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Formal Methods and Functional Programming

Solutions of Exercise Sheet 9: Induction

Assignment 1

Task 1.1: We define P(n) = U, = 3" — 2", we prove Vn > 0. P(n) by strong induc-
tion.

Let n > 0 be arbitrary, and let us assume P(j) for all j such that 0 < j < n. Our goal is to
prove P(n). We distinguish three cases:

Case1: n =0. Inthiscase, Uy = —1 = 1—2 = 3°—29+1 which concludes the case.
Case2: n = 1. Inthiscase, U; = —1 = 3—4 = 3'—2!*1 which concludes the case.

Case 3: n > 2. In this case, U,, = 5U,,_1 — 6U,,_5. Sincen —1 <n and n — 2 < n, we know
that P(n — 1) and P(n — 2) hold. Thus,

Up =5U,_1 — 6U,_
— 5(3n—1 . 2n) . 6(3n—2 . 2n—1)
=(15—-6) x 3"? — (10 — 6) x 2"*

— 3n _ 2n+1

which concludes the proof.

Task 1.2: We define Q(n) = Vk.0 < k < n = P(k), and we prove Q(n) for all n > 1 by
weak induction.

Base case: To prove (1), we take k arbitrary, and we assume 0 < k& < 1. We thus have two
cases:

Case 1: k = 0. We need to prove P(0), which holds by definition: Uy = —1 = 3° —
21

Case 2: k =1. P(1) holds by definition: U; = —1 = 3! — 22.



Induction step: Let n > 1 be arbitrary. We assume @Q(n), and prove Q(n + 1). To prove
Q(n+1), we need to prove P(k) for all k such that0 < k < n+1. If 0 < k < n, we get P(k) from
Q(n). Thus, to prove Q(n-+1), we simply need to prove P(n+1).

We do the same proof as in the induction step in the proof by strong induction (with n shifted
by 1). In this case, U, 1 = bU,, — 6U,,_;. Since n < n and n — 1 < n, we know that P(n) and
P(n —1) hold, from Q(n). Thus,

Un—l—l - 5Un - 6Un—1
=5(3" — 2"t —6(3" 1 —2)
=(15—-6) x 3" ' — (10 — 6) x 2"

— 3n+1 o 21’L+2

which concludes the proof.

Assignment 2 (Run-Length Encoding)

Task 2.1: We define

P(xs) =Vn,v :: Nat - Vys :: [Nat] - length ys % 2 = 0 —

srclen (aux (dec xs) n v ys) = srclen xs + n + srclen ys

and prove Vs :: [Nat] - P(zs) by strong structural induction on xs: We have to show P(zs) for
some arbitrary xs :: [Nat] and may assume that the proposition holds for all proper subterms of
xs, i.e., our induction hypothesis (IH) is Vys C xs - P(ys).

Let n,v :: Nat and ys :: [Nat] be arbitrary. We prove that the implication holds by as-
suming its left-hand side and then showing that its right-hand side holds. That is, we assume
length ys % 2 = O (in the elaborations below, we will refer to this assumption as (A)) and have
to show srclen (aux (dec xs) n v ys) = srclen xs + n + srclen ys. We proceed by
a case analysis on zs.

e Case zs = [1:

srclen (aux (dec [1) n v ys)

= srclen (aux [1 n v ys) (D1)
= srclen (ys ++ [n,v]) (A1)
= srclen ys + n (L3)
=0 + n + srclen ys (arith)
= srclen [] + n + srclen ys (S1)

e Case xs = [m], for some m :: Nat: Analogous to the previous case.

e Case s = (m:u:zs), for some m,u :: Nat and zs :: [Nat]: We perform a further case
distinction on the values of m and w:



— Subcase u = v

— Subcase u # v

— Subcase u # v

srclen
= srclen
= srclen
= srclen
= srclen
= srclen
= srclen
= srclen

= srclen

srclen (aux (dec (m:v:zs)) n v ys)

= srclen (aux (rep m v ++ dec zs) n v ys)

= srclen (aux (dec zs) (n+m) v ys)

= srclen zs + (n+m) + srclen ys

=m + srclen zs + n + srclen ys

= srclen (m:u:zs) + n + srclen ys

and m = 0:

srclen (aux (dec (0:u:zs)) n v ys)

= srclen (aux (rep O w ++ dec 2s) n v ys)

= srclen (aux ([] ++ dec zs) n v ys)

= srclen (aux (dec zs) n v ys)

= srclen zs + n + srclen ys

=0 + srclen zs + n + srclen ys

= srclen (0:u:zs) + n + srclen ys

and m > 0:

(aux
(aux
(aux
(aux
(aux
(aux

(aux

(dec (m:u:zs)) n v ys)

(rep m u ++ dec zs) n v ys)

((u:(rep (m-1) w)) ++ dec zs) n v ys)

(u: (rep (m-1) u ++ dec zs)) n v ys)

(rep (m-1) u ++ dec zs) 1 u (ys ++ [n,v])
(dec zs) ((m-1)+1) u (ys ++ [n,v]))

(dec zs) m u (ys ++ [n,v]))

zs + m + srclen (ys ++ [n,v])

zs + m + srclen ys + n

=m + srclen 2zs + n + srclen ys

= srclen (m:u:zs) + n + srclen ys
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Note that in the step marked with a (*), we combined (L4) and (A) to derive the fact
length (ys ++ [n,v]) % 2 = 0 so that we could then use the induction hypoth-
esis to get the desired equality.

Task 2.2: We define

P(xs) = srclen (enc (dec xs)) = srclen xs

and prove Vzs :: [Nat] - P(xs) by strong structural induction on xs. Again, we have to show
P(xs) for some arbitrary x :: [Nat] and may assume Vys C zs - P(ys). We proceed by a case

analysis on xs:



e Case zs = [1:

srclen (enc (dec [1))

= srclen (enc [])

= srclen []

e Case s = [n], for some n :: Nat:

srclen (enc (dec [n]))

= srclen (enc [])

= srclen []

=0

= srclen [n]
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e Case: zs = (n:v:ys), for some n,v :: Nat and ys :: [Nat]: We perform a further case

distinction on the value of n:

— Subcase n = 0:

srclen (enc (0:v:ys))

= srclen (enc (rep O v ++ dec ys))

= srclen (enc ([] ++ dec ys))

= srclen (enc (dec ys))

= srclen ys

= 0 + srclen ys

= srclen (0:v:ys)

— Subcase n > 0:

srclen (enc
= srclen (enc
= srclen (enc
= srclen (enc
= srclen (aux
= srclen (aux

= srclen (aux

(dec (n:v:ys)))

(rep n v ++ dec ys))

((v:(rep (n-1) v)) ++ dec ys))
(v:(rep (n-1) v ++ dec ys)))
(rep (n-1) v ++ dec ys) 1 v [1)
(dec ys) (1+(n-1)) v [1)

(dec ys) n v [1)

= srclen ys + n + srclen []

= srclen ys + n + 0

=n + srclen ys

= srclen (n:v:ys)

Note that we can apply the result of Task 2.1 because length [] % 2 = 0.



