
P. Müller and C. Sprenger

Formal Methods and Functional Programming

Solutions of Exercise Sheet 12: Small Step Semantics

Assignment 1 (Applying Small-Step Semantics)

Let s’ be the body of the loop.

⟨s, σ⟩ →1
1 ⟨if n # 0 then s’; s else skip end, σ⟩

→1
1 ⟨(a := a+n; (b := b*n; n := n-1)); s, σ⟩

→1
1 ⟨(b := b*n; n := n-1); s, σ[a 7→ 2]⟩

→1
1 ⟨n := n-1; s, σ[a, b 7→ 2, 2]⟩

→1
1 ⟨s, σ[a, b, n 7→ 2, 2, 1]⟩

→1
1 ⟨if n # 0 then s’; s else skip end, σ[a, b, n 7→ 2, 2, 1]⟩

→1
1 ⟨(a := a+n; (b := b*n; n := n-1)); s, σ[a, b, n 7→ 2, 2, 1]⟩

→1
1 ⟨(b := b*n; n := n-1); s, σ[a, b, n 7→ 3, 2, 1]⟩

→1
1 ⟨n := n-1; s, σ[a, b, n 7→ 3, 2, 1]⟩

→1
1 ⟨s, σ[a, b, n 7→ 3, 2, 0]⟩

→1
1 ⟨if n # 0 then s’; s else skip end, σ[a, b, n 7→ 3, 2, 0]⟩

→1
1 ⟨skip, σ[a, b, n 7→ 3, 2, 0]⟩

→1
1 σ[a, b, n 7→ 3, 2, 0]

The first three single-step transitions are justified by the following three derivation trees:

(WhileSOS)
⟨s, σ⟩ →1 ⟨if n # 0 then s’;s else skip end, σ⟩

(IfTSOS)
⟨if n # 0 then s’;s else skip end, σ⟩ →1 ⟨(a := a+ n;(b := b ∗ n;n := n− 1));s, σ⟩

1



Where the side condition for IfTSOS namely B[[n # 0]]σ = tt holds.

(AssSOS)
⟨a := a+ n, σ⟩ →1 σ[a 7→ 2]

(Seq1SOS)
⟨a := a+ n;(b := b ∗ n;n := n− 1), σ⟩ →1 ⟨(b := b ∗ n;n := n− 1), σ[a 7→ 2]⟩

(Seq2SOS)
⟨(a := a+ n;(b := b ∗ n;n := n− 1));s, σ⟩ →1 ⟨(b := b ∗ n;n := n− 1);s, σ[a 7→ 2]⟩

Assignment 2 (Proof of Equivalence Lemmas)

Task 2.1 We define

P (T ) ≡ ∀σ, σ′, s ·
(
root(T ) ≡ (⟨s, σ⟩ → σ′) =⇒ ⟨s, σ⟩ →∗

1 σ
′)

and prove ∀T ·P (T ) by strong induction on the shape of the derivation tree T. Thus, for some arbi-
trary T, we get as induction hypothesis ∀T ′ ⊏ T ·P (T ′), and need to prove P (T ).

Let σ, σ′, s be arbitrary. We assume root(T ) ≡ (⟨s, σ⟩ → σ′) and prove ⟨s, σ⟩ →∗
1 σ

′. The proof
proceeds by case splitting on the last rule applied in T .

• Case AssNS: Then T is of the form:

⟨x := e, σ⟩ → σ[x 7→ A[[e]]σ]
(AssNS)

for some x, e such that s ≡ x := e and σ′ = σ[x 7→ A[[e]]σ]. Now we can construct a
derivation tree to justify ⟨s, σ⟩ →1

1 σ
′:

⟨x := e, σ⟩ →1 σ[x 7→ A[[e]]σ]
(AssSOS)

• Case SkipNS: Analogous to AssNS.

• Case WhFNS: Then T is of the form

⟨while b do s′ end, σ⟩ → σ
(WhFNS)

for some b, s′ such that s ≡ while b do s′ end, σ′ = σ and B[[b]]σ = ff .

We conclude with the following derivation sequence:

⟨while b do s′ end, σ⟩
→1

1 ⟨if b then s′;while b do s′ end else skip end, σ⟩
→1

1 ⟨skip, σ⟩
→1

1 σ

The second transition is justified by IfFSOS, since B[[b]]σ = ff .

2



• Case SeqNS: Then T is of the form

A
A
AA

�
�
��

T1

⟨s1, σ⟩ → σ′′

A
A
AA

�
�
��

T2

⟨s2, σ′′⟩ → σ′

(SeqNS)
⟨s1; s2, σ⟩ → σ′

for some s1, s2, σ
′′, T1, T2, such that s ≡ s1; s2.

We apply the IH twice. From P (T1) we learn ⟨s1, σ⟩ →∗
1 σ′′ and from P (T2) we learn

⟨s2, σ′′⟩ →∗
1 σ

′. ⟨s1, σ⟩ →∗
1 σ

′′ gives us ⟨s1, σ⟩ →k
1 σ

′′ for some k. We can apply the results
from Assignment 3 (optional exercises) on ⟨s1, σ⟩ →k

1 σ
′′ to get ⟨s1; s2, σ⟩ →k

1 ⟨s2, σ′′⟩.

We conclude this case with the following derivation sequence:

⟨s1; s2, σ⟩ →∗
1 ⟨s2, σ′′⟩ →∗

1 σ
′

• Case IfTNS: Then T is of the form

A
A
AA

�
�
��

T3

⟨s1, σ⟩ → σ′

(IfTNS)
⟨if b then s1 else s2 end, σ⟩ → σ′

for some b, s1, s2, T3, such that s ≡ if b then s1 else s2 end and B[[b]]σ = tt.

From P (T3) we learn ⟨s1, σ⟩ →∗
1 σ

′.

We conclude this case with the following derivation sequence:

⟨if b then s1 else s2 end, σ⟩ →1
1 ⟨s1, σ⟩ →∗

1 σ
′

The first transition is justified by IfTSOS, since B[[b]]σ = tt.

• Case IfFNS: Analogous to IfTNS.

• Case WhTNS: Then T is of the form

A
A
AA

�
�

��

T4

⟨s′, σ⟩ → σ′′

A
A
AA

�
�

��

T5

⟨while b do s′ end, σ′′⟩ → σ′

(WhTNS)
⟨while b do s′ end, σ⟩ → σ′

for some b, s′, σ′′, T4, T5, such that s ≡ while b do s′ end and B[[b]]σ = tt.

We apply (IH) twice. From P (T4) we learn ⟨s′, σ⟩ →∗
1 σ′′. From P (T5) we learn

⟨while b do s′ end, σ′′⟩ →∗
1 σ′. ⟨s′, σ⟩ →∗

1 σ′′ gives us ⟨s′, σ⟩ →k
1 σ′′ for some k.

3



We can apply the result of Assignment 3 (optional exercises) on it to get
⟨(s′; while b do s′ end), σ⟩ →k

1 ⟨while b do s′ end, σ′′⟩.

We conclude this case with the following derivation sequence:

⟨while b do s′ end, σ⟩
→1

1 ⟨if b then (s′; while b do s′ end) else skip, σ⟩
→1

1 ⟨(s′; while b do s′ end), σ⟩
→∗

1 ⟨while b do s′ end, σ′′⟩
→∗

1 σ′

The second transition is justified by IfTSOS, since B[[b]]σ = tt.

Task 2.2 We define

Q(k) ≡ ∀σ, σ′, s · ⟨s, σ⟩ →k
1 σ

′ =⇒ ⊢ ⟨s, σ⟩ → σ′

and prove ∀k ·Q(k) by strong mathematical induction on k.

For arbitrary k assume ∀k′ < k ·Q(k′) and prove Q(k). Let σ, σ′, s be arbitrary. Case splitting on
the condition k > 0 immediately proves the case for k = 0 (the assumptions lead to ⟨s, σ⟩ →0

1 σ
′,

which is a contradiction). So we are left with case k > 0. Assume ⟨s, σ⟩ →k
1 σ′ and prove

⊢ ⟨s, σ⟩ → σ′.

We unroll the derivation sequence once to ⟨s, σ⟩ →1
1 γ →k−1

1 σ′. Let T be the derivation tree
which justifies the first transition. We inspect the last rule applied to T .

• Case AssSOS: Then T is of the form

⟨x := e, σ⟩ →1 σ[x 7→ A[[e]]σ]
(AssSOS)

for some x, e such that s ≡ x := e and γ = σ[x 7→ A[[e]]σ]. Since γ is a final state there
is no further derivation sequence (k = 1), and hence σ′ = γ = σ[x 7→ A[[e]]σ]. Now we
can construct a derivation tree for ⟨x := e, σ⟩ → σ′:

⟨x := e, σ⟩ → σ[x 7→ A[[e]]σ]
(AssNS)

• Case SkipSOS: Similar to AssSOS, we apply the corresponding NS rule and are done.

• Case Seq1SOS, Seq2SOS: Then we must have root(T ) ≡ ⟨s1; s2, σ⟩ →1 γ and hence
⊢ ⟨s1; s2, σ⟩ →1 γ for some statements s1, s2, such that s ≡ s1; s2.

Returning to our original assumption, we apply the lemma proven on the lecture slides on
⟨s1; s2, σ⟩ →k

1 σ′. We get ⟨s1, σ⟩ →k1
1 σ′′ and ⟨s2, σ′′⟩ →k2

1 σ′, for some σ′′, k1, k2, such
that k1 + k2 = k.

Note that k1 ̸= 0 and k2 ̸= 0 (otherwise, by the definition of →0
1 we would have to have a

non-final configuration equal to a state, e.g. ⟨s1, σ⟩ ≡ σ′′, which is impossible). Therefore,
we must have k1 < k and k2 < k.

4



Since k1, k2 < k we can apply the IH twice. From Q(k1) we learn ⊢ ⟨s1, σ⟩ → σ′′ and from
Q(k2) we learn ⊢ ⟨s2, σ′′⟩ → σ′. Let T1, T2 be the corresponding derivation trees, such
that root(T1) ≡ ⟨s1, σ⟩ → σ′′ and root(T2) ≡ ⟨s2, σ′′⟩ → σ′

Now we can construct the derivation tree for ⊢ ⟨s1; s2, σ⟩ → σ′ as follows:

A
A
AA

�
�
��

T1

⟨s1, σ⟩ → σ′′

A
A
AA

�
�
��

T2

⟨s2, σ′′⟩ → σ′

(SeqNS)
⟨s1;s2, σ⟩ → σ′

• Case IfTSOS: Then T is of the form

⟨if b then s1 else s2 end, σ⟩ →1 ⟨s1, σ⟩
(IfTSOS)

for some b, s1, s2, such that s ≡ if b then s1 else s2 end and B[[b]]σ = tt . Therefore
the unrolled derivation sequence is of the form:

⟨if b then s1 else s2 end, σ⟩ →1
1 ⟨s1, σ⟩ →k−1

1 σ′

We apply the IH to the tail sequence, and get root(T3) ≡ ⟨s1, σ⟩ → σ′ for some derivation
tree T3, which enables us to conclude this case by constructing the derivation tree:

A
A
AA

�
�
��

T3

⟨s1, σ⟩ → σ′

(IfTNS)
⟨if b then s1 else s2 end, σ⟩ → σ′

The side condition is fulfilled since we know B[[b]]σ = tt .

• Case IfFSOS: Analogous to IfTSOS.

• Case WhileSOS: Then T is of the form

⟨while b do s′ end, σ⟩ →1 γ
(WhileSOS)

for some b, s′, γ, such that γ = ⟨if b then s′; while b do s′ end else skip end, σ⟩
and s ≡ while b do s′ end. Therefore the unrolled derivation sequence is of the form:

⟨while b do s′ end, σ⟩
→1

1 ⟨if b then s′; while b do s′ end else skip end, σ⟩
→k−1

1 σ′

5



We apply the IH to the tail sequence, and get

⊢ ⟨if b then s′; while b do s′ end else skip end, σ⟩ → σ′.

From the semantic equivalence shown in the lecture (Slide Deck 3, section 3.1.2), we get
⊢ ⟨while b do s′ end, σ⟩ → σ′, which concludes this case.

Note: We can also “manually” conclude this case, i.e. not use the semantic equivalence.
This requires a case split on which branch of the if-statement is taken, and some decom-
posing and recomposing of the resulting derivation tree.

6


