
P. Müller and D. Basin

Formal Methods and Functional Programming

Solutions of Exercise Sheet 9: Induction

Assignment 1

Task 1.1: We define P (n) ≡ Un = 3n − 2n+1, we prove ∀n ≥ 0. P (n) by strong induc-
tion.

Let n ≥ 0 be arbitrary, and let us assume P (j) for all j such that 0 ≤ j < n. Our goal is to
prove P (n). We distinguish three cases:

Case 1 : n = 0. In this case, U0 = −1 = 1−2 = 30−20+1, which concludes the case.

Case 2 : n = 1. In this case, U1 = −1 = 3−4 = 31−21+1, which concludes the case.

Case 3 : n ≥ 2. In this case, Un = 5Un−1 − 6Un−2. Since n − 1 < n and n − 2 < n, we know
that P (n− 1) and P (n− 2) hold. Thus,

Un = 5Un−1 − 6Un−2

= 5(3n−1 − 2n)− 6(3n−2 − 2n−1)

= (15− 6)× 3n−2 − (10− 6)× 2n−1

= 3n − 2n+1

which concludes the proof.

Task 1.2: We define Q(n) ≡ ∀k. 0 ≤ k ≤ n ⇒ P (k), and we prove Q(n) for all n ≥ 1 by
weak induction.

Base case: To prove Q(1), we take k arbitrary, and we assume 0 ≤ k ≤ 1. We thus have two
cases:

Case 1 : k = 0. We need to prove P (0), which holds by definition: U0 = −1 = 30 −
21.

Case 2 : k = 1. P (1) holds by definition: U1 = −1 = 31 − 22.

1



Induction step: Let n ≥ 1 be arbitrary. We assume Q(n), and prove Q(n + 1). To prove
Q(n+1), we need to prove P (k) for all k such that 0 ≤ k ≤ n+1. If 0 ≤ k ≤ n, we get P (k) from
Q(n). Thus, to proveQ(n+1), we simply need to prove P (n+1).

We do the same proof as in the induction step in the proof by strong induction (with n shifted
by 1). In this case, Un+1 = 5Un − 6Un−1. Since n ≤ n and n− 1 ≤ n, we know that P (n) and
P (n− 1) hold, from Q(n). Thus,

Un+1 = 5Un − 6Un−1

= 5(3n − 2n+1)− 6(3n−1 − 2n)

= (15− 6)× 3n−1 − (10− 6)× 2n

= 3n+1 − 2n+2

which concludes the proof.

Assignment 2 (Run-Length Encoding)

Task 2.1: We define

P (xs) ≡ ∀n, v :: Nat · ∀ys :: [Nat] · length ys % 2 = 0 =⇒
srclen (aux (dec xs) n v ys) = srclen xs + n + srclen ys

and prove ∀xs :: [Nat] ·P (xs) by strong structural induction on xs: We have to show P (xs) for
some arbitrary xs :: [Nat] and may assume that the proposition holds for all proper subterms of
xs, i.e., our induction hypothesis (IH) is ∀ys ⊏ xs · P (ys).

Let n, v :: Nat and ys :: [Nat] be arbitrary. We prove that the implication holds by as-
suming its left-hand side and then showing that its right-hand side holds. That is, we assume
length ys % 2 = 0 (in the elaborations below, we will refer to this assumption as (A)) and have
to show srclen (aux (dec xs) n v ys) = srclen xs + n + srclen ys. We proceed by
a case analysis on xs.

• Case xs ≡ []:

srclen (aux (dec []) n v ys)

= srclen (aux [] n v ys) (D1)

= srclen (ys ++ [n,v]) (A1)

= srclen ys + n (L3)

= 0 + n + srclen ys (arith)

= srclen [] + n + srclen ys (S1)

• Case xs ≡ [m], for some m :: Nat: Analogous to the previous case.

• Case xs ≡ (m:u:zs), for some m,u :: Nat and zs :: [Nat]: We perform a further case
distinction on the values of m and u:

2



– Subcase u = v:

srclen (aux (dec (m:v:zs)) n v ys)

= srclen (aux (rep m v ++ dec zs) n v ys) (D3)

= srclen (aux (dec zs) (n+m) v ys) (L2)

= srclen zs + (n+m) + srclen ys (IH,A)

= m + srclen zs + n + srclen ys (arith)

= srclen (m:u:zs) + n + srclen ys (S3)

– Subcase u ̸= v and m = 0:

srclen (aux (dec (0:u:zs)) n v ys)

= srclen (aux (rep 0 u ++ dec zs) n v ys) (D3)

= srclen (aux ([] ++ dec zs) n v ys) (R1)

= srclen (aux (dec zs) n v ys) (++)

= srclen zs + n + srclen ys (IH,A)

= 0 + srclen zs + n + srclen ys (arith)

= srclen (0:u:zs) + n + srclen ys (S3)

– Subcase u ̸= v and m > 0:

srclen (aux (dec (m:u:zs)) n v ys)

= srclen (aux (rep m u ++ dec zs) n v ys) (D3)

= srclen (aux ((u:(rep (m-1) u)) ++ dec zs) n v ys) (R2)

= srclen (aux (u:(rep (m-1) u ++ dec zs)) n v ys) (L1)

= srclen (aux (rep (m-1) u ++ dec zs) 1 u (ys ++ [n,v]) (A3)

= srclen (aux (dec zs) ((m-1)+1) u (ys ++ [n,v])) (L2)

= srclen (aux (dec zs) m u (ys ++ [n,v])) (arith)

= srclen zs + m + srclen (ys ++ [n,v]) (*)

= srclen zs + m + srclen ys + n (A,L3)

= m + srclen zs + n + srclen ys (arith)

= srclen (m:u:zs) + n + srclen ys (S3)

Note that in the step marked with a (*), we combined (L4) and (A) to derive the fact
length (ys ++ [n,v]) % 2 = 0 so that we could then use the induction hypoth-
esis to get the desired equality.

Task 2.2: We define

P (xs) ≡ srclen (enc (dec xs)) = srclen xs

and prove ∀xs :: [Nat] · P (xs) by strong structural induction on xs. Again, we have to show
P (xs) for some arbitrary x :: [Nat] and may assume ∀ys ⊏ xs · P (ys). We proceed by a case
analysis on xs:

3



• Case xs ≡ []:

srclen (enc (dec []))

= srclen (enc []) (D1)

= srclen [] (E1)

• Case xs ≡ [n], for some n :: Nat:

srclen (enc (dec [n]))

= srclen (enc []) (D2)

= srclen [] (E1)

= 0 (S1)

= srclen [n] (S2)

• Case: xs ≡ (n:v:ys), for some n, v :: Nat and ys :: [Nat]: We perform a further case
distinction on the value of n:

– Subcase n = 0:

srclen (enc (0:v:ys))

= srclen (enc (rep 0 v ++ dec ys)) (D3)

= srclen (enc ([] ++ dec ys)) (R1)

= srclen (enc (dec ys)) (++)

= srclen ys (IH)

= 0 + srclen ys (arith)

= srclen (0:v:ys) (S3)

– Subcase n > 0:

srclen (enc (dec (n:v:ys)))

= srclen (enc (rep n v ++ dec ys)) (D3)

= srclen (enc ((v:(rep (n-1) v)) ++ dec ys)) (R2)

= srclen (enc (v:(rep (n-1) v ++ dec ys))) (L1)

= srclen (aux (rep (n-1) v ++ dec ys) 1 v []) (E2)

= srclen (aux (dec ys) (1+(n-1)) v []) (L2)

= srclen (aux (dec ys) n v []) (arith)

= srclen ys + n + srclen [] (Task 2.1)

= srclen ys + n + 0 (S1)

= n + srclen ys (arith)

= srclen (n:v:ys) (S3)

Note that we can apply the result of Task 2.1 because length [] % 2 = 0.

4


