first transition. We inspect the last rule applied to 7.

e Case ASSgpog: Then T is of the form

Ass
(x 1= e,0) = oz — Ale]o] (Asssos)
for some x, e such that s =z := e and v = o[z — A[e]o]. Since ~ is a final state there
is no further derivation sequence (k = 1), and hence 0/ = v = o[z — Afe]o]. Now we
can construct a derivation tree for (z := e,0) — 0"
(Assyg)

(x := e,0) = olx — Ale]o]

e Case SKIPsog: Similar to ASSgog, we apply the corresponding NS rule and are done.

e Case SEQlgsos, SEQ250s: Then we must have root(T) = (sq1;$2,0) —1 7 and hence
F (s1; 82,0) —1 7y for some statements s1, o, such that s = s1; $o.

Returning to our original assumption, we apply the lemma proven on the lecture slides on
(51;50,0) =k o', We get (s1,0) =% ¢” and (sq,0") =52 o', for some 0", ki, ks, such
that /ﬁ + kz =k.

Note that k1 # 0 and ky # 0 (otherwise, by the definition of —? we would have to have a
non-final configuration equal to a state, e.g. (s1,0) = ¢”, which is impossible). Therefore,
we must have k; < k and ky < k.



Since kq, ks < k we can apply the IH twice. From Q (k1) we learn - (s1,0) — ¢” and from
Q(k2) we learn = (s5,0") — o’. Let T, T be the corresponding derivation trees, such
that root(T1) = (s1,0) — ¢” and root(Ty) = (s3,0") — o

Now we can construct the derivation tree for I (s;; s9,0) — o’ as follows:

Ty T
(s1,0) = " (89,0")y = o’
(SEQNS)
(s1;82,0) = 0
Case IFTgpg: Then T is of the form
(IFTsos)

(if b then s; else sy end, o) — (s1,0)
for some b, s1, 5o, such that s = if b then s; else sy end and B[bJo = tt. Therefore
the unrolled derivation sequence is of the form:

(if b then s; else sy end, o) — (s1,0) =410’

We apply the IH to the tail sequence, and get root(T3) = (s1,0) — o’ for some derivation
tree T3, which enables us to conclude this case by constructing the derivation tree:
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(s1,0) = o’

(IFTNS>
(if b then s; else sy end,0) — o’

The side condition is fulfilled since we know B[b]o = tt.
Case IFFgog: Analogous to IFTgos.

Case WHILEgog: Then T is of the form

WHILE
(while b do §' end,o) —1 v ( s0s)

for some b, s',~y, such that v = (if b then s;while b do s’ end else skip end, o)
and s = while b do s’ end. Therefore the unrolled derivation sequence is of the form:

(while b do §' end,o)

—1 (if b then s';while b do s’ end else skip end, o)

_>lf71 0/



We apply the IH to the tail sequence, and get

- (if b then s’;while b do s’ end else skip end,o) — o’

From the semantic equivalence shown in the lecture (Slide Deck 3, section 3.1.2), we get
t (while b do s’ end,o) — o', which concludes this case.

Note: We can also “manually” conclude this case, i.e. not use the semantic equivalence.
This requires a case split on which branch of the if-statement is taken, and some decom-
posing and recomposing of the resulting derivation tree.



