Formal Methods and Functional Programming Solutions of Exercise Sheet 12: Small Step Semantics

Assignment 1 (Applying Small-Step Semantics)

Let s' be the body of the loop.

$$\begin{array}{ll} \langle \mathbf{s}, \sigma \rangle & \rightarrow_1^1 \left\langle \text{if n \# 0 then s'; s else skip end}, \sigma \right\rangle \\ & \rightarrow_1^1 \left\langle (\mathbf{a} := \mathbf{a} + \mathbf{n}; (\mathbf{b} := \mathbf{b} * \mathbf{n}; \mathbf{n} := \mathbf{n} - 1) \right\rangle; \mathbf{s}, \sigma \rangle \\ & \rightarrow_1^1 \left\langle (\mathbf{b} := \mathbf{b} * \mathbf{n}; \mathbf{n} := \mathbf{n} - 1); \mathbf{s}, \sigma [\mathbf{a} \mapsto 2] \right\rangle \\ & \rightarrow_1^1 \left\langle \mathbf{n} := \mathbf{n} - 1; \mathbf{s}, \sigma [\mathbf{a}, \mathbf{b} \mapsto 2, 2] \right\rangle \\ & \rightarrow_1^1 \left\langle \mathbf{s}, \sigma [\mathbf{a}, \mathbf{b}, \mathbf{n} \mapsto 2, 2, 1] \right\rangle \\ & \rightarrow_1^1 \left\langle \text{if n \# 0 then s'; s else skip end}, \sigma [\mathbf{a}, \mathbf{b}, \mathbf{n} \mapsto 2, 2, 1] \right\rangle \\ & \rightarrow_1^1 \left\langle (\mathbf{a} := \mathbf{a} + \mathbf{n}; (\mathbf{b} := \mathbf{b} * \mathbf{n}; \mathbf{n} := \mathbf{n} - 1) \right\rangle; \mathbf{s}, \sigma [\mathbf{a}, \mathbf{b}, \mathbf{n} \mapsto 2, 2, 1] \right\rangle \\ & \rightarrow_1^1 \left\langle (\mathbf{b} := \mathbf{b} * \mathbf{n}; \mathbf{n} := \mathbf{n} - 1); \mathbf{s}, \sigma [\mathbf{a}, \mathbf{b}, \mathbf{n} \mapsto 3, 2, 1] \right\rangle \\ & \rightarrow_1^1 \left\langle \mathbf{n} := \mathbf{n} - 1; \mathbf{s}, \sigma [\mathbf{a}, \mathbf{b}, \mathbf{n} \mapsto 3, 2, 1] \right\rangle \\ & \rightarrow_1^1 \left\langle \text{if n \# 0 then s'; s else skip end}, \sigma [\mathbf{a}, \mathbf{b}, \mathbf{n} \mapsto 3, 2, 0] \right\rangle \\ & \rightarrow_1^1 \left\langle \text{skip}, \sigma [\mathbf{a}, \mathbf{b}, \mathbf{n} \mapsto 3, 2, 0] \right\rangle \\ & \rightarrow_1^1 \sigma [\mathbf{a}, \mathbf{b}, \mathbf{n} \mapsto 3, 2, 0] \end{array}$$

The first three single-step transitions are justified by the following three derivation trees:

 $\frac{1}{\langle {\tt s},\sigma\rangle \to_1 \langle {\tt if n \ \# \ 0 \ then \ s'; s \ else \ skip \ end, }\sigma\rangle} \left({\tt WHILE}_{SOS} \right)$

$$\overline{\langle \texttt{if n \# 0 then s';s else skip end}, \sigma \rangle \rightarrow_1 \langle (\texttt{a:=a+n;(b:=b*n;n:=n-1));s, \sigma} \rangle} \ (\texttt{IFT}_{SOS})$$

Where the side condition for IFT_{SOS} namely $\mathcal{B}[n \# 0]\sigma = tt$ holds.

$$\frac{\overline{\langle \mathbf{a} := \mathbf{a} + \mathbf{n}, \sigma \rangle \rightarrow_1 \sigma[\mathbf{a} \mapsto 2]} }{\langle \mathbf{a} := \mathbf{a} + \mathbf{n}; (\mathbf{b} := \mathbf{b} * \mathbf{n}; \mathbf{n} := \mathbf{n} - 1), \sigma \rangle \rightarrow_1 \langle (\mathbf{b} := \mathbf{b} * \mathbf{n}; \mathbf{n} := \mathbf{n} - 1), \sigma[\mathbf{a} \mapsto 2] \rangle} (\operatorname{SEQ1}_{SOS}) } \\ \frac{\langle (\mathbf{a} := \mathbf{a} + \mathbf{n}; (\mathbf{b} := \mathbf{b} * \mathbf{n}; \mathbf{n} := \mathbf{n} - 1); \sigma \rangle \rightarrow_1 \langle (\mathbf{b} := \mathbf{b} * \mathbf{n}; \mathbf{n} := \mathbf{n} - 1); \sigma[\mathbf{a} \mapsto 2] \rangle}{\langle (\mathbf{a} := \mathbf{a} + \mathbf{n}; (\mathbf{b} := \mathbf{b} * \mathbf{n}; \mathbf{n} := \mathbf{n} - 1); \mathbf{s}, \sigma[\mathbf{a} \mapsto 2] \rangle} (\operatorname{SEQ2}_{SOS}) }$$

Assignment 2 (Proof of Equivalence Lemmas)

Task 2.1 We define

$$P(T) \equiv \forall \sigma, \sigma', s \cdot \left(\mathsf{root}(T) \equiv \left(\langle s, \sigma \rangle \to \sigma' \right) \implies \langle s, \sigma \rangle \to_1^* \sigma' \right)$$

and prove $\forall T \cdot P(T)$ by strong induction on the shape of the derivation tree T. Thus, for some arbitrary T, we get as induction hypothesis $\forall T' \sqsubset T \cdot P(T')$, and need to prove P(T).

Let σ, σ', s be arbitrary. We assume $root(T) \equiv (\langle s, \sigma \rangle \rightarrow \sigma')$ and prove $\langle s, \sigma \rangle \rightarrow_1^* \sigma'$. The proof proceeds by case splitting on the last rule applied in T.

• Case Ass_{NS} : Then T is of the form:

$$\overline{\langle x := e, \sigma \rangle \to \sigma[x \mapsto \mathcal{A}\llbracket e \rrbracket \sigma]}$$
(Ass_{NS})

for some x, e such that $s \equiv x := e$ and $\sigma' = \sigma[x \mapsto \mathcal{A}\llbracket e \rrbracket \sigma]$. Now we can construct a derivation tree to justify $\langle s, \sigma \rangle \rightarrow_1^1 \sigma'$:

$$\overline{\langle x := e, \sigma \rangle \to_1 \sigma[x \mapsto \mathcal{A}\llbracket e \rrbracket \sigma]}$$
(Ass_{SOS})

- Case $S_{KIP_{NS}}$: Analogous to Ass_{NS} .
- Case WHF_{NS} : Then T is of the form

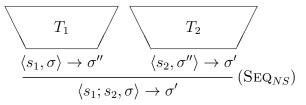
$$\overline{\langle \texttt{while } b \texttt{ do } s' \texttt{ end}, \sigma \rangle \rightarrow \sigma} \ (\texttt{WHF}_{NS})$$

for some b, s' such that $s \equiv$ while b do s' end, $\sigma' = \sigma$ and $\mathcal{B}[\![b]\!]\sigma = f\!f$. We conclude with the following derivation sequence:

$$\begin{array}{l} \langle \texttt{while } b \texttt{ do } s' \texttt{ end}, \sigma \rangle \\ \rightarrow_1^1 \quad \langle \texttt{if } b \texttt{ then } s' \texttt{; while } b \texttt{ do } s' \texttt{ end else skip end}, \sigma \rangle \\ \rightarrow_1^1 \quad \langle \texttt{skip}, \sigma \rangle \\ \rightarrow_1^1 \quad \sigma \end{array}$$

The second transition is justified by IFF_{SOS}, since $\mathcal{B}[\![b]\!]\sigma = f\!f$.

• Case SEQ_{NS}: Then T is of the form



for some $s_1, s_2, \sigma'', T_1, T_2$, such that $s \equiv s_1; s_2$.

We apply the IH twice. From $P(T_1)$ we learn $\langle s_1, \sigma \rangle \rightarrow_1^* \sigma''$ and from $P(T_2)$ we learn $\langle s_2, \sigma'' \rangle \rightarrow_1^* \sigma'$. $\langle s_1, \sigma \rangle \rightarrow_1^* \sigma''$ gives us $\langle s_1, \sigma \rangle \rightarrow_1^k \sigma''$ for some k. We can apply the results from Assignment 3 (optional exercises) on $\langle s_1, \sigma \rangle \rightarrow_1^k \sigma''$ to get $\langle s_1; s_2, \sigma \rangle \rightarrow_1^k \langle s_2, \sigma'' \rangle$.

We conclude this case with the following derivation sequence:

$$\langle s_1; s_2, \sigma \rangle \to_1^* \langle s_2, \sigma'' \rangle \to_1^* \sigma'$$

• Case IFT_{NS} : Then T is of the form

for some b, s_1, s_2, T_3 , such that $s \equiv \text{if } b$ then s_1 else s_2 end and $\mathcal{B}[\![b]\!]\sigma = tt$. From $P(T_3)$ we learn $\langle s_1, \sigma \rangle \to_1^* \sigma'$.

We conclude this case with the following derivation sequence:

(if b then s_1 else s_2 end, σ) $\rightarrow_1^1 \langle s_1, \sigma \rangle \rightarrow_1^* \sigma'$

The first transition is justified by IFT_{SOS}, since $\mathcal{B}[\![b]\!]\sigma = tt$.

- Case IFF_{NS} : Analogous to IFT_{NS} .
- Case WHT_{NS} : Then T is of the form

$$\begin{array}{c|c} T_4 & T_5 \\ \hline \hline \langle s', \sigma \rangle \to \sigma'' & \langle \texttt{while } b \texttt{ do } s' \texttt{ end}, \sigma'' \rangle \to \sigma' \\ \hline & \langle \texttt{while } b \texttt{ do } s' \texttt{ end}, \sigma \rangle \to \sigma' \end{array} (\text{WHT}_{NS})$$

for some $b, s', \sigma'', T_4, T_5$, such that $s \equiv$ while b do s' end and $\mathcal{B}[\![b]\!]\sigma = tt$.

We apply (IH) twice. From $P(T_4)$ we learn $\langle s', \sigma \rangle \rightarrow_1^* \sigma''$. From $P(T_5)$ we learn $\langle \text{while } b \text{ do } s' \text{ end}, \sigma'' \rangle \rightarrow_1^* \sigma'$. $\langle s', \sigma \rangle \rightarrow_1^* \sigma''$ gives us $\langle s', \sigma \rangle \rightarrow_1^k \sigma''$ for some k.

We can apply the result of Assignment 3 (optional exercises) on it to get $\langle (s'; \text{while } b \text{ do } s' \text{ end}), \sigma \rangle \rightarrow_1^k \langle \text{while } b \text{ do } s' \text{ end}, \sigma'' \rangle$.

We conclude this case with the following derivation sequence:

 $\begin{array}{l} \langle \texttt{while } b \texttt{ do } s' \texttt{ end}, \sigma \rangle \\ \rightarrow_1^1 \quad \langle \texttt{if } b \texttt{ then } (s';\texttt{while } b \texttt{ do } s' \texttt{ end}) \texttt{ else } \texttt{skip}, \sigma \rangle \\ \rightarrow_1^1 \quad \langle (s';\texttt{while } b \texttt{ do } s' \texttt{ end}), \sigma \rangle \\ \rightarrow_1^* \quad \langle \texttt{while } b \texttt{ do } s' \texttt{ end}, \sigma'' \rangle \\ \rightarrow_1^* \quad \sigma' \end{array}$

The second transition is justified by IFT_{SOS}, since $\mathcal{B}[\![b]\!]\sigma = tt$.

Task 2.2 We define

$$Q(k) \equiv \forall \sigma, \sigma', s \cdot \langle s, \sigma \rangle \rightarrow^k_1 \sigma' \implies \vdash \langle s, \sigma \rangle \rightarrow \sigma'$$

and prove $\forall k \cdot Q(k)$ by strong mathematical induction on k.

For arbitrary k assume $\forall k' < k \cdot Q(k')$ and prove Q(k). Let σ, σ', s be arbitrary. Case splitting on the condition k > 0 immediately proves the case for k = 0 (the assumptions lead to $\langle s, \sigma \rangle \rightarrow_1^0 \sigma'$, which is a contradiction). So we are left with case k > 0. Assume $\langle s, \sigma \rangle \rightarrow_1^k \sigma'$ and prove $\vdash \langle s, \sigma \rangle \rightarrow \sigma'$.

We unroll the derivation sequence once to $\langle s, \sigma \rangle \rightarrow_1^1 \gamma \rightarrow_1^{k-1} \sigma'$. Let T be the derivation tree which justifies the first transition. We inspect the last rule applied to T.

• Case Ass_{SOS} : Then T is of the form

$$\overline{\langle x := e, \sigma \rangle \to_1 \sigma[x \mapsto \mathcal{A}\llbracket e \rrbracket \sigma]}$$
(Ass_{SOS})

for some x, e such that $s \equiv x := e$ and $\gamma = \sigma[x \mapsto \mathcal{A}\llbracket e \rrbracket \sigma]$. Since γ is a final state there is no further derivation sequence (k = 1), and hence $\sigma' = \gamma = \sigma[x \mapsto \mathcal{A}\llbracket e \rrbracket \sigma]$. Now we can construct a derivation tree for $\langle x := e, \sigma \rangle \to \sigma'$:

$$\overline{\langle x := e, \sigma \rangle \to \sigma[x \mapsto \mathcal{A}\llbracket e \rrbracket \sigma]}$$
(Ass_{NS})

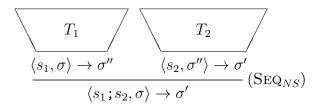
- Case $S_{KIP_{SOS}}$: Similar to Ass_{SOS} , we apply the corresponding NS rule and are done.
- Case SEQ1_{SOS}, SEQ2_{SOS}: Then we must have $root(T) \equiv \langle s_1; s_2, \sigma \rangle \rightarrow_1 \gamma$ and hence $\vdash \langle s_1; s_2, \sigma \rangle \rightarrow_1 \gamma$ for some statements s_1, s_2 , such that $s \equiv s_1; s_2$.

Returning to our original assumption, we apply the lemma proven on the lecture slides on $\langle s_1; s_2, \sigma \rangle \rightarrow_1^k \sigma'$. We get $\langle s_1, \sigma \rangle \rightarrow_1^{k_1} \sigma''$ and $\langle s_2, \sigma'' \rangle \rightarrow_1^{k_2} \sigma'$, for some σ'', k_1, k_2 , such that $k_1 + k_2 = k$.

Note that $k_1 \neq 0$ and $k_2 \neq 0$ (otherwise, by the definition of \rightarrow_1^0 we would have to have a non-final configuration equal to a state, e.g. $\langle s_1, \sigma \rangle \equiv \sigma''$, which is impossible). Therefore, we must have $k_1 < k$ and $k_2 < k$.

Since $k_1, k_2 < k$ we can apply the IH twice. From $Q(k_1)$ we learn $\vdash \langle s_1, \sigma \rangle \rightarrow \sigma''$ and from $Q(k_2)$ we learn $\vdash \langle s_2, \sigma'' \rangle \rightarrow \sigma'$. Let T_1, T_2 be the corresponding derivation trees, such that $root(T_1) \equiv \langle s_1, \sigma \rangle \rightarrow \sigma''$ and $root(T_2) \equiv \langle s_2, \sigma'' \rangle \rightarrow \sigma'$

Now we can construct the derivation tree for $\vdash \langle s_1; s_2, \sigma \rangle \rightarrow \sigma'$ as follows:



• Case IFT_{SOS} : Then T is of the form

$$\overline{\langle \text{if } b \text{ then } s_1 \text{ else } s_2 \text{ end}, \sigma \rangle \rightarrow_1 \langle s_1, \sigma \rangle} \ (\text{IFT}_{SOS})$$

for some b, s_1, s_2 , such that $s \equiv \text{if } b$ then s_1 else s_2 end and $\mathcal{B}[\![b]\!]\sigma = tt$. Therefore the unrolled derivation sequence is of the form:

(if b then
$$s_1$$
 else s_2 end, σ) $\rightarrow_1^1 \langle s_1, \sigma \rangle \rightarrow_1^{k-1} \sigma'$

We apply the IH to the tail sequence, and get $root(T_3) \equiv \langle s_1, \sigma \rangle \rightarrow \sigma'$ for some derivation tree T_3 , which enables us to conclude this case by constructing the derivation tree:

The side condition is fulfilled since we know $\mathcal{B}[\![b]\!]\sigma = tt$.

- Case IFF_{SOS} : Analogous to IFT_{SOS} .
- **Case** WHILE_{SOS}: Then T is of the form

$$\overline{\langle \texttt{while} \ b \ \texttt{do} \ s' \ \texttt{end}, \sigma \rangle \rightarrow_1 \gamma} \ \big(\texttt{WHILE}_{SOS} \big)$$

for some b, s', γ , such that $\gamma = \langle \text{if } b \text{ then } s'; \text{while } b \text{ do } s' \text{ end else skip end}, \sigma \rangle$ and $s \equiv \text{while } b \text{ do } s' \text{ end}$. Therefore the unrolled derivation sequence is of the form:

We apply the IH to the tail sequence, and get

```
\vdash \langle \texttt{if } b \texttt{ then } s' \texttt{; while } b \texttt{ do } s' \texttt{ end else skip end}, \sigma \rangle \rightarrow \sigma'.
```

From the semantic equivalence shown in the lecture (Slide Deck 3, section 3.1.2), we get $\vdash \langle \text{while } b \text{ do } s' \text{ end}, \sigma \rangle \rightarrow \sigma'$, which concludes this case.

Note: We can also "manually" conclude this case, i.e. not use the semantic equivalence. This requires a case split on which branch of the if-statement is taken, and some decomposing and recomposing of the resulting derivation tree.