
Mining ABAC Rules from Sparse Logs

Carlos Cotrini
Department of Computer Science

ETH Zurich, Switzerland
Email: ccarlos@inf.ethz.ch

Thilo Weghorn
Department of Computer Science

ETH Zurich, Switzerland
Email: tweghorn@inf.ethz.ch

David Basin
Department of Computer Science

ETH Zurich, Switzerland
Email: basin@inf.ethz.ch

Abstract—Different methods have been proposed to mine
attribute-based access control (ABAC) rules from logs. In
practice, these logs are sparse in that they contain only a
fraction of all possible requests. However, for sparse logs,
existing methods mine and validate overly permissive rules,
which allow escalation of privileges. We define a novel measure,
reliability, that quantifies how overly permissive a rule is and
we show why other standard measures like confidence and
entropy fail in quantifying over-permissiveness. We build upon
state-of-the-art subgroup discovery algorithms and our new
reliability measure to design Rhapsody, the first ABAC mining
algorithm with correctness guarantees: Rhapsody mines a rule
if and only if the rule covers a significant number of requests,
its reliability is above a given threshold, and there is no
equivalent shorter rule. We evaluate Rhapsody on different
real-world scenarios using logs from Amazon and a computer
lab in a large university. Our results show that Rhapsody
generalizes better and produces substantially smaller rules
than competing approaches.

1. Introduction

Attribute-based access control (ABAC) is an upcoming
access control standard. The National Institute of Standards
and Technology (NIST) issued in 2014 a special publica-
tion recommending ABAC over role-based access control
(RBAC) and access control lists [1]. Gartner Inc. estimates
that by 2020 70% of all businesses will use ABAC to protect
critical assets [2], [3].

1.1. Problem context

The specification and maintenance of ABAC rules brings
new challenges. Manually migrating to ABAC is more dif-
ficult than migrating to RBAC, which is already considered
to be time-consuming and cumbersome [1]. Even after spec-
ification, an ABAC rule set must be maintained and audited,
as organizational changes like mergers and acquisitions can
make the rules convoluted or inaccurate.

An alternative to manually specifying or maintaining an
ABAC rule set is to automatically mine ABAC rules from
access logs [4]–[7]. Since logs reflect both the implemented

access control rules and user behavior within the organiza-
tion, mining from logs can help to refactor and simplify rules
that become overly-complex due to organizational changes.
It can also help to identify overly permissive rules; that is,
rules that assign permissions to users who, according to the
log, are not using them.

In this paper, we examine one aspect of this problem
that is essential to using ABAC rule mining in practice:
mining ABAC rules from sparse logs. Logs reflect expected
requests as users generally access resources they are
granted. In consequence, real world logs typically contain
only a small subset of all possible access requests. We
consider three logs in our case studies and all of them
contain less than 10% of all possible requests.

This problem setting subsumes other previously consid-
ered settings, like mining from non-sparse logs and mining
where permissions are given by formalisms such as access
control matrices.

1.2. Limitations of the state-of-the-art

Despite intensive research in this area [8]–[15], previous
work has serious limitations.

Sparse logs. When the logs are sparse, some competing
approaches [4], [5] cannot mine useful ABAC rules. This
is because these approaches are intended only for mining
from access control matrices or from logs containing a large
fraction of all possible access requests.

Over-permissiveness. Mining algorithms [14], [15] re-
sort to quality measures like confidence [16] and weighted
relative accuracy [17] to guide the search and selection of
rules. We show in Section 5.2 that, for sparse logs, these
measures lead to the mining of overly permissive rules.
These are rules that cover a significant number of requests
without any evidence of authorization in the log, allowing
escalation of privileges.

Rule size. Current algorithms produce unnecessarily
large rules. Succinct rules are desirable from the adminis-
trative perspective as they are easier to audit and maintain.

Cross-validation. When evaluating models learned from
logs, the standard cross-validation method splits the log into
a training log and a testing log. We show that this approach
validates overly permissive rules, which is undesirable from
the security perspective. This happens because the logs
reflect expected access requests. Denied access requests are
therefore rare and mostly due to human error, rather than
malice. A testing log does not include a representative set
of requests that would be issued by malicious users. As a
result, evaluating a mined rule set on such a testing log
validates overly permissive rules.

1.3. Our approach

Rhapsody. We introduce a new ABAC mining algorithm
that address the first three limitations of the state-of-the-art
as follows.

Sparse logs. Rhapsody uses ideas from association
rule mining [16], [18] to mine from sparse logs.

No overly permissive rules. Rhapsody avoids mining
overly-permissing rules by using reliability (see Def-
inition 7), a new rule quality measure, to guide the
mining of rules. We demonstrate that reliability gives
low scores to rules that are overly permissive or have
low confidence (see Observation 1 in Section 3.2). We
also show that standard rule quality measures cannot
quantify over-permissiveness.

Rule size. Rhapsody only mines rules that have no
shorter equivalent rule.

Moreover, Rhapsody guarantees to mine exactly all rules
that have a reliability above a given threshold and have
no shorter equivalent rule (see Theorem 1 in Section 4.2).
Table 1 shows how Rhapsody improves upon state-of-the-art
mining algorithms.

Algorithm Sparse
logs

No overly
perm. rules

Shortest
rules

Xu & Stoller’s miner [8] 7 3 7

APRIORI-C [14] 3 7 3

APRIORI-SD [15] 3 7 3

Classsification-tree [19] 3 3 7

CN2 [12] 3 3 7

Rhapsody 3 3 3

TABLE 1: State-of-the-art ABAC policy mining algorithms.

Universal cross-validation. We present an alternative
to cross-validation for evaluating ABAC mining algorithms.
In contrast to standard cross-validation, universal cross-
validation evaluates mined policies with requests not
occurring in the log. In this way, universal cross-validation
improves the quality of the policies mined by any ABAC
mining algorithm, as it identifies those policies containing
overly permissive rules.

1.4. Case studies and evaluation

We experimentally compare Rhapsody with other meth-
ods for mining ABAC policies from logs. Our experimental

evaluation is the most comprehensive to date in access
control mining. We use logs from a large university and
two logs provided by Amazon [20], [21], where the last
two are available for research purposes. Previous researchers
used only logs from one enterprise, which are not publicly
available [9], [22] or just synthetic data [5], [7].

Our experimental results, presented in Section 6.4 and
summarized in Table 1, illustrate the four limitations of the
state-of-the-art and demonstrate that Rhapsody and universal
cross-validation overcome them.

Sparse logs. Rhapsody mines policies of higher quality
than Xu and Stoller’s approach [4], [5], [8]. When mining
from sparse logs, Xu and Stoller’s mined policies have true
positive rates close to 0%. In contrast, Rhapsody’s policies
attain true positive rates above 80% in most of the cases.

Over-permissiveness. Subgroup-discovery algorithms
like APRIORI-SD and APRIORI-C mine overly-permissive
rules, which yield false positive rates above 10%. By chang-
ing these algorithms’ input parameters, one can decrease
the false positive rate to values close to 0% but at the cost
of true positive rates below 40%. In contrast, Rhapsody’s
mined policies attain false positive rates close to 0% and
true positive rates above 80% in most of the cases.

Rule size. Classification-tree learners [10], [19] and
CN2 [12], [23] mine unnecessarily large rules. For the
Amazon logs, the rules mined by Rhapsody are at least
40% shorter and in some cases they are even 90% shorter.

Cross-validation. In 80% of the cases, universal cross-
validation validates policies with F1 scores (a standard
generalization metric [24]) greater or equal than those from
policies validated by standard cross-validation. In most of
the cases, the F1 scores improve in at least 30%. This
improvement holds for any mining algorithm.

1.5. Contributions

In summary, we make the following contributions.

Mining algorithm for sparse logs. We propose Rhap-
sody, a new ABAC mining algorithm that, in comparison
with previous work, mines policies from sparse logs that
generalize better.

Quality measure for over-permissiveness. We
introduce reliability, a new measure that quantifies how
overly permissive a rule is. We show that reliability only
gives high values to rules that are not overly permissive
and show why other standard measures fail to measure
over-permissiveness.

Succinctness and correctness. Rhapsody guarantees
that if there is a succinct rule satisfied by a significant
number of requests and with a reliability above a given
threshold, then this rule will be mined (See Theorem 1).

Evaluation methodology. We propose universal cross-
validation, a new validation method that, in comparison
with cross-validation on logs, validates policies with
substantially higher F1 scores.

(a) An organization with an
access log.

(b) Security policy. (c) Implemented policy. (d) Mined policy.

Figure 1: An illustrative example for ABAC mining. Each 3, 7, and denotes a request (i.e., user). The ticks 3 and crosses
7 denote logged requests that have been authorized and denied, respectively. The tiny rectangles denote users who have
not requested the permission yet.

The remainder of this paper is organized as follows.
In Section 2 we provide background on the ABAC mining
problem. In Section 3 we show how standard rule quality
measures give high scores to overly permissive rules and we
introduce a better measure, reliability. In Section 4 we use
our reliability measure to build Rhapsody, a new ABAC min-
ing algorithm. In Section 5 we show how cross-validation on
logs validates overly permissive rules and present universal
cross-validation. In Section 6 we experimentally compare
Rhapsody with other ABAC mining algorithms and univer-
sal cross-validation with cross-validation. Finally, in Sec-
tions 7 and 8 we discuss related work and draw conclusions.

2. The ABAC mining problem

We begin by describing the setting and the objectives for
ABAC mining. Afterwards, we formalize ABAC’s syntax
and semantics and the ABAC mining problem.

2.1. Setting

An ABAC policy is a set of rules, where each rule
describes a set of conditions based on the attribute values of
users and permissions [25], [26]. A permission denotes an
action on an object, and so a permission’s attributes refer to
the attributes of both the object and the action. Whenever a
user wants to exercise a permission, she must issue a request
identifying herself and the permission. The request contains
the user’s and the permission’s attribute values. A request is
authorized by an ABAC policy iff the request satisfies all the
conditions of at least one of the policy’s rules. We assume
the existence of a log that records every issued request and
whether the request was authorized or not.

We describe a setting that motivates ABAC mining.
Organizations define (organizational) security policies ex-
pressing which requests should be authorized. For enforce-
ment purposes, the policy administrator must specify this
as an ABAC policy in a machine-readable way for the

organization’s IT systems. We call this the implemented
ABAC policy.

Due to organizational changes or human errors made
during the policy’s implementation, mistakes may be intro-
duced in the implemented policy. These can be classified
into two types: incorrect authorizations (i.e., requests au-
thorized by the implemented policy but not by the security
policy) or incorrect denials (i.e., requests authorized by the
security policy but not by the implemented policy).

Incorrect authorizations are the hardest to detect and
the most problematic because they may be used for
nefarious purposes, e.g., to read confidential data, escalate
privileges, and in general to attack systems. In contrast,
incorrect denials are usually not so problematic from
the security perspective; when users discover that valid
requests are not authorized, they report them to the policy
administrator, who must then manually add exceptions to
the implemented policy. However, adding these exceptions
is time-consuming and their addition also makes the
implemented policy convoluted.

2.2. Illustrative example

Figure 1 illustrates our setting. Figure 1a describes an
organization with 48 users, one permission, and an access
log. Each 3, 7, and denotes a request. Since there is
only one permission, we can identify each request with
the user who issues it. The ticks 3 and crosses 7 denote
logged requests (i.e., users) that have been authorized and
denied, respectively. The tiny rectangles denote users who
have not requested the permission yet. Users have three
attributes: Country , Job, and ID . Country can take the
values US and FR whereas Job can take the values E,
M , S, and T (they stand for Engineer, Manager, Secretary,
and Technician, respectively). The ID of each user and the
permission are not shown in the figures.

Figure 1b describes the same organization from
Figure 1a but with an organizational security policy,

described by the shaded rectangles. This security policy
encloses all requests that should be authorized. According to
this policy, all engineers, secretaries, and French managers
should be authorized.

Figure 1c describes the actual implemented ABAC
policy, represented with dotted rectangles, which authorizes
all French users and four US-based engineers. Observe that
this policy incorrectly authorizes all French technicians
and incorrectly denies requests from US-based secretaries
and some US-based engineers. The four authorized
US-based engineers represent users who were initially
denied authorization, reported these incorrect denials to the
administrator, and were later added as exceptions to the
implemented policy.

Our goal is to propose an ABAC mining algorithm that,
given a log of requests, mines ABAC rules that identify
patterns among the authorized requests. Our ABAC mining
algorithm, Rhapsody, would mine the rules given by the
ovals in Figure 1d.

2.3. Use cases for ABAC mining

ABAC mining has the following applications:

Identification of missing rules. The mined rules can
find patterns among the manually added exceptions to dis-
cover missing rules in the currently implemented policy, like
the rule authorizing US-based engineers in Figure 1b.

Identification of overly permissive rules. The mined
rules can be compared with the currently implemented pol-
icy to identify overly permissive rules that authorize requests
for which the log gives insufficient evidence. In our example,
the rule authorizing all French users in Figure 1c is overly
permissive; it authorizes all French technicians, but none of
them have requested access so far. The policy administrator
can discover this by comparing the mined policy in Fig-
ure 1d with the implemented policy and then he can decide
if French technicians really need to be authorized.

Refactorization. The mined rules can be used to refactor
an old policy that has become convoluted after organiza-
tional changes.

Migration to ABAC. An ABAC mining algorithm can
also be used to mine ABAC policies from other configura-
tions like access control lists or RBAC models.

2.4. Objectives of ABAC mining

Based on the previous discussion, we now state the
properties a mining algorithm should satisfy to be useful.

Generalization. The mining algorithm can simply over-
fit the log and mine a policy that authorizes precisely
the authorized requests in the log and nothing else. This
policy is not useful as it does not help to explain what
is missing in the implemented policy. For this reason, a
mining algorithm should return policies that generalize well;
that is, the policies also authorize non-logged requests for
which a significant number of similar requests have been

authorized. A standard method for evaluating how well a
mined policy generalizes is cross-validation [27], which we
discuss in Section 5.

Precision. The algorithm should not mine policies au-
thorizing sets of requests for which the log offers no ev-
idence, like the rule authorizing all French technicians in
Figure 1c. For the case of French technicians, the algorithm
should conservatively risk an incorrect denial rather than an
incorrect authorization, as the latter is harder to detect and
more security critical. The absence of these requests in the
log shows that these requests are infrequent, so the work
required by the policy administrator in case of an incorrect
denial remains low.

Succinctness. The mined rules are used by the policy
administrator to correct the implemented policy. Therefore,
the mined rules should be succinct, so that the policy
administrator can easily understand them. For example, if a
rule states that “all US-based technicians are authorized” and
we know that all technicians are from the US, then a more
preferable rule would be “all technicians are authorized.”

2.5. ABAC syntax and semantics

ABAC policies are positive formulas expressing (binary)
relationships between users and permissions. They can gen-
erally be defined in a restricted fragment of sorted first-
order logic. This is sufficient to cover all ABAC scenarios
encountered in the literature.

Definition 1. (ABAC syntax) We fix a set of sorts and a
signature Σ of finitely many sorted constant, function, and
predicate symbols. We assume that the set of sorts includes
the two distinguished sorts Users and Permissions , as well
as other sorts typically used in ABAC like integers, strings,
or sets of strings.

We define the set of ABAC policies using the following
grammar, which defines a subset of quantifier-free, positive,
first-order formulas:

t ::= f(u) | f(p) | c /* Terms */
α ::= t = t | Q(t, t) /* Atoms */
r ::= α | α ∧ r /* Rules */
π ::= {r, . . . , r}. /* Policies */

Here, u and p range over variables of sorts Users and
Permissions , respectively, whereas f , c, and Q range over
unary function, constant, and binary relation symbols of the
appropriate sorts, respectively. We restrict atoms, rules, and
policies to have at most two free variables of sorts Users
and Permissions , respectively.

An expression of the form α, r, or π is called an
(ABAC) atom, rule, or policy, respectively. Any unary
function symbol f with domain Users or Permissions is an
attribute. If the domain is Users , we call f a user attribute;
otherwise, f is a permission attribute. The size of an ABAC
policy or a rule is the number of atoms occurring in it.

Definition 2. (ABAC semantics) As is standard for a sorted
first-order language, ABAC’s semantics is given by three
components. First, a collection of carrier sets, one for each
sort. This includes, in particular, a set U of users and a set
P of permissions. Second, a function I that interprets every
symbol in the signature, e.g., each attribute f corresponds
to a unary function fI over the appropriate carrier sets.
Finally, a sort-respecting substitution σ mapping the
variables u and p to elements in U and P , respectively. We
denote variables with bold letters and elements of carrier
sets with italicized letters.

We call a pair in U ×P a request. For a user attribute f
and u ∈ U , the value fI(u) is called u’s attribute value for
f . For a permission attribute f and p ∈ P , the value fI(p)
is called p’s attribute value for f . For an atom α, we denote
with I, σ � α the standard first-order satisfiability relation.
A rule r authorizes or covers a request (u, p) if I, σ � α, for
every atom α occurring in r. A policy π authorizes a request
(u, p) if some rule in π authorizes it. For a rule r and a set
S ⊆ U×P , we let JrKS be the set of requests in S authorized
by r. We now fix U , P , I, and σ for the rest of the paper.

2.6. ABAC mining

We now formally define the ABAC mining problem.
We start by defining an ABAC instance as a structure
describing the set of users, the set of permissions, and the
set of requests that have been logged so far in an access
control system.

Definition 3. (ABAC instance) An ABAC instance is a tuple
(U,P,A,D) where U and P are sets representing all users
and permissions in an organization, A and D are disjoint
subsets of U ×P and they denote the set of authorized and
denied requests, respectively. The log of the instance is the
set A ∪D.

In the ABAC mining problem, we are given as input an
ABAC instance (U,P,A,D) and the objective is to find
a precise ABAC policy of minimal size that generalizes
well. The policy’s size is measured as described in
Definition 1. To measure the precision and how well the
policy generalizes, we use universal cross-validation, a
new approach to cross-validation, introduced in Section 5.
Algorithms intended to solve this problem are called ABAC
mining algorithms.

3. Quantifying over-permissiveness

Most of ABAC mining algorithms work by computing
a set of candidate rules and selecting those that have a
high score according to some rule quality measure. State-
of-the-art quality measures depend only on the confidence
of the rule (the ratio of authorized requests covered by the
rule to the total requests covered by the rule). As we shall
see, this is insufficient and these measures may give high
scores to rules that we denote as overly permissive: rules
that authorize significant sets of requests with insufficient
evidence from the log. Since these rules are undesirable,

we propose a new quality measure for rule selection:
reliability. We prove that reliability gives a high value to
a rule iff it has a high confidence and, in addition, is not
overly permissive (see Observation 1).

As a motivating example, consider the ABAC instance
depicted in Figure 1a. From our discussion in Section 2.4, an
ABAC mining algorithm should mine the rule Job(u) = E ,
but not the rule Country(u) = FR. The log shows that
at least half of the engineers have requested access and
been authorized. Since users with the same attribute values
generally perform the same functions in an organization,
they should also have the same permissions. Therefore,
Job(u) = E should be mined. In contrast, regarding the rule
Country(u) = FR, although most of the French users have
been authorized, those who have not requested authorization
yet are precisely those who are technicians. There is no ev-
idence in the log yet to conclude that all French technicians
should be authorized. Therefore, Country(u) = FR, should
not be mined at this point.

Surprisingly, as we show next, current measures give
a higher value to Country(u) = FR than to Job(u) =
E . Moreover, there are mining algorithms like APRIORI-
SD [15] and APRIORI-C [14] that, when given as input the
ABAC instance of Figure 1a, mine the rule Country(u) =
FR. They mine this rule even when all French technicians
are marked as denied in the log.

3.1. Over-permissiveness

We start with some definitions. Recall that, for an ABAC
instance (U,P,A,D), a subset S ⊆ U × P , and a rule r,
the set JrKS consists of all requests in S satisfying r.

Definition 4 (Confidence [16]). Let (U,P,A,D) be an
ABAC instance. The confidence of a rule r is

Conf (r) :=
|JrKA|
|JrKU×P |

.

Previous mining algorithms used confidence to measure
a rule’s quality [14]–[16], [18]. If a rule’s confidence is
high, then a large fraction of the requests covered by the
rule has been authorized. According to these algorithms,
high confidence indicates that all the other covered requests
should also be authorized.

In Figure 1a, the rules Country(u) = FR and Job(u) =
E have confidence 0.75 and 0.66, respectively.

Definition 5. For a rule r, we call a refinement of r any
rule of the form r ∧ r′, for some rule r′.

A rule’s refinement identifies subsets covered by the
rule. Since we assume only signatures with finitely many
symbols, a rule has only finitely many refinements.

Two refinements of the rule Country(u) = FR are
Country(u) = FR ∧ Job(u) = E and Country(u) =
FR ∧ Job(u) = T . The confidence of these refinements
are 1.0 and 0.0, respectively.

Although Country(u) = FR has a high confidence,
a good ABAC mining algorithm should not mine this

rule; it authorizes all French technicians, but none
of them has even requested the permission. More
precisely, Country(u) = FR has the refinement
Country(u) = FR ∧ Job(u) = T covering a significant set
of requests, but with confidence 0. To describe these kind
of rules, we introduce the following concept.

A rule is overly permissive if one of its refinements
covers a significant set of requests but has low confidence.

An overly permissive rule goes against the principle of
least privilege and should be replaced with rules that avoid
the low-confidence refinement. In the case of Figure 1a,
a policy containing the rule Country(u) = FR should
have instead the rules Country(u) = FR ∧ Job(u) = E ,
Country(u) = FR ∧ Job(u) = M , and Country(u) =
FR ∧ Job(u) = S .

To formally define over-permissiveness, we must agree
on when a set of requests is significant and when a refine-
ment has low confidence. These notions are not absolute
and they depend on the ABAC instance. Hence, we let the
policy administrator specify parameters T and K, which
define when a set of requests is significant enough and when
a refinement has low confidence.

Definition 6. Let T ≥ 1 and K ∈ [0, 1]. A rule is overly
permissive with respect to T and K if there is a refinement
r ∧ r′ of r with |Jr ∧ r′KU×P | ≥ T and Conf (r ∧ r′) < K.

The values for T and K must be given as input to Rhap-
sody, so that Rhapsody can decide when a rule is overly per-
missive. We omit them when they are clear from the context.

In our experiments in Section 6 we found that, for an
ABAC instance (U,P,A,D), a good value for K is around
|A| / |U × P |. Very high values are too harsh and many
promising rules would be regarded as overly permissive.
In a sparse log, there are many requests that have not
been evaluated yet, so a refinement rarely has very high
confidence. Analogously, very low values are too lenient
and refinements with low confidence would not be regarded
as overly permissive.

Regarding good values for T , one could argue
that, in general, the best is 1, because this ensures that all
refinements are considered. However, we are interested only
in refinements that cover a significant number of requests.
In ABAC instances with thousands of users and permissions
and sparse logs, one can easily find refinements that cover 1
or 2 requests with confidence 0. Setting T = 1 could, there-
fore, unfairly mark promising rules as overly permissive.
In general, the lower T is, the more likely it is for a rule to
be overly permissive, as more refinements are considered.

We now discuss suitable values for T and K for Fig-
ure 1a. The smallest refinement here has size 4, so we can
let T = 4 to ensure that all significant refinements are
considered when evaluating if a rule is overly permissive.
For K, we can use |A|

|U×P | ≈ 0.3. If a refinement has a
confidence below 0.3, then we cannot be convinced that all
requests in that refinement should be authorized. So, for this
ABAC instance, we fix then T = 4 and K = 0.3.

With the above choice of T and K, the rule
Country(u) = FR is overly permissive because one of its
refinements, namely Country(u) = FR ∧ Job(u) = T ,
covers 4 requests but has confidence 0. In contrast, the
rule Job(u) = E is not overly permissive, since its two
refinements have confidence above 0.3.

3.2. Reliability

Table 2 illustrates rule quality measures from state-
of-the-art mining algorithms. We can see that all of them
depend just on the confidence of the rule, the total requests,
and the total authorized requests. One can easily verify
that the value of these measures is high whenever the
confidence is high.

Quality measure Formula

Support [16] Supp(r) = |JrKU×P |

Confidence [16] Conf (r) =
|JrKA|
|JrKU×P |

Likelihood
ratio statistic

[12]
2Supp(r)Conf (r) log

(
Conf(r)(|A|
|U×P |

)
)

+

2Supp(r) (1− Conf (r)) log

(
1−Conf(r)(
1− |A|
|U×P |

)
)

Entropy [28]
Conf (r) log (Conf (r))+

(1− Conf (r)) log (1− Conf (r))

WRAcc [17] Supp(r)
|U×P |

(
Conf (r)− |A|

|U×P |

)
Gini index [10] −Conf (r) (1− Conf (r))

TABLE 2: Quality measures proposed for rule mining,
which are all based on Conf (r), Supp(r), |A|, and |U × P |.

Despite extensive research on these measures, none
of them is able to quantify both confidence and over-
permissiveness. For example, in Figure 1a, all measures
give a value to Country(u) = FR that is higher than the
value given to Job(u) = E . However, as we discussed
above, Country(u) = FR is overly permissive and
Job(u) = E is not. More generally, for any measure and
any choice of T and K, there are scenarios where the
measure gives high values to overly permissive rules.

Motivated by these limitations, we propose reliability, a
measure that quantifies not only the confidence of a rule,
but also the confidence of all its significant refinements.

Definition 7. (Reliability) Let (U,P,A,D) be an ABAC
instance. For T ≥ 1, the T -reliability of a rule r is:

RelT (r) := min
r′∈FT (r)

Conf (r ∧ r′) .

where FT (r) = {r′ : |Jr ∧ r′KU×P | ≥ T}. In the degenerate
case of FT (r) = ∅, define RelT (r) := Conf (r).

The parameter T corresponds to the same parameter
T in the definition of over-permissiveness. The following

observation, which has a straightforward proof, gives the
connection between reliability and over-permissiveness.

Observation 1. Let T ≥ 1, K ∈ [0, 1], and r be a rule.
RelT (r) ≥ K iff Conf (r) ≥ K and r is not overly
permissive with respect to T and K.

We compute the 4-reliability for the rules Country(u) =
FR and Job(u) = E for the ABAC instance of Figure 1a.

Rel4(Country(u) = FR)

= min


Conf (Country(u) = FR) ,
Conf (Country(u) = FR ∧ Job(u) = E) ,
Conf (Country(u) = FR ∧ Job(u) = M) ,
Conf (Country(u) = FR ∧ Job(u) = S) ,
Conf (Country(u) = FR ∧ Job(u) = T)


= min{0.75, 1.0, 1.0, 1.0, 0.0}
= 0.0.

Rel4(Job(u) = E)

= min

 Conf (Job(u) = E) ,
Conf (Job(u) = E ∧ Country(u) = FR) ,
Conf (Job(u) = E ∧ Country(u) = US)


= min{0.66, 1.0, 0.5}
= 0.5.

For any measure in Table 2, Country(u) = FR gets a
higher score than Job(u) = E , despite Country(u) = FR
being overly permissive. However, Rel4(Country(u) =
FR) < Rel4(Job(u) = E), as we have shown above.

The previous example and Observation 1 show that
reliability achieves what other measures could not: it gives
a high score to precisely those rules that have a high
confidence and are not overly permissive.

4. Rhapsody

We now present Rhapsody, our ABAC mining
algorithm. Rhapsody builds upon APRIORI-SD [15], a
machine learning algorithm for subgroup discovery. We
start with a brief overview of how APRIORI-SD can be
used for ABAC mining.

4.1. APRIORI-SD

APRIORI-SD receives as input two parameters s and c
and operates in three stages. We just summarize the main
idea and refer the reader to the original paper [15].

1) Compute a set FreqRules of rules, such that r ∈
FreqRules iff r covers at least s requests.

2) Compute a subset ConfRules ⊆ FreqRules , such that
r ∈ ConfRules iff Conf (r) ≥ c.

3) Compute a subset W ⊆ ConfRules by iteratively
selecting from ConfRules the rule with highest
weighted relative accuracy (WRAcc on Table 2), until
W covers all requests in A.

Although APRIORI-SD mines policies that generalize
well, our experiments confirmed that it also mines overly

permissive rules. APRIORI-SD uses the WRAcc measure to
guide rule selection, which, as discussed in Section 5.2, may
give high values to overly permissive rules. For example,
when given s = 4, c = 0.5, and the ABAC instance of
Figure 1a, APRIORI-SD outputs the overly-permissive rule
Country(u) = FR.

4.2. Rhapsody Algorithm

Rhapsody builds on APRIORI-SD by replacing its last
two stages with two new stages. In one of them, Rhapsody
computes the reliability of each rule in FreqRules and
removes those rules whose T -reliability is below a given
threshold K. T and K are input parameters defining when
a rule is overly permissive. In the other stage, Rhapsody
removes those rules that have an equivalent shorter rule.
These extensions prevent Rhapsody from mining overly
permissive or unnecessarily large rules.

Rhapsody takes as input an ABAC instance (U,P,A,D),
T ≥ 1, and K ∈ [0, 1]. Rhapsody outputs an ABAC policy
π. A rule r is in π iff it covers at least T requests, RelT (r) ≥
K, and it has no equivalent shorter rule (Theorem 1).

Rhapsody operates in three stages.
1) Compute the set FreqRules of all rules covering at least

T requests.
2) Compute the subset RelRules ⊆ FreqRules of rules

whose T -reliability is at least K.
3) Remove from RelRules all rules that have an equivalent

shorter rule in RelRules and output the remaining rules.
We explain each stage in detail.

Stage 1 (Algorithm 1). Compute the following:
• A set FreqRules = {r : |JrKU×P | ≥ T}.
• A function nU×P : FreqRules → N, such that
nU×P (r) = |JrKU×P |.

• A function nA : FreqRules → N, such that
nA(r) = |JrKA|.

To compute FreqRules and nU×P , Rhapsody uses the
APRIORI algorithm [16], [18]. We give a brief overview of
APRIORI and explain how Rhapsody uses it.

For s > 0 and F a family of sets, we say that a set
C is s-frequent in F if |{S ∈ F : C ⊆ S}| ≥ s. APRIORI
receives a family F of sets and a threshold s and outputs

(i) all s-frequent sets in F and
(ii) a function nF mapping each s-frequent set C in F to
|{S ∈ F : C ⊆ S}|.

Rhapsody computes FreqRules and nU×P as follows.
First, it computes for each request (u, p) ∈ U × P the set
A(u, p) of all atoms that (u, p) satisfies (Line 2). Then
it invokes APRIORI on {A(u, p) : (u, p) ∈ U × P} with
the threshold T (Line 3). Afterwards, it uses APRIORI’s
output to compute the set FreqRules (Line 4). Finally,
it computes nA as follows. Initially, nA(r) = 0, for all
r ∈ FreqRules (Lines 5–7). Then, for each (u, p) ∈ A
and each r ∈ FreqRules that (u, p) satisfies, it increments
nA(r) by 1 (Lines 8–12).

Algorithm 1 Rhapsody’s first stage

1: function Stage1 (U , P , A, T)
2: F ← {A(u, p) : (u, p) ∈ U × P}
3: FreqItemSets, nU×P ← APRIORI(F , T)
4: FreqRules ←

{α1 ∧ . . .∧ αk : {α1, . . . , αk} ∈ FreqItemSets}
5: for r ∈ FreqRules do
6: nA(r)← 0
7: end for
8: for (u, p) ∈ A do
9: for r ∈ FreqRules s. t. (u, p) satisfies r do

10: nA(r)← nA(r) + 1
11: end for
12: end for
13: return FreqRules , nU×P , nA
14: end function

Stage 2 (Algorithm 2). This stage computes the set
RelRules of all rules in FreqRules whose T -reliability is
at least K.

Definition 8. For two rules r1 and r2, we say that r2 proves
that RelT (r1) < K if

(i) r2 is a refinement of r1,
(ii) |Jr2KU×P | ≥ T , and

(iii) Conf (r2) < K.

Observe that if a rule proves that RelT (r1) < K, then
r1’s T -reliability is less than K.

In this stage, Rhapsody computes from FreqRules a
subset UnrelRules . A rule r1 ∈ FreqRules is added
to UnrelRules if some rule in FreqRules proves that
RelT (r1) < K. Afterwards, Rhapsody computes the set
RelRules = FreqRules \UnrelRules .

Algorithm 2 Rhapsody’s second stage

1: function Stage2 (FreqRules , nU×P , nA, T , K)
2: UnrelRules ← ∅
3: for r1, r2 ∈ FreqRules do
4: if r2 proves that RelT (r1) < K then
5: UnrelRules ← UnrelRules ∪ {r1}
6: end if
7: end for
8: RelRules ← FreqRules \UnrelRules
9: return RelRules

10: end function

Stage 3 (Algorithm 3). This stage removes redundant rules
from RelRules and outputs the result.

Definition 9. We say that a rule r1 is equivalent to a rule
r2 if Jr1KU×P = Jr2KU×P .

It is easy to prove that two rules r1, r2 ∈ RelRules
are equivalent iff r1 ∧ r2 ∈ FreqRules and nU×P (r1) =
nU×P (r2) = nU×P (r1 ∧ r2).

In this final stage, Rhapsody computes a set Subsumed
of redundant rules from the set RelRules . For this, each
pair of rules r1, r2 ∈ RelRules is analyzed. If r2 is
both shorter than and equivalent to r1, then r1 is inserted
into Subsumed . Afterwards, Rhapsody computes the set
ShortRules = RelRules \ Subsumed .

Algorithm 3 Rhapsody’s third stage

1: function Stage3 (RelRules, nU×P , nA,FreqRules)
2: Subsumed ← ∅
3: for r1, r2 ∈ RelRules do
4: if r1 and r2 are equivalent and
5: r2 is shorter than r1 then
6: Subsumed ← Subsumed ∪ {r1}
7: end if
8: end for
9: ShortRules ← RelRules \ Subsumed

10: return ShortRules
11: end function

Rhapsody’s parameters. Rhapsody receives as input
two parameters T and K, which guide the selection of
mined rules. The values for these parameters depend on the
ABAC instance and affect how well the mined policy gen-
eralizes. To find the best values, we recommend evaluating
Rhapsody as described in Section 5.3 with different values
and then choosing those values where Rhapsody mined
the policy that generalized better than the others. In our
experiments, the best values for T and K are respectively
around 0.01 ∗ |U × P | and |A| / |U × P |.

Rhapsody’s performance. Rhapsody’s first stage’s time
complexity is determined by APRIORI’s time complexity,
which is O(|U × P | ∗L), where L is the maximum number
of rules that a request may satisfy. Rhapsody’s second and
third stage’s time complexity is quadratic in |FreqRules| ∗
L. In the worst case, |FreqRules| is O (|U × P | ∗ L). So
Rhapsody’s time complexity is O(|U × P |2 ∗ L3).

Note that L grows exponentially in the number of at-
tributes, so Rhapsody cannot mine logs with many attributes.
Fortunately, in access control scenarios, the number of at-
tributes is usually small, namely less than 20 [29]. Even for
the case of the Amazon logs, the number of attributes is less
than 15 [20], [21]. This allows Rhapsody to mine from any
of the ABAC instances in our experiments within 24 hours.
Moreover, there already exists feature selection techniques
for mining access control policies [22], so one can extract
a small subset of attributes that are relevant for deciding
authorization, before executing Rhapsody.

In addition, an ABAC mining algorithm does not need
to mine policies in real time and organizations specify
their access control policies only infrequently. Since the
implemented policy is security critical, an offline algorithm
providing guarantees is preferable to an online algorithm
providing overly-permissive or unnecessarily long rules.

Policy simplification. After executing Rhapsody on
(U,P,A,D), it is still possible to prune redundant rules
from π by keeping only a small subset that covers all
requests covered by π. In our experiments, we found that
the best way to build this subset is using APRIORI-SD’s
last stage. This stage iteratively selects the rule with highest
weighted relative accuracy (WRAcc in Table 2) from π until
all selected rules cover A. Algorithm 4 gives the details.

Algorithm 4 Policy simplification

1: function simplify(π, U , P , A)
2: uReqs ← U × P
3: uLog ← A
4: simpPolicy ← ∅
5: while uLog 6= ∅ and π 6= ∅ do
6: r ← argmax r′{WRAcc(r′) : r′ ∈ π}
7: uReqs ← uReqs \ {(u, p) : (u, p) � r}
8: uLog ← uLog \ {(u, p) : (u, p) � r}
9: π ← π \ {r}

10: simpPolicy ← simpPolicy ∪ {r}
11: end while
12: return simpPolicy
13: end function

Correctness The following theorem establishes Rhap-
sody’s main property: Rhapsody mines exactly those rules
that have high reliability and are shorter than any other
equivalent rule. The proof is a straightforward consequence
of the definitions and algorithms in Section 4.

Theorem 1. A rule r is in Rhapsody’s output iff
(i) |JrKU×P | ≥ T ,

(ii) RelT (r) ≥ K, and
(iii) there is no rule r′ that is both shorter than and equiv-

alent to r, with RelT (r′) ≥ K.

5. Evaluating generalization

We discuss next two common methods for evaluating
the precision and generalization of models mined from logs.
We argue why they are inadequate and then propose a better
method: universal cross-validation.

5.1. Limitations of using an organizational security
policy for evaluation

One evaluation method for ABAC mining algorithms
uses only ABAC instances where the organizational se-
curity policy is already known. In this method, a mining
algorithm is given the instance as input and the set of
requests authorized by the mined policy is compared with
the set of requests authorized by the security policy. For
example, a policy mined from the instance in Figure 1a,
would be compared with the security policy, which is the one
described by the light-green shaded rectangles in Figure 1b.
We argue next why this approach is not an adequate way
to evaluate mining algorithms.

In ABAC instances with sparse logs, there are rules
covering a significant number of requests, but none of
which occurs in the log. We call these rules uncertain. In
Figure 1a, the rules Country(u) = US ∧ Job(u) = S and
Country(u) = FR ∧ Job(u) = T are uncertain.

Observe that a mining algorithm cannot decide if an
uncertain rule is part of the organizational security policy.
Therefore, whenever a mining algorithm mines an uncertain
rule, there is the risk that the rule is not part of the security
policy, and hence, incorrectly authorizes requests. As dis-
cussed in Section 2.4, mining algorithms should opt for an
incorrect denial in this case. Since the requests covered by
the uncertain rule do not occur in the log, this means that
these requests happen infrequently, so the work required
by the policy administrator in case of an incorrect denial
remains low.

Mining algorithms should mine a rule only if the log
provides evidence for that rule. Therefore, if an algorithm
mines an uncertain rule, then it should be penalized, even
when this rule happens to be part of the organizational se-
curity policy, like the rule Country(u) = US ∧Job(u) = S
in Figure 1b.

It is for this reason, that the approach of evaluating
mined policies using the organizational security policy is not
adequate, as it may not penalize algorithms mining uncer-
tain rules. In contrast, universal cross-validation, which we
present in Section 5.3, uses metrics that penalize algorithms
mining uncertain rules.

5.2. Limitations of using cross-validation on logs

A standard method for evaluating the precision and
the generalization of models mined from logs is cross-
validation [30]–[32]. In its simplest form, cross-validation
splits the log into a training and a testing log. Only the
training log is given to the algorithm. Once the algorithm
finishes, the mined policy is evaluated on the testing log
using performance metrics like the true positive rate (TPR)
and false positive rate (FPR) [24]. The true positive rate is
the fraction of authorized requests in the testing log that are
correctly authorized by the mined policy. The false positive
rate is the fraction of denied requests in the testing log that
are incorrectly authorized by the mined policy. Figure 2
illustrates cross-validation on logs.

Figure 2: Cross-validation on logs.

If we use cross-validation to evaluate ABAC mining
algorithms, then we would give only the training log as

(a) In cross-validation on logs, algorithms are given as input only
the log A∪D of an ABAC instance (U,P,A,D), so they cannot
evaluate the over-permissiveness of the mined rules. Moreover,
the testing log does not include requests outside the original log.
In consequence, algorithms mining overly permissive rules, like
Country(u) = FR, are not penalized.

(b) In universal cross-validation, algorithms are now given as input
(U,P,A,D). Moreover, the testing log is expanded with requests
not occurring in the original log and the precision of the mined
policy is measured. With these changes, algorithms mining overly
permissive rules, like Country(u) = FR, are penalized.

Figure 3: Cross-validation on logs and universal cross-validation.

input to the mining algorithm, and then we would evaluate
the mined policy only on the requests in the testing log.
Mining algorithms would not receive in the input requests
outside the log and mined policies would not be evaluated
on requests not occurring in the log.

In the context of ABAC mining from sparse logs, cross-
validation on logs validates overly permissive rules. To
illustrate this, we use the ABAC instance from Figure 1a
and the classification-tree learning algorithm (CTA) [10],
[19], which is used to train classification trees from labeled
data. It is easy to extract rules from a classification tree
explaining how the tree classifies instances. Hence, CTA is
suitable for ABAC mining. We illustrate next what happens
if we use cross-validation on logs in this scenario.

Suppose that we split the log into a training and a
testing log, as shown in Figure 2. If we use CTA on the
training log, then we obtain the policy π = {Country(u) =
FR, Job(u) = E}, which correctly authorizes and denies all
requests in the testing log. Since no French technician has
requested access yet, it seems like π perfectly grants and de-
nies access. However, π contains the rule Country(u) = FR
and, as discussed in Section 5.2, this rule is questionable,
as it authorizes all French technicians with no evidence
from the log. Cross-validation does not evaluate π on those
requests because the log does not contain requests from
French technicians.

The problem of using cross-validation on logs is that it
does not evaluate the precision of the mined policy. Pre-
cision is a standard machine-learning metric that measures
the ratio of authorized requests covered by the policy to
the total number of requests covered by the policy [24].
A mined policy may correctly authorize all requests in the
log, but it may also have a low precision and authorize an
unnecessarily large number of non-logged requests. A good

ABAC mining algorithm should be able to anticipate from
the log which requests are likely to occur in the future that
can also be authorized, but without authorizing requests for
which the log gives no evidence.

Although our critique addresses a simple form of cross-
validation, it directly extends to more sophisticated forms
of cross-validation, like K-fold cross-validation and leave-
one-out cross-validation [27].

5.3. Universal cross-validation

Cross-validation on logs is problematic because it ig-
nores all requests that are not in the log. Therefore, to
validate an ABAC mining algorithm, we propose to include
these ignored requests in the validation process. A good
ABAC mining algorithm should then mine policies that
fulfill the following properties:
• Attain a high TPR by authorizing as many authorized

requests in the testing log as possible.
• Attain a low FPR by authorizing as few denied requests

in the testing log as possible.
• Attain a high precision by authorizing as few requests

outside the log as possible.
Based on the above ideas, we present universal cross-

validation, a new method for evaluating ABAC mining
algorithms, illustrated in Figure 4. Assume given an ABAC
mining algorithm and an ABAC instance (U,P,A,D). Sam-
ple uniformly at random two training sets Tr(A) and Tr(D)
from A and D, respectively. Let Ts(A) := A \ Tr(A) and
Ts(D) := D \Tr(D). Give (U,P,Tr(A),Tr(D)) as input
to the algorithm. Once the algorithm outputs a policy π,
evaluate π’s F1 score and π’s false positive rate as follows.

TPR(π) = |JπKU×P∩Ts(A)|
|Ts(A)| .

Prec(π) = |JπKU×P∩Ts(A)|
|JπK(U×P)∩Tr(A)∪Tr(D)| .

FPR(π) = |JπKU×P∩Ts(D)|
|Ts(D)| .

F1 (π) = 2∗TPR(π)∗Prec(π)
TPR(π)+Prec(π) .

Recall that JπKS , for S ⊆ U × P is the subset of requests
in S authorized by π. We use the F1 score and the FPR to
measure how well a policy generalizes.

Observe that when computing the scores above, all
requests have the same weight. However, the policy
administrator can add more weight to requests for
permissions that are more critical than others, so that
policies incorrectly authorizing or denying critical requests
are more heavily penalized.

Figure 4: Universal cross-validation.

Figure 3 compares cross-validation on logs with univer-
sal cross-validation. First, the input to the algorithm is not
only the log, but also the set of all possible requests. Second,
universal cross-validation enlarges the set over which algo-
rithms are evaluated. This set now includes a sample from
all unknown requests (see the bold purple area in Figure 4).

6. Experiments

In this section, we experimentally demonstrate the four
limitations of the state-of-the-art.

Sparse logs. Previous ABAC mining algorithms gener-
alize poorly when mining from sparse logs.

Over-permissiveness. Subgroup-discovery algorithms
mine overly-permissive rules.

Rule size. Current machine-learning algorithms mine
unnecessarily large rules.

Cross-validation. Cross-validation finds policies that
generalize worse than those found using universal cross-
validation.

Moreover, we show that Rhapsody is the only algorithm
that is capable of mining succinct rules from sparse logs,
without mining overly permissive rules.

6.1. ABAC instances

We use ABAC instances from four case studies for
our evaluation. We summarize them briefly and refer to
Appendix A for details.

Amazon 1. We built four instances from an access log
provided by Amazon in Kaggle, a platform for predictive
modeling competitions [20], [33]. The log contains more
than 12,000 users and 7,000 permissions and is very
sparse. For any permission, less than 7% of all users have
requested access.

Amazon 2. We built seven instances from another log
provided by Amazon in the UCI machine learning repos-
itory [21]. The log contains more than 36,000 users and
27,000 permissions. For any permission, less than 10% of
all users have requested access.

University. We used a log of students accessing a
computer lab in a university. The log contains more
than 50,000 users. Less than 1% of the students have
requested access and less than 5% of them were denied
access. Experiments with these logs were approved by the
university’s security department.

Basic Organization. We generated five simple synthetic
instances, where users and permissions contain only one
attribute. All users except those with a specific attribute
value are authorized to have any permission. The logs in
these instances contain approximately 50% of all possible
requests and less than 5% of the logged requests are denied.

6.2. Algorithms

We compare Rhapsody with the following algorithms.
1 Xu and Stoller’s ABAC miner [5].
2 CN2 [12], an algorithm for learning classification rules.

We used the implementation provided by the Orange
data mining library [34].

3 The classification-tree learning algorithm (CTA) pro-
vided by the scikit-learn library [35].

4 APRIORI-SD [15], as described in Section 4.
We give an overview of these algorithms in Section 7.

6.3. Evaluation methodology

For each ABAC mining algorithm and each ABAC
instance, we ran cross-validation on logs five times and
then computed the average FPR, average F1 score, average
TPR, and average size of the mined policies. Similarly, we
ran universal cross-validation five times and then computed
the average of the same metrics. In both types of cross-
validation we split the log into a training log and a testing
log containing 80% and 20% of the requests, respectively.

Each mining algorithm has a set of parameters that can
affect the F1 score, FPR, TPR, and size of the mined policy.
We evaluated each algorithm with different values for such
parameters. Among all the policies mined by the algorithm,
we selected the one with highest F1 score, subject to an
FPR < 0.05.

APRIORI-SD and Rhapsody were evaluated on ma-
chines with a 2,8 GHz 8-core CPU and 32 GB of RAM.
CTA and CN2 were evaluated on machines with a 3,8 GHz
8-core CPU and 32 GB of RAM. All algorithms were given
a time limit of 24 hours for each instance. CN2 timed out

when mining the instances from Amazon 2 and University.
Xu and Stoller’s miner timed out when mining the instances
from University.

6.4. Results

Figure 7 compares the F1 score of policies selected
using cross-validation on logs with the F1 score of policies
selected using universal cross-validation. In most of the
cases, the policy selected by universal cross-validation has
an FPR equal to 0 (not shown in Figure). Figures 5a, 5b,
and 6 compare, respectively, the F1 scores, sizes, and TPRs
of the policies mined by each algorithm on the instances
of each case study. The FPR was close to 0 for almost all
mined policies. From these figures, we make the following
four observations.

Cross-validation. In 80% of the cases, the policy
selected by universal cross-validation has a higher or equal
F1 score than the policy selected by cross-validation on
logs. In most of the cases, the improvement is of at least
30%. Observe that the improvement holds for any ABAC
mining algorithm.

Sparse logs. Xu and Stoller’s ABAC miner does not
generalize well. In most of the cases, policies mined by Xu
and Stoller’s attain an F1 score equal to 0. This is because
this algorithm was designed mainly for mining from non-
sparse logs, where a large percentage of all access requests
have already been decided. In contrast, Rhapsody’s F1 score
is among the highest, for almost all instances.

Over-permissiveness. APRIORI-SD mines overly per-
missive rules. Consider the results for the instances of the
basic organization in Figure 6. The TPR of the policies
mined by APRIORI-SD is below 0.4 whereas the TPR of the
policies mined by Rhaposdy is close to 1. This is because
APRIORI-SD uses the confidence measure to mine rules. In
Section 3, we explained how this measure leads to mining
policies with overly permissive rules, which yielded FPRs
above 0.1. The only policies mined by APRIORI-SD that
attained FPR < 0.05, as we required in Section 6.3, attained
a TPR < 0.4.

Rule size. CTA and CN2 mine unnecessarily large
rules. In the Amazon 1 instances, the policies mined by
CN2 have size at least twice as large as those mined by
Rhapsody and those mined by CTA are 10 times larger
than those mined by Rhapsody. This cannot be fixed by
expanding CTA or CN2 with Rhapsody’s third stage, which
searches for each mined rule, the shortest equivalent rule.
This is because these algorithms cannot compute for each
rule the set of equivalent rules.

We conclude that Rhapsody is the only ABAC mining
algorithm capable of mining succinct rules from sparse
logs, without mining overly permissive rules. Competing
approaches mine rules that generalize poorly, mine unnec-
essarily large rules, or mine overly permissive rules.

7. Related work

Numerous algorithms have been proposed to mine
policies from existing assignments of permission to users
or from logs recording which users have required which
permissions for their jobs. The approaches taken have
been primarily oriented towards role-based access control
(RBAC), e.g., [9], [22], [36], and more recently towards
ABAC [5], [8], [20]. Moreover, there are machine learning
algorithms that learn models from sets of labeled requests,
e.g. [9]–[13], [22]. The models learned by these algorithms
generalize well and can be adapted to ABAC mining. We
discuss them next.

Xu and Stoller’s ABAC miner. Recently, Xu and Stoller
proposed an ABAC mining algorithm [5], [8]. Their algo-
rithm can mine ABAC policies from access control matrices
and logs. However, their algorithm considers only the case of
logs that contain a large fraction of the requests. In contrast,
Rhapsody can mine succinct policies that generalize well,
even from sparse logs.

Rule learning. Rule learning addresses the following
problem: Given a set of requests, where each request
is labeled as positive or negative, find a set of rules
that describe the requests labelled as positive. Several
algorithms have been proposed for this, such as CN2 [12]
and RIPPER [37]. They all work iteratively, where each
iteration learns one rule at a time. In each iteration, the
algorithm learns a rule r by computing a series of rules r0,
r1, · · · , rk, where r0 = true, ri+1 = ri∧αi, for i ≤ k, and
rk = r. The atom αi is chosen in a way that ri+1 maximizes
a rule quality measure. After rk is computed, all requests
that satisfy rk are removed and the algorithm starts learning
another rule. This is repeated until all positive requests are
covered or a given termination condition is satisfied.

The main limitation of these algorithms stems from their
greedy behavior. There may be a high-quality rule where
each of its atoms has a low quality, according to the quality
measure. These rules will not be mined by the rule learning
algorithm. Rhapsody, in contrast, uses ideas from association
rule mining [16], [18]. This guarantees that if a high-quality
rule is very often satisfied, then Rhapsody will find it,
irrespective of the quality of its atoms. Hence, Rhapsody can
discover rules that are ignored by rule learning algorithms
and can propose more accurate and more succinct rules.

Classification trees. A classification tree is a function
encoding a partition of a set of labeled requests. Each
partition has an associated label. To predict a value for a
new request, the classification tree finds the partition where
the new request belongs and uses the label associated to that
partition as prediction. Algorithms for mining classification
trees [10], [11] yield trees that generalize well. Moreover,
one can easily extract rules from those trees. However, as
our experiments demonstrated, these rules are unnecessarily
long. Rhapsody, in contrast, keeps track of all possible ways
to specify a rule and at the end selects the most succinct one.

Random forests and neural networks. Classification
trees are prone to overfitting because of their low bias and
high variance [27]. For this reason, random forests are rec-

(a) Average F1 score of the policies mined by ABAC mining
algorithms. Policies with higher F1 score are better as they are
more accurate in deciding requests outside the log.

(b) Average sizes of the policies mined by all ABAC mining
algorithms. The sizes are logarithmically scaled. Smaller policies
are better, as they are easier to maintain and audit.

Figure 5: F1 score and size of the policies mined by ABAC mining algorithms.

ommended. A random forest is a collection of classification
trees trained over subsamples of the data. The classification
decision of a random forests is obtained from the classifi-
cation decisions of each tree, usually by a majority vote.

Random forests generalize better than classification
trees, but this comes at the expense of interpretability [38].
There is no canonical way to extract decision rules
from a random forest. For this reason, we cannot apply
the algorithms proposed by the winners of the Kaggle
competition [39] for ABAC mining. Their models involve
mixtures of 15 different models, including classification
trees and logistic models. The competition only measured
models according to how well the models generalized and
not the simplicity of the rules proposed. The requirement
of mining simple rules makes other techniques like neural
networks unsuitable for ABAC mining.

Subgroup discovery. Subgroup discovery algorithms
mine frequent and statistically significant rules from a set of
labeled requests. These algorithms [15], [40], [41] require
as input a threshold T for the number of requests that must
satisfy a rule to be considered as frequent. Moreover, the
rules must be statistically significant: the distribution of the
requests’ labels satisfying this rule must differ significantly
from the distribution of all requests’ labels. These algorithms
compute all statistically significant rules that are satisfied by

Figure 6: Average TPR of the policies mined by ABAC
mining algorithms. Observe that the policies mined by
APRIORI-SD have a TPR below 0.4 for the basic orga-
nization instances, whereas those mined by Rhapsody have
a TPR close to 1.

Figure 7: Comparison of F1 score of policies selected using
cross-validation on logs versus F1 score of policies selected
using universal cross-validation. Policies with higher F1
score are better as they are more accurate in deciding
requests outside the log.

at least T requests.
All subgroup discovery algorithms use rule quality mea-

sures that depend just on the confidence of the rule, which
can lead these algorithms to mine overly permissive rules.
For example, the subgroup discovery algorithm APRIORI-
SD uses the WRAcc measure for rule selection. As a result,
it mines the overly permissive rule Country(u) = FR
when given as input the ABAC instance of Figure 1a. Our
experiments with the basic organization (Section 6.4) also
show that APRIORI-SD mines overly permissive rules. In
contrast, Rhapsody uses our new measure, reliability, for
rule selection. Reliability is guaranteed to select rules with

high confidence that are not overly permissive (Theorem 1).

8. Conclusion

Mining ABAC policies from logs can identify future ac-
cess requests that should be authorized. To get the maximum
benefit from this, one should mine policies before a large
fraction of all requests have been decided. When the log
contains limited information, we observed two phenomena.
First, cross-validation on logs is insufficient as it validates
policies with overly permissive rules. Second, state-of-the-
art algorithms mine policies with overly permissive rules or
unnecessarily large rules.

We proposed universal cross-validation as the method for
evaluating mined policies. This method penalizes policies
with overly permissive rules but without causing mining
algorithms to overfit logs. We also proposed a new mea-
sure, reliability, that quantifies better than standard measures
how overly permissive a rule is. Based on reliability, we
developed a new ABAC mining algorithm, Rhapsody, which
guarantees to mine exactly all rules that cover a large num-
ber of requests, have a reliability above a given threshold,
and have no shorter equivalent rule. When compared with
other ABAC mining algorithms, Rhapsody mines policies
that generalize better and have smaller size.

As future work, we plan to apply Rhapsody to mine
interpretable models from more sophisticated machine-
learning models like deep neural networks, gradient boosted
decision trees, and random forests.

References

[1] V. C. Hu, D. Ferraiolo, R. Kuhn, A. R. Friedman, A. J. Lang,
M. M. Cogdell, A. Schnitzer, K. Sandlin, R. Miller, K. Scarfone
et al., “Guide to attribute based access control (abac) definition and
considerations (draft),” NIST special publication, vol. 800, no. 162,
2013.

[2] National Cybersecurity Center of Excellence, “Attribute-based
Access Control,” 2017. [Online]. Available: https://nccoe.nist.gov/
projects/building-blocks/attribute-based-access-control

[3] G. Kreizman, A. Allan, F. Gaehtgens, B. Iverson, and A. Singh,
“Identity and access management scenario 2020: Powering digital
business,” 2015. [Online]. Available: https://www.gartner.com/doc/
3174723/identity-access-management-scenario-

[4] Z. Xu and S. D. Stoller, “Mining attribute-based access control poli-
cies from RBAC policies,” in Emerging Technologies for a Smarter
World (CEWIT), 2013 10th International Conference and Expo on.
IEEE, 2013, pp. 1–6.

[5] ——, “Mining attribute-based access control policies from logs,” in
Data and Applications Security and Privacy XXVIII. Springer, 2014,
pp. 276–291.

[6] S. N. Chari and I. M. Molloy, “Generation of attribute based access
control policy from existing authorization system,” Sep. 2 2014, US
Patent App. 14/474,747.

[7] D. Mocanu, F. Turkmen, and A. Liotta, “Towards ABAC Policy
Mining from Logs with Deep Learning,” in Proceedings of the 18th
International Multiconference, ser. Intelligent Systems, 2015.

[8] Z. Xu and S. D. Stoller, “Mining attribute-based access control
policies,” Dependable and Secure Computing, IEEE Transactions on,
vol. 12, no. 5, pp. 533–545, 2015.

[9] I. Molloy, Y. Park, and S. Chari, “Generative models for access con-
trol policies: applications to role mining over logs with attribution,” in
Proceedings of the 17th ACM Symposium on Access Control Models
and Technologies. ACM, 2012, pp. 45–56.

[10] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification
and regression trees. CRC press, 1984.

[11] J. R. Quinlan, C4.5: programs for machine learning. Morgan
Kaufmann, 1993.

[12] P. Clark and T. Niblett, “The CN2 induction algorithm,” Machine
learning, vol. 3, no. 4, pp. 261–283, 1989.

[13] J. Hühn and E. Hüllermeier, “FURIA: an algorithm for unordered
fuzzy rule induction,” Data Mining and Knowledge Discovery,
vol. 19, no. 3, pp. 293–319, 2009.

[14] V. Jovanoski and N. Lavrač, “Classification rule learning with apriori-
c,” in Portuguese Conference on Artificial Intelligence. Springer,
2001, pp. 44–51.

[15] B. Kavšek and N. Lavrač, “Apriori-SD: Adapting association rule
learning to subgroup discovery,” Applied Artificial Intelligence,
vol. 20, no. 7, pp. 543–583, 2006.

[16] R. Agrawal, R. Srikant et al., “Fast algorithms for mining associ-
ation rules,” in Proc. 20th International Conference on Very Large
Databases, VLDB, vol. 1215, 1994, pp. 487–499.

[17] N. Lavrač, P. Flach, and B. Zupan, Rule evaluation measures: A
unifying view. Springer, 1999.

[18] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules
between sets of items in large databases,” in ACM SIGMOD Record,
vol. 22, no. 2. ACM, 1993, pp. 207–216.

[19] Scikit-learn, “sklearn.tree.DecisionTreeClassifier,” 2013. [Online].
Available: http://scikit-learn.org/stable/modules/generated/sklearn.
tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier

[20] Kaggle, “Amazon.com – Employee access chal-
lenge,” 2013. [Online]. Available: http://www.kaggle.com/c/
amazon-employee-access-challenge

[21] M. Lichman, “UCI machine learning repository. amazon access
samples data set,” 2013. [Online]. Available: http://archive.ics.uci.
edu/ml/datasets/Amazon+Access+Samples

[22] M. Frank, A. P. Streich, D. Basin, and J. M. Buhmann, “A proba-
bilistic approach to hybrid role mining,” in Proceedings of the 16th
ACM Conference on Computer and Communications Security. ACM,
2009, pp. 101–111.

[23] Orange, “Orange: Rule Induction with CN2,” 2013. [Online].
Available: http://orange.readthedocs.io/en/latest/reference/rst/Orange.
classification.rules.html

[24] D. M. Powers, “Evaluation: from precision, recall and F-measure to
ROC, informedness, markedness and correlation,” 2011.

[25] X. Jin, R. Krishnan, and R. Sandhu, “A unified attribute-based access
control model covering dac, mac and rbac,” in Data and Applications
Security and Privacy XXVI. Springer, 2012, pp. 41–55.

[26] V. C. Hu, D. R. Kuhn, and D. F. Ferraiolo, “Attribute-based access
control.” IEEE Computer, vol. 48, no. 2, pp. 85–88, 2015.

[27] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical
learning. Springer Series in Statistics, Berlin, 2001, vol. 1.

[28] C. E. Shannon, “A mathematical theory of communication,” The Bell
System Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.

[29] I. Molloy, J. Lobo, and S. Chari, “Adversaries’ holy grail: access
control analytics,” in Proceedings of the First Workshop on Building
Analysis Datasets and Gathering Experience Returns for Security.
ACM, 2011, pp. 54–61.

[30] A. D’yakonov, “Solution methods for classification problems with
categorical attributes,” Computational Mathematics and Modeling,
vol. 26, no. 3, pp. 408–428, 2015.

https://nccoe.nist.gov/projects/building-blocks/attribute-based-access-control
https://nccoe.nist.gov/projects/building-blocks/attribute-based-access-control
https://www.gartner.com/doc/3174723/identity-access-management-scenario-
https://www.gartner.com/doc/3174723/identity-access-management-scenario-
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
http://www.kaggle.com/c/amazon-employee-access-challenge
http://www.kaggle.com/c/amazon-employee-access-challenge
http://archive.ics.uci.edu/ml/datasets/Amazon+Access+Samples
http://archive.ics.uci.edu/ml/datasets/Amazon+Access+Samples
http://orange.readthedocs.io/en/latest/reference/rst/Orange.classification.rules.html
http://orange.readthedocs.io/en/latest/reference/rst/Orange.classification.rules.html

[31] Q. Yang, H. H. Zhang, and T. Li, “Mining web logs for prediction
models in WWW caching and prefetching,” in Proceedings of the
seventh ACM SIGKDD international conference on Knowledge dis-
covery and data mining. ACM, 2001, pp. 473–478.

[32] M. de Leoni and W. M. van der Aalst, “Data-aware process mining:
discovering decisions in processes using alignments,” in Proceedings
of the 28th annual ACM Symposium on Applied Computing. ACM,
2013, pp. 1454–1461.

[33] Kaggle, “Kaggle: the home of data science,” 2017. [Online].
Available: http://www.kaggle.com

[34] J. Demšar, T. Curk, A. Erjavec, Črt Gorup, T. Hočevar,
M. Milutinovič, M. Možina, M. Polajnar, M. Toplak, A. Starič,
M. Štajdohar, L. Umek, L. Žagar, J. Žbontar, M. Žitnik, and
B. Zupan, “Orange: Data mining toolbox in python,” Journal of
Machine Learning Research, vol. 14, pp. 2349–2353, 2013. [Online].
Available: http://jmlr.org/papers/v14/demsar13a.html

[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[36] I. Molloy, H. Chen, T. Li, Q. Wang, N. Li, E. Bertino, S. Calo, and
J. Lobo, “Mining roles with semantic meanings,” in Proceedings of
the 13th ACM Symposium on Access Control Models and Technolo-
gies. ACM, 2008, pp. 21–30.

[37] W. W. Cohen, “Fast effective rule induction,” in Proceedings of the
twelfth international conference on machine learning, 1995, pp. 115–
123.

[38] L. Song, P. Langfelder, and S. Horvath, “Random generalized linear
model: a highly accurate and interpretable ensemble predictor,” BMC
bioinformatics, vol. 14, no. 1, p. 1, 2013.

[39] Kaggle, “Amazon.com – Employee access challenge. Win-
ners’ solution and final results.” 2013. [Online]. Avail-
able: https://www.kaggle.com/c/amazon-employee-access-challenge/
forums/t/5283/winning-solution-code-and-methodology

[40] M. Atzmueller and F. Puppe, “SD-map–a fast algorithm for exhaustive
subgroup discovery,” in Knowledge Discovery in Databases: PKDD
2006. Springer, 2006, pp. 6–17.

[41] N. Lavrač, B. Kavšek, P. Flach, and L. Todorovski, “Subgroup
discovery with CN2-SD,” The Journal of Machine Learning Research,
vol. 5, pp. 153–188, 2004.

Appendix A.
ABAC instances used for experiments

Amazon 1. These are instances built from two access
logs provided by Amazon in Kaggle, a platform for pre-
dictive modelling competitions [20], [33]. One log is for
training and contains access requests made by Amazon’s
employees over two years [20]. Each entry in this log
describes an employee’s request to a resource and whether
the request was authorized or not. The request contains all
the employee’s attribute values and the resource identifier.
The second log is for evaluation. It contains access requests
only, but it does not specify which requests are authorized.
Participants in the Kaggle competition had to decide for the
evaluation log which requests to authorize. The logs contain
more than 12,000 users and 7,000 resources.

From the Amazon logs one can build an ABAC instance
(U,P,A,D), where U and P are the set of users and the set
of resources occurring in the logs, respectively, and A ∪D

TABLE 3: Properties of the basic organization policies

Instance
1 2 3 4 5

Num. jobs. 10 10 10 20 20
Num. categories. 5 10 20 5 10

are the requests occurring in the training log. However, such
an instance is too large to fit in main memory and some of
the implementations of competing ABAC mining algorithms
(Rhapsody included) cannot handle such amounts of data.
To deal with this, we observe that the only permission
attribute is the resource’s identifier, so any ABAC rule
authorizes requests for at most one resource. Therefore, any
ABAC policy for (U,P,A,D) can be partitioned into several
policies, each authorizing requests for only one resource.
Hence, rather than mining over (U,P,A,D), we can mine
over instances of the form (U, {p}, Ap, Dp), where p is a
single resource and Ap∪Dp are all requests for p occurring
in the training log. These instances are much smaller and are
easily handled by all competing ABAC mining algorithms.

For our experiments, we selected the five instances
(U, {p}, Ap, Dp) with the highest value for |Ap ∪Dp|. In
all cases, |Ap ∪Dp| / |U | < 0.07. Hence, the log contains,
for each resource, less than 7% of all possible requests.

Amazon 2. These are instances built from access
data provided by Amazon in the UCI machine learning
repository [21]. The access data contains more than 36,000
users and 27,000 permissions. We took the eight most
requested permissions and for each of them, we created
an ABAC instance (U, {p}, A,D) where U are all users
in the access data, p is the permission, A are the users
who requested p and were authorized and D are those who
requested p and were denied.

Basic Organization. These are synthetic instances with
only one user attribute value, Job, identifying the job the
user performs and only one permission attribute value,
Category , identifying the category where the permission
belongs. We use natural numbers to identify jobs and cate-
gories. There is only one permission for each category and
there are 100 users for each job. For each category, we
assume that all jobs except one are authorized to request
permissions for that category. For each category c, we denote
by pc the permission from that category and by jc the job
that is not authorized to request pc. We let J and C denote
the total of jobs and categories, respectively. The values for
J and C in each instance are described in Table 3.

We now describe the log for each instance. For each
category c and for each job j 6= jc, the fraction of users with
job j that have requested pc is c/C. This is just to simulate a
non-uniform distribution of the categories of the permissions
requested by users. In addition, for each category c, there is
only one user with job jc that has requested access to pc.
This is just to ensure fewer denied requests than authorized
requests in the log.

http://www.kaggle.com
http://jmlr.org/papers/v14/demsar13a.html
https://www.kaggle.com/c/amazon-employee-access-challenge/forums/t/5283/winning-solution-code-and-methodology
https://www.kaggle.com/c/amazon-employee-access-challenge/forums/t/5283/winning-solution-code-and-methodology

	Introduction
	Problem context
	Limitations of the state-of-the-art
	Our approach
	Case studies and evaluation
	Contributions

	The ABAC mining problem
	Setting
	Illustrative example
	Use cases for ABAC mining
	Objectives of ABAC mining
	ABAC syntax and semantics
	ABAC mining

	Quantifying over-permissiveness
	Over-permissiveness
	Reliability

	Rhapsody
	APRIORI-SD
	Rhapsody Algorithm

	Evaluating generalization
	Limitations of using an organizational security policy for evaluation
	Limitations of using cross-validation on logs
	Universal cross-validation

	Experiments
	ABAC instances
	Algorithms
	Evaluation methodology
	Results

	Related work
	Conclusion
	References
	Appendix A: ABAC instances used for experiments

