Formal Methods and Functional Programming

Solutions of Exercise Sheet 9: Induction

Assignment 1

Task 1.1: We define $P(n) \equiv U_{n}=3^{n}-2^{n+1}$, we prove $\forall n \geq 0 . P(n)$ by strong induction.

Let $n \geq 0$ be arbitrary, and let us assume $P(j)$ for all j such that $0 \leq j<n$. Our goal is to prove $P(n)$. We distinguish three cases:
Case 1: $n=0$. In this case, $U_{0}=-1=1-2=3^{0}-2^{0+1}$, which concludes the case.
Case 2: $n=1$. In this case, $U_{1}=-1=3-4=3^{1}-2^{1+1}$, which concludes the case.
Case 3: $n \geq 2$. In this case, $U_{n}=5 U_{n-1}-6 U_{n-2}$. Since $n-1<n$ and $n-2<n$, we know that $P(n-1)$ and $P(n-2)$ hold. Thus,

$$
\begin{aligned}
U_{n} & =5 U_{n-1}-6 U_{n-2} \\
& =5\left(3^{n-1}-2^{n}\right)-6\left(3^{n-2}-2^{n-1}\right) \\
& =(15-6) \times 3^{n-2}-(10-6) \times 2^{n-1} \\
& =3^{n}-2^{n+1}
\end{aligned}
$$

which concludes the proof.

Task 1.2: We define $Q(n) \equiv \forall k .0 \leq k \leq n \Rightarrow P(k)$, and we prove $Q(n)$ for all $n \geq 1$ by weak induction.
Base case: To prove $Q(1)$, we take k arbitrary, and we assume $0 \leq k \leq 1$. We thus have two cases:

Case 1: $k=0$. We need to prove $P(0)$, which holds by definition: $U_{0}=-1=3^{0}-$ 2^{1}.
Case 2: $k=1$. $P(1)$ holds by definition: $U_{1}=-1=3^{1}-2^{2}$.

Induction step: Let $n \geq 1$ be arbitrary. We assume $Q(n)$, and prove $Q(n+1)$. To prove $Q(n+1)$, we need to prove $P(k)$ for all k such that $0 \leq k \leq n+1$. If $0 \leq k \leq n$, we get $P(k)$ from $Q(n)$. Thus, to prove $Q(n+1)$, we simply need to prove $P(n+1)$.

We do the same proof as in the induction step in the proof by strong induction (with n shifted by 1). In this case, $U_{n+1}=5 U_{n}-6 U_{n-1}$. Since $n \leq n$ and $n-1 \leq n$, we know that $P(n)$ and $P(n-1)$ hold, from $Q(n)$. Thus,

$$
\begin{aligned}
U_{n+1} & =5 U_{n}-6 U_{n-1} \\
& =5\left(3^{n}-2^{n+1}\right)-6\left(3^{n-1}-2^{n}\right) \\
& =(15-6) \times 3^{n-1}-(10-6) \times 2^{n} \\
& =3^{n+1}-2^{n+2}
\end{aligned}
$$

which concludes the proof.

Assignment 2 (Run-Length Encoding)

Task 2.1: We define

$$
\begin{aligned}
P(x s) \equiv & \forall n, v:: \text { Nat } \cdot \forall y s:: \text { [Nat] } \cdot \text { length ys } \% 2=0 \Longrightarrow \\
& \text { srclen }(\operatorname{aux}(\operatorname{dec} x s) n v y s)=\operatorname{srclen} x s+n+\operatorname{srclen} y s
\end{aligned}
$$

and prove $\forall x s$:: [Nat] • $P(x s)$ by strong structural induction on $x s$: We have to show $P(x s)$ for some arbitrary $x s::$ [Nat] and may assume that the proposition holds for all proper subterms of $x s$, i.e., our induction hypothesis (IH) is $\forall y s \sqsubset x s \cdot P(y s)$.

Let $n, v::$ Nat and $y s::$ [Nat] be arbitrary. We prove that the implication holds by assuming its left-hand side and then showing that its right-hand side holds. That is, we assume length ys \% 2 = 0 (in the elaborations below, we will refer to this assumption as (A)) and have to show srclen (aux (dec $x s$) $n v y s$) $=$ srclen $x s+\mathrm{n}+\operatorname{srclen} y s$. We proceed by a case analysis on $x s$.

- Case $x s \equiv[]:$

$$
\begin{align*}
& \text { srclen (aux (dec []) n v ys) } \\
= & \operatorname{srclen}(\operatorname{aux}[] n v y s) \tag{D1}\\
= & \operatorname{srclen}(y s++[n, v]) \tag{A1}\\
= & \operatorname{srclen} y s+n \tag{L3}\\
= & 0+n+\operatorname{srclen} y s \tag{arith}\\
= & \operatorname{srclen}[]+n+\operatorname{srclen} y s \tag{S1}
\end{align*}
$$

- Case $x s \equiv[m]$, for some $m::$ Nat: Analogous to the previous case.
- Case $x s \equiv$ ($m: u: z s$), for some $m, u::$ Nat and $z s::$ [Nat]: We perform a further case distinction on the values of m and u :
- Subcase $u=v$:

$$
\begin{align*}
& \operatorname{srclen}(\operatorname{aux}(\operatorname{dec}(m: v: z s)) n v y s) \\
= & \operatorname{srclen}(\operatorname{aux}(\operatorname{rep} m v++\operatorname{dec} z s) n v y s) \tag{D3}\\
= & \operatorname{srclen}(\operatorname{aux}(\operatorname{dec} z s)(n+m) v y s) \tag{L2}\\
= & \operatorname{srclen} z s+(n+m)+\operatorname{srclen} y s \\
= & m+\operatorname{srclen} z s+n+\operatorname{srclen} y s \\
= & \operatorname{srclen}(m: u: z s)+n+\operatorname{srclen} y s \tag{S3}
\end{align*}
$$

- Subcase $u \neq v$ and $m=0$:

$$
\begin{align*}
& \text { srclen (aux }(\operatorname{dec}(0: u: z s)) n v y s) \\
= & \operatorname{srclen}(\operatorname{aux}(\operatorname{rep} 0 u++\operatorname{dec} z s) n v y s) \tag{D3}\\
= & \operatorname{srclen}(\operatorname{aux}([]++\operatorname{dec} z s) n v y s) \tag{R1}\\
= & \operatorname{srclen}(\operatorname{aux}(\operatorname{dec} z s) n v y s) \\
= & \operatorname{srclen} z s+n+\operatorname{srclen} y s \\
= & 0+\operatorname{srclen} z s+n+\operatorname{srclen} y s \\
= & \operatorname{srclen}(0: u: z s)+n+\operatorname{srclen} y s \tag{S3}
\end{align*}
$$

- Subcase $u \neq v$ and $m>0$:

$$
\begin{align*}
& \operatorname{srclen}(\operatorname{aux}(\operatorname{dec}(m: u: z s)) n v y s) \\
= & \operatorname{srclen}(\operatorname{aux}(\operatorname{rep} m u++\operatorname{dec} z s) n v y s) \tag{D3}\\
= & \operatorname{srclen}(\operatorname{aux}((u:(\operatorname{rep}(m-1) u))++\operatorname{dec} z s) n v y s) \tag{R2}\\
= & \operatorname{srclen}(\operatorname{aux}(u:(\operatorname{rep}(m-1) u++\operatorname{dec} z s)) n v y s) \tag{L1}\\
= & \operatorname{srclen}(\operatorname{aux}(\operatorname{rep}(m-1) u++\operatorname{dec} z s) 1 u(y s++[n, v]) \tag{A3}\\
= & \operatorname{srclen}(\operatorname{aux}(\operatorname{dec} z s)((m-1)+1) u(y s++[n, v])) \tag{L2}\\
= & \operatorname{srclen}(\operatorname{aux}(\operatorname{dec} z s) m u(y s++[n, v])) \\
= & \operatorname{srclen} z s+m+\operatorname{srclen}(y s++[n, v]) \tag{}\\
= & \operatorname{srclen} z s+m+\operatorname{srclen} y s+n \tag{A,L3}\\
= & m+\operatorname{srclen} z s+n+\operatorname{srclen} y s \\
= & \operatorname{srclen}(m: u: z s)+n+\operatorname{srclen} y s \tag{S3}
\end{align*}
$$

Note that in the step marked with a $\left(^{*}\right.$), we combined (L4) and (A) to derive the fact length (ys ++ $[n, v]$) \% $2=0$ so that we could then use the induction hypothesis to get the desired equality.

Task 2.2: We define

$$
P(x s) \equiv \operatorname{srclen}(\operatorname{enc}(\operatorname{dec} x s))=\operatorname{srclen} x s
$$

and prove $\forall x s$:: [Nat] $P(x s)$ by strong structural induction on $x s$. Again, we have to show $P(x s)$ for some arbitrary $x::$ [Nat] and may assume $\forall y s \sqsubset x s \cdot P(y s)$. We proceed by a case analysis on $x s$:

- Case $x s \equiv[]$:

$$
\begin{align*}
& \text { srclen (enc (dec [])) } \\
= & \operatorname{srclen}(\text { enc []) } \tag{D1}\\
= & \text { srclen [] } \tag{E1}
\end{align*}
$$

- Case $x s \equiv[n]$, for some $n::$ Nat:

$$
\begin{align*}
& \text { srclen (enc (dec }[n])) \\
= & \text { srclen (enc []) } \tag{D2}\\
= & \text { srclen }[] \tag{E1}\\
= & 0 \tag{S1}\\
= & \operatorname{srclen}[n] \tag{S2}
\end{align*}
$$

- Case: $x s \equiv(n: v: y s)$, for some $n, v::$ Nat and $y s::$ [Nat]: We perform a further case distinction on the value of n :
- Subcase $n=0$:

$$
\begin{align*}
& \operatorname{srclen}(\text { enc }(0: v: y s)) \\
= & \operatorname{srclen}(\operatorname{enc}(r e p ~ 0 ~ v++\operatorname{dec} y s)) \tag{D3}\\
= & \operatorname{srclen}(\operatorname{enc}([]++\operatorname{dec} y s)) \tag{R1}\\
= & \operatorname{srclen}(\text { enc }(\operatorname{dec} y s)) \tag{++}\\
= & \operatorname{srclen} y s \tag{IH}\\
= & 0+\operatorname{srclen} y s \tag{arith}\\
= & \operatorname{srclen}(0: v: y s) \tag{S3}
\end{align*}
$$

- Subcase $n>0$:

$$
\begin{align*}
& \operatorname{srclen}(\operatorname{enc}(\operatorname{dec}(n: v: y s))) \\
= & \operatorname{srclen}(\operatorname{enc}(\operatorname{rep} n v++\operatorname{dec} y s)) \tag{D3}\\
= & \operatorname{srclen}(\operatorname{enc}((\mathrm{v}:(\operatorname{rep}(n-1) v))++\operatorname{dec} y s)) \tag{R2}\\
= & \operatorname{srclen}(\operatorname{enc}(\mathrm{v}:(\operatorname{rep}(n-1) v++\operatorname{dec} y s))) \tag{L1}\\
= & \operatorname{srclen}(\operatorname{aux}(\operatorname{rep}(n-1) v++\operatorname{dec} y s) 1 v[]) \tag{E2}\\
= & \operatorname{srclen}(\operatorname{aux}(\operatorname{dec} y s)(1+(n-1)) v[]) \tag{L2}\\
= & \operatorname{srclen}(\operatorname{aux}(\operatorname{dec} y s) n v[]) \\
= & \operatorname{srclen} y s+n+\operatorname{srclen}[] \\
= & \operatorname{srclen} y s+n+0 \tag{S1}\\
= & n+\operatorname{srclen} y s \tag{arith}\\
= & \operatorname{srclen}(n: v: y s) \tag{S3}
\end{align*}
$$

Note that we can apply the result of Task 2.1 because length [] $\% 2=0$.

