

Formal Methods and Functional Programming Solutions of Exercise Sheet 9: Induction

Assignment 1

Task 1.1: We define $P(n) \equiv U_n = 3^n - 2^{n+1}$, we prove $\forall n \ge 0. P(n)$ by strong induction.

Let $n \ge 0$ be arbitrary, and let us assume P(j) for all j such that $0 \le j < n$. Our goal is to prove P(n). We distinguish three cases:

Case 1: n = 0. In this case, $U_0 = -1 = 1 - 2 = 3^0 - 2^{0+1}$, which concludes the case.

Case 2: n = 1. In this case, $U_1 = -1 = 3 - 4 = 3^1 - 2^{1+1}$, which concludes the case.

Case 3: $n \ge 2$. In this case, $U_n = 5U_{n-1} - 6U_{n-2}$. Since n-1 < n and n-2 < n, we know that P(n-1) and P(n-2) hold. Thus,

$$U_n = 5U_{n-1} - 6U_{n-2}$$

= 5(3ⁿ⁻¹ - 2ⁿ) - 6(3ⁿ⁻² - 2ⁿ⁻¹)
= (15 - 6) × 3ⁿ⁻² - (10 - 6) × 2ⁿ⁻¹
= 3ⁿ - 2ⁿ⁺¹

which concludes the proof.

Task 1.2: We define $Q(n) \equiv \forall k. 0 \le k \le n \Rightarrow P(k)$, and we prove Q(n) for all $n \ge 1$ by *weak induction*.

Base case: To prove Q(1), we take k arbitrary, and we assume $0 \le k \le 1$. We thus have two cases:

Case 1: k = 0. We need to prove P(0), which holds by definition: $U_0 = -1 = 3^0 - 2^1$.

Case 2: k = 1. P(1) holds by definition: $U_1 = -1 = 3^1 - 2^2$.

Induction step: Let $n \ge 1$ be arbitrary. We assume Q(n), and prove Q(n+1). To prove Q(n+1), we need to prove P(k) for all k such that $0 \le k \le n+1$. If $0 \le k \le n$, we get P(k) from Q(n). Thus, to prove Q(n+1), we simply need to prove P(n+1).

We do the same proof as in the induction step in the proof by strong induction (with n shifted by 1). In this case, $U_{n+1} = 5U_n - 6U_{n-1}$. Since $n \le n$ and $n-1 \le n$, we know that P(n) and P(n-1) hold, from Q(n). Thus,

$$U_{n+1} = 5U_n - 6U_{n-1}$$

= 5(3ⁿ - 2ⁿ⁺¹) - 6(3ⁿ⁻¹ - 2ⁿ)
= (15 - 6) × 3ⁿ⁻¹ - (10 - 6) × 2ⁿ
= 3ⁿ⁺¹ - 2ⁿ⁺²

which concludes the proof.

Assignment 2 (Run-Length Encoding)

Task 2.1: We define

$$P(xs) \equiv \forall n, v :: \text{Nat} \cdot \forall ys :: [\text{Nat}] \cdot \text{length } ys \ \% \ 2 = 0 \implies$$

srclen (aux (dec xs) n v ys) = srclen xs + n + srclen ys

and prove $\forall xs :: [Nat] \cdot P(xs)$ by strong structural induction on xs: We have to show P(xs) for some arbitrary xs :: [Nat] and may assume that the proposition holds for all proper subterms of xs, i.e., our induction hypothesis (IH) is $\forall ys \sqsubset xs \cdot P(ys)$.

Let n, v :: Nat and ys :: [Nat] be arbitrary. We prove that the implication holds by assuming its left-hand side and then showing that its right-hand side holds. That is, we assume length $ys \ \% \ 2 = 0$ (in the elaborations below, we will refer to this assumption as (A)) and have to show srclen (aux (dec xs) n v ys) = srclen xs + n +srclen ys. We proceed by a case analysis on xs.

• Case $xs \equiv []$:

srclen (aux (dec []) n v ys)

 $= \texttt{srclen} (\texttt{aux} [] n v ys) \tag{D1}$

- $= \operatorname{srclen} (ys ++ [n,v])$ (A1)
- = srclen ys + n (L3)
- = 0 + n + srclen ys (arith)

$$=$$
 srclen [] + n + srclen ys (S1)

- Case $xs \equiv [m]$, for some m :: Nat: Analogous to the previous case.
- Case $xs \equiv (m:u:zs)$, for some m, u :: Nat and zs :: [Nat]: We perform a further case distinction on the values of m and u:

- Subcase u = v:

srclen (aux (dec (m:v:zs)) n v ys)

= srclen (aux (rep m v ++ dec zs) n v ys) (D3)

 $= \texttt{srclen} (\texttt{aux} (\texttt{dec} \ zs) \ (n+m) \ v \ ys) \tag{L2}$

 $= \operatorname{srclen} zs + (n+m) + \operatorname{srclen} ys \qquad (IH,A)$

= m + srclen zs + n + srclen ys (arith)

$$= \texttt{srclen} (m:u:zs) + n + \texttt{srclen} ys \tag{S3}$$

- Subcase $u \neq v$ and m = 0:

srclen (aux (dec (0: u : zs)) $n \ v \ ys$)	
= srclen (aux (rep 0 u ++ dec zs) $n v ys$)	(D3)
= srclen (aux ([] ++ dec zs) $n \ v \ ys$)	(R1)
$=$ srclen (aux (dec zs) $n \ v \ ys$)	(++)
= srclen zs + n + srclen ys	(IH,A)
= 0 + srclen zs + n + srclen ys	(arith)
= srclen (0: u : zs) + n + srclen ys	(S3)

- Subcase $u \neq v$ and m > 0:

srclen (aux (dec $(m:u:zs)$) $n \ v \ ys$)	
= srclen (aux (rep $m \ u$ ++ dec zs) $n \ v \ ys$)	(D3)
= srclen (aux ((u :(rep (m -1) u)) ++ dec zs) $n v ys$)	(R2)
= srclen (aux (u :(rep (m -1) u ++ dec zs)) $n v ys$)	(L1)
= srclen (aux (rep (m -1) u ++ dec zs) 1 u (ys ++ [n , v])	(A3)
= srclen (aux (dec zs) ((m -1)+1) u (ys ++ [n,v]))	(L2)
$=$ srclen (aux (dec zs) $m \ u$ ($ys \ ++ \ [n,v]$))	(arith)
= srclen zs + m + srclen (ys ++ [n,v])	(*)
= srclen zs + m + srclen ys + n	(A,L3)
= m + srclen zs + n + srclen ys	(arith)
= srclen ($m:u:zs$) + n + srclen ys	(S3)

Note that in the step marked with a (*), we combined (L4) and (A) to derive the fact length (ys ++ [n, v]) % 2 = 0 so that we could then use the induction hypothesis to get the desired equality.

Task 2.2: We define

 $P(xs) \equiv$ srclen (enc (dec xs)) = srclen xs

and prove $\forall xs :: [Nat] \cdot P(xs)$ by strong structural induction on xs. Again, we have to show P(xs) for some arbitrary x :: [Nat] and may assume $\forall ys \sqsubset xs \cdot P(ys)$. We proceed by a case analysis on xs:

• Case $xs \equiv []$:

srclen (enc (dec []))

= srclen (enc []) (D1)

= srclen [] (E1)

• Case $xs \equiv [n]$, for some n :: Nat:

srclen (enc (dec [n]))

 $= 0 \tag{S1}$

- = srclen [n] (S2)
- Case: $xs \equiv (n:v:ys)$, for some n, v :: Nat and ys :: [Nat]: We perform a further case distinction on the value of n:
 - **– Subcase** n = 0:

srclen (enc $(0:v:ys)$))
= srclen (enc (rep 0 v	++ dec ys)) (D3)
= srclen (enc ([] ++ d	ec ys)) (R1)
= srclen (enc (dec ys))) (++)
= srclen ys	(IH)
= 0 + srclen ys	(arith)

$$= \text{srclen } (0:v:ys) \tag{S3}$$

– Subcase n > 0:

srclen (enc (dec $(n:v:ys)$))	
$=$ srclen (enc (rep $n \ v$ ++ dec ys))	(D3)
= srclen (enc ((v:(rep (n -1) v)) ++ dec ys))	(R2)
= srclen (enc (v:(rep (n -1) v ++ dec ys)))	(L1)
= srclen (aux (rep (n -1) v ++ dec ys) 1 v [])	(E2)
= srclen (aux (dec ys) (1+(n -1)) v [])	(L2)
$=$ srclen (aux (dec ys) $n \ v$ [])	(arith)
= srclen ys + n + srclen []	(Task 2.1)
= srclen ys + n + 0	(S1)
= n + srclen ys	(arith)
= srclen (n : v : ys)	(S3)

Note that we can apply the result of Task 2.1 because length [] % 2 = 0.