Strong and Provably Secure Database Access Control

Marco Guarnieri

Institute of Information Security Department of Computer Science ETH Zurich, Switzerland marco.guarnieri@inf.ethz.ch Srdjan Marinovic The Wireless Registry, Inc. Washington DC, US srdjan@wirelessregistry.com David Basin Institute of Information Security

Department of Computer Science ETH Zurich, Switzerland basin@inf.ethz.ch

ABSTRACT

Existing SQL access control mechanisms are extremely limited. Attackers can leak information and escalate their privileges using advanced database features such as views, triggers, and integrity constraints. This is not merely a problem of vendors lagging behind the state-of-the-art. The theoretical foundations for database security lack adequate security definitions and a realistic attacker model, both of which are needed to evaluate the security of modern databases. We address these issues and present a provably secure access control mechanism that prevents attacks that defeat popular SQL database systems.

1. INTRODUCTION

It is essential to control access to databases that store sensitive information. To this end, the SQL standard defines access control rules and all SQL database vendors have accordingly developed access control mechanisms. The standard however fails to define a precise access control semantics, the attacker model, and the security properties that the mechanisms ought to satisfy. As a consequence, existing access control mechanisms are implemented in an ad hoc fashion, with neither precise security guarantees nor the means to verify them.

This deficit has dire and immediate consequences. We show that popular database systems are susceptible to two types of attacks. Integrity attacks allow an attacker to perform non-authorized changes to the database. Confidentiality attacks allow an attacker to learn sensitive data. These attacks exploit advanced SQL features, such as triggers, views, and integrity constraints, and they are easy to carry out.

Current research efforts in database security are neither adequate for evaluating the security of modern databases, nor do they account for their advanced features. In more detail, existing research [4,12,35,46] implicitly considers attackers who use SELECT commands. But the capabilities offered by databases go far beyond SELECT. Users, in general, can modify the database's state and security policy, as well as use features such as triggers, views, and integrity constraints. Consequently, all proposed research solutions fail to prevent attacks such as those we present in §2.

In summary, the database vendors have been left to develop access control mechanisms without guidance from either the SQL standard or existing research in database security. It is therefore not surprising that modern databases are open to abuse.

Contributions. We develop a comprehensive formal frame-

work for the design and analysis of database access control. We use it to design and verify an access control mechanism that prevents confidentiality and integrity attacks that defeat existing mechanisms.

First, we develop an operational semantics for databases that supports SQL's core features, as well as triggers, views, and integrity constraints. Our semantics models both the security-critical aspects of these features and the database's dynamic behaviour at the level needed to capture realistic attacks. Our semantics is substantially more detailed than those used in previous works [35, 46], which ignore the database's dynamics.

Second, we develop a novel attacker model that, in addition to SQL's core features, incorporates advanced features such as triggers, views, and integrity constraints. Furthermore, our attacker can infer information based on the semantics of these features. Note that our attacker model subsumes the SELECT-only attacker considered in previous works [35], [46]. We also develop an executable version of our operational semantics and attacker model using the Maude term-rewriting framework [14]. The executable model acts as a reference implementation for our semantics. Given the complexity of databases and their features, having an executable version of our models provides a way to validate them against existing database systems and against the examples we use in this paper.

Third, we present two security definitions—database integrity and data confidentiality—that reflect two principal security requirements for database access control. There is a natural and intuitive relationship between these definitions and the types of attacks that we identify. We thus argue that these definitions provide a strong measure of whether a given access control mechanism prevents our attacker from exploiting modern SQL databases.

Finally, using our framework, we build a database access control mechanism that is provably secure with respect to our attacker model and security definitions. In contrast to existing mechanisms, our solution prevents all the attacks that we report on in §2.

Related Work. Surprisingly, and in contrast to other areas of information security [19], there does not exist a welldefined attacker model for database access control. From the literature, we extracted the SELECT-only attacker model, where the attacker uses just SELECT commands. A number of access control mechanisms, such as [1, 4, 8, 9, 13, 27, 31, 35, 41, 43, 46], implicitly consider this attacker model. The boundaries of this model are blurred and the attacker's capabilities are unclear. For instance, only a few works, such as [46], explicitly state that update commands are not supported, whereas others [4, 8, 9, 35] ignore what the attacker can learn from update commands. Works on Inference Control [12, 20, 44] and Controlled Query Evaluation [11] consider a variation of the SELECT-only attacker, in which the attacker additionally has some initial knowledge about the data and can derive new information from the query's results through inference rules. Note that while [44] supports update commands, it treats them just as a way of increasing data availability, rather than considering them as a possible attack vector.

Database access control mechanisms can be classified into two distinct families [35]. Mechanisms in the *Truman model* [4,46] transparently modify query results to restrict the user's access to the data authorized by the policy. In contrast, mechanisms in the *Non-Truman model* [8,9,35] either accept or reject queries without modifying their results. Different notions of security have been proposed for these models [24, 35, 46]. They are, however, based on SELECT-only attackers and provide no security guarantees against realistic attackers that can alter the database and the policy or use advanced SQL features. We refer the reader to §7 for further comparison with related work.

Organization. In §2 we present attacks that illustrate serious weaknesses in existing Database Management Systems (DBMSs). In §3 we introduce background and notation about queries, views, triggers, and access control. In §4 we formalize our system and attacker models, and in §5 we define the desired security properties. In §6 we present our access control mechanism, and in §7 we discuss related work. Finally, we draw conclusions in §8. The system's operational semantics, the attacker model, and complete proofs of all results are in Appendices A–H. A prototype of our enforcement mechanism and its executable semantics are available at [26]. This technical report is an extended version of [25].

2. ILLUSTRATIVE ATTACKS

We demonstrate here how attackers can exploit existing DBMSs using standard SQL features. We classify these attacks as either *Integrity Attacks* or *Confidentiality Attacks*. In the former, an attacker makes unauthorized changes to the database, which stores the data, the policy, the triggers, and the views. In the latter, an attacker learns sensitive data by interacting with the system and observing the outcome. No existing access control mechanism prevents all the attacks we present. Moreover, many related attacks can be constructed using variants of the ideas presented here. We manually carried out the attacks against IBM DB2, Oracle Database, PostgreSQL, MySQL, SQL Server, and Firebird. We summarize our findings at the end of this section.

2.1 Integrity Attacks

Our three integrity attacks combine different database features: INSERT, DELETE, GRANT, and REVOKE commands together with views and triggers. In the first attack, an attacker creates a trigger, i.e., a procedure automatically executed by the DBMS in response to user commands, that will be activated by an unaware user with a higher security clearance and will perform unauthorized changes to the database. The attack requires triggers to be executed under the privileges of the users activating them. Such triggers are supported by PostgreSQL, SQL Server, and Firebird. Attack 1. Triggers with activator's privileges. Consider a database with two tables P and S and two users u_1 and u_2 . The attacker is the user u_1 , whose goal is to delete the content of S. The policy is that u_1 is not authorized¹ to alter S, u_1 can create triggers on P, and u_2 can read and modify S and P. The attack is as follows:

1. u_1 creates the trigger:

2. u_1 waits until u_2 inserts a tuple into the table P. The trigger will then be invoked using u_2 's privileges and S's content will be deleted.

An attacker can use similar attacks to execute arbitrary commands with administrative privileges. Despite the threat posed by such simple attacks, the existing countermeasures [2] are unsatisfactory; they are either too restrictive, for instance completely disabling triggers in the database, or too time consuming and error prone, namely manually checking if "dangerous" triggers have been created.

In our second attack, an attacker escalates his privileges by delegating the read permission for a table without being authorized to delegate this permission. The attacker first creates a view over the table and, afterwards, delegates the access to the view to another user. This attack exploits DBMSs, such as PostgreSQL, where a user can grant any read permission over his own views. Note that **GRANT** and **REVOKE** commands are *write operations*, which target the database's internal configuration instead of the tables.

Attack 2. Granting views. Consider a database with a table S, two users u_1 and u_2 , and the following policy: u_1 can create views and read S (without being able to delegate this permissions), and u_2 cannot read S. The attack is as follows:

- 1. u_1 creates the view: CREATE VIEW v AS SELECT * FROM S.
- 2. u_1 issues the command **GRANT SELECT ON** v **TO** u_2 . Now, u_2 can read S through v. However, u_1 is not authorized to delegate the read permission on S.

This attack exploits several subtleties in the commands' semantics: (a) users can create views over all tables they can read, (b) the views are executed under the owner's privileges, and (c) view's owners can grant arbitrary permissions over their own views. These features give u_1 the implicit ability to delegate the read access over S. As a result, the overall system's behaviour does not conform with the given policy. That is, u_1 should not be permitted to delegate the read access to S or to any view that depends on it. Note that the commands' semantics may vary between different DBMSs.

In our third attack, an attacker exploits the failure of access control mechanisms to propagate **REVOKE** commands.

Attack 3. Revoking views. Consider a database with a table S, three users u_1 , u_2 , and u_3 , and the following policy: u_1 can read S and delegate this permission, u_2 can create views, and u_3 cannot read S. The attack proceeds as follows:

- 1. u_1 issues the command GRANT SELECT ON S to u_2 with GRANT OPTION.
- 2. u_2 creates the view: CREATE VIEW v AS SELECT * FROM S.
- 3. u_2 issues the command GRANT SELECT ON v TO u_3 .

¹As is common in SQL, a user is authorized to execute a command if and only if the policy assigns him the corresponding permission.

CREATE TRIGGER t ON P AFTER INSERT DELETE FROM S;

	Integrity Attacks			Confidentiality Attacks		
DBMS	Triggers with	Granting	Revoking	Table updates and	Triggers with	
	activator's privileges	views	views	integrity constraints	owner's privileges	
IBM DB2 (v. 10.5)	Ť	\mathcal{X}	\checkmark	\checkmark	\checkmark	
Oracle (v. 11g)	†	\mathcal{X}	\mathcal{X}	\checkmark	\checkmark	
PostgreSQL (v. $9.3.5$)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
MySQL (v. 14.14)	†	\mathcal{X}	\checkmark	\checkmark	\checkmark	
SQL Server (v. 12.0)	\checkmark	†	†	\checkmark	\checkmark	
Firebird (v. $2.5.2$)	\checkmark	\mathcal{X}	\checkmark	\checkmark	\checkmark	

Figure 1: The \checkmark symbol indicates a successful attack, whereas \mathcal{X} indicates a failed attack. The \dagger symbol indicates that the DBMS does not support the features necessary to launch the attack.

- 4. u_1 revokes the permission to read S (and to delegate the permission) from u_2 : REVOKE SELECT ON S FROM u_2 . Now, u_3 cannot read v because u_2 , which is v's owner, cannot read S.
- 5. u_1 grants again the permission to read S to u_2 : GRANT SELECT ON S TO u_2 . Now, u_3 can again read v but u_2 can no longer delegate the read permission on v.

This attack succeeds because, in the fourth step, the RE-VOKE statement does not remove the GRANT granted by u_2 to u_3 to read v. This GRANT only becomes ineffective because u_2 is no longer authorized to read S. However, after the fifth step, this GRANT becomes effective again, even though u_2 can no longer delegate the read permission on v. Thus, the policy is left in an inconsistent state.

2.2 Confidentiality Attacks

We now present two attacks that use INSERT and SELECT commands together with triggers and integrity constraints. In our fourth attack, an attacker exploits integrity constraint violations to learn sensitive information. An integrity constraint is an invariant that must be satisfied for a database state to be considered *valid*. *Integrity constraint violations* arise when the execution of an SQL command leads the database from a valid state into an invalid one.

Attack 4. Table updates and integrity constraints. Consider a database with two tables P and S. Suppose the primary key of both tables is the user's identifier. Furthermore, the set of user identifiers in S is contained in the set of user identifiers in P, i.e., there is a foreign key from S to P. The attacker is the user u whose goal is to learn whether **Bob** is in S. The access control policy is that u can read P and insert tuples in S. The attacker u can learn whether **Bob** is in S as follows:

- 1. He reads P and learns Bob's identifier.
- 2. He issues an INSERT statement in S using Bob's id.
- 3. If Bob is already in S, then u gets an error message about the primary key's violation. Alternatively, there is no violation and u learns that Bob is not in S.

Even though similar attacks have been identified before [29, 40], existing DBMSs are still vulnerable.

In our fifth attack, an attacker learns sensitive information by exploiting the system's triggers. The trigger in this attack is executed under the privileges of the trigger's owner. Such triggers are supported by IBM DB2, Oracle Database, PostgreSQL, MySQL, SQL Server, and Firebird.

Attack 5. Triggers with owner's privileges. Consider a database with three tables N, P, and T. The attacker is

the user u, who wishes to learn whether v is in T. The policy is that u is not authorized to read the table T, and he can read and modify the tables N and P. Moreover, the following trigger has been defined by the administrator.

CREATE TRIGGER t ON P AFTER INSERT FOR EACH ROW IF exists(SELECT * FROM T WHERE id = NEW.id) INSERT INTO N VALUES (NEW.id);

The attack is as follows:

- 1. u deletes v from N.
- 2. u issues the command INSERT INTO P VALUES (v).
- 3. *u* checks the table *N*. If it contains *v*'s id, then *v* is in *T*. Otherwise, *v* is not in *T*. \blacksquare

This attack exploits that the trigger t conditionally modifies the database. Furthermore, the attacker can activate t, by inserting tuples in P, and then observe t's effects, by reading the table N. He therefore can exploit t's execution to learn whether t's condition holds. We assume here that the attacker knows the triggers in the system. This is, in general, a weak assumption as triggers usually describe the domain-specific rules regulating a system's behaviour and users are usually aware of them.

2.3 Discussion

We manually carried out all five attacks against IBM DB2, Oracle Database, PostgreSQL, MySQL, SQL Server, and Firebird. Figure 1 summarizes our findings. None of these systems prevent the confidentiality attacks. They are however more successful in preventing the integrity attacks. The most successful is Oracle Database, which prevents two of the three attacks, while Attack 1 cannot be carried out due to missing features. IBM DB2, MySQL, and Firebird prevent just one of the three attacks, namely Attack 2. However, they all fail to prevent Attack 3. Note that Firebird also fails to prevent Attack 1. In contrast, Attack 1 cannot be carried out against MySQL and IBM DB2 due to missing features. SQL Server also fails to prevent Attack 1; however the remaining two attacks cannot be carried out due to missing features. PostgreSQL fails to prevent all three attacks.

We argue that the dire state of database access control mechanisms, as illustrated by these attacks, comes from the lack of clearly defined security properties that such mechanisms ought to satisfy and the lack of a well-defined attacker model. We therefore develop a formal attacker model and precise security properties and we use them to design a provably secure access control mechanism that prevents all the above attacks.

3. DATABASE MODEL

We now formalize databases including features like views, access control policies, and triggers. Our formalization of databases and queries follows [3], and our access control policies formalize SQL policies.

3.1 Overview

In this paper we consider the following SQL features: SE-LECT, INSERT, DELETE, GRANT, REVOKE, CREATE TRIGGER, CRE-ATE VIEW, and ADD USER commands.

For SELECT commands, rather than using SQL, we use the relational calculus (RC), i.e., function-free first-order logic, which has a simple and well-defined semantics [3]. We support GRANT commands with the GRANT OPTION and RE-VOKE commands with the CASCADE OPTION, i.e., when a user revokes a privilege, he also revokes all the privileges that depend on it. We support INSERT and DELETE commands that explicitly identify the tuple to be inserted or deleted, i.e., commands of the form INSERT INTO $table(x_1, \ldots, x_n)$ VALUES (v_1, \ldots, v_n) and DELETE FROM table WHERE $x_1 = v_1 \land \ldots \land x_n = v_n$, where x_1, \ldots, x_n are table's attributes and v_1, \ldots, v_n are the tuple's values. More complex INSERT and DELETE commands, as well as UPDATES, can be simulated by combining SELECT, INSERT, and DELETE commands.

We support only AFTER triggers on INSERT and DELETE events, i.e., triggers that are executed in response to IN-SERT and DELETE commands. The triggers' WHEN conditions are arbitrary boolean queries and their actions are GRANT, REVOKE, INSERT, or DELETE commands. Note that DBMSs usually impose severe restrictions on the WHEN clause, such as it must not contain sub-queries. However, most DBMSs can express arbitrary conditions on triggers by combining control flow statements with SELECT commands inside the trigger's body. Thus, we support the class of triggers whose body is of the form BEGIN IF *expr* THEN *act* END, where *act* is either a GRANT, REVOKE, INSERT, or DELETE command. Note that all triggers used in §2 belong to this class.

We support two kinds of integrity constraints: functional dependencies and inclusion dependencies [3]. They model the most widely used families of SQL integrity constraints, namely the UNIQUE, PRIMARY KEY, and FOREIGN KEY constraints. We also support views with both the owner's privileges and the activator's privileges.

The SQL fragment we support, shown in Figure 41, contains the most common SQL commands for data manipulation and access control as well as the core commands for creating triggers and views. The ideas and the techniques presented in this paper are general and can be extended to the entire SQL standard.

3.2 Databases and Queries

Let \mathcal{R} , \mathcal{U} , \mathcal{V} , and \mathcal{T} be mutually disjoint, countably infinite sets, respectively representing identifiers of relation schemas, users, views, and triggers.

A database schema D is a pair $\langle \Sigma, \mathbf{dom} \rangle$, where Σ is a first-order signature and **dom** is a fixed countably infinite domain. The signature Σ consists of a set of relation schemas $R \in \mathcal{R}$, also called *tables*, with arity |R| and sort sort(R). A state s of D is a finite Σ -structure over **dom**. We denote by Ω_D the set of all states. Given a table $R \in D$, s(R) denotes the set of tuples that belong to R in s.

A query q over a schema D is of the form $\{\overline{x} \mid \phi\}$, where \overline{x} is a sequence of variables, ϕ is a relational calculus formula

over D, and ϕ 's free variables are those in \overline{x} . A boolean query is a query $\{ | \phi \}$, also written as ϕ , where ϕ is a sentence. The result of executing a query q on a state s, denoted by $[q]^s$, is a boolean value in $\{\top, \bot\}$, if q is a boolean query, or a set of tuples otherwise. We denote by RC (respectively RC_{bool}) the set of all relational calculus queries (respectively sentences). We consider only domain-independent queries as is standard, and we employ the standard relational calculus semantics [3].

Let $D = \langle \Sigma, \mathbf{dom} \rangle$ be a schema, s be a state in Ω_D , R be a table in D, and \overline{t} be a tuple in $\mathbf{dom}^{|R|}$. The result of inserting (respectively deleting) \overline{t} in R in the state s is the state s', denoted by $s[R \oplus \overline{t}]$ (respectively $s[R \ominus \overline{t}]$), where s'(T) = s(T) for all $T \in \Sigma$ such that $T \neq R$, and $s'(R) = s(R) \cup \{\overline{t}\}$ (respectively $s'(R) = s(R) \setminus \{\overline{t}\}$).

An integrity constraint over D is a relational calculus sentence γ over D. Given a state s, we say that s satisfies the constraint γ iff $[\gamma]^s = \top$. Given a set of constraints Γ , Ω_D^{Γ} denotes the set of all states satisfying the constraints in Γ , i.e., $\Omega_D^{\Gamma} = \{s \in \Omega_D \mid \bigwedge_{\gamma \in \Gamma} [\gamma]^s = \top\}$. We consider two types of integrity constraints: functional dependencies, which are sentences of the form $\forall \overline{x}, \overline{y}, \overline{y}', \overline{z}, \overline{z}'$. $((R(\overline{x}, \overline{y}, \overline{z}) \land R(\overline{x}, \overline{y}', \overline{z}')) \Rightarrow \overline{y} = \overline{y}')$, and inclusion dependencies, which are sentence of the form $\forall \overline{x}, \overline{y}. (R(\overline{x}, \overline{y}) \Rightarrow \exists \overline{z}. S(\overline{x}, \overline{z}))$.

3.3 Views

Let D be a schema. A view V over D is a tuple $\langle id, o, q, m \rangle$, where $id \in \mathcal{V}$ is the view identifier, $o \in \mathcal{U}$ is the view's owner, q is the non-boolean query over D defining the view, and $m \in \{A, O\}$ is the security mode, where A stands for activator's privileges and O stands for owner's privileges. Note that the query q may refer to other views. We assume, however, that views have no cyclic dependencies between them. We denote by \mathcal{VIEW}_D the set of all views over D. The materialization of a view $\langle V, o, q, m \rangle$ in a state s, denoted by s(V), is $[q]^s$. We extend the relational calculus in the standard way to work with views [3].

3.4 Access Control Policies

We now formalize the SQL access control model. We first formalize five privileges. Let D be a database schema. A SELECT privilege over D is a tuple (SELECT, R), where R is a relation schema in D or a view over D. A CREATE VIEW privilege over D is a tuple (CREATE VIEW). An INSERT privilege over D is a tuple (INSERT, R), a DELETE privilege over D is a tuple (DELETE, R), and a CREATE TRIGGER privilege over D is a tuple (CREATE TRIGGER, R), where R is a relation schema in D. We denote by \mathcal{PRIV}_D the set of privileges over D.

Following SQL, we use **GRANT** commands to assign privileges to users. Let $U \subseteq \mathcal{U}$ be a set of users and D be a database schema. We now define (U, D)-grants and (U, D)-revokes. There are two types of (U, D)-grants. A (U, D)-simple grant is a tuple $\langle \oplus, u, p, u' \rangle$, where $u \in U$ is the user receiving the privilege $p \in \mathcal{PRIV}_D$ and $u' \in U$ is the user granting this privilege. A (U, D)-grant with grant option is a tuple $\langle \oplus^*, u, p, u' \rangle$, where u, p, and u' are as before. A (U, D)-revoke is a tuple $\langle \ominus, u, p, u' \rangle$, where $u \in U$ is the user from which the privilege $p \in \mathcal{PRIV}_D$ will be revoked and $u' \in U$ is the user revoking this privilege. We denote by $\Omega_{U,D}^{sc}$ the set of all (U, D)-grants and (U, D)-revokes. A grant $\langle \oplus, u, p, u' \rangle$ models the command GRANT p TO u issued by u', a grant with grant option $\langle \oplus^*, u, p, u' \rangle$ models the command GRANT p TO u WITH GRANT OPTION issued by u', and a revoke

 $\langle \ominus, u, p, u' \rangle$ models the command REVOKE p FROM u CASCADE issued by u'.

Finally, we define a (U, D)-access control policy S as a finite set of (U, D)-grants. We denote by $\mathcal{S}_{U,D}$ the set of all (U, D)-policies.

Example 3.1. Consider the policy described in Attack 5. The database D has three tables: N, P, and T. The set U is $\{u, admin\}$ and the policy S contains the following grants: $\langle \oplus, u, \langle \text{SELECT}, P \rangle, admin \rangle$, $\langle \oplus, u, \langle \text{INSERT}, P \rangle, admin \rangle$, $\langle \langle \oplus, u, \langle \text{DELETE}, P \rangle, admin \rangle$, $\langle \oplus, u, \langle \text{DELETE}, N \rangle, admin \rangle$, $\langle \oplus, u, \langle \text{DELETE}, N \rangle, admin \rangle$, $\langle =$

3.5 Triggers

Let D be a database schema. A trigger over D is a tuple $\langle id, u, e, R, \phi, a, m \rangle$, where $id \in \mathcal{T}$ is the trigger identifier, $u \in \mathcal{U}$ is the trigger's owner, $e \in \{INS, DEL\}$ is the trigger event (where INS stands for INSERT and DEL stands for DELETE), $R \in D$ is a relation schema, the trigger condition ϕ is a relational calculus formula such that $free(\phi) \subseteq \{x_1, \ldots, x_{|R|}\}$, and the trigger action a is one of: (1) $\langle INSERT, R', \bar{t} \rangle$, where $R' \in D$ and \bar{t} is a |R'|-tuple of values in **dom** and variables in $\{x_1, \ldots, x_{|R|}\}$, (2) $\langle DELETE, R', \bar{t} \rangle$ where R' and \bar{t} are as before, or (3) $\langle op, u, p \rangle$, where $op \in \{\oplus, \oplus^*, \ominus\}$, $u \in \mathcal{U}$, and p is a privilege over D. Finally, $m \in \{A, O\}$ is the security mode, where A stands for activator's privileges and O stands for owner's privileges. We denote by $\mathcal{TRIGGER}_D$ the set of all triggers over D.

We assume that any command a is executed atomically together with all the triggers activated by a. We also assume that triggers do not recursively activate other triggers. Hence all executions terminate. We enforce this condition syntactically at the trigger's creation time; see Appendix A for additional details. The trigger $\langle t, admin, INS, P, T(x_1), \langle INSERT, N, x_1 \rangle, O \rangle$ models the trigger in Attack 5. Here, x_1 is bound, at run-time, to the value inserted in P by the trigger's invoker.

4. SYSTEM AND ATTACKER MODEL

We next present our system and attacker models. Executable versions of these models, built in the Maude framework [14], are available at [26]. The models can be used for simulating the execution of our operational semantics, as well as computing the information that an attacker can infer from the system's behaviour. We have executed and validated all of our examples using these models.

4.1 Overview

In our system model, shown in Figure 2, users interact with two components: a database system and an access control system. The access control system contains both a policy enforcement point and a policy decision point. We assume that all the communication between the users and the components is over secure channels. **Database System.** The database system (or database for short) manages the data. The database's state is represented by a mapping from relation schemas to sets of tuples. We assume that all database operations are atomic.

Users. Users interact with the database where each command is checked by the access control system. Each user has a unique account through which he can issue SELECT, INSERT, DELETE, GRANT, REVOKE, CREATE TRIGGER, and CRE-ATE VIEW commands.

The system administrator is a distinguished user responsible for defining the database schema and the access control policy. In addition to issuing queries and commands, he can create user accounts and assign them to users. The administrator interacts with the access control system through a special account *admin*.

The *attacker* is a user, other than the administrator, with an assigned user account who attempts to violate the access control policy. Namely, his goals are: (1) to read or infer data from the database for which he lacks the necessary SELECT privileges, and (2) to alter the system state in unauthorized ways, e.g., changing data in relations for which he lacks the necessary INSERT and DELETE privileges. The attacker can issue any command available to users and he sees the results of his commands. The attacker's inference capabilities are specified using deduction rules.

Access Control System. The access control system protects the confidentiality and integrity of the data in the database. It is configured with an access control policy S, it intercepts all commands issued by the users, and it prevents the execution of commands that are not authorized by S. When a user u issues a command c, the access control system decides whether u is authorized to execute c. If c complies with the policy, then the access control system forwards the command to the DBMS, which executes cand returns its result to u. Otherwise, it raises a *security exception* and rejects c. Note that this corresponds to the Non-Truman model [35]; see related work for more details.

The access control system also logs all issued commands. When evaluating a command, the access control system can access the database's current state and the log.

4.2 System Model

We formalize our system model as a labelled transition system (LTS). First, we define a system configuration, which describes the database schema and the integrity constraints, and the user actions. Afterwards, we define the system's state, which represents a snapshot of the system that contains the database's state, the identifiers of the users interacting with the system, the access control policy, and the current triggers and views in the system. Finally, we formalize the system's behaviour as a small step operational semantics, including all features necessary to reason about security, even in the presence of attacks like those illustrated in §2.

A system configuration is a tuple $\langle D, \Gamma \rangle$ such that D is a schema and Γ is a finite set of integrity constraints over D. Let $M = \langle D, \Gamma \rangle$ be a system configuration and $u \in \mathcal{U}$ be a user. A (D, u)-action is one of the following tuples:

- $\langle u, \text{ADD}_\text{USER}, u' \rangle$, where u = admin and $u' \in \mathcal{U} \setminus \{admin\}$,
- $\langle u, \text{SELECT}, q \rangle$, where q is a boolean query² over D,

²Without loss of generality, we focus only on boolean queries [3]. We can support non-boolean queries as follows. Given a

- $\langle u, \text{INSERT}, R, \overline{t} \rangle$, where $R \in D$ and $\overline{t} \in \mathbf{dom}^{|R|}$,
- $\langle u, \text{DELETE}, R, \overline{t} \rangle$, where R and \overline{t} are as above,
- $\langle op, u', p, u \rangle$, where $\langle op, u', p, u \rangle \in \Omega_{D,\mathcal{U}}^{sec}$, or
- $\langle u, CREATE, o \rangle$, where $o \in \mathcal{TRIGGER}_D \cup \mathcal{VIEW}_D$.

We denote by $\mathcal{A}_{D,u}$ the set of all (D, u)-actions and by $\mathcal{A}_{D,U}$, for some $U \subseteq \mathcal{U}$, the set $\bigcup_{u \in U} \mathcal{A}_{D,u}$.

An *M*-context describes the system's history, the scheduled triggers that must be executed, and how to modify the system's state in case a roll-back occurs. We denote by C_M the set of all *M*-contexts. We assume that C_M contains a distinguished element ϵ representing the empty context, which is the context in which the system starts. Contexts are formalized in Appendix A.

An *M*-state is a tuple $\langle db, U, sec, T, V, c \rangle$ such that $db \in \Omega_D^{\Gamma}$ is a database state, $U \subset \mathcal{U}$ is a finite set of users such that $admin \in U$, $sec \in \mathcal{S}_{U,D}$ is a security policy, *T* is a finite set of triggers over *D* owned by users in *U*, *V* is a finite set of views over *D* owned by users in *U*, and $c \in \mathcal{C}_M$ is an *M*-context. We denote by Ω_M the set of all *M*-states. An *M*-state $\langle db, U, sec, T, V, c \rangle$ is *initial* iff (a) sec contains only grants issued by *admin*, (b) *T* (respectively *V*) contains only triggers (respectively views) owned by *admin*, and (c) $c = \epsilon$. We denote by \mathcal{I}_M the set of all initial states.

An *M*-Policy Decision Point (*M*-PDP) is a total function $f: \Omega_M \times \mathcal{A}_{D,\mathcal{U}} \to \{\top, \bot\}$ that maps each state *s* and action *a* to an access control decision represented by a boolean value, where \top stands for permit and \bot stands for deny. An extended configuration is a tuple $\langle M, f \rangle$, where *M* is a system configuration and *f* is an *M*-PDP.

We now define the LTS representing the system model.

Definition 4.1. Let $P = \langle M, f \rangle$ be an extended configuration, where $M = \langle D, \Gamma \rangle$ and f is an M-PDP. The P-LTS is the labelled transition system $\langle S, A, \rightarrow_f, I \rangle$ where $S = \Omega_M$ is the set of states, $A = \mathcal{A}_{D,\mathcal{U}} \cup \mathcal{TRIGGER}_D$ is the set of actions, $\rightarrow_f \subseteq S \times A \times S$ is the transition relation, and $I = \mathcal{I}_M$ is the set of initial states. \Box

Let $P = \langle M, f \rangle$ be an extended configuration. A run r of a P-LTS L is a finite alternating sequence of states and actions, which starts with an initial state s, ends in some state s', and respects the transition relation \rightarrow_f . We denote by traces(L) the set of all L's runs. Given a run r, |r| denotes the number of states in r, last(r) denotes r's last state, and r^i , where $1 \leq i \leq |r|$, denotes the run obtained by truncating r at the *i*-th state.

The relation \rightarrow_f formalizes the system's small step operational semantics. Figure 3 shows three rules describing the successful execution of SELECT and INSERT commands, as well as triggers. In the rules, we represent context changes using the update function upd, which takes as input an Mstate and an action $a \in \mathcal{A}_{D,\mathcal{U}} \cup \mathcal{TRIGGER}_D$, and returns the updated context. This function, for instance, updates the system's history stored in the context. The function trgtakes as input a system state s and returns the first trigger in the list of scheduled triggers stored in s's context. If there are no triggers to be executed, then $trg(s) = \epsilon$. The rule SELECT Success models the system's behaviour when the user u issues a SELECT query q that is authorized by the

database state s and a query $q := \{\overline{x} \mid \phi\}$, if the access control mechanism authorizes the boolean query $\bigwedge_{\overline{t} \in [q]^s} \phi[\overline{x} \mapsto \overline{t}] \land (\forall \overline{x}. \phi \Rightarrow \bigvee_{\overline{t} \in [q]^s} \overline{x} = \overline{t})$, then we return q's result, and otherwise we reject q as unauthorized.

PDP f. The only component of the M-state s that changes is the context c. Namely, c' is obtained from c by updating the history and storing q's result. Similarly, the rule *INSERT Success* describes how the system behaves after a successful INSERT command, i.e., one that neither violates the integrity constraints nor causes security exceptions. The database state db is updated by adding the tuple \bar{t} to R and the context is updated from c to c' by (a) storing the action's result, (b) storing the triggers that must be executed in response to the INSERT event, and (c) keeping track of the previous state in case a roll-back is needed.

The Trigger INSERT Success rule describes how the system executes a trigger whose action is an INSERT. The system extracts from the context the trigger t to be executed, i.e., t = trg(s). It determines, using the function user, the user u under whose privileges the trigger t is executed, which is, depending on t's security mode, either the invoker invoker(s) or t's owner. It then checks that u is authorized to execute the SELECT statement associated with t's WHEN condition, and that this condition is satisfied. Afterwards, it computes the actual action using the function act, which instantiates the free variables in t's definition with the values in the tuple tpl(s), i.e., the tuple associated with the action that fired t. Finally, the system updates the database state db by adding the tuple \overline{v}' to R and the context by storing the results of t's execution and removing t from the list of scheduled triggers.

In Appendix A, we give the complete formalization of our labelled transition system. This includes formalizing contexts and all the rules defining the transition relation \rightarrow_f . Our operational semantics can be tailored to model the behaviour of specific DBMSs. Thus, using our executable model, available at [26], it is possible to validate our operational semantics against different existing DBMSs.

4.3 Attacker Model

We model attackers that interact with the system through SQL commands and infer information from the system's behaviour by exploiting triggers, views, and integrity constraints. We argue that database access control mechanisms should be secure with respect to such strong attackers, as this reflects how (malicious) users may interact with modern databases. Furthermore, any mechanism secure against such strong attackers is also secure against weaker attackers.

Any user other than the administrator can be an attacker, and we assume that users do not collude to subvert the system. Note that our attacker model, the security properties in §5, and the mechanism we develop in §6, can easily be extended to support colluding users. We also assume that an attacker can issue any command available to the system's users, and he knows the system's operational semantics, the database schema, and the integrity constraints.

We assume that an attacker has access to the system's security policy, the set of users, and the definitions of the triggers and views in the system's state. In more detail, given an *M*-state $\langle db, U, sec, T, V, c \rangle$, an attacker can access U, sec, T, and V. Users interacting with existing DBMSs typically have access to some, although not all, of this information. For instance, in PostgreSQL a user can read all the information about the triggers defined on the tables for which he has some non-SELECT privileges. Note that the more information an attacker has, the more attacks he can launch. Finally, we assume that an attacker knows whether any two of his commands c and c' have been executed consec-

$$\begin{array}{ll} r, i-1 \vdash_u \phi & r^i = r^{i-1} \cdot \langle u, op, R, \overline{t} \rangle \cdot s & s \in \Omega_M & 1 < i \le |r| \\ secEx(s) = \bot & Ex(s) = \emptyset & revise(r^{i-1}, \phi, r^i) = \top & op \in \{\texttt{INSERT}, \texttt{DELETE}\} & \texttt{Propagate Forward} \end{array}$$

Backward

 $r, i \vdash_u \phi$ Update Success

Figure 4: Example of attacker inference rules, where $r, i \vdash_u \phi$ denotes that this judgment holds in \mathcal{ATK}_u .

utively by the system, i.e., if there are commands executed by other users occurring between c and c'. The attacker's knowledge about the sequential execution of his commands is needed to soundly propagate his knowledge about the system's state between his commands. Since the mechanism we develop in §6 is secure with respect to this attacker, it is also secure with respect to weaker attackers who have less information or cannot detect whether their commands have been executed consecutively.

 $r, i \vdash_u \phi[\overline{x} \mapsto tpl(last(r^i))]$

An attacker model describes what information an attacker knows, how he interacts with the system, and what he learns about the system's data by observing the system's behaviour. Since every user is a potential attacker, for each user $u \in \mathcal{U}$ we define an attacker model specifying u's inference capabilities. To represent u's knowledge, we introduce judgments. A judgment is a four-tuple $\langle r, i, u, \phi \rangle$, written $r, i \vdash_u \phi$, denoting that from the run r, which represents the system's behaviour, the user u can infer that ϕ holds in the *i*-th state of r. An attacker model for u is thus a set of judgments associating to each position of each run, the sentences that u can infer from the system's behaviour. The idea of representing the attacker's knowledge using sentences ϕ is inspired by existing formalisms for Inference Control [12, 20] and Controlled Query Evaluation [11].

Definition 4.2. Let P be an extended configuration, L be the P-LTS, and $u \in \mathcal{U}$ be a user. A (P, u)-judgment is a tuple $\langle r, i, u, \phi \rangle$, written $r, i \vdash_u \phi$, where $r \in traces(L)$, $1 \leq i \leq |r|$, and $\phi \in RC_{bool}$. A (P, u)-attacker model is a set of (P, u)-judgments. A (P, u)-judgment $r, i \vdash_u \phi$ holds in a (P, u)-attacker model A iff $r, i \vdash_u \phi \in A$. \Box

For each user $u \in \mathcal{U}$, we now define the (P, u)-attacker model \mathcal{ATK}_u that we use in the rest of the paper. We formalize this model using a set of inference rules, where \mathcal{ATK}_u is the smallest set of judgments satisfying the inference rules. Figure 4 shows five representative rules. The complete formalization of all rules is given in Appendix B. In the following, when we say that a judgment $r, i \vdash_u \phi$ holds, we always mean with respect to the attacker model \mathcal{ATK}_u .

 $r, i \vdash_u \psi$

SELECT

Note that \mathcal{ATK}_u is sound with respect to the *RC* semantics, i.e., if $r, i \vdash_u \phi$ holds, then the formula ϕ holds in the *i*-th state of *r*. Intuitively, \mathcal{ATK}_u models how *u* infers information from the system's behaviour, namely (a) how *u* learns information from his commands and their results, (b) how *u* learns information from triggers, their execution, their interleavings, and their side effects, (c) how *u* propagates his knowledge along a run, and (d) how *u* learns information from exceptions caused by either integrity constraint violations or security violations. This model is substantially more powerful than the SELECT-only attacker model.

The rules *DELETE Success* and *SELECT Success* describe how the user u infers information from his successful actions, i.e., those actions that generate neither security exceptions nor integrity violations. In the rules, $secEx(s) = \bot$ denotes that there were no security exceptions caused by the action leading to s, and $Ex(s) = \emptyset$ denotes that the action leading to s has not violated the integrity constraints. After a successful DELETE, u knows that the deleted tuple is no longer in the database, and after a successful SELECT he learns the query's result, denoted by res(s).

The rules Propagate Backward SELECT and Propagate Forward Update Success describe how u propagates information along the run. Propagate Backward SELECT states that if the user u knows that ϕ holds after a SELECT command, then he knows that ϕ also holds just before the SELECT command because SELECT commands do not modify the database state. Propagate Forward Update Success states that if u knows that ϕ holds before a successful INSERT or DELETE command and he can determine that the command's execution does not influence ϕ 's truth value, denoted by $revise(r^{i-1}, \phi, r^i) = \top$, then he also knows that ϕ holds after the command. The function revise is formalized in Appendix B. Finally, the rule Learn INSERT Backward models u's reasoning when he activates a trigger that successfully inserts a tuple in the database. If u knows that immediately before the trigger the formula ψ does not hold and immediately after the trigger the formula ψ holds, then the trigger's execution is the cause of the database state's change. Therefore, u can infer that the trigger's condition ϕ holds just before the trigger's execution. Note that invoker(s) denotes the user who fired the trigger that is executed in the state s, whereas tpl(s) denotes the tuple associated with the action that fired the trigger that is executed in the state s.

Example 4.1. Let the schema, the set of users U, and the policy S be as in Example 3.1. The database state db is $db(N) = \{v\}, db(P) = \emptyset$, and $db(T) = \{v\}$. The only trigger in the system is $t = \langle id, admin, INS, P, T(x_1), \langle \text{INSERT}, N, x_1 \rangle, O \rangle$. The run r is as follows:

- 1. u deletes v from N.
- 2. u inserts v in P. This activates the trigger t, which inserts v in N.
- 3. u issues the SELECT query N(v).

We used Maude to generate the following run, which illustrates how the system's state changes. Note that there are no exceptions during the run.

$$\underbrace{(db, U, S, \{t\}, \emptyset, c_1)}^{(u, \text{ DELETE, } N, v)} \xrightarrow{((db[N \ominus v], U, S, \{t\}, \emptyset, c_2))} ((db[N \ominus v], U, S, \{t\}, \emptyset, c_2))}_{(db[P \oplus v], U, S, \{t\}, \emptyset, c_4)} \underbrace{t}_{(db[P \oplus v, N \ominus v], U, S, \{t\}, \emptyset, c_3)} \underbrace{t}_{(db[P \oplus v], U, S, \{t\}, \emptyset, c_5)} ((db[P \oplus v], U, S, \{t\}, \emptyset, c_5))}$$

Figure 5 models u's reasoning in Attack 5. The user u first applies the *SELECT Success* rule to derive $r, 5 \vdash_u N(v)$, i.e., he learns the query's result. By applying the rule *Propagate Backward SELECT* to $r, 5 \vdash_u N(v)$, he obtains $r, 4 \vdash_u N(v)$, i.e., he learns that N(v) holds before the SELECT query. Similarly, he applies the rule *DELETE Success* to derive $r, 2 \vdash_u \neg N(v)$, and he obtains $r, 3 \vdash_u \neg N(v)$ by applying the *Propagate Forward Update Success* rule. Finally, by applying the rule *Learn INSERT Backward* to $r, 3 \vdash_u \neg N(v)$ and $r, 4 \vdash_u N(v)$, he learns the value of the trigger's WHEN condition $r, 3 \vdash_u T(v)$. Since the user u should not be able to learn information about T, the attack violates the intended confidentiality guarantees. We used our executable attacker model [26] to derive the judgments.

5. SECURITY PROPERTIES

Here we define two security properties: database integrity and data confidentiality. These properties capture the two essential aspects of database security. Database integrity states that all actions modifying the system's state are authorized by the system's policy. In contrast, data confidentiality states that all information that an attacker can learn by observing the system's behaviour is authorized.

These two properties formalize security guarantees with respect to the two different classes of attacks previously identified. An access control mechanism providing database integrity prevents non-authorized changes to the system's state and, thereby, prevents integrity attacks. Similarly, by preventing the leakage of sensitive data, a mechanism providing data confidentiality prevents confidentiality attacks.

$$\begin{split} s &= \langle db, U, sec, T, V, c \rangle \quad u, o \in U \quad op \in \{\oplus, \oplus^*\} \\ priv &= \langle \text{SELECT}, v \rangle \quad v = \langle id, o, q, O \rangle \quad v \in V \\ \hline hasAccess(s, v, o, \oplus^*) \\ \hline \\ \hline \\ s &= \langle db, U, sec, T, V, c \rangle \quad t = \langle id, ow, ev, R, \phi, st, A \rangle \\ s &= \langle db, U, sec, T, V, c \rangle \quad t = \langle id, ow, ev, R, \phi, st, A \rangle \\ \hline \\ s &\sim_{auth} act(st, invoker(s), tpl(s)) \quad t \in T \\ \hline \\ s &\sim_{auth} t \\ \hline \\ s &= \langle db, U, sec, T, V, c \rangle \quad s' = \langle db, U, sec', T, V, c \rangle \\ s' &= apply(\langle \ominus, u, p, u' \rangle, s) \quad \forall g \in sec', s' \sim_{auth} g \\ \hline \\ \\ \text{REVOKE} \end{split}$$

 $s \rightsquigarrow_{auth} \langle \ominus, u, p, u' \rangle$ Figure 6: Examples of \rightsquigarrow_{auth} rules.

5.1 Database Integrity

Database integrity requires a formalization of authorized actions. We therefore define the relation \sim_{auth} between states and actions, modelling which actions are authorized in a given state. Let $P = \langle M, f \rangle$ be an extended configuration, where $M = \langle D, \Gamma \rangle$ and f is an M-PDP. The relation $\rightsquigarrow_{auth} \subseteq$ $\Omega_M \times (\mathcal{A}_{D,\mathcal{U}} \cup \mathcal{TRIGGER}_D)$ is defined by a set of rules given in Appendix C. Figure 6 shows three representative rules. The *GRANT* rule says that the owner o of a view v with owner's privileges is authorized to delegate the SELECT privilege over v to a user u in the state s, if o has the SE-LECT privilege with grant option over a set of tables and views that determine v's materialization [34], denoted by $hasAccess(s, v, o, \oplus^*)$. The *TRIGGER* rule says that the execution of an enabled trigger, i.e., one whose WHEN condition is satisfied, with the activator's privileges is authorized if both the invoker and the trigger's owner are authorized to execute the trigger's action according to \sim_{auth} . Note that the act function instantiates the action given in the trigger's definition to a concrete action by identifying the user performing the action and replacing the free variables with values from dom. Finally, the REVOKE rule says that a RE-VOKE statement is authorized if the resulting state, obtained using the function *apply*, has a consistent policy, namely one in which all the GRANTs are authorized by \sim_{auth} .

We now define database integrity. Intuitively, a PDP provides database integrity iff all the actions it authorizes are explicitly authorized by the policy, i.e., they are authorized by \rightsquigarrow_{auth} . This notion comes directly from the SQL standard, and it is reflected in existing enforcement mechanisms. Recall that, given a state s, $secEx(s) = \bot$ denotes that there were no security exceptions caused by the action or trigger leading to s.

Definition 5.1. Let $P = \langle M, f \rangle$ be an extended configuration, where $M = \langle D, \Gamma \rangle$ and f is an M-PDP, and let L be the P-LTS. We say that f provides database integrity with respect to P iff for all reachable states $s, s' \in \Omega_M$, if s' is reachable in one step from s by an action $a \in \mathcal{A}_{D,\mathcal{U}} \cup \mathcal{TRIGGER}_D$ and $secEx(s') = \bot$, then $s \rightsquigarrow_{auth} a$. \Box

Example 5.1. We consider a run corresponding to Attack 1, which illustrates a violation of database integrity. The database db is such that $db(P) = \emptyset$ and $db(S) = \{z\}$, the policy sec is $\{\langle \oplus, u_1, \langle \text{CREATE TRIGGER}, P \rangle, admin \rangle, \langle \oplus, u_2, \langle \text{INSERT}, P \rangle, admin \rangle, \langle \oplus, u_2, \langle \text{DELETE}, S \rangle, admin \rangle, \langle \oplus, u_2, \langle \text{SELECT}, P \rangle, admin \rangle, \langle \oplus, u_2, \langle \text{SELECT}, S \rangle, admin \rangle \}$, and the set U is $\{u_1, u_2, admin \}$. The run r is as follows:

$r, 2 \vdash_u \neg N(v)$	DELETE Success	$\overline{m \ 5 \vdash M(w)}$	SELECT Success	
	Propagate Forward	7,5+u $N(0)$	Propagate Backward SELECT	
$r, 3 \vdash_u \neg N(v)$	Update Success	$r, 4 \vdash_u N(v)$	Tiopagate Dackward Dillor	
			Learn INSERT Backward	

 $r, 3 \vdash_u T(v)$ Figure 5: Template Derivation of Attack 5 (contains just selected subgoals)

1. The user u_1 creates the trigger $t = \langle id, u_1, INS, P, \top, \langle \text{DELETE}, S, z \rangle, A \rangle$.

2. The user u_2 inserts the value v in P. This activates the trigger t and deletes the content of S, i.e., the value z.

We used Maude to generate the following run, which illustrates how the system's state changes. Note that there are no exceptions during the run.

$$\underbrace{(db, U, sec, \emptyset, \emptyset, c_1)}_{(db, U, sec, \{t\}, \emptyset, c_2)} \xrightarrow{\langle u_1, \text{CREATE}, t \rangle} \underbrace{(db, U, sec, \{t\}, \emptyset, c_2)}_{\langle u_2, \text{INSERT}, P, v \rangle} \underbrace{\langle u_2, \text{INSERT}, P, v \rangle}_{\langle db[P \oplus v, S \ominus z], U, sec, \{t\}, \emptyset, c_4)} \underbrace{\langle (db[P \oplus v], U, sec, \{t\}, \emptyset, c_3) \rangle}_{\langle u_2, \text{INSERT}, P, v \rangle}$$

Access control mechanisms that do not restrict the execution of triggers with activator's privileges violate database integrity because they do not throw security exceptions when $\langle db[P \oplus v], U, sec, \{t\}, \emptyset, c_3 \rangle \not\sim_{auth} t$.

5.2 Data Confidentiality

To model data confidentiality, we first introduce the concept of indistinguishability of runs, which formalizes the desired confidentiality guarantees by specifying whether users can distinguish between different runs based on their observations. Formally, a *P*-indistinguishability relation is an equivalence relation over traces(L), where *P* is an extended configuration and *L* is the *P*-LTS. Indistinguishable runs, intuitively, should disclose the same information.

We now define the concept of a secure judgment, which is a judgment that does not leak sensitive information or, equivalently, one that cannot be used to differentiate between indistinguishable runs.

Definition 5.2. Let P be an extended configuration, L be the P-LTS, and \cong be a P-indistinguishability relation. A judgment $r, i \vdash_u \phi$ is secure with respect to P and \cong , written $secure_{P,\cong}(r, i \vdash_u \phi)$, iff for all $r' \in traces(L)$ such that $r^i \cong r'$, it holds that $[\phi]^{db} = [\phi]^{db'}$, where $last(r^i) = \langle db, U, S, T, V, c \rangle$ and $last(r') = \langle db', U', S', T', V', c' \rangle$. \Box

We are now ready to define data confidentiality. Intuitively, an access control mechanism provides data confidentiality iff all judgments that an attacker can derive are secure.

Definition 5.3. Let $P = \langle M, f \rangle$ be an extended configuration, L be the P-LTS, $u \in \mathcal{U}$ be a user, A be a (P, u)-attacker model, and \cong be a P-indistinguishability relation. We say that f provides data confidentiality with respect to P, u, A, and \cong iff secure_{P, \cong} $(r, i \vdash_u \phi)$ for all judgments $r, i \vdash_u \phi$ that hold in A. \Box

We now define the indistinguishability relation that we use in the rest of the paper, which captures what each user can observe (as stated in §4.3) and the effects of the system's access control policy. Let $P = \langle \langle D, \Gamma \rangle, f \rangle$ be an extended configuration, L be the P-LTS, and u be a user in \mathcal{U} . Given a run $r \in traces(L)$, the user u is aware only

Figure 7: The runs $r(db_1)$ and $r(db_2)$ are indistinguishable, whereas $r(db_1)$ and $r(db_3)$ are not.

of his actions and not of the actions of the other users in r. This is represented by the u-projection of r, which is obtained by masking all sequences of actions that are not issued by u using a distinguished symbol *. Specifically, the *u*-projection of r is a sequence of states in Ω_M and actions in $\mathcal{A}_{D,u} \cup \mathcal{TRIGGER}_D \cup \{*\}$ that is obtained from r by (1) replacing each action not issued by u with *, (2) replacing each trigger whose invoker is not u with *, and (3) replacing all non-empty sequences of *-transitions with a single *-transition. For each user $u \in \mathcal{U}$, we define the *P*-indistinguishability relation $\cong_{P,u}$, which is formally defined in Appendix D. Intuitively, two runs r and r' are $\cong_{P,u}$ indistinguishable, denoted $r \cong_{P,u} r'$, iff (1) the labels of the u-projections of r and r' are the same, (2) u executes the same actions a_1, \ldots, a_n in r and r', in the same order, and with the same results, and (3) before each action a_i , where $1 \le i \le n$, as well as in the last states of r and r', the views, the triggers, the users, and the data disclosed by the policy are the same in r and r'.

We remark that there is a close relation between $\cong_{P,u}$ and state-based indistinguishability [24,35,46]. For any two $\cong_{P,u}$ -indistinguishable runs r and r', the database states that precede all actions issued by u as well as the last states in r and r' are pairwise indistinguishable under existing state-based notions [24,35,46].

Example 5.2 illustrates our indistinguishability notion.

Example 5.2. Let the schema, the set of users, the policy, and the triggers be as in Example 4.1. Consider the following run r(db), parametrized by the initial database state db:

- 1. u deletes v from N.
- 2. *u* inserts *v* in *P*. If *v* is in *T*, this activates the trigger *t*, which, in turn, inserts *v* in *N*.

3. u issues the SELECT query N(v).

Let db_1 , db_2 , and db_3 be three database states such that $db_1(T) = \{v\}$, $db_2(T) = \{j, v\}$, and $db_3(T) = \emptyset$, whereas $db_i(N) = \{v\}$ and $db_i(P) = \emptyset$, for $1 \le i \le 3$. Note that $r(db_1)$ is the run used in Example 4.1. Figure 7 depicts how the database's state changes during the runs $r(db_i)$, for $1 \le i \le 3$. Gray indicates those tables that the user u cannot read. The runs $r(db_1)$ and $r(db_2)$ are indistinguishable for the user u. The only difference between them is the content

of the table T, which u cannot read. In contrast, u can distinguish between $r(db_1)$ and $r(db_3)$ because the trigger has been executed in the former and not in the latter.

Indistinguishability may also depend on the actions of the other users. Consider the runs r' and r'' obtained by extending $r(db_1)$ respectively with one and two SELECT queries issued by the administrator just after u's query. The user u can distinguish between $r(db_1)$ and r' because he knows that other users interacted with the system in r' but not in $r(db_1)$, i.e., the u-projections have different labels. In contrast, the runs r' and r'' are indistinguishable for u because he only knows that, after his own SELECT, other users interacted with the system, i.e., the u-projections have the same labels. However, he does not know the number of commands, the commands themselves, or their results.

Example 5.3 shows that existing PDPs leak sensitive information and therefore do not provide data confidentiality.

Example 5.3. In Example 4.1, we showed how the user u derives $r, 3 \vdash_u T(v)$. The judgment is not secure because there is a run indistinguishable from r^3 , i.e., the run $r^3(db_3)$ in Example 5.2, in which T(v) does not hold.

Example 5.4 shows how views may leak information about the underlying tables. Even though this leakage might be considered legitimate, there is no way in our setting to distinguish between intended and unintended leakages. If this is desired, data confidentiality can be extended with the concept of *declassification* [6,7].

Example 5.4. Consider a database with two tables T and Z and a view $V = \langle v, admin, \{x \mid T(x) \land Z(x)\}, O \rangle$. The set U is $\{u, admin\}$ and the policy S is $\{\langle \oplus, u, \langle \texttt{SELECT}, T \rangle, admin \rangle, \langle \oplus, u, \langle \texttt{INSERT}, T \rangle, admin \rangle$. Consider the following run r, parametrized by the initial database state db, where u first inserts 27 into T and afterwards issues the SELECT query V(27). We assume there are no exceptions in r.

$$\underbrace{((db, U, S, \emptyset, \{V\}, c_1))}^{\langle u, \text{ INSERT}, T, 27 \rangle} \underbrace{((db[T \oplus 27], U, S, \emptyset, \{V\}, c_2))}_{\langle u, \text{ SELECT}, V(27) \rangle} \underbrace{\langle u, \text{ SELECT}, V(27) \rangle}_{((db[T \oplus 27], U, S, \emptyset, \{V\}, c_3))}$$

We used Maude to generate the runs r(d) and r(d') with the initial database states d and d' such that d(T) = d(Z) = $d'(T) = \emptyset$ and $d'(Z) = \{27\}$. The runs $r^1(d)$ and $r^1(d')$ are indistinguishable for u because they differ only in the content of Z, which u cannot read. After the INSERT, u can distinguish between $r^2(d)$ and $r^2(d')$ by reading V. Indeed, $d[T \oplus 27](V) = \emptyset$, because $d(Z) = \emptyset$, whereas $d'[T \oplus 27](V) =$ $\{27\}$. The user u derives r(d'), $1 \vdash_u Z(27)$, which is not secure because $r^1(d)$ and $r^1(d')$ are indistinguishable for u, but Z(27) holds just in the latter.

In contrast to existing security notions [24,35,46], we have defined data confidentiality over runs. This is essential to model and detect attacks, such as those in Examples 5.3 and 5.4, where an attacker infers sensitive information from the transitions between states. For instance, the leakage in Example 5.4 is due to the execution of the INSERT command. Although the SELECT command is authorized by the policy, u can use it to infer sensitive information about the system's state before the INSERT execution.

6. A PROVABLY SECURE PDP

We now present a PDP that provides both database integrity and data confidentiality. We first explain the ideas behind it using examples. Afterwards, we show that it satisfies the desired security properties and has acceptable overhead. Finally, we argue that it is more permissive than existing access control solutions.

Figure 8 depicts our PDP f together with the functions f_{int} and f_{conf} . Additional details about the PDP are given in Appendices F–G. The PDP takes as input a state s and an action a and outputs \top iff both f_{int} and f_{conf} authorize a in s, i.e., iff a's execution neither violates database integrity nor data confidentiality. Note that our algorithm is not *complete* in that it may reject some secure commands. However, from the results in [24, 30, 34], it follows that no algorithm can be complete and provide database integrity and data confidentiality for the relational calculus.

Our PDP is invoked by the database system each time a user u issues an action a to check whether u is authorized to execute a. The PDP is also invoked whenever the database system executes a scheduled trigger t: once to check if the SELECT statement associated with t's WHEN condition is authorized and once, in case t is enabled, to check if t's action is authorized.

6.1 Enforcing Database Integrity

The function f_{int} takes as input a state s and an action If the system is not executing a trigger, denoted by a. $trg(s) = \epsilon$, f_{int} checks (line 1) whether a is authorized with respect to s. In line 2, f_{int} checks whether a is the current trigger's condition. If this is the case, it returns \top because the triggers' conditions do not violate database integrity. Finally, the algorithm checks (line 3) whether a is the current trigger's action, and if this is the case, it checks whether the current trigger trg(s) is authorized with respect to s. The function *auth*, which checks if *a* is authorized with respect to s, is a sound and computable under-approximation of \sim_{auth} . Thus, any action authorized by f_{int} is authorized according to \rightsquigarrow_{auth} . This ensures database integrity. Note that \sim_{auth} relies on the concept of *determinacy* [34] to decide whether a query is determined by a set of views. Since determinacy is undecidable [34], in auth we implement a sound underapproximation of it, given in Appendix E, that checks syntactically if a query is determined by a set of views.

Example 6.1. Consider a database with three tables: R, T, and Z. The set U is $\{u, u', admin\}$ and the policy S is $\{\langle \oplus, u, \langle \text{SELECT}, R \rangle, admin \rangle, \langle \oplus^*, u, \langle \text{SELECT}, T \rangle, admin \rangle, \langle \oplus^*, u, \langle \text{SELECT}, T \rangle, admin \rangle, \langle \oplus^*, u, \langle \text{SELECT}, T \rangle, admin \rangle, \langle \oplus^*, u, \langle \text{SELECT}, T \rangle, admin \rangle, \langle \oplus^*, u, \langle \text{SELECT}, T \rangle, \langle \oplus^*, u, \langle (\oplus^*, u, \langle \text{SELECT}, T \rangle, u \rangle, \langle \oplus^*, u, \langle \text{SELECT}, T \rangle, \langle \oplus^*, u, \langle \oplus^*$ $\langle \oplus^*, u, \langle \text{SELECT}, Z \rangle, admin \rangle \}$. There are two views $V = \langle v, v \rangle$ admin, $\{x \mid T(x) \land Z(x)\}, O\}$ and $W = \langle w, u, \{x \mid R(x) \lor V\}$ V(x), O. The user u tries to grant to u' read access to W, i.e., he issues $\langle \oplus, u', \langle \text{SELECT}, W \rangle, u \rangle$. The PDP f_{int} rejects the command and raises a security exception because u is authorized to delegate the read access only for T and Z but W's result depends also on R, for which ucannot delegate read access. Assume now that the policy is $\{\langle \oplus^*, u, \langle \text{SELECT}, R \rangle, admin \rangle, \langle \oplus^*, u, \langle \text{SELECT}, T \rangle, admin \rangle, \langle \oplus^*, u, \rangle \}$ $(\text{SELECT}, Z), admin \}$. In this case, f_{int} authorizes the GRANT. The reason is that W's definition can be equivalently rewritten as $\{x \mid R(x) \lor (T(x) \land Z(x))\}$ and u is authorized to delegate the read access for R, T, and Z.

ightarrow s is a state and a is an action	\triangleright s is a state, a is an action, and u is a user			
function $f(s, a)$	function $f_{conf}(s, a, u)$			
1. return $f_{int}(s, a) \wedge f_{conf}(s, a, user(s, a))$	1. switch a			
	2. case $\langle u', \text{SELECT}, q \rangle$: return $secure(u, q, s)$			
	3. case $\langle u', \text{INSERT}, R, \overline{t} \rangle$: case $\langle u', \text{DELETE}, R, \overline{t} \rangle$:			
ightarrow s is a state and a is an action	4. if $leak(a, s, u) \lor \neg secure(u, getInfo(a), s)$ return \bot			
function $f_{int}(s, a)$	5. for $\gamma \in Dep(a, \Gamma)$			
1. if $trg(s) = \epsilon$ return $auth(s, a)$	6. if $(\neg secure(u, getInfoS(\gamma, a), s) \lor \neg secure(u, getInfoV(\gamma, a), s))$			
2. else if $a = cond(trg(s), s)$ return \top	7. return \perp			
3. else if $a = act(trg(s), s)$ return $auth(s, trg(s))$	8. case $\langle \oplus, u'', pr, u' \rangle, \langle \oplus^*, u'', pr, u' \rangle$: return $\neg leak(a, s, u)$			
4. else return \perp	9. return $ op$			
inverse. The PDP fusion the two submoutines found for The former provides detabase integrity and the				

Figure 8: The PDP f uses the two subroutines f_{int} and f_{conf} . The former provides database integrity and the latter provides data confidentiality with respect to the user user(s, a), which denotes either the user issuing the action, when the system is not executing a trigger, or the trigger's invoker.

6.2 Enforcing Data Confidentiality

The function f_{conf} , shown in Figure 8, takes as input an action a, a state s, and a user u. Note that any user other than the administrator is a potential attacker. The requirement for f_{conf} is that it authorizes only those commands that result in secure judgments for u as required by Definition 5.3. To achieve this, f_{conf} over-approximates the set of judgments that u can derive from a's execution. For instance, the algorithm assumes that u can always derive the trigger's condition from the run, even though this is not always the case. Then, f_{conf} authorizes a iff it can determine that all u's judgments are secure. This can be done by analysing just a finite subset of the over-approximated set of u's judgments.

In more detail, f_{conf} performs a case distinction on the action a (line 1). If a is a SELECT command (line 2), f_{conf} checks whether the query is secure with respect to the current state s and the user u using the *secure* procedure. If a is an INSERT or DELETE command (lines 3–7), f_{conf} checks (line 4), using the *leak* procedure, whether a's execution may leak sensitive information through the views that ucan read, as in Example 5.4. Afterwards, f_{conf} also checks (line 4) whether the information u can learn from a's execution, modelled by the sentence computed by the procedure getInfo(a), is secure. In line 5–7, f_{conf} computes the set of all integrity constraints that a's execution may violate, denoted by $Dep(a, \Gamma)$, and for all constraints γ , it checks whether the information that u may learn from γ is secure. The procedure getInfoS (respectively getInfoV) computes the sentence modelling the information learned by u from γ if a is executed successfully (respectively violates γ). If a is a GRANT command (line 8), f_{conf} checks whether a's successful execution discloses sensitive information to u. In the remaining cases (line 9), f_{conf} authorizes a.

Secure judgments. Determining if a given judgment is secure is undecidable for RC [24, 30]. Hence, the secure procedure implements a sound and computable under-approximation of this notion. We now present our solution. Other sound under-approximations can alternatively be used without affecting f_{conf} 's data confidentiality guarantees.

Let $M = \langle D, \Gamma \rangle$ be a system configuration, $r, i \vdash_u \phi$ be a judgment, and $s = \langle db, U, sec, T, V, c \rangle$ be the *i*-th state in *r*. As a first under-approximation, instead of the set of all runs indistinguishable from r^i , we consider the larger set of all runs r' whose last state $s' = \langle db', U, sec, T, V, c' \rangle$ is such that the disclosed data in db and db' are the same. Note that if a judgment is secure with respect to this larger set, it is secure also with respect to the set of indistinguishable runs because the former set contains the latter. This larger set depends just on the database state db and the policy *sec*, not on the run or the attacker model \mathcal{ATK}_u . Determining judgment's security is, however, still undecidable even on this larger set. We therefore employ a second under-approximation that uses query rewriting. We rewrite the sentence ϕ to a sentence ϕ_{rw} such that if $r, i \vdash_u \phi$ is not secure for the user u, then $[\phi_{rw}]^{db} = \top$. The formula ϕ_{rw} is $\neg \phi_{s,u}^\top \land \phi_{s,u}^\perp$, where $\phi_{s,u}^\top$ and $\phi_{s,u}^\perp$ are defined inductively over ϕ . A formal definition of *secure* is given in Appendix F.

We now explain how we construct $\phi_{s,u}^{\top}$ and $\phi_{s,u}^{\perp}$. We assume that both ϕ and V contain only views with the owner's privileges. The extension to the general case is given in Appendix F. First, for each table or view $o \in D \cup V$, we create additional views representing any possible projection of o. The extended vocabulary contains the tables in D, the views in V, and their projections. For instance, given a table R(x, y), we create the views R_x and R_y representing respectively $\{y \mid \exists x. R(x, y)\}$ and $\{x \mid \exists y. R(x, y)\}$. Second, we compute the formula ϕ' by replacing each sub-formula $\exists \overline{x}. R(\overline{x}, \overline{y})$ in ϕ with the view $R_{\overline{x}}(\overline{y})$ associated with the corresponding projection. Third, for each predicate R in the formula ϕ' , we compute the sets $R_{s,u}^{\top}$ and $R_{s,u}^{\perp}$. The set $R_{s,u}^{\top}$ (respectively $R_{s,u}^{\perp}$) contains all the tables and views K in the extended vocabulary such that (1) K is contained in (respectively contains) R, and (2) the user u is authorized to read K in s, i.e., there is a grant $\langle op, u, \langle \text{SELECT}, K' \rangle, u' \rangle \in sec$ such that either K' = K or K is obtained from K' through a projection. The formula $\phi_{s,u}^v$, where $v \in \{\top, \bot\}$, is:

$$\phi_{s,u}^{v} = \begin{cases} \bigvee_{S \in R_{s,u}^{\top}} S(\overline{x}) & \text{if } \phi = R(\overline{x}) \text{ and } v = \top \\ \bigwedge_{S \in R_{s,u}^{\perp}} S(\overline{x}) & \text{if } \phi = R(\overline{x}) \text{ and } v = \bot \\ \neg \psi_{s,u}^{\neg v} & \text{if } \phi = \neg \psi \\ \psi_{s,u}^{v} * \gamma_{s,u}^{v} & \text{if } \phi = \psi * \gamma \text{ and } * \in \{\lor, \land\} \\ Q x. \psi_{s,u}^{v} & \text{if } \phi = Q x. \psi \text{ and } Q \in \{\exists, \forall\} \\ \phi & \text{otherwise} \end{cases}$$

The formulae are such that if $\phi_{s,u}^{\top}$ holds, then ϕ holds and if $\neg \phi_{s,u}^{\perp}$ holds, then $\neg \phi$ holds. To compute the sets $R_{s,u}^{\top}$ and $R_{s,u}^{\perp}$, we check the containment between queries. Since query containment is undecidable [3], we implement a sound

 $\phi_{s,u}^{\perp} := S_y(2)_{s,u}^{\perp} \land (\neg R(5)_{s,u}^{\top} \lor S_y(4)_{s,u}^{\perp}) \equiv \top$

Figure 9: Checking the security of the judgment $r, 1 \vdash_u (\exists y. S(2, y)) \land (\neg R(5) \lor \exists y. S(4, y))$ from Example 6.2.

under-approximation of it, described in Appendix F. Other sound under-approximations can be used as well.

Our $\phi_{s,u}^{\top}$ and $\phi_{s,u}^{\perp}$ rewritings share similarities with the low and high evaluations of Wang et al. [46]. Both try to approximate the result of a query just by looking at the authorized data. However, we use $\phi_{s,u}^{\top}$ and $\phi_{s,u}^{\perp}$ to determine a judgment's security, whereas Wang et al. use evaluations to restrict the query's results only to authorized data.

Example 6.2. Consider a database with three tables S, R, and Q, and two views $V = \langle v, admin, \{x, y \mid S(x, y) \land (x = 1 \lor y = 3)\}, O \rangle$ and $W = \langle w, admin, \{x \mid R(x) \lor Q(x)\}, O \rangle$. The database state db is $db(S) = \{(1, 1), (2, 3), (4, 2)\}, db(R) = \{3\}, and <math>db(Q) = \{4\},$ the set U is $\{u, admin\},$ and the policy sec is $\{\langle \oplus, u, \langle \text{SELECT}, V \rangle, admin \rangle, \langle \oplus, u, \langle \text{SELECT}, W \rangle, admin \rangle\}$. Let the state s be $\langle db, U, sec, \emptyset, \{V, W\}, \epsilon \rangle$ and the run r be s. We want to check the security of $r, 1 \vdash_u \phi$, where $\phi := (\exists y. S(2, y)) \land (\neg R(5) \lor \exists y. S(4, y))$, for the user u. Figure 9 depicts the database state db, the materializations of the views V and W, and the materializations of the views S_x, S_y, V_x , and V_y in the extended vocabulary. Gray indicates those tables and views that u cannot read.

The rewriting process, depicted also in Figure 9, proceeds as follows. We first rewrite the formula ϕ as $S_y(2) \land (\neg R(5) \lor S_y(4))$. The sets $S_{y,u}^{-}, S_{y,u}^{-}, R_{s,u}^{-}$, and $R_{s,u}^{\perp}$ are respectively $\{V_y\}, \emptyset, \emptyset, and \{W\}$. The formulae $\phi_{s,u}^{-}$ and $\phi_{s,u}^{\perp}$ are respectively $S_y(2)_{s,u}^{-} \land (\neg R(5)_{s,u}^{\perp} \lor S_y(4)_{s,u}^{-})$, which is equivalent to $V_y(2) \land (\neg W(5) \lor V_y(4))$, and $S_y(2)_{s,u}^{\perp} \land (\neg R(5)_{s,u}^{-} \lor S_y(4)_{s,u}^{\perp})$, which is equivalent to \top . They are both secure, as they depend only on V and W. Furthermore, since $\phi_{s,u}^{-} \land \phi_{s,u}^{\perp}$. Since ϕ_{rw} does not hold in s, it follows that $r, 1 \vdash_u \phi$ is secure.

6.3 Theoretical Evaluation

Our PDP provides the desired security guarantees and its data complexity, i.e., the complexity of executing f when the action, the policy, the triggers, and the views are fixed,

is AC^0 . This means that f can be evaluated in logarithmic space in the database's size, as $AC^0 \subseteq LOGSPACE$, and evaluation is highly parallelizable. Note that *secure*'s data complexity is AC^0 because it relies on query evaluation, whose data complexity is AC^0 [3]. In contrast, all other operations in f are executed in constant time in terms of data complexity. Note also that on a single processor, f's data complexity is polynomial in the database's size. We believe that this is acceptable because the database is usually very large, whereas the query, which determines the degree of the polynomial, is small. The proofs are given in Appendices F–G.

THEOREM 6.1. Let $P = \langle M, f \rangle$ be an extended configuration, where M is a system configuration and f is as above. The PDP f (1) provides data confidentiality with respect to P, u, \mathcal{ATK}_u , and $\cong_{P,u}$, for any user $u \in \mathcal{U}$, and (2) provides database integrity with respect to P. Moreover, the data complexity of f is \mathcal{AC}^0 .

As the Examples 6.3 and 6.4 below show, f is more permissive than existing PDPs for those actions that violate neither database integrity nor data confidentiality.

Example 6.3. Our PDP is more permissive than existing mechanisms for commands of the form **GRANT SELECT ON** V **TO** u, where V is a view with owner's privileges, u is a user, and the statement is issued by the view's owner o. Such mechanisms, in general, authorize the **GRANT** iff o is authorized to delegate the read permission for all tables and views that occur in v's definition. Consider again Example 6.1. Our PDP authorizes $\langle \oplus, u', \langle \text{SELECT}, W \rangle, u \rangle$ under the policy S'. However, existing mechanisms reject it because u is not directly authorized to read V, although u can read the underlying tables. Our PDP also authorizes all the secure **GRANT** statements authorized by existing mechanisms.

Example 6.4. Our PDP is more permissive than the mechanisms used in existing DBMSs for secure SELECT statements. Such mechanisms, in general, authorize a SELECT statement issued by a user u iff u is authorized to read all tables and views used in the query. They will reject the query in Example 6.2 even though the query is secure. Furthermore, any secure SELECT statement authorized by them will be authorized by our solution as well. Also the PDP proposed by Rizvi et al. [35] rejects the query in Example 6.2 as insecure. However, our solution and the proposal of Rizvi et al. [35] are incomparable in terms of permissiveness, i.e., some secure SELECT queries are authorized by one mechanism and not by the other.

6.4 Implementation

To evaluate the feasibility and security of our approach in practice, we implemented our PDP in Java. The prototype, available at [26], implements both our PDP and the operational semantics of our system model. It relies on the underlying PostgreSQL database for executing the SELECT, INSERT, and DELETE commands. Note that our prototype also handles all the differences between the relational calculus and SQL. For instance, it translates every relational calculus query into an equivalent SELECT SQL query over the underlying database. We performed a preliminary experimental evaluation of our prototype. Our experiments were run on a PC with an Intel i7 processor and 32GB of RAM. Note that we materialized the content of all the views.

Figure 10: PDP Execution time.

Figure 11: Example 8 : f_{conf} 's execution time.

Our evaluation has two objectives: (1) to empirically validate that the prototype provides the desired security guarantees, and (2) to evaluate its overhead. For (1), we ran the attacks in §2 against our prototype. As expected, our PDP prevents all the attacks. For (2), we simulated Examples 6.1 and 6.2 on database states where the number of tuples ranges from 1,000 to 100,000. Figure 10 shows the PDP's execution time. Our results show that our solution is feasible. In more detail, f_{int} 's execution time does not depend on the database size, whereas f_{conf} 's execution time does. We believe that the overhead introduced by the PDP is acceptable for a proof of concept. Even with 100,000 tuples, the PDP's running time is under a second. In Example 6.2, f_{conf} 's execution time is comparable to the execution time of the user's query. As Figure 11 shows, f_{conf} 's query rewriting time does not depend on the database's size, whereas f_{conf} 's query execution time does.

To improve f_{conf} 's performance, one could strike a different balance between simple syntactic checks and our query rewriting solution. This, however, would result in more restrictive PDPs. We will investigate further optimizations as a future work.

7. RELATED WORK AND DISCUSSION

We compare our work against two lines of research: database access control and information flow control. Both of these have similar goals, namely preventing the leakage and corruption of sensitive information.

7.1 Database Access Control

Discretionary Database Access Control. Our framework builds on prior research in database access control [24, 35, 46] as well as established notions from database theory, such as determinacy [34] and instance-based determinacy [30].

Specifically, our notion of secure judgments extends instance based determinacy from database states to runs, while data confidentiality extends existing security notions [24,35, 46] to dynamic settings, where both the database and the policy may change. Similarly, our indistinguishability notion extends those in [24,46] from database states to runs. Finally, our formalization of \sim_{auth} relies on determinacy to decide whether the content of a view is fully determined by a set of other views.

Griffiths and Wade propose a PDP [23] that prevents At-

tacks 2 and 3 by using syntactic checks and by removing all views whose owners lack the necessary permissions. In contrast, we prevent the execution of GRANT and REVOKE operations leading to inconsistent policies.

Mandatory Database Access Control. Research on mandatory database access control has historically focused on Multi-Level Security (MLS) [17], where both the data and the users are associated with security levels, which are compared to control data access. Our PDP extends the SQL discretionary access control model with additional *mandatory* checks to provide database integrity and data confidentiality. In the following, we compare our work with the access control policies and semantics used by MLS systems.

With respect to policies, our work uses the SQL access control model, where policies are sets of **GRANT** statements. In this model, users can dynamically modify policies by delegating permissions. In contrast, MLS policies are usually expressed by labelling each subject and object in the system with labels from a security lattice [37]. The policy is, in general, fixed (cf. the *tranquility principle* [37]).

With respect to semantics, existing MLS solutions are based on the so-called *Truman model* [35], where they transparently modify the commands issued by the users to restrict the access to only the authorized data. In contrast, we use the same semantics as SQL, that is, we execute only the secure commands. This is called the *Non-Truman model* [35]. For an in-depth comparison of these access control models, see [24, 35]. Operationally, MLS mechanisms use polyinstantiation [29], which is neither supported by the relational model nor by the SQL standard, and requires ad-hoc extensions [17, 38]. Furthermore, the operational semantics of MLS systems differs from the standard relational semantics. In contrast, our operational semantics supports the relational model and is directly inspired by SQL.

The above differences influence how security properties are expressed. Data confidentiality, which relies on a precise characterization of security based on a possible worlds semantics, is a key component of the Non-Truman model (and SQL) access control semantics. Similarly, database integrity requires that any "write" operation is authorized according to the policy and is directly inspired by the SQL access control semantics. The security properties in MLS systems, in contrast, combine the multilevel relational semantics [17,38] with MLS and BIBA properties [37].

MLS systems prevent attacks similar to Attacks 4 and 5 using poly-instantiated tuples and triggers [38, 42], whereas attacks similar to Attack 1 cannot be carried out because triggers with activator's privileges are not supported [42]. The SeaView system [17], which combines discretionary access control and MLS, additionally prevents attacks similar to Attacks 2 and 3 by relying on Griffiths and Wade's PDP [23]. However, these solutions cannot be applied to SQL databases for the aforementioned reasons.

7.2 Information Flow Control

Various authors have applied ideas from information flow control to databases. Davis and Chen [16] study how crossapplication information flows can be tracked through databases. Other researchers [15, 32, 39] present languages for developing secure applications that use databases. They employ secure type systems to track information flows through databases. However, they neither model nor prevent the attacks we identified because they do not account for the advanced database features and the strong attacker model we study in this paper.

Schultz and Liskov [40] extend decentralized information flow control [33] to databases, based on concepts from multilevel security [17]. They identify one attack on data confidentiality that exploits integrity constraints. Their solution relies on poly-instantiation [29] and cannot be applied to SQL databases that do not support multi-level security. Their mechanism neither prevents the other attacks we identify nor provides provable and precise security guarantees.

Several researchers have studied attacker models in information flow control [5, 21]. Giacobazzi and Mastroeni [21] model attackers as data-flow analysers that observe the program's behaviour, whereas Askarov and Chong [5] model attackers as automata that observe the program's events. They both model passive attackers, who can observe, but do not influence, the program's execution. In contrast, our attacker is active and interacts with the database.

7.3 Discussion

Historically, database access control and information flow control rely on different foundations, formalisms, security notions, and techniques. We see our paper as a starting point for bridging these topics: we combine database access control theory with an operational semantics and an attacker model, which are common in information flow control, but have been largely ignored in database access control. We thereby give a precise logical characterization of the attacker's capabilities and of a judgment's security. Furthermore, our indistinguishability notion has similarities with the low-equivalence notions used in [6, 7, 10], whereas both data confidentiality and the notion of secure judgments have a precise characterization as instances of non-interference [22, 36]; see Appendix H for more details.

We believe our framework provides a basis for (1) further investigating the connections between these two topics, (2) applying information flow mechanisms, such as type systems or multi-execution [18], to database access control, and (3) investigating how integrity notions used in information flow control can best be applied to databases.

8. CONCLUSION

Motivated by practical attacks against existing databases, we have initiated several new research directions. First, we developed the idea that attacker models should be studied and formalized for databases. Rather than being implicit, the relevant models must be made explicit, just like when analysing security in other domains. In this respect, we presented a concrete attacker model that accounts for relevant features of modern databases, like triggers and views, and attacker inference capabilities.

Second, access control mechanisms must be designed to be secure, and provably so, with respect to the formalized attacker capabilities. This requires research on mechanism design, complemented by a formal operational semantics of databases as a basis for security proofs. We presented such a mechanism, proved that it is secure, and built and evaluated a prototype of it in PostgreSQL. As a future work, we will extend our framework and our PDP to directly support the SQL language, and we will investigate efficiency improvements for our PDP.

Acknowledgments. We thank Ulfar Erlingsson, Erwin Fang, Andreas Lochbihler, Ognjen Maric, Mohammad Torabi Dashti, Dmitriy Traytel, Petar Tsankov, Thilo Weghorn, Der-Yeuan Yu, Eugen Zalinescu, as well as the anonymous reviewers for their comments.

9. **REFERENCES**

- "New Security Features in Sybase Adaptive Server Enterprise," Sybase Technical White Paper, Sybase, an SAP company, 2003.
- [2] (2014, Sep.) Manage trigger security, Microsoft MSDN Library. [Online]. Available: http: //msdn.microsoft.com/en-us/library/ms191134.aspx/
- [3] S. Abiteboul, R. Hull, and V. Vianu, Foundations of
- databases. Addison-Wesley Reading, 1995, vol. 8.[4] R. Agrawal, P. Bird, T. Grandison, J. Kiernan,
- S. Logan, and W. Rjaibi, "Extending relational database systems to automatically enforce privacy policies," in *Proc. 2005 IEEE Int. Conf. Data Engineering.*
- [5] A. Askarov and S. Chong, "Learning is change in knowledge: Knowledge-based security for dynamic policies," in *Proc. 2012 IEEE Symp. Computer Security Foundations.*
- [6] A. Askarov and A. Sabelfeld, "Gradual release: Unifying declassification, encryption and key release policies," in *Proc. 2007 IEEE Symp. Security and Privacy.*
- [7] —, "Tight enforcement of information-release policies for dynamic languages," in Proc. 2009 IEEE Symp. Computer Security Foundations.
- [8] G. Bender, L. Kot, and J. Gehrke, "Explainable security for relational databases," in *Proc. 2014 ACM Intl. Conf. Management of data.*
- [9] G. M. Bender, L. Kot, J. Gehrke, and C. Koch, "Fine-grained disclosure control for app ecosystems," in Proc. 2013 ACM Intl. Conf. Management of data.
- [10] A. Bohannon, B. C. Pierce, V. Sjöberg, S. Weirich, and S. Zdancewic, "Reactive noninterference," in Proc. 2009 ACM Conf. Computer and Communications Security.
- [11] P. A. Bonatti, S. Kraus, and V. Subrahmanian, "Foundations of secure deductive databases," *IEEE Trans. Knowl. Data Eng.*, vol. 7, no. 3, 1995.
- [12] A. Brodsky, C. Farkas, and S. Jajodia, "Secure databases: Constraints, inference channels, and monitoring disclosures," *IEEE Trans. Knowl. Data Eng.*, vol. 12, no. 6, 2000.
- [13] K. Browder and M. Davidson, "The virtual private database in oracle9ir2," Oracle Technical White Paper, Oracle Corporation, vol. 500, 2002.
- [14] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and C. Talcott, "The maude 2.0 system," in *Rewriting Techniques and Applications*. Springer, 2003.
- [15] B. J. Corcoran, N. Swamy, and M. Hicks, "Cross-tier, label-based security enforcement for web applications," in Proc. 2009 ACM Intl. Conf. Management of data.
- [16] B. Davis and H. Chen, "DBTaint: cross-application information flow tracking via databases," Proc. 2010 USENIX Conf. Web Application Development.
- [17] D. E. Denning and T. F. Lunt, "A multilevel relational data model," in Proc. 1987 IEEE Symp. Security and Privacy.

- [18] D. Devriese and F. Piessens, "Noninterference through secure multi-execution," in *Proc. 2010 IEEE Symp. Security and Privacy.*
- [19] D. Dolev and A. C. Yao, "On the security of public key protocols," *IEEE Trans. Inf. Theory*, vol. 29, no. 2, 1983.
- [20] C. Farkas and S. Jajodia, "The inference problem: a survey," ACM SIGKDD Explorations, vol. 4, no. 2, 2002.
- [21] R. Giacobazzi and I. Mastroeni, "Abstract non-interference: Parameterizing non-interference by abstract interpretation," in Proc. 2004 ACM Symp. Principles of Programming Languages.
- [22] J. A. Goguen and J. Meseguer, "Security policies and security models," in *IEEE Symp. Security and Privacy*, 1982.
- [23] P. P. Griffiths and B. W. Wade, "An authorization mechanism for a relational database system," ACM Trans. on Database Syst., vol. 1, no. 3, 1976.
- [24] M. Guarnieri and D. Basin, "Optimal security-aware query processing," in Proc. 2014 Int. Conf. Very Large Data Bases.
- [25] M. Guarnieri, S. Marinovic, and D. Basin, "Strong and provably secure database access control," in *Proc. 2016 IEEE European Symp. Security and Privacy.*
- [26] Strong and Provably Secure Database Access Control — Prototype and Maude models. [Online]. Available: http: //www.infsec.ethz.ch/research/projects/FDAC.html
- [27] R. Halder and A. Cortesi, "Fine grained access control for relational databases by abstract interpretation," in
- Software and Data Technologies, 2013, vol. 170.
 [28] D. Hedin and A. Sabelfeld, "A perspective on information-flow control," Proc. 2011 Marktoberdorf
- Summer School. IOS Press, 2011.
 [29] S. Jajodia and R. Sandhu, "Polyinstantiation integrity in multilevel relations," in *Proc. 1990 IEEE Symp.*
- Security and Privacy.
 [30] P. Koutris, P. Upadhyaya, M. Balazinska, B. Howe, and D. Suciu, "Query-based data pricing," in Proc. 2012 ACM Symp. Principles of Database Systems.
- [31] K. LeFevre, R. Agrawal, V. Ercegovac, R. Ramakrishnan, Y. Xu, and D. DeWitt, "Limiting disclosure in hippocratic databases," in *Proc. 2004 Int. Conf. Very Large Data Bases.*
- [32] P. Li and S. Zdancewic, "Practical information flow control in web-based information systems," in Proc. 2005 IEEE Workshop on Computer Security Foundations.
- [33] A. C. Myers and B. Liskov, "A decentralized model for information flow control," in Proc. 1997 ACM Symp. Operating Systems Principles.
- [34] A. Nash, L. Segoufin, and V. Vianu, "Views and queries: Determinacy and rewriting," ACM Trans. Database Syst., vol. 35, no. 3, 2010.
- [35] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy, "Extending query rewriting techniques for fine-grained access control," in *Proc. 2004 ACM Int. Conf. Management of data.*
- [36] A. Sabelfeld and A. C. Myers, "Language-based information-flow security," *IEEE J. Sel. Areas*

Commun., vol. 21, no. 1, 2003.

- [37] P. Samarati and S. Capitani de Vimercati, "Access Control: Policies, Models, and Mechanisms," *Springer Lecture Notes in Computer Science*, vol. 2171, 2001.
- [38] R. Sandhu and F. Chen, "The multilevel relational (MLR) data model," ACM Trans. Inf. Syst. Sec., vol. 1, no. 1, 1998.
- [39] D. Schoepe, D. Hedin, and A. Sabelfeld, "SeLINQ: tracking information across application-database boundaries," in *Proc. 2014 ACM Intl. Conf. Functional Programming.*
- [40] D. Schultz and B. Liskov, "IFDB: decentralized information flow control for databases," in Proc. 2013 ACM European Conf. Computer Systems.
- [41] J. Shi, H. Zhu, G. Fu, and T. Jiang, "On the soundness property for sql queries of fine-grained access control in dbmss," in *Proc. 2009 IEEE/ACIS Int. Conf. Computer and Information Science.*
- [42] K. Smith and M. Winslett, "Multilevel secure rules: Integrating the multilevel secure and active data models," in *Database Security VI: Status and Prospects.* North-Holland, 1993.
- [43] M. Stonebraker and E. Wong, "Access control in a relational data base management system by query modification," in *Proc. 1974 ACM Annual Conference.*
- [44] T. S. Toland, C. Farkas, and C. M. Eastman, "The inference problem: Maintaining maximal availability in the presence of database updates," *Computers & Security*, vol. 29, no. 1, 2010.
- [45] A. Van Gelder and R. W. Topor, "Safety and translation of relational calculus," ACM Trans. Database Syst., vol. 16, no. 2, pp. 235–278, May 1991.
- [46] Q. Wang, T. Yu, N. Li, J. Lobo, E. Bertino, K. Irwin, and J.-W. Byun, "On the correctness criteria of fine-grained access control in relational databases," in *Proc. 2007 Int. Conf. Very Large Data Bases.*

APPENDIX

In this appendix we formalize the system's operational semantics, the attacker model, and the security properties. Furthermore, we present complete proofs of all results.

For simplicity's sake, in the following we assume, without loss of generality, that all the relational calculus formulae do not use constant symbols inside predicates. For instance, instead of the formula $\exists x. R(x, 5, 10)$, we consider the equivalent formula $\exists x, y, z. R(x, y, z) \land y = 5 \land z = 10$. Note that this does not restrict the scope of our work as all formulae can be trivially expressed without using constant symbols inside predicates.

Structure. In Appendix A, we provide a complete formalization of our system model. In Appendix B, we present all the rules defining the \vdash_u relation and we prove the soundness of \vdash_u with respect to the relational calculus semantics. In Appendix C, we provide the complete formalization of the \sim_{auth} relation. In Appendix D, we formalize *u*-projections and the indistinguishability relation $\cong_{P,u}$. In Appendix E we formalize the access control function f_{int} , we prove that it provides database integrity, and we prove its data complexity. In Appendix F we formalize the access control function f_{conf}^{u} , we prove that it provides data confidentiality, and we prove its data complexity. In Appendix G we prove that the function f, which is obtained by composing the PDPs f_{int} and f_{conf}^{u} , provides both database integrity and data confidentiality. We also prove that its data complexity is AC^{0} . Finally, in Appendix H we show that the concepts of secure judgment and data confidentiality have precise interpretations in terms of non-interference.

A. FORMALIZING THE SYSTEM MODEL

In this section, we precisely formalize the system model introduced in §4.2. We first introduce some auxiliary definitions about queries, views, privileges, and triggers. Afterwards, we introduce the concept of partial state. Then, we formalize contexts and we refine the notion of M-state given in §4.2. Finally, we formalize the transition relation \rightarrow_f together with some auxiliary predicates and functions.

A.1 Auxiliary definitions on queries, views, privileges, and triggers

Triggers can give rise to non-terminating executions, for example when the action associated with trigger t_1 activates trigger t_2 , which in turn activates t_1 . We say that a set Tof triggers is *safe* iff no trigger in T can activate another trigger in T. Note that safety ensures termination. Even though this termination condition is simple, it is sufficient for the purpose of this paper. Note that more complex and permissive termination conditions do not influence our results. We say that a set of triggers T is *safe*, denoted by safe(T), iff for all triggers $t_1, t_2 \in T$:

- if the t_1 's activation event is an INSERT on the table R, then t_2 's action is not of the form $\langle INSERT, R, \overline{t} \rangle$, or
- if the t_1 's activation event is a DELETE on the table R, then t_2 's action is not of the form $\langle \text{DELETE}, R, \overline{t} \rangle$.

Let D be a database schema, U be a set of users, t be a trigger over D, and V be a set of views over D. We say that t is a U-trigger, denoted by usersIn(t, U), if and only if $owner(t) \in U$ and t's statement mentions just users in U. We say that a query q is defined over D and V, denoted by defined (q, D, V), iff all the predicates in q are either tables in D or views in V. We say that a privilege p is defined over D and V, denoted by defined (p, D, V), iff the table or view referred in p is in $D \cup V$. We say that a view v is defined over D and V, denoted by defined (v, D, V), iff its definition is defined over D and V. Finally, we say that a trigger t is defined over D and V, denoted by defined (t, D, V), iff (1) the table on which t is defined is in D, (2) t's WHEN condition is defined over D and V, and (3) t's action refers only to tables and views in $D \cup V$.

A.2 Revoke Semantics

We now define the function *revoke* that models the semantics of SQL's **REVOKE** statements with cascade. In the following, let S be a security policy, i.e., a set of **GRANTS**, u_1, u_2, u_3, u_4, u , and u' be user identifiers, $op, op' \in \{\oplus, \oplus^*\}$, and p be a privilege. We say that a *chain* is a sequence of grants $g_1 \cdot g_2 \cdot \ldots \cdot g_n$ such that (1) $g_1 = \langle op', u_4, p, start \rangle$, (2) if $p \neq \langle \text{SELECT}, V \rangle$, where V is a view with owner's privileges, then start = admin, whereas if $p = \langle \text{SELECT}, V \rangle$, then $start \in \{admin, owner(V)\}$, and (3) for each $1 \leq i \leq n - 1$, $g_i = \langle \oplus^*, u_2, p, u_1 \rangle$ and $g_{i+1} = \langle op, u_3, p, u_2 \rangle$. We first define the *chain* function that takes as input a policy S and

constructs all possible chains.

$$chain(S) := \{ \langle op, u, p, u' \rangle \in S \mid u' = admin \} \cup \\ \{ \langle op, u, \langle \mathsf{SELECT}, V \rangle, u' \rangle \in S \mid V = \langle v, o, q, O \rangle \\ \land u' = o \} \cup \\ \bigcup_{\substack{g_1 \cdot \ldots \cdot g_n \in chain(S) \\ g = \langle op, u, p, u' \rangle \land g_n = \langle \oplus^*, u', p, u'' \rangle \land \\ \forall i \in \{1, \ldots, n\}. g_i \neq g \}. \end{cases}$$

The function *filter* takes as input a set of chains C and a grant g and returns as output the set of all chains in C that do not contain g:

$$filter(C,g) := \{g_1 \cdot \ldots \cdot g_n \in C \mid \forall i \in \{1,\ldots,n\}. g_i \neq g\}.$$

The function *policy* takes as input a set of chains and constructs a policy, i.e., a set of grants, out of it:

$$policy(C) := \bigcup_{g_1 \cdot \ldots \cdot g_n \in C} \bigcup_{1 \le i \le n} \{g_i\}$$

Finally, the function *revoke*, which models the semantics of the **REVOKE** command with cascade, is as follows:

$$revoke(S, u, p, u') := policy(filter(chain(policy(filter($$

$$chain(S), \langle \oplus, u, p, u' \rangle))), \langle \oplus^*, u, p, u' \rangle))$$

Given a policy S, revoke(S, u, p, u') denotes the policy obtained by applying $\langle \ominus, u, p, u' \rangle$ to S.

A.3 Partial States

An *M*-partial state is a tuple $\langle db, U, sec, T, V \rangle$ such that $db \in \Omega_D^{\Gamma}$ is a database state, $U \subset \mathcal{U}$ is a finite set of users such that $admin \in U$, $sec \in \mathcal{S}_{U,D}$ is a security policy, *T* is a finite set of safe triggers over *D*, and *V* is a finite set of views over *D*. We denote by Π_M the set of all *M*-partial states. Given an *M*-state $s = \langle db, U, sec, T, V, c \rangle$, we denote by pState(s) the *M*-partial state $\langle db, U, sec, T, V \rangle$ obtained from *s* by dropping the context *c*.

A.4 Contexts

Let $M = \langle D, \Gamma \rangle$ be a system configuration and u be a user. An (M, u)-action effect is a tuple $\langle act, accDec, res, E \rangle$, where $act \in \mathcal{A}_{D,u}$ is an action, $accDec \in \{\top, \bot\}$ is the access control decision for that action (where \top stands for permit and \bot stands for deny), $res \in \{\top, \bot\}$ is the action result, and $E \subseteq \Gamma$ is the set of integrity constraints violated by the action. We denote by $\Omega_{M,u}^{actEff}$ the set of all (M, u)-action effects and by $\Omega_{M,U}^{actEff}$, for some $U \subseteq \mathcal{U}$, the set $\bigcup_{u \in U} \Omega_{M,u}^{actEff}$. An (M, u)-trigger effect is a triple $\langle t, when, stmt \rangle$ where $t \in \mathcal{TRIGGER}_D$ is a trigger, when $\in \Omega_{M,u}^{actEff}$ is the action effect associated with the WHEN condition of the trigger, and $stmt \in \Omega_{M,u}^{actEff} \cup \{\epsilon\}$ is the action effect associated with the statement in the trigger 's body. We denote by $\Omega_{M,u}^{triEff}$ the set of all (M, u)-trigger effects and by $\Omega_{M,U}^{triEff}$, for some $U \subseteq \mathcal{U}$, the set $\bigcup_{u \in U} \Omega_{M,u}^{triEff}$.

An *M*-pending trigger transaction is a 4-tuple $\langle s, \bar{t}, u, tr \rangle$, where $s \in \Pi_M \cup \{\epsilon\}$ is an *M*-partial state representing the "roll-back state", i.e., the state that we must restore in case a roll-back happens, $\bar{t} \in \{\epsilon\} \cup \bigcup_{n \in \mathbb{N}^+} \mathbf{dom}^n$ is the tuple involved in the event that has fired the transaction, $u \in \mathcal{U} \cup \{\epsilon\}$ is the user that has activated the triggers in the transactions, and $tr \in \mathcal{TRIGGER}_{D}^{*}$ is a sequence of triggers. Note that we denote by \cdot the concatenation operation between strings over $\mathcal{TRIGGER}_{D}^{*}$, by ϵ the empty string in $\mathcal{TRIGGER}_{D}^{*}$, and by $\langle \epsilon, \epsilon, \epsilon, \epsilon \rangle$ the empty *M*-pending transaction.

An *M*-history *h* is a sequence of action effects and trigger effects, i.e., $h \in (\Omega_{M,\mathcal{U}}^{actEff} \cup \Omega_{M,\mathcal{U}}^{triEff})^*$. We denote by \mathcal{H}_M the set of all *M*-histories, by \cdot the concatenation operation over \mathcal{H}_M , and by ϵ the empty history.

We are now ready to formally define contexts. Let $M = \langle D, \Gamma \rangle$ be a system configuration. An *M*-context is a tuple $\langle h, actEff, tr \rangle$, where $h \in \mathcal{H}_M$ models the system's history, $actEff \in \Omega_{M,\mathcal{U}}^{actEff} \cup \Omega_{M,\mathcal{U}}^{triEff} \cup \{\epsilon\}$ describes the effect of the last action, i.e., whether the action has been accepted by the access control mechanism and the action's result, and tr is an *M*-pending transaction. Furthermore, the empty context ϵ is the element $\langle \epsilon, \epsilon, \langle \epsilon, \epsilon, \epsilon \rangle \rangle$.

A.4.1 Auxiliary Functions over contexts

Given an *M*-context $c = \langle h, actEff, tr \rangle$, we denote by secEx the following function, which returns \top if the last action has caused a security exception.

$$secEx(\langle h, aE, tr \rangle) = \begin{cases} \top & \text{if } aE = \langle act, \bot, res, E \rangle \\ \top & \text{if } aE = \langle t, \langle act, \bot, res, E \rangle, \epsilon \rangle \\ \top & \text{if } aE = \langle t, when, \langle act, \bot, res, E \rangle \rangle \\ \bot & \text{otherwise} \end{cases}$$

Similarly, we denote by Ex(c) the function extracting the integrity constraints violated by the last action.

$$Ex(\langle h, aE, tr \rangle) = \begin{cases} E & \text{if } aE = \langle act, aC, res, E \rangle \\ E & \text{if } aE = \langle t, when, \langle act, aC, res, E \rangle \rangle \\ \emptyset & \text{otherwise} \end{cases}$$

We also denote by res(c) the function extracting the last action's result:

$$res(\langle h, aE, tr \rangle) = \begin{cases} res & \text{if } aE = \langle act, aC, res, E \rangle \\ aC & \text{if } aE = \langle t, \langle act, aC, res, E \rangle, \epsilon \rangle \\ aC \wedge aC' & \text{if } aE = \langle t, \langle act, aC, res, E \rangle, \epsilon \rangle \\ \wedge res' & \langle act', aC', res', E' \rangle \rangle \wedge \\ & \langle act', aC', res', E' \rangle \neq \epsilon \end{cases}$$

Similarly, we denote by acA(c) and acC(c) the functions that extract the access control decision for the trigger's action and condition:

$$acA(\langle h, aE, tr \rangle) = \begin{cases} aC' & \text{if } aE = \langle t, \langle act, aC, res, E \rangle, \\ \langle act', aC', res', E' \rangle \rangle \wedge \\ \langle act', aC', res', E' \rangle \neq \epsilon \\ \bot & \text{otherwise} \end{cases}$$
$$acC(\langle h, aE, tr \rangle) = \begin{cases} aC & \text{if } aE = \langle t, \langle act, aC, res, E \rangle, \epsilon \rangle \\ aC & \text{if } aE = \langle t, \langle act, aC, res, E \rangle, \\ \langle act', aC', res', E' \rangle \rangle \wedge \\ \langle act', aC', res', E' \rangle \neq \epsilon \end{cases}$$

l⊥

We denote by invoker(c) the function extracting the user in the transaction, i.e., $invoker(\langle h, aE, \langle s, \bar{t}, u, trL \rangle \rangle) = u$. Similarly, we denote by tpl(c) the function extracting the tuple that has fired the transaction, namely $tpl(\langle h, aE, \langle s, \bar{t}, u, trL \rangle \rangle) = \bar{t}$, by triggers(c) the function extracting the list of triggers, i.e., $triggers(\langle h, aE, \langle s, \bar{t}, u, trL \rangle \rangle) = trL$, and by trigger(c), or tr(c) for short, the first trigger in the sequence triggers(c).

otherwise

A.5 States

We can now define *M*-states. Let $M = \langle D, \Gamma \rangle$ be a system configuration. An *M*-state is a tuple $\langle db, U, sec, T, V, c \rangle$ such that $db \in \Omega_D^{\Gamma}$ is a database state, $U \subset \mathcal{U}$ is a finite set of users such that $admin \in U$, $sec \in \mathcal{S}_{U,D}$ is a security policy, *T* is a finite set of safe triggers over *D* such that for any trigger $t \in T$, both usersIn(t, U) and defined(t, D, V) hold, *V* is a finite set of views over *D* such that (1) there are no cyclic dependencies between the views in *V*, and (2) for any view $v \in V$, defined(t, D, V'), for some $V' \subseteq V$, and *v*'s owner is in *U*, and $c \in \mathcal{C}_M$ is an *M*-context.

In Section 4.2, we denoted an *M*-state as a tuple $\langle db, sec, U, T, V, c \rangle$, where $c = \langle h, actEff, tr \rangle$ is an element of C_M . In the following, instead of representing states as $\langle db, sec, U, T, V, \langle h, aE, tr \rangle \rangle$, we represent them as $\langle db, sec, U, T, V, h, aE, tr \rangle$. Given an *M*-state $s := \langle db, sec, U, T, V, h, aE, tr \rangle$, we denote by ctx(s) the context $\langle h, aE, tr \rangle$. With a slight abuse of notation, we extend the functions Ex, secEx, res, tpl, acA, acC, triggers, tr, and invoker from contexts to *M*-states, e.g., Ex(s) is just Ex(ctx(s)). Furthermore, given an *M*-state $s := \langle db, sec, U, T, V, h, aE, tr \rangle$, we use a dot notation to refer to its components. For instance, we use s.db to refer to the database's state in s and s.sec to refer to the policy in s.

A.6 Transition Relation \rightarrow_f

The transition rules describing the \rightarrow_f transition relation are shown in Figures 12–19. The \rightarrow_f relation is, thus, the smallest relation satisfying all the inference rules. Note that we ignore the *upd* function introduced in Section 4.2 since the rules explicitly encode the changes to the contexts.

We now define the functions we used in the rules in Figures 12–19. The getActualUser(m, invk, ow) function, where $m \in \{A, O\}$ and $invk, ow \in \mathcal{U}$, is defined as follows:

$$getActualUser(m, invk, ow) = \begin{cases} invk & \text{if } m = A \\ ow & \text{if } m = O \end{cases}$$

The *ID* function takes as input an action $act \in \mathcal{A}_{D,\mathcal{U}}$ and returns \top if *act* is either $\langle u, \text{INSERT}, R, \bar{t} \rangle$ or $\langle u, \text{DELETE}, R, \bar{t} \rangle$, for some $u \in \mathcal{U}, R \in D$, and $\bar{t} \in \mathbf{dom}^{|R|}$. The function *ID* returns \perp otherwise.

The *apply* function, which takes as input an action $act \in \mathcal{A}_{M,\mathcal{U}}$ that is either an INSERT or a DELETE action and a database state $db \in \Omega_D$, is defined as follows:

$$apply(act, db) = \begin{cases} db[R \oplus \overline{t}] & \text{if } act = \langle u, INSERT, R, \overline{t} \rangle \\ db[R \ominus \overline{t}] & \text{if } act = \langle u, DELETE, R, \overline{t} \rangle \end{cases}$$

Let $t = \langle id, ow, ev, R', \phi, stmt, m \rangle$ be a trigger and R be a relation schema. We denote t's owner by owner(t), i.e., owner(t) = ow. Similarly, given a view V, we denote by owner(V) the owner of V. We also denote by $\overline{x}^{|R|}$ the tuple of variables $\langle x_1, \ldots, x_{|R|} \rangle$. Furthermore, given a tuple $\overline{t} := \langle t_1, \ldots, t_n \rangle$, we denote by $\overline{t}(i)$ the *i*-th value t_i . Finally, we denote by $\overline{t}[\overline{x}^{|R|} \mapsto \overline{v}]$, where \overline{t} is a tuple of values in **dom** and variables in $\{x_1, \ldots, x_{|R|}\}$ and \overline{v} is a tuple in $\mathbf{dom}^{|R|}$, the tuple $\overline{z} \in \mathbf{dom}^n$ obtained as follows: for each $i \in \{1, \ldots, n\}$, if $\overline{t}(i) = x_j$, where $x_j \in \{x_1, \ldots, x_{|R|}\}$, then $\overline{z}(i) = \overline{v}(j)$, and otherwise $\overline{z}(i) = \overline{t}(i)$. We are now ready to define the function getAction, which takes as input the trigger's statement stmt, a user u, and a tuple $\overline{t}' \in \mathbf{dom}^{|R'|}$, and returns the concrete action executed by the system. Formally, getAction is as follows:

- $getAction(\langle \text{INSERT}, R, \overline{t} \rangle, u, \overline{t}') = \langle u, \text{INSERT}, R, \overline{t} [\overline{x}^{|R'|} \mapsto \overline{t'}] \rangle,$
- $getAction(\langle \text{DELETE}, R, \overline{t} \rangle, u, \overline{t}') = \langle u, \text{DELETE}, R, \overline{t}[\overline{x}^{|R'|} \mapsto \overline{t'}] \rangle$, and
- $getAction(\langle op, u, p \rangle, u, \overline{t}') = \langle op, u, p, u \rangle$, where $op \in \{ \ominus, \oplus, \oplus^* \}$.

We assume there is a total-order relation $\preceq_{\mathcal{T}}$ over \mathcal{T} . We use this ordering to determine the order in which triggers are executed. Given a set of triggers T and a database schema D, we denote by filter(T, ev, R), where $ev \in \{INS, DEL\}$ and $R \in D$, the sequence of triggers in T (ordered according to $\preceq_{\mathcal{T}}$) whose event is ev and whose relation schema is R.

$$\frac{admin \in U \quad aE' = \langle \langle admin, \texttt{ADD_USER}, u \rangle, \top, \top, \emptyset \rangle \quad f(\langle db, U, sec, T, V, h, aE, \langle rS, \overline{t}', u', \epsilon \rangle \rangle, \langle admin, \texttt{ADD_USER}, u \rangle) = \top}{\langle db, U, sec, T, V, h, aE, \langle rS, \overline{t}', u', \epsilon \rangle \rangle} \quad \begin{array}{c} \text{Add} \\ \text{User} \\ \text{Success} \end{array}$$

$$\frac{admin \in U}{\langle db, U, sec, T, V, h, aE, \langle rS, \overline{t}', u', \epsilon \rangle \rangle} \frac{f(\langle db, U, sec, T, V, h, aE, \langle rS, \overline{t}', u', \epsilon \rangle \rangle, \langle admin, ADD_USER, u \rangle) = \bot}{\langle db, U, sec, T, V, h, aE, \langle rS, \overline{t}', u', \epsilon \rangle \rangle} \frac{\langle admin, ADD_USER, u \rangle}{\langle ddmin, ADD_USER, u \rangle} f(\langle db, U, sec, T, V, h, aE, aE', \langle \epsilon, \epsilon, \epsilon, \epsilon \rangle \rangle}$$

$$\frac{u \in U \quad f(\langle db, U, sec, T, V, h, aE, \langle rS, \overline{t}', u', \epsilon \rangle), \langle u, \mathsf{SELECT}, q \rangle) = \top \quad [q]^{db} = v}{aE' = \langle \langle u, \mathsf{SELECT}, q \rangle, \top, v, \emptyset \rangle \qquad defined(q, D, V)} \qquad \mathsf{SELECT} \\ \overline{\langle db, U, sec, T, V, h, aE, \langle rS, \overline{t}', u', \epsilon \rangle \rangle} \xrightarrow{\langle u, \mathsf{SELECT}, q \rangle}_f \langle db, U, sec, T, V, h \cdot aE, aE', \langle \epsilon, \epsilon, \epsilon, \epsilon \rangle \rangle} \qquad \mathsf{SELECT} \\ \mathsf{Success}$$

Figure 12: Rules defining the \rightarrow_f relation for SELECT and ADD USER

$$\frac{u \in U \quad R \in D \quad f(\langle db, U, sec, T, V, h, aE, \langle rS, \overline{t}', u', \epsilon \rangle\rangle, act) = \top \quad act = \langle u, \text{INSERT}, R, \overline{t} \rangle}{db[R \oplus \overline{t}] \in \Omega_D^{\Gamma} \qquad aE' = \langle act, \top, \top, \emptyset \rangle \quad filter(T, INS, R) = \epsilon \lor \overline{t} \in db(R)} \qquad \text{INSERT} \quad \text{Success 1}}$$

$$\frac{de[R \oplus \overline{t}] \in \Omega_D^{\Gamma} \quad (db, U, sec, T, V, h, aE, \langle rS, \overline{t}', u', \epsilon \rangle) \xrightarrow{(u, \text{INSERT}, R, \overline{t})} f(db[R \oplus \overline{t}], U, sec, T, V, h \cdot aE, aE', \langle \epsilon, \epsilon, \epsilon, \epsilon \rangle)} \quad \text{INSERT} \quad \text{Success 1}}$$

$$\frac{u \in U \quad R \in D \quad f(\langle db, U, sec, T, V, h, aE, \langle rS, \overline{t}', u', \epsilon \rangle), act) = \top \quad act = \langle u, \text{INSERT}, R, \overline{t} \rangle \quad db[R \oplus \overline{t}] \in \Omega_D^{\Gamma} \\ db[U, sec, T, \nabla, h, aE, \langle rS, \overline{t}', u', \epsilon \rangle) \xrightarrow{(u, \text{INSERT}, R, \overline{t})} f(db[R \oplus \overline{t}], U, sec, T, V, h \cdot aE, aE', \langle rS', \overline{t}, u, tr \rangle)} \qquad \text{INSERT} \quad \text{Success 2}$$

$$\frac{u \in U \quad R \in D \quad f(\langle db, U, sec, T, V, h, aE, \langle rS, \overline{t}', u', \epsilon \rangle) \xrightarrow{(u, \text{INSERT}, R, \overline{t})} f(db[R \oplus \overline{t}], U, sec, T, V, h \cdot aE, aE', \langle rS', \overline{t}, u, tr \rangle)}{(db, U, sec, T, V, h, aE, \langle rS, \overline{t}', u', \epsilon \rangle) \xrightarrow{(u, \text{INSERT}, R, \overline{t})} f(db, U, sec, T, V, h \cdot aE, aE', \langle \epsilon, \epsilon, \epsilon, \epsilon \rangle)}} \quad \text{INSERT} \quad \text{INSERT} \quad \text{Success 2}$$

$$\frac{u \in U \quad R \in D \quad f(\langle db, U, sec, T, V, h, aE, \langle rS, \overline{t}', u', \epsilon \rangle) \xrightarrow{(u, \text{INSERT}, R, \overline{t})} f(db, U, sec, T, V, h \cdot aE, aE', \langle \epsilon, \epsilon, \epsilon, \epsilon \rangle)}} \quad \text{INSERT} \quad \text{$$

 $\langle db, U, sec, T, V, h, aE, \langle rS, \bar{t}', u', \epsilon \rangle \rangle \xrightarrow{(a, \text{INSERT}, t, e')}_{f} \langle db, U, sec, T, V, h \cdot aE, aE', \langle \epsilon, \epsilon, \epsilon, \epsilon \rangle \rangle$ Figure 13: Rules defining the \rightarrow_f relation for INSERT

 $\begin{array}{ll} \textit{invk}, \textit{ow} \in U & t = \langle \textit{id}, \textit{ow}, \textit{ev}, \textit{R}', \phi, \textit{stmt}, \textit{m} \rangle & u = \textit{getActualUser}(\textit{m}, \textit{ow}, \textit{invk}) & \phi' = \phi[\overline{x}^{|\mathcal{R}'|} \mapsto \overline{t}] \\ f(\langle \textit{db}, \textit{U}, \textit{sec}, \textit{T}, \textit{V}, \textit{h}, \textit{aE}, \langle \textit{rS}, \overline{t}, \textit{invk}, t \cdot \textit{tr} \rangle \rangle, \langle \textit{u}, \texttt{SELECT}, \phi' \rangle) = \top & [\phi']^{\textit{db}} = \top & \textit{aE'} = \langle \langle \textit{u}, \texttt{SELECT}, \phi' \rangle, \top, \top, \emptyset \rangle \\ \textit{act} = \textit{getAction}(\textit{stmt}, \textit{u}, \overline{t}) & \textit{db'} = \textit{apply}(\textit{act}, \textit{db}) & f(\langle \textit{db}, \textit{U}, \textit{sec}, \textit{T}, \textit{V}, \textit{h} \cdot \textit{aE}, \textit{aE'}, \langle \textit{rS}, \overline{t}, \textit{invk}, t \cdot \textit{tr} \rangle \rangle, \textit{act}) = \top \\ \textit{db'} \in \Omega_D^{\Gamma} & \textit{aE''} = \langle \textit{act}, \top, \top, \emptyset \rangle & \textit{tE'} = \langle \textit{t}, \textit{aE''} \rangle & \textit{ID}(\textit{act}) = \top \\ \end{array}$

 $\langle db, U, sec, T, V, h, aE, \langle rS, \overline{t}, invk, t \cdot tr \rangle \rangle \xrightarrow{t}_{f} \langle db', U, sec, T, V, h \cdot aE, tE', \langle rS, \overline{t}, invk, tr \rangle \rangle$

 $\begin{array}{ll} \textit{invk}, \textit{ow} \in U \quad t = \langle \textit{id}, \textit{ow}, \textit{ev}, \textit{R}', \phi, \textit{stmt}, \textit{m} \rangle \quad u = \textit{getActualUser}(\textit{m}, \textit{ow}, \textit{invk}) \quad \textit{rS} = \langle \textit{db}', \textit{U}', \textit{sec}', \textit{T}', \textit{V}' \rangle \\ f(\langle \textit{db}, \textit{U}, \textit{sec}, \textit{T}, \textit{V}, \textit{h}, \textit{aE}, \langle \textit{rS}, \bar{\textit{t}}, \textit{invk}, \textit{t} \cdot \textit{tr} \rangle \rangle, \langle \textit{u}, \texttt{SELECT}, \phi' \rangle) = \top \quad [\phi']^{\textit{db}} = \top \quad \textit{aE}' = \langle \langle \textit{u}, \texttt{SELECT}, \phi' \rangle, \top, \top, \forall \rangle \\ \textit{act} = \textit{getAction}(\textit{stmt}, \textit{u}, \bar{\textit{t}}) \quad f(\langle \textit{db}, \textit{U}, \textit{sec}, \textit{T}, \textit{V}, \textit{h} \cdot \textit{aE}, \textit{aE}', \langle \textit{rS}, \bar{\textit{t}}, \textit{invk}, \textit{t} \cdot \textit{tr} \rangle \rangle, \textit{act}) = \top \quad \textit{ID}(\textit{act}) = \top \\ \phi' = \phi[\overline{x}^{|\mathcal{R}'|} \mapsto \bar{\textit{t}}] \quad E' = \{\phi \in \Gamma | [\phi]^{\textit{apply}(\textit{act}, \textit{db}) \} \quad E' \neq \emptyset \quad aE'' = \langle \textit{act}, \top, \bot, E' \rangle \quad tE' = \langle \textit{t}, \textit{aE'}, \textit{aE''} \rangle \\ \end{array}$

 $\langle db, U, sec, T, V, h, aE, \langle rS, \overline{t}, invk, t \cdot tr \rangle \rangle \xrightarrow{t}_{f} \langle db', U', sec', T', V', h \cdot aE, tE', \langle \epsilon, \epsilon, \epsilon, \epsilon \rangle \rangle$

Figure 15: Rules defining the \rightarrow_f relation for triggers with INSERT/DELETE action

 $\begin{array}{ll} \operatorname{invk}, ow \in U & t = \langle id, ow, ev, R', \phi, stmt, m \rangle & u = getActualUser(m, ow, invk) & \phi' = \phi[\overline{x}^{|R'|} \mapsto \overline{t}] \\ f(\langle db, U, sec, T, V, h, aE, \langle rS, \overline{t}, invk, t \cdot tr \rangle \rangle, \langle u, \texttt{SELECT}, \phi' \rangle) = \top & [\phi']^{db} = \top & aE' = \langle \langle u, \texttt{SELECT}, \phi' \rangle, \top, \top, \emptyset \rangle \\ \langle op, u', p, u \rangle = getAction(stmt, u, \overline{t}) & f(\langle db, U, sec, T, V, h \cdot aE, aE', \langle rS, \overline{t}, invk, t \cdot tr \rangle \rangle, \langle op, u', p, u \rangle) = \top \\ \underline{aE'' = \langle \langle op, u', p, u \rangle, \top, \top, \emptyset \rangle} & tE' = \langle t, aE', aE'' \rangle & op \in \{\oplus, \oplus^*\} \end{array}$

 $\langle db, U, sec, T, V, h, aE, \langle rS, \overline{t}, invk, t \cdot tr \rangle \rangle \xrightarrow{t}_{f} \langle db, U, sec \cup \{ \langle op, u', p, u \rangle \}, T, V, h \cdot aE, tE', \langle rS, \overline{t}, invk, tr \rangle \rangle$

 $\begin{array}{l} \textit{invk, } ow \in U \quad t = \langle \textit{id, } ow, ev, R', \phi, \textit{stmt, } m \rangle \quad u = \textit{getActualUser}(m, ow, \textit{invk}) \quad \phi' = \phi[\overline{x}^{|R'|} \mapsto \overline{t}] \\ f(\langle \textit{db, } U, \textit{sec, } T, V, h, aE, \langle rS, \overline{t}, \textit{invk, } t \cdot tr \rangle \rangle, \langle u, \texttt{SELECT}, \phi' \rangle) = \top \quad [\phi']^{db} = \top \quad aE' = \langle \langle u, \texttt{SELECT}, \phi' \rangle, \top, \top, \emptyset \rangle \\ \langle \ominus, u', p, u \rangle = \textit{getAction}(\textit{stmt, } u, \overline{t}) \quad f(\langle \textit{db, } U, \textit{sec, } T, V, h \cdot aE, aE', \langle rS, \overline{t}, \textit{invk, } t \cdot tr \rangle \rangle, \langle \ominus, u', p, u \rangle) = \top \\ aE'' = \langle \langle \ominus, u', p, u \rangle, \top, \top, \emptyset \rangle \end{array}$

Trigger REVOKE Success

Success

 $\langle db, U, sec, T, V, h, aE, \langle rS, \bar{t}, invk, t \cdot tr \rangle \rangle \xrightarrow{t}_{f} \langle db, U, revoke(sec, u, p, u'), T, V, h \cdot aE, tE', \langle rS, \bar{t}, invk, tr \rangle \rangle$ Figure 16: Rules defining the \rightarrow_{f} relation for triggers with GRANT/REVOKE action

 $\begin{array}{c} invk, ow \in U \quad t = \langle id, ow, ev, R', \phi, stmt, m \rangle \quad u = getActualUser(m, ow, invk) \\ \phi' = \phi[\overline{x}^{|R'|} \mapsto \overline{t}] \quad f(\langle db, U, sec, T, V, h, aE, \langle rS, \overline{t}, invk, tr \rangle \rangle, \langle u, \texttt{SELECT}, \phi' \rangle) = \top \\ \hline [\phi']^{db} = \bot \quad aE' = \langle \langle u, \texttt{SELECT}, \phi' \rangle, \top, \bot, \emptyset \rangle \quad tE' = \langle t, aE', \epsilon \rangle \\ \hline \langle db, U, sec, T, V, h, aE, \langle rS, \overline{t}, invk, t \cdot tr \rangle \rangle \stackrel{t}{\to}_f \langle db, U, sec, T, V, h \cdot aE, tE', \langle rS, \overline{t}, invk, tr \rangle \rangle \end{array}$ Trigger Disabled $\begin{array}{c} invk, ow \in U \quad t = \langle id, ow, ev, R', \phi, stmt, m \rangle \quad u = getActualUser(m, ow, invk) \\ rS = \langle db', U', sec', T', V' \rangle \quad f(\langle db, U, sec, T, V, h, aE, \langle rS, \overline{t}, invk, tr \rangle \rangle, \langle u, \texttt{SELECT}, \phi' \rangle) = \bot \\ \underline{aE' = \langle \langle u, \texttt{SELECT}, \phi' \rangle, \bot, \bot, \emptyset \rangle \quad tE' = \langle t, aE', \epsilon \rangle \quad \phi' = \phi[\overline{x}^{|R'|} \mapsto \overline{t}] \\ \end{array}$ Trigger Deny

$$\langle db, U, sec, T, V, h, aE, \langle rS, \bar{t}, invk, t \cdot tr \rangle \rangle \xrightarrow{t}_{f} \langle db', U', sec', T', V', h \cdot aE, tE', \langle \epsilon, \epsilon, \epsilon, \epsilon \rangle \rangle$$
Condition

 $\begin{array}{ccc} invk, ow \in U & t = \langle id, ow, ev, R', \phi, stmt, m \rangle & u = getActualUser(m, ow, invk) \\ f(\langle db, U, sec, T, V, h, aE, \langle rS, \bar{t}, invk, t \cdot tr \rangle \rangle, \langle u, \texttt{SELECT}, \phi' \rangle) = \top & [\phi']^{db} = \top & aE' = \langle \langle u, \texttt{SELECT}, \phi' \rangle, \top, \top, \emptyset \rangle \\ act = getAction(stmt, u, \bar{t}) & f(\langle db, U, sec, T, V, h \cdot aE, aE', \langle rS, \bar{t}, invk, t \cdot tr \rangle \rangle, act) = \bot & \phi' = \phi[\bar{x}^{|R'|} \mapsto \bar{t}] \\ \hline aE'' = \langle act, \bot, \bot, \emptyset \rangle & tE' = \langle t, aE', aE'' \rangle & rS = \langle db', U', sec', T', V' \rangle \\ \hline \langle db, U, sec, T, V, h, aE, \langle rS, \bar{t}, invk, t \cdot tr \rangle \rangle \xrightarrow{t}_{f} \langle db', U', sec', T', V', h \cdot aE, tE', \langle \epsilon, \epsilon, \epsilon, \epsilon \rangle \rangle & \text{Trigger} \\ \hline \end{array}$

 $\begin{array}{l} \langle db, U, sec, T, V, h, aE, \langle rS, \overline{t}, invk, t \cdot tr \rangle \rangle \xrightarrow{t}_{f} \langle db', U', sec', T', V', h \cdot aE, tE', \langle \epsilon, \epsilon, \epsilon, \epsilon \rangle \rangle \\ \textbf{Figure 17: Rules defining the } \rightarrow_{f} \textbf{ relation for triggers} \end{array}$

$$\begin{array}{l} u, u' \in U \quad f(\langle db, U, sec, T, V, h, aE, \langle rS, \overline{t}, u'', \epsilon \rangle \rangle, \langle op, u, p, u' \rangle) = \top \\ aE' = \langle \langle op, u, p, u' \rangle, \top, \top, \emptyset \rangle \quad op \in \{\oplus, \oplus^*\} \quad defined(p, D, V) \end{array}$$
 GRANT

 $\langle db, U, sec, T, V, h, aE, \langle rS, \bar{t}, u'', \epsilon \rangle \rangle \xrightarrow{\langle op, u, p, u' \rangle}_{f} \langle db, U, sec \cup \{ \langle op, u, p, u' \rangle \}, T, V, h \cdot aE, aE', \langle \epsilon, \epsilon, \epsilon, \epsilon \rangle \rangle$

$$\begin{array}{c} u, u' \in U \quad f(\langle db, U, sec, T, V, h, aE, \langle rS, \bar{t}, u'', \epsilon \rangle\rangle, \langle \ominus, u, p, u' \rangle) = \top \\ aE' = \langle \langle \ominus, u, p, u' \rangle, \top, \top, \emptyset \rangle \quad defined(p, D, V) \end{array}$$

$$\begin{array}{c} \mathsf{REVOKE} \\ \mathsf{Success} \end{array}$$

 $\langle db, U, sec, T, V, h, aE, \langle rS, \overline{t}, u'', \epsilon \rangle \rangle \xrightarrow{\langle \ominus, u, p, u' \rangle}_{f} \langle db, U, revoke(sec, u, p, u'), T, V, h \cdot aE, aE', \langle \epsilon, \epsilon, \epsilon, \epsilon \rangle \rangle$

$$\begin{array}{c} \underbrace{ \begin{array}{c} u, u' \in U \quad f(\langle db, U, sec, T, V, h, aE, \langle rS, \overline{t}, u'', \epsilon \rangle \rangle, \langle op, u, p, u' \rangle) = \bot \\ aE' = \langle \langle op, u, p, u' \rangle, \bot, \bot, \emptyset \rangle \quad op \in \{\oplus, \oplus^*, \ominus\} \quad defined(p, D, V) \\ \hline \langle db, U, sec, T, V, h, aE, \langle rS, \overline{t}, u'', \epsilon \rangle \rangle \xrightarrow{\langle op, u, p, u' \rangle}_{f} \langle db, U, sec, T, V, h \cdot aE, aE', \langle \epsilon, \epsilon, \epsilon, \epsilon \rangle \rangle \end{array} } & \begin{array}{c} \text{GRANT-REVOKE} \\ \text{Deny} \end{array}$$

Figure 18: Rules defining the \rightarrow_f relation for GRANT and REVOKE

Trigger DELETE-INSERT Success

Trigger

DELETE-INSERT

Exception

Trigger GRANT

Success

$ \begin{array}{c} u \in U defined(t,D,V) safe(\{t\} \cup T) usersIn(t,U) f(\langle db,U,sec,T,V,h,aE,\langle rS,\bar{t},u',\epsilon\rangle\rangle,\langle u, \texttt{CREATE},t\rangle) = \top \\ \underbrace{t = \langle id,u,ev,R,\phi,stmt,m\rangle aE' = \langle \langle u,\texttt{CREATE},t\rangle, \top, \top, \emptyset\rangle \neg \exists t' \in T. t' = \langle id,ow',ev',R',\phi',stmt',m'\rangle \\ \hline \langle db,U,sec,T,V,h,aE,\langle rS,\bar{t},u',\epsilon\rangle\rangle \xrightarrow{\langle u,\texttt{CREATE},t\rangle}_f \langle db,U,sec,T \cup \{t\},V,h \cdot aE,aE',\langle \epsilon,\epsilon,\epsilon,\epsilon\rangle\rangle \end{array} $				
$\frac{u \in U defined(t, D, V) safe(\{t\} \cup T) usersIn(t, U) f(\langle db, U, sec, T, V, h, aE, \langle rS, \bar{t}, u', \epsilon \rangle\rangle, \langle u, CREATE, t \rangle) = \top}{t = \langle id, u, ev, R, \phi, stmt, m \rangle aE' = \langle \langle u, CREATE, t \rangle, \top, \bot, \emptyset \rangle t' = \langle id, ow', ev', R', \phi', stmt', m' \rangle t' \in T t' \neq t} \\ \frac{\langle db, U, sec, T, V, h, aE, \langle rS, \bar{t}, u', \epsilon \rangle\rangle}{\langle db, U, sec, T, V, h, aE, \langle rS, \bar{t}, u', \epsilon \rangle}_f \ \langle db, U, sec, T, V, h \cdot aE, aE', \langle \epsilon, \epsilon, \epsilon, \epsilon \rangle\rangle}$	CREATE TRIGGER Deny			
$ \begin{array}{c} u \in U defined(v, D, V) f(\langle db, U, sec, T, V, h, aE, \langle rS, \overline{t}, u', \epsilon \rangle\rangle, \langle u, \texttt{CREATE}, v \rangle) = \top \\ v = \langle id, u, q, m \rangle aE' = \langle \langle u, \texttt{CREATE}, v \rangle, \top, \top, \emptyset \rangle \neg \exists v' \in V. v' = \langle id, ow', q', m' \rangle \\ \hline \langle db, U, sec, T, V, h, aE, \langle rS, \overline{t}, u', \epsilon \rangle \rangle \xrightarrow{\langle u, \texttt{CREATE}, v \rangle}_{f} \langle db, U, sec, T, V \cup \{v\}, h \cdot aE, aE', \langle \epsilon, \epsilon, \epsilon, \epsilon \rangle \rangle \end{array} \begin{array}{c} \texttt{CREATE} \\ \texttt{VIEW} \\ \texttt{Success} \end{array} $				
$ \begin{array}{c} u \in U defined(v, D, V) f(\langle db, U, sec, T, V, h, aE, \langle rS, \bar{t}, u', \epsilon \rangle\rangle, \langle u, \texttt{CREATE}, v \rangle) = \top \\ v = \langle id, u, q, m \rangle aE' = \langle \langle u, \texttt{CREATE}, v \rangle, \top, \bot, \emptyset \rangle v' = \langle id, ow', q', m' \rangle v' \in V v \neq v' \\ \hline \langle db, U, sec, T, V, h, aE, \langle rS, \bar{t}, u', \epsilon \rangle \rangle \xrightarrow{\langle u, \texttt{CREATE}, v \rangle}_{f} \langle db, U, sec, T, V, h \cdot aE, aE', \langle \epsilon, \epsilon, \epsilon, \epsilon \rangle \rangle} \begin{array}{c} \texttt{CREATE} \\ \texttt{VIEW} \\ \texttt{Deny} \end{array} $				
$\frac{u \in U defined(o, D, V) f(\langle db, U, sec, T, V, h, aE, \langle rS, \bar{t}, u', \epsilon \rangle\rangle, \langle u, CREATE, o \rangle) = \bot aE' = \langle \langle u, CREATE, o \rangle, \bot, \bot, \emptyset \rangle}{\langle dh, U, sec, T, V, h, aE, \langle rS, \bar{t}, u', \epsilon \rangle\rangle} \xrightarrow{\langle u, CREATE, o \rangle} \langle dh, U, sec, T, V, h, aE, \langle rS, \bar{t}, u', \epsilon \rangle\rangle} \xrightarrow{\langle u, CREATE, o \rangle} \langle dh, U, sec, T, V, h, aE, \langle rS, \bar{t}, u', \epsilon \rangle\rangle} \xrightarrow{\langle u, CREATE, o \rangle} \langle dh, U, sec, T, V, h, aE, \langle rS, \bar{t}, u', \epsilon \rangle\rangle} \xrightarrow{\langle u, CREATE, o \rangle} \langle dh, U, sec, T, V, h, aE, \langle rS, \bar{t}, u', \epsilon \rangle\rangle} \langle u, CREATE, o \rangle = \bot$	CREATE Deny			

 $\langle db, U, sec, T, V, h, aE, \langle rS, \bar{t}, u', \epsilon \rangle \rangle \xrightarrow{\langle u, vacal E, O \rangle}_{f} \langle db, U, sec, T, V, h \cdot aE, aE', \langle \epsilon, \epsilon, \epsilon, \epsilon \rangle \rangle$ Figure 19: Rules defining the \rightarrow_f relation for CREATE triggers and views

B. ATTACKER MODEL

In this section, we formalize our attacker model \mathcal{ATK}_u . Let $P = \langle M, f \rangle$ be an extended configuration, where $M = \langle D, \Gamma \rangle$ is a system configuration and f is an M-PDP, L be the P-LTS, and $u \in \mathcal{U}$ be a user. The set \mathcal{ATK}_u is the smallest set of judgments satisfying the inference rules in Figures 21–33. With a slight abuse of notation, in the rules we use $r, i \vdash_u \phi$ to denote that this judgment holds in \mathcal{ATK}_u , i.e., $r, i \vdash_u \phi \in \mathcal{ATK}_u$. Note that we redefine here also the rules we presented before in Figure 4.

In the rules, we use \models_{fin} to denote the standard semantic entailment relation for first-order logic over finite models. We also denote by $replace(\psi, o)$, where ψ is a sentence and o is a view $\langle V, ow, \{\overline{x}|\phi\}, m\rangle \in \mathcal{VIEW}_D$, the formula ψ' obtained from ψ by replacing all occurrences of $V(\overline{x})$ with $\phi(\overline{x})$. Note that ψ and $replace(\psi, o)$ are semantically equivalent. Finally, given a database schema D, a state $s = \langle db, U, sec, T, V, ctx \rangle$, and an action $a \in \mathcal{A}_{D,\mathcal{U}} \cup \mathcal{TRIGGER}_D$, we denote by user(s, a) the following function:

$$user(s,a) = \begin{cases} invoker(s) & \text{if } tr(s) \neq \epsilon \\ u & \text{if } tr(s) = \epsilon \land u \in \mathcal{U} \land a \in \mathcal{A}_{D,i} \end{cases}$$

In the rules, we omit some details when dealing with integrity constraints. For instance, when we refer to functional dependencies of the form $\forall \overline{x}, \overline{y}, \overline{y}', \overline{z}, \overline{z}'$. $(R(\overline{x}, \overline{y}, \overline{z}) \land R(\overline{x}, \overline{y}', \overline{z}')) \Rightarrow \overline{y} = \overline{y}'$, we implicitly assume that $|\overline{y}| = |\overline{y}'|$ and $|\overline{z}| = |\overline{z}'|$. Furthermore, when we refer to tuples in R, we use the notation $(\overline{v}, \overline{w}, \overline{q})$ and we implicitly assume that $|\overline{v}| = |\overline{x}|, |\overline{w}| = |\overline{y}|$, and $|\overline{q}| = |\overline{z}|$. We make similar simplifications for the inclusion dependencies.

In our attacker model, we consider a very simple syntactic criterion for revising believes. Intuitively, the attacker is able to propagate the knowledge of a sentence ϕ after (or before) an **INSERT** or a **DELETE** action on a table R iff the predicate R does not occur in ϕ . We formalize this using the function reviseBelief : traces(L) × RC_{bool} × traces(L) → { \top, \bot }. In Figure 20, we give the definition for the function only for the inputs r', ϕ , r such that $\phi \in RC_{bool}$ is a sentence and r =

 $r' \cdot act \cdot s$, where $act \in \mathcal{A}_{D,\mathcal{U}} \cup \mathcal{TRIGGER}_D$ and $s \in \Omega_M$. If this is not the case, then $reviseBelif(r', \phi, r) = \bot$. Note that the function *tables* takes as input a formula ϕ and returns as output the set of all tables mentioned in ϕ' , where ϕ' is the formula obtained from ϕ by replacing all views with their definitions. We remark that, given a formula ϕ , if $R \notin tables(\phi)$, then the value of ϕ is independent on R, i.e., R does not determine ϕ .

In Lemma B.1, we prove that our attacker model is sound with respect to the relational calculus semantics, i.e., every judgment $r, i \vdash_u \phi$ that holds in \mathcal{ATK}_u is such that ϕ is satisfied in the *i*-th state of *r*. We first introduce the concept of *derivation*. Given a judgment $r, i \vdash_u \phi$, a *derivation of* $r, i \vdash_u \phi$ with respect to \mathcal{ATK}_u , or a *derivation of* $r, i \vdash_u \phi$ for short, is a proof tree, obtained by applying the rules defining \mathcal{ATK}_u , that ends in $r, i \vdash_u \phi$. With a slight abuse of notation, we use $r, i \vdash_u \phi$ to denote both the judgment and its derivation. The length of a derivation, denoted $|r, i \vdash_u \phi|$, is the number of rule applications in it. Note that a judgments $r, i \vdash_u \phi$ holds in \mathcal{ATK}_u iff there is a derivation for it.

LEMMA B.1. Let P be an extended configuration, L be the P-LTS, u be a user, $r \in traces(L)$ be an L run, $\phi \in RC_{bool}$ be a sentence, and $1 \leq i \leq |r|$. If $r, i \vdash_u \phi$ holds in \mathcal{ATK}_u , then $[\phi]^{db} = \top$, where $last(r^i) = \langle db, U, sec, T, V, c \rangle$.

PROOF. Let P be an extended configuration, L be the P-LTS, u be a user, $r \in traces(L)$ be an L run, $\phi \in RC_{bool}$ be a sentence, and $1 \leq i \leq |r|$. Furthermore, let $r, i \vdash_u \phi$ be a judgment that holds, i.e., there is a derivation d that ends on this judgment. We prove our claim by induction on the length of d.

Base Case: The base case is a derivation of length 1. Thus, there are a number of cases depending on the rule used to obtain $r, i \vdash_u \phi$.

- 1. SELECT Success 1. Let *i* be such that $r^i = r^{i-1} \cdot \langle u, \text{SELECT}, \phi \rangle \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and $last(r^{i-1}) = \langle db, U, sec, T, V, c' \rangle$. From the rules, it follows that $res(s) = \top$. From this and the LTS rules, it follows that $[\phi]^{db} = \top$.
- 2. SELECT Success 2. The proof for this case is similar to that of SELECT Success 1.
- 3. INSERT Success. Let *i* be such that $r^i = r^{i-1} \cdot \langle u, \text{INSERT}, R, \bar{t} \rangle \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and $last(r^{i-1}) = \langle db', U, sec, T, V, c' \rangle$, and ϕ be $R(\bar{t})$. From the LTS rules, it follows that $db = db'[R \oplus \bar{t}]$. From \oplus 's definition, it follows that $\bar{t} \in db(R)$. Therefore, from the RC's semantics, it follows that $[R(\bar{t})]^{db} = \top$. Since $\phi := R(\bar{t})$, it follows that $[\phi]^{db} = \top$.
- 4. INSERT Success FD. Let *i* be such that $r^i = r^{i-1} \cdot \langle u, \text{INSERT}, R, (\overline{v}, \overline{w}, \overline{q}) \rangle \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and $last(r^{i-1}) = \langle db', U, sec, T, V, c' \rangle$, and ϕ be $\neg \exists \overline{y}, \overline{z}. R(\overline{v}, \overline{y}, \overline{z}) \wedge \overline{y} \neq \overline{w}$. We claim that $[\phi]^{db'}$ holds. From this claim and the LTS semantics, it follows that there is no tuple $(\overline{v}', \overline{w}', \overline{q}')$ in db'(R) such that $\overline{v}' = \overline{v}$ and $\overline{w}' \neq \overline{w}$. There are two cases:
 - (a) The INSERT command causes an integrity exception, i.e., Ex(s) ≠ Ø. From this and the LTS semantics, it follows that db = db'. From this and [φ]^{db'} holds, it follows that also [φ]^{db} holds.
 - (b) The INSERT command does not cause any integrity exception, i.e., $Ex(s) = \emptyset$. From this, $[\phi]^{db'} = \top$,

$$reviseBelief(p', \phi, p' \cdot act \cdot s)) = \begin{cases} \top & \text{if } act = \langle u, op, R, \bar{t} \rangle \land R \notin tables(\phi) \land op \in \{\text{INSERT}, \text{DELETE}\} \\ \top & \text{if } act = \langle id, ow, ev, R', \phi, \langle op, R, \bar{t} \rangle, m \rangle \land R \notin tables(\phi) \land op \in \{\text{INSERT}, \text{DELETE}\} \\ \top & \text{if } act = \langle id, ow, ev, R, \phi, \langle op, u, p \rangle, m \rangle \land op \in \{\oplus, \oplus^*, \ominus\} \\ \perp & \text{otherwise} \end{cases}$$

Figure 20: Belief Revision

and $db(R) = db'(R) \cup \{(\overline{v}, \overline{w}, \overline{q})\}$, it follows that there is no tuple $(\overline{v}', \overline{w}', \overline{q}')$ in db(R) such that $\overline{v}' = \overline{v}$ and $\overline{w}' \neq \overline{w}$. From this, it follows that also $[\phi]^{db}$ holds.

We now prove our claim that $[\phi]^{db'}$ holds. Assume, for contradiction's sake, that this is not the case. This means that there is a tuple $(\overline{v}', \overline{w}', \overline{q}')$ in db'(R) such that $\overline{v}' = \overline{v}$ and $\overline{w}' \neq \overline{w}$. Let db'' be the state $db'[R \oplus$ $(\overline{v}, \overline{w}, \overline{q})]$. From $db'' = db'[R \oplus (\overline{v}, \overline{w}, \overline{q})]$, and the fact that there is a tuple $(\overline{v}', \overline{w}', \overline{q}')$ in db'(R) such that $\overline{v}' = \overline{v}$ and $\overline{w}' \neq \overline{w}$, it follows that there are two tuples $(\overline{v}, \overline{w}, \overline{q})$ and $(\overline{v}, \overline{w}', \overline{q}')$ in db''(R) such that $\overline{w}' \neq \overline{w}$. From this and the relational calculus semantics, it follows that $[\forall \overline{x}, \overline{y}, \overline{y}', \overline{z}, \overline{z}'. ((R(\overline{x}, \overline{y}, \overline{z}) \land R(\overline{x}, \overline{y}', \overline{z}')) \Rightarrow$ $\overline{y} = \overline{y}']^{db''} = \bot$. This contradicts the fact that $\forall \overline{x}, \overline{y}, \overline{y}',$ $\overline{z}, \overline{z}'. ((R(\overline{x}, \overline{y}, \overline{z}) \land R(\overline{x}, \overline{y}', \overline{z}')) \Rightarrow \overline{y} = \overline{y}'$ is not in Ex(s). 5. INSERT Success - ID. Let *i* be such that $r^i = r^{i-1}$.

- $\langle u, \text{INSERT}, R, (\overline{v}, \overline{w}) \rangle \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle$ $\in \Omega_M$ and $last(r^{i-1}) = \langle db', U, sec, T, V, c' \rangle$, and ϕ be $\exists \overline{y}. S(\overline{v}, \overline{y})$. We claim that $[\phi]^{db'}$ holds. From this claim and the LTS semantics, it follows that there is a tuple $(\overline{v}', \overline{w}')$ in db'(S) such that $\overline{v}' = \overline{v}$. There are two cases:
 - (a) The INSERT command causes an integrity exception, i.e., $Ex(s) \neq \emptyset$. From this and the LTS semantics, it follows that db = db'. From this and $[\phi]^{db'}$ holds, it follows that also $[\phi]^{db}$ holds.
 - (b) The INSERT command does not cause any integrity exception, i.e., $Ex(s) = \emptyset$. From this, $[\phi]^{db'} = \top$, and db(S) = db'(S), it follows that there a tuple $(\overline{v}', \overline{w}')$ in db(S) such that $\overline{v}' = \overline{v}$. From this, it follows that also $[\phi]^{db}$ holds.

We now prove our claim that $[\phi]^{db'}$ holds. Assume, for contradiction's sake, that this is not the case. This means that there is no tuple $(\overline{v}', \overline{w}')$ in db'(S) such that $\overline{v}' = \overline{v}$. Let db'' be the state $db'[R \oplus (\overline{v}, \overline{w})]$. From $db'' = db'[R \oplus (\overline{v}, \overline{w})]$, and the fact that there is no tuple $(\overline{v}', \overline{w}')$ in db'(S) such that $\overline{v}' = \overline{v}$, it follows that there is a tuple $(\overline{v}, \overline{w})$ in db''(R) and there is no tuple $(\overline{v}', \overline{w}')$ in db''(S) such that $\overline{v}' = \overline{v}$. From this and the relational calculus semantics, it follows that $[\forall \overline{x}, \overline{z}. (R(\overline{x}, \overline{z}) \Rightarrow \exists \overline{w}. S(\overline{x}, \overline{w}))]^{db''} = \bot$. This contradicts the fact that $\forall \overline{x}, \overline{z}. (R(\overline{x}, \overline{z}) \Rightarrow \exists \overline{w}. S(\overline{x}, \overline{w}))$ is not in Ex(s).

- 6. *DELETE Success*. The proof for this case is similar to that of *INSERT Success*.
- 7. DELETE Success ID. Let *i* be such that $r^i = r^{i-1} \cdot \langle u, \text{DELETE}, R, (\overline{v}, \overline{w}) \rangle \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and $last(r^{i-1}) = \langle db', U, sec, T, V, c' \rangle$, and ϕ be $\forall \overline{x}, \overline{z}. (S(\overline{x}, \overline{z}) \Rightarrow \overline{x} \neq \overline{v}) \lor \exists \overline{y}. (R(\overline{v}, \overline{y}) \land \overline{y} \neq \overline{w})$. We claim that $[\phi]^{db}$ holds. From this claim and the LTS semantics, it follows that there are two cases:
 - (a) all tuples $(\overline{x}, \overline{y}) \in db(S)$ are such that $\overline{v} \neq \overline{x}$. There are two cases:

i. The DELETE command causes an integrity ex-

ception, i.e., $Ex(s) \neq \emptyset$. From this and the LTS semantics, it follows that db = db'. From this and $[\phi]^{db'}$ holds, it follows that also $[\phi]^{db}$ holds.

- ii. The DELETE command does not cause any integrity exception, i.e., $Ex(s) = \emptyset$. From this, $[\phi]^{db'} = \top$, and db(S) = db'(S), it follows that all tuples $(\overline{x}, \overline{y}) \in db(S)$ are such that $\overline{v} \neq \overline{x}$. Therefore, also $[\phi]^{db}$ holds.
- (b) there is a tuple $(\overline{v}, \overline{w}') \in db(R)$ such that $\overline{w} \neq \overline{w}'$. There are two cases:
 - i. The DELETE command causes an integrity exception, i.e., $Ex(s) \neq \emptyset$. From this and the LTS semantics, it follows that db = db'. From this and $[\phi]^{db'}$ holds, it follows that also $[\phi]^{db}$ holds.
 - ii. The DELETE command does not cause any integrity exception, i.e., $Ex(s) = \emptyset$. From this, $[\phi]^{db'} = \top$, and $db(R) = db'(R) \setminus \{(\overline{v}, \overline{w})\}$, it follows that there is a tuple $(\overline{v}, \overline{w}') \in db(R)$ such that $\overline{w} \neq \overline{w}'$. Therefore, also $[\phi]^{db}$ holds.

We now prove our claim that $[\phi]^{db'}$ holds. Assume, for contradiction's sake, that this is not the case. This means that there is a tuple $(\overline{v}, \overline{z})$ in db'(S) and there is no tuple $(\overline{v}, \overline{y}) \in db'(R)$ such that $\overline{y} \neq \overline{w}$. Let db'' be the state $db'[R \ominus (\overline{v}, \overline{w})]$. From $db'' = db'[R \ominus (\overline{v}, \overline{w})]$, and the fact that there is a tuple $(\overline{v}, \overline{z})$ in db'(S) and there is no tuple $(\overline{v}, \overline{y}) \in db'(R)$ such that $\overline{y} \neq \overline{w}$, it follows that there is a tuple $(\overline{v}, \overline{z})$ in db''(S) and there is no tuple $(\overline{v}, \overline{y}) \in db'(R)$ such that $\overline{y} \neq \overline{w}$. From this and the relational calculus semantics, it follows that $[\forall \overline{x}, \overline{z}. (S(\overline{x}, \overline{z}) \Rightarrow \exists \overline{w}. R(\overline{x}, \overline{w})]^{db''} = \bot$. This contradicts the fact that $\forall \overline{x}, \overline{z}. (S(\overline{x}, \overline{z}) \Rightarrow \exists \overline{w}. R(\overline{x}, \overline{w})$ is not in Ex(s).

8. INSERT Exception. Let *i* be such that $r^i = r^{i-1} \cdot \langle u, \text{INSER}, R, \overline{t} \rangle \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and $last(r^{i-1}) = \langle db', U, sec, T, V, c' \rangle$, and ϕ be $\neg R(\overline{t})$. We claim that $[\neg R(\overline{t})]^{db'} = \top$ holds. From the LTS semantics, it follows that db = db'. Therefore, also $[\neg R(\overline{t})]^{db} = \top$ holds.

We now prove our claim. Assume, for contradiction's sake, that $[\neg R(\bar{t})]^{db'} = \bot$. Therefore, $\bar{t} \in db'(R)$. From this and the definition of \oplus , it follows that $db' = db'[R \oplus \bar{t}]$. From the rules, it follows that $Ex(s) \neq \emptyset$. Therefore, from the LTS semantics, it follows that $db'[R \oplus \bar{t}] \notin \Omega_D^{\Gamma}$. From $last(r^{i-1}) = \langle db', U, sec, T, V, c' \rangle$, it follows that $db' \in \Omega_D^{\Gamma}$. However, from $db' = db'[R \oplus \bar{t}]$ and $db' \in \Omega_D^{\Gamma}$, it follows that $db'[R \oplus \bar{t}] \in \Omega_D^{\Gamma}$ leading to a contradiction.

- 9. DELETE Exception. The proof for this case is similar to that of INSERT Exception.
- 10. INSERT FD Exception. Let *i* be such that $r^i = r^{i-1} \cdot \langle u, \text{INSERT}, R, (\overline{v}, \overline{w}, \overline{q}) \rangle \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and $last(r^{i-1}) = \langle db', U, sec, T, V, c' \rangle$, and ϕ be

 $\exists \overline{y}, \overline{z}. R(\overline{v}, \overline{y}, \overline{z}) \land \overline{y} \neq \overline{w}.$ We claim that $[\phi]^{db'}$ holds. From this claim and the LTS semantics, it follows that there is a tuple $(\overline{v}, \overline{w}', \overline{q}')$ in db'(R) such that $\overline{w}' \neq \overline{w}.$ From this and db = db', it follows that there is a tuple $(\overline{v}, \overline{w}', \overline{q}')$ in db(R) such that $\overline{w}' \neq \overline{w}.$ From this, it follows that also $[\phi]^{db}$ holds.

We now prove our claim that $[\phi]^{db'}$ holds. Assume, for contradiction's sake, that this is not the case. This means that there is no tuple $(\overline{v}', \overline{w}', \overline{q}')$ in db'(R) such that $\overline{v}' = \overline{v}$ and $\overline{w}' \neq \overline{w}$. Therefore, for all tuples $(\overline{v}', \overline{w}', \overline{q}')$ in db'(R), if $\overline{v} = \overline{v}'$, then $\overline{w}' = \overline{w}$. From this and $db'[R \oplus (\overline{v}, \overline{w}, \overline{q})](R) = db'(R) \cup \{(\overline{v}, \overline{w}, \overline{q})\}$, it follows that for all tuples $(\overline{v}', \overline{w}', \overline{q}')$ in $db'[R \oplus (\overline{v}, \overline{w}, \overline{q})](R)$, if $\overline{v} = \overline{v}'$, then $\overline{w}' = \overline{w}$. Furthermore, from $db' \in \Omega_D^{\Gamma}$, it follows that for all tuples $(\overline{v}', \overline{w}', \overline{q}')$ and $(\overline{v}', \overline{w}', \overline{q}'')$ in db(R) such that $\overline{v}' \neq \overline{v}$, then $\overline{w}' = \overline{w}$. From this and $db[R \oplus (\overline{v}, \overline{w}, \overline{q})](R) = db'(R) \cup \{(\overline{v}, \overline{w}, \overline{q})\}$, it follows that for all tuples $(\overline{v}', \overline{w}', \overline{q}')$ and $(\overline{v}', \overline{w}'', \overline{q}'')$ in $db'[R \oplus$ $(\overline{v}, \overline{w}, \overline{q})](R)$ such that $\overline{v}' \neq \overline{v}$, then $\overline{w}' = \overline{w}$. From these facts and the relational calculus semantics, it follows that $[\forall \overline{x}, \overline{y}, \overline{y}', \overline{z}, \overline{z}'. ((R(\overline{x}, \overline{y}, \overline{z}) \land R(\overline{x}, \overline{y}', \overline{z}')) \Rightarrow$ $\overline{y} = \overline{y}']^{db'[R \oplus (\overline{v}, \overline{w}, \overline{q})]} = \top$. This is in contradiction with the fact that the constraint $\forall \overline{x}, \overline{y}, \overline{y}', \overline{z}, \overline{z}'. ((R(\overline{x}, \overline{y}, \overline{z}) \land R(\overline{x}, \overline{y}, \overline{z}) \land R($

11. INSERT ID Exception. Let *i* be such that $r^i = r^{i-1} \cdot \langle u, \text{INSERT}, R, (\overline{v}, \overline{w}) \rangle \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and $last(r^{i-1}) = \langle db', U, sec, T, V, c' \rangle$, and ϕ be $\forall \overline{x}, \overline{y}. S(\overline{x}, \overline{y}) \Rightarrow \overline{x} \neq \overline{v}$. We claim that $[\phi]^{db'}$ holds. From this claim and the LTS semantics, it follows that there is no tuple $(\overline{v}, \overline{w'})$ in db'(S). From this and db(S) = db'(S), it follows that there no tuple $(\overline{v}, \overline{w'})$ in db(S). From this, it follows that also $[\phi]^{db}$ holds.

We now prove our claim that $[\phi]^{db'}$ holds. Assume, for contradiction's sake, that this is not the case. This means that there is a tuple $(\overline{v}, \overline{w}')$ in db'(S), for some \overline{w}' . From $db' \in \Omega_D^{\Gamma}$, it follows that for all tuples $(\overline{x}, \overline{z}) \in$ db'(R) such that $\overline{x} \neq \overline{v}$, there is a tuple $(\overline{x}, \overline{y}) \in db'(S)$. From this, $(\overline{v}, \overline{w}')$ in db'(S), $db'[R \oplus (\overline{v}, \overline{w})](S) = db'(S)$, and $db'[R \oplus (\overline{v}, \overline{w})](R) = db'(R) \cup \{(\overline{v}, \overline{w})\}$, it follows that for all tuples $(\overline{x}, \overline{z}) \in db'[R \oplus (\overline{v}, \overline{w})](R)$, there is a tuple $(\overline{x}, \overline{y}) \in db'[R \oplus (\overline{v}, \overline{w})](S)$. From these facts and the relational calculus semantics, it follows that $[\forall \overline{x}, \overline{z}. (R(\overline{x}, \overline{z}) \Rightarrow \exists \overline{w}. S(\overline{x}, \overline{w}))]^{db'[R \oplus (\overline{v}, \overline{w})]} = \top$. This is in contradiction with the fact that the constraint $\forall \overline{x}, \overline{z}. (R(\overline{x}, \overline{z}) \Rightarrow \exists \overline{w}. S(\overline{x}, \overline{w}))$ is in $Ex(last(r^i))$.

12. DELETE FD Exception. Let i be such that $r^{i'} = r^{i-1} \cdot \langle u, \text{DELETE} FD Exception$. Let i be such that $r^{i'} = r^{i-1} \cdot \langle u, \text{DELETE}, R, (\overline{v}, \overline{w}) \rangle \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and $last(r^{i-1}) = \langle db', U, sec, T, V, c' \rangle$, and ϕ be $\exists \overline{z}. S(\overline{v}, \overline{z}) \wedge \forall \overline{y}. (R(\overline{v}, \overline{y}) \Rightarrow \overline{y} = \overline{w})$. We claim that $[\phi]^{db'}$ holds. From this claim and the LTS semantics, it follows that there is a tuple $(\overline{v}, \overline{z})$ in db'(S) and all tuples $(\overline{v}, \overline{y}) \in db'(R)$ are such that $\overline{y} = \overline{w}$. From $(\overline{v}, \overline{z})$ in db'(S) and db(S) = db'(S), it follows that $(\overline{v}, \overline{z})$ in db'(S). From the fact that all tuples $(\overline{v}, \overline{y}) \in db'(R)$ are such that $\overline{y} = \overline{w}$. From $(\overline{v}, \overline{z})$ in db(S) and the fact that all tuples $(\overline{v}, \overline{y}) \in db(R)$ are such that $\overline{y} = \overline{w}$. From $(\overline{v}, \overline{z})$ in db(S) and the fact that all tuples $(\overline{v}, \overline{y}) \in db(R)$ are such that $\overline{y} = \overline{w}$. From $(\overline{v}, \overline{z})$ in db(S) and the fact that $[\phi]^{db'}$ holds. We now prove our claim that $[\phi]^{db'}$ holds. Assume, for

We now prove our claim that $[\phi]^{db'}$ holds. Assume, for contradiction's sake, that this is not the case. There are two cases:

(a) all tuples $(\overline{x}, \overline{y}) \in db'(S)$ are such that $\overline{v} \neq \overline{x}$. Fur-

thermore, from $db' \in \Omega_D^{\Gamma}$, it follows that for all tuples $(\overline{x}, \overline{y}) \in db(S)$ such that $\overline{v} \neq \overline{x}$, there is a tuple $(\overline{x}, \overline{z}) \in db(R)$. From these facts, $db'[R \ominus (\overline{v}, \overline{w})](S) = db'(S)$, and $db'[R \ominus (\overline{v}, \overline{w})](R) = db'(R) \setminus \{(\overline{v}, \overline{w})\}$, it follows that for all tuples $(\overline{x}, \overline{y}) \in db'[R \ominus (\overline{v}, \overline{w})](S)$, there is a tuple $(\overline{x}, \overline{z}) \in db'[R \ominus (\overline{v}, \overline{w})](R)$. From this and the relational calculus semantics, it follows that

$$[\forall \overline{x}, \overline{z}. (S(\overline{x}, \overline{z}) \Rightarrow \exists \overline{w}. R(\overline{x}, \overline{w})]^{db'[R \ominus (\overline{v}, \overline{w}))]} = \top$$

This contradicts the fact that the constraint $\forall \overline{x}, \overline{z}$. $(S(\overline{x}, \overline{z}) \Rightarrow \exists \overline{w}. R(\overline{x}, \overline{w}))$ is in $Ex(last(r^i))$.

(b) there is a tuple (v̄, w̄') ∈ db'(R) such that w̄ ≠ w̄'. Furthermore, from db' ∈ Ω^Γ_D, it follows that for all tuples (x̄, ȳ) ∈ db'(S) such that v̄ ≠ x̄, there is a tuple (x̄, z̄) ∈ db'(R). From these facts, db'[R ⊖ (v̄, w̄)](S) = db'(S), and db'[R⊖(v̄, w̄)](R) = db'(R) \{(v̄, w̄)\}, it follows that for all tuples (x̄, ȳ) ∈ db'[R ⊖ (v̄, w̄)](S), there is a tuple (x̄, z̄) ∈ db'[R ⊖ (v̄, w̄)](R). From this and the relational calculus semantics, it follows that

 $[\forall \overline{x}, \overline{z}. (S(\overline{x}, \overline{z}) \Rightarrow \exists \overline{w}. R(\overline{x}, \overline{w})]^{db'[R \ominus (\overline{v}, \overline{w}))]} = \top.$

This contradicts the fact that the constraint $\forall \overline{x}, \overline{z}$. $(S(\overline{x}, \overline{z}) \Rightarrow \exists \overline{w}. R(\overline{x}, \overline{w}))$ is in $Ex(last(r^i))$.

- 13. Integrity Constraint. The proof of this case follows trivially from the fact that for any state $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and any $\gamma \in \Gamma$, $[\gamma]^{db} = \top$ holds by definition.
- 14. Learn GRANT/REVOKE Backward. Let *i* be such that $r^i = r^{i-1} \cdot t \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$, $last(r^{i-1}) = \langle db, U, sec', T, V, c' \rangle$, and *t* be a trigger whose WHEN condition is ϕ and whose action is either a GRANT or a REVOKE. From the rule's definition, it follows $sec \neq sec'$. We now prove that $[\phi]^{db} = \top$. Assume, for contradiction's sake, that $[\phi]^{db} = \bot$. From this and the LTS rules for the triggers, it follows that the trigger *t* is disabled. Therefore, according to the Trigger Disabled rule, sec = sec', which leads to a contradiction.
- 15. Trigger GRANT Disabled Backward. Let *i* be such that $r^i = r^{i-1} \cdot t \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$, $last(r^{i-1}) = \langle db, U, sec', T, V, c' \rangle$, and *t* be a trigger whose WHEN condition is ψ , and ϕ be $\neg \psi$. Furthermore, let $g \in \Omega^{sec}_{\mathcal{U},D}$ be the GRANT added by the trigger. From the rule's definition, it follows $g \notin sec'$. We now prove that $[\phi]^{db} = \top$. Assume, for contradiction's sake, that $[\phi]^{db} = \bot$. This would imply that the trigger *t* is enabled. There are two cases:
 - (a) t's execution is authorized. Therefore, $g \in sec'$, which contradicts $g \notin sec'$.
 - (b) t's execution is not authorized. This contradicts $secEx(s) = \bot$.
- 16. Trigger REVOKE Disabled Backward. The proof for this case is similar to that of Trigger GRANT Disabled Backward.
- 17. Trigger INSERT FD Exception. The proof for this case is similar to that of INSERT FD Exception.
- 18. Trigger INSERT ID Exception. The proof for this case is similar to that of INSERT ID Exception.
- 19. Trigger DELETE ID Exception. The proof for this case is similar to that of DELETE ID Exception.
- 20. Trigger Exception. Let i be such that $r^i = r^{i-1} \cdot t \cdot t$

s, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$, $last(r^{i-1}) = \langle db, U, sec', T, V, c' \rangle$, and t be a trigger whose WHEN condition is ϕ and whose action is *act*. From the rule's definition, it follows that t is enabled and that the evaluation of the WHEN condition is authorized. From this and the LTS's rules, it follows that $[\phi]^{db} = \top$.

- 21. Trigger INSERT Exception. The proof for this case is similar to that of INSERT Exception.
- 22. Trigger DELETE Exception. The proof for this case is similar to that of DELETE Exception.
- 23. Trigger Rollback INSERT. Let *i* be such that $r^i = r^{i-n-1}$. $\langle u, \text{INSERT}, R, \overline{t} \rangle \cdot s_1 \cdot t_1 \cdot s_2 \dots \cdot t_n \cdot s_n$, where s_1, s_2, \dots, s_n $\in \Omega_M$ and $t_1, \dots, t_n \in \mathcal{TRIGGER}_D$, and ϕ be $\neg R(\overline{t})$. Furthermore, let last $(r^{i-n-1}) = \langle db', U', sec', T', V', c' \rangle$ and s_n be $\langle db, U, sec, T, V, c \rangle$. Assume, for contradiction's sake, that $[\phi]^{db} = \bot$. Therefore, $\overline{t} \in db(R)$. From the LTS rules, it follows that db' = db. From this and $\overline{t} \in db(R)$, it follows $\overline{t} \in db'(R)$. From *r*'s definition and the LTS rule *INSERT Success - 2*, it follows that $\overline{t} \notin db'(R)$, which leads to a contradiction.
- 24. Trigger Rollback DELETE. The proof for this case is similar to that of Trigger Rollback INSERT.

This completes the proof of the base step.

Induction Step: Assume that the claim hold for any derivation of $r, j \vdash_u \psi$ such that $|r, j \vdash_u \psi| < |r, i \vdash_u \phi|$. We now prove that the claim also holds for $r, i \vdash_u \phi$. There are a number of cases depending on the rule used to obtain $r, i \vdash_u \phi$.

- 1. *View.* The proof of this case follows trivially from the semantics of the relational calculus extended over views.
- 2. Propagate Forward SELECT. Let *i* be such that $r^{i+1} = r^i \cdot \langle u, \text{SELECT}, \psi \rangle \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and $last(r^i) = \langle db', U', sec', T', V', c' \rangle$. From the rule's definition, $r, i \vdash_u \phi$ holds. From this, the induction hypothesis, and $last(r^i) = \langle db', U', sec', T', V', c' \rangle$, it follows that $[\phi]^{db'} = \top$. From the LTS semantics, it follows that db = db'. From this and $[\phi]^{db'} = \top$, it follows that $[\phi]^{db} = \top$.
- 3. Propagate Forward GRANT/REVOKE. The proof for this case is similar to that of Propagate Forward SELECT.
- 4. Propagate Forward CREATE. The proof for this case is similar to that of Propagate Forward SELECT.
- 5. Propagate Backward SELECT. Let *i* be such that $r^{i+1} = r^i \cdot \langle u, \text{SELECT}, \psi \rangle \cdot s$, where $s = \langle db', U', sec', T', V', c' \rangle \in \Omega_M$ and $last(r^i) = \langle db, U, sec, T, V, c \rangle$. From the rule's definition, $r, i + 1 \vdash_u \phi$ holds. From this, the induction hypothesis, $r^{i+1} = r^i \cdot \langle u, \text{SELECT}, \psi \rangle \cdot s$, and $s = \langle db, U, sec, T, V, c \rangle$, it follows that $[\phi]^{db'} = \top$. From the LTS semantics, it follows that db = db'. From this and $[\phi]^{db'} = \top$, it follows that $[\phi]^{db} = \top$.
- 6. Propagate Backward GRANT/REVOKE. The proof for this case is similar to that of Propagate Backward SELECT.
- 7. Propagate Backward CREATE TRIGGER. The proof for this case is similar to that of Propagate Backward SE-LECT.
- 8. Propagate Backward CREATE VIEW. Let *i* be such that $r^{i+1} = r^i \cdot \langle u, \text{CREATE}, o \rangle \cdot s$, where $s = \langle db', U', sec', T', V', c' \rangle \in \Omega_M$ and $last(r^i) = \langle db, U, sec, T, V, c \rangle$. From the rule's definition, $r, i + 1 \vdash_u \phi'$ holds. From this, the induction hypothesis, $r^{i+1} = r^i \cdot \langle u, \text{SELECT}, \psi \rangle \cdot s$, and $s = \langle db, U, sec, T, V, c \rangle$, it follows that $[\phi']^{db'} = \top$.

From the definition of *replace*, it follows that $replace(\phi', o)$ and ϕ' are semantically equivalent. From this and $[\phi']^{db'} = \top$, $[replace(\phi', o)]^{db'} = \top$. From the LTS semantics, it follows that db = db'. From this and $[replace(\phi', o)]^{db'} = \top$, it follows that $[replace(\phi', o)]^{db} = \top$.

- 9. Rollback Backward 1. Let *i* be such that $r^i = r^{i-n-1} \cdot \langle u, op, R, \bar{t} \rangle \cdot s_1 \cdot t_1 \cdot s_2 \dots \cdot t_n \cdot s_n$, where $s_1, s_2, \dots, s_n \in \Omega_M, t_1, \dots, t_n \in \mathcal{TRIGGER}_D$, and *op* is one of {INSERT, DELETE}. Furthermore, let s_n be $\langle db', U', sec', T', V', c' \rangle$ and $last(r^{i-n-1})$ be $\langle db, U, sec, T, V, c \rangle$. From the rule's definition, $r, i \vdash_u \phi$ holds. From this, the induction hypothesis, and $s_n = \langle db, U, sec, T, V, c \rangle \in \Omega_M$, it follows that $[\phi]^{db'} = \top$. From the LTS semantics, it follows that db = db' (because a roll-back happened). From this and $[\phi]^{db'} = \top$, it follows that $[\phi]^{db} = \top$.
- 10. Rollback Backward 2. Let *i* be such that $r^i = r^{i-1} \cdot \langle u, op, R, \bar{t} \rangle \cdot s$, where $s = \langle db', U', sec', T', V', c' \rangle \in \Omega_M$, $last(r^{i-1}) = \langle db, U, sec, T, V, c \rangle$, and *op* is one of {INSERT, DELETE}. From the rule's definition, $r, i \vdash_u \phi$ holds. From this, the induction hypothesis, $r^i = r^{i-1} \cdot \langle u, op, R, \bar{t} \rangle \cdot s$, and $s = \langle db', U', sec', T', V', c' \rangle$, it follows that $[\phi]^{db'} = \top$. From the LTS semantics, it follows that db = db' (because a roll-back happened). From this and $[\phi]^{db'} = \top$, it follows that $[\phi]^{db} = \top$. 11. Rollback Forward 1. Let *i* be such that $r^i = r^{i-n-1}$.
- 11. Rollback Forward 1. Let *i* be such that $r^i = r^{i-n-1} \cdot \langle u, op, R, \overline{t} \rangle \cdot s_1 \cdot t_1 \cdot s_2 \cdot \ldots \cdot t_n \cdot s_n$, where $s_1, s_2, \ldots, s_n \in \Omega_M, t_1, \ldots, t_n \in \mathcal{TRIGGER}_D$, and *op* is one of {INSERT, DELETE}. Furthermore, let s_n be $\langle db, U, sec, T, V, c \rangle$ and $last(r^{i-n-1})$ be $\langle db', U', sec', T', V', c' \rangle$. From the rule's definition, $r, i n 1 \vdash_u \phi$ holds. From this, the induction hypothesis, and $last(r^{i-n-1}) = \langle db', U', sec', T', V', c' \rangle$. From the LTS semantics, it follows that db = db' (because a roll-back happened). From this and $[\phi]^{db'} = \top$, it follows that $[\phi]^{db} = \top$.
- 12. Rollback Forward 2. Let *i* be such that $r^i = r^{i-1} \cdot \langle u, op, R, \bar{t} \rangle \cdot s$, where $op \in \{\text{INSERT, DELETE}\}$, $s = \langle db, U$, $sec, T, V, c \rangle \in \Omega_M$ and $last(r^{i-1}) = \langle db', U', sec', T', V', c' \rangle$. From the rule's definition, $r, i 1 \vdash_u \phi$ holds. From this, the induction hypothesis, and $last(r^{i-1}) = \langle db', U', sec', T', V', c' \rangle$, it follows that $[\phi]^{db'} = \top$. From the LTS semantics, it follows that db = db' (because a roll-back happened). From this and $[\phi]^{db'} = \top$, it follows that $[\phi]^{db'} = \top$.
- 13. Propagate Forward INSERT/DELETE Success. Let *i* be such that $r^i = r^{i-1} \cdot \langle u, op, R, \bar{t} \rangle \cdot s$, where $op \in \{\text{INSERT}, \text{DELETE}\}$, $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and $last(r^{i-1}) = \langle db', U', sec', T', V', c' \rangle$. From the rule's definition, $r, i-1 \vdash_u \phi$ holds. From this, the induction hypothesis, and $last(r^{i-1}) = \langle db', U', sec', T', V', c' \rangle$, it follows that $[\phi]^{db'} = \top$. From $reviseBelief(r^{i-1}, \phi, r^i) = \top$, it follows that R does not occur in ϕ . From the LTS semantics, it follows that db(R') = db'(R') for all $R' \neq R$. From this and the fact that R does not occur in ϕ , it follows that $[\phi]^{db} = \top$.
- 14. Propagate Forward INSERT Success 1. Let *i* be such that $r^i = r^{i-1} \cdot \langle u, op, R, \bar{t} \rangle \cdot s$, where *op* is one of {INSERT, DELETE}, $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and $last(r^{i-1}) = \langle db', U', sec', T', V', c' \rangle$. From the rule's definition, $r, i 1 \vdash_u \phi$ and $r, i 1 \vdash_u R(\bar{t})$ hold.

From this, the induction hypothesis, and $last(r^{i-1}) = \langle db', U', sec', T', V', c' \rangle$, it follows that $[\phi]^{db'} = \top$ and $[R(\bar{t})]^{db'} = \top$. From $[R(\bar{t})]^{db'} = \top$ and the relational calculus' semantics, it follows that $\bar{t} \in db'(R)$. From the LTS semantics, $db = db'[R \oplus \bar{t}]$. From this, it follows that db(R') = db'(R') for all $R' \neq R$ and $db(R) = db'(R) \cup \{\bar{t}\}$. From this and $\bar{t} \in db'(R)$, it follows that db(R) = db'(R). Therefore, db = db'. From this and $[\phi]^{db'} = \top$, it follows that $[\phi]^{db} = \top$.

- 15. Propagate Forward DELETE Success 1. The proof for this case is similar to that of Propagate Forward INSERT Success - 1.
- 16. Propagate Backward INSERT/DELETE Success. The proof for this case is similar to that of Propagate Forward IN-SERT/DELETE Success.
- 17. Propagate Backward INSERT Success 1. The proof for this case is similar to that of Propagate Forward INSERT Success - 1.
- 18. Propagate Backward DELETE Success 1. The proof for this case is similar to that of Propagate Forward DELETE Success 1.
- 19. Reasoning. Let Φ be a subset of $\{\phi \mid r, i \vdash_u \phi\}$ and $last(r^i) = \langle db, U, sec, T, V, c \rangle$. From the induction hypothesis, it follows that $[\phi]^{db} = \top$ for any $\phi \in \Phi$. From the rule's definition, it follows that $\Phi \models_{fin} \gamma$. From this and $[\phi]^{db} = \top$ for any $\phi \in \Phi$, it follows that $[\gamma]^{db} = \top$.
- 20. Learn INSERT Backward 3. Let *i* be such that $r^i = r^{i-1} \cdot \langle u, \text{INSERT}, R, \bar{t} \rangle \cdot s$, where $s = \langle db', U', sec', T', V', c' \rangle \in \Omega_M$ and $last(r^{i-1}) = \langle db, U, sec, T, V, c \rangle$, and ϕ be $\neg R(\bar{t})$. We prove that $[\neg R(\bar{t})]^{db} = \top$. Assume, for contradiction's sake, that $[\neg R(\bar{t})]^{db} = \bot$. From this and the relational calculus semantics, it follows that $\bar{t} \in db(R)$. From this and the LTS semantics, it follows that db = db' because $db' = db[R \oplus \bar{t}]$. However, from the rule's definition, there is a ψ such that $r, i 1 \vdash_u \psi$ and $r, i \vdash_u \neg \psi$ hold. From this, the induction hypothesis, $s = \langle db', U', sec', T', V', c' \rangle$, and $last(r^{i-1}) = \langle db, U, sec, T, V, c \rangle$, it follows that $[\psi]^{db} = \top$ and $[\neg \psi]^{db'} = \top$. Therefore, $[\psi]^{db} = \top$ and $[\psi]^{db'} = \bot$. Hence, $db \neq db'$ leading to a contradiction with db = db'.
- 21. Learn DELETE Backward 3. The proof for this case is similar to that of Learn INSERT Backward 3.
- 22. Propagate Forward Disabled Trigger. Let *i* be such that $r^i = r^{i-1} \cdot t \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$, $last(r^{i-1}) = \langle db, U, sec, T, V, c \rangle$, and *t* be a trigger. Furthermore, let ψ be *t*'s condition where all free variables are replaced with the values in $tpl(last(r^{i-1}))$. From the rule's definition, it follows that $r, i 1 \vdash_u \neg \psi$ holds. From this and the induction hypothesis, it follows that $[\psi]^{db'} = \bot$. From this, the fact that ψ is *t*'s WHEN condition, and the rule Trigger Disabled, it follows that $r, i 1 \vdash_u \phi$ holds. From the rule's definition, it follows that (j = db'). From the rule's definition, it follows that (j = db'). From the rule's definition, it follows that $r, i 1 \vdash_u \phi$ holds. From this, the induction hypothesis, and $last(r^{i-1}) = \langle db, U, sec, T, V, c \rangle$, it follows that $[\phi]^{db'} = \top$. From this and db = db', it follows that $[\phi]^{db} = \top$.
- 23. Propagate Backward Disabled Trigger. The proof for this case is similar to that of Propagate Forward Disabled Trigger.
- 24. Learn INSERT Forward. Let *i* be such that $r^i = r^{i-1} \cdot t \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$, $last(r^{i-1}) = c$

 $\langle db, U, sec, T, V, c \rangle$, and t be a trigger, and ϕ be $R(\bar{t})$. Furthermore, let ψ be t's condition where all free variables are replaced with the values in $tpl(last(r^{i-1}))$. From the rule's definition, it follows that $r, i - 1 \vdash_u \psi$ holds. From this and the induction hypothesis, it follows that $[\psi]^{db'} = \bot$. Furthermore, from the rule's definition, it follows that $secEx(s) = \bot$ and $Ex(s) = \emptyset$. From this, the fact that ψ is t's WHEN condition, $[\psi]^{db'} = \bot$, and the rule Trigger DELETE-INSERT Success, it follows that $db = db'[R \oplus \bar{t}]$. From the definition of \oplus , it follows that $\bar{t} \in db(R)$. From this and the relational calculus semantics, it follows that $[\phi]^{db} = \top$.

25. Learn INSERT - FD. Let *i* be such that $r^i = r^{i-1} \cdot t \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$, $last(r^{i-1}) = \langle db', U', sec', T', V', c' \rangle$, and $t \in \mathcal{TRIGGER}_D$, and ϕ be $\neg \exists \overline{y}, \overline{z}. R(\overline{v}, \overline{y}, \overline{z}) \land \overline{y} \neq \overline{w}$. Furthermore, let ψ be *t*'s condition where all free variables are replaced with the values in $tpl(last(r^{i-1}))$ and $\langle u', INSERT, R, (\overline{v}, \overline{w}, \overline{q}) \rangle$ be *t*'s actual action. We claim that $db(R) = db'(R) \cup \{(\overline{v}, \overline{w}, \overline{q})\}$. Furthermore, we claim that $[\phi]^{db}$ holds. From this claim and the relational calculus semantics, it follows that there is no tuple $(\overline{v}', \overline{w}', \overline{q}')$ in db(R) such that $\overline{v}' = \overline{v}$ and $\overline{w}' \neq \overline{w}$. From this and $db(R) = db'(R) \cup \{(\overline{v}, \overline{w}, \overline{q})\}$, it follows that there is no tuple $(\overline{v}', \overline{w}', \overline{q}')$ in db'(R) such that $\overline{v}' = \overline{v}$ and $\overline{w}' \neq \overline{w}$. From this, it follows that also $[\phi]^{db'}$ holds.

We now prove our claim that $db(R) = db'(R) \cup \{(\overline{v}, \overline{w}, \overline{q})\}$. Assume, for contradiction's sake, that this is not the case. Since db is obtained from db', this would imply that the trigger t is disabled. Hence, this would imply that $[\psi]^{db'} = \bot$. From the rule's definition, $r, i - 1 \vdash_u \psi$. From this, the induction's hypothesis, and $last(r^{i-1}) = \langle db', U, sec, T, V, c' \rangle$, it follows that $[\psi]^{db'} = \top$, which contradicts $[\psi]^{db'} = \bot$.

We now prove our claim that $[\phi]^{db}$ holds. Assume, for contradiction's sake, that this is not the case. This means that there is a tuple $(\overline{v}', \overline{w}', \overline{q}')$ in db(R) such that $\overline{v}' = \overline{v}$ and $\overline{w}' \neq \overline{w}$. Note that, as we proved before, $(\overline{v}, \overline{w}, \overline{q}) \in db(R)$. Therefore, there are two tuples $(\overline{v}, \overline{w}, \overline{q})$ and $(\overline{v}, \overline{w}', \overline{q}')$ in db(R) such that $\overline{w}' \neq \overline{w}$. From this and the relational calculus semantics, it follows that $[\forall \overline{x}, \overline{y}, \overline{y}', \overline{z}, \overline{z}'. ((R(\overline{x}, \overline{y}, \overline{z}) \wedge R(\overline{x}, \overline{y}', \overline{z}')) \Rightarrow$ $\overline{y} = \overline{y}']^{db} = \bot$. This is in contradiction with the fact that the constraint $\forall \overline{x}, \overline{y}, \overline{y}', \overline{z}, \overline{z}'. ((R(\overline{x}, \overline{y}, \overline{z}) \wedge R(\overline{x}, \overline{y}', \overline{z}'))$ $\overline{y} = \overline{y}'$ is in Γ . Indeed, since the constraint is in Γ , any state in Ω_{D}^{Γ} must satisfy it.

26. Learn INSERT - \overline{FD} - 1. Let *i* be such that $r^i = r^{i-1} \cdot t \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$, $last(r^{i-1}) = \langle db', U', sec', T', V', c' \rangle$, and $t \in \mathcal{TRIGGER}_D$, and ϕ be $\neg \exists \overline{y}, \overline{z}. R(\overline{v}, \overline{y}, \overline{z}) \land \overline{y} \neq \overline{w}$. Furthermore, let ψ be *t*'s condition where all free variables are replaced with the values in $tpl(last(r^{i-1}))$ and $\langle u', \text{INSERT}, R, (\overline{v}, \overline{w}, \overline{q}) \rangle$ be *t*'s actual action. From the rule's definition, $r, i - 1 \vdash_u \psi$. From this, the induction's hypothesis, and $last(r^{i-1}) = \langle db', U, sec, T, V, c' \rangle$, it follows that $[\psi]^{db'} = \top$. From this and the LTS semantics, it follows that the trigger *t* is enabled in $last(r^{i-1})$. We now prove our claim that $[\phi]^{db'}$ holds. Assume, for contradiction's sake, that this is not the case. This means that there is a tuple $(\overline{v}', \overline{w}', \overline{q}')$ in db'(R) such that $\overline{v}' = \overline{v}$ and $\overline{w}' \neq \overline{w}$. Let db'' be the state $db'[R \oplus (\overline{v}, \overline{w}, \overline{q})]$. From $db'' = db'[R \oplus (\overline{v}, \overline{w}, \overline{q}')]$, and the fact that there is a tuple $(\overline{v}', \overline{w}', \overline{q}')$.

in db'(R) such that $\overline{v}' = \overline{v}$ and $\overline{w}' \neq \overline{w}$, it follows that there are two tuples $(\overline{v}, \overline{w}, \overline{q})$ and $(\overline{v}, \overline{w}', \overline{q}')$ in db''(R)such that $\overline{w}' \neq \overline{w}$. From this and the relational calculus semantics, it follows that $[\forall \overline{x}, \overline{y}, \overline{y}', \overline{z}, \overline{z}'. ((R(\overline{x}, \overline{y}, \overline{z}) \land R(\overline{x}, \overline{y}', \overline{z}')) \Rightarrow \overline{y} = \overline{y}']^{db''} = \bot$. Since the trigger t is enabled, this contradicts the fact that $\forall \overline{x}, \overline{y}, \overline{y}', \overline{z}, \overline{z}'. ((R(\overline{x}, \overline{y}, \overline{z}) \land R(\overline{x}, \overline{y}', \overline{z}')) \Rightarrow \overline{y} = \overline{y}'$ is not in Ex(s).

- Learn INSERT ID. The proof of this case is similar to that of Learn INSERT - FD. See also the proof of INSERT Success - ID.
- Learn INSERT ID 1. The proof of this case is similar to that of Learn INSERT - FD - 1. See also the proof of INSERT Success - ID.
- 29. Learn INSERT Backward 1. Let i be such that $r^i =$ $r^{i-1} \cdot t \cdot s$, where $s = \langle db', U', sec', T', V', c' \rangle \in \Omega_M$, $last(r^{i-1}) = \langle db, U, sec, T, V, c \rangle$, and $t \in TRIGGER_D$, and ϕ be t's actual WHEN condition, where all free variables are replaced with the values in $tpl(last(r^{i-1}))$. From the rule's definition, it follows that there is a ψ such that $r, i-1 \vdash_u \psi$ and $r, i \vdash_u \neg \psi$. From this, the induction's hypothesis, $s = \langle db', U', sec', T', V', c' \rangle$, and $last(r^{i-1}) = \langle db, U, sec, T, V, c \rangle$, it follows that $[\psi]^{db} =$ \top and $[\neg \psi]^{db'} = \top$. Therefore, $[\psi]^{db} = \top$ and $[\psi]^{db'} =$ \perp . Hence, $db \neq db'$. We now prove that $[\phi]^{db} =$ \top . Assume, for contradiction's sake, that $[\phi]^{db} = \bot$. From the rule's definition, it follows that secEx(s) = \perp . Therefore, $f(last(r^{i-1}), \langle u', \text{SELECT}, \phi \rangle) = \top$. From this, $\left[\phi\right]^{db} = \bot$, and the rule Trigger Disabled, it follows that db = db', which contradicts $db \neq db'$.
- 30. Learn INSERT Backward 2. Let i be such that $r^i =$ $r^{i-1} \cdot t \cdot s$, where $s = \langle db', U', sec', T', V', c' \rangle \in \Omega_M$, $last(r^{i-1}) = \langle db, U, sec, T, V, c \rangle$, and $t \in TRIGGER_D$, and ϕ be $\neg R(t)$. Furthermore, let $act = \langle u', \text{INSERT}, R, \rangle$ \overline{t} be t's actual action. From the rule's definition, it follows that there is a ψ such that $r, i - 1 \vdash_u \psi$ and $r, i \vdash_u \neg \psi$. From this, the induction's hypothesis, s = $\langle db', U', sec', T', V', c' \rangle, \text{ and } last(r^{i-1}) = \langle db, U, sec, T,$ (as , c), see , 1 , ψ , c), and ust(t -) = (ub, c, set, 1, V, c), it follows that $[\psi]^{db} = \top$ and $[\neg \psi]^{db'} = \top$. There-fore, $[\psi]^{db} = \top$ and $[\psi]^{db'} = \bot$. Hence, $db \neq db'$. We now prove that $[\phi]^{db} = \top$. Assume, for contra-diction's sake, that $[\phi]^{db} = \bot$. Therefore, $\bar{t} \in db(R)$. From this and $act = \langle u', \text{INSERT}, R, \overline{t} \rangle$, it follows that $db' = db[R \oplus \overline{t}]$. From this and \oplus 's definition, it follows that db'(R') = db(R') for all $R' \neq R$ and db'(R) = $db(R) \cup \{\overline{t}\}$. From $db'(R) = db(R) \cup \{\overline{t}\}$ and $\overline{t} \in$ db(R), it follows that db'(R) = db(R). From this and db'(R') = db(R') for all $R' \neq R$, it follows that db' =db, which contradicts $db \neq db'$.
- 31. Learn DELETE Forward. The proof of this case is similar to that of Learn INSERT Forward.
- 32. Learn DELETE ID. The proof of this case is similar to that of Learn INSERT FD. See also the proof of DELETE Success ID.
- Learn DELETE ID 1. The proof of this case is similar to that of Learn INSERT - FD - 1. See also the proof of DELETE Success - ID.
- 34. Learn DELETE Backward 1. The proof of this case is similar to that of Learn INSERT Backward 1.
- 35. Learn DELETE Backward 2. The proof of this case is similar to that of Learn INSERT Backward 2.
- 36. Propagate Forward Trigger Action. The proof of this case is similar to Propagate Forward INSERT/DELETE

Success.

- 37. Propagate Backward Trigger Action. The proof of this case is similar to Propagate Backward INSERT/DELETE Success.
- 38. Propagate Forward INSERT Trigger Action. The proof of this case is similar to that of Propagate Forward IN-SERT Success - 1.
- 39. Propagate Forward DELETE Trigger Action. The proof of this case is similar to that of Propagate Forward DELETE Success - 1.
- 40. Propagate Backward INSERT Trigger Action. The proof of this case is similar to that of Propagate Backward INSERT Success - 1.
- 41. Propagate Backward DELETE Trigger Action. The proof of this case is similar to that of Propagate Backward DELETE Success - 1.
- 42. Trigger FD INSERT Disabled Backward. Let *i* be such that $r^i = r^{i-1} \cdot t \cdot s$, where $s = \langle db', U', sec', T', V', c' \rangle \in \Omega_M$, $t \in \mathcal{TRIGGER}_D$, and $last(r^{i-1}) = \langle db, U, sec, T, V, c \rangle$, and ψ be $\neg \phi[\overline{x}^{|R'|} \mapsto tpl(last(r^{i-1}))]$. Furthermore, let $act = \langle u', \text{INSERT}, R, (\overline{v}, \overline{w}, \overline{q}) \rangle$ be *t*'s actual action. From the rule's definition, it follows that $r, i 1 \vdash_u \exists \overline{y}, \overline{z}.R(\overline{v}, \overline{y}, \overline{z}) \land \overline{y} \neq \overline{w}$ holds. From this, the induction hypothesis, and $last(r^{i-1}) = \langle db, U, sec, T, V, c \rangle$, it follows that $[\exists \overline{y}, \overline{z}.R(\overline{v}, \overline{y}, \overline{z}) \land \overline{y} \neq \overline{w}]^{db} = \top$. Therefore, there is a tuple $(\overline{v}, \overline{w}', \overline{z}') \in db(R)$ such that $\overline{w}' \neq \overline{w}$. We now prove that $[\psi]^{db} = \top$. Assume, for contradiction's sake, that this is not the case, namely that $[\phi[\overline{x} \mapsto tpl(last(r^{i-1}))]]^{db} = \top$. There are two cases:
 - (a) the trigger t is enabled and the action act is authorized. In this case, the database $db[R \oplus \{(\overline{v}, \overline{w}, \overline{q})\}] \notin \Omega_D^{\Gamma}$ because $\forall \overline{x}, \overline{y}, \overline{y}', \overline{z}, \overline{z}'. (R(\overline{x}, \overline{y}, \overline{z}) \land R(\overline{x}, \overline{y}', \overline{z}')) \Rightarrow \overline{y} = \overline{y}' \in \Gamma$ and there is a tuple $(\overline{v}, \overline{w}', \overline{z}') \in db(R)$ such that $\overline{w}' \neq \overline{w}$. Therefore, the resulting state would be such that $Ex(s) \neq \emptyset$. This contradicts the fact that, according to the rule's definition, $Ex(s) = \emptyset$.
 - (b) the trigger t is enabled and the action act is not authorized. Therefore, the resulting state would be such that $secEx(s) = \top$. This contradicts the fact that, according to the rule's definition, $secEx(s) = \bot$.
- 43. Trigger ID INSERT Disabled Backward. The proof of this case is similar to that of Trigger FD INSERT Disabled Backward.
- 44. Trigger ID DELETE Disabled Backward. The proof of this case is similar to that of Trigger FD INSERT Disabled Backward.

This completes the proof of the induction step. This completes the proof of the theorem. \Box

$$\frac{r, i \vdash_{u} \psi \quad r^{i+1} = r^{i} \cdot \langle u, \text{SELECT}, \phi \rangle \cdot s \quad 1 \leq i < |r| \quad s \in \Omega_{M}}{r, i+1 \vdash_{u} \psi}$$
Propagate Forward SELECT
$$\frac{r, i \vdash_{u} \psi \quad r^{i+1} = r^{i} \cdot \langle op, u', pr, u \rangle \cdot s \quad 1 \leq i < |r| \quad op \in \{\oplus, \oplus^{*}, \ominus\} \quad s \in \Omega_{M}}{r, i+1 \vdash_{u} \psi}$$
Propagate Forward GRANT/REVOKE
$$\frac{r, i \vdash_{u} \psi \quad r^{i+1} = r^{i} \cdot \langle u, \text{CREATE}, o \rangle \cdot s \quad 1 \leq i < |r| \quad o \in \mathcal{TRIGGER}_{D} \cup \mathcal{VIEW}_{D} \quad s \in \Omega_{M}}{r, i+1 \vdash_{u} \psi}$$
Propagate Forward CREATE

Figure 21: Rules defining how the attacker propagates (forward) the knowledge

$$\begin{array}{c} \underline{r,i+1\vdash_u\psi\quad r^{i+1}=r^i\cdot\langle u,\texttt{SELECT},\phi\rangle\cdot s\quad 1\leq i<|r|\quad s\in\Omega_M}_{r,i\vdash_u\psi} & \texttt{Propagate Backward}\\ \hline \\ \underline{r,i\vdash_u\psi\quad r^{i+1}=r^i\cdot\langle op,u',pr,u\rangle\cdot s\quad 1\leq i<|r|\quad op\in\{\oplus,\oplus^*,\Theta\}\quad s\in\Omega_M}_{r,i\vdash_u\psi} & \texttt{Propagate Backward}\\ \hline \\ \underline{r,i\vdash_u\psi\quad r^{i+1}=r^i\cdot\langle u,\texttt{CREATE},o\rangle\cdot s\quad 1\leq i<|r|\quad o\in\mathcal{TRIGGER}_D\quad s\in\Omega_M}_{r,i\vdash_u\psi} & \texttt{Propagate Backward}\\ \hline \\ \underline{r,i+1\vdash_u\psi\quad r^{i+1}=r^i\cdot\langle u,\texttt{CREATE},o\rangle\cdot s\quad 1\leq i<|r|\quad o\in\mathcal{VIEW}_D\quad s\in\Omega_M\quad \psi'=replace(\psi,o)}_{r,i\vdash_u\psi} & \texttt{Propagate Backward}\\ \hline \\ \hline \\ \mathbf{Figure 22: Rules defining how the attacker propagates (backward) the knowledge} \end{array}$$

igı nowledge ıg aga (ac d) ŀ opa

Figure 23: Rules defining how the attacker extracts knowledge from the run

$$\begin{array}{c} r,i\vdash_{u}\phi\quad n+1 < i \leq |r| \\ s_{c}s_{u}(s_{n}) = \top \lor Ex(s_{n}) \neq \emptyset \quad r^{i} = r^{i-n-1} \cdot \langle u, op, R, 1 \rangle , s_{1} \cdot t_{1} \cdot s_{2} \cdot \dots \cdot t_{n} \cdot s_{n} \\ s_{n} = \langle db, U, sec, T, V, h, \langle t_{n}, when, stmt \rangle, \langle c, \epsilon, \epsilon, \rho \rangle \quad op \in \{\text{INSERT, DELETE}\} \\ r,i-n-1\vdash_{u}\phi \\ \hline r,i\vdash_{u}\phi\quad 1 < i \leq |r| \quad sceEx(s) = \top \lor Ex(s) \neq \emptyset \quad op \in \{\text{INSERT, DELETE}\} \\ r^{i} = r^{i-1} \cdot \langle u, op, R, 1 \rangle \cdot s \quad s \in \langle db, U, sec, T, V, h, \langle \langle (u, op, R, 0 \rangle, s_{1} \cdot t_{1} \cdot s_{2} \cdot \dots \cdot t_{n} \cdot s_{n} \\ sceEx(s_{n}) = \top \lor Ex(s) \neq \emptyset \quad op \in \{\text{INSERT, DELETE}\} \\ r,i-l\vdash_{u}\phi \quad n+1 < i \leq |r| \quad s.s.s_{2} \dots s_{n} \in \Omega_{M} \quad t_{1}, \dots, t_{n} \in TRIGGER_{D} \\ sceEx(s_{n}) = \top \lor Ex(s_{n}) \neq \emptyset \quad r^{i} = r^{i-n-1} \cdot \langle u, op, R, 1 \rangle \cdot s_{1} \cdot s_{2} \cdot \dots \cdot t_{n} \cdot s_{n} \\ s_{n} = \langle db, U, sec, T, V, h, \langle t_{n}, when, stmt \rangle, \langle c, \epsilon, \epsilon, c \rangle \rangle \quad op \in \{\text{INSERT, DELETE}\} \\ r^{i} = r^{i-1} \cdot \langle u, op, R, 1 \rangle \cdot s \quad s = \langle db, U, sec, T, V, h, \langle \langle u, op, R, 1 \rangle \cdot s_{1} \cdot s_{2} \cdot \dots \cdot t_{n} \cdot s_{n} \\ s_{n} = \langle db, U, sec, T, V, h, \langle t_{n}, when, stmt \rangle, \langle c, \epsilon, \epsilon, c \rangle \rangle \quad op \in \{\text{INSERT, DELETE}\} \\ r^{i} = r^{i-1} \cdot \langle u, op, R, 1 \rangle \cdot s \quad s = \langle db, U, sec, T, V, h, \langle \langle u, op, R, 1 \rangle \cdot s \\ r, i\vdash_{u}\phi \quad 1 < i \leq |r| \quad s.eets(s) = \top \lor Ex(s) \neq \emptyset \quad op \in \{\text{INSERT, DELETE}\} \\ r^{i} = r^{i-1} \cdot \langle u, op, R, 1 \rangle \cdot s \quad s = \langle db, U, sec, T, V, h, \langle u, op, R, 1 \rangle \cdot s \\ s \in \Omega_M \quad sceEx(s_n) = \bot \quad Ex(s_n) = \emptyset \quad s = \langle db, U, scc, T, V, h, actEff, tr \rangle \\ reviseBelief(r^{i-1}, \phi, r^{i}) = \top \quad op \in \{\text{INSERT, DELETE}\} \\ r^{i} \vdash_{u}\phi \quad sceEx(s_{n}) = \bot \quad Ex(s_{n}) = \emptyset \quad s = \langle db, U, sec, T, V, h, actEff, tr \rangle \\ s \in \Omega_M \quad sceEx(s_{n}) = \bot \quad Ex(s_{n}) = \emptyset \quad s = \langle db, U, sec, T, V, h, actEff, tr \rangle \\ r, i\vdash_{u}\phi \quad r, i\vdash_{u}\phi \quad r, i \vdash_{u}\phi \quad r, i \vdash_{u}\phi \quad r, i \vdash_{u}\phi \quad r^{i} = r^{i-1} \cdot \langle u, DELETE, R, 1 \rangle \cdot s \\ s \in \Omega_M \quad sceEx(s_{n}) = \bot \quad Ex(s_{n}) = \emptyset \quad s = \langle db, U, sec, T, V, h, actEff, tr \rangle \\ r, i\vdash_{u}\phi \quad r, i\vdash_{u}\phi \quad r, i - l\vdash_{u}\phi \quad r^{i} = r^{i-1} \cdot \langle u, DELETE, R, 1 \rangle \cdot s \\ s \in \Omega_M \quad sceEx(s_{n}) = \bot \quad Ex(s_{n}) = \emptyset \quad s = \langle db, U, sec, T, V, h, actEff, tr \rangle \\ r, i \vdash_{u}\phi \quad r, i \vdash_{$$

$$\frac{1 \le i \le |r| \quad \Phi \subseteq \{\phi \mid r, i \vdash_u \phi\} \quad \Phi \models_{fin} \gamma}{r, i \vdash_u \gamma} \text{ Reasoning}$$
Figure 26: Rules regulating the reasoning

$$\begin{array}{ll} r^{i} = r^{i-1} \cdot \langle u, \text{INSERT}, R, \overline{t} \rangle \cdot s & 1 < i \leq |r| \\ s = \langle db, U, sec, T, V, h, aE, tr \rangle & secEx(s) = \bot \\ \hline r, i - 1 \vdash_{u} \psi & r, i \vdash_{u} \neg \psi \\ \hline r, i - 1 \vdash_{u} \neg R(\overline{t}) \end{array}$$
 Learn INSERT Backward - 3
$$\begin{array}{l} r^{i} = r^{i-1} \cdot \langle u, \text{DELETE}, R, \overline{t} \rangle \cdot s & 1 < i \leq |r| \\ s = \langle db, U, sec, T, V, h, aE, tr \rangle & secEx(s) = \bot \\ \hline Ex(s) = \emptyset & r, i - 1 \vdash_{u} \psi & r, i \vdash_{u} \neg \psi \\ \hline r, i - 1 \vdash_{u} R(\overline{t}) \end{array}$$
 Learn DELETE Backward - 3

Figure 27: Rules describing how the attacker learns facts about INSERT and DELETE commands

$$\begin{array}{cccc} r,i-1\vdash_{u}\phi & r^{i}=r^{i-1}\cdot t\cdot s & invoker(last(r^{i-1}))=u\\ s=\langle db,U,sec,T,V,h,\langle t,when,stmt\rangle,tr\rangle & secEx(s)=\bot\\ \hline t=\langle id,ow,ev,R,\psi,act,m\rangle & r,i-1\vdash_{u}\neg\psi[\overline{x}^{|R|}\mapsto tpl(last(r^{i-1}))]\\ \hline r,i\vdash_{u}\phi & T^{i}=r^{i-1}\cdot t\cdot s & invoker(last(r^{i-1}))=u\\ s=\langle db,U,sec,T,V,h,\langle t,when,stmt\rangle,tr\rangle & secEx(s)=\bot\\ \hline t=\langle id,ow,ev,R,\psi,act,m\rangle & r,i-1\vdash_{u}\neg\psi[\overline{x}^{|R|}\mapsto tpl(last(r^{i-1}))]\\ \hline r,i-1\vdash_{u}\phi & \text{Disabled Trigger} \end{array}$$

Figure 28: Rules regulating the propagation of information through disabled triggers

$$\frac{r, i - 1 \vdash_{u} \phi[\overline{x}^{|R'|} \mapsto tpl(last(r^{i-1}))] \quad 1 < i \le |r| \quad r^{i} = r^{i-1} \cdot t \cdot s \quad invoker(last(r^{i-1})) = u}{s = \langle db, U, sec, T, V, h, \langle t, when, \langle \langle u', \text{INSERT}, R, \overline{t} \rangle, \top, \top, \emptyset \rangle \rangle, tr \rangle} \frac{secEx(s) = \bot \qquad Ex(s) = \emptyset \qquad t = \langle id, ow, ev, R', \phi, act, m \rangle}{r, i \vdash_{u} R(\overline{t})}$$
 Learn INSERT Forward

$$\begin{array}{c} r, i-1 \vdash_{u} \phi[\overline{x}^{|R'|} \mapsto tpl(last(r^{i-1}))] \quad 1 < i \leq |r| \quad r^{i} = r^{i-1} \cdot t \cdot s \quad invoker(last(r^{i-1})) = u \\ s = \langle db, U, sec, T, V, h, \langle t, when, \langle \langle u', \text{INSERT}, R, \overline{t} \rangle, \top, \top, \emptyset \rangle \rangle, tr \rangle \qquad l \in \{i, i-1\} \\ secEx(s) = \bot \qquad Ex(s) = \emptyset \qquad t = \langle id, ow, ev, R', \phi, act, m \rangle \\ \frac{\forall \overline{x}, \overline{y}, \overline{y}', \overline{z}, \overline{z}'. \left((R(\overline{x}, \overline{y}, \overline{z}) \wedge R(\overline{x}, \overline{y}', \overline{z}') \right) \Rightarrow \overline{y} = \overline{y}' \in \Gamma \qquad \overline{t} = (\overline{v}, \overline{w}, \overline{q}) \\ \hline r, l \vdash_{u} \neg \exists \overline{y}, \overline{z}. R(\overline{v}, \overline{y}, \overline{z}) \wedge \overline{y} \neq \overline{w} \end{array}$$
 Learn INSERT - FD

$$\begin{array}{l} r, i-1 \vdash_{u} \phi[\overline{x}^{|R'|} \mapsto tpl(last(r^{i-1}))] & 1 < i \leq |r| & r^{i} = r^{i-1} \cdot t \cdot s \quad invoker(last(r^{i-1})) = u \\ s = \langle db, U, sec, T, V, h, \langle t, when, \langle \langle u', \texttt{INSERT}, R, \overline{t} \rangle, \top, \top, E \rangle \rangle, tr \rangle \quad \overline{t} = (\overline{v}, \overline{w}, \overline{q}) \quad secEx(s) = \bot \\ \underline{t = \langle id, ow, ev, R', \phi, act, m \rangle} & \forall \overline{x}, \overline{y}, \overline{y}', \overline{z}, \overline{z}' \cdot ((R(\overline{x}, \overline{y}, \overline{z}) \wedge R(\overline{x}, \overline{y}', \overline{z}')) \Rightarrow \overline{y} = \overline{y}' \in \Gamma \setminus E \\ \hline r, i-1 \vdash_{u} \neg \exists \overline{y}, \overline{z}. R(\overline{v}, \overline{y}, \overline{z}) \wedge \overline{y} \neq \overline{w} \end{array}$$
 Learn INSERT - FD - 1

$$\begin{array}{c} r,i-1\vdash_{u}\phi[\overline{x}^{|R'|}\mapsto tpl(last(r^{i-1}))] & 1 < i \leq |r| \quad r^{i}=r^{i-1}\cdot t\cdot s \quad invoker(last(r^{i-1}))=u \\ s = \langle db, U, sec, T, V, h, \langle t, when, \langle \langle u', \text{INSERT}, R, \overline{t} \rangle, \top, \top, \emptyset \rangle \rangle, tr \rangle \qquad l \in \{i, i-1\} \\ secEx(s) = \bot \qquad Ex(s) = \emptyset \qquad t = \langle id, ow, ev, R', \phi, act, m \rangle \\ & (\forall \overline{x}, \overline{z}. (R(\overline{x}, \overline{z}) \Rightarrow \exists \overline{w}. S(\overline{x}, \overline{w})) \in \Gamma \qquad \overline{t} = (\overline{v}, \overline{w}) \\ \hline r, l \vdash_{u} \exists \overline{y}. S(\overline{v}, \overline{y}) \end{array}$$
 Learn INSERT - ID

$$\begin{array}{c} r,i-1\vdash_{u}\phi[\overline{x}^{|R'|}\mapsto tpl(last(r^{i-1}))] \quad 1 < i \leq |r| \quad r^{i} = r^{i-1} \cdot t \cdot s \quad invoker(last(r^{i-1})) = u \\ s = \langle db, U, sec, T, V, h, \langle t, when, \langle \langle u', \text{INSERT}, R, \overline{t} \rangle, \top, \top, E \rangle \rangle, tr \rangle \quad \overline{t} = (\overline{v}, \overline{w}) \\ \hline secEx(s) = \bot \quad t = \langle id, ow, ev, R', \phi, act, m \rangle \quad (\forall \overline{x}, \overline{z}. (R(\overline{x}, \overline{z}) \Rightarrow \exists \overline{w}. S(\overline{x}, \overline{w})) \in \Gamma \setminus E \\ \hline r, i-1\vdash_{u} \exists \overline{y}. S(\overline{v}, \overline{y}) \end{array} \quad \text{Learn INSERT - ID - 1} \\ \hline 1 < i \leq |r| \quad r^{i} = r^{i-1} \cdot t \cdot s \quad invoker(last(r^{i-1})) = u \\ s = \langle db, U, sec, T, V, h, \langle t, when, \langle \langle u', \text{INSERT}, R, \overline{t} \rangle, \top, \top, \emptyset \rangle \rangle, tr \rangle \\ secEx(s) = \bot \quad Ex(s) = \emptyset \quad t = \langle id, ow, ev, R', \phi, act, m \rangle \\ \hline r, i-1\vdash_{u} \psi \quad r, i\vdash_{u} \neg \psi \\ \hline r, i-1\vdash_{u} \phi[\overline{x}^{|R'|} \mapsto tpl(last(r^{i-1}))] \\ \hline 1 < i \leq |r| \quad r^{i} = r^{i-1} \cdot t \cdot s \quad invoker(last(r^{i-1})) = u \\ s = \langle db, U, sec, T, V, h, \langle t, when, \langle \langle u', \text{INSERT}, R, \overline{t} \rangle, \top, \top, \emptyset \rangle \rangle, tr \rangle \\ secEx(s) = \bot \quad Ex(s) = \emptyset \quad t = \langle id, ow, ev, R', \phi, act, m \rangle \\ \hline r, i-1\vdash_{u} \psi \quad r, i\vdash_{u} \neg R(\overline{t}) \\ \hline \end{array} \quad \text{Learn INSERT Backward - 2}$$

Figure 29: Extracting knowledge from triggers

$$\begin{array}{l} r,i-1\vdash_{u}\phi[\overline{x}^{|R'|}\mapsto tpl(last(r^{i-1}))] \quad 1 < i \leq |r| \quad r^{i} = r^{i-1} \cdot t \cdot s \quad invoker(last(r^{i-1})) = u \\ s = (db,U,sec,T,V,h,(t,when,\langle\langle u', \text{DELETE},R,\bar{h}\rangle, \top, \top, \emptyset\rangle\rangle, tr\rangle \\ \hline secEx(s) = \bot \quad Ex(s) = \emptyset \quad t = \langle id, ow, ev, R', \phi, act, m\rangle \\ \hline r,i \vdash_{u}\phi[\overline{x}^{|R'|}\mapsto tpl(last(r^{i-1}))] \quad 1 < i \leq |r| \quad r^{i} = r^{i-1} \cdot t \cdot s \quad invoker(last(r^{i-1})) = u \\ s = (db,U,sec,T,V,h,(t,when,\langle\langle u', \text{DELETE},R,\bar{h}\rangle, \top, \top, \emptyset\rangle), tr\rangle \quad l \in \{i,i-1\} \\ secEx(s) = \bot \quad Ex(s) = \emptyset \quad t = \langle id, ow, ev, R', \phi, act, m\rangle \\ \hline (\forall \overline{x}, \overline{z}, (S(\overline{x}, \overline{z}) \Rightarrow \exists \overline{w}, R(\overline{x}, \overline{w})) \in \Gamma \quad t = \langle id, ow, ev, R', \phi, act, m\rangle \\ \hline (\forall \overline{x}, \overline{z}, (S(\overline{x}, \overline{z}) \Rightarrow \exists \overline{w}, R(\overline{x}, \overline{w})) \in \Gamma \quad t = \langle id, ow, ev, R', \phi, act, m\rangle \\ \hline (\forall \overline{x}, \overline{z}, (S(\overline{x}, \overline{z}) \Rightarrow \exists \overline{w}, R(\overline{x}, \overline{w})) \in \Gamma \quad t = \langle id, ow, ev, R', \phi, act, m\rangle \\ \hline (\forall \overline{x}, \overline{z}, (S(\overline{x}, \overline{z}) \Rightarrow \exists \overline{w}, R(\overline{x}, \overline{w})) \in \Gamma \quad t = \langle id, ow, ev, R', \phi, act, m\rangle \\ \hline r, i - 1 \vdash_{w}\phi[\overline{x}^{|R'|}\mapsto tpl(last(r^{i-1}))] \quad 1 < i \leq |r| \quad r^{i} = r^{i-1} \cdot t \cdot s \quad invoker(last(r^{i-1})) = u \\ s = \langle db, U, sec, T, V, h, (t, when, \langle (u', \text{DELETE}, R, \bar{h}), \top, \top \overline{v} \rangle, \overline{w} \quad \overline{t} = (\overline{v}, \overline{w}) \\ \hline secEx(s) = \bot \quad t = \langle id, ow, ev, R', \phi, act, m\rangle \quad (\forall \overline{x}, \overline{z}, (S(\overline{x}, \overline{x}) \Rightarrow \overline{w}, R(\overline{x}, \overline{w})) \in \Gamma \setminus E \\ \hline r, i - 1 \vdash_{w} \forall \overline{x}, \overline{z}, (S(\overline{x}, \overline{z}) \Rightarrow \overline{x} \neq \overline{v}) \lor \exists \overline{y}, (R(\overline{v}, \overline{y}) \land \overline{y} \neq \overline{w}) \\ \hline 1 < i \leq |r| \quad r^{i} = r^{i-1} \cdot t \cdot s \quad invoker(last(r^{i-1})) = u \\ s = \langle db, U, sec, T, V, h, \langle t, when, \langle (u', \text{DELETE}, R, \bar{h}, \top, \top, \eta) \rangle, tr\rangle \\ secEx(s) = \bot \quad Ex(s) = \emptyset \quad t = \langle id, ow, ev, R', \phi, act, m \rangle \\ \hline r, i - 1 \vdash_{w} \psi [\overline{x}^{|R'|} \mapsto tpl(last(r^{i-1}))] = u \\ s = \langle db, U, sec, T, V, h, \langle t, when, \langle (u', \text{DELETE}, R, \bar{h}, \neg, \neg, \emptyset) \rangle, tr\rangle \\ secEx(s) = \bot \quad Ex(s) = \emptyset \quad t = \langle id, ow, ev, R', \phi, act, m \rangle \\ \hline r, i - 1 \vdash_{w} \psi [\overline{x}^{|R'|} \mapsto tpl(last(r^{i-1}))] = u \\ s = \langle db, U, sec, T, V, h, \langle t, when, \langle (u', \text{DELETE}, R, \bar{h}, \neg, \neg, \emptyset) \rangle, tr\rangle \\ secEx(s) = \bot \quad Ex(s) = \emptyset \quad t = \langle id, ow, ev, R', \phi, act, m \rangle \\ \hline r, i - 1 \vdash_{w} \psi [\overline{x}^{|R'|} \mapsto tpl(last(r^{i-1}))] =$$

Figure 30: Extracting knowledge from triggers

$$\begin{array}{c} r,i-1\vdash_{u}\psi \quad 1 < i \leq |r| \quad r^{i}=r^{i-1}\cdot t\cdot s \quad invoker(last(r^{i-1})) = u \\ s = \langle db, U, scc, T, V, h, \langle t, when, stmt \rangle, tr \rangle \qquad Ex(s) = \emptyset \\ \hline \\ secEx(s) = \bot \quad t = \langle id, ow, ev, R, \phi, act, m \rangle \quad reviseBelief(r^{i-1}, \psi, r^{i}) = \top \\ r,i\vdash_{u}\psi \quad 1 < i \leq |r| \quad r^{i}=r^{i-1}\cdot t\cdot s \quad invoker(last(r^{i-1})) = u \\ s = \langle db, U, sec, T, V, h, \langle t, when, stmt \rangle, tr \rangle \qquad Ex(s) = \emptyset \\ \hline \\ secEx(s) = \bot \quad t = \langle id, ow, ev, R, \phi, act, m \rangle \quad reviseBelief(r^{i-1}, \psi, r^{i}) = \top \\ r, i - 1\vdash_{u}\psi \quad r, i - 1\vdash_{u} R(\bar{t}) \quad 1 < i \leq |r| \quad r^{i}=r^{i-1}\cdot t\cdot s \quad invoker(last(r^{i-1})) = u \\ s = \langle db, U, sec, T, V, h, \langle t, when, \langle \langle u', INSERT, R, \bar{t} \rangle, \top, \top, \emptyset \rangle, tr \rangle \qquad Ex(s) = \emptyset \\ \hline \\ r, i - 1\vdash_{u}\psi \quad r, i - 1\vdash_{u} \pi(\bar{t}) \quad 1 < i \leq |r| \quad r^{i}=r^{i-1}\cdot t\cdot s \quad invoker(last(r^{i-1})) = u \\ s = \langle db, U, sec, T, V, h, \langle t, when, \langle \langle u', INSERT, R, \bar{t} \rangle, \top, \top, \emptyset \rangle, tr \rangle \qquad Ex(s) = \emptyset \\ \hline \\ r, i - 1\vdash_{u}\psi \quad r, i - 1\vdash_{u} \neg R(\bar{t}) \quad 1 < i \leq |r| \quad r^{i}=r^{i-1}\cdot t\cdot s \quad invoker(last(r^{i-1})) = u \\ s = \langle db, U, sec, T, V, h, \langle t, when, \langle \langle u', INSERT, R, \bar{t} \rangle, \top, \top, \emptyset \rangle, tr \rangle \qquad Ex(s) = \emptyset \\ \hline \\ r, i\vdash_{u}\psi \quad r, i - 1\vdash_{u} \neg R(\bar{t}) \quad 1 < i \leq |r| \quad r^{i}=r^{i-1}\cdot t\cdot s \quad invoker(last(r^{i-1})) = u \\ s = \langle db, U, sec, T, V, h, \langle t, when, \langle \langle u', INSERT, R, \bar{t} \rangle, \top, \top, \emptyset \rangle, tr \rangle \qquad Ex(s) = \emptyset \\ \hline \\ \hline \\ r, i\vdash_{u}\psi \quad r, i - 1\vdash_{u}\pi(\bar{t}) \quad 1 < i \leq |r| \quad r^{i}=r^{i-1}\cdot t\cdot s \quad invoker(last(r^{i-1})) = u \\ s = \langle db, U, sec, T, V, h, \langle t, when, \langle \langle u', INSERT, R, \bar{t} \rangle, \top, \top, \emptyset \rangle, tr \rangle \qquad Ex(s) = \emptyset \\ \hline \\ \hline \\ \hline \\ r, i\vdash_{u}\psi \quad r, i - 1\vdash_{u}\neg R(\bar{t}) \quad 1 < i \leq |r| \quad r^{i}=r^{i-1}\cdot t\cdot s \quad invoker(last(r^{i-1})) = u \\ s = \langle db, U, sec, T, V, h, \langle t, when, \langle \langle u', INSERT, R, \bar{t} \rangle, \top, \top, \emptyset \rangle, tr \rangle \qquad Ex(s) = \emptyset \\ \hline \\ \hline \\ \hline \\ \hline \\ r, i - \downarrow_{u}\psi \quad r, i - 1\vdash_{u}\neg R(\bar{t}) \quad 1 < i \leq |r| \quad r^{i}=r^{i-1}\cdot t\cdot s \quad invoker(last(r^{i-1})) = u \\ s = \langle db, U, sec, T, V, h, \langle t, when, \langle \langle u', INSERT, R, \bar{t} \rangle, \top, \oplus \rangle, tr \rangle \qquad Ex(s) = \emptyset \\ \hline \\ \hline \\ \hline \\ \hline \\ r, i - \downarrow_{u}\psi \quad r, i - 1\vdash_{u}\neg R(\bar{t}) \quad 1 < i \leq |r| \quad r^{i}=r^{i-1}\cdot t\cdot s \quad invoker(last(r^{i-1})) = u \\ s =$$

$$\begin{array}{c|c} 1 < i \leq |r| & r^{i} = r^{i-1} \cdot t \cdot s & invoker(last(r^{i-1})) = u \\ s = \langle db, U, sec, T, V, h, \langle t, when, stmt \rangle, tr \rangle \\ secEx(s) = \bot & Ex(s) = \emptyset & t = \langle id, ow, ev, R, \phi, act, m \rangle \\ getAction(act, user(last(r^{i-1}), t), tpl(last(r^{i-1})) = \langle u', INSERT, R, (\overline{v}, \overline{w}, \overline{q}) \rangle \\ \hline & r, i - 1 \vdash_{u} \exists \overline{y}, \overline{z}. R(\overline{v}, \overline{y}, \overline{z}) \land \overline{y} \neq \overline{w} \\ \forall \overline{x}, \overline{y}, \overline{y}', \overline{z}, \overline{z}'. (R(\overline{x}, \overline{y}, \overline{z}) \land R(\overline{x}, \overline{y}', \overline{z}')) \Rightarrow \overline{y} = \overline{y}' \in \Gamma \\ \hline & INSERT \\ r, i - 1 \vdash_{u} \neg \phi[\overline{x}^{|R'|} \mapsto tpl(last(r^{i-1}))] \\ \hline & Disabled \\ Backward \end{array}$$

$$\begin{array}{c|c} 1 < i \leq |r| & r^{i} = r^{i-1} \cdot t \cdot s & invoker(last(r^{i-1})) = u \\ s = \langle db, U, sec, T, V, h, \langle t, when, stmt \rangle, tr \rangle \\ secEx(s) = \bot & Ex(s) = \emptyset & t = \langle id, ow, ev, R, \phi, act, m \rangle \\ \underline{getAction(act, user(last(r^{i-1}), t), tpl(last(r^{i-1})) = \langle u', \text{INSERT}, R, (\overline{v}, \overline{w}) \rangle \\ r, i - 1 \vdash_{u} \forall \overline{x}, \overline{y}. S(\overline{x}, \overline{y}) \Rightarrow \overline{x} \neq \overline{v} & \forall \overline{x}, \overline{z}. R(\overline{x}, \overline{z}) \Rightarrow \exists \overline{w}. S(\overline{x}, \overline{w}) \in \Gamma \\ r, i - 1 \vdash_{u} \neg \phi[\overline{x}^{|R'|} \mapsto tpl(last(r^{i-1}))] & \text{Disabled} \\ \end{array}$$

$$\begin{array}{c|c} 1 < i \leq |r| & r^{i} = r^{i-1} \cdot t \cdot s & invoker(last(r^{i-1})) = u \\ s = \langle db, U, sec, T, V, h, \langle t, when, stmt \rangle, tr \rangle \\ secEx(s) = \bot & Ex(s) = \emptyset & t = \langle id, ow, ev, R, \phi, act, m \rangle \\ getAction(act, user(last(r^{i-1}), t), tpl(last(r^{i-1})) = \langle u', \texttt{DELETE}, R, (\overline{v}, \overline{w}) \rangle \\ r, i - 1 \vdash_{u} \exists \overline{z}. S(\overline{v}, \overline{z}) \land \forall \overline{y}. (R(\overline{x}, \overline{y}) \Rightarrow \overline{y} = \overline{w}) & \forall \overline{x}, \overline{z}. S(\overline{x}, \overline{z}) \Rightarrow \exists \overline{w}. R(\overline{x}, \overline{w}) \in \Gamma \\ r, i - 1 \vdash_{u} \neg \phi[\overline{x}^{|R'|} \mapsto tpl(last(r^{i-1}))] & \text{Disabled} \\ \text{Backward} \end{array}$$

$$\begin{array}{c|c} 1 < i \leq |r| & r^{i} = r^{i-1} \cdot t \cdot s & invoker(last(r^{i-1})) = u \\ s = \langle db, U, sec, T, V, h, \langle t, when, stmt \rangle, tr \rangle \\ secEx(s) = \bot & Ex(s) = \emptyset & t = \langle id, ow, ev, R', \phi, act, m \rangle \\ getAction(act, user(last(r^{i-1}), t), tpl(last(r^{i-1}))) = \langle op, u'', p, u' \rangle \\ \hline u', u'' \in U & op \in \{\oplus, \oplus^*\} & \langle op, u'', p, u' \rangle \notin last(r^{i-1}).sec & last(r^{i-1}).sec = sec \\ r, i - 1 \vdash_u \neg \phi[\overline{x}^{|R'|} \mapsto tpl(last(r^{i-1}))] & \text{Disabled} \\ Backward \end{array}$$

$$\begin{array}{c|c} 1 < i \leq |r| & r^{i} = r^{i-1} \cdot t \cdot s & invoker(last(r^{i-1})) = u \\ s = \langle db, U, sec, T, V, h, \langle t, when, stmt \rangle, tr \rangle \\ secEx(s) = \bot & Ex(s) = \emptyset & t = \langle id, ow, ev, R', \phi, act, m \rangle \\ getAction(act, user(last(r^{i-1}), t), tpl(last(r^{i-1}))) = \langle \ominus, u'', p, u' \rangle \\ \hline u', u'' \in U & op \in \{\oplus, \oplus^*\} & \langle op, u'', p, u' \rangle \in last(r^{i-1}).sec & last(r^{i-1}).sec = sec \\ r, i - 1 \vdash_u \neg \phi[\overline{x}^{|R'|} \mapsto tpl(last(r^{i-1}))] \end{array}$$

Figure 32: Extracting knowledge from triggers

$\begin{array}{cccc} 1 < i \leq r & r^i = r^{i-1} \cdot t \cdot s & invoker(last(r^{i-1})) = u \\ s = \langle db, U, sec, T, V, h, \langle t, when, \langle \langle u', \texttt{INSERT}, R, \overline{t} \rangle, \top, \top, E \rangle, tr \rangle \\ secEx(s) = \bot & t = \langle id, ow, ev, R', \phi, act, m \rangle \\ \hline (\forall \overline{x}, \overline{y}, \overline{y}', \overline{z}, \overline{z}'. ((R(\overline{x}, \overline{y}, \overline{z}) \wedge R(\overline{x}, \overline{y}', \overline{z}')) \Rightarrow \overline{y} = \overline{y}') \in Ex(s) & \overline{t} = (\overline{v}, \overline{w} \\ \hline r, i - 1 \vdash_u \exists \overline{y}, \overline{z}. R(\overline{v}, \overline{y}, \overline{z}) \wedge \overline{y} \neq \overline{w} \end{array}$	$(\overline{\overline{q}})$ Tr IN Exc	rigger I SERT FD ception
$\begin{array}{c c} 1 < i \leq r & r^{i} = r^{i-1} \cdot t \cdot s & invoker(last(r^{i-1})) = u \\ s = \langle db, U, sec, T, V, h, \langle t, when, \langle \langle u', \texttt{INSERT}, R, \overline{t} \rangle, \top, \top, E \rangle, tr \rangle \\ & secEx(s) = \bot & t = \langle id, ow, ev, R', \phi, act, m \rangle \\ & (\forall \overline{x}, \overline{z}. (R(\overline{x}, \overline{z}) \Rightarrow \exists \overline{w}. S(\overline{x}, \overline{w})) \in Ex(s) & \overline{t} = (\overline{v}, \overline{w}) \\ \hline & r, i - 1 \vdash_{u} \forall \overline{x}, \overline{y}. S(\overline{x}, \overline{y}) \Rightarrow \overline{x} \neq \overline{v} \end{array}$	Trigger INSERT ID Exceptio	n
$ \begin{array}{c c} 1 < i \leq r & r^i = r^{i-1} \cdot t \cdot s & invoker(last(r^{i-1})) = u \\ s = \langle db, U, sec, T, V, h, \langle t, when, \langle \langle u', \texttt{DELETE}, R, \overline{t} \rangle, \top, \top, E \rangle, tr \rangle \\ secEx(s) = \bot & t = \langle id, ow, ev, R', \phi, act, m \rangle \\ (\forall \overline{x}, \overline{z}. (S(\overline{x}, \overline{z}) \Rightarrow \exists \overline{w}. R(\overline{x}, \overline{w})) \in Ex(s) & \overline{t} = (\overline{v}, \overline{w}) \\ \hline r, i - 1 \vdash_u \exists \overline{z}. S(\overline{v}, \overline{z}) \land \forall \overline{y}. (R(\overline{v}, \overline{y}) \Rightarrow \overline{y} = \overline{w}) \end{array} $	Trigger DELETE ID Exceptio	n
$\frac{1 < i \le r \qquad r^i = r^{i-1} \cdot t \cdot s \qquad invoker(last(r^{i-1})) = s = \langle db, U, sec, T, V, h, \langle t, \langle \langle u', \texttt{SELECT}, \phi[\overline{x} \mapsto tpl(last(r^{i-1}))] \rangle, \top, \top, \emptyset \rangle, str_{sec} Ex(s) = \top \lor Ex(s) \neq \emptyset \qquad t = \langle id, ow, ev, R, \phi, act, m \rangle}{r, i - 1 \vdash_u \phi[\overline{x}^{ R' } \mapsto tpl(last(r^{i-1}))]}$	$u \\ nt, tr \rangle$	Trigger Exception
$\begin{array}{c c} 1 < i \leq r & r^i = r^{i-1} \cdot t \cdot s & invoker(last(r^{i-1})) = r^i = r^{i-1} \cdot t \cdot s \\ s = \langle db, U, sec, T, V, h, \langle t, \langle \langle u', \texttt{SELECT}, \phi \rangle, \top, \top, \emptyset \rangle, \langle \langle u', \texttt{INSERT}, R, \bar{t} \rangle, res, aC \\ secEx(s) = \bot & Ex(s) \neq \emptyset & t = \langle id, ow, ev, R', \phi, act, r, i-1 \vdash_u \neg R(\bar{t}) \end{array}$	$ \begin{array}{c} = u \\ \zeta, E \rangle, tr \rangle \\ , m \rangle \end{array} $	Trigger INSERT Exception
$\begin{array}{c c} 1 < i \leq r & r^{i} = r^{i-1} \cdot t \cdot s & invoker(last(r^{i-1})) = r^{i-1} \cdot t \cdot s \\ s = \langle db, U, sec, T, V, h, \langle t, \langle \langle u', \texttt{SELECT}, \phi \rangle, \top, \top, \emptyset \rangle, \langle \langle u', \texttt{DELETE}, R, \bar{t} \rangle, res, aC \\ secEx(s) = \bot & Ex(s) \neq \emptyset & t = \langle id, ow, ev, R', \phi, act, r, i-1 \vdash_{u} R(\bar{t}) \end{array}$	$ \begin{array}{c} = u \\ Y, E \rangle, tr \rangle \\ , m \rangle \end{array} $	Trigger DELETE Exception
$\frac{n+1 < i \leq r \qquad s_1, s_2, \dots, s_n \in \Omega_M \qquad t_1, \dots, t_n \in \mathcal{TRIGG}}{secEx(s_n) = \top \lor Ex(s_n) \neq \emptyset r^i = r^{i-n-1} \cdot \langle u, \text{INSERT}, R, \bar{t} \rangle \cdot s_1 \cdot t_1 \cdot s_2 \cdot \dots \\ s_n = \langle db, U, sec, T, V, h, \langle t_n, when, stmt \rangle, \langle \epsilon, \epsilon, \epsilon, \epsilon \rangle \rangle}{r, i \vdash_u \neg R(\bar{t})}$	\mathcal{ER}_D $\cdot \cdot t_n \cdot s_n$	Trigger Rollback INSERT
$\frac{n+1 < i \leq r \qquad s_1, s_2, \dots, s_n \in \Omega_M \qquad t_1, \dots, t_n \in \mathcal{TRIGG}}{secEx(s_n) = \top \lor Ex(s_n) \neq \emptyset r^i = r^{i-n-1} \cdot \langle u, DELETE, R, \bar{t} \rangle \cdot s_1 \cdot t_1 \cdot s_2 \cdot \dots \\ s_n = \langle db, U, sec, T, V, h, \langle t_n, when, stmt \rangle, \langle \epsilon, \epsilon, \epsilon, \epsilon \rangle \rangle}{r, i \vdash_u R(\bar{t})}$	\mathcal{ER}_D $\cdot \cdot t_n \cdot s_n$	Trigger Rollback DELETE

Figure 33: Extracting knowledge from trigger's exceptions

DELETE
C. DATABASE INTEGRITY

In this section, we present the formal definition of the \sim_{auth} relation, which is used to define database integrity. Let $P = \langle M, f \rangle$ be an extended configuration, where M = $\langle D, \Gamma \rangle$ is a system configuration and f is an M-PDP. We denote by \mathcal{VIEW}_D^{owner} the set of all D-views with the owner's privileges, i.e., $\mathcal{VIEW}_D^{ouner} = \{\langle V, o, q, m \rangle \in \mathcal{VIEW}_D \mid m = O\}$, and by $\mathcal{PRIV}_D^{SELECT, \mathcal{VIEW}_D^{ouner}}$ the set of privileges $\{pr \in \mathcal{PRIV}_D \mid pr = \langle SELECT, V \rangle \land V \in \mathcal{VIEW}_D^{ouner}\}$. Given a state an *M*-state $s = \langle db, U, sec, T, V, c \rangle$ and a revoke command $r = \langle \ominus, u, p, u' \rangle$, we denote by apply Rev(s, r) the state $\langle db, U, revoke(sec, u, p, u'), T, V, c \rangle$ obtained by executing the REVOKE command. Given a system's configuration $M = \langle D, \Gamma \rangle$, a query q, a set of views V with owner's privileges, and a set of tables T, we say that V and Tdetermine q, denoted by $determines_M(T, V, q)$, iff for all $db \in \Omega_D^{\Gamma}$, for all db_1 , $db_2 \in [\![db]\!]_{V,T}$, $[q]^{db_1} = [q]^{db_2}$, where $[\![db]\!]_{V,T}$ denotes the set $\{db' \in \Omega_D^{\Gamma} \mid \forall T_1 \in T, T_1(db) =$ $T_1(db') \land \forall V_1 \in V. V_1(db) = V_1(db')$. Further details on the concept of determinacy can be found in [34]. Finally, the relation $\rightsquigarrow_{auth} \subseteq \Omega_M \times (\mathcal{A}_{D,\mathcal{U}} \cup \mathcal{TRIGGER}_D)$ is the smallest relation satisfying the inference rules given in Figure 34.

$$\begin{array}{c} \begin{array}{c} u, u' \in U \quad R \in D \quad \hat{l} \in \operatorname{dom}^{|\mathcal{R}|} \quad g = (op, u, (op', R), u') \quad g \in sec \\ \hline (db, U, sec, T, V, c) \sim_{und} \quad g \quad op' \in \{\operatorname{INSERT}, \operatorname{DELTE}\} \\ \hline (db, U, sec, T, V, c) \sim_{und} \quad (g, U, cv, T, V, c) \sim_{und} \quad (g, v, v, R, \phi, shnt, m) \\ t \in T \quad ZGGF_D \\ \hline (db, U, sec, T, V, c) \sim_{und} \quad (g, CEATE VIEG), u') \\ \hline g \in sec \\ \hline (db, U, sec, T, V, c) \sim_{und} \quad (u, CEATE VIEG), u') \\ \hline (db, U, sec, T, V, c) \sim_{und} \quad (u, CEATE VIEG) \\ \hline (db, U, sec, T, V, c) \sim_{und} \quad (u, CEATE VIEG) \\ \hline (db, U, sec, T, V, c) \sim_{und} \quad (u, CEATE VIEG) \\ \hline (db, U, sec, T, V, c) \sim_{und} \quad (u, CEATE VIEG) \\ \hline (db, U, sec, T, V, c) \sim_{und} \quad (u, CEATE VIEG) \\ \hline (db, U, sec, T, V, c) \sim_{und} \quad (u, CEATE VIEG) \\ \hline (db, U, sec, T, V, c) \sim_{und} \quad (u, CEATE VIEG) \\ \hline (db, U, sec, T, V, c) \sim_{und} \quad (u, CEATE VIEG) \\ \hline (db, U, sec, T, V, c) \sim_{und} \quad (u, dmin, op', R, t) \\ \hline (db, U, sec, T, V, c) \sim_{und} \quad (u, dmin, cEATE, t) \\ \hline (db, U, sec, T, V, c) \sim_{und} \quad (u, dmin, CEATE, t) \\ \hline (db, U, sec, T, V, c) \sim_{und} \quad (dmin, CEATE, t) \\ \hline (db, U, sec, T, V, c) \sim_{und} \quad (dmin, CEATE, t) \\ \hline (db, U, sec, T, V, c) \sim_{und} \quad (dmin, CEATE, t) \\ \hline (db, U, sec, T, V, c) \sim_{und} \quad (du, U$$

Figure 34: Definition of the \sim_{auth} relation

D. DATA CONFIDENTIALITY

In this section, we define indistinguishability of runs. We first formalize the notion of *u*-projection. Afterwards, we define the notion of consistency between *u*-projections. Finally, we formalize the indistinguishability relation $\cong_{P,u}$.

We recall that, given a run r, we denote by r^i , where $1 \le i \le |r|$, the prefix of r obtained by truncating r at the *i*-th state. In the rest of the paper, we use r^0 to denote the empty run.

D.1 Projections

Let $P = \langle M, f \rangle$ be an extended configuration, where $M = \langle D, \Gamma \rangle$ and f is an M-PDP, L be the P-LTS, and u be a user in \mathcal{U} . Given a run $r \in traces(L)$, its u-projection, denoted by $r|_u$, is obtained by (1) replacing each action not issued by u with *, (2) replacing each trigger whose invoker is not u with *, and (3) replacing all non-empty sequences of *-transitions with a single *-transition. Note that the *-transitions in the u-projections represent whether u's actions are executed consecutively or not. With a slight abuse of notation, we extend all the notation we use for runs also to u-projections. For instance, $r|_u^i$ denotes the prefix obtained by truncating $r|_u$ at its *i*-th state. Formally, the u-projection $r|_u$ is defined as c(v(r, u)). The function v takes as input a run r and a user u and returns another run in which all non-u actions are replaced with *.

$$v(r,u) = \begin{cases} v(r^{|r|-1}, u) \cdot a \cdot s & \text{if } r = r^{|r|-1} \cdot a \cdot s \text{ and } s \in \Omega_M \\ & \text{and } a \in \mathcal{A}_{D,u} \text{ and } |r| > 1 \\ v(r^{|r|-1}, u) \cdot * \cdot s & \text{if } r = r^{|r|-1} \cdot a \cdot s \text{ and } s \in \Omega_M \\ & \text{and } a \in \mathcal{A}_{D,u'} \text{ and } u' \neq u \text{ and} \\ |r| > 1 \\ v(r^{|r|-1}, u) \cdot t \cdot s & \text{if } r = r^{|r|-1} \cdot t \cdot s \text{ and } s \in \Omega_M \\ & \text{and } t \in \mathcal{TRIGGER}_D \text{ and} \\ |r| > 1 \\ v(r^{|r|-1}, u) \cdot * \cdot s & \text{if } r = r^{|r|-1} \cdot t \cdot s \text{ and } s \in \Omega_M \\ & \text{and } t \in \mathcal{TRIGGER}_D \text{ and} \\ |r| > 1 \\ v(r^{|r|-1}, u) \cdot * \cdot s & \text{if } r = r^{|r|-1} \cdot t \cdot s \text{ and } s \in \Omega_M \\ & \text{and } t \in \mathcal{TRIGGER}_D \text{ and} \\ & \text{invoker}(last(r^{|r|-1})) \neq u \text{ and} \\ & |r| > 1 \\ s & \text{if } r = s \text{ and } s \in \Omega_M \end{cases}$$

The function c takes as input a run r containing *-transitions and replaces each sequence of *-transitions with a single *transition. Note that the function c is obtained by repeatedly applying the function c' until the computation reaches a fixed point. The function c' is as follows:

$$c'(r) = \begin{cases} c'(r^{|r|-1}) \cdot a \cdot s & \text{if } r = r^{|r|-1} \cdot a \cdot s \text{ and } a \neq * \\ & \text{and } s \in \Omega_M \text{ and } |r| > 1 \\ c'(r^{|r|-2}) \cdot * \cdot s & \text{if } r = r^{|r|-2} \cdot * \cdot s' \cdot * \cdot s \text{ and} \\ & s, s' \in \Omega_M \text{ and } |r| > 2 \\ s & \text{if } r = s \text{ and } s \in \Omega_M \\ r & \text{if } r = s \cdot * \cdot s' \text{ and } s, s' \in \Omega_M \end{cases}$$

D.2 Consistency

Before defining the notion of consistency, we define the function *labels* which takes as input a run r and returns as output the sequence of labels in the run. In more detail, *labels*(r) is obtained from r by dropping all the states. We now define the notion of consistency between two u-projections.

Definition D.1. Let $P = \langle M, f \rangle$ be an extended configu-

Figure 35: The runs r_1 , r_2 , r_3 , and r_4 , where the states are represented using black dots, the actions a_1 , a_2 , and a_3 issued by the user u are written above the edges connecting the states, and the actions of the other users are omitted. The u-projections of these runs are, respectively, $r_1|_u$, $r_2|_u$, $r_3|_u$, and $r_4|_u$. The runs r_1 and r_2 have u-projections with the same labels, whereas the runs r_3 and r_4 have u-projections with different labels.

ration, where $M = \langle D, \Gamma \rangle$ and f is an *M*-PDP, *L* be the *P*-LTS, and *u* be a user in \mathcal{U} . Furthermore, let $r|_u$ and $r'|_u$ be two *u*-projections for the runs *r* and *r'* in traces(L). We say that $r|_u$ and $r'|_u$ are consistent iff the following conditions hold:

- 1. $|r|_u| = |r'|_u|$.
- 2. $labels(r|_u) = labels(r'|_u)$.
- 3. $triggers(last(r|_u)) = \epsilon$ iff $triggers(last(r'|_u)) = \epsilon$.
- 4. for all i such that $1 \le i \le |r|_u|$, if $r|_u^i = r|_u^{i-1} \cdot a \cdot s$ and $a \ne *$, then
 - $res(last(r|_u^i)) = res(last(r'|_u^i)),$
 - $secEx(last(r|_{u}^{i})) = secEx(last(r'|_{u}^{i})),$
 - if a is a trigger, then $acC(last(r|_{u}^{i})) = acC(last(r'|_{u}^{i}))$,
 - $invoker(last(r|_{u}^{i})) = invoker(last(r'|_{u}^{i})),$
 - $triggers(last(r|_{u}^{i})) = triggers(last(r'|_{u}^{i})),$
 - $tpl(last(r|_{u}^{i})) = tpl(last(r'|_{u}^{i})),$
 - and $Ex(last(r|_u^i)) = Ex(last(r'|_u^i))$. \Box

Figure 35 depicts four runs. The states are represented just as black dots and the action between two states is written above the edge connecting them. Note that we represent just the actions a_1 , a_2 , and a_3 issued by the user u. Assume that (a) the action's effects are the same in all the runs and (b) the *invoker*, *res*, *secEx*, *triggers*, *tpl*, and *Ex* functions return the same results in all runs. It is easy to see that $r_1|_u$ and $r_2|_u$ are consistent projections, whereas $r_3|_u$ and $r_4|_u$ are not. Furthermore, there is no other pair of consistent u-projections between the runs in the figure.

D.3 Indistinguishability

Let $M = \langle D, \Gamma \rangle$ be a system configuration, $s = \langle db, U, sec, T, V \rangle$ be an *M*-partial state, and $u \in U$ be a user. The set

permissions(s, u) is permissions $(s, u) := \{ \langle \oplus, \text{SELECT}, O \rangle | \exists u' \in U, op \in \{ \oplus, \oplus^* \}. \langle op, u, \langle \text{SELECT}, O \rangle, u' \rangle \in sec \}.$ Note that permissions $(s, admin) = D \cup V$ since the administrator has read access to the whole database. We extend permissions to *M*-states as follows. Given an *M*-state $s' = \langle db, U, sec, T, V, c \rangle$, permissions $(s', u) = permissions(\langle db, U, sec, T, V \rangle, u)$.

We are now ready to introduce the notion of indistinguishability between two runs. Intuitively, two runs r and r'are indistinguishable for a user u iff (1) their u-projections are consistent, and (2) for each action of the user u as well as for the last states in the two runs, the policy, the triggers, the views, the users, and the data disclosed by the policy are the same in r and r'.

Definition D.2. Let $P = \langle M, f \rangle$ be an extended configuration, L be the P-LTS, and u be a user.

We say that two runs r and r' in traces(L) are (P, u)indistinguishable, written $r \cong_{u,P} r'$, iff

- 1. $r|_u$ and $r'|_u$ are consistent,
- 2. pState(last(r)) and pState(last(r')) are (M, u)-data indistinguishable, and
- 3. for all *i* such that $1 \leq i \leq |r|_u| 1$, if $r|_u^{i+1} = r|_u^i \cdot a \cdot s$, $a \neq *$, and $s \in \Omega_M$, then $pState(last(r|_u^i))$ and $pState(last(r'|_u^i))$ are (M, u)-data indistinguishable.

We say that two *M*-partial states $s = \langle db, U, sec, T, V \rangle$ and $s' = \langle db', U', sec', T', V' \rangle$ are (M, u)-data indistinguishable, written $s \cong_{u,M}^{data} s'$, iff

- 1. U = U',
- 2. sec = sec',
- 3. T = T',
- 4. V = V',
- 5. for all relation schema $R \in D$ for which $\langle \oplus, \text{SELECT}, R \rangle \in permissions(s, u), db(R) = db'(R)$, and
- 6. for all views $v \in \mathcal{VIEW}_D^{owner}$ for which $\langle \oplus, \text{SELECT}, v \rangle \in permissions(s, u), db(v) = db'(v). \square$

PROPOSITION D.1. Let $P = \langle M, f \rangle$ be an extended configuration, L be the P-LTS, and $u \in \mathcal{U}$ be a user. The indistinguishability relation $\cong_{P,u}$ is an equivalence relation over traces(L).

PROOF. We now prove that $\cong_{P,u}$ is reflexive, symmetric, and transitive. This implies the fact that $\cong_{P,u}$ is an equivalence relation over traces(L). In the following, let $P = \langle M, f \rangle$ be an extended configuration, L be the *P*-LTS, and $u \in \mathcal{U}$ be a user. From the definition of data indistinguishability and the results in [24], it follows that the dataindistinguishability relation $\cong_{u,M}^{data}$ is an equivalence relation over the set of all partial states.

Reflexivity Let $r \in traces(L)$ be a run. It follows trivially that $r|_u = r|_u$. From this, it follows that $r|_u$ and $r|_u$ are consistent. It is easy to see that r is indistinguishable from r. Indeed, the database states are the same in r and r and the data-indistinguishability relation is reflexive [24].

Symmetry Let $r, r' \in traces(L)$ be two runs such that $r \cong_{P,u} r'$. From this, it follows that $r|_u$ and $r'|_u$ are consistent. Note that the consistency definition is symmetric. Therefore, also $r'|_u$ and $r|_u$ are consistent. From this and the symmetry of data indistinguishability [24], it follows the symmetry of $\cong_{P,u}$.

Transitivity Let $r, r', r'' \in traces(L)$ be three runs such that $r \cong_{P,u} r'$ and $r' \cong_{P,u} r''$. From this it follows that $r|_u$

and $r'|_u$ are consistent and $r'|_u$ and $r''|_u$ are consistent. It is easy to see that also $r|_u$ and $r''|_u$ are consistent. From this and the transitivity of data indistinguishability [24], it follows the transitivity of $\cong_{P,u}$. \Box

Given a run r, we denote by $\llbracket r \rrbracket_{P,u}$ the equivalence class of r defined by $\cong_{P,u}$ over traces(L). Similarly, we denote by $\llbracket s \rrbracket_{u,M}^{data}$ the equivalence class of s defined by $\cong_{u,M}^{data}$ over Π_M .

E. ENFORCING DATABASE INTEGRITY

In this section, we first define the access control function f_{int} , which models the f_{int} procedure described in §6. Afterwards, we prove that the function f_{int} satisfies the database integrity property. Finally, we prove that the data complexity of f_{int} is AC^0 .

The function f_{int} is as follows:

$$f_{int}(s,a) = \begin{cases} \top & \text{if } trigger(s) = \epsilon \wedge s \rightsquigarrow_{auth}^{appr} a \\ \top & \text{if } trigger(s) = t \wedge t \neq \epsilon \wedge a = trigCond(s) \\ \top & \text{if } trigger(s) = t \wedge t \neq \epsilon \wedge a = trigAct(s) \wedge \\ & s \rightsquigarrow_{auth}^{appr} t \\ \bot & \text{otherwise} \end{cases}$$

The function trigCond(s) (respectively trigAct(s)) returns the condition (respectively the action) associated with the trigger trigger(s). If $trigger(s) = \langle id, ow, e, R, \phi, st, O \rangle$, then trigAct(s) = getAction(st, ow, tpl(s)) and $trigCond(s) = \langle ow, \texttt{SELECT}, \phi[\overline{x}^{|R|} \mapsto tpl(s)] \rangle$. If $trigger(s) = \langle id, ow, e, R, \phi, st, A \rangle$, then trigAct(s) = getAction(st, invoker(s), tpl(s)) and $trigCond(s) = \langle invoker(s), \texttt{SELECT}, \phi[\overline{x}^{|R|} \mapsto tpl(s)] \rangle$.

Recall that, given an *M*-state $s = \langle db, U, sec, T, V, c \rangle$ and a revoke statement $r = \langle \ominus, u, p, u' \rangle$, applyRev(s, r) denotes the state $\langle db, U, revoke(sec, u, p, u'), T, V, c \rangle$.

The relation $\rightsquigarrow_{auth}^{appr} \subseteq \Omega_M \times (\mathcal{A}_{D,\mathcal{U}} \cup \mathcal{TRIGGER}_D)$ is the smallest relation satisfying the inference rules given in Figure 37. We remark that \sim_{auth}^{appr} is a sound and computable under-approximation of the relation \rightsquigarrow_{auth} . In the rules, we use a number of auxiliary functions. The most important ones are:

- (a) the aT (respectively aV) function that takes as input a database state, an operator op in $\{\oplus, \oplus^*\}$, and a user, and returns the set of tables (respectively views) that the user is authorized to read (if $op = \oplus$) or to delegate the read access (if $op = \oplus^*$) according to our approximation of \sim_{auth} , and
- (b) the *apprDet* function is used to determine whether a set of tables and a set of views completely determine the result of a formula ϕ in all possible database states. Note that the function *apprDet* is a sound under-approximation of the concept of *query determinacy* [34].

In the following, we define the functions *extend* and *apprDet*. The functions aT and aV are defined in Figure 37. We assume that both the formula ϕ and the set of views V in the state s contain just views with owner's privileges. This is without loss of generality. Indeed, views with activator's privileges are just syntactic sugar, they do not disclose additional information to a user u other than what he is already authorized to read because they are executed under u's privileges. If ϕ and s contain views with activator's privileges, we can compute another formula ϕ' and a state s' without views with activator's privileges as follows. We replace, in the formula ϕ , the predicates of the form $V(\overline{x})$, where V is a view with activator's privileges, with V's definition, and we repeat this process until the resulting formula ϕ' no longer contains views with activator's privileges. Similarly, the set V' is obtained from V by (1) removing all views with activator's privileges, and (2) for each view $v \in V$ with owner's privileges, replacing the predicates of the form $V(\bar{x})$ in v's definition, where V is a view with activator's privileges, with V's definition until v's definition no longer contains views with activator's privileges. The security policy sec' is also obtained from sec by removing all references to views with activator's privileges. Therefore, in §E.1-E.2 we ignore views with activator's privileges as the extension to the general case is trivial.

E.1 Extend function

We now define the *extend* function, which takes as input a system configuration M, an M-state s, and a set of views with owner's privileges, and returns a set of views V' such that $V \subseteq V'$. Given a system configuration M, an M-partial state $s = \langle db, U, sec, T, V \rangle$, and a normalized view $\langle v, o, q, O \rangle \in V$, we denote by $inline_M(\langle v, o, q, O \rangle, s)$ the view $\langle v, o, q', O \rangle$ where q' is obtained from q by replacing all occurrences of views in V with owner's privileges with their definitions. Note that $inline_M$ does not compute a fixpoint, i.e., if a view's definition refers to another view, the latter is not replaced with its definition. The function extend(M, s, V) returns the set $V \cup \{inline(v, s) | v \in extend(M, s, V)\}$.

LEMMA E.1. Let $M = \langle D, \Gamma \rangle$ be a system configuration, $s = \langle db, U, sec, T, V \rangle$ be an *M*-partial state, $V' \subseteq V$ be a set of views with owner's privileges. For each view $v \in$ extend(M, s, V'), there is a view $v' \in V'$ such that v and v' disclose the same data.

PROOF. Sketch: Assume, for contradiction's sake, that there is a view $v \in extend(M, s, V')$ such that all the views in V' disclose different data from v. This is impossible because v has been obtained by a view $v' \in V'$ just by replacing the views with their definitions and the definitions of v and v' are semantically equivalent. \Box

E.2 A sound under-approximation of query determinacy

The definition of the function apprDet(T, V, q) is shown in Figure 36. Before proving that apprDet is a sound approximation of *determines*, we extend *determines* from sentences to formulae.

We first introduce assignments. Let **dom** be the universe and **var** be an infinite countably set of variable identifiers. An assignment ν is a partial function from **var** to **dom** that maps variables to values in the universe. Given a formula ϕ and an assignment ν , we say that ν is well-formed for ϕ iff ν is defined for all variables in $free(\phi)$. Given an assignment ν and a sequence of variables \overline{x} such that ν is defined for each $x \in \overline{x}$, we denote by $\nu(\overline{x})$ the tuple obtained by replacing each occurrence of $x \in \overline{x}$ with $\nu(x)$. Given an assignment ν , a variable $v \in \mathbf{var}$, and a value $u \in \mathbf{dom}$, we denote by $\nu \oplus [v \mapsto u]$ the assignment ν' obtained as follows: $\nu'(v') =$ $\nu(v')$ for any $v' \neq v$, and $\nu'(v) = u$. Finally, given a formula ϕ with free variables *free*(ϕ) and an assignment ν , we denote by $\phi \circ \nu$ the formula ϕ' obtained by replacing, for each free variable $x \in free(\phi)$ such that $\nu(x)$ is defined, all the free occurrences of x with $\nu(x)$.

Given a system's configuration $M = \langle D, \Gamma \rangle$, a formula ϕ , a set of views V with owner's privileges, a set of tables T, and a well-formed assignment ν for ϕ , we say that V and T determine (ϕ, ν) , denoted by $determines_M(T, V, \phi, \nu)$, iff for all $db \in \Omega_D^{\Gamma}$, for all db_1 , $db_2 \in [\![db]\!]_{V,T}$, $[\phi \circ \nu]^{db_1} =$ $[\phi \circ \nu]^{db_2}$. In the following, given a view $\langle u, o, q, m \rangle$, we denote by $def(\langle u, o, q, m \rangle)$ its definition q.

In Lemma E.2, we show that *apprDet* is, indeed, a sound under-approximation of query determinacy.

$$apprDet(T, V, \phi, s, M) = \begin{cases} \top & \text{if } \exists \langle v, o, q, O \rangle \in extend(M, s, V). q = \{\overline{x} | \phi(\overline{x})\} \\ \top & \text{if } \phi = (x = v) \lor \phi = \top \lor \phi = \bot \\ \top & \text{if } \phi = R(\overline{x}) \land R \in T \\ \top & \text{if } \phi = V(\overline{x}) \land \exists u \in \mathcal{U}, q \in RC. \langle V, u, q, O \rangle \in V \\ \top & \text{if } \phi = (\psi \land \gamma) \land apprDet(T, V, \psi, s, M) = \top \land apprDet(T, V, \gamma, s, M) = \top \\ \top & \text{if } \phi = (\psi \lor \gamma) \land apprDet(T, V, \psi, s, M) = \top \land apprDet(T, V, \gamma, s, M) = \top \\ \top & \text{if } \phi = (\neg \psi) \land apprDet(T, V, \psi, s, M) = \top \\ \top & \text{if } \phi = (\exists x. \psi) \land apprDet(T, V, \psi, s, M) = \top \\ \top & \text{if } \phi = (\forall x. \psi) \land apprDet(T, V, \psi, s, M) = \top \\ \bot & \text{otherwise} \end{cases}$$
Figure 36: apprDet function

LEMMA E.2. Let $M = \langle D, \Gamma \rangle$ be a system configuration, $s = \langle db, U, sec, T, V \rangle$ be an *M*-partial state, $T' \subseteq D$ be a set of tables, $V' \subseteq V$ be a set of views with owner's privileges, and ϕ be a formula. If apprDet $(T', V', \phi, s, M) = \top$, then for all well-formed assignments ν for ϕ , determines_M (T', V', ϕ', s')

PROOF. Let $M = \langle D, \Gamma \rangle$ be a system configuration, $s = \langle db, U, sec, T, V \rangle$ be an *M*-partial state, $T' \subseteq D$ be a set of tables, $V' \subseteq V$ be a set of views with owner's privileges, and ϕ be a formula. We prove the lemma by structural induction over the formula ϕ .

Base Case: There are a number of alternatives.

 ϕ, ν) holds.

- $\phi := \mathbf{R}(\overline{\mathbf{x}})$ Assume that $apprDet(T, V, R(\overline{\mathbf{x}}), s, M) = \top$. There are two cases:
 - 1. $R \in T'$. In this case, the set T' trivially determines the formula $R(\overline{x})$ for any well-formed assignment ν . Therefore, $determines_M(T', V', R(\overline{x}), \nu)$ holds. Indeed, assume that this is not the case. Thus, there are three database states db, db_1 , and db_2 such that $db_1, db_2 \in [\![db]\!]_{V',T'}$ and $[R(\overline{x}) \circ \nu]^{db_1} \neq [R(\overline{x}) \circ \nu]^{db_2}$. From this and the RC semantics, it follows that $db_1(R) \neq db_2(R)$. From this, $R \in T'$, and $db_1, db_2 \in [\![db]\!]_{V',T'}$, it follows that $db_1(R) = db_2(R)$ leading to a contradiction.
 - 2. there is a view v' in extend(M, s, V') such that $def(v') = \{\overline{x} | R(\overline{x}) \}$. This means that there is a sequences of views V_1, \ldots, V_n in s such that $def(V_1) = \{\overline{x} | R(\overline{x}) \}$, $def(V_2) = \{\overline{x} | V_1(\overline{x}) \}$, \ldots , $def(V_n) = \{\overline{x} | V_{n-1}(\overline{x}) \}$, and $V_n \in V'$. Therefore, the set V' trivially determines the formula $R(\overline{x})$ for any well-formed assignment ν , and V_n and R are equivalent. Therefore, $determines_M(T', V', R(\overline{x}), \nu)$ holds.
- $\phi := V(\overline{x})$ Assume that $apprDet(T, V, V(\overline{x}), s, M) = \top$. There are two cases:
 - There is a view ⟨V, o, q, O⟩ ∈ V'. In this case, the set V' trivially determines the formula V(x̄) for any assignment ν that is well-formed for φ. Therefore, determines_M(T', V', V(x̄), ν) holds.
 there is a view v' in extend(M, s, V') such that
 - 2. there is a view v' in extend(M, s, V') such that $def(v') = \{\overline{x} | V(\overline{x}) \}$. This means that there is a sequences of views V_1, \ldots, V_n in s such that $def(V_1) = \{\overline{x} | V(\overline{x}) \}, def(V_2) = \{\overline{x} | V_1(\overline{x}) \}, \ldots, def(V_n) = \{\overline{x} | V_{n-1}(\overline{x}) \}, \text{ and } V_n \in V'$. Therefore, the set V' trivially determines the formula $V(\overline{x})$ for any well-formed assignment ν , and V_n and V are equivalent. Therefore, $determines_M(T', V', V(\overline{x}), \nu)$ holds.
- $\phi := x = v$ For any well-formed assignment ν , the empty set trivially determines the formula x = v and apprDet $(T', V', x = v, s, M) = \top$.

 $\phi := \top$ The proof of this case is similar to that of $\phi := x = v$.

 $\phi := \bot$ The proof of this case is similar to that of $\phi := x = v$.

This concludes the proof of the base case.

Induction Step: Assume that the claim holds for all sub-formulae of ϕ . There are a number of cases:

- $\phi := \psi \land \gamma \text{ Assume that } apprDet(T', V', \psi \land \gamma, s, M) = \top.$ There are two cases:
 - 1. $apprDet(T', V', \psi, s, M) = \top$ and $apprDet(T', V', \gamma, s, M) = \top$. From the induction hypothesis, it follows that both $determines_M(T', V', \psi, \nu)$ and $determines_M(T', V', \gamma, \nu)$ hold for all well-formed assignments ν . Therefore, also $determines_M(T', V', \psi \land \gamma, \nu)$ holds for all well-formed assignments ν . Indeed, assume that this is not the case. Then, there are three database states db, db_1 , and db_2 such that $db_1, db_2 \in [\![db]\!]_{V',T'}$ and $[(\psi \land \gamma) \circ \nu]^{db_1} \neq [(\psi \land \gamma) \circ \nu]^{db_2}$. From this and the RC semantics, there are two cases:
 - (a) $[\psi \circ \nu]^{db_1} \neq [\psi \circ \nu]^{db_2}$. From this, it follows that $determines_M(T', V', \psi, \nu)$ does not hold. This contradicts the fact that $determines_M(T', V', \psi, \nu)$ holds.
 - (b) $[\gamma \circ \nu]^{db_1} \neq [\gamma \circ \nu]^{db_2}$. The proof of this case is similar to the previous one.
 - 2. there is a view v' in extend(M, s, V') such that $def(v') = \{\overline{x} | \psi \land \gamma\}$. From Lemma E.1, it follows that there is a view $v'' \in V'$ that is equivalent to v', and, therefore, to $\{\overline{x} | \psi \land \gamma\}$. Thus, $determines_M(T', V', \psi \land \gamma, \nu)$ holds for all assignments ν that are well-formed for ϕ .
- $\phi := \psi \lor \gamma$ This case is similar to $\psi \land \gamma$.
- $\phi := \neg \psi$ Assume that $apprDet(T', V', \neg \psi, s, M) = \top$. There are two cases:
 - 1. $apprDet(T', V', \psi, s, M) = \top$. From the induction hypothesis, it follows that $determines_M(T', V', \psi, \nu)$ holds. Therefore, also $determines_M(T', V', \neg \psi, \nu)$ holds. Indeed, assume that this is not the case. This means that there are three database states db, db_1 , and db_2 such that db_1, db_2 are in $[\![db]\!]_{V',T'}$ and $[\neg \psi \circ \nu]^{db_1} \neq [\neg \psi \circ \nu]^{db_2}$. From this and the RC semantics, it follows that $[\psi \circ \nu]^{db_1} \neq [\psi \circ \nu]^{db_2}$. From this, it follows that $determines_M(T', V', \psi)$
 - V', ψ, ν) does not hold. This contradicts the fact that $determines_M(T', V', \psi, \nu)$ holds.
 - 2. there is a view v' in extend(M, s, V') such that $def(v') = \{\overline{x} | \neg \psi\}$. From Lemma E.1, it follows that there is a view $v'' \in V'$ that is equivalent to v', and, therefore, to $\{\overline{x} | \neg \psi\}$. Thus, $determines_M$

 $(T', V', \neg \psi, \nu)$ holds for all well-formed assignments ν .

- $\phi := \exists x. \psi$ Assume that $apprDet(T', V', \exists x. \psi, s, M) = \top$. There are two cases:
 - 1. $apprDet(T', V', \psi, s, M) = \top$. From the induction hypothesis, it follows that $determines_M(T', V', \psi, \nu)$ holds for all well-formed assignments ν . Therefore, also $determines_M(T', V', \exists x. \psi, \nu)$ holds for all well-formed assignments ν (note that any wellformed assignment for ψ is also a well-formed assignment for $\exists x. \psi$). Indeed, assume that this is not the case. This means that there are three database states db, db_1 , and db_2 such that db_1 , db_2 are in $\llbracket db \rrbracket_{V',T'}$ and $[(\exists x. \psi) \circ \nu]^{db_1} \neq [(\exists x. \psi) \circ$ ν]^{*db*₂}. From this and the *RC* semantics, it follows that there is a value $v \in \mathbf{dom}$ such that $[\psi \circ \nu[x \mapsto v]]^{db_1} \neq [\psi \circ \nu[x \mapsto v]]^{db_2}$. Note that $\nu[x \mapsto v]$ is a well-formed assignment for ψ . Let's call the assignment ν' . From this, it follows that $[\psi \circ \nu']^{db_1} \neq [\psi \circ \nu']^{db_2}$. From this, it follows that determines $M(T', V', \psi, \nu')$ does not hold. This contradicts the fact that $determines_M(T', V', \psi, \nu)$ holds for any well-formed assignment ν .
 - 2. there is a view v' in extend(M, s, V') such that $def(v') = \{\overline{x} | \exists x. \psi\}$. From Lemma E.1, it follows that there is a view $v'' \in V'$ that is equivalent to v', and, therefore, to $\{\overline{x} | \exists x. \psi\}$. Thus, $determines_M(T', V', \exists x. \psi, \nu)$ holds for all well-formed assignments for $\exists x. \psi$.

 $\phi := \forall x. \psi$ This case is similar to $\exists x. \psi$.

This concludes the proof of the induction step.

This completes the proof. \Box

We now show that $\rightsquigarrow_{auth}^{appr}$ is a sound approximation of \sim_{auth} , i.e., if $s \sim_{auth}^{appr} act$, then $s \sim_{auth} act$. A derivation of $s \sim_{auth}^{appr} act$ is a proof tree, obtained using the rules defining \sim_{auth}^{appr} , which ends in $s \sim_{auth}^{appt} act$. The size of a derivation is the number of \sim_{auth}^{appt} rules that are used to show that $s \sim_{auth}^{appr} act$. In the following, we switch freely between statements of the form $s \sim_{auth}^{appr} act$ and their derivations. We denote the size of the derivation of $s \sim_{auth}^{appr} act$.

LEMMA E.3. Let $M = \langle D, \Gamma \rangle$ be a system configuration, s be an M-state, c be an M-context, and act $\in \mathcal{A}_{D,\mathcal{U}} \cup \mathcal{TRIGGER}_D$. If $s \sim_{auth}^{appr} act$, then $s \sim_{auth} act$.

PROOF. Let $M = \langle D, \Gamma \rangle$ be a system configuration, s be an M-state, c be an M-context, and $act \in \mathcal{A}_{D,\mathcal{U}} \cup \mathcal{TRIGGER}_D$. Furthermore, we assume that there is a derivation of $s \sim_{auth}^{appr} act$. We prove our claim by structural induction on the size of $s \sim_{auth}^{appr} act's$ derivation.

Base Case: We now show that, for all s and act such that $|s \sim_{auth}^{appr} act| = 1$, if $s \sim_{auth}^{appr} act$, then $s \sim_{auth} act$. There are several cases:

- 1. Rule INSERT DELETE admin: If $s \sim_{auth}^{appr} act$, then $s \sim_{auth} act$ follows trivially from the rule's definition.
- 2. Rule CREATE VIEW admin: If $s \rightsquigarrow_{auth}^{appr} act$, then $s \rightsquigarrow_{auth} act$ follows trivially from the rule's definition.
- 3. Rule *CREATE TRIGGER admin*: If $s \sim_{auth}^{appr} act$, then $s \sim_{auth} act$ follows trivially from the rule's definition.
- 4. Rule *SELECT*: If $s \sim_{auth}^{appr} act$, then $s \sim_{auth} act$ follows trivially from the rule's definition.
- 5. Rule EXECUTE TRIGGER-3: If $s \rightsquigarrow_{auth}^{appr} act$, then $s \rightsquigarrow_{auth} act$ follows trivially from the rule's definition.

- 6. Rule *GRANT-2*: If $s \rightsquigarrow_{auth}^{appr} act$, then $s \rightsquigarrow_{auth} act$ follows trivially from the rule's definition.
- 7. Rule *GRANT-5*: If $s \sim _{auth}^{appr} act$, then $s \sim_{auth} act$ follows trivially from the rule's definition.
- 8. Rule ADD USER: If $s \sim_{auth}^{appr} act$, then $s \sim_{auth} act$ follows trivially from the rule's definition.

Induction Step: We now assume that, for all derivations of size less than $|s \sim aut^{appr}_{auth} act|$, it holds that if $s' \sim aut^{appr}_{auth} act'$, then $s' \sim auth act'$. There are several cases:

- 1. Rule INSERT DELETE: Assume that $s \sim_{auth}^{appr} act$ holds and that $act = \langle u, op', R, \bar{t} \rangle$, where op' is one of {INSERT, DELETE}. From the rule's definition, it follows that there is a grant $g = \langle op, u, \langle op', R \rangle, u' \rangle$ in s.sec such that $s \sim_{auth}^{appr} g$. From this and the induction hypothesis, it follows that $s \sim_{auth} g$. Therefore, $s \sim_{auth} act$ holds because we can apply the INSERT DELETE rule in \sim_{auth} .
- 2. Rule CREATE VIEW: The proof is similar to the one for the INSERT DELETE rule.
- 3. Rule *CREATE TRIGGER*: The proof is similar to the one for the *INSERT DELETE* rule.
- 4. Rule EXECUTE TRIGGER-2: Assume that $s \sim_{auth}^{appr} act$ holds and that $act = \langle i, o, e, R, \phi, st, A \rangle$ such that $[\phi[\overline{x}^{|R|} \mapsto tpl(s)]]^{s.db} = \top$. From the rule's definition, it follows that both $s \sim_{auth}^{appr} getAction(st, ow, tpl(s))$ and $s \sim_{auth}^{appr} getAction(st, invoker(s), tpl(s))$ hold. From this and the induction hypothesis, both $s \sim_{auth} getAction(st, ow, tpl(s))$ and $s \sim_{auth}^{appr} getAction(st, invoker(s), tpl(s))$ hold. From this and the EXECUTE TRIGGER-2 rule in \sim_{auth} , it follows that also $s \sim_{auth} act$ holds.
- 5. Rule *EXECUTE TRIGGER-1*: The proof is similar to the one for the *EXECUTE TRIGGER-2* rule.
- 6. Rule *GRANT-1*: Assume that $s \sim_{auth}^{appr} act$ holds and that $act = \langle op, u, p, u' \rangle$, where $op \in \{\oplus, \oplus^*\}$. From the rule's definition, it follows that there is a grant $g = \langle \oplus^*, u', p, u'' \rangle$ in *s.sec* such that $s \sim_{auth}^{appr} g$. From this and the induction hypothesis, ti follows that $s \sim_{auth} g$. From this and the *GRANT-1* rule in \sim_{auth} , it follows that $s \sim_{auth} act$ holds.
- 7. Rule *GRANT-3*: Assume that $s \sim_{auth}^{appr} act$ holds and that $act = \langle op, u, p, o \rangle$, where $p = \langle \text{SELECT}, v \rangle$, $v \in \mathcal{VIEW}_D^{owner}$, $op \in \{\oplus, \oplus^*\}$, and o = owner(v) such that $o \neq admin$. Let T' be the set obtained through the aT function and V' be the set obtained through the aV function. From the rule's definition, it follows that $apprDet(T', V', def(v)) = \top$. From this and Lemma *E.2*, it follows that $determines_M(T', V', def(v))$ holds. We now show that for any $obj \in T' \cup V'$, $hasAccess(s', \{obj\}, o, \oplus^*)$ holds. There are four cases: (a) $o = admin and obj \in D$. Since $obj \in T'$, it fol
 - lows that there is a $g = \langle \oplus^*, o, \langle \text{SELECT}, obj \rangle, u' \rangle$ such that $s \sim_{auth}^{appr} g$. From this and the induction hypothesis, it follows that $s \sim_{auth} g$. Therefore, $hasAccess(s', \{obj\}, o, \oplus^*)$ holds.
 - (b) o ≠ admin and obj ∈ D. Since obj ∈ T', it follows that there is a g = ⟨⊕*, o, ⟨SELECT, obj⟩, u'⟩ in sec such that s → ^{appr}_{auth} g. From this and the induction hypothesis, it follows that s → ^{auth} g. Thus, hasAccess(s', {obj}, o, ⊕*) holds.
 (c) o = admin and obj ∈ V. The proof of this case is
 - (c) $o = admin and obj \in V$. The proof of this case is similar to that of o = admin and $obj \in D$.
 - (d) $o \neq admin and obj \in V$. The proof of this case is similar to that of $o \neq admin$ and $obj \in D$.

Note that from hasAccess(s', A, o, op) and hasAccess(s', B, o, op), it follows that $hasAccess(s', A \cup B, o, op)$. Thus, $hasAccess(s, T' \cup V', o, \oplus^*)$ holds. From this, it follows that $s \rightsquigarrow_{auth} act$ holds because we can apply the corresponding rule in \rightsquigarrow_{auth} .

- 8. Rule *GRANT-4*: The proof is similar to the one for the *GRANT-3* rule.
- 9. Rule *REVOKE*: Assume that $s \rightarrow_{auth}^{appr} act$ holds and that $act = \langle \ominus, u, p, u' \rangle$. From the rule's definition, it follows that $s' \rightarrow_{auth}^{appr} g$ for any $g \in s'.sec$, where $s' = applyRev(s, \langle \ominus, u, p, u' \rangle)$. From the induction's hypothesis, it follows that $s' \rightarrow_{auth} g$ for any $g \in s'.sec$. Therefore, we can apply the rule *REVOKE* of \rightarrow_{auth} to derive $s \rightarrow_{auth} act$.

This completes our proof. \Box

E.3 Database Integrity Proofs

We are now ready to prove that f_{int} satisfies the database integrity property.

LEMMA E.4. For any two states $s = \langle db, U, sec, T, V, c \rangle$, $s' = \langle db', U, sec, T, V, c' \rangle$ in Ω_M and any action $a \in \mathcal{A}_{D,\mathcal{U}}$: 1. $s \sim_{auth} a$ iff $s' \sim_{auth} a$, and 2. $s \sim_{auth}^{appr} a$ iff $s' \sim_{auth}^{appr} a$.

PROOF. It is easy to see that the only rules that depends on db, db', c, and c' are EXECUTE TRIGGER - 1, EXECUTE TRIGGER - 2, and EXECUTE TRIGGER - 3. Since they are not used to evaluate whether $s \sim_{auth} a$ and $s \sim_{auth}^{appr} a$ hold for actions in $\mathcal{A}_{D,\mathcal{U}}$, the lemma follows trivially. \Box

LEMMA E.5. Let $P = \langle M, f_{int} \rangle$ be an extended configuration, where M is a system configuration, and L be the P-LTS. Then, for all M-states $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ such that trigger(s) = ϵ and all actions act $\in \mathcal{A}_{D,\mathcal{U}}$, if $f_{int}(s, act) = \top$, then $s \rightsquigarrow_{auth} act$.

PROOF. We prove the theorem by contradiction. Assume, for contradiction's sake, that the claim does not hold. Therefore, there is a state s and an action *act* such that $f_{int}(s, act) = \top$, $trigger(s) = \epsilon$, and $s \nleftrightarrow_{auth} act$. Thus, from $f_{int}(s, act) = \top$, $trigger(s) = \epsilon$, and f_{int} 's definition, it follows $s \rightsquigarrow_{auth}^{appr} act$. From this and Lemma E.3, it follows that $s \rightsquigarrow_{auth} act$ leading to a contradiction. \Box

LEMMA E.6. Let $P = \langle M, f_{int} \rangle$ be an extended configuration, where M is a system configuration, and L be the P-LTS. Then, for all M-states $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ such that trigger(s) = ϵ and all actions act $\in \mathcal{A}_{D,\mathcal{U}}$, and all M-states s' reachable from s in one step through t, if $secEx(s') = \bot$, then $s \rightsquigarrow_{auth} act$.

PROOF. We prove the theorem by contradiction. Assume, for contradiction's sake, that the claim does not hold. Therefore, there are two states s and s' and an action act such that s' is reachable in one step from s through act, $secEx(s') = \bot$, $trigger(s) = \epsilon$, and $s \nleftrightarrow_{auth} act$. From $secEx(s') = \bot$ and the LTS's rules, it follows that $f_{int}(s, act) = \top$. From this, $trigger(s) = \epsilon$, and f_{int} 's definition, it follows $s \rightsquigarrow_{auth}^{appr} act$. From this and Lemma E.3, it follows that $s \rightsquigarrow_{auth} act$ leading to a contradiction. \Box

LEMMA E.7. Let $P = \langle M, f_{int} \rangle$ be an extended configuration, where M is a system configuration, and L be the P-LTS. Then, for all M-states $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and all triggers $t \in TRIGGER_D$ such that trigger(s) = t, the following hold:

- 1. If $f_{int}(s,c) = \top$ and $[\psi]^{db} = \bot$, then $s \rightsquigarrow_{auth} t$, where $c = trigCond(s) = \langle u, \text{SELECT}, \psi \rangle$.
- 2. If $f_{int}(s,c) = \top$, $[\psi]^{db} = \top$, and $f_{int}(s,a) = \top$, then $s \rightsquigarrow_{auth} t$, where $c = trigCond(s) = \langle u, \text{SELECT}, \psi \rangle$ and a = trigAct(s).

PROOF. We prove both claims by contradiction. Assume, for contradiction's sake, that the first claim does not hold. Therefore, there is a state s and a trigger t such that $f_{int}(s,c) = \top$ and $[\psi]^{db} = \bot$ and $s \not\sim_{auth} t$. From $[\psi]^{db} = \bot$, trigger(s) = t, and the rule EXECUTE TRIGGER - 3, it follows that $s \sim_{auth} t$ holds, which leads to a contradiction. Assume, for contradiction's sake, that the second claim does not hold. Therefore, there is a state s and a trigger t such that $f_{int}(s,c) = \top$, $[\psi]^{db} = \top$, $f_{int}(s,a) = \top$, and $s \not\sim_{auth} t$. From $f_{int}(s,a) = \top$, it follows that $s \sim_{auth} t$ holds leading to a contradiction. This completes the proof. \Box

LEMMA E.8. Let $P = \langle M, f_{int} \rangle$ be an extended configuration, where M is a system configuration, and L be the P-LTS. Then, for all M-states $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$, all triggers $t \in TRIGGER_D$, and all M-states s' reachable from s in one step through t, if $secEx(s') = \bot$, then $s \sim_{auth} t$.

PROOF. We prove the theorem by contradiction. Assume, for contradiction's sake, that the claim does not hold. Therefore, there are two states s and s' and a trigger t such that s' is reachable in one step through t from s, $secEx(s') = \bot$, and $s \not\sim_{auth} t$. In the following, let $c = \langle u, \text{SELECT}, \psi \rangle$ be trigCond(s) and a be trigAct(s). Since t is a trigger, s' is reachable in one-step from s through t, and $secEx(s') = \bot$, there are two cases, according to the LTS rules:

- f_{int}(s,c) = ⊤ and [ψ]^{db} = ⊥. In this case, we can always apply the rule EXECUTE TRIGGER 3 in the state s to derive s →_{auth} t leading to a contradiction.
 f_{int}(s,c) = ⊤, [ψ]^{db} = ⊤, and f_{int}(s", a) = ⊤, where
- 2. $f_{int}(s,c) = \top$, $[\psi]^{ab} = \top$, and $f_{int}(s'',a) = \top$, where s'' is the state obtained from s by updating the context according to the LTS rules. From f_{int} 's definition and $f_{int}(s'',a) = \top$, it follows $s'' \sim_{auth}^{appr} t$. From this and Lemma E.3, it follows $s'' \sim_{auth} t$. Since s and s'' are equivalent modulo the context's history and the context's history is not used in the rules defining \sim_{auth} , it also follows that $s \sim_{auth} t$ holds. This lead to a contradiction.

Both cases lead to a contradiction. This completes the proof. $\hfill\square$

We are now ready to prove our main result, namely that f_{int} provides database integrity.

THEOREM E.1. Let $P = \langle M, f_{int} \rangle$ be an extended configuration, where $M = \langle D, \Gamma \rangle$ is a system configuration. The PDP f_{int} provides database integrity with respect to P.

PROOF. To show that f_{int} satisfies the database integrity property, we have to prove that for all reachable states $s = \langle db, U, sec, T, V, c \rangle$:

- 1. for all states s' reachable from s in one step through an action $a \in \mathcal{A}_{D,\mathcal{U}}$, if $secEx(s') = \bot$, then $s \rightsquigarrow_{auth} a$,
- 2. for all states s' reachable from s in one step through a trigger $t \in \mathcal{TRIGGER}_D$, if $secEx(s') = \bot$, then $s \sim_{auth} t$.

The first condition has been proved in Lemma E.6 and the second one has been proved in Lemma E.8. Therefore, f_{int} satisfies the database integrity property. \Box

We also prove that, by using f_{int} , any reachable state has a consistent policy. This is the underlying reason why f_{int} prevents Attacks 2 and 3.

LEMMA E.9. Let $P = \langle M, f_{int} \rangle$ be an extended configuration, where $M = \langle D, \Gamma \rangle$ is a system configuration. For each reachable state $s = \langle db, U, sec, T, V, c \rangle$, $s \rightsquigarrow_{auth} g$ for all $g \in sec$.

PROOF. We claim that, for any run r, the state last(r) is such that for all $p \in last(r).sec$, $last(r) \sim_{auth} p$. From this, the lemma follows trivially.

We now prove that for any run r, the state last(r) is such that for all $p \in last(r).sec$, $last(r) \sim_{auth} p$. We do this by structural induction on the length of the run r.

Base Case: The base case consists of the runs containing only one initial state. Note that an initial state contains only grants issued by *admin*, together with views and triggers owned by *admin*. It is easy to see that for any permission $p = \langle op, u, pr, admin \rangle$ in a policy *sec* in an initial state *s*, it holds that $s \sim_{auth} p$. There are two cases:

- 1. The privilege pr in p is such that $pr \in \mathcal{PRIV}_D \setminus \mathcal{PRIV}_D^{\text{SELECT}, \mathcal{VIEW}_D^{oumer}}$. Then, $s \sim_{auth} p$ by the rule *GRANT-2*.
- 2. The privilege pr in p is such that pr is in the set $\mathcal{PRIV}_D^{\text{SELECT}, \mathcal{VIEW}_D^{ouner}}$. Recall that admin is the owner of all views in the state. Then, $s \sim_{auth} p$ by the rule *GRANT-3*. Indeed, admin can read (and delegate the SE-LECT permission over) all tables in the database. Therefore, $hasAccess(s, D, admin, \oplus^*)$ and $determines_M$ (D, \emptyset, q) hold for any query q.

This complete the proof for the base case.

Induction Step: We now assume that for all runs r' of length less than the length of r, the state last(r') is such that for all $p \in last(r').sec$, $last(r') \sim_{auth} p$. Let r' be the run $r^{|r|-1}$. There are two cases, depending on whether *act* raises an exception or not.

- 1. $secEx(last(r)) = \bot$ and $Ex(last(r)) = \emptyset$. There are a number of cases depending on *act*:
 - (a) $act \text{ is } \langle u, \text{INSERT}, R, \overline{t} \rangle, \langle u, \text{DELETE}, R, \overline{t} \rangle, \langle u, \text{SELECT}, q \rangle, \langle u, \text{ADD}_\text{USER}, u' \rangle, \text{ or } \langle u, \text{CREATE}, o \rangle.$ In these cases, last(r').sec = last(r).sec. Furthermore, $last(r').U \subseteq last(r).U$, $last(r').T \subseteq last(r).T$, and $last(r').V \subseteq last(r).V$. From this and the fact that $last(r') \rightsquigarrow_{auth} g$ for all $g \in last(r).sec$, it follows that $last(r) \rightsquigarrow_{auth} g$ for all $g \in last(r).sec$.
 - (b) act is ⟨op, u, p, u'⟩, where op ∈ {⊕, ⊕*}. From secEx(last(r)) = ⊥, it follows that last(r') →_{auth} act. From the induction hypothesis, it follows that last(r') →_{auth} g for all g ∈ last(r').sec. We claim that, for any grant statement g, if ⟨db, U, sec, T, V, c⟩ →_{auth} g, then ⟨db', U, sec', T, V, c'⟩ →_{auth} g for any policy such that sec ⊆ sec'. From the claim, it follows that last(r) →_{auth} act and last(r) →_{auth} g for all g ∈ last(r').sec = {act} ∪ last(r').sec, it follows that last(r) →_{auth} g for all g ∈ last(r).sec.

sec, $T, V, c \rangle \sim_{auth} g$, then $\langle db', U, sec', T, V, c' \rangle \sim_{auth} g$, where $sec \subseteq sec'$, follows trivially from the definition of the rules for **GRANT** statements.

(c) act is $\langle \ominus, u, p, u' \rangle$. From $secEx(last(r)) = \bot$, it follows that $last(r') \sim_{auth} act$. From this, it fol-

lows that $s' \rightsquigarrow_{auth}^{appr} g$ for all $g \in s'.sec$, where s' = applyRev(last(r'), act). From this and Lemma E.3, it follows that $s' \rightsquigarrow_{auth} g$ for all $g \in s'.sec$. Recall that last(r) and s' are equivalent modulo the database and the context. From this, Lemma E.4, and $s' \rightsquigarrow_{auth} g$ for all $g \in s'.sec$, it follows that $last(r) \rightsquigarrow_{auth} g$ for all $g \in last(r).sec$.

- (d) act is a trigger and the WHEN condition is not satisfied. In this case, last(r') and last(r) are equivalent modulo the context. From this, the induction hypothesis, and Lemma E.4, it follows that $last(r) \sim_{auth} g$ for all $g \in last(r).sec$.
- (e) act is a trigger and the WHEN condition is satisfied. In this case, the proof is the same as the previous cases depending on the trigger's action.
- 2. $secEx(last(r)) = \top$ or $Ex(last(r)) \neq \emptyset$. From this and the LTS's rules, it follows that there is a state $s' \in \{last(r^i)| 1 \leq i \leq |r| - 1\}$ such that pState(last(r)) = pState(s') (because there has been a roll-back). Let sec be the policy in s'. From the induction hypothesis, it follows that for all $p \in sec, s' \sim_{auth} p$. From this fact, the \sim_{auth} 's definition, pState(last(r)) = pState(s'), and Lemma E.4, it follows that for all $p \in last(r).sec$, also $last(r) \sim_{auth} p$.

This complete the proof for the induction step. This completes the proof. \Box

E.4 Complexity Proofs

THEOREM E.2. The data complexity of f_{int} is O(1).

PROOF. Let $M = \langle D, \Gamma \rangle$ be some fixed system configuration, $a \in \mathcal{A}_{D,U}$ be some fixed action, $u \in \mathcal{U}$ be some fixed user, $U \subseteq \mathcal{U}$ be some fixed set of users, $sec \in \Omega_{U,D}^{sec}$ be some fixed policy, T be some fixed set of triggers over D whose owners are in U, V be some fixed set of views over D whose owners are in U, and c be some fixed context. Furthermore, let $db \in \Omega_D^{\Gamma}$ be a database state such that $\langle db, U, sec, T, V, c \rangle \in \Omega_M$. We denote by s the state $\langle db, U, sec, T, V, c \rangle$. We can check whether $f_{int}(s, a) = \top$ as follows:

- 1. If $trigger(s) = \epsilon$, then return \top iff $s \sim appr_{auth}^{appr} a$.
- 2. If $trigger(s) \neq \epsilon$ and a = trigCond(s), return \top .
- 3. If $trigger(s) \neq \epsilon$ and a = trigAct(s), return \top iff both $s \rightsquigarrow_{auth}^{appr} getAction(stmt, ow, tpl(s)) = \top$ and $s \rightsquigarrow_{auth}^{appr} getAction(stmt, invoker(s), tpl(s)) = \top$, where $trigger(s) = \langle id, ow, ev, R, \phi, stmt, m \rangle$.
- 4. Otherwise return \perp .

Note that in the above algorithm we use all the rules in $\sim _{auth}^{appr}$ other than *EXECUTE TRIGGER* - 1, *EXECUTE TRIGGER* - 2, and *EXECUTE TRIGGER* - 3. These are the only rules that depend on the database state. Therefore, evaluating any statement of the form $s \sim _{auth}^{appr} a$ can be done in constant time in terms of data complexity. Therefore, all steps 1–4 can be executed in constant time in terms of data complexity. \Box

LEMMA E.10. The complexity of apprDet is $O(|\phi|^3 + |\phi| \cdot max^2 \cdot |V|^3)$.

PROOF. Let $M = \langle D, \Gamma \rangle$ be a system configuration, $T \subseteq D$ be a set of tables, $V \subseteq \mathcal{VIEW}_{D^{owner}}^{owner}$ be a set of views over D, ϕ be a formula over D, and s be an M-state. An algorithm that computes $apprDet(T, V, \phi, s, M)$ is as follows: 1. Compute the set extend(M, s, V).

- 2. Compute the set S of all sub-formulae of ϕ , i.e., $S = subF(\phi)$. Note that $\phi \in subF(\phi)$.
- 3. Sort by length the set of sub-formulae in such a way that the shortest formula is the first one.
- 4. Let $S' := \emptyset$.
- 5. For each sub-formula ψ in the sequence:
 - (a) Check whether there is a view $v \in extend(M, s, V)$ such that ψ is v's definition. If this is the case, let $S' = S' \cup subF(\psi).$
 - (b) Make a case distinction on ψ :
 - i. If $\psi := R(\overline{x})$ and $R \in T$, $S' = S' \cup subF(\psi)$.
 - ii. If $\psi := V(\overline{x})$ and $\langle V, u, q, O \rangle \in V$, $S' = S' \cup subF(\psi)$.
 - iii. If $\psi := \alpha \land \beta$ and $\alpha, \beta \in S'$, then $S' = S' \cup subF(\psi)$.
 - iv. If $\psi := \alpha \lor \beta$ and $\alpha, \beta \in S'$, then $S' = S' \cup subF(\psi)$.
 - v. If $\psi := \neg \alpha$ and $\alpha \in S'$, then $S' = S' \cup subF(\psi)$.
 - vi. If $\psi := \exists x.\alpha$ and $\alpha \in S'$, then $S' = S' \cup subF(\psi)$.
 - vii. If $\psi := \forall x.\alpha$ and $\alpha \in S'$, then $S' = S' \cup subF(\psi)$.

6. $apprDet(T, V, \phi, s, M) = \top$ iff S = S'.

We claim that the size of $subF(\phi)$ is $O(|\phi|)$ and that computing $subF(\psi)$ can be done in $O(|\phi|^2)$. Let max be the maximum length of the definitions of the views in V. We also claim that the size of the set extend(M, s, V) is $O(max \cdot |V|^3)$ and that extend(M, s, V) can be computed in $O(|V|^3 \cdot max^2)$. From these claims, it follows that the fifth step can be executed in $O(|S| \cdot ((|extend(M, s, V)| + |S|) + |S|^2)))$. After some simplification, it follows that the fifth step can be executed in $O(|S|^3 + |S| \cdot |extend(M, s, V)|)$. From this, $|S| = O(|\phi|)$, and $|extend(M, s, V)| = O(max \cdot |V|^3)$, it follows that the fifth step can be executed in $O(|S|^3 + |S| \cdot |extend(M, s, V)|)$. From this, $|S| = O(|\phi|)$, and $|extend(M, s, V)| = O(max \cdot |V|^3)$, it follows that the fifth step can be executed in $O(|\phi|^3 + |\phi| \cdot max^2 \cdot |V|^3)$.

We now prove our claims about $subF(\phi)$. It is easy to see that the size of $subF(\phi)$ is $O(|\phi|)$. Indeed, we can view the formula ϕ as a tree, where the operators are the internal nodes and the predicates and equalities are the leaves. Then, there is a sub-formula for each sub-tree. From this and from the fact that the number of sub-tree of a tree is linear in the number of nodes, it follows that $|subF(\phi)|$ is $O(|\phi|)$. Note that computing $subF(\psi)$ can be done in $O(|\phi|^2)$.

We now prove our claims about extend(M, s, V). Let max be the maximum length of the definitions of the views in V. For each $v \in V$, computing inline(v, s) can be done in $O(|v| \cdot |V| \cdot max)$. Furthermore, since the views' definitions are acyclic, after |V| applications of *inline* there are no views in the views' definition. Therefore, for each $v \in V$, we can compute all views derivable from v in $O(|v| \cdot |V|^2 \cdot max)$. Therefore, we can compute the set extend(M, s, V) in $O(|V|^3 \cdot max^2)$. Therefore, also the size of extend(M, s, V) is less than $O(max \cdot |V|^3)$. \Box

$$\begin{array}{c} u, u' \in U \quad k \in D, \quad \tilde{i} \in \operatorname{dom}^{M} \quad g = (op, u, (op', R), u') \quad g \in \operatorname{sec}} \\ (db, U, sec, T, V, c) \rightarrow \operatorname{sec}^{M} \quad g = (op, u, (DENTE, DELTE)) \\ (db, U, sec, T, V, c) \rightarrow \operatorname{sec}^{M} \quad g = (op, u, (DENTE, DELTE)) \\ (db, U, sec, T, V, c) \rightarrow \operatorname{sec}^{M} \quad g = (op, u, (DENTE, UIGQER, L), u') \\ g \in \operatorname{sec} \quad (db, U, sec, T, V, c) \rightarrow \operatorname{sec}^{M} \quad (u, OEEATE, v) \\ (db, U, sec, T, V, c) \rightarrow \operatorname{sec}^{M} \quad g = (op, u, (DENTE, UIGQER, L), u') \\ (db, U, sec, T, V, c) \rightarrow \operatorname{sec}^{M} \quad (u, OEEATE, v) \\ (db, U, sec, T, V, c) \rightarrow \operatorname{sec}^{M} \quad (u, OEEATE, v) \\ (db, U, sec, T, V, c) \rightarrow \operatorname{sec}^{M} \quad (u, OEEATE, v) \\ (db, U, sec, T, V, c) \rightarrow \operatorname{sec}^{M} \quad (u, OEEATE, v) \\ (db, U, sec, T, V, c) \rightarrow \operatorname{sec}^{M} \quad (u, OEEATE, v) \\ (db, U, sec, T, V, c) \rightarrow \operatorname{sec}^{M} \quad (u, OEEATE, v) \\ (db, U, sec, T, V, c) \rightarrow \operatorname{sec}^{M} \quad (u, OEEATE, v) \\ (db, U, sec, T, V, c) \rightarrow \operatorname{sec}^{M} \quad (u, OEEATE, v) \\ (db, U, sec, T, V, c) \rightarrow \operatorname{sec}^{M} \quad (u, OEEATE, v) \\ (db, U, sec, T, V, c) \rightarrow \operatorname{sec}^{M} \quad (u, U, Sec, T, V, c) \rightarrow \operatorname{sec}^{M} \quad (u, V, V) \\ (db, U, sec, T, V, c) \rightarrow \operatorname{sec}^{M} \quad (u, U, Sec, T, V, c) \rightarrow \operatorname{sec}^{M} \quad (u, V, V) \\ (db, U, sec, T, V, c) \rightarrow \operatorname{sec}^{M} \quad (u, U, Sec, T, V, c) \rightarrow \operatorname{sec}^{M} \quad (u, V, V) \\ (db, U, sec, T, V, c) \rightarrow \operatorname{sec}^{M} \quad (u, U, Sec, T, V, c) \rightarrow \operatorname{sec}^{M} \quad (u, V, V) \\ (db, U, sec, T, V, c) \rightarrow \operatorname{sec}^{M} \quad (u, V, V, V) \\ (db, U, sec, T, V, c) \rightarrow \operatorname{sec}^{M} \quad (u, V, V, V) \\ (db, U, sec, T, V, c) \rightarrow \operatorname{sec}^{M} \quad (u, V, V) \\ (db, U, sec, T, V, c) \rightarrow \operatorname{sec}^{M} \quad (u, V, V) \\ (db, U, sec, T, V, c) \rightarrow \operatorname{sec}^{M} \quad (u, V, V) \\ (db, U, sec, T, V, c) \rightarrow \operatorname{sec}^{M} \quad (u, V, V, V) \\ (db, U, sec, T, V, c) \rightarrow \operatorname{sec}^{M} \quad (u, V, V) \\ (db, U, sec, T, V, c) \rightarrow \operatorname{sec}^{M} \quad (u, V, V) \\ (db, U, sec, T, V, c) \rightarrow \operatorname{sec}^{M} \quad (u, V, V) \\ (db, U, sec, T, V, c) \rightarrow \operatorname{sec}^{M} \quad (u, V, V) \\ (db, U, sec, T, V, c) \rightarrow \operatorname{sec}^{M} \quad (u, V, V) \\ (db, U, sec, T, V, c) \rightarrow \operatorname{sec}^{M} \quad (u, V, V) \\ (db, U, sec, T, V, c) \rightarrow \operatorname{sec}^{M} \quad (u, V) \\ (db, U, sec, T, V, c) \rightarrow \operatorname{sec}^{M} \quad (u, V, V) \\ (db, U, sec, T, V, c) \rightarrow \operatorname{sec}^{M} \quad (u, V, V) \\ (db, U, sec, T, V, c) \rightarrow \operatorname{sec}^{M} \quad ($$

$$\exists u' \in U, g \in sec, op' \in \{\oplus^*, op\}. g = \langle op', u, \langle \texttt{SELECT}, V \rangle, u' \rangle \\ \land \langle db, U, sec, T, V, c \rangle \rightsquigarrow_{auth}^{appr} g \}$$

Figure 37: Definition of the \sim_{auth}^{appr} relation

F. ENFORCING DATA CONFIDENTIALITY

Here, we first formalize the PDP f_{conf} . Afterwards, we prove that it provides the data confidentiality property. Finally, we show that its data complexity is AC^{0} .

Let $M = \langle D, \Gamma \rangle$ be a system configuration. The PDP f_{conf}^u is shown in Figure 38. The function is parametrized by the user u against which the PDP provides data confidentiality. The PDP $f_{conf}^u(s, a)$ models the function $f_{conf}(s, a, u)$ shown in Figure 8. The mapping between the PDP f_{conf}^u and the pseudo-code shown in Figure 8 is immediate.

The PDP f_{conf}^u uses a number of auxiliary functions. Recall that the function tr, defined in Appendix A, takes as input an *M*-state $s \in \Omega_M$ and returns the definition of the trigger that the system is executing. If the system is not executing any trigger, then $tr(s) = \epsilon$. Equivalently, tr(s) is the first trigger in the sequence of triggers returned by triggers(s).

The function tDet takes as input a view $v = \langle i, o, \{\overline{x} | \phi\}, m \rangle$ $\in \mathcal{VIEW}_D$, a state $s \in \Omega_M$, and a system configuration $M = \langle D, \Gamma \rangle$ and returns as output the smallest set of tables in D that determines v, namely the smallest set $T \in \mathbb{P}(D)$ such that $apprDet(T, \emptyset, \phi, s, M)$ holds, where apprDet is defined in Appendix E. Note that such a set is always unique.

The function *noLeak*, defined in Figure 38, takes as input a state *s*, an **INSERT** or **DELETE** action *a*, and a user *u* and checks whether the execution of the action *a* may leak sensitive information through the views that the user *u* can read, as shown in Example 5.4. Note that the function *noLeak* returns \top if there is no leakage of sensitive information and returns \bot if the action *a* may leak sensitive information through the views the user *u* can read in the state *s*. We remark that the function leak(a, s, u) used in the algorithm in Section 6 returns is defined as leak(a, s, u) = noLeak(s, a, u).

We now define the *Dep*, getInfoS, getInfoV, and getInfo functions. The function *Dep* is as follows. $Dep(\langle u, \text{INSERT}, R, \overline{t} \rangle, \Gamma)$ returns the set containing all the formulae in Γ of the form $\forall \overline{x}, \overline{y}, \overline{y}', \overline{z}, \overline{z}'. (R(\overline{x}, \overline{y}, \overline{z}) \land R(\overline{x}, \overline{y}', \overline{z}')) \Rightarrow \overline{y} = \overline{y}'$ or $\forall \overline{x}, \overline{z}. R(\overline{x}, \overline{z}) \Rightarrow \exists \overline{w}. S(\overline{x}, \overline{w})$, whereas $Dep(\langle u, \text{DELETE}, R, \overline{t} \rangle, \Gamma)$ returns the set containing all the formulae in Γ of the form $\forall \overline{x}, \overline{z}. S(\overline{x}, \overline{z}) \Rightarrow \exists \overline{w}. R(\overline{x}, \overline{w}).$

The function getInfoS is defined as follows:

- $getInfoS(\langle u, \text{INSERT}, R, (\overline{v}, \overline{w}, \overline{q}) \rangle, \phi_{funct}^R)$ is the formula $\neg \exists \overline{y}, \overline{z}.R(\overline{v}, \overline{y}, \overline{z}) \land \overline{y} \neq \overline{w}, \text{ where } \phi_{funct}^R$ is a formula of the form $\forall \overline{x}, \overline{y}, \overline{y}', \overline{z}, \overline{z}'.(R(\overline{x}, \overline{y}, \overline{z}) \land R(\overline{x}, \overline{y}', \overline{z}')) \Rightarrow \overline{y} = \overline{y}'.$
- $getInfoS(\langle u, \text{INSERT}, R, (\overline{v}, \overline{w}) \rangle, \phi_{incl}^{R,S})$ is the formula $\exists \overline{y}$. $S(\overline{v}, \overline{y})$, where $\phi_{incl}^{R,S}$ is a formula of the form $\forall \overline{x}, \overline{z}. R(\overline{x}, \overline{z}) \Rightarrow \exists \overline{w}. S(\overline{x}, \overline{w}).$
- $getInfoS(\langle u, \text{DELETE}, R, (\overline{v}, \overline{w}) \rangle, \phi_{incl}^{S,R})$ is the formula $\forall \overline{x}, \overline{z} : (S(\overline{x}, \overline{z}) \Rightarrow \overline{x} \neq \overline{v}) \lor \exists \overline{y}. (R(\overline{v}, \overline{y}) \land \overline{y} \neq \overline{w})$, where $\phi_{incl}^{S,R}$ is a formula of the form $\forall \overline{x}, \overline{z}. S(\overline{x}, \overline{z}) \Rightarrow \exists \overline{w}. R(\overline{x}, \overline{w})$.

• $getInfoS(act, \phi) = \top$ otherwise.

The function getInfoV is defined as follows:

- getInfoV($\langle u, \text{INSERT}, R, (\overline{v}, \overline{w}, \overline{q}) \rangle, \phi_{funct}^R$) is the formula $\exists \overline{y}, \overline{z}.R(\overline{v}, \overline{y}, \overline{z}) \land \overline{y} \neq \overline{w}, \text{ where } \phi_{funct}^R$ is a formula of the form $\forall \overline{x}, \overline{y}, \overline{y}', \overline{z}, \overline{z}'. (R(\overline{x}, \overline{y}, \overline{z}) \land R(\overline{x}, \overline{y}', \overline{z}')) \Rightarrow \overline{y} = \overline{y}'.$
- getInfo $V(\langle u, \text{INSERT}, R, (\overline{v}, \overline{w}) \rangle, \phi_{incl}^{R,S})$ is the formula $\forall \overline{x}, \overline{y}, S(\overline{x}, \overline{y}) \Rightarrow \overline{x} \neq \overline{v}$, where $\phi_{incl}^{R,S}$ is a formula of the form $\forall \overline{x}, \overline{z}. R(\overline{x}, \overline{z}) \Rightarrow \exists \overline{w}. S(\overline{x}, \overline{w}).$
- $getInfoV(\langle u, \text{DELETE}, R, (\overline{v}, \overline{w}) \rangle, \phi_{incl}^{S,R})$ is the formula $\exists \overline{z}$. $S(\overline{v}, \overline{z}) \land \forall \overline{y}. (R(\overline{v}, \overline{y}) \Rightarrow \overline{y} = \overline{w})$, where $\phi_{incl}^{S,R}$ is a formula of the form $\forall \overline{x}, \overline{z}. S(\overline{x}, \overline{z}) \Rightarrow \exists \overline{w}. R(\overline{x}, \overline{w}).$

• $getInfoV(act, \phi) = \top$ otherwise. The function getInfo is as follows:

$$getInfo(\langle u, op, R, \bar{t} \rangle) = \begin{cases} \neg R(\bar{t}) & \text{if } op = \texttt{INSERT} \\ R(\bar{t}) & \text{if } op = \texttt{DELETE} \end{cases}$$

In §F.1 we describe the *secure* function and we show that it is a sound, under-approximation of the concept of secure judgments. Afterwards, in §F.2 we prove that f_{conf}^u provides data confidentiality with respect to the user u. Finally, in §F.3 we prove that the data complexity of f_{conf}^u is AC^0 . In the rest of the paper, instead of writing $secure_{P,\cong_{P,u}}$ we simply write $secure_{P,u}$ and we omit the reference to the indistinguishability relation $\cong_{P,u}$ defined in Appendix D.

F.1 Checking a judgment's security

We still have to define the secure : $\mathcal{U} \times RC_{bool} \times \Omega_M \rightarrow \{\top, \bot\}$ function that determines a given judgment's security. In more detail, the secure function is as follows:

$$secure(u, \phi, s) = \begin{cases} \top & \text{if } [\phi_{s,u}^{rw}]^{s.db} = \bot \\ \bot & \text{otherwise} \end{cases}$$

In the following, we assume that both the formula ϕ and the set of views V in the state s contain just views with owner's privileges. This is without loss of generality. Indeed, views with activator's privileges are just syntactic sugar, they do not disclose additional information to a user other than what he is already authorized to read because they are executed under the activator's privileges. If ϕ and s contain views with activator's privileges, we can compute another formula ϕ' and a state s' without views with activator's privileges as follows. We replace, in the formula ϕ , the predicates of the form $V(\overline{x})$, where V is a view with activator's privileges, with V's definition, and we repeat this process until the resulting formula ϕ' no longer contains views with activator's privileges. Similarly, the set V' is obtained from V by (1) removing all views with activator's privileges, and (2) for each view $v \in V$ with owner's privileges, replacing the predicates of the form $V(\overline{x})$ in v's definition, where V is a view with activator's privileges, with V's definition until v's definition no longer contains views with activator's privileges. The security policy sec' is also obtained from sec by removing all references to views with activator's privileges. Finally, $secure(u, \phi, \langle db, U, sec, T, V, c \rangle)$ is just $secure(u, \phi', \langle db, U, sec', T, V', c \rangle).$

Before defining the $\phi_{s,u}^{\top}$ and $\phi_{s,u}^{\perp}$ rewritings, we define query containment. Let $M = \langle D, \Gamma \rangle$ be a system configuration. Given two formulae $\phi(\overline{x})$ and $\psi(\overline{y})$, we write $\phi \subseteq_M \psi$ to denote that ϕ is contained in ψ , i.e., $\forall d \in \Omega_D^{\Gamma}$. $[\{\overline{x}|\phi\}]^d \subseteq$ $[\{\overline{y}|\psi\}]^d$. Determining whether $\phi \subseteq_M \psi$ holds is undecidable for RC [3]. Hence, we develop a sound, under-approximation of query containment. Figure 39 describes the rules defining our under-approximation. For simplicity's sake, the rules are defined only for relational calculus formulae that do not use views. To check whether $\phi \subseteq_M \psi$ holds for two formulae ϕ and ψ that use views, we first compute the formulae ϕ' and ψ' , obtained by replacing views' identifiers with their definitions, and then we check whether $\phi' \subseteq_M \psi'$ using the rules in Figure 39. This preserves containment since ϕ and ψ are semantically equivalent to ϕ' and ψ' . Both in the rules and in the proof of Lemma F.1, we assume that there is a total ordering \leq_{var} over the set of all possible variable identifiers. This ensures that, given a formula ϕ , there is a unique non-boolean query $\{\overline{x} \mid \phi\}$ associated to it, where the

$$f^{u}_{conf}(s, act) = \begin{cases} f^{u}_{conf, \mathsf{S}}(s, act) & \text{if } act = \langle u', \mathsf{SELECT}, q \rangle \\ f^{u}_{conf, \mathsf{I}, \mathsf{D}}(s, act) & \text{if } act = \langle u', \mathsf{INSERT}, R, \overline{t} \rangle \\ f^{u}_{conf, \mathsf{I}, \mathsf{D}}(s, act) & \text{if } act = \langle u', \mathsf{DELETE}, R, \overline{t} \rangle \\ f^{u}_{conf, \mathsf{G}, \mathsf{R}}(s, act) & \text{if } act = \langle op, u'', p, u' \rangle \land op \in \{\oplus, \oplus^*\} \\ \top & \text{if } u = admin \\ \top & \text{otherwise} \end{cases}$$

$$f_{conf,I,\mathbb{D}}^{u}(s,act) = \begin{cases} secure(u, getInfo(act), s) \land & \text{if } act = \langle u, op, R, \overline{t} \rangle \land trigger(s) = \epsilon \land noLeak(s, act, u) = \top \\ \land_{\gamma \in Dep(act,\Gamma)} secure(u, getInfoS(\gamma, act), s) \\ \bot & \text{if } act = \langle u, op, R, \overline{t} \rangle \land trigger(s) = \epsilon \land noLeak(s, act, u) = \bot \\ secure(u, getInfo(act), s) \land & \text{if } invoker(s) = u \land trigger(s) \neq \epsilon \land noLeak(s, act, u) = \top \\ \land_{\gamma \in Dep(act,\Gamma)} secure(u, getInfoS(\gamma, act), s) \\ \land secure(u, getInfoV(\gamma, act), s) \\ \bot & \text{if } invoker(s) = u \land trigger(s) \neq \epsilon \land noLeak(s, act, u) = \bot \\ \top & \text{otherwise} \end{cases}$$

$$f^{u}_{conf,S}(s, \langle u', \texttt{SELECT}, q \rangle) = \begin{cases} secure(u, q, s) & \text{if } u' = u \land trigger(s) = \epsilon \\ secure(u, q, s) & \text{if } invoker(s) = u \land trigger(s) \neq \epsilon \\ \top & \text{otherwise} \end{cases}$$

$$f^{u}_{conf,\mathsf{G}}(s,\langle op,u'',p,u'\rangle) = \begin{cases} \bot & \text{if } u'' = u \land u' = u \land trigger(s) = \epsilon \land op \in \{\oplus,\oplus^*\} \land p = \langle \text{SELECT}, O \rangle \land (\oplus, \text{SELECT}, O) \not\in permissions(s, u) \\ \bot & \text{if } u'' = u \land invoker(s) = u \land trigger(s) \neq \epsilon \land op \in \{\oplus,\oplus^*\} \land p = \langle \text{SELECT}, O \rangle \land (\oplus, \text{SELECT}, O) \not\in permissions(s, u) \\ \neg & \text{otherwise} \end{cases}$$
$$\left\{ \begin{array}{c} \top & \text{if } u' = u \land trigger(s) = \epsilon \land \forall v \in \mathcal{VIEW}_D. ((\langle \oplus, \text{SELECT}, v \rangle \in permissions(s, u) \land R \in tDet(v, s, M)) \Rightarrow (\forall o \in tDet(v, s, M). \langle \oplus, \text{SELECT}, o \rangle \in permissions(s, u)) \\ \neg & \text{if } invoker(s) = u \land trigger(s) \neq \epsilon \land \forall v \in \mathcal{VIEW}_D. ((\langle \oplus, \text{SELECT}, v \rangle \in permissions(s, u))) \end{cases} \right.$$

$$R \in tDet(v, s, M)) \Rightarrow (\forall o \in tDet(v, s, M). \langle \oplus, \texttt{SELECT}, o \rangle \in permissions(s, u)))$$

$$\perp \quad \texttt{otherwise}$$
Figure 38: Access control function f^u_{conf}

variables in \overline{x} are those in $free(\phi)$ ordered according to \leq_{var} . Lemma F.1 proves that the rules in Figure 39 are a sound,

under-approximation of query containment.

LEMMA F.1. Let $M = \langle D, \Gamma \rangle$ be a system configuration, and $\phi(\overline{x})$ and $\psi(\overline{y})$ be two formulae. If $\phi \subseteq_M \psi$, according to the rules in Figure 39, then $\forall d \in \Omega_D^{\Gamma}. [\{\overline{x}|\phi\}]^d \subseteq [\{\overline{y}|\psi\}]^d$, where \overline{x} (respectively \overline{y}) is the tuple defined by the variables in free(ϕ) (respectively free(ψ)) ordered according to \leq_{var} .

PROOF. $\phi \subseteq_M \psi$ iff there is a finite derivation that ends in $\phi \subseteq_M \psi$ created using the rules in Figure 39. We prove our claim by structural induction on the derivation's length.

Base Case Assume that the derivation has length 1. There are four cases depending on the rule used to derive $\phi \subseteq_M \psi$:

- 1. Rule And. From the rule's definition, it follows that $free(\phi) = free(\phi \land \psi) = \overline{x}$. Let $d \in \Omega_D^{\Gamma}$ and $\overline{t} \in [\{\overline{x} \mid \phi \land \psi\}]^d$. From $\overline{t} \in [\{\overline{x} \mid \phi \land \psi\}]^d$ and the definition of nonboolean query, it follows that $[(\phi \land \psi)[\overline{x} \mapsto \overline{t}]]^d = \top$. From this and the relational calculus semantics, it follows that $[\phi[\overline{x} \mapsto \overline{t}]]^d = \top$. From this and the definition of non-boolean query, $\overline{t} \in [\{\overline{x} \mid \phi\}]^d$. Therefore, $[\{\overline{x} \mid \phi \land \psi\}]^d \subseteq [\{\overline{x} \mid \phi\}]^d$.
- 2. Rule *Or.* From the rule's definition, it follows that $free(\phi) = free(\phi \lor \psi) = \overline{x}$. Let $d \in \Omega_D^{\Gamma}$ and $\overline{t} \in [\{\overline{x} \mid \phi\}]^d$. From $\overline{t} \in [\{\overline{x} \mid \phi\}]^d$ and the definition of nonboolean query, it follows that $[\phi[\overline{x} \mapsto \overline{t}]]^d = \top$. From this and the relational calculus semantics, it follows that $[(\phi \lor \psi)[\overline{x} \mapsto \overline{t}]]^d = \top$. From this and the definition of non-boolean query, $\overline{t} \in [\{\overline{x} \mid \phi \lor \psi\}]^d$. Therefore, $[\{\overline{x} \mid \phi\}]^d \subseteq [\{\overline{x} \mid \phi \lor \psi\}]^d$.
- 3. Rule *Identity*. From the rule's definition, it follows that $free(\phi) = \overline{x}, free(\psi) = \overline{y}, \text{ and } \phi[\overline{x} \mapsto \overline{y}] = \psi$. Let $d \in \Omega_D^{\Gamma}$ and $\overline{t} \in [\{\overline{x} \mid \phi\}]^d$. From $\overline{t} \in [\{\overline{x} \mid \phi\}]^d$ and the definition of non-boolean query, it follows that $[\phi[\overline{x} \mapsto \overline{t}]]^d = \top$. From this and $\phi[\overline{x} \mapsto \overline{y}] = \psi$, it follows that $[\psi[\overline{y} \mapsto \overline{t}]]^d = \top$. From this and the definition of non-boolean query, $\overline{t} \in [\{\overline{y} \mid \psi\}]^d$. Therefore, $[\{\overline{x} \mid \phi\}]^d \subseteq [\{\overline{y} \mid \psi\}]^d$.
- 4. Rule Inclusion Dependency. From the rule's definition, it follows that $\gamma := \forall \overline{x}, \overline{z}. (R(\overline{x}, \overline{z}) \Rightarrow \exists \overline{w}. S(\overline{x}, \overline{w}))$ is in Γ . Let $d \in \Omega_D^{\Gamma}$ and $\overline{t} \in [\{\overline{x} \mid \exists \overline{z}. R(\overline{x}, \overline{z})\}]^d$. From $\overline{t} \in [\{\overline{x} \mid \exists \overline{z}. R(\overline{x}, \overline{z})\}]^d$ and the definition of non-boolean query, it follows that $[\exists \overline{z}. R(\overline{t}, \overline{z})]^d = \top$. Therefore, there is a tuple $(\overline{t}, \overline{w}) \in d(R)$. From this and $\gamma \in \Gamma$, it follows that there is a tuple $(\overline{t}, \overline{w}') \in d(S)$. From this, it follows that $[\exists \overline{w}. S(\overline{t}, \overline{w})]^d = \top$. From this and the definition of non-boolean query, it follows that $\overline{t} \in$ $[\{\overline{x} \mid \exists \overline{w}. S(\overline{x}, \overline{w})\}]^d$. Therefore, it follows that $[\{\overline{x} \mid \exists \overline{z}. R(\overline{x}, \overline{z})\}]^d \subseteq [\{\overline{x} \mid \exists \overline{w}. S(\overline{x}, \overline{w})\}]^d$ holds.

This completes the proof for the base case.

Induction Step Assume now that the claim holds for all derivations of length less than that of $\phi \subseteq_M \psi$. We now prove that it holds also for $\phi \subseteq_M \psi$. There is just one case, namely $\phi \subseteq_M \psi$ is of the form $\exists x_i. \alpha \subseteq_M \exists y_i. \beta$ and it is obtained by applying the rule *Projection* to $\alpha \subseteq_M \beta$. From the rule, it follows that $\alpha \subseteq_M \beta$ holds. Let $1 \leq u \leq n$ and \overline{t}' (respectively \overline{x}' and \overline{y}') be the tuple obtained from \overline{t} (respectively \overline{x} and \overline{y}) by dropping the *i*-th value (respectively variable). We now prove that $[\{\overline{x}' | \exists x_i. \alpha\}]^d \subseteq [\{\overline{y}' | \exists y_i. \beta\}]^d$. Assume, for contradiction's sake, that this is not the case, namely there is a tuple \overline{v} such that $\overline{v} \in [\{\overline{x}' | \exists x_i. \alpha\}]^d$ but $\overline{v} \notin [\{\overline{y}' | \exists y_i. \beta\}]^d$. From $\overline{v} \in [\{\overline{x}' | \exists x_i. \alpha\}]^d$ and the relational

calculus semantics, it follows that there is a tuple \overline{v}_1 , obtained by adding a value to \overline{v} in the *i*-th position, such that $\overline{v}_1 \in [\{\overline{x}|\alpha\}]^d$. From this, $\alpha \subseteq_M \beta$, and the induction hypothesis, it follows that $\overline{v}_1 \in [\{\overline{y}|\beta\}]^d$. From this and the relational calculus semantics, it follows that $\overline{v} \in [\{\overline{y}'|\exists y_i.\beta\}]^d$. This contradicts the fact that $\overline{v} \notin [\{\overline{y}'|\exists y_i.\beta\}]^d$.

This completes the proof. \Box

$\frac{\mathit{free}(\phi \land \psi) = \mathit{free}(\phi)}{M = \langle D, \Gamma \rangle \mathit{free}(\phi) \neq \emptyset} \ \mathrm{And}$	$\frac{ \substack{free(\phi) = free(\phi \lor \psi) \\ M = \langle D, \Gamma \rangle free(\phi) \neq \emptyset }}{\phi \subseteq_M \phi \lor \psi} \text{ Or }$
$\begin{split} M &= \langle D, \Gamma \rangle n > 1\\ free(\phi) &= \{x_1, \dots, x_n\}\\ free(\psi) &= \{y_1, \dots, y_n\}\\ \underline{1 \leq i \leq n} \phi \subseteq_M \psi\\ \hline \exists x_i.\phi \subseteq_M \exists y_i.\phi \end{split} \text{Projection}$	$ \begin{array}{c} M = \langle D, \Gamma \rangle & n > 0 \\ free(\phi) = \{x_1, \ldots, x_n\} \\ free(\psi) = \{y_1, \ldots, y_n\} \\ \phi[x_1 \mapsto y_1, \ldots, x_n \mapsto y_n] = \psi \\ \phi \subseteq_M \psi \end{array} \text{ Identity} $
$ \begin{array}{c c} M = \langle D, \Gamma \rangle & \overline{x} > 0 \\ \hline \forall \overline{x}, \overline{z}. (R(\overline{x}, \overline{x}) \Rightarrow \exists \overline{w}. S(\overline{x}, \overline{w})) \in \Gamma \\ \hline \exists \overline{z}. R(\overline{x}, \overline{z}) \subseteq_M \exists \overline{w}. S(\overline{x}, \overline{w}) & \text{Dependency} \\ \hline \mathbf{Figure 39: Containment rules} \end{array} $	

Given a table or a view O and a sequence of distinct integers $\overline{i} := (i_1, \ldots, i_n)$ such that $1 \le i_j \le |O|$ for all $1 \le j \le n$, where $0 \leq n < |O|$, the *i*-projection of O, denoted by $O_{\overline{i}}$, is the formula $\exists x_{i_1}, \ldots, x_{i_n}. O(x_1, \ldots, x_{|O|})$. Given a database schema D and a set of views V defined over D, we denote by extVocabulary(D, V) the extended vocabulary obtained by defining all possible projections of tables in D and views in V, i.e., for each $O \in D \cup V$, we define a predicate $O_{\overline{i}}$ for each projection $\exists x_{i_1}, \ldots, x_{i_n} . O(x_1, \ldots, x_{|O|})$ of O. Furthermore, given a relational calculus formula ϕ over D, we denote by $extVoc_{V,D}(\phi)$ the formula obtained by replacing all sub-formulae of the form $\exists \overline{x}. R(\overline{x}, \overline{y})$ with the predicates in extVocabulary(D, V) representing the corresponding projections $R_{\overline{i}}$. Finally, we denote by $inline_{D,V}(\phi)$, where ϕ is a relational calculus formula over extVocabulary(D, V), the formula ϕ' obtained by replacing all predicates associated with projections with the corresponding formulae.

Let S be predicate in extVocabulary(D, V) and s be an M-state. We denote by S_s^{\top} the set of all projections of tables in D and views in V that are contained in S, i.e., $S_s^{\top} := \{R \in extVocabulary(D, V) \mid R(\overline{x}) \subseteq_M S(\overline{y})\}^3$. Similarly, we denote by S_s^{\perp} the set of all projections of tables in D and views in V that contains S, i.e., $S_s^{\perp} := \{R \in extVocabulary(D, V) \mid S(\overline{x}) \subseteq_M R(\overline{y})\}$. Furthermore, we denote by $AUTH_{s,u}$ the set of all tables and views that u is authorized to read in s, i.e., $AUTH_{s,u} := \{v \mid \langle \oplus, \texttt{SELECT}, v \rangle \in permissions(s, u)\}$, and by $AUTH_{s,u}^*$ the set of all the projections obtained from tables and views in $AUTH_{s,u}$.

We are now ready to formally define the $\phi_{s,u}^{\top}$ and $\phi_{s,u}^{\perp}$ rewritings.

Definition F.1. Let $M = \langle D, \Gamma \rangle$ be a system configuration, $s = \langle db, U, sec, T, V, c \rangle$ be an *M*-state, *u* be a user, and ϕ be a relational calculus sentence over *extVocabulary*(*D*, *V*).

The function *bound* takes as input a formula ϕ , a state s, a user u, a variable identifier x, and a value v in $\{\top, \bot\}$. It is inductively defined as follows:

bound(R(ȳ), s, u, x, v), where R is a predicate symbol in extVocabulary(D, V), is ⊤ iff (a) x occurs in ȳ, and (b) the set R^v_{s,u}, which is R^v_s ∩ AUTH^{*}_{s,u}, is not empty.

³With a slight abuse of notation, we write $R(\overline{x}) \subseteq_M S(\overline{y})$ instead of $inline_{D,V}(R(\overline{x})) \subseteq_M inline_{D,V}(S(\overline{y}))$.

- bound(y = z, s, u, x, v) is \top iff x = y and z is a constant symbol or x = z and y is a constant symbol.
- $bound(\top, s, u, x, v) := \bot$.
- $bound(\bot, s, u, x, v) := \bot$.
- $bound(\neg \psi, s, u, x, v) := bound(\psi, s, u, x, \neg v)$, where ψ • is a relational calculus formula.
- $bound(\psi \wedge \gamma, s, u, x, v) := bound(\psi, s, u, x, v) \lor bound(\gamma, v)$ s, u, x, v), where ψ and γ are relational calculus formulae.
- $bound(\psi \lor \gamma, s, u, x, v) := bound(\psi, s, u, x, v) \land bound(\gamma, v)$ s,u,x,v), where ψ and γ are relational calculus formulae.
- $bound(\exists y.\psi, s, u, x, v)$, where ψ is a relational calculus formula, is $bound(\psi, s, u, x, v) \wedge bound(\psi, s, u, y, v)$ if $x \neq y$, and $bound(\exists y.\psi, s, u, x, v) := \bot$ otherwise.
- $bound(\forall y.\psi, s, u, x, v)$, where ψ is a relational calculus formula, is $bound(\psi, s, u, x, v) \land bound(\psi, s, u, y, v)$ if $x \neq y$, and $bound(\forall y.\psi, s, u, x, v) := \bot$ otherwise.

The formula $\phi_{s,u}^{+}$ is inductively defined as follows:

- $R(\overline{x})_{s,u}^{\top} := \bigvee_{S \in R_{s,u}^{\top}}^{\top} S(\overline{x})$, where R is a predicate symbol in extVocabulary(D, V) and $R_{s,u}^{\top} := R_s^{\top} \cap AUTH_{s,u}^*$.
- $(x = v)_{s,u}^{\top} := (x = v)$, where x and v are either variable identifiers or constant symbols.
- $(\top)_{\underline{s},u}^{\perp} := \top.$
- $(\perp)_{s,u}^{\top} := \perp$. $(\neg \psi)_{s,u}^{\top} := \neg \psi_{s,u}^{\perp}$, where ψ is a relational calculus for-
- $(\psi \wedge \gamma)_{s,u}^{\top} := \psi_{s,u}^{\top} \wedge \gamma_{s,u}^{\top}$, where ψ and γ are relational calculus formulae.
- $(\psi \lor \gamma)_{s,u}^{\top} := \psi_{s,u}^{\top} \lor \gamma_{s,u}^{\top}$, where ψ and γ are relational calculus formulae.
- $(\exists x. \psi)_{s,u}^{\dagger}$, where ψ is a relational calculus formula and x is a variable identifier, is $\exists x. \psi_{s,u}^{+}$ if $bound(\psi, s, u, x, \top)$ $= \top$ and $(\exists x. \psi)_{s,u}^{+} := \bot$ otherwise.
- $(\forall x. \psi)_{s,u}^{\top}$, where ψ is a relational calculus formula and x is a variable identifier, is $\forall x. \psi_{s,u}^{\top}$ if $bound(\psi, s, u, x, \top)$ $= \top$ and $(\forall x. \psi)_{s,u}^{\top} := \bot$ otherwise.

The formula $\phi_{s,u}^{\perp}$ is inductively defined as follows:

- $R(\overline{x})_{s,u}^{\perp} := \bigwedge_{S \in R_{s,u}^{\perp}} S(\overline{x})$, where R is a predicate symbol in extVocabulary(D, V) and $R_{s,u}^{\perp} := R_s^{\perp} \cap AUTH_{s,u}^*$.
- $(x = v)_{s,u}^{\perp} := (x = v)$, where x and v are either variable identifiers or constant symbols.
- $(\top)_{s,u}^{\perp} := \top.$
- $(\perp)_{s,u}^{\perp} := \perp$. $(\neg \psi)_{s,u}^{\perp} := \neg \psi_{s,u}^{\top}$, where ψ is a relational calculus formula.
- $(\psi \wedge \gamma)_{s,u}^{\perp} := \psi_{s,u}^{\perp} \wedge \gamma_{s,u}^{\perp}$, where ψ and γ are relational calculus formulae.
- $(\psi \lor \gamma)_{s,u}^{\perp} := \psi_{s,u}^{\perp} \lor \gamma_{s,u}^{\perp}$, where ψ and γ are relational calculus formulae.
- $(\exists x. \psi)_{s,u}^{\perp}$, where ψ is a relational calculus formula and x is a variable identifier, is $\exists x. \psi_{s,u}^{\perp}$ if $bound(\psi, s, u, x, \perp)$ $= \top$ and $(\exists x. \psi)_{s,u}^{\perp} := \bot$ otherwise.
- $(\forall x. \psi)_{s,u}^{\perp}$, where ψ is a relational calculus formula and x is a variable identifier, is $\forall x. \psi_{s,u}^{\perp}$ if $bound(\psi, s, u, x, \perp)$ $= \top$ and $(\forall x. \psi)_{s,u}^{\perp} := \bot$ otherwise. \Box

Finally, we define the formula $\phi_{s,u}^{rw}$ which represents the overall rewritten formula.

Definition F.2. Let $M = \langle D, \Gamma \rangle$ be a system configura-

tion, $s = \langle db, U, sec, T, V, c \rangle$ be an *M*-state, *u* be a user, and ϕ be a relational calculus sentence over D. The formula $\phi_{s,u}^{rw}$ is defined as $inline_{V,D}(\neg \psi_{s,u}^{\top} \land \psi_{s,u}^{\perp})$, where $\psi :=$ $extVoc_{V,D}(\phi)$. \Box

Let $P = \langle M, f \rangle$ be an extended configuration, L be the P-LTS, $u \in \mathcal{U}$ be a user, $r \in traces(L)$ be an L-run, $\phi \in RC_{bool}$ is a sentence, and $1 \leq i \leq |r|$. Furthermore, let s be the *i*th state of r. The judgment $r, i \vdash_u \phi$ is data-secure for $M, u, and s, denoted by secure_{P,u}^{data}(r, i \vdash_u \phi)$, iff for all $s', s'' \in \llbracket pState(s) \rrbracket_{u,M}^{data}, \llbracket \phi \rrbracket^{s'.db} = \llbracket \phi \rrbracket^{s''.db}, \text{ where } \cong_{u,M}^{data} \text{ is }$ the data-indistinguishability relation defined in Appendix D and $[\![s]\!]_{u,M}^{data} := \{s' \in \Pi_M | s \cong_{u,M}^{data} s'\}.$

We first recall our definitions and notations for assignments. Let **dom** be the universe and **var** be an infinite countably set of variable identifiers. An assignment ν is a partial function from var to dom that maps variables to values in the universe. Given a formula ϕ and an assignment ν , we say that ν is well-formed for ϕ iff ν is defined for all variables in $free(\phi)$. Given an assignment ν and a sequence of variables \overline{x} such that ν is defined for each $x \in \overline{x}$, we denote by $\nu(\overline{x})$ the tuple obtained by replacing each occurrence of $x \in \overline{x}$ with $\nu(x)$. Given an assignment ν , a variable $v \in \mathbf{var}$, and a value $u \in \mathbf{dom}$, we denote by $\nu \oplus [v \mapsto u]$ the assignment ν' obtained as follows: $\nu'(v') = \nu(v')$ for any $v' \neq v$, and $\nu'(v) = u$. Finally, given a formula ϕ with free variables $free(\phi)$ and an assignment ν , we denote by $\phi \circ \nu$ the formula ϕ' obtained by replacing, for each free variable $x \in free(\phi)$ such that $\nu(x)$ is defined, all the free occurrences of x with $\nu(x).$

Lemma F.2 shows that $secure_{P,u}^{data}$ is a sound, under approximation of $secure_{P,u}$. However, as shown in [24], deciding whether $secure_{P,u}^{data}(r, i \vdash_u \phi)$ holds for a given judgment is still undecidable for the relational calculus.

LEMMA F.2. Let $P = \langle M, f \rangle$ be an extended configuration, L be the P-LTS, $u \in \mathcal{U}$ be a user, $r \in traces(L)$ be an L-run, $\phi \in RC_{bool}$ is a sentence, and $1 \leq i \leq |r|$. Given a judgment $r, i \vdash_u \phi$, if $secure_{P,u}^{data}(r, i \vdash_u \phi)$, then $secure_{P,u}(r, i \vdash_u \phi).$

PROOF. We prove the claim by contradiction. Let P = $\langle M, f \rangle$ be an extended configuration, L be the P-LTS, $u \in \mathcal{U}$ be a user, $r \in traces(L)$ be an L-run, $\phi \in RC_{bool}$ is a sentence, and $1 \leq i \leq |r|$. Furthermore, let $s = \langle db, U, sec, T, V, \rangle$ c be the *i*-th state of *r*. Assume, for contradiction's sake, that $secure_{P,u}^{data}(r,i \vdash_u \phi)$ holds and $secure_{P,u}(r,i \vdash_u \phi)$ does not hold. We denote, for brevity's sake, the fact that $secure_{P,u}(r, i \vdash_u \phi)$ does not hold as $\neg secure_{P,u}(r, i \vdash_u \phi)$. From $\neg secure_{P,u}(r, i \vdash_u \phi)$, it follows that there is a run $r' \in$ traces(L), whose last state is $s' = \langle db', U', sec', T', V', c' \rangle$, such that $r^i \cong_{P,u} r'$ and $[\phi]^{db} \neq [\phi]^{db'}$. From the (P, u)indistinguishability definition, it follows that $pState(last(r^i))$ and pState(last(r')) are data indistinguishable according to M and u, i.e., $pState(last(r^i)) \cong_{u,M}^{data} pState(last(r'))$. From $secure_{P,u}^{data}(r,i \vdash_u \phi)$, it also follows that for all $s', s'' \in$ $\llbracket pState(s) \rrbracket_{u,M}^{data}, \ [\phi]^{s'.db} = [\phi]^{s''.db}$. From this and the fact that $pState(last(r^i)) \cong_{u,M}^{data} pState(last(r'))$, it follows that $[\phi]^{db} = [\phi]^{db'}$, which contradicts $[\phi]^{db} \neq [\phi]^{db'}$. This completes the proof. $\hfill\square$

We now show that the rewritings $\phi_{s,u}^{\top}$ and $\phi_{s,u}^{\perp}$ provide the desired properties. First, Lemma F.3 proves that the

two rewriting satisfy the following invariants: "if $\phi_{s,u}^{\top}$ holds in s, then also ϕ holds in s" and "if $\phi_{s,u}^\perp$ does not hold in s, then also ϕ does not hold in s". Afterwards, Lemma F.4 shows that both $\phi_{s,u}^{\top}$ and $\phi_{s,u}^{\perp}$ are secure. Then, Lemma F.5 shows that $\phi_{s,u}^{\top}$ and $\phi_{s,u}^{\perp}$ are equivalent to $\phi_{s',u}^{\top}$ and $\phi_{s',u}^{\perp}$ for any two data indistinguishable M-state s and s'. Finally, Lemma F.6 shows that both $\phi_{s,u}^{\top}$ and $\phi_{s,u}^{\perp}$ are domainindependent.

Lemma F.3. Let $M = \langle D, \Gamma \rangle$ be a system configuration, $s = \langle db, U, sec, T, V \rangle$ be a partial M-state, $u \in U$ be a user, and ϕ be a D-formula. For all assignments ν over **dom** that are well-formed for ϕ , the following conditions hold:

- if $[\phi_{s,u}^{\top} \circ \nu]^{db} = \top$, then $[\phi \circ \nu]^{db} = \top$, and if $[\phi_{s,u}^{\perp} \circ \nu]^{db} = \bot$, then $[\phi \circ \nu]^{db} = \bot$.

PROOF. Let $M = \langle D, \Gamma \rangle$ be a system configuration, s = $\langle db, U, sec, T, V \rangle$ be a partial *M*-state, $u \in U$ be a user, and ϕ be a *D*-formula. Furthermore, let ν be an assignment that is well-formed for ϕ . We prove our claim by induction on the structure of the formula ϕ .

Base Case There are four cases:

- 1. $\phi := x = y$. In this case, $\phi_{s,u}^{\top} = \phi_{s,u}^{\perp} = \phi$. From this, it follows that $[(x = v)_{s,u}^{\top} \circ \nu]^{db} = [(x = v) \circ \nu]^{db}$ and $[(x = v)_{s,u}^{\perp} \circ \nu]^{db} = [(x = v) \circ \nu]^{db}$. Therefore, our claim follows trivially.
- 2. $\phi := \top$. The proof of this case is similar to that of $\phi := x = y.$
- 3. $\phi := \bot$. The proof of this case is similar to that of $\phi := x = y.$
- 4. $\phi := R(\overline{x})$. Let \overline{t} be the tuple $\nu(\overline{x})$. Note that since ν is well-formed for ϕ , \bar{t} is well-defined.

Assume that $[\phi_{s,u}^{\top} \circ \nu]^{db} = \top$. From this and $\phi_{s,u}^{\top} := \bigvee_{S \in R_{s,u}^{\top}} S(\overline{x})$, it follows that there is an $S \in R_{s,u}^{\top}$ such that $\overline{t} \in db(S)$. Since $S \in R_{s,u}^{\top}$, it follows that $S \subseteq_M R$. From $S \subseteq_M R$, $\overline{t} \in db(S)$, and Lemma F.1, it follows that $\overline{t} \in db(R)$. From this and the relational calculus

semantics, it follows that $[\phi \circ \nu]^{db} = \top$. Assume that $[\phi_{s,u}^{\perp} \circ \nu]^{db} = \bot$. From this and $\phi_{s,u}^{\perp} := \bigwedge_{S \in R_{s,u}^{\perp}} S(\bar{x})$, it follows that there is an $S \in R_{s,u}^{\perp}$ such that $\overline{t} \notin db(S)$. Since $S \in R_{s,u}^{\perp}$, it follows that $R \subseteq_M S$. From $R \subseteq_M S$, $\overline{t} \notin db(S)$, and Lemma F.1, it follows that $\overline{t} \notin db(R)$. From this and the relational calculus semantics, it follows that $[\phi \circ \nu]^{db} = \bot$.

This completes the proof of the base case.

Induction Step Assume that our claim holds for all formulae whose length is less than ϕ 's length. We now show that our claim holds also for ϕ . There are a number of cases depending on ϕ 's structure.

1. $\phi := \psi \wedge \gamma$. Assume that $[\phi_{s,u}^{\top} \circ \nu]^{db} = \top$. From this and $\phi_{s,u}^{\top} := \psi_{s,u}^{\top} \wedge \gamma_{s,u}^{\top}$, it follows that $[\psi_{s,u}^{\top} \circ \nu]^{db} = \top$ and $[\gamma_{s,u}^{\top} \circ \nu]^{db} = \top$. Since ν is well-formed for ϕ , it is and $[\gamma_{s,u} \circ \nu]$ also well-formed for ψ and γ because $free(\psi) \subseteq free(\phi)$ and $free(\gamma) \subseteq free(\phi)$. From $[\psi_{s,u}^{\top} \circ \nu]^{db} = \top$ and the induction hypothesis, it follows that $[\psi \circ \nu]^{db} = \top$. From $[\gamma_{s,u}^{\top} \circ \nu]^{db} = \top$ and the induction hypothesis, it follows that $[\gamma \circ \nu]^{db} = \top$. From $[\psi \circ \nu]^{db} = \top$, $[\gamma \circ \nu]^{db} = \top$, $\phi := \psi \wedge \gamma$, and the relational calculus semantics, it follows that $[\phi \circ \nu]^{db} = \top$. Assume that $[\phi_{s,u}^{\perp} \circ \nu]^{db} = \bot$. From this and $\phi_{s,u}^{\perp} :=$

 $\psi_{s,u}^{\perp} \wedge \gamma_{s,u}^{\perp}$, there are two cases:

- (a) $[\psi_{s,u}^{\perp} \circ \nu]^{db} = \bot$. From $[\psi_{s,u}^{\perp} \circ \nu]^{db} = \bot$ and the induction hypothesis, it follows that $[\psi \circ \nu]^{db} = \bot$. From this, $\phi := \psi \wedge \gamma$, and the relational calculus semantics, it follows that $[\phi \circ \nu]^{db} = \bot$ (b) $[\gamma_{s,u}^{\perp} \circ \nu]^{db} = \bot$. From $[\gamma_{s,u}^{\perp} \circ \nu]^{db} = \bot$ and the
- induction hypothesis, it follows that $[\gamma \circ \nu]^{db} = \bot$. From this, $\phi := \psi \wedge \gamma$, and the relational calculus semantics, it follows that $[\phi\circ\nu]^{db}=\bot$
- 2. $\phi := \psi \lor \gamma$. The proof of this case is similar to that of $\phi:=\psi\wedge\gamma.$
- 3. $\phi := \neg \psi$. Assume that $[\phi_{s,u}^{\top} \circ \nu]^{db} = \top$. From this and $\phi_{s,u}^{\top} := \neg \psi_{s,u}^{\perp}$, it follows that $[\psi_{s,u}^{\perp} \circ \nu]^{db} = \bot$. From this and the induction hypothesis, it follows that $[\psi \circ \nu]^{db} = \bot$. From this, $\phi := \neg \psi$, and the relational calculus semantics, it follows that $[\phi \circ \nu]^{db} = \top$. Assume that $[\phi_{s,u}^{\perp} \circ \nu]^{db} = \bot$. From this and $\phi_{s,u}^{\perp} := \neg \psi_{s,u}^{\top}$, it follows that $[\psi_{s,u}^{\top} \circ \nu]^{db} = \top$. From this and the induction hypothesis, it follows that $[\psi \circ \nu]^{db} = \top$. From this, $\phi := \neg \psi$, and the relational calculus semantics, it follows that $[\phi \circ \nu]^{db} = \bot$.
- 4. $\phi := \exists x. \psi$. Assume that $[\phi_{s,u}^{\top} \circ \nu]^{db} = \top$. From this and $\phi_{s,u}^{\top} := \exists x. \psi_{s,u}^{\top}$, it follows that there is a $v \in \mathbf{dom}$ such that $[\psi_{s,u}^{\top} \circ \nu[x \mapsto v]]^{db} = \top$. Note that since v is well-formed for $\phi,\,\nu[x\mapsto v]$ is well-formed for ψ because $\phi := \exists x. \psi$. From this, $[\psi_{s,u}^{\top} \circ \nu[x \mapsto v]]^{db} = \top$, and the induction hypothesis, it follows that $[\psi \circ \nu[x \mapsto v]]^{db} =$ \top . From this, $\phi := \exists x. \psi$, and the relational calculus semantics, it follows that $[\phi \circ \nu]^{db} = \top$. Assume that $[\phi_{s,u}^{\perp} \circ \nu]^{db} = \bot$. From this and $\phi_{s,u}^{\perp} :=$
 - $\exists x. \psi_{s,u}^{\perp}$, it follows that for all $v \in \mathbf{dom}$, $[\psi_{s,u}^{\perp} \circ \nu[x \mapsto$ v]]^{db} = \perp . Note that since v is well-formed for ϕ , $\nu[x \mapsto$ v] is well-formed for ψ because $\phi := \exists x. \psi$. From this, $[\psi_{s,u}^{\perp} \circ \nu[x \mapsto v]]^{db} = \bot$, and the induction hypothesis, it follows that for all $v \in \mathbf{dom}, [\psi \circ \nu [x \mapsto v]]^{db} = \bot$. From this, $\phi := \exists x. \psi$, and the relational calculus semantics, it follows that $[\phi \circ \nu]^{db} = \bot$.
- 5. $\phi := \forall x. \psi$. The proof of this case is similar to that of $\phi := \exists x. \psi.$

This completes the proof of the induction step. This completes the proof of our claim. \Box

In Lemma F.4, we prove that our rewritings are secure.

LEMMA F.4. Let $P = \langle M, f \rangle$ be an extended configuration, where $M = \langle D, \Gamma \rangle$ is a system configuration and f is an M-PDP, $r \in traces(L)$ be a run, ϕ be a RC-formula, and $1 \leq i \leq r$. Furthermore, let s be the *i*-th state of r. For all assignments ν over **dom** that are well-formed for ϕ , secure $\overset{data}{P,u}(r,i \vdash_u \phi_{s,u}^{\top} \circ \nu)$, secure $\overset{data}{P,u}(r,i \vdash_u \phi_{s,u}^{\perp} \circ \nu)$, and secure $\overset{data}{P,u}(r,i \vdash_u \phi_{s,u}^{rw} \circ \nu)$ hold.

PROOF. The security of $r, i \vdash_u \phi_{s,u}^{rw}$ follows trivially from that of $r, i \vdash_u \phi_{s,u}^{\top}$ and $r, i \vdash_u \phi_{s,u}^{\perp}$. Therefore, in the following we prove just that $secure_{P,u}^{data}(r, i \vdash_u \phi_{s,u}^{\top} \circ \nu)$ and $secure_{P,u}^{data}(r, i \vdash_u \phi_{s,u}^{\perp} \circ \nu)$ hold. Let $M = \langle D, \Gamma \rangle$ be a system configuration, $s = \langle db, U, sec, T, V \rangle$ be a partial *M*-state, $u \in U$ be a user, and ϕ be a *D*-formula. Furthermore, let ν be an assignment that is well-formed for ϕ . We prove our claim by induction on the structure of the formula ϕ .

Base Case There are four cases:

1. $\phi := x = y$. The claim holds trivially. Indeed, $\phi_{s,u}^{+} \circ \nu$ and $\phi_{s,u}^{\perp} \circ \nu$ are always equivalent either to \top or to \perp .

Since for all $s', s'' \in [pState(last(r^i))]]_{u,M}^{data}, [\top]^{s',db} =$ $[\top]^{s''.db} \text{ and } [\bot]^{s'.db} = [\bot]^{s''.db}, \text{ it follows that both} \\ secure_{P,u}^{data}(r,i \vdash_u \phi_{s,u}^{\top} \circ \nu) \text{ and } secure_{P,u}^{data}(r,i \vdash_u \phi_{s,u}^{\perp} \circ \nu)$ hold.

- 2. $\phi := \top$. The proof of this case is similar to that of $\phi := x = y.$
- 3. $\phi := \bot$. The proof of this case is similar to that of $\phi := x = y.$

4. $\phi := R(\overline{x})$. Assume, for contradiction's sake, that $secure_{P,u}^{data}(r, i \vdash_u \phi_{s,u}^{\top} \circ \nu)$ does not hold. From this and $secure_{P,u}^{data}$'s definition, it follows that there are two Mpartial states $s' = \langle db', U, sec, T, V \rangle$ and $s'' = \langle db'', U, v \rangle$ $sec, T, V \rangle$ in $[\![pState(last(r^i))]\!]_{u,M}^{data}$ such that $[\phi_{s,u}^\top \circ \nu]^{db'}$ $\neq [\phi_{s,u}^{\top} \circ \nu]^{db''}$. Note that this rule out the cases in which $\neq [\phi_{s,u} \circ \nu]^{-1}$. Note that this full out the cases in which $R_{s,u}^{v} = \emptyset$ for any $v \in \{\top, \bot\}$. We assume without loss of generality that $[\phi_{s,u}^{\top} \circ \nu]^{db'} = \top$ and $[\phi_{s,u}^{\top} \circ \nu]^{db''} = \bot$. From this and $\phi_{s,u}^{\top} := \bigvee_{S \in R_{s,u}^{\top}} S(\overline{x})$, it follows that there is an predicate symbol S in the extended vocabulation. lary such that $\nu(\overline{x}) \in db'(S)$ and $\nu(\overline{x}) \notin db''(S)$. There are two cases:

- S is a table in D or a view in V. Since $S \in R_{s,u}^{\top}$, it follows that $\langle \oplus, \texttt{SELECT}, S \rangle \in permissions(last(r^i), u)$. Note that permissions(s', u) = permissions(s'', u) $u) = permissions(last(r^i), u)$ because all the states are in the same equivalence class. From $s' \cong_{u,M}^{data} s''$, $\langle \oplus, \text{SELECT}, S \rangle \in permissions(s', u)$, and the definition of data indistinguishability, it follows that db'(S) = db''(S). From this, it follows that $\nu(\overline{x}) \in$ db'(S) iff $\nu(\overline{x}) \in db''(S)$, which contradicts $\nu(\overline{x}) \in$ db'(S) and $\nu(\overline{x}) \notin db''(S)$.
- S is a projection of O, which is either a table in Dor a view in V. From $S \in R_{s,u}^{\top}$ and $R_{s,u}^{\top}$'s definition, it follows that $\langle \oplus, \texttt{SELECT}, O \rangle \in permissions$ $(last(r^i), u)$. From $s' \cong_{u,M}^{data} s'', \langle \oplus, \texttt{SELECT}, O \rangle \in$ permissions(s', u), and the definition of data indistinguishability, it follows that db'(O) = db''(O). From this and the definition of S, it also follows that $db'(S) = db''(S)^4$. From this, it follows that $\nu(\overline{x}) \in db'(S)$ iff $\nu(\overline{x}) \in db''(S)$, which contradicts $\nu(\overline{x}) \in db'(S)$ and $\nu(\overline{x}) \notin db''(S)$.

The proof of $secure_{P,u}^{data}(r, i \vdash_u \phi_{s,u}^{\perp} \circ \nu)$ is analogous. This completes the proof of the base case.

Induction Step Assume that our claim holds for all formulae whose length is less than ϕ 's length. We now show that our claim holds also for ϕ . There are a number of cases depending on ϕ 's structure.

1. $\phi := \psi \land \gamma$. Assume, for contradiction's sake, that $secure_{P,u}^{data}(r, i \vdash_u \phi_{s,u}^{\top} \circ \nu)$ does not hold. From this and $secure_{P,u}^{data}$'s definition, it follows that there are two Mpartial states $s' = \langle db', U, sec, T, V \rangle$ and $s'' = \langle db'', U, sec, T, V \rangle$ $sec, T, V \rangle$ in $\llbracket pState(last(r^i)) \rrbracket_{u,M}^{data}$ such that $[\phi_{s,u}^{\top} \circ \nu]^{db'}$ $\neq [\phi_{s,u}^{\top} \circ \nu]^{db''}.$ We assume, without loss of generality, that $[\phi_{s,u}^{\top} \circ \nu]^{db''} = \top \text{ and } [\phi_{s,u}^{\top} \circ \nu]^{db''} = \bot.$ From this that $[\varphi_{s,u} \circ \nu] = +$ and $[\varphi_{s,u} \circ \nu] = \pm$. From this and $\varphi_{s,u}^{\top} = \psi_{s,u}^{\top} \wedge \gamma_{s,u}^{\top}$, it follows that either $[\psi_{s,u}^{\top} \circ \nu]^{db'} = \top$ and $[\psi_{s,u}^{\top} \circ \nu]^{db''} = \pm$ or $[\gamma_{s,u}^{\top} \circ \nu]^{db'} = \top$ and $[\gamma_{s,u}^{\top} \circ \nu]^{db''} = \pm$. We assume, without loss of generality, that $[\psi_{s,u}^{\top} \circ \nu]^{db'} = \top$ and $[\psi_{s,u}^{\top} \circ \nu]^{db''} =$ \perp . From this, it follows that $secure_{P,u}^{data}(r,i \vdash_u \psi_{s,u}^{\top} \circ$

 $\nu)$ does not hold. From the induction hypothesis, it follows that $secure_{P,u}^{data}(r, i \vdash_u \psi_{s,u}^{\top} \circ \nu)$ holds leading to a contradiction.

The proof of $secure_{P,u}^{data}(r, i \vdash_u \phi_{s,u}^{\perp} \circ \nu)$ is analogous.

- 2. $\phi := \psi \lor \gamma$. The proof of this case is similar to that of $\phi := \psi \wedge \gamma.$
- 3. $\phi := \neg \psi$. Assume, for contradiction's sake, that $secure_{P,u}^{data}(r, i \vdash_u \phi_{s,u}^{\top} \circ \nu)$ does not hold. From this and secure ${}_{P,u}^{data}$'s definition, it follows that there are two *M*-partial states $s' = \langle db', U, sec, T, V \rangle$ and $s'' = \langle db'', U, v' \rangle$ $|sec, T, V\rangle$ in $[\![pState(last(r^i))]\!]_{u,M}^{data}$ such that $[\phi_{s,u}^\top \circ \nu]^{db'}$ sec, $T, V \rangle$ in $[\![pState(tast(T))]\!]_{u,M}$ such that $[\psi_{s,u} \circ \nu] \neq [\phi_{s,u}^{\top} \circ \nu]^{db''}$. We assume, without loss of generality, that $[\phi_{s,u}^{\top} \circ \nu]^{db''} = \top$ and $[\phi_{s,u}^{\top} \circ \nu]^{db''} = \bot$. From this and $\phi_{s,u}^{\top} = \neg \psi_{s,u}^{\perp}$, it follows that $[\psi_{s,u}^{\perp} \circ \nu]^{db''} = \bot$ and $[\psi_{s,u}^{\perp} \circ \nu]^{db''} = \top$. From this, it follows that $secure_{P,u}^{data}(r, i \vdash_{u} \psi_{s,u}^{\perp} \circ \nu)$ does not hold. From the induction hypothesis and $\phi := \neg \psi$, it follows that $secure_{P,u}^{data}(r, i \vdash_u \psi_{s,u}^{\perp} \circ \nu)$ holds leading to a contradiction.
- The proof of $secure_{P,u}^{data}(r, i \vdash_u \phi_{s,u}^{\perp} \circ \nu)$ is analogous. 4. $\phi := \exists x. \psi$. Assume, for contradiction's sake, that $secure_{P,u}^{data}(r, i \vdash_u \phi_{s,u}^{\top} \circ \nu)$ does not hold. From this and secure $P_{P,u}^{data}$'s definition, it follows that there are two Mpartial states $s' = \langle db', U, sec, T, V \rangle$ and $s'' = \langle db'', U,$ $sec, T, V \rangle$ in $\llbracket pState(last(r^i)) \rrbracket_{u,M}^{data}$ such that $[\phi_{s,u}^{\top} \circ \nu]^{db'}$ $\neq [\phi_{s,u}^{\top} \circ \nu]^{db''}.$ We assume, without loss of generality, that $[\phi_{s,u}^{\top} \circ \nu]^{db''} = \top$ and $[\phi_{s,u}^{\top} \circ \nu]^{db''} = \bot.$ From this and $\phi_{s,u}^{\top} = \exists x. \psi_{s,u}^{\top}$, it follows that there is a $v' \in \mathbf{dom}$ such that $[\psi_{s,u}^{\top} \circ \nu[x \mapsto v']]^{db'} = \top$ and there is no $v'' \in$ **dom** such that $[\psi_{s,u}^{\top} \circ \nu[x \mapsto v']]^{db''} = \top$. Therefore, $[\psi_{s,u}^{\top} \circ \nu[x \mapsto v']]^{db'} = \top$ and $[\psi_{s,u}^{\top} \circ \nu[x \mapsto v']]^{db''} = \bot$. Note that $\nu[x \mapsto v']$ is well-formed for $\psi_{s,u}^{\top}$. From this, it follows that $secure_{P,u}^{data}(r, i \vdash_u \psi_{s,u}^{\top} \circ \nu[x \mapsto v'])$ does not hold. However, from the fact that $\nu[x \mapsto v']$ is wellformed for $\psi_{s,u}^{\top}$ and the induction hypothesis, it follows that $secure_{P,u}^{data}(r, i \vdash_u \psi_{s,u}^{\top} \circ \nu[x \mapsto v'])$ holds leading to a contradiction.

The proof of $secure_{P,u}^{data}(r, i \vdash_u \phi_{s,u}^{\perp} \circ \nu)$ is analogous. 5. $\phi := \forall x. \psi$. The proof of this case is similar to that of $\phi := \exists x. \psi.$

This completes the proof of the induction step. This completes the proof of our claim. \Box

PROPOSITION F.1. Let $M = \langle D, \Gamma \rangle$ be a system configuration, $s = \langle db, U, sec, T, V \rangle$ and $s' = \langle db', U', sec', T', V' \rangle$ be two partial M-states, $u \in U$ be a user, $v \in \{\top, \bot\}$, and ϕ be a D-formula. If $s \cong_{u,M}^{data} s'$, then $bound(\phi, s, u, x, v) =$ $bound(\phi, s', u, x, v).$

PROOF. Let $M = \langle D, \Gamma \rangle$ be a system configuration, s = $\langle db, U, sec, T, V \rangle$ and $s' = \langle db', U', sec', T', V' \rangle$ be two partial *M*-states, $u \in U$ be a user, $v \in \{\top, \bot\}$, and ϕ be a D-formula. We prove our claim by induction on the structure of the formula ϕ .

Base Case There are four cases:

- 1. $\phi := y = z$. The result of $bound(\phi, s, u, x, v)$ and $bound(\phi, s', u, x, v)$ does not depend on s. Therefore, $bound(\phi, s, u, x, v) = bound(\phi, s', u, x, v).$
- 2. $\phi := \top$. $bound(\phi, s, u, x, v) = bound(\phi, s', u, x, v) = \bot$.
- 3. $\phi := \bot$. $bound(\phi, s, u, x, v) = bound(\phi, s', u, x, v) = \bot$.

⁴With a slight abuse of notation, we consider S as a view.

4. $\phi := R(\overline{x})$. The result of $bound(\phi, s, u, x, v)$ and bound (ϕ, s', u, x, v) depend only on the sets $R_{s,u}^v$ and $R_{s',u}^v$, which in turn depend on the content of the sets R_s^v , $R_{s'}^v$, $AUTH_{s,u}^*$, and $AUTH_{s',u}^*$. Assume that $s \cong_{u,M}^{data} s'$. From this, it follows that $R_s^v = R_{s'}^v$ (because D is the same and V = V' and $AUTH_{s,u}^* = AUTH_{s',u}^*$ (because sec = sec'). From this, it follows that $bound(\phi, s,$ $u, x, v) = bound(\phi, s', u, x, v).$

This completes the proof of the base case.

Induction Step Assume that our claim holds for all formulae whose length is less than ϕ . We now show that our claim holds also for ϕ . There are a number of cases depending on ϕ 's structure.

- 1. $\phi := \psi \wedge \gamma$. Assume that $s \cong_{u,M}^{data} s'$. From this and the induction hypothesis, it follows that $bound(\psi, s, u, x, v)$ $= bound(\psi, s', u, x, v)$ and $bound(\gamma, s, u, x, v) = bound$ (γ, s', u, x, v) . From this and $bound(\phi, s, u, x, v) :=$ $bound(\psi, s, u, x, v) \lor bound(\gamma, s, u, x, v)$, it follows that $bound(\phi, s, u, x, v) = bound(\phi, s', u, x, v).$
- 2. $\phi := \psi \lor \gamma$. The proof of this case is similar to that of $\phi := \psi \wedge \gamma.$
- 3. $\phi := \neg \psi$. Assume that $s \cong_{u,M}^{data} s'$. From this and the induction hypothesis, it follows that $bound(\psi, s, u, x, v)$ = $bound(\psi, s', u, x, v)$. From this, $bound(\neg \psi, s, u, x, v)$ $= bound(\psi, s, u, x, \neg v), \text{ and } bound(\neg \psi, s', u, x, v) =$ $bound(\psi, s', u, x, \neg v)$, it follows that $bound(\phi, s, u, x, v)$ $= bound(\phi, s', u, x, v).$
- 4. $\phi := \exists y. \psi$. Assume that $s \cong_{u,M}^{data} s'$. There are two cases:
 - (a) x = y. In this case, the proof is trivial as $bound(\phi, s, \phi)$ $u, x, v) = bound(\phi, s', u, x, v) = \bot.$
 - (b) $x \neq y$. In this case, $bound(\phi, s, u, x, v) = bound(\psi, v, v)$ $(x, u, x, v) \land bound(\psi, s, u, y, v)$ and $bound(\phi, s', u, x, v)$ $v) = bound(\psi, s', u, x, v) \land bound(\psi, s', u, y, v)$. From $s \cong_{u,M}^{data} s'$ and the induction hypothesis, it follows that $bound(\psi, s, u, x, v) = bound(\psi, s', u, x, v)$ and $bound(\psi, s, u, y, v) = bound(\psi, s', u, y, v)$. From this, $bound(\phi, s, u, x, v) = bound(\psi, s, u, x, v) \land bound(\psi, v, v) \land bound(\psi, v) \land bound(\psi, v, v) \land bound(\psi, v) \land bou$ s, u, y, v), and $bound(\phi, s', u, x, v) = bound(\psi, s', u, v)$ $(x, v) \wedge bound(\psi, s', u, y, v)$, it follows that $bound(\phi, s, v)$ $u, x, v) = bound(\phi, s', u, x, v).$
- 5. $\phi := \forall x. \psi$. The proof of this case is similar to that of $\phi := \exists x. \psi.$

This completes the proof of the induction step.

This completes the proof of our claim. \Box

LEMMA F.5. Let $M = \langle D, \Gamma \rangle$ be a system configuration, $s = \langle db, U, sec, T, V \rangle$ and $s' = \langle db', U', sec', T', V' \rangle$ be two partial M-states, $u \in U$ be a user, and ϕ be a D-formula. If $s \cong_{u,M}^{data} s'$, then $\phi_{s,u}^{\top} = \phi_{s',u}^{\top}$, $\phi_{s,u}^{\perp} = \phi_{s',u}^{\perp}$, and $\phi_{s,u}^{rw} = \phi_{s',u}^{rw}$.

PROOF. Let $M = \langle D, \Gamma \rangle$ be a system configuration, s = $\langle db, U, sec, T, V \rangle$ and $s' = \langle db', U', sec', T', V' \rangle$ be two partial *M*-states, $u \in U$ be a user, and ϕ be a *D*-formula. We prove our claim by induction on the structure of the formula φ.

Base Case There are four cases:

- 1. $\phi := x = y$. The claim holds trivially. Indeed, $\phi_{s,u}^{\top} =$ $\phi_{s,u}^{\perp} = \phi.$
- 2. $\phi := \top$. The proof of this case is similar to that of $\phi := x = y.$
- 3. $\phi := \bot$. The proof of this case is similar to that of $\phi := x = y.$

4. $\phi := R(\overline{x})$. The formulae $\phi_{s,u}^{\top}$ and $\phi_{s',u}^{\top}$ depend only on the sets $R_{s,u}^{\top}$ and $R_{s',u}^{\top}$, which in turn depends on $R_s^{\top}, R_{s'}^{\top}, AUTH_{s,u}^*$, and $AUTH_{s',u}^*$. If $s \cong_{u,M}^{data} s'$, then $R_s^{\top} = R_{s'}^{\top}$ (because D is the same and V = V') and $AUTH_{s,u}^* = AUTH_{s',u}^*$ (because sec = sec'). Therefore, $\phi_{s,u}^{\top} = \phi_{s',u}^{\top}$. The proof for $\phi_{s,u}^{\perp}$ is analogous. This completes the proof of the base case.

Induction Step Assume that our claim holds for all formulae whose length is less than ϕ . We now show that our claim holds also for ϕ . There are a number of cases depending on ϕ 's structure.

- 1. $\phi := \psi \wedge \gamma$. Assume that $s \cong_{u,M}^{data} s'$. From this and the induction hypothesis, it follows that $\psi_{s,u}^{\top} = \psi_{s',u}^{\top}$ and The proof of $\phi_{s,u}^{\pm} = \phi_{s',u}^{\pm}$. The proof of this case is similar to that of $\gamma_{s,u}^{\pm} = \gamma_{s',u}^{\pm}$. From this, $\phi := \psi \wedge \gamma, \phi_{s,u}^{\pm} := \psi_{s,u}^{\pm} \wedge \gamma_{s,u}^{\pm}$, and $\phi_{s',u}^{\pm} := \psi_{s',u}^{\pm} \wedge \gamma_{s',u}^{\pm}$, it follows that $\phi_{s,u}^{\pm} = \phi_{s',u}^{\pm}$. The proof of $\phi_{s,u}^{\pm} = \phi_{s',u}^{\pm}$ is analogous. 2. $\phi := \psi \vee \gamma$. The proof of this case is similar to that of
- $\phi := \psi \wedge \gamma.$
- 3. $\phi := \neg \psi$. Assume that $s \cong_{u,M}^{data} s'$. From this and the induction hypothesis, it follows that $\psi_{s,u}^{\top} = \psi_{s',u}^{\top}$ and
 $$\begin{split} \psi_{s,u}^{\perp} &= \psi_{s',u}^{\perp}. \text{ From this, } \phi := \neg \psi, \ \phi_{s,u}^{\top} := \neg \psi_{s,u}^{\perp}, \\ \phi_{s',u}^{\top} &:= \neg \psi_{s',u}^{\perp}, \text{ it follows that } \phi_{s,u}^{\top} = \phi_{s',u}^{\top}. \end{split}$$
 The proof of $\phi_{s,u}^{\perp} = \phi_{s',u}^{\perp}$ is analogous.
- 4. $\phi := \exists x. \psi$. Assume that $s \cong_{u,M}^{data} s'$. From this and the induction hypothesis, it follows that $\psi_{s,u}^{\top} = \psi_{s',u}^{\top}$. We remark that $bound(\psi, s, u, x, \top) = bound(\psi, s', u, x, \top),$ as proved in Proposition F.1. There are two cases:
 - (a) $bound(\psi, s, u, x, \top) = \top$. From this, $bound(\psi, s, u, \tau) = \top$. $\begin{array}{l} x,\top) = bound(\psi,s',u,x,\top), \ \psi_{s,u}^{\top} = \ \psi_{s',u}^{\top}, \ \phi := \\ \exists x.\psi, \ \phi_{s,u}^{\top} := \ \exists x.\psi_{s,u}^{\top}, \ \text{and} \ \phi_{s',u}^{\top} := \ \exists x.\psi_{s',u}^{\top}, \ \text{it} \end{array}$ follows that $\phi_{s,u}^{\top} = \phi_{s',u}^{\top}$. (b) $bound(\psi, s, u, x, \top) = \bot$. From this, $bound(\psi, s, u, y, \psi) = U$.
 - $(x, \top) = bound(\psi, s', u, x, \top)$, and $\phi_{s,u}^{\top}$ definition, it follows that $\phi_{s',u}^{\perp} = \phi_{s',u}^{\perp} = \bot$.
 - The proof of $\phi_{s,u}^{\perp} = \phi_{s',u}^{\perp}$ is analogous.
- 5. $\phi := \forall x. \psi$. The proof of this case is similar to that of $\phi := \exists x. \psi.$

This completes the proof of the induction step.

The equivalence $\phi_{s,u}^{rw} = \phi_{s',u}^{rw}$ follows trivially from $\phi_{s,u}^{rw}$'s definition and the fact that $\phi_{s,u}^{\top} = \phi_{s',u}^{\top}$ and $\phi_{s,u}^{\perp} = \phi_{s',u}^{\perp}$. This completes the proof of our claim. \Box

Before proving the domain independence of $\phi_{s,u}^{\top}$ and $\phi_{s,u}^{\perp}$, we introduce some notation. The relation gen, introduced in [45], is the smallest relation defined by the rules in Figure 40. Note that we extended gen by adding the rules Equiv, Const 1, and Const 2. A relational calculus formula ϕ is allowed iff it satisfies the following conditions:

- for all $x \in free(\phi)$, $gen(x, \phi)$ holds,
- for every sub-formula $\exists x.\psi$ in ϕ , $gen(x,\psi)$ holds, and
- for every sub-formula $\forall x.\psi$ in ϕ , $gen(x, \neg\psi)$ holds.

As shown in [45], every allowed formula is domain independent. Note that the addition of the Equiv, Const 1, and Const 2 rules does not modify this result.

PROPOSITION F.2. Let $M = \langle D, \Gamma \rangle$ be a system configuration, $s = \langle db, U, sec, T, V \rangle$ be an *M*-partial state, $u \in U$ be a user, and $v \in \{\top, \bot\}$. For any formulae ϕ and ψ , the following equivalences hold:

• $(\neg \phi)_{s,u}^v \equiv \neg \phi_{s,u}^{\neg v},$

$$\frac{x \in \overline{x}}{gen(x, R(\overline{x}))} \operatorname{Pred} \qquad \frac{gen(x, push(\neg \phi))}{gen(x, \neg \phi)} \operatorname{Neg}$$

$$\frac{x \neq y \quad gen(x, \phi)}{gen(x, \exists y. \phi)} \operatorname{Exists} \quad \frac{x \neq y \quad gen(x, \phi)}{gen(x, \forall y. \phi)} \text{ for all}$$

$$\frac{gen(x, \phi) \quad gen(x, \psi)}{gen(x, \phi \lor \psi)} \operatorname{Or} \quad \frac{gen(x, \psi) \quad \phi \equiv \psi}{gen(x, \phi)} \operatorname{Equiv}$$

$$\frac{v \in \operatorname{dom}}{gen(x, x = v)} \operatorname{Const} 1 \qquad \frac{v \in \operatorname{dom}}{gen(x, v = x)} \operatorname{Const} 2$$

$$\frac{gen(x, \phi)}{gen(x, \phi \land \psi)} \operatorname{And} 1 \qquad \frac{gen(x, \psi)}{gen(x, \phi \land \psi)} \operatorname{And} 2$$

$$push(\phi) = \begin{cases} \neg \psi \lor \neg \gamma & \text{if } \phi \coloneqq \neg (\psi \lor \gamma) \\ \exists x. \neg \psi & \text{if } \phi \coloneqq \neg (\psi \lor \gamma) \\ \exists x. \neg \psi & \text{if } \phi \coloneqq \neg (\psi \lor \gamma) \\ \forall x. \neg \psi & \text{if } \phi \coloneqq \neg (\psi \lor \gamma) \\ \forall x. \neg \psi & \text{if } \phi \coloneqq \neg (\psi \lor \gamma) \\ \forall x. \neg \psi & \text{if } \phi \coloneqq \neg (\psi \lor \gamma) \\ \forall x. \neg \psi & \text{if } \phi \coloneqq \neg (\psi \lor \gamma) \\ \forall x. \psi & \text{if } \phi \coloneqq \neg (\psi \lor \gamma) \\ x \neq y & \text{if } \phi \coloneqq \neg (x \neq y) \\ x = y & \text{if } \phi \coloneqq \neg (x \neq y) \end{cases}$$

$$\mathbf{Figure 40: \ gen \ rules}$$

- $(\phi)_{s,u}^v \wedge (\psi)_{s,u}^v \equiv (\phi \wedge \psi)_{s,u}^v$,
- $\begin{aligned} & (\phi)_{s,u}^{v} \lor (\psi)_{s,u}^{v} \equiv (\phi \lor \psi)_{s,u}^{v}, \\ & (\exists x. \phi)_{s,u}^{v} \equiv (\neg \forall x. \neg \phi)_{s,u}^{v}, \\ & (\forall x. \phi)_{s,u}^{v} \equiv (\neg \exists x. \neg \phi)_{s,u}^{v}, \end{aligned}$

PROOF. Let $M = \langle D, \Gamma \rangle$ be a system configuration, s = $\langle db, U, sec, T, V \rangle$ be an *M*-partial state, $u \in U$ be a user,

- $v \in \{\top, \bot\}$, and ϕ, ψ be two formulae. $(\neg \phi)_{s,u}^v \equiv \neg \phi_{s,u}^{\neg v}$. This case follows trivially from the definition of the rewriting.
 - $(\phi)_{s,u}^v \wedge (\psi)_{s,u}^v \equiv (\phi \wedge \psi)_{s,u}^v$. This case follows trivially from the definition of the rewriting.
 - $(\phi)_{s,u}^v \vee (\psi)_{s,u}^v \equiv (\phi \vee \psi)_{s,u}^v$ This case follows trivially from the definition of the rewriting.
 - $(\exists x. \phi)_{s,u}^v \equiv (\neg \forall x. \neg \phi)_{s,u}^v$. There are two cases:
 - 1. $bound(\phi, s, u, x, v) = \top$. From this, it follows that $(\exists x. \phi)_{s,u}^v \equiv \exists x. \phi_{s,u}^v$. From $(\neg \phi)_{s,u}^v \equiv \neg \phi_{s,u}^{\neg v}$ and $(\neg \forall x. \neg \phi)_{s,u}^v$, it follows that $(\neg \forall x. \neg \phi)_{s,u}^v \equiv \neg (\forall x.$ $\neg \phi$)^{$\neg v$}_{s,u}. From the definition of *bound*, it follows that $bound(\neg \phi, s, u, x, \neg v) = bound(\phi, s, u, x, \neg \neg v).$ From this and $v = \neg \neg v$, it follows that $bound(\neg \phi, s)$, $(u, x, \neg v) = bound(\phi, s, u, x, v)$. From this and bound $(\phi, s, u, x, v) = \bot$, it follows that $bound(\neg \phi, s, u, x, v) = \bot$ $\neg v$) = \top . From this, it follows that $(\forall x. \neg \phi)_{s,u}^{\neg v} =$ $\forall x. (\neg \phi)_{s,u}^{\neg v}$. From this and $(\neg \phi)_{s,u}^{v} \equiv \neg \phi_{s,u}^{\neg v}$, it follows that $(\forall x. \neg \phi)_{s,u}^{\neg v} \equiv \forall x. \neg \phi_{s,u}^{v}$. From this and $(\neg \forall x. \neg \phi)_{s,u}^v \equiv \neg (\forall x. \neg \phi)_{s,u}^{\neg v}$, it follows that $(\neg \forall x. \neg \phi)_{s,u}^v \equiv \neg \forall x. \neg \phi_{s,u}^v$. From this and standard RC equivalences, it follows that $(\neg \forall x. \neg \phi)_{s,u}^{v}$ $\equiv \exists x. \, \phi_{s,u}^v.$
 - 2. $bound(\phi, s, u, x, v) = \bot$. From this, it follows that $(\exists x. \phi)_{s,u}^v = \neg v.$ From $(\neg \phi)_{s,u}^v \equiv \neg \phi_{s,u}^{\neg v}$ and $(\neg \forall x.$ $\neg \phi)_{s,u}^{v}$, it follows that $(\neg \forall x. \neg \phi)_{s,u}^{v} \equiv \neg (\forall x. \neg \phi)_{s,u}^{\neg v}$ From the definition of bound, it follows that bound $(\neg \phi, s, u, x, \neg v) = bound(\phi, s, u, x, \neg \neg v)$. From this and $v = \neg \neg v$, it follows that $bound(\neg \phi, s, u, x, \neg v)$ $= bound(\phi, s, u, x, v)$. From this and $bound(\phi, s, u, v)$ $(x,v) = \bot$, it follows that $bound(\neg \phi, s, u, x, \neg v) =$ \perp . From this, it follows that $(\forall x. \neg \phi)_{s,u}^{\neg v} = v$. From this and $(\neg \forall x. \neg \phi)_{s,u}^v \equiv \neg (\forall x. \neg \phi)_{s,u}^{\neg v}$, it follows

that $(\neg \forall x. \neg \phi)_{s,u}^v \equiv \neg v$. From this and $(\exists x. \phi)_{s,u}^v =$ $\neg v$, it follows that $(\exists x. \phi)_{s,u}^v \equiv (\neg \forall x. \neg \phi)_{s,u}^v$.

• $(\forall x. \phi)_{s,u}^v \equiv (\neg \exists x. \neg \phi)_{s,u}^v$. The proof of this case is similar to that of $(\exists x. \phi)_{s,u}^v \equiv (\neg \forall x. \neg \phi)_{s,u}^v$.

This completes the proof. \Box

PROPOSITION F.3. Let $M = \langle D, \Gamma \rangle$ be a system configuration, $s = \langle db, U, sec, T, V \rangle$ be an M-partial state, $u \in U$ be a user, $v \in \{\top, \bot\}$, and ϕ be a formula. Furthermore, let $x \in free(\phi) \cap free(\phi_{s,u}^v)$. If $gen(x,\phi)$ holds, then $gen(x,\phi_{s,u}^v)$ holds.

PROOF. Let $M = \langle D, \Gamma \rangle$ be a system configuration, s = $\langle db, U, sec, T, V \rangle$ be an *M*-partial state, $u \in U$ be a user, $v \in$ $\{\top, \bot\}$, and ϕ be a formula. Furthermore, let $x \in free(\phi) \cap$ $free(\phi_{s,u}^v)$. We prove our claim by structural induction on the length of ϕ . In the following, the length of ϕ is the number of predicates, quantifiers, negations, conjunctions, and disjunctions in ϕ .

Base Case There are four cases:

- 1. $\phi := x = y$. In this case, the claim holds trivially.
- 2. $\phi := \top$. In this case, the claim holds trivially.
- 3. $\phi := \bot$. In this case, the claim holds trivially.
- 4. $\phi := R(\overline{x})$. Assume $gen(x, \phi)$ holds. From this, it follows that x is one of the free variables in \overline{x} . Furthermore, from $x \in free(\phi_{s,u}^v)$, it follows that $R_{s,u}^v \neq \emptyset$. There are two cases:
 - (a) $\phi_{s,u}^v$ is a conjunction of predicates $S(\overline{x})$ such that $gen(x, S(\overline{x}))$ holds. From the rule And 1, it follows that $gen(x, \phi_{s,u}^v)$ holds.
 - (b) $\phi_{s,u}^v$ is a disjunction of predicates $S(\overline{x})$ such that $gen(x, S(\overline{x}))$ holds. From the rule Or, it follows that $gen(x, \phi_{s,u}^v)$ holds.

This completes the proof of the base case.

Induction Step Assume that our claim holds for all formulae whose length is less than ϕ 's length. We now show that our claim holds also for ϕ . There are a number of cases depending on ϕ 's structure.

- 1. $\phi := \psi \wedge \gamma$. Assume that $gen(x, \phi)$ holds. From this and the rules And 1 and And 2, it follows that either $gen(x,\psi)$ or $gen(x,\gamma)$ hold. Assume, without loss of generality, that $gen(x, \psi)$ holds. From this and the induction hypothesis, it follows that $gen(x, \psi_{s,u}^v)$ holds. From this, $\phi_{s,u}^v := \psi_{s,u}^v \wedge \gamma_{s,u}^v$, and the rule And 1, it follows that $gen(x, \phi_{s,u}^v)$ holds.
- 2. $\phi := \psi \lor \gamma$. Assume that $gen(x, \phi)$ holds. From this and the rule Or, it follows that both $gen(x, \psi)$ and $gen(x, \gamma)$ hold. From this and the induction hypothesis, it follows that both $gen(x, \psi_{s,u}^v)$ and $gen(x, \gamma_{s,u}^v)$ hold. From this, $\phi_{s,u}^v := \psi_{s,u}^v \vee \gamma_{s,u}^v$, and the rule *Or*, it follows that $gen(x, \phi_{s,u}^v)$ holds.
- 3. $\phi := \neg \psi$. Assume that $gen(x, \phi)$ holds. From this and the rule Not, it follows that $gen(x, push(\neg \psi))$. There are a number of cases depending on ψ . In the following, we exploit standard relational calculus equivalences, see, for instance, [3], and the equivalences we proved in Proposition F.2.
 - (a) $\psi := (\alpha \land \beta)$. In this case, $push(\neg \psi)$ is $(\neg \alpha \lor$ $\neg\beta$). From this and $gen(x, push(\neg\psi))$, it follows $gen(x, (\neg \alpha \lor \neg \beta))$. From this and the Or rule, it follows that $gen(x, \neg \alpha)$ and $gen(x, \neg \beta)$ hold. From this and the induction hypothesis, it follows that $gen(x, (\neg \alpha)_{s,u}^v)$ and $gen(x, (\neg \beta)_{s,u}^v)$. From this and the Or rule, it follows that $gen(x, (\neg \alpha)_{s,u}^v \lor (\neg \beta)_{s,u}^v)$.

From this, $(\neg \alpha)_{s,u}^v \lor (\neg \beta)_{s,u}^v \equiv (\neg \alpha \lor \neg \beta)_{s,u}^v$, and the Equiv rule, it follows that $gen(x, (\neg \alpha \lor \neg \beta)_{s,u}^v)$. From this, $(\neg \alpha \lor \neg \beta)_{s,u}^v \equiv (\neg (\alpha \land \beta))_{s,u}^v$, and the Equiv rule, it follows that $gen(x, (\neg(\alpha \land \beta))_{s,u}^v)$. From this, $(\neg(\alpha \land \beta))_{s,u}^v \equiv \neg(\alpha \land \beta)_{s,u}^{\neg v}$, and the Equiv rule, it follows that $gen(x, \neg(\alpha \land \beta)_{s,u}^{\neg v})$. From this and $\psi := \alpha \wedge \beta$, it follows that $gen(x, \neg \psi_{s,u}^{\neg v})$. From this and $\phi_{s,u}^v := \neg \psi_{s,u}^{\neg v}$, it follows that gen(x, x) $\phi_{s,u}^v$ holds.

- (b) $\psi := (\alpha \lor \beta)$. The proof is similar to the $\psi :=$ $\neg(\alpha \land \beta)$ case.
- (c) $\psi := \exists y. \alpha$. In this case, $push(\neg \psi)$ is $\forall y. \neg \alpha$. From this and $gen(x, push(\neg \psi))$, it follows $gen(x, \forall y, \neg \alpha)$. From this and the induction hypothesis, it follows that $gen(x, (\forall y, \neg \alpha)_{s,u}^v)$. From this, $\neg \neg (\forall y, \neg \alpha)_{s,u}^v$ $\equiv (\forall y. \neg \alpha)_{s,u}^v$, and the Equiv rule, it follows that $gen(x, \neg \neg (\forall y, \neg \alpha)_{s,u}^v)$. From this, $\neg \neg (\forall y, \neg \alpha)_{s,u}^v \equiv \neg (\neg \forall y, \neg \alpha)_{s,u}^{\neg v}$, and the Equiv rule, it follows that $gen(x, \neg(\neg \forall y, \neg \alpha)_{s,u}^{\neg v})$. From this, $\neg(\neg \forall y, \neg \alpha)_{s,u}^{\neg v} \equiv$ $\neg(\exists y. \neg \neg \alpha)_{s,u}^{\neg v}$, and the *Equiv* rule, it follows that $gen(x, \neg(\exists y, \neg \neg \alpha)_{s,u}^{\neg v})$. From this, $\neg(\exists y, \neg \neg \alpha)_{s,u}^{\neg v} \equiv$ $\neg(\exists y. \alpha)_{s,u}^{\neg v}$, and the *Equiv* rule, it follows that $gen(x, \neg(\exists y. \alpha)_{s,u}^{\neg v})$. From this and $\psi := \exists y. \alpha$, it follows that $gen(x, \neg \psi_{s,u}^{\neg v})$. From this and $\phi_{s,u}^v := \neg \psi_{s,u}^{\neg v}$, it follows that $gen(x, \phi_{s,u}^v)$ holds.
- (d) $\psi := \forall y. \alpha$. The proof is similar to the $\psi := \neg \exists y. \alpha$ case.
- (e) $\psi := \neg \alpha$. In this case, $push(\neg \psi)$ is α . From this and $gen(x, push(\neg \psi))$, it follows $gen(x, \alpha)$. From this and the induction hypothesis, it follows that $gen(x, \alpha_{s,u}^v)$. From this, $\neg \neg \alpha_{s,u}^v \equiv \alpha_{s,u}^v$, and the Equiv rule, it follows that $gen(x, \neg \neg \alpha_{s,u}^v)$. From this, $\neg \neg \alpha_{s,u}^v \equiv \neg (\neg \alpha)_{s,u}^{\neg v}$, and the *Equiv* rule, it follows that $gen(x, \neg(\neg \alpha)_{s,u}^{\neg v})$. From this and $\psi :=$ $\neg \alpha$, it follows that $gen(x, \neg \psi_{s,u}^{\neg v})$. From this and $\phi_{s,u}^v := \neg \psi_{s,u}^{\neg v}$, it follows that $gen(x, \phi_{s,u}^s)$ holds. (f) $\psi := x = y$. The proof for this case is trivial. (g) $\psi := x \neq y$. The proof for this case is trivial.

- 4. $\phi := \exists x. \psi$. Assume that $gen(x, \phi)$ holds. From this and the rule *Exists*, it follows that $gen(x, \psi)$ holds. From this and the induction hypothesis, it follows that $gen(x,\psi_{s,u}^v)$ holds. From this, $\phi_{s,u}^v:=\exists x.\,\psi_{s,u}^v,$ and the rule *Exists*, it follows that $gen(x, \phi_{s,u}^v)$ holds.
- 5. $\phi := \forall x. \psi$. The proof of this case is similar to that of $\phi := \exists x. \psi.$

This completes the proof of the induction step.

This completes the proof of our claim. \Box

PROPOSITION F.4. Let $M = \langle D, \Gamma \rangle$ be a system configuration, $s = \langle db, U, sec, T, V \rangle$ be an M-partial state, $u \in U$ be a user, $v \in \{\top, \bot\}$, and ϕ be a formula. For every subformula $\exists x. \psi$ of ϕ , if $gen(x, \psi)$ holds and $x \in free(\psi) \cap$ free $(\psi_{s,u}^v)$, then $gen(x, \psi_{s,u}^v)$ holds.

PROOF. Let $M = \langle D, \Gamma \rangle$ be a system configuration, s = $\langle db, U, sec, T, V \rangle$ be an *M*-partial state, $u \in U$ be a user, $v \in \{\top, \bot\}$, and ϕ be a formula. We prove our claim by structural induction on the length of ϕ . In the following, the size of ϕ is the number of predicates, quantifiers, negations, conjunctions, and disjunctions in ϕ .

Base Case The claim is vacuously satisfied for the base cases as there is no sub-formula of the form $\exists x. \psi$.

Induction Step Assume that our claim holds for all formulae whose length is less than ϕ . We now show that our claim holds also for ϕ . There are a number of cases depending on ϕ 's structure.

- 1. $\phi := \psi \wedge \gamma$. Let α be a sub-formula of ϕ of the form $\exists x. \beta$ such that $gen(x,\beta)$ holds and $x \in free(\beta) \cap free(\beta_{s,u}^v)$. The formula α is either a sub-formula of ψ or a subformula of γ . From this and the induction hypothesis, it follows that $gen(x, \beta_{v,u}^s)$ holds.
- 2. $\phi := \psi \lor \gamma$. The proof of this case is similar to that of $\phi := \psi \wedge \gamma.$
- 3. $\phi := \neg \psi$. Let α be a sub-formula of ϕ of the form $\exists x. \beta$ such that $gen(x,\beta)$ holds and $x \in free(\beta) \cap free(\beta_{s,u}^v)$. Since $\phi := \neg \psi$, the formula α is also a sub-formula of ψ . From this and the induction hypothesis, it follows that $gen(x, \beta_{v,u}^s)$ holds.
- 4. $\phi := \exists x. \psi$. Let α be a sub-formula of ϕ of the form $\exists x. \beta \text{ such that } gen(x, \beta) \text{ holds and } x \in free(\beta) \cap free(\beta_{s.u}^v).$ There are two cases:
 - (a) α is a sub-formula of ψ . From this and the induction hypothesis, it follows that $gen(x, \beta_{v,u}^s)$ holds.
 - (b) $\alpha = \phi$. From $gen(x, \beta), x \in free(\beta) \cap free(\beta_{s,u}^v)$, and Proposition F.3, it follows that $gen(x, \beta_{s,u}^v)$ holds.
- 5. $\phi := \forall x. \psi$. The proof of this case is similar to that of $\phi := \exists x. \psi.$

This completes the proof of the induction step. This completes the proof of our claim. \Box

PROPOSITION F.5. Let $M = \langle D, \Gamma \rangle$ be a system configuration, $s = \langle db, U, sec, T, V \rangle$ be an M-partial state, $u \in U$ be a user, $v \in \{\top, \bot\}$, and ϕ be a formula. For every subformula $\forall x. \psi$ of ϕ , if $gen(x, \psi)$ holds and $x \in free(\psi) \cap$ free $(\psi_{s,u}^v)$, then $gen(x, (\neg \psi)_{s,u}^v)$ holds.

PROOF. The proof is similar to that of Proposition F.4.

PROPOSITION F.6. Let $M = \langle D, \Gamma \rangle$ be a system configuration, $s = \langle db, U, sec, T, V \rangle$ be an M-partial state, $u \in U$ be a user, $v \in \{\top, \bot\}$, and ϕ be a formula. Let $Q \in$ $\{\exists,\forall\}\ be\ a\ quantifier\ and\ subs_Q(\phi)\ be\ the\ set\ of\ sub-formulae$ of ϕ of the form $Qx.\psi$. There is a surjective function f from $subs_Q(\phi)$ to $subs_Q(\phi_{s,u}^v)$ such that for any $Qx.\psi$ in $subs_Q(\phi), \text{ if } f(Q x, \psi) \text{ is defined, then } f(Q x, \psi)_{s,u}^v = Q x, \psi_{s,u}^v.$

PROOF. The claim follows trivially from the definition of $\phi_{s,u}^v$.

LEMMA F.6. Let $M = \langle D, \Gamma \rangle$ be a system configuration, $s = \langle db, U, sec, T, V \rangle$ be an *M*-partial state, $u \in U$ be a user, and ϕ be a formula. If ϕ is allowed and all views in V are allowed, then $\phi_{s,u}^{\top}$, $\phi_{s,u}^{\perp}$, and $\phi_{s,u}^{rw}$ are domain independent.

PROOF. From Proposition F.3, Proposition F.4, Proposition F.5, and Proposition F.6, it follows that if ϕ is allowed, then both $\phi_{s,u}^{+}$ and $\phi_{s,u}^{\perp}$ are allowed. Since every allowed formula is domain independent [45], it follows that both $\phi_{s,u}^{\top}$ and $\phi_{s,u}^{\perp}$ are domain independent. Finally, the domain independence of $\phi_{s,u}^{rw}$ follows easily from its definition and the domain independence of $\phi_{s,u}^{\top}$ and $\phi_{s,u}^{\perp}$.

We now prove the main result of this section, namely that the secure function is, indeed, a sound, under-approximation of the notion of judgment's security.

LEMMA F.7. Let $P = \langle M, f \rangle$ be an extended configuration, L be the P-LTS, $u \in \mathcal{U}$ be a user, $r \in traces(L)$ be an L-run, $\phi \in RC_{bool}$ is a sentence, and $1 \leq i \leq |r|$. Furthermore, let s be the *i*-th state in r. The following statements hold:

- 1. Given a judgment $r, i \vdash_u \phi$, if secure $(u, \phi, s) = \top$, then secure $_{P,u}^{dat}(r, i \vdash_u \phi)$ holds.
- 2. Given a judgment $r, i \vdash_u \phi$, if secure $(u, \phi, s) = \top$, then secure $P_{,u}(r, i \vdash_u \phi)$ holds.

PROOF. Note that the second statement follows trivially from Lemma F.2 and the first statement. Therefore, in the following we prove just that given a judgment $r, i \vdash_u \phi$, if $secure(u, \phi, s) = \top$, then $secure_{P,u}^{data}(r, i \vdash_u \phi)$ holds.

Let $P = \langle M, f \rangle$ be an extended configuration, L be the P-LTS, $u \in \mathcal{U}$ be a user, $r \in traces(L)$ be an L-run, $\phi \in RC_{bool}$ is a sentence, and $1 \leq i \leq |r|$. Furthermore, let $s = \langle db, U, sec, T, V, c \rangle$ be the *i*-th state in r. Assume that $secure(u, \phi, s) = \top$. From this and secure's definition, $[\phi_{s,u}^{rw}]^{db} = \bot$. In the following, with a slight abuse of notation we ignore the *inline* and *ext* functions in $\phi_{s,u}^{rw}$'s definition. This is without loss of generality since *inline* and *ext* do not modify ϕ 's result. From this and $\phi_{s,u}^{rw}$'s definition, it follows that either $[\phi_{s,u}^{\top}]^{db} = \top$ or $[\phi_{s,u}^{\perp}]^{db} = \bot$. Note that from Lemma F.4, it follows that $secure_{P,u}^{data}(r, i \vdash_u \phi_{s,u}^{\top})$ and $secure_{P,u}^{data}(r, i \vdash_u \phi_{s,u}^{\perp})$. Furthermore, let Δ be the equivalence class $[\![pState(s)]\!]_{u,M}^{data}$. There are two cases:

- 1. $[\phi_{s,u}^{\top}]^{db} = \top$. From $secure_{P,u}^{data}(r, i \vdash_{u} \phi_{s,u}^{\top})$, it follows that for all $s', s'' \in \Delta$, $[\phi_{s,u}^{\top}]^{s'.db} = [\phi_{s,u}^{\top}]^{s''.db}$. From this, $s \in \Delta$, and $[\phi_{s,u}^{\top}]^{db} = \top$, it follows that $[\phi_{s,u}^{\top}]^{s'.db} = \top$ for all $s' \in \Delta$. From Lemma F.5, it follows that for all $s', s'' \in \Delta$, $\phi_{s,u}^{\top} = \phi_{s',u}^{\top} = \phi_{s'',u}^{\top}$. From this and the fact that for all $s' \in \Delta$, $[\phi_{s,u}^{\top}]^{s'.db} = \top$, it follows that for all $s' \in \Delta$, $[\phi_{s',u}^{\top}]^{s'.db} = \top$. From this and Lemma F.3, it follows that for all $s' \in \Delta$, $[\phi_{s',u}]^{s'.db} = \top$. From this, and Lemma F.3, it follows that for all $s' \in \Delta$, $[\phi]^{s'.db} = \top$. From this, r's definition, and $secure_{L,u}^{data}$, it follows that $secure_{L,u}^{data}(r, i \vdash_{u} \phi)$.
- 2. $[\phi_{s,u}^{\perp}]^{db} = \bot$. From $secure_{P,u}^{data}(r, i \vdash_{u} \phi_{s,u}^{\perp})$, it follows that for all $s', s'' \in \Delta$, $[\phi_{s,u}^{\perp}]^{s'.db} = [\phi_{s,u}^{\perp}]^{s''.db}$. From this, $s \in \Delta$, and $[\phi_{s,u}^{\perp}]^{db} = \bot$, it follows that $[\phi_{s,u}^{\perp}]^{s'.db} = \bot$ for all $s' \in \Delta$. From Lemma F.5, it follows that for all $s', s'' \in \Delta$, $\phi_{s,u}^{\perp} = \phi_{s',u}^{\perp} = \phi_{s'',u}^{\perp}$. From this and the fact that for all $s' \in \Delta$, $[\phi_{s',u}^{\perp}]^{s'.db} = \bot$, it follows that for all $s' \in \Delta$, $[\phi_{s',u}^{\perp}]^{s'.db} = \bot$. From this and Lemma F.3, it follows that for all $s' \in \Delta$, $[\phi]^{s'.db} = \bot$. From this, it follows that for all $s', s'' \in \Delta$, $[\phi]^{s'.db} = [\phi]^{s''.db}$. From this, r's definition, and $secure_{P,u}^{data}$, it follows that $secure_{P,u}^{data}(r, i \vdash_u \phi)$.

This completes the proof of our claim. \Box

Lemma F.8 proves that the *secure* function produces the same result for any two indistinguishable states.

LEMMA F.8. Let M be a system configuration, $u \in U$ be a user, $s, s' \in \Omega_M$ be two M-states such that $pState(s) \cong_{u,M}^{data}$ pState(s'), and ϕ be a sentence. Then, $secure(u, \phi, s) = \top$ iff $secure(u, \phi, s') = \top$.

PROOF. Let M be a system configuration, $u \in U$ be a user, $s = \langle db, U, sec, T, V, c \rangle$ and $s' = \langle db', U', sec', T', V', c' \rangle$ be two M-states such that $pState(s) \cong_{u,M}^{data} pState(s')$, and ϕ be a sentence. We now prove that $secure(u, \phi, s) = secure(u, \phi, s')$. Assume, for contradiction's sake, that $secure(u, \phi, s) \neq secure(u, \phi, s')$. From this, it follows that $[\phi_{s,u}^{rw}]^{db} \neq [\phi_{s',u}^{rw}]^{db'}$. From $pState(s) \cong_{u,M}^{data} pState(s')$ and Lemma F.5, it follows

that $\phi_{s,u}^{rw} = \phi_{s',u}^{rw}$. From this and $[\phi_{s,u}^{rw}]^{db} \neq [\phi_{s',u}^{rw}]^{db'}$, it follows that $[\phi_{s,u}^{rw}]^{db} \neq [\phi_{s,u}^{rw}]^{db'}$. This contradicts $secure_{P,u}^{data}(r, i \vdash_u \phi_{s,u}^{rw})$, which has been proved in Lemma F.4. This completes the proof of our claim. \Box

F.2 Data Confidentiality Proofs

In this section, we first prove some simple results about f_{conf}^u . Afterwards, we prove our main result, namely that f_{conf}^u provides data confidentiality with respect to the user u.

LEMMA F.9. Let $M = \langle D, \Gamma \rangle$ be a system configuration, $u \in \mathcal{U}$ be a user, $s, s' \in \Omega_M$ be two *M*-states such that $pState(s) \cong_{u,M}^{data} pState(s')$, invoker(s) = invoker(s'), and tr(s) = tr(s'), and a be an action in $\mathcal{A}_{D,\mathcal{U}}$. Then, $f_{conf}^u(s,a)$ $= f_{conf}^u(s', a)$.

PROOF. Let $M = \langle D, \Gamma \rangle$ be a system configuration, $u \in \mathcal{U}$ be a user, $s = \langle db, U, sec, T, V, c \rangle$ and $s' = \langle db', U', sec', T', V', c' \rangle$ be two *M*-states such that $pState(s) \cong_{u,M}^{data} pState(s')$, invoker(s) = invoker(s'), and tr(s) = tr(s'), and a be an action in $\mathcal{A}_{D,u}$. There are a number of cases depending on the action a.

- 1. $a = \langle u', \text{SELECT}, \phi \rangle$. Assume, for contradiction's sake, that $f_{conf}^{u}(s, a) \neq f_{conf}^{u}(s', a)$. This happens iff $secure(u, \phi, s) \neq secure(u, \phi, s')$. This contradicts Lemma F.8 because $pState(s) \cong_{u,M}^{data} pState(s')$.
- 2. $a = \langle u', \text{INSERT}, R, \bar{t} \rangle$. We claim that noLeak(s, a, u) = noLeak(s', a, u). Assume, for contradiction's sake, that $f_{conf}^{u}(s, a) \neq f_{conf}^{u}(s', a)$. This happens iff there is a formula ϕ , which has been derived using the getInfo, getInfo V, or getInfo D functions, such that secure(u, ϕ, s) \neq secure(u, ϕ, s'). This contradicts Lemma F.8 because $pState(s) \cong_{u,M}^{data} pState(s')$.
 - We prove our claim that noLeak(s, a, u) = noLeak(s', a, u)u) for any two states s and s' such that $pState(s) \cong_{u,M}^{data}$ pState(s'). Assume, for contradiction's sake, that this is not the case. Without loss of generality we assume that $noLeak(s, a, u) = \top$ and $noLeak(s', a, u) = \bot$. From $noLeak(s, a, u) = \top$, it follows that for all views V such that $\langle \oplus, \mathsf{SELECT}, V \rangle \in permissions(s, u)$ and $R \in$ tDet(V, s, M), for all $o \in tDet(V, s, M)$, $\langle \oplus, \texttt{SELECT}, o \rangle$ is in permissions(s, u). From $pState(s) \cong_{u,M}^{data} pState(s')$, it follows that sec = sec'. From this, permissions(s, u)= permissions(s', u). From $noLeak(s', a, u) = \bot$, there are two views V' and o such that $\langle \oplus, \texttt{SELECT}, V' \rangle \in$ $permissions(s', u), \ \langle \oplus, \texttt{SELECT}, o \rangle \not\in permissions(s', u),$ $R \in tDet(V', s', M)$, and $o \in tDet(V', s', M)$. Note that tDet(V', s', M) = tDet(V', s, M) because query determinacy does not consider the database state. From this and permissions(s, u) = permissions(s', u), it follows that there is a view V' such that $\langle \oplus, \text{SELECT}, V' \rangle \in$ permissions(s, u) and $R \in tDet(V', s, M)$, such that there is a table $o \in tDet(V', s, M)$ for which $\langle \oplus, \text{SELECT}, \rangle$ $o \notin permissions(s, u)$. This contradicts noLeak(s, a, u) $= \top$.
- 3. $a = \langle u', \text{DELETE}, R, \overline{t} \rangle$. The proof of this case is similar to the $a = \langle u', \text{INSERT}, R, \overline{t} \rangle$ case.
- 4. $a = \langle op, u'', p, u' \rangle$, where $op \in \{\oplus, \oplus^*\}$. Assume, for contradiction's sake, that $f_{conf}^u(s, a) \neq f_{conf}^u(s', a)$. Note that this happens iff $p = \langle \text{SELECT}, o \rangle$ for some o. Without loss of generality, we further assume that $f_{conf}^u(s, a) = \top$ and $f_{conf}^u(s', a) = \bot$. From $f_{conf}^u(s, a) = \top$, it follows that $\langle \oplus, \text{SELECT}, o \rangle \in permissions(s, u)$. From

 $\begin{array}{l} pState(s)\cong_{u,M}^{data}pState(s'), \text{ it follows } permissions(s,u)\\ = permissions(s',u). \text{ From this and } \langle \oplus, \texttt{SELECT}, o \rangle \in\\ permissions(s,u), \text{ it follows that } \langle \oplus, \texttt{SELECT}, o \rangle \text{ is in }\\ permissions(s',u). \text{ From } f^u_{conf_{\bullet}}(s',a) = \bot, \text{ it follows }\\ \text{that } \langle \oplus, \texttt{SELECT}, o \rangle \not\in permissions(s,u). \text{ This contradicts } \langle \oplus, \texttt{SELECT}, o \rangle \in permissions(s',u). \end{array}$

5. For any other action a, the proof is trivial.

This completes the proof of our claim. \Box

LEMMA F.10. Let P be an extended configuration, L be the P-LTS, $r \in traces(L)$ be a run, u be a user, γ be a sentence, and Φ be a set of sentences such that $\Phi \models_{fin} \gamma$. If, for all $\phi \in \Phi$, secure_{P,u} $(r, i \vdash_u \phi)$ holds and $[\phi]^{last(r).db} = \top$, then secure_{P,u} $(r, i \vdash_u \gamma)$ holds and $[\gamma]^{last(r^i).db} = \top$.

PROOF. Let P be an extended configuration, L be the P-LTS, $r \in traces(L)$ be a run, u be a user, γ be a sentence, and Φ be a set of sentences such that $\Phi \models_{fin} \gamma$ such that for all $\phi \in \Phi$, $secure_{P,u}(r, i \vdash_u \phi)$ holds and $[\phi]^{last(r^i).db} = \top$. We now show that $secure_{P,u}(r, i \vdash_u \gamma)$ holds and $[\gamma]^{last(r^i).db} = \top$. We now show that $secure_{P,u}(r, i \vdash_u \gamma)$ holds and $[\gamma]^{last(r^i).db} = \top$. The from $\Phi \models_{fin} \gamma$, the fact that for all $\phi \in \Phi$, $[\phi]^{last(r^i).db} = \top$, and \models_{fin} 's definition, it follows that $[\gamma]^{last(r^i).db} = \top$. Assume, for contradiction's sake, that $secure_{P,u}(r, i \vdash_u \gamma)$ does not hold. From this and $[\gamma]^{last(r^i).db} = \top$, it follows that $[\gamma]^{last(r').db} = \bot$. We claim that for all $\phi \in \Phi$, $[\phi]^{last(r').db} = \top$. From this and $\Phi \models_{fin} \gamma$, it follows that $[\gamma]^{last(r').db} = \top$, which contradicts $[\gamma]^{last(r').db} = \bot$.

We now prove our claim that for all $\phi \in \Phi$, $[\phi]^{last(r').db} = \top$ for any trace r' such that $r^i \cong_{P,u} r'$. From $secure_{P,u}(r, i \vdash_u \phi)$, it follows that $[\phi]^{last(r^i).db} = [\phi]^{last(r').db}$. From this and $[\phi]^{last(r^i).db} = \top$, it follows that $[\phi]^{last(r').db} = \top$. \Box

Before proving our main result, namely that f_{conf}^u provides data confidentiality for the user u, we introduce the concept of an action that preserves the equivalence class induced by the indistinguishability relation $\cong_{P,u}$.

Definition F.3. Let $P = \langle M, f \rangle$ be an extended configuration, where $M = \langle D, \Gamma \rangle$ is a system configuration and f is an M-PDP, L be the P-LTS, $r \in traces(L)$ be a run, a be an action in $\mathcal{A}_{D,\mathcal{U}} \cup \mathcal{TRIGGER}_D$, and u be a user in \mathcal{U} . We denote by extend(r, a), where r is a run and a is an action, the run $r' \in traces(L)$, where $s \in \Omega_M$ and $r' = r \cdot a \cdot s$, obtained by executing the action a at the end of the run r'. If there is no such run, then extend(r, a) is undefined. We say that a preserves the equivalence class for r, P, and u iff (1) extend(r, a) is defined, and (2) there is a bijection b between $[\![r]\!]_{P,u}$ and $[\![extend(r, a)]\!]_{P,u}$ such that for all $r' \in [\![r]\!]_{P,u}$, extend(r', a) is defined and b(r') = extend(r', a). \Box

LEMMA F.11. Let $P = \langle M, f \rangle$ be an extended configuration, where $M = \langle D, \Gamma \rangle$ is a system configuration and fis an M-PDP, L be the P-LTS, u be a user in \mathcal{U} , r be a run in traces(L), $a \in \mathcal{A}_{D,u}$ be an INSERT or DELETE action $\langle u, op, R, \overline{t} \rangle$, ϕ be a sentence, and i be such that $1 \leq i \leq |r|$, triggers(last(r^i)) = ϵ , and $r^{i+1} = \text{extend}(r^i, a)$. If (1) a preserves the equivalence class for r^i , P, and u, and (2) the execution of a does not change any table in tables(ϕ) for any run $v \in [\![r^i]\!]_{P,u}$, then $\text{secure}_{P,u}(r, i \vdash_u \phi)$ holds iff secure_{P,u}(r, i + 1 \vdash_u \phi) holds.

PROOF. Let $P = \langle M, f \rangle$ be an extended configuration, where $M = \langle D, \Gamma \rangle$ is a system configuration and f is an M-PDP, L be the P-LTS, u be a user in \mathcal{U} , r be a run in traces(L), $a \in \mathcal{A}_{D,u}$ be an INSERT or DELETE action $\langle u, op, R, \overline{t} \rangle$, ϕ be a sentence, and *i* be such that $1 \leq i \leq |r|$, $triggers(last(r^i)) = \epsilon$, and $r^{i+1} = extend(r^i, a)$. Assume that (1) a preserves the equivalence class for r^i , P, and u, and (2) the execution of a does not change any table in $tables(\phi)$ for any run $v \in [r^i]_{P,u}$. Without loss of generality, assume that a is an **INSERT** action. In the following, we denote the *extend* function by *e*. Furthermore, we also denote the fact that $secure_{P,u}(r, i, u, \phi)$ does not hold as $\neg secure_{P,u}(r, i, u, \phi)$. From Definition F.3 and a preserves the equivalence class for r^i , P, and u, it follows that e(r', a)is defined for any $r' \in [\![r^i]\!]_{P,u}$. Assume, for contradiction's sake, that our claim does not hold. There are two cases:

• secure_{P,u} $(r, i \vdash_u \phi)$ holds and secure_{P,u} $(r, i + 1 \vdash_u \phi)$ does not hold. From $secure_{P,u}(r, i \vdash_u \phi)$, it follows that for all $r' \in [\![r^i]\!]_{P,u}, [\phi]^{last(r').db} = [\phi]^{last(r^i).db}$. We claim that $[\phi]^{last(r').db} = [\phi]^{last(e(r',a)).db}$ holds for any $r' \in$ $[\![r^i]\!]_{P,u}$. From this and $[\phi]^{last(r').db} = [\phi]^{last(r^i).db}$ for all $r' \in [\![r^i]\!]_{P,u}$, it follows that $[\phi]^{last(r^i).db} = [\phi]^{last(e(r',a)).db}$ holds for any $r' \in [\![r^i]\!]_{P,u}$. From $\neg secure_{P,u}(r, i + 1 \vdash_u \phi)$, it follows that there is a run $r' \in [\![r^{i+1}]\!]_{P,u}$ such that $[\phi]^{last(r^{i+1}).db} \neq [\phi]^{last(r').db}$. From this, $[\phi]^{last(r').db} =$ $[\phi]^{last(e(r',a)).db} \text{ for any } r' \in [\![r^i]\!]_{P,u}, \text{ and } e(r^i,a) = r^{i+1},$ it follows that $[\phi]^{last(r^i).db} \neq [\phi]^{last(r').db}$. Let b be the bijection showing that a preserves the equivalence class with respect to r^i , P, and u. From $e(r^i, a) = r^{i+1}$ and $r' \in [\![r^{i+1}]\!]_{P,u}$, it follows that $r' \in [\![e(r^i, a)]\!]_{P,u}$. From this, it follows that there is a $r'' = b^{-1}(r')$ such that $r'' \in [\![r^i]\!]_{P,u}$ and e(r'', a) = r'. From this and $[\phi]^{last(v).db} = [\phi]^{last(e(v,a)).db}$ for any $v \in [\![r^i]\!]_{P,u}$, it follows that $[\phi]^{last(r'').db} = [\phi]^{last(r').db}$. From this and $[\phi]^{last(r^i).db} \neq [\phi]^{last(r').db}$, it follows that $[\phi]^{last(r^i).db} \neq$ $[\phi]^{last(r'').db}$. This contradicts the fact that for all $r' \in$ $\llbracket r^i \rrbracket_{P,u}, [\phi]^{last(r').db} = [\phi]^{last(r^i).db}. \text{ Indeed, } r'' \in \llbracket r^i \rrbracket_{P,u}$ and $[\phi]^{last(r^i).db} \neq [\phi]^{last(r'').db}.$

We prove our claim that $[\phi]^{last(r').db} = [\phi]^{last(e(r',a)).db}$ holds for any $r' \in [\![r^i]\!]_{P,u}$. Assume that this is not the case. This implies that the content of one of the relations that determines ϕ is different in last(r').db and last(e(r', a)).db. This is impossible. Indeed, if a's execution has been successful, i.e., secEx(last(e(r', a))) = \perp and $Ex(last(e(r', a))) = \emptyset$, then a's execution does not change any table in $tables(\phi)$, and the set of relations that determines ϕ is always a subset of $tables(\phi)$. This leads to a contradiction, and, therefore, $[\phi]^{last(r').db}$ $= [\phi]^{last(e(r', a)).db}$ holds. Similarly, if a's execution has not been successful, i.e., $secEx(last(e(r', a))) = \top$ or $Ex(last(e(r', a))) \neq \emptyset$, then last(r').db is the same as last(e(r', a)).db, and the claim holds trivially.

• secure $_{P,u}(r, i + 1 \vdash_u \phi)$ holds and $secure_{P,u}(r, i \vdash_u \phi)$ does not hold. We have already shown that $[\phi]^{last(r').db}$ $= [\phi]^{last(e(r',a)).db}$ holds for any $r' \in [\![r]\!]_{P,u}$. From $\neg secure_{P,u}(r, i \vdash_u \phi)$, it follows that there is $r' \in [\![r^i]\!]_{P,u}$ such that $[\phi]^{last(r^i).db} \neq [\phi]^{last(r').db}$. Let b the bijection showing that a preserves the equivalence class with respect to r, P, and u. Since $r' \in [\![r^i]\!]_{P,u}$, then let r'' =
$$\begin{split} b(r') &= e(r',a). \quad \text{From } [\phi]^{last(r').db} &= [\phi]^{last(e(r',a)).db} \\ \text{holds for any } r' \in \llbracket r^i \rrbracket_{P,u}, \text{ it follows that } [\phi]^{last(r^i).db} \neq \\ [\phi]^{last(e(r',a)).db}. \quad \text{From this, } e(r^i,a) = r^{i+1}, \text{ and the fact} \\ \text{that } [\phi]^{last(r').db} &= [\phi]^{last(e(r',a)).db} \text{ holds for any } r' \in \\ \llbracket r \rrbracket_{P,u}, \text{ it follows that } [\phi]^{last(r^{i+1}).db} \neq [\phi]^{last(e(r',a)).db}. \\ \text{From this and } e(r',a) \in \llbracket r^{i+1} \rrbracket_{P,u}, \text{ it follows } \neg secure_{P,u} \\ (r,i+1 \vdash_u \phi). \text{ This contradicts the fact that } secure_{P,u}(r,i+1 \vdash_u \phi) \text{ holds.} \end{split}$$

This completes the proof. \Box

LEMMA F.12. Let $P = \langle M, f \rangle$ be an extended configuration, where $M = \langle D, \Gamma \rangle$ is a system configuration and f is an M-PDP, L be the P-LTS, u be a user in \mathcal{U} , r be a run in traces(L), $a \in \mathcal{A}_{D,u}$ be a SELECT or CREATE action, ϕ be a sentence, and i be such that $1 \leq i \leq |r|$, triggers(last(r^i)) = ϵ , and $r^{i+1} = extend(r^i, a)$. If a preserves the equivalence class for r^i , P, and u, then secure_{P,u}(r, $i \vdash_u \phi$) holds iff secure_{P,u}(r, $i + 1 \vdash_u \phi$) holds.

PROOF. Proof similar to that of Lemma F.11.

LEMMA F.13. Let $P = \langle M, f \rangle$ be an extended configuration, where $M = \langle D, \Gamma \rangle$ is a system configuration and f is an M-PDP, L be the P-LTS, u be a user in \mathcal{U} , r be a run in traces(L), $a \in \mathcal{A}_{D,u}$ be a GRANT or REVOKE action, ϕ be a sentence, and i be such that $1 \leq i \leq |r|$, triggers(last(r^i)) = ϵ , and $r^{i+1} = extend(r^i, a)$. If a preserves the equivalence class for r^i , P, and u, then secure_{P,u}($r, i \vdash_u \phi$) holds iff secure_{P,u}($r, i + 1 \vdash_u \phi$) holds.

PROOF. Proof similar to that of Lemma F.11.

LEMMA F.14. Let $P = \langle M, f \rangle$ be an extended configuration, where $M = \langle D, \Gamma \rangle$ is a system configuration and f is an M-PDP, L be the P-LTS, u be a user in \mathcal{U} , r be a run in traces(L), a be a trigger in $\mathcal{TRIGGER}_D$, ϕ be a sentence, and i be such that $1 \leq i \leq |r|$, invoker($last(r^i)$) = u, and $r^{i+1} = extend(r^i, a)$. If (1) a preserves the equivalence class for r^i , P, and u, (2) if a's action is either an INSERT or DELETE, then t's execution does not change any table in tables(ϕ) for any run $v \in [\![r^i]\!]_{P,u}$, and (3) secEx(last(extend $(r^i, a)) = \bot$ and Ex($last(extend(r^i, a)) = \emptyset$, then secure_{P,u}(r, $i \vdash_u \phi$) holds iff secure_{P,u}(r, $i + 1 \vdash_u \phi$) holds.

PROOF. Let $P = \langle M, f \rangle$ be an extended configuration, where $M = \langle D, \Gamma \rangle$ is a system configuration and f is an M-PDP, L be the P-LTS, u be a user in \mathcal{U}, r be a run in traces(L), a be a trigger in $\mathcal{TRIGGER}_D, \phi$ be a sentence, and i be such that $1 \leq i \leq |r|$, $invoker(last(r^i)) = u$, and $r^{i+1} = extend(r^i, a)$. Assume also (1) that a preserves the equivalence class for r^i , P, and u, and (2) secEx(last(extend $(r^i, a)) = \bot$ and $Ex(last(extend(r^i, a)) = \emptyset$. In the following, we denote the extend function by e. Furthermore, we also denote the fact that $secure_{P,u}(r, i \vdash_u \phi)$ does not hold as $\neg secure_{P,u}(r, i \vdash_u \phi)$. From Definition F.3 and the fact that a preserves the equivalence class for r^i , P, and u, it follows that e(r', a) is defined for any $r' \in [\![r^i]\!]_{P,u}$. Assume, for contradiction's sake, that our claim does not hold. There are two cases:

• secure $P_{,u}(r, i \vdash_u \phi)$ holds and secure $P_{,u}(r, i + 1 \vdash_u \phi)$ does not hold. From secure $P_{,u}(r, i \vdash_u \phi)$, it follows that $[\phi]^{last(r^i).db} = [\phi]^{last(r').db}$ for any $r' \in [\![r^i]\!]_{P,C}$. We claim that $[\phi]^{last(r').db} = [\phi]^{last(e(r',a)).db}$ holds for any $r' \in [\![r^i]\!]_{P,u}$. From \neg secure $P_{,u}(r, i + 1 \vdash_u \phi)$, it follows that there is a $r'' \in [\![r^{i+1}]\!]_{P,u}$ such that $[\phi]^{last(r'').db} \neq [\phi]^{last(r^{i+1}).db}$. Let *b* the bijection showing that *a* preserves the equivalence class with respect to r^i , *P*, and *u*. Since $r^{i+1} = e(r^i, a)$ and $r' \in [\![e(r, a)]\!]_{P,u}$, then there is a run $v \in [\![r^i]\!]_{P,u}$ such that $v = b^{-1}(r'')$. From this, $[\phi]^{last(r').db} = [\phi]^{last(e(r',a)).db}$ holds for any $r' \in [\![r^i]\!]_{P,u}$, and the fact that $[\phi]^{last(r'').db} \neq [\phi]^{last(r^{i+1}).db}$, it follows that $[\phi]^{last(ov).db} \neq [\phi]^{last(r^{i+1}).db}$. From this, $[\phi]^{last(r').db} = [\phi]^{last(e(r',a)).db}$ holds for any $r' \in [\![r^i]\!]_{P,u}$, and $r^{i+1} = e(r^i, a)$, it follows $[\phi]^{last(v).db} \neq [\phi]^{last(r^i).db}$. This contradicts the fact that $[\phi]^{last(r^i).db} = [\phi]^{last(r').db}$ for any $r' \in [\![r^i]\!]_{P,C}$.

We now prove that $[\phi]^{last(r').db} = [\phi]^{last(e(r',a)).db}$ holds for any $r' \in [\![r^i]\!]_{P,u}$. Assume, for contradiction's sake, that there is a run $r' \in [\![r^i]\!]_{P,u}$ such that $[\phi]^{last(r').db} \neq [\phi]^{last(e(r',a)).db}$. There are three cases:

- the trigger *a* is not enabled in e(r', a). From this and the LTS semantics, it follows that last(r').db = last(e(r', a)).db. From this, it therefore follows that $[\phi]^{last(r').db} = [\phi]^{last(e(r', a)).db}$. This contradicts our assumption.
- the trigger *a* is enabled in e(r', a) and its action is a **GRANT** or a **REVOKE**. From this and the LTS semantics, it therefore follows that last(r').db = last(e(r', a)).db. From this, it thus follows that $[\phi]^{last(r').db} = [\phi]^{last(e(r', a)).db}$. This contradicts our assumption.
- the trigger *a* is enabled in e(r', a) and its action is a **INSERT** or a **GRANT**. Thus, from $[\phi]^{last(r').db} \neq [\phi]^{last(e(r',a)).db}$, it follows that the content of one of the relations that determines ϕ is different in last(r').db and last(e(r',a)).db. This contradicts the fact that the *a*'s execution does not change the tables in $tables(\phi)$ for any run $r' \in [\![r^i]\!]_{P,u}$.
- secure $_{P,u}(r, i + 1 \vdash_u \phi)$ holds and secure $_{P,u}(r, i \vdash_u \phi)$ does not hold. We have already shown that $[\phi]^{last(r').db} = [\phi]^{last(e(r',a)).db}$ holds for any $r' \in [\![r]\!]_{P,u}$. From \neg secure $_{P,u}(r, i \vdash_u \phi)$, it follows that there is $r' \in [\![r^i]\!]_{P,u}$ such that $[\phi]^{last(r').db} \neq [\phi]^{last(r').db}$. Let b the bijection showing that a preserves the equivalence class with respect to r, P, and u. Since $r' \in [\![r^i]\!]_{P,u}$, then let r'' = b(r') = e(r', a). From $[\phi]^{last(r').db} = [\phi]^{last(e(r',a)).db}$ holds for any $r' \in [\![r^i]\!]_{P,u}$, it follows that $[\phi]^{last(r^i).db} \neq [\phi]^{last(e(r',a)).db}$. From this, $e(r^i, a) = r^{i+1}$, and the fact that $[\phi]^{last(r').db} = [\phi]^{last(e(r',a)).db}$ holds for any $r' \in [\![r]\!]_{P,u}$, it follows that $[\phi]^{last(e(r',a)).db}$. From this and $e(r', a) \in [\![r^{i+1}]\!]_{P,u}$, it follows \neg secure $_{P,u}$ $(r, i+1 \vdash_u \phi)$. This contradicts secure $_{P,u}(r, i+1 \vdash_u \phi)$.

This completes the proof. $\hfill\square$

PROPOSITION F.7. Let $P = \langle M, f \rangle$ be an extended configuration, where $M = \langle D, \Gamma \rangle$ is a system configuration and f is an M-PDP, L be the P-LTS, $a \in \mathcal{A}_{D,u}$ be an INSERT or DELETE action, and r be a run such that $tr(last(r)) = \epsilon$. For any constraint γ in $Dep(\Gamma, a)$, the following statements hold:

- $[getInfoS(\gamma, a)]^{last(r).db} = \top iff \gamma \notin Ex(last(extend(r, a))),$ and
- $[getInfoV(\gamma, a)]^{last(r).db} = \top iff \gamma \in Ex(last(extend(r, a))).$

PROOF. Let $P = \langle M, f \rangle$ be an extended configuration, where $M = \langle D, \Gamma \rangle$ is a system configuration and f is an M-PDP, L be the P-LTS, $a \in \mathcal{A}_{D,u}$ be an **INSERT** or **DELETE** action, and r be a run such that $tr(last(r)) = \epsilon$. Furthermore, let γ be a constraint in $Dep(\Gamma, a)$. We first note that $getInfoS(\gamma, a) = \neg getInfoV(\gamma, a)$. From this, it follows trivially that we can prove just one of the two claims. We thus prove that $[getInfoS(\gamma, a)]^{last(r).db} = \top$ iff $\gamma \notin Ex(last(extend(r, a)))$. There are two cases:

- 1. $a = \langle u, \text{INSERT}, R, \overline{t} \rangle$. There are two cases depending on γ :
 - (a) γ is of the form $\forall \overline{x}, \overline{y}, \overline{y}', \overline{z}, \overline{z}' . (R(\overline{x}, \overline{y}, \overline{z}) \land R(\overline{x}, \overline{y}', \overline{z}')) \Rightarrow \overline{y} = \overline{y}'$. Let \overline{t} be $(\overline{v}, \overline{w}, \overline{q})$, db be the state last(r).db, and db' be the state $db[R \oplus \overline{t}]$.
 - (\Rightarrow) Assume that $[getInfoS(\gamma, a)]^{last(r).db} = \top$. From this and $getInfoS(\gamma, a)$'s definition, it follows that for all tuples $(\overline{v}, \overline{w}', \overline{q}') \in db(R)$, then $\overline{w}' = \overline{w}$. From a's definition and the LTS semantics, it follows that $db'(R) = db(R) \cup \{(\overline{v}, \overline{w}, \overline{q})\}$. From this and the fact that for all tuples $(\overline{v}, \overline{w}', \overline{q}') \in db(R)$, then $\overline{w}' = \overline{w}$, it follows that for all tuples $(\overline{v}, \overline{w}', \overline{q}')$ $\in db'(R)$, then $\overline{w}' = \overline{w}$. Furthermore, since $db \in$ Ω_D^{Γ} , it follows that for all tuples $(\overline{v}', \overline{w}', \overline{q}'), (\overline{v}'', \overline{w}'', \overline{w}'')$ $\overline{q}^{\prime\prime}) \in db^{\prime}(R)$, if $\overline{v}^{\prime} = \overline{v}^{\prime\prime}$ and $\overline{v}^{\prime} \neq \overline{v}$, then $\overline{w}^{\prime} = \overline{w}$. Therefore, it follows that for all tuples $(\overline{v}', \overline{w}', \overline{q}')$, $(\overline{v}'', \overline{w}'', \overline{q}'') \in db'(R)$, if $\overline{v}' = \overline{v}''$, then $\overline{w}' = \overline{w}$. Therefore, $[\gamma]^{db'} = \top$. From this and the LTS semantics, it follows that $\gamma \notin Ex(last(extend(r, a)))$. (\Leftarrow) Assume that $\gamma \notin Ex(last(extend(r, a))))$. From this and the LTS semantics, it follows that $[\gamma]^{db'} =$ \top . Therefore, for any two tuples $(\overline{v}', \overline{w}', \overline{q}')$ and $(\overline{v}'', \overline{w}'', \overline{q}'') \in db'(R)$, if $\overline{v}' = \overline{v}''$, then $\overline{w}' = \overline{w}$. Assume, for contradiction's sake, that $[\mathit{getInfoS}(\gamma,a)]^{\mathit{db}}$ $= \perp$. This means that there is a tuple $(\overline{v}, \overline{w}', \overline{q}')$ in db(R) such that $\overline{w}' \neq \overline{w}$. From $db' = db[R(\overline{v}, \overline{w}, \overline{q})]$ and the LTS semantics, it follows that both $(\overline{v}, \overline{w}', \overline{q}')$ and $(\overline{v}, \overline{w}, \overline{q})$ are in db'(R). From this and $\overline{w}' \neq$ \overline{w} , it follows that there are two tuples $(\overline{v}, \overline{w}, \overline{q})$ and $(\overline{v}, \overline{w}', \overline{q}')$ in db(R) such that $\overline{w}' \neq \overline{w}$. From this and the relational calculus semantics, it follows that $[\gamma]^{db} = \bot$. This is in contradiction with $[\gamma]^{db'} = \top.$
 - (b) γ is of the form $\forall \overline{x}, \overline{z}. R(\overline{x}, \overline{z}) \Rightarrow \exists \overline{w}. S(\overline{x}, \overline{w})$. Let \overline{t} be $(\overline{v}, \overline{w})$, db be the state last(r).db, and db' be the state $db[R \oplus \overline{t}]$. (\Rightarrow) Assume that $[getInfoS(\gamma, a)]^{db} = \top$. From this

(\Rightarrow) Assume that [getn]oS(γ , a)] = \uparrow . From this and getInfoS(γ , a)'s definition, it follows that there is a tuple ($\overline{v}, \overline{y}$) in db(S). From a's definition and the LTS semantics, it follows that db'(S) = db(S). From this, it follows that there is a tuple ($\overline{v}, \overline{y}$) in db'(S). Furthermore, since $db \in \Omega_D^{\Gamma}$, it follows that for all tuples ($\overline{v}', \overline{w}'$) $\in db(R)$, if $\overline{v}' \neq \overline{v}$, there is a tuple ($\overline{v}', \overline{y}'$) $\in db(S)$. From this and $\overline{db}' =$ $db[R \oplus (\overline{v}, \overline{w})]$, it follows that for all tuples ($\overline{v}', \overline{w}'$) \in db'(R), there is a tuple ($\overline{v}', \overline{y}'$) $\in db'(S)$. Therefore, [γ]^{db'} = \top . From this and the LTS semantics, it follows that $\gamma \notin Ex(last(extend(r, a)))$.

(⇐) Assume that $\gamma \notin Ex(last(extend(r, a)))$. From this and the LTS semantics, it follows that $[\gamma]^{db'} = \Box$. Therefore, for any tuple $(\overline{v}', \overline{w}') \in db'(R)$, there is a tuple $(\overline{v}', \overline{y}') \in db'(S)$. Assume, for contradiction's sake, that $[getInfoS(\gamma, a)]^{db} = \bot$. This means that for any tuple $(\overline{v}', \overline{y}')$ in $db(S), \overline{v}' \neq \overline{v}$. From db'(S) = db(S), it follows that for any tuple $(\overline{v}', \overline{y}')$ in $db'(S), \overline{v}' \neq \overline{v}$. From $db' = db[R \oplus (\overline{v}, \overline{w})]$, it follows that there is a tuple $(\overline{v}, \overline{w})$ in db'(R) such that there is no tuple $(\overline{v}, \overline{y}')$ in db'(S). From this and the relational calculus semantics, it follows that $[\gamma]^{db} = \bot$. This is in contradiction with $[\gamma]^{db'} = \top$.

- 2. $a = \langle u, \text{DELETE}, R, \overline{t} \rangle$. In this case, γ is of the form $\forall \overline{x}, \overline{z}. S(\overline{x}, \overline{z}) \Rightarrow \exists \overline{w}. R(\overline{x}, \overline{w})$. Let \overline{t} be $(\overline{v}, \overline{w}), db$ be the state last(r).db, and db' be the state $db[R \ominus \overline{t}]$. (\Rightarrow) Assume that $[getInfoS(\gamma, a)]^{db} = \top$. From this and $getInfoS(\gamma, a)$'s definition, it follows that either there is no tuple $(\overline{v}, \overline{y})$ in db(S) or there is a tuple $(\overline{v}, \overline{w}')$ in db(R) such that $\overline{w}' \neq \overline{w}$. There are two cases:
 - (a) there is no tuple $(\overline{v}, \overline{y})$ in db(S). From this, *a*'s definition, and the LTS semantics, it follows that there is no tuple $(\overline{v}, \overline{y})$ in db'(S). From $db \in \Omega_D^{\Gamma}$, it follows that for all tuples $(\overline{v}', \overline{y}')$ in db(S) such that $\overline{v}' \neq \overline{v}$, there is a tuple $(\overline{v}', \overline{w}')$ in db(S) such this, $db'(R) = db(R) \setminus \{(\overline{v}, \overline{w})\}, db'(S) = db(S)$, and there is no tuple $(\overline{v}, \overline{y})$ in db'(S), it follows that for all tuples $(\overline{v}', \overline{y}')$ in db(S), there is a tuple $(\overline{v}', \overline{w}')$ in db(R). Therefore, $[\gamma]^{db'} = \top$. From this and the LTS semantics, it follows that $\gamma \notin Ex(last(extend(r, a)))$.
 - (b) there is a tuple (v̄, w̄') in db(R) such that w̄' ≠ w̄. From this, a's definition, and the LTS semantics, it follows that there is a tuple (v̄, w̄') in db'(R) such that w̄' ≠ w̄. From db ∈ Ω^Γ_D, it follows that for all tuples (v̄', ȳ') in db(S) such that v̄' ≠ v̄, there is a tuple (v̄, w̄') in db(R). From this, db'(R) = db(R) \ {(v̄, w̄)}, db'(S) = db(S), and there is a tuple (v̄, w̄') in db'(R) such that w̄' ≠ w̄, it follows that for all tuples (v̄', ȳ') in db(S), there is a tuple (v̄, w̄') in db(R). Therefore, [γ]^{db'} = T. From this and the LTS semantics, it follows that γ ∉ Ex(last(extend(r, a))).

(⇐) Assume that $\gamma \notin Ex(last(extend(r, a)))$. From this and the LTS semantics, it follows that $[\gamma]^{db'} = \top$. Therefore, for any tuple $(\overline{v}', \overline{y}') \in db'(S)$, there is a tuple $(\overline{v}', \overline{w}') \in db'(R)$. Assume, for contradiction's sake, that $[getInfoS(\gamma, a)]^{db} = \bot$. Therefore, there is a tuple $(\overline{v}, \overline{y})$ in db(S) and for all tuples $(\overline{v}, \overline{w}')$ in db(R), $\overline{w}'' = \overline{w}$. From this, db'(S) = db(S), and $db' = db[R \ominus$ $(\overline{v}, \overline{w})]$, it follows that there is a tuple $(\overline{v}, \overline{y})$ in db'(S)and for all tuples $(\overline{v}'', \overline{w}'')$ in $db'(R), \overline{v}'' \neq \overline{v}$. From this and the relational calculus semantics, it follows that $[\gamma]^{db} = \bot$. This is in contradiction with $[\gamma]^{db'} = \top$. This completes the proof. \Box

LEMMA F.15. Let u be a user in \mathcal{U} , $P = \langle M, f_{conf}^u \rangle$ be an extended configuration, where $M = \langle D, \Gamma \rangle$ is a system configuration and f_{conf}^u is as above, and L be the P-LTS. For any run $r \in traces(L)$ and any action $a \in \mathcal{A}_{D,u}$, if extend(r, a) is defined, then a preserves the equivalence class

PROOF. Let u be a user in \mathcal{U} , $P = \langle M, f_{conf}^u \rangle$ be an extended configuration, where $M = \langle D, \Gamma \rangle$ is a system configuration and f_{conf}^u is as above, and L be the *P*-LTS. In the following, we use e to refer to the *extend* function and f to refer to f_{conf}^u . We prove our claim by contradiction. Assume,

for r, P, and u.

for contradiction's sake, that there is a run $r \in traces(L)$ and an action $a \in \mathcal{A}_{D,u}$ such that e(r, a) is defined and a does not preserve the equivalence class for r, P, and u. According to the LTS semantics, the fact that e(r, a) is defined implies that $triggers(last(r)) = \epsilon$. Therefore, $triggers(last(r')) = \epsilon$ holds as well for any for any $r' \in [\![r]\!]_{P,u}$ (because r and r' are indistinguishable and, therefore, their projections are consistent), and, thus, e(r', a) is defined as well for any $r' \in [\![r]\!]_{P,u}$. There are a number of cases depending on a:

- 1. $a = \langle u, \text{SELECT}, q \rangle$. There are two cases:
 - (a) $secEx(last(e(r, a))) = \bot$. From the LTS rules and $secEx(last(e(r, a))) = \bot$, it follows that f(last(r), a) $= \top$. From this and Lemma F.9, it follows that $f(last(r'), a) = \top$ for any $r' \in \llbracket r \rrbracket_{P,u}$. From this and the LTS rules, it follows secEx(last(e(r', a))) = \bot for any $r' \in \llbracket r \rrbracket_{P,u}$. From $f(last(r'), a) = \top$ for any $r' \in \llbracket r \rrbracket_{P,u}$, it follows that secure(u, q, last(r')) $= \top$ for any $r' \in \llbracket r \rrbracket_{P,u}$. From this and Lemma F.7, it follows that $[q]^{last(r').db} = [q]^{last(r).db}$ for all $r' \in$ $\llbracket r \rrbracket_{P,u}$. Furthermore, it follows trivially from the LTS rule *SELECT Success*, that the state after a's execution is data indistinguishable from last(r). It is also easy to see that e(r', a) is well-defined for any $r' \in \llbracket r \rrbracket_{P,u}$. From the considerations above and $r' \in \llbracket r \rrbracket_{P,u}$. The bijection b is trivially b(r') =e(r', a). This leads to a contradiction.
 - (b) $secEx(last(e(r, a))) = \top$. From the LTS rules and $secEx(last(e(r, a))) = \top$, it follows that $f(last(r), a) = \bot$. From this and Lemma F.9, it follows that $f(last(r'), a) = \bot$ for any $r' \in [\![r]\!]_{P,u}$. From this and the LTS rules, it follows $secEx(last(e(r', a))) = \top$ for any $r' \in [\![r]\!]_{P,u}$. The data indistinguishability between last(e(r', a)) and last(e(r, a)) follows trivially from the data indistinguishability between last(r). Therefore, for any $r' \in [\![r]\!]_{P,C}$, there is exactly one run e(r', a). From the considerations above, it follows trivially that $e(r', a) \in [\![e(r, a)]\!]_{P,u}$. The bijection b is trivially b(r') = e(r', a). This leads to a contradiction.

Both cases leads to a contradiction. This completes the proof for $a = \langle u, \text{SELECT}, q \rangle$.

- 2. $a = \langle u, \text{INSERT}, R, \overline{t} \rangle$. In the following, we denote by gI the function getInfo, by gS the function getInfoS, and by gV the function getInfoV. There are three cases:
 - (a) $secEx(last(e(r, a))) = \bot$ and $Ex(last(e(r, a))) = \emptyset$. From the LTS rules and $secEx(last(e(r, a))) = \bot$, it follows that $f(last(r), a) = \top$. From this and Lemma F.9, it follows that $f(last(r'), a) = \top$ for any $r' \in [\![r]\!]_{P,u}$. From this and the LTS rules, it follows that $secEx(last(e(r', a))) = \bot$ for any $r' \in$ $[r]_{P,u}$. From f_{conf}^{u} 's definition and f(last(r), a) = \top , it follows that $secure(u, gS(\gamma, act), last(r))$ holds for any integrity constraint γ in $Dep(\Gamma, a)$. From $Ex(last(e(r, a))) = \emptyset$ and Proposition F.7, it follows $[gS(\gamma, act)]^{last(r).db} = \top$. From this, secure(u, t) $gS(\gamma, act), last(r))$, and Lemma F.7, it follows that $[gS(\gamma, act)]^{last(r').db} = \top$ for any $r' \in [\![r]\!]_{P,u}$. From this and Proposition F.7, it follows that Ex(last(e(r', $a))) = \emptyset$ for any $r' \in [[r]]_{P,u}$. We claim that, for any $r' \in [\![r]\!]_{P,u}$, last(e(r, a)) and last(e(r', a)) are data indistinguishable. From this and the above considerations, it follows trivially that $e(r', a) \in$

 $\llbracket e(r,a) \rrbracket_{P,u}$. The bijection *b* is trivially b(r') = e(r',a). This leads to a contradiction.

We now prove our claim that for any $r' \in \llbracket r \rrbracket_{P,u}$, last(e(r, a)) and last(e(r', a)) are data indistinguishable. We prove the claim by contradiction. Let $s_2 = \langle db_2, U_2, sec_2, T_2, V_2 \rangle$ be pState(last(e(r, a))), $s'_2 = \langle db'_2, U'_2, sec'_2, T'_2, V'_2 \rangle$ be pState(last(e(r', a))), $s_1 = \langle db_1, U_1, sec_1, T_1, V_1 \rangle$ be pState(last(r)), and $s'_1 = \langle db'_1, U'_1, sec'_1, T'_1, V'_1 \rangle$ be pState(last(r')). In the following, we denote the permissions function by p. Furthermore, note that s_1 and s'_1 are dataindistinguishable because $r' \in \llbracket r \rrbracket_{P,u}$. There are a number of cases:

- i. $U_2 \neq U'_2$. Since *a* is an **INSERT** operation, it follows that $U_1 = U_2$ and $U'_1 = U'_2$. Furthermore, from $s_1 \cong_{u,M}^{data} s'_1$, it follows that $U_1 = U'_1$. Therefore, $U_2 = U'_2$ leading to a contradiction.
- ii. $sec_2 \neq sec'_2$. The proof is similar to the case $U_2 \neq U'_2$.
- iii. $T_2 \neq T_2'$. The proof is similar to the case $U_2 \neq U_2'$.
- iv. $V_2 \neq V'_2$. The proof is similar to the case $U_2 \neq U'_2$.
- v. there is a table R' for which $\langle \oplus, \texttt{SELECT}, R \rangle \in p(s_2, u)$ and $db_2(R') \neq db'_2(R')$. Note that $p(s_2, u) = p(s_1, u)$. There are two cases:
 - R = R'. From $s_1 \cong_{u,M}^{data} s'_1$ and $\langle \oplus, \text{SELECT}, R \rangle \in p(s_2, u)$, it follows that $db_1(R') = db'_1(R')$. From this and the fact that a has been executed successfully both in e(r, a) and e(r', a), it follows that $db_2(R') = db_1(R') \cup \{\bar{t}\}$ and $db'_2(R') = db'_1(R') \cup \{\bar{t}\}$. From this and $db_1(R') = db'_1(R')$, it follows that $db_2(R') = db'_2(R')$ leading to a contradiction.
 - $R \neq R'$. From $s_1 \cong_{P,u}^{data} s'_1$ and $\langle \oplus, \text{SELECT}, R \rangle \in p(s_2, u)$, it follows that $db_1(R') = db'_1(R')$. From this and the fact that a does not modify R', it follows that $db_1(R') = db_2(R')$ and $db'_1(R') = db'_2(R')$. From this and $db_1(R') = db'_1(R')$, it follows that $db_2(R') = db'_2(R')$ leading to a contradiction.
- vi. there is a view v for which $\langle \oplus, \text{SELECT}, v \rangle \in p(s_2, u)$ and $db_2(v) \neq db'_2(v)$. Note that $p(s_2, u) = p(s_1, u)$. Since a has been successfully executed in both states, we know that $noLeak(s_1, a, u)$ hold. There are two cases:
 - R ∉ tDet(v, s, M). Then, v(s₁) = v(s₂) and v(s'₁) = v(s'₂) (because R's content does not determine v's materialization). From s₁ ≅^{data}_{u,M} s'₁ and the fact that a modifies only R, it follows that v(db₂) = v(db'₂) leading to a contradiction.
 - $R \in tDet(v, s, M)$ and for all $o \in tDet(v, s, M)$, $\langle \oplus, \texttt{SELECT}, o \rangle \in p(s_1, u)$. From this and $s_1 \cong_{u,M}^{data} s'_1$, it follows that, for all $o \in tDet(v, s, M)$, $o(s_1) = o(s'_1)$. If $o \neq R$, $o(s_1) = o(s'_1) = o(s'_2) = o(s'_2)$. From $s_1 \cong_{u,M}^{data} s'_1$ and $\langle \oplus, \texttt{SELECT}, R \rangle \in p(s_1, u)$, it follows that $db_1(R) = db'_1(R)$. From this and the fact that a has been executed successfully both in e(r, a) and e(r', a), it follows that $db_2(R) = db'_1(R) \cup \{\bar{t}\}$ and $db'_2(R) = db'_1(R) \cup \{\bar{t}\}$. From this and $db_1(R) = db'_1(R)$, it follows

that $db_2(R) = db'_2(R)$. From this and for all $o \in tDet(v, s, M)$ such that $o \neq R$, $o(s_2) = o(s'_2)$, it follows that for all $o \in tDet(v, s, M)$, $o(s_2) = o(s'_2)$. Since the content of all tables determining v is the same in s_2 and s'_2 , it follows that $db_2(v) = db'_2(v)$ leading to a contradiction.

All the cases lead to a contradiction.

- (b) $secEx(last(e(r, a))) = \bot$ and $Ex(last(e(r, a))) \neq$ \emptyset . From the LTS rules and $secEx(e(r, a)) = \bot$, it follows that $f(last(r), a) = \top$. From this and Lemma F.9, it follows that $f(last(r'), a) = \top$ for any $r' \in [\![r]\!]_{P,u}$. From this and the LTS rules, it follows that $secEx(last(e(r', a))) = \bot$ for any $r' \in$ $[r]_{P,u}$. Assume that the exception has been caused by the constraint γ , i.e., $\gamma \in Ex(last(e(r, a)))$. From this and Proposition F.7, it follows that $gV(\gamma, a)$ holds in last(r).db. From f_{conf}^{u} 's definition, it thus follows that $secure(u, gV(\gamma, a), last(r))$ holds. From this, $[gV(\gamma, a)]^{last(r).db} = \top$, and Lemma F.7, it follows that $[gV(\gamma, act)]^{last(r').db} = \top$ for any $r' \in$ $[r]_{P,u}$. From this and Proposition F.7, it follows that $\gamma \in Ex(last(e(r', a)))$ for any $r' \in [\![r]\!]_{P,u}$. The data indistinguishability between last(e(r, a)) and last(e(r', a)) follows trivially from the data indistinguishability between last(r) and last(r') for any $r' \in [\![r]\!]_{P,u}$. Therefore, for any run $r' \in [\![r]\!]_{P,u}$, there is exactly one run e(r', a). From the considerations above, it follows trivially that $e(r', a) \in$ $[e(r, a)]_{P,u}$. The bijection b is trivially b(r') =e(r', a). This leads to a contradiction.
- (c) $secEx(last(e(r, a))) = \top$. From the LTS rules and $secEx(last(e(r, a))) = \top$, it follows that $f(last(r), a) = \bot$. From this and Lemma F.9, it follows that $f(last(r'), a) = \bot$ for any $r' \in [\![r]\!]_{P,u}$. From this and the LTS rules, it follows secEx(last(e(r', a))) = \top for any $r' \in [\![r]\!]_{P,u}$. The data indistinguishability between last(e(r, a)) and last(e(r', a)) follows trivially from the data indistinguishability between last(r) and last(r') for any $r' \in [\![r]\!]_{P,u}$. Therefore, for any run $r' \in [\![r]\!]_{P,u}$, there is exactly one run e(r', a). From the considerations above, it follows trivially that $e(r', a) \in [\![e(r, a)]\!]_{P,u}$. The bijection b is trivially b(r') = e(r', a). This leads to a contradiction.

All cases lead to a contradiction. This completes the proof for $a = \langle u, \text{INSERT}, R, \overline{t} \rangle$.

- 3. $a = \langle u, \text{DELETE}, R, \overline{t} \rangle$. The proof is similar to that for $a = \langle u, \text{INSERT}, R, \overline{t} \rangle$.
- 4. $a = \langle \oplus, u', p, u \rangle$. There are two cases:
 - (a) $secEx(last(e(r, a))) = \bot$. We assume that $p = \langle SELECT, O \rangle$ for some $O \in D \cup V$. If this is not the case, the proof is trivial. Furthermore, we also assume that u' = u, otherwise the proof is, again, trivial since the new permission does not influence u's permissions. From the LTS rules and $secEx(last(e(r, a))) = \bot$, it follows that f(last(r), a) $= \top$. From this and Lemma F.9, it follows that $f(last(r'), a) = \top$ for any $r' \in [\![r]\!]_{P,u}$. From this and the LTS rules, it follows secEx(last(e(r', a))) = \bot for any $r' \in [\![r]\!]_{P,u}$. From secEx(last(e(r, a))) = \bot and f^u_{conf} 's definition, it follows that last(r').sec =last(e(r', a)).sec. Therefore, since last(r) and last(r')

are data indistinguishable, for any $r' \in \llbracket r \rrbracket_{P,u}$, then also last(e(r, a)) and last(e(r', a)) are data indistinguishable. Therefore, for any run $r' \in \llbracket r \rrbracket_{P,u}$, there is exactly one run e(r', a). From the considerations above, it follows trivially that $e(r', a) \in \llbracket e(r, a) \rrbracket_{P,u}$. The bijection b is trivially b(r') = e(r', a). This leads to a contradiction.

(b) $secEx(last(e(r, a))) = \top$. From the LTS rules and $secEx(last(e(r, a))) = \top$, it follows that f(last(r), a) $= \bot$. From this and Lemma F.9, it follows that $f(last(r'), a) = \bot$ for any $r' \in \llbracket r \rrbracket_{P,u}$. From this and the LTS rules, it follows secEx(last(e(r', a))) = \top for any $r' \in \llbracket r \rrbracket_{P,u}$. The data indistinguishability between last(e(r', a)) and last(e(r, a)) follows trivially from the data indistinguishability between last(r') and last(r). Therefore, for any run $r' \in$ $\llbracket r \rrbracket_{P,u}$, there is exactly one run e(r', a). From the considerations above, it follows trivially that e(r', a) $\in \llbracket e(r, a) \rrbracket_{P,u}$. The bijection b is trivially b(r') =e(r', a). This leads to a contradiction.

Both cases lead to a contradiction. This completes the proof for $a = \langle \oplus, u', p, u \rangle$.

- 5. $a = \langle \oplus^*, u', p, u \rangle$. The proof is similar to that for $a = \langle \oplus, u', p, u \rangle$.
- 6. $a = \langle \ominus, u', p, u \rangle$. The proof is similar to that for $a = \langle u, \text{SELECT}, q \rangle$. The only difference is in proving that for any $r' \in \llbracket r \rrbracket_{P,u}$, last(e(r, a)) and last(e(r', a)) are data indistinguishable. Assume, for contradiction's sake, that this is not the case. Let $s_2 = \langle db_2, U_2, sec_2, T_2, V_2 \rangle$ be $pState(last(e(r, a))), s'_2 = \langle db'_2, U'_2, sec'_2, T'_2, V'_2 \rangle$ be $pState(last(e(r', a))), s_1 = \langle db_1, U_1, sec_1, T_1, V_1 \rangle$ be pState(last(r)), and, finally, $s'_1 = \langle db'_1, U'_1, sec'_1, T'_1, V'_1 \rangle$ be pState(last(r')). In the following, we denote the permissions function by p. Furthermore, note that s_1 and s'_1 are data-indistinguishable because $r' \in \llbracket r \rrbracket_{P,u}$. There are a number of cases:
 - (a) $U_2 \neq U'_2$. Since *a* is an **REVOKE** operation, it follows that $U_1 = U_2$ and $U'_1 = U'_2$. Furthermore, from $s_1 \cong_{u,M}^{data} s'_1$, it follows that $U_1 = U'_1$. Therefore, $U_2 = U'_2$ leading to a contradiction.
 - U₂ = U'₂ leading to a contradiction.
 (b) sec₂ ≠ sec'₂. From s₁ ≅ data s'_{u,M} s'₁, it follows that sec₁ = sec'₁. From a's definition and the LTS rules, it follows that sec₂ = revoke(sec₁, u', p, u) and sec'₂ = revoke(sec'₁, u', p, u). From this and sec₁ = sec'₁, it follows that sec₂ = sec'₂ leading to a contradiction.
 - (c) $T_2 \neq T'_2$. The proof is similar to the case $U_2 \neq U'_2$.
 - (d) $V_2 \neq V'_2$. The proof is similar to the case $U_2 \neq U'_2$.
 - (e) there is a table R for which $\langle \oplus, \text{SELECT}, R \rangle \in p(s_2, u)$ and $db_2(R) \neq db'_2(R)$. Since a is an REVOKE operation, it follows that $db_1 = db_2$ and $db'_1 = db'_2$. Furthermore, from $s_1 \cong_{u,M}^{data} s'_1$, it follows that $db_1(R) =$ $db'_1(R)$. From this, $db_1 = db_2$, and $db'_1 = db'_2$, it follows that $db_2(R) = db'_2(R)$ leading to a contradiction.
 - (f) there a view v for which $\langle \oplus, \text{SELECT}, v \rangle \in p(s_2, u)$ and $db_2(v) \neq db'_2(v)$. Since a is an REVOKE operation, it follows that $db_1 = db_2$ and $db'_1 = db'_2$. Furthermore, from $s_1 \cong_{u,M}^{data} s'_1$, it follows that $db_1(v) =$ $db'_1(v)$. From this, $db_1 = db_2$, and $db'_1 = db'_2$, it follows that $db_2(v) = db'_2(v)$ leading to a contradiction.

All the cases lead to a contradiction.

- 7. $a = \langle u, \text{CREATE}, o \rangle$. The proof is similar to that for $a = \langle \ominus, u', p, u \rangle.$
- 8. $a = \langle u, \text{ADD}_{USER}, u' \rangle$. The proof is similar to that for $a = \langle \ominus, u', p, u \rangle.$
- This completes the proof. \Box

Lemma F.16. Let u be a user in $\mathcal{U},~P$ = $\langle M, f^u_{\mathit{conf}}\rangle$ be an extended configuration, where $M = \langle D, \Gamma \rangle$ is a system configuration and f_{conf}^{u} is as above, and L be the P-LTS. For any run $r \in traces(L)$ such that invoker(last(r)) = uand any trigger $t \in TRIGGER_D$, if extend(r, t) is defined, then t preserves the equivalence class for r, M, and u.

PROOF. Let u be a user in \mathcal{U} , $P = \langle M, f_{conf}^u \rangle$ be an extended configuration, where $M = \langle D, \Gamma \rangle$ is a system configuration and f_{conf}^{u} is as above, and L be the P-LTS. In the following, we use e to refer to the *extend* function. The proof in the cases where the trigger t is not enabled, i.e., its WHEN condition is not satisfied, or t's WHEN condition is not secure are similar to the proof of the SELECT case of Lemma F.15. In the following, we therefore assume that the trigger t is enabled and that its WHEN condition is secure. We prove our claim by contradiction. Assume, for contradiction's sake, that there is a run $r \in traces(L)$ such that invoker(last(r)) = u and a trigger t such that e(r, t)is defined and t does not preserve the equivalence class for r, P, and u. Since invoker(last(r)) = u and e(r, t) is defined, then e(r',t) is defined as well for any $r' \in [\![r]\!]_{P,u}$ (indeed, from invoker(last(r)) = u, it follows that the last action in r is either an action issued by u or a trigger invoker by u. From this, the fact that e(r,t) is defined, and the fact that r and r' are indistinguishable, it follows that tr(last(r)) = tr(last(r')) = t. Let a be t's action and $w = \langle u', \text{SELECT}, q \rangle$ be the SELECT command associated with t's WHEN condition. Let s be the state last(r), s' be the state obtained just after the execution of the WHEN condition, and s'' be the state last(e(r, t)). There are a number of cases depending on t's action a:

- 1. $a = \langle u', \text{INSERT}, R, \overline{t} \rangle$. There are three cases:
 - (a) $secEx(s'') = \bot$ and $Ex(s'') = \emptyset$. The proof of this case is similar to that of the corresponding case in Lemma F.15.
 - (b) $secEx(s'') = \bot$ and $Ex(s'') \neq \emptyset$. The only difference between the proof of this case in this Lemma and in that of Lemma F.15 is that we have to establish again the data indistinguishability between last(e(r,t)) and last(e(r',t)). Indeed, for triggers the roll-back state is, in general, different from the one immediately before the trigger's execution, i.e., it may be that $pState(last(e(r, t))) \neq pState(last(r))$. We now prove that last(e(r, t)) and last(e(r', t)) are data indistinguishable. From the LTS semantics, it follows that $r = p \cdot s_0 \cdot \langle invoker(last(r)), op, R', \overline{v} \rangle$. $s_1 \cdot t_1 \cdot \ldots \cdot s_{n-1} \cdot t_n \cdot s_n$, where $p \in traces(L)$ and $t_1, \ldots, t_n \in \mathcal{TRIGGER}_D$. Similarly, $r' = p' \cdot s'_0 \cdot$ $\langle invoker(last(r)), op, R', \overline{v} \rangle \cdot s'_1 \cdot t_1 \cdot \ldots \cdot s'_{n-1} \cdot t_n \cdot s'_n,$ where $p' \in traces(L)$, $p \cong_{u,M} p'$, and all states s_i and s'_i are data indistinguishable. Then, the roll-back states are, respectively, s_0 and s'_0 , which are data indistinguishable. From the LTS rules, $last(e(r, a)) = s_0$ and $last(e(r', a)) = s'_0$. Therefore, the data indistinguishability between last(e(r,a)) and last(e(r', a)) follows trivially for any $r' \in$ $\llbracket r \rrbracket_{P,u}.$

(c) $secEx(s'') = \top$. The proof is similar to the previous case

All cases lead to a contradiction. This completes the proof for $a = \langle u', \text{INSERT}, R, \overline{t} \rangle$.

- 2. $a = \langle u', \text{DELETE}, R, \overline{t} \rangle$. The proof is similar to that for $a = \langle u', \text{INSERT}, R, \overline{t} \rangle.$
- 3. $a = \langle \oplus, u'', p, u' \rangle$. There are two cases:
 - (a) $secEx(s'') = \bot$. In this case, the proof is similar to the corresponding case in Lemma F.15.
 - (b) $secEx(s'') = \top$. The proof is similar to the secEx(s'') $= \top$ case of the $a = \langle u', \text{INSERT}, R, \overline{t} \rangle$ case.

Both cases lead to a contradiction. This completes the

- proof for a = ⟨⊕, u'', p, u'⟩.
 a = ⟨⊕*, u'', p, u'⟩. The proof is similar to that for a = ⟨⊕, u'', p, u'⟩.
 a = ⟨⊕, u'', p, u'⟩.
 a = ⟨⊕, u'', p, u'⟩. The proof is similar to that for a = ⟨u', INSERT R F).
- $\langle u', \text{INSERT}, R, \overline{t} \rangle.$

This completes the proof. \Box

We now prove our main result, namely that f_{conf}^{u} provides data confidentiality with respect to the user u. We first recall the concept of *derivation*. Given a judgment $r, i \vdash_u \phi$, a derivation of $r, i \vdash_u \phi$ with respect to \mathcal{ATK}_u , or a derivation of $r, i \vdash_u \phi$ for short, is a proof tree, obtained by applying the rules defining \mathcal{ATK}_u , that ends in $r, i \vdash_u \phi$. With a slight abuse of notation, we use $r,i \vdash_u \phi$ to denote both the judgment and its derivation. The length of a derivation, denoted $|r, i \vdash_u \phi|$, is the number of rule applications in it.

THEOREM F.1. Let u be a user in \mathcal{U} , $P = \langle M, f_{conf}^u \rangle$ be an extended configuration, where M is a system configuration and f_{conf}^{u} is as above. The PDP f_{conf}^{u} provides data confidentiality with respect to P, u, \mathcal{ATK}_u , and $\cong_{P,u}$.

PROOF. Let u be a user in \mathcal{U} , $P = \langle M, f_{conf}^u \rangle$ be an extended configuration, where M is a system configuration and f_{conf}^{u} is as above, and L be the P-LTS. Furthermore, let r be a run in traces(L), i be an integer such that $1 \le i \le |r|$, and ϕ be a sentence such that $r, i \vdash_u \phi$ holds. We claim that also $secure_{P,u}(r, i \vdash_u \phi)$ holds. The theorem follows trivially from the claim.

We now prove our claim that $secure_{P,u}(r, i \vdash_u \phi)$ holds. Let r be a run in traces(L), i be an integer such that $1 \leq i$ i < |r|, and ϕ be a sentence such that $r, i \vdash_u \phi$ holds. Furthermore, in the following we use e to denote the *extend* function. We prove our claim by induction on the length of the derivation $r, i \vdash_u \phi$.

Base Case: Assume that $|r, i \vdash_u \phi| = 1$. There are a number of cases depending on the rule used to obtain $r, i \vdash_u \phi.$

- 1. SELECT Success 1. Let i be such that $r^i = r^{i-1}$. $\langle u, \text{SELECT}, \phi \rangle \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and $last(r^{i-1}) = s'$, where $s' = \langle db, U, sec, T, V, c' \rangle$. From the rules, it follows that $f_{conf}^u(s', \langle u, \text{SELECT}, \phi \rangle) =$ \top . From this and f_{conf}^u 's definition, it follows that $secure(u, \phi, s') = \top$ holds. From this, Lemma F.8, and pState(s) = pState(s'), it follows that $secure(u, \phi, s) =$ \top holds. From this, Lemma F.7, and $last(r^i) = s$, it follows that $secure_{P,u}(r, i \vdash_u \phi)$ holds.
- 2. SELECT Success 2. The proof for this case is similar to that of SELECT Success - 1.
- 3. INSERT Success. Let i be such that $r^i = r^{i-1} \cdot \langle u, \text{INSERT}, v \rangle$ $R, \overline{t} \rangle \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and $last(r^{i-1}) = \langle db', U, sec, T, V, c' \rangle$, and ϕ be $R(\overline{t})$. Then,

secure_{P,u}(r, $i \vdash_u R(\bar{t})$) holds. Indeed, in all runs r' indistinguishable from r^i the last action is $\langle u, \text{INSERT}, R, \bar{t} \rangle$. Furthermore, the action has been executed successfully. Therefore, according to the LTS rules, $\bar{t} \in db''(R)$, where db'' = last(r').db. From this and the relational calculus semantics, it follows that $[R(\bar{t})]^{last(r').db}$ $= \top$. Therefore, $[R(\bar{t})]^{last(r').db} = \top$ for any run $r' \in [r^i]_{P,u}$. Hence, $secure_{P,u}(r, i \vdash_u R(\bar{t}))$ holds.

4. INSERT Success - FD. Let *i* be such that $r^i = r^{i-1} \cdot \langle u, \text{INSERT } R, (\overline{v}, \overline{w}, \overline{q}) \rangle \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and $last(r^{i-1}) = \langle db', U, sec, T, V, c' \rangle$, and ϕ be $\neg \exists \overline{y}, \overline{z}. R(\overline{v}, \overline{y}, \overline{z}) \land \overline{y} \neq \overline{w}$. From the rule's definition, it follows that $secEx(s) = \bot$. From this and the LTS rules, it follows that $f_{conf}^u(s', \langle u, \text{INSERT, } R, (\overline{v}, \overline{w}, \overline{q}) \rangle) = \top$. From this and $f_{conf}^u(s', \langle u, \text{INSERT, } R, (\overline{v}, \overline{w}, \overline{q}) \rangle) = \Box$. From this and $f_{conf}^u(s', \langle u, \text{INSERT, } R, (\overline{v}, \overline{w}, \overline{q}) \rangle = \langle u, \text{INSERT, } R, (\overline{v}, \overline{w}, \overline{q}) \rangle$. From this and Lemma F.7, it follows that $secure_{P,u}(r, i-1 \vdash_u \phi)$ holds. We claim that $secure_{P,u}^{data}(r, i \vdash_u \phi)$, it follows $secure_{P,u}(r, i \vdash_u \phi)$.

We now prove our claim that $secure_{P,u}^{data}(r, i \vdash_u \phi)$ holds. Let s' be the state $last(r^{i-1})$. Furthermore, for brevity's sake, in the following we omit the *pState* function where needed. For instance, with a slight abuse of notation, we write $[\![s']\!]_{u,M}^{data}$ instead of $[\![pState(s')]\!]_{u,M}^{data}$. There are two cases:

- (a) the INSERT command has caused an integrity constraint violation, i.e., $Ex(s) \neq \emptyset$. From $secure(u, \phi, s') = \top$ and Lemma F.7, it follows that $secure_{P,u}^{data}(r, i-1 \vdash_u \phi)$ holds. From this, it follows that $[\phi]^v = [\phi]^{s'}$ for any $v \in [\![s']\!]_{u,M}^{data}$. From this and the fact that the INSERT command caused an exception (i.e., s' = s), it follows that $[\phi]^v = [\phi]^s$ for any $v \in [\![s]\!]_{u,M}^{data}$. From this, it follows that $secure_{P,u}^{data}(r, i \vdash_u \phi)$ holds.
- (b) the INSERT command has not caused exceptions, i.e., $Ex(s) = \emptyset$. From $secure(u, \phi, s') = \top$ and Lemma F.7, it follows that $secure_{P,u}^{data}(r, i - 1 \vdash_u$ ϕ) holds. From this, it follows that $[\phi]^v = [\phi]^{s'}$ for any $v \in [\![s']\!]_{u,M}^{data}$. Furthermore, from Proposition tion F.7 and $Ex(s) = \emptyset$, it follows that ϕ holds in s'. Let $A_{s',R,\overline{t}}$ be the set $\{\langle db[R\oplus\overline{t}],U,sec,T,V\rangle\in$ $\Pi_M \mid \exists db' \in \Omega_D. \langle db', U, sec, T, V \rangle \in \llbracket s' \rrbracket_{u,M}^{data} \}.$ It is easy to see that $[s]_{u,M}^{data} \subseteq A_{s',R,\overline{t}}$. We now show that ϕ holds for any $z \in A_{s',R,\overline{t}}$. Let $z_1 \in [\![s']\!]_{u,M}^{data}$. From $[\phi]^v = [\phi]^{s'}$ for any $v \in [s']_{u,M}^{data}$ and the fact that ϕ holds in s', it follows that $[\phi]^{z_1} = \top$. Therefore, for any $(\overline{k}_1, \overline{k}_2, \overline{k}_3) \in R(z_1)$ such that $|\overline{k}_1| =$ $|\overline{v}|, |\overline{k}_2| = |\overline{w}|, \text{ and } |\overline{k}_3| = |\overline{z}|, \text{ if } k_1 = \overline{v}, \text{ then } k_2 =$ \overline{w} . Then, for any $(\overline{k}_1, \overline{k}_2, \overline{k}_3) \in R(z_1) \cup \{(\overline{v}, \overline{w}, \overline{q})\},\$ if $k_1 = \overline{v}$, then $k_2 = \overline{w}$. Therefore, ϕ holds also in $z_1[R \oplus \overline{t}] \in A_{pState(s'),R,\overline{t}}$. Hence, $[\phi]^z = \top$ for any $z \in A_{s',R,\overline{t}}$. From this and $[\![s]\!]_{u,M}^{dat} \subseteq A_{s',R,\overline{t}}$, it follows that $[\phi]^z = \top$ for any $z \in [\![s]\!]_{u,M}^{data}$. From this, it follows that $secure_{P,u}^{data}(r, i \vdash_u \phi)$ holds.
- 5. INSERT Success ID. The proof of this case is similar to that for the INSERT Success FD.
- 6. *DELETE Success*. The proof for this case is similar to that of *INSERT Success*.

- 7. DELETE Success ID. The proof of this case is similar to that for the INSERT Success FD.
- 8. INSERT Exception. Let *i* be such that $r^i = r^{i-1} \cdot \langle u, \text{INSER}, R, \overline{t} \rangle \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and $last(r^{i-1}) = \langle db', U, sec, T, V, c' \rangle$, and ϕ be $\neg R(\overline{t})$. From the rule's definition, it follows that $secEx(s) = \bot$. From this and the LTS rules, it follows that $f^u_{conf}(s', \langle u, \text{INSERT}, R, \overline{t} \rangle) = \top$. From this and f^u_{conf} 's definition, it follows that $secure(u, \phi, last(r^{i-1})) = \top$ holds because $\phi = getInfo(\langle u, \text{INSERT}, R, \overline{t} \rangle)$. From this and Lemma F.7, it follows that $secure_{P,u}(r, i - 1 \vdash_u \phi)$ holds. From the LTS semantics, it follows that pState(s) $\cong_{u,M}^{data} pState(last(r^{i-1})) = \top$, it follows that $secure(u, \phi, last(r^i)) = \top$. From this and Lemma F.7, it follows that $secure(u, \phi, last(r^{i-1})) = \top$, it follows that $secure(u, \phi, last(r^i)) = \top$. From this and Lemma F.7, it follows that $secure(u, \phi, last(r^i)) = \top$. From this and Lemma F.7, it follows that $secure(u, \phi, last(r^i)) = \top$.
- 9. DELETE Exception. The proof for this case is similar to that of INSERT Exception.
- 10. INSERT FD Exception. Let i be such that $r^i = r^{i-1} \cdot \langle u, \text{INSERT}, R, (\overline{v}, \overline{w}, \overline{q}) \rangle \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and $last(r^{i-1}) = \langle db', U, sec, T, V, c' \rangle$, and ϕ be $\exists \overline{y}, \overline{z}, R(\overline{v}, \overline{y}, \overline{z}) \land \overline{y} \neq \overline{w}$. From the rule's definition, it follows that $secEx(s) = \bot$. From this and the LTS rules, it follows that $f^u_{conf}(s', \langle u, \text{INSERT}, R, (\overline{v}, \overline{w}, \overline{q}) \rangle) = \top$. From this and $f^u_{conf}(s', \langle u, \text{INSERT}, R, (\overline{v}, \overline{w}, \overline{q}) \rangle) = \top$. From this and f^u_{conf} 's definition, it follows that $secure(u, \phi, last(r^{i-1})) = \top$ because $\phi = getInfoV(\gamma, \langle u, \text{INSERT}, R, (\overline{v}, \overline{w}, \overline{q}) \rangle)$ for some constraint $\gamma \in Dep(\Gamma, \langle u, \text{INSERT}, R, (\overline{v}, \overline{w}, \overline{q}) \rangle)$. From this and Lemma F.7, it follows that $secure_{P,u}(r, i 1 \vdash_u \phi)$ holds. From the LTS semantics, it follows that $pState(s) \cong_{u,M}^{data} pState(last(r^{i-1}))$. From this, $secure(u, \phi, last(r^{i-1})) = \top$, and Lemma F.8, it follows that $secure(u, \phi, last(r^i)) = \top$. From this and Lemma F.7, it follows that $secure_{P,u}(r, i \vdash_u \phi)$ holds.
- 11. INSERT ID Exception. The proof for this case is similar to that of INSERT FD Exception.
- 12. DELETE FD Exception. The proof for this case is similar to that of INSERT FD Exception.
- 13. Integrity Constraint. The proof of this case follows trivially from the fact that for any state $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and any $\gamma \in \Gamma$, $[\gamma]^{db} = \top$ holds by definition.
- 14. Learn GRANT/REVOKE Backward. Let *i* be such that $r^i = r^{i-1} \cdot t \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$, $last(r^{i-1}) = \langle db, U, sec', T, V, c' \rangle$, and *t* be a trigger whose WHEN condition is ϕ and whose action is either a GRANT or a REVOKE. From the rule's definition, it follows that $secEx(s) = \bot$. From this and the LTS rules, it follows that $f^u_{conf}(last(r^{i-1}), \langle u', \text{SELECT}, \phi \rangle) = \top$, where u' is either the trigger's owner or the trigger's invoker depending on the security mode. From this and f^u_{conf} 's definition, it follows that $secure(u, \phi, last(r^{i-1})) = \top$. From this and F.7, it follows that $secure_{P,u}(r, i 1 \vdash_u \phi)$ holds.
- 15. Trigger GRANT Disabled Backward. Let *i* be such that $r^i = r^{i-1} \cdot t \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$, $last(r^{i-1}) = \langle db, U, sec', T, V, c' \rangle$, and *t* be a trigger whose WHEN condition is ψ , and ϕ be $\neg \psi$. From the rule's definition, it follows that $secEx(s) = \bot$. From this and the LTS rules, it follows that $f_{conf}^{i}(last(r^{i-1}), \langle u', \text{SELECT}, \phi \rangle) = \top$, where u' is either the trigger's owner or the trigger's invoker depending on the section.

curity mode. From this and f_{conf}^{u} 's definition, it follows that $secure(u, \phi, last(r^{i-1})) = \top$. From this and Lemma F.7, it follows that $secure_{P,u}(r, i-1 \vdash_u \phi)$ holds.

- 16. Trigger REVOKE Disabled Backward. The proof for this case is similar to that of Trigger GRANT Disabled Backward.
- 17. Trigger INSERT FD Exception. Let *i* be such that $r^i = r^{i-1} \cdot t \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$, $last(r^{i-1}) = \langle db, U, sec', T, V, c' \rangle$, and *t* be a trigger whose WHEN condition is ϕ and whose action act is a INSERT statement $\langle u', \text{INSERT}, R, (\overline{v}, \overline{w}, \overline{q}) \rangle$. Furthermore, let ϕ be $\exists \overline{y}, \overline{z}. R(\overline{v}, \overline{y}, \overline{z}) \land \overline{y} \neq \overline{w}$. From the rule's definition, it follows that $secEx(s) = \bot$. From this and the LTS rules, it follows that $f^u_{conf}(last(r^{i-1}), act) = \top$. From this and f^u_{conf} 's definition, it follows that $secure(u, \phi, last(r^{i-1})) = \top$ because $\phi = getInfoV(\gamma, act)$ for some constraint $\gamma \in Dep(\Gamma, act)$. From this and Lemma F.7, it follows that $secure_{P,u}(r, i-1 \vdash_u \phi)$ holds.
- 18. Trigger INSERT ID Exception. The proof for this case is similar to that of Trigger INSERT ID Exception.
- 19. Trigger DELETE ID Exception. The proof for this case is similar to that of Trigger DELETE ID Exception.
- 20. Trigger Exception. Let *i* be such that $r^{i} = r^{i-1} \cdot t \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$, $last(r^{i-1}) = \langle db, U, sec', T, V, c' \rangle$, and *t* be a trigger whose WHEN condition is ϕ and whose action is *act*. From the rule's definition, it follows $f^u_{conf}(last(r^{i-1}), \langle u', \text{SELECT}, \phi \rangle) = \top$, where u' is either the trigger's owner or the trigger's invoker depending on the security mode. From this and f^u_{conf} 's definition, it follows $secure(u, \phi, last(r^{i-1})) = \top$. From this and F.7, it follows that $secure_{P,u}(r, i-1 \vdash_u \phi)$ holds.
- 21. Trigger INSERT Exception. The proof for this case is similar to that of INSERT Exception.
- 22. Trigger DELETE Exception. The proof for this case is similar to that of DELETE Exception.
- 23. Trigger Rollback INSERT. Let *i* be such that $r^i = r^{i-n-1}$. $\langle u, \text{INSERT}, R, \overline{t} \rangle \cdot s_1 \cdot t_1 \cdot s_2 \dots \cdot t_n \cdot s_n$, where s_1, s_2, \dots, s_n $\in \Omega_M$ and $t_1, \dots, t_n \in \mathcal{TRIGGER}_D$, and ϕ be $\neg R(\overline{t})$. Furthermore, let $last(r^{i-n-1}) = \langle db', U', sec', T', V', c' \rangle$ and s_n be $\langle db, U, sec, T, V, c \rangle$. From the rule's definition, it follows that $secEx(s_1) = \bot$. From this, it follows that $\int_{conf}^u (last(r^{i-n-1}), \langle u, \text{INSERT}, R, \overline{t} \rangle) = \top$. From this and f_{conf}^u 's definition, it follows that $secure(u, \phi, last(r^{i-n-1})) = \top$ because $\phi = getInfo(\langle u, \text{INSERT}, R, \overline{t} \rangle)$. From the LTS semantics, it follows that $last(r^{i-n-1})$ $\cong_{u,M}^{data} s_n$. From this, $secure(u, \phi, last(r^{i-n-1})) = \top$, and Lemma F.8, it follows that $secure(u, \phi, s_n) = \top$. From this and Lemma F.7, it follows that $secure_{P,u}(r, i \vdash_u \phi)$ holds.
- 24. Trigger Rollback DELETE. The proof for this case is similar to that of Trigger Rollback INSERT.

This completes the proof of the base step.

Induction Step: Assume that the claim hold for any derivation of $r, j \vdash_u \psi$ such that $|r, j \vdash_u \psi| < |r, i \vdash_u \phi|$. We now prove that the claim also holds for $r, i \vdash_u \phi$. There are a number of cases depending on the rule used to obtain $r, i \vdash_u \phi$.

1. *View.* The proof of this case follows trivially from the semantics of the relational calculus extended over views.

- 2. Propagate Forward SELECT. Let *i* be such that $r^{i+1} = r^i \cdot \langle u, \text{SELECT}, \psi \rangle \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and $last(r^i) = \langle db', U', sec', T', V', c' \rangle$. From the rule, it follows that $r, i \vdash_u \phi$ holds. From this and the induction hypothesis, it follows that $secure_{P,u}(r, i \vdash_u \phi)$ holds. From Lemma F.15, the action $\langle u, \text{SELECT}, \psi \rangle$ preserves the equivalence class with respect to r^i , P, and u. From this, Lemma F.12, and $secure_{P,u}(r, i \vdash_u \phi)$, it follows that also $secure_{P,u}(r, i + 1 \vdash_u \phi)$ holds.
- 3. Propagate Forward GRANT/REVOKE. Let *i* be such that $r^{i+1} = r^i \cdot \langle op, u', p, u \rangle \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and $last(r^i) = \langle db', U', sec', T', V', c' \rangle$. From the rule, it follows that $r, i \vdash_u \phi$ holds. From this and the induction hypothesis, it follows that $secure_{P,u}(r, i \vdash_u \phi)$ holds. From Lemma F.15, the action $\langle op, u', p, u \rangle$ preserves the equivalence class with respect to r^i , P, and u. From this, Lemma F.13, and $secure_{P,u}(r, i \vdash_u \phi)$, it follows that also $secure_{P,u}(r, i + 1 \vdash_u \phi)$ holds.
- 4. *Propagate Forward CREATE*. The proof for this case is similar to that of *Propagate Forward SELECT*.
- 5. Propagate Backward SELECT. Let *i* be such that $r^{i+1} = r^i \cdot \langle u, \text{SELECT}, \psi \rangle \cdot s$, where $s = \langle db', U', sec', T', V', c' \rangle \in \Omega_M$ and $last(r^i) = \langle db, U, sec, T, V, c \rangle$. From the rule, it follows that $r, i+1 \vdash_u \phi$ holds. From this and the induction hypothesis, it follows that $secure_{P,u}(r, i+1 \vdash_u \phi)$ holds. From Lemma F.15, the action $\langle u, \text{SELECT}, \psi \rangle$ preserves the equivalence class with respect to r^i , P, and u. From this, Lemma F.12, and $secure_{P,u}(r, i+1 \vdash_u \phi)$ holds.
- 6. Propagate Backward GRANT/REVOKE. Let *i* be such that $r^{i+1} = r^i \cdot \langle op, u', p, u \rangle \cdot s$, where $s = \langle db', U', sec', T', V', c' \rangle \in \Omega_M$ and $last(r^i) = \langle db, U, sec, T, V, c \rangle$. From the rule, it follows that $r, i + 1 \vdash_u \phi$ holds. From this and the induction hypothesis, it follows that $secure_{P,u}(r, i+1 \vdash_u \phi)$ holds. From Lemma F.15, the action $\langle op, u', p, u \rangle$ preserves the equivalence class with respect to r^i , *P*, and *u*. From this, Lemma F.13, and $secure_{P,u}(r, i+1 \vdash_u \phi)$, it follows that also $secure_{P,u}(r, i \vdash_u \phi)$ holds.
- 7. Propagate Backward CREATE TRIGGER. The proof for this case is similar to that of Propagate Backward SE-LECT.
- 8. Propagate Backward CREATE VIEW. Note that the formulae ψ and $replace(\psi, o)$ are semantically equivalent. This is the only difference between the proof for this case and the one for the Propagate Backward SELECT case.
- 9. Rollback Backward 1. Let *i* be such that $r^i = r^{i-n-1} \cdot \langle u, op, R, \bar{t} \rangle \cdot s_1 \cdot t_1 \cdot s_2 \cdots t_n \cdot s_n$, where $s_1, s_2, \ldots, s_n \in \Omega_M, t_1, \ldots, t_n \in \mathcal{TRIGGER}_D$, and *op* is one of {INSERT, DELETE}. Furthermore, let s_n be $\langle db', U', sec', T', V', c' \rangle$ and $last(r^{i-n-1})$ be $\langle db, U, sec, T, V, c \rangle$. From the rule's definition, $r, i \vdash_u \phi$ holds. From this and the induction hypothesis, it follows that $secure_{P,u}(r, i \vdash_u \phi)$ holds. From Lemma F.16, the triggers t_j preserve the equivalence class with respect to $r^{i-n-1+j}$, P, and u for any $1 \leq j \leq n$. Therefore, for any $v \in [\![r^{i-1}]\!]_{P,u}$, the run $e(v, t_n)$ contains the roll-back. Therefore, for any $v \in [\![r^{i-1}]\!]_{P,u}$, the state $last(e(v, t_n))$ is the state just before the action $\langle u, op, R, \bar{t} \rangle$. Let A be the set of partial states associated with the roll-back states. It is easy to see that A is the same as $\{pState(last(t'))|t' \in [\![r^{i-n-1}]\!]_{P,u}\}$. From $secure_{P,u}(r, i \vdash_u \phi)$, it follows that ϕ has the same result over all states in A. From this and

 $A = \{pState(last(t'))|t' \in [\![r^{i-n-1}]\!]_{P,u}\}, \text{ it follows that} \\ \phi \text{ has the same result over all states in } \{pState(last(t'))| \\ t' \in [\![r^{i-n-1}]\!]_{P,u}\}. \text{ From this, it follows that } secure_{P,u} \\ (r, i-n-1 \vdash_{u} \phi) \text{ holds.}$

- 10. Rollback Backward 2. Let *i* be such that $r^i = r^{i-1} \cdot \langle u, op, R, \bar{t} \rangle \cdot s$, where $s = \langle db', U', sec', T', V', c' \rangle \in \Omega_M$, $last(r^{i-1}) = \langle db, U, sec, T, V, c \rangle$, and *op* is one of {INSERT, DELETE}. From the rule's definition, $r, i \vdash_u \phi$ holds. From this and the induction hypothesis, it follows that $secure_{P,u}(r, i \vdash_u \phi)$ holds. From Lemma F.15, the action $\langle u, op, R, \bar{t} \rangle$ preserves the equivalence class with respect to r^{i-1} , P, and u. From this, Lemma F.11, the fact that the action does not modify the database state, and $secure_{P,u}(r, i \vdash_u \phi)$, it follows $secure_{P,u}(r, i 1 \vdash_u \phi)$.
- 11. Rollback Forward 1. Let i be such that $r^i = r^{i-n-1}$. $\langle u, op, R, \overline{t} \rangle \cdot s_1 \cdot t_1 \cdot s_2 \cdot \ldots \cdot t_n \cdot s_n$, where $s_1, s_2, \ldots, s_n \in$ $\Omega_M, t_1, \ldots, t_n \in \mathcal{TRIGGER}_D$, and *op* is one of {INSERT, **DELETE**}. Furthermore, let s_n be $\langle db, U, sec, T, V, c \rangle$ and $last(r^{i-n-1})$ be $\langle db', U', sec', T', V', c' \rangle$. From the rule's definition, $r, i - n - 1 \vdash_u \phi$ holds. From this and the induction hypothesis, it follows that $secure_{P,u}(r, i$ $n-1 \vdash_u \phi$ holds. From Lemma F.16, the triggers t_i preserve the equivalence class with respect to $r^{i-n-1+j}$, P, and u for any $1 \leq j \leq n$. Independently on the cause of the roll-back (either a security exception or an integrity constraint violation), we claim that the set A of roll-back partial states is $\{pState(last(t'))|t' \in$ $[\![r^{i-n-1}]\!]_{P,u}\}$. From $secure_{P,u}(r, i-n-1 \vdash_u \phi)$, the result of ϕ is the same for all states in A. From this and $A = \{pState(last(t')) | t' \in [r^{i-n-1}]_{P,u}\}, \text{ it follows}$ that also $secure_{P,u}(r, i \vdash_u \phi)$ holds.

We now prove our claim. It is trivial to see (from the LTS's semantics) that the set of rollback's states is a subset of $\{pState(last(v))|v \in [\![r^{i-n-1}]\!]_{P,u}\}$. Assume, for contradiction's sake, that there is a state in $\{pState(last(v))|v \in [\![r^{i-n-1}]\!]_{P,u}\}$ that is not a rollback state for the runs in $[\![r^i]\!]_{P,u}$. This is impossible since all triggers t_1, \ldots, t_n preserve the equivalence class. 12. Rollback Forward - 2. Let *i* be such that $r^i = r^{i-1}$.

- 12. Rollback Forward 2. Let *i* be such that $r^i = r^{i-1} \cdot \langle u, op, R, \bar{t} \rangle \cdot s$, where $op \in \{\text{INSERT, DELETE}\}$, $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and $last(r^{i-1}) = \langle db', U', sec', T', V', c' \rangle$. From the rule's definition, $r, i 1 \vdash_u \phi$ holds. From this and the induction hypothesis, it follows that $secure_{P,u}(r, i 1 \vdash_u \phi)$ holds. From Lemma F.15, the action $\langle u, op, R, \bar{t} \rangle$ preserves the equivalence class with respect to r^{i-1} , P, and u. From this, Lemma F.11, the fact that the action does not modify the database state, and $secure_{P,u}(r, i 1 \vdash_u \phi)$, it follows that also $secure_{P,u}(r, i \vdash_u \phi)$ holds.
- 13. Propagate Forward INSERT/DELETE Success. Let *i* be such that $r^i = r^{i-1} \cdot \langle u, op, R, \bar{t} \rangle \cdot s$, where $op \in \{\text{INSERT}, \text{DELETE}\}$, $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and $last(r^{i-1}) = \langle db', U', sec', T', V', c' \rangle$. From the rule's definition, $r, i-1 \vdash_u \phi$ holds. From this and the induction hypothesis, it follows that $secure_{P,u}(r, i-1 \vdash_u \phi)$ holds. From Lemma F.15, the action $\langle u, op, R, \bar{t} \rangle$ preserves the equivalence class with respect to r^{i-1} , P, and u. From $reviseBelif(r^{i-1}, \phi, r^i)$, it follows that the execution of $\langle u, op, R, \bar{t} \rangle$ does not alter the content of the tables in $tables(\phi)$ for any $v \in [\![r^{i-1}]\!]_{P,u}$. From this, Lemma F.11, and $secure_{P,u}(r, i-1 \vdash_u \phi)$, it follows that $secure_{P,u}(r, i \vdash_u \phi)$ holds.

14. Propagate Forward INSERT Success - 1. Let *i* be such that $r^i = r^{i-1} \cdot \langle u, op, R, \bar{t} \rangle \cdot s$, where op is one if {INSERT, DELETE}, $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and $last(r^{i-1}) = \langle db', U', sec', T', V', c' \rangle$. From the rule's definition, $r, i-1 \vdash_u \phi$ holds. From this and the induction hypothesis, it follows that $secure_{P,u}(r, i-1 \vdash_u \phi)$ holds. From Lemma F.15, the action $\langle u, op, R, \bar{t} \rangle$ preserves the equivalence class with respect to r^{i-1} , P, and u. We claim that the execution of $\langle u, INSERT, R, \bar{t} \rangle$ does not alter the content of the tables in $tables(\phi)$. From this, $secure_{P,u}(r, i-1 \vdash_u \phi)$ holds.

We now prove our claim that the execution of $\langle u, \text{INSERT}, R, \bar{t} \rangle$ does not alter the content of the tables in $tables(\phi)$. From the rule's definition, it follows that $r, i - 1 \vdash_u R(\bar{t})$ holds. From this and Lemma B.1, it follows that $[R(\bar{t})]^{last(r^{i-1}).db} = \top$. From $r, i - 1 \vdash_u R(\bar{t})$ and the induction hypothesis, it follows that $secure_{P,u}(r, i - 1, u, R(\bar{t}))$ holds. From this and $[R(\bar{t})]^{last(r^{i-1}).db} = \top$, it follows that $[R(\bar{t})]^{last(v).db} = \top$ for any $v \in [\![r^{i-1}]\!]_{P,u}$. From this and the relational calculus semantics, it follows that the execution of $\langle u, op, R, \bar{t} \rangle$ does not alter the content of the tables in $tables(\phi)$ for any $v \in [\![r^{i-1}]\!]_{P,u}$.

- 15. Propagate Forward DELETE Success 1. The proof for this case is similar to that of Propagate Forward INSERT Success - 1.
- 16. Propagate Backward INSERT/DELETE Success. Let *i* be such that $r^i = r^{i-1} \cdot \langle u, op, R, \bar{t} \rangle \cdot s$, where $op \in \{\text{INSERT}, \text{DELETE}\}$, $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and $last(r^{i-1}) = \langle db', U', sec', T', V', c' \rangle$. From the rule's definition, $r, i \vdash_u \phi$ holds. From this and the induction hypothesis, it follows that $secure_{P,u}(r, i \vdash_u \phi)$ holds. From Lemma F.15, the action $\langle u, op, R, \bar{t} \rangle$ preserves the equivalence class with respect to r^{i-1} , P, and u. From $reviseBelif(r^{i-1}, \phi, r^i)$, it follows that the execution of $\langle u, op, R, \bar{t} \rangle$ does not alter the content of the tables in $tables(\phi)$ for any $v \in [\![r^{i-1}]\!]_{P,u}$. From this, Lemma F.11, and $secure_{P,u}(r, i \vdash_u \phi)$, it follows that $secure_{P,u}(r, i - 1 \vdash_u \phi)$ holds.
- 17. Propagate Backward INSERT Success 1. Let *i* be such that $r^i = r^{i-1} \cdot \langle u, op, R, \overline{t} \rangle \cdot s$, where *op* is one of {INSERT, DELETE}, $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$, and $last(r^{i-1}) = \langle db', U', sec', T', V', c' \rangle$. From the rule's definition, $r, i \vdash_u \phi$ holds. From this and the induction hypothesis, it follows that $secure_{P,u}(r, i \vdash_u \phi)$ holds. From Lemma F.15, the action $\langle u, op, R, \overline{t} \rangle$ preserves the equivalence class with respect to r^{i-1} , P, and u. We claim that the execution of $\langle u, INSERT, R, \overline{t} \rangle$ does not alter the content of the tables in $tables(\phi)$ for any $v \in [\![r^{i-1}]\!]_{P,u}$ (the proof of this claim is in the proof of the Propagate Forward INSERT Success 1 case). From this, Lemma F.11, and $secure_{P,u}(r, i \vdash_u \phi)$, it follows that $secure_{P,u}(r, i \vdash_u \phi)$ holds.
- 18. Propagate Backward DELETE Success 1. The proof for this case is similar to that of Propagate Forward DELETE Success - 1.
- Reasoning. Let Δ be a subset of {δ | r, i ⊢_u δ} and last(rⁱ) = ⟨db, U, sec, T, V, c⟩. From the induction hypothesis, it follows that secure_{P,u}(r, i ⊢_u δ) holds for any δ ∈ Δ. Note that, given any δ ∈ Δ, from r, i ⊢_u δ and Lemma B.1, it follows that δ holds in last(rⁱ). From this, secure_{P,u}(r, i ⊢_u δ) holds for any δ ∈ Δ,

 $\Delta \models_{fin} \phi$, and Lemma F.10, it follows that $secure_{P,u}(r, i \vdash_u \phi)$ holds.

- 20. Learn INSERT Backward 3. Let *i* be such that $r^i = r^{i-1} \cdot \langle u, \text{INSERT}, R, \overline{t} \rangle \cdot s$, where $s = \langle db', U', sec', T', V', c' \rangle \in \Omega_M$ and $last(r^{i-1}) = \langle db, U, sec, T, V, c \rangle$, and ϕ be $\neg R(\overline{t})$. From the rule's definition, $secEx(s) = \bot$. From this and the LTS rules, it follows that $f^u_{conf}(last(r^{i-1}), \langle u, \text{INSERT}, R, \overline{t} \rangle) = \top$. From this and f^u_{conf} 's definition, it follows that $secure(u, \phi, last(r^{i-1})) = \top$ because $\phi = getInfo(\langle u, \text{INSERT}, R, \overline{t} \rangle)$. From this and Lemma F.7, it follows that $secure_{P,u}(r, i-1 \vdash_u \phi)$ holds.
- 21. Learn DELETE Backward 3. The proof for this case is similar to that of Learn INSERT Backward 3.
- 22. Propagate Forward Disabled Trigger. Let *i* be such that $r^i = r^{i-1} \cdot t \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$, $last(r^{i-1}) = \langle db, U, sec, T, V, c \rangle$, and *t* be a trigger. Furthermore, let ψ be *t*'s condition where all free variables are replaced with $tpl(last(r^{i-1}))$. From the rule, it follows that $r, i 1 \vdash_u \phi$. From this and the induction hypothesis, it follows that $secure_{P,u}(r, i 1 \vdash_u \phi)$ holds. Furthermore, from Lemma G.8, it follows that *t* preserves the equivalence class with respect to r^{i-1} , *P*, and *u*. If the trigger's action is an INSERT or a DELETE operation, we claim that the operation does not change the content of any table in $tables(\phi)$ for any run $v \in [\![r^{i-1}]\!]_{P,u}$. From this, the fact that *t* preserves the equivalence class with respect to r^{i-1} , *P*, and *u*, Lemma F.14, and $secure_{P,u}(r, i 1 \vdash_u \phi)$, it follows that also $secure_{P,u}(r, i \vdash_u \phi)$ holds.

We now prove our claim. Assume that t's action in either an INSERT or a DELETE operation. From the rule, it follows that $r, i - 1 \vdash_u \neg \psi$. From this and Lemma B.1, $[\psi]^{last(r^{i-1})} = \bot$. From $r, i - 1 \vdash_u \neg \psi$ and the induction hypothesis, it follows that $secure_{P,u}(r, i - 1 \vdash_u \psi)$ holds. From this and $[\psi]^{last(r^{i-1}).db} = \bot$, it follows that $[\psi]^{v.db} = \bot$ for any run $v \in [\![r^{i-1}]\!]_{P,u}$. Therefore, the trigger t is disabled in any run $v \in [\![r^{i-1}]\!]_{P,u}$. From this and the LTS semantics, it follows that t's execution does not change the content of any table in $tables(\phi)$ for any run $v \in [\![r^{i-1}]\!]_{P,u}$.

- 23. Propagate Backward Disabled Trigger. The proof for this case is similar to that of Propagate Forward Disabled Trigger.
- 24. Learn INSERT Forward. Let i be such that $r^i = r^{i-1}$. $t \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$, $last(r^{i-1}) =$ $\langle db, U, sec, T, V, c \rangle$, and t be a trigger, and ϕ be $R(\bar{t})$. Furthermore, let ψ be t's condition where all free variables are replaced with $tpl(last(r^{i-1}))$. From the rule's definition, it follows that t's action is $\langle u', \text{INSERT}, R, \overline{t} \rangle$ and that $r, i-1 \vdash_u \psi$ holds. From Lemma B.1 and r, i- $1 \vdash_u \psi$, it follows that $[\psi]^{last(r^{i-1}).db} = \top$. From this, $secEx(s) = \bot$, and $Ex(s) = \emptyset$, it follows that t's action has been executed successfully. From this, it follows that $\overline{t} \in s.db(R)$. From $r, i - 1 \vdash_u \psi$ and the induction hypothesis, it follows $secure_{P,u}(r, i-1 \vdash_u \psi)$. From this and $[\psi]^{last(r^{i-1}).db} = \top$, it follows that $[\psi]^{last(v).db} = \top$ for any $v \in [r^{i-1}]_{P,u}$. From this, it follows that the trigger t is enabled in any run $v \in [\![r^{i-1}]\!]_{P,u}$. From Lemma F.16, it follows that t preserves the equivalence class with respect to r^{i-1} , P, and u. From this, $secEx(s) = \bot$, $Ex(s) = \emptyset$, and the fact that the trigger t is enabled in any run $v \in [\![r^{i-1}]\!]_{P,u}$, it follows that t's

action is executed successfully in any run e(v, t), where $v \in [\![r^{i-1}]\!]_{P,u}$. From this, it follows that $\overline{t} \in db''(R)$ for any $v \in [\![r^{i-1}]\!]_{P,u}$, where db'' = last(e(v, t)).db. Therefore, $secure_{P,u}(r, i \vdash_u \phi)$ holds.

25. Learn INSERT - FD. Let i be such that $r^i = r^{i-1} \cdot t$. s, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$, $last(r^{i-1}) = \langle db', U', sec', T', V', c' \rangle$, and $t \in TRIGGER_D$, and ϕ be $\neg \exists \overline{y}, \overline{z}. R(\overline{v}, \overline{y}, \overline{z}) \land \overline{y} \neq \overline{w}$. Furthermore, let ψ be t's condition where all free variables are replaced with the values in $tpl(last(r^{i-1}))$ and $\langle u', INSERT, R, (\overline{v}, \overline{w}, \overline{q}) \rangle$ be t's actual action. From the rule, it follows that $r,i\, 1 \vdash_u \psi$. From this and Lemma *B*.1, it follows that $[\psi]^{last(r^{i-1}).db} = \top$. From this, $Ex(s) = \emptyset$, and secEx(s)= \bot , it follows that $f_{conf}^u(s', \langle u', \text{INSERT}, R, \bar{t} \rangle) = \top$, where s' is the state just after the execution of the SE-LECT statement associated with t's WHEN clause. From this and f_{conf}^{u} 's definition, it follows that $secure(u, \phi, s')$ = \top . From this, $pState(s') = pState(last(r^{i-1}))$, and Lemma F.8, it follows that $secure(u, \phi, last(r^{i-1})) =$ \top . From this and Lemma F.7, it follows also that $secure_{P,u}(r, i-1 \vdash_u \phi)$ holds. We claim that $secure_{P,u}^{data}$ $(r, i \vdash_u \phi)$ holds. From this and Lemma F.2, it follows that also $secure_{P,u}(r, i \vdash_u \phi)$ holds. We now prove our claim that $secure_{P,u}^{data}(r, i \vdash_u \phi)$ holds.

Let s' be the state just after the execution of the SE-LECT statement associated with t's WHEN clause and s''be the state $last(r^{i-1})$. Furthermore, for brevity's sake, in the following we omit the pState function where needed. For instance, with a slight abuse of notation, we write $[s']_{u,M}^{data}$ instead of $[pState(s')]_{u,M}^{data}$. From $secure(u,\phi,s') = \top$, $s' \cong_{u,M}^{data} s''$, Lemma F.8, and Lemma F.7, it follows that $secure_{P,u}^{data}(r, i-1 \vdash_u \phi)$ holds. From this, it follows that $[\phi]^v = [\phi]^{s''}$ for any $v \in [s'']_{u,M}^{data}$. Furthermore, from Proposition F.7 and $Ex(s) = \emptyset$, it follows that ϕ holds in s''. Let $A_{s'',R,\overline{t}}$ be the set { $\langle db[R \oplus \overline{t}], U, sec, T, V \rangle \in \Pi_M | \exists db' \in \Omega_D. \langle db', U, sec, T, V \rangle \in [\![s'']\!]_{u,M}^{data}$ }. It is easy to see that $[\![s]\!]_{u,M}^{data} \subseteq$ $A_{s'',R,\overline{t}}$. We now show that ϕ holds for any $z \in A_{s'',R,\overline{t}}$. Let $z_1 \in [\![s'']\!]_{u,M}^{data}$. From $[\phi]^v = [\phi]^{s''}$ for any $v \in [\![s'']\!]_{u,M}^{data}$ and the fact that ϕ holds in s'', it follows that $[\phi]^{z_1} = \top$. Therefore, for any $(\overline{k}_1, \overline{k}_2, \overline{k}_3) \in R(z_1)$, if $k_1 = \overline{v}$, then $k_2 = \overline{w}$. Then, for any $(\overline{k}_1, \overline{k}_2, \overline{k}_3) \in$ $R(z_1) \cup \{(\overline{v}, \overline{w}, \overline{q})\}, \text{ if } k_1 = \overline{v}, \text{ then } k_2 = \overline{w}. \text{ Therefore, } \phi$ holds also in $z_1[R \oplus \overline{t}] \in A_{pState(s''),R,\overline{t}}$. Hence, $[\phi]^z = \top$ for any $z \in A_{s'',R,\overline{t}}$. From this and $[\![s]\!]_{u,M}^{data} \subseteq A_{s'',R,\overline{t}}$, it follows that $[\phi]^z = \top$ for any $z \in [s]_{u,M}^{data}$. From this, it follows that $secure_{P,u}^{data}(r, i \vdash_u \phi)$ holds.

- 26. Learn INSERT FD 1. The proof of this case is similar to that of Learn INSERT FD.
- Learn INSERT ID. The proof of this case is similar to that of Learn INSERT - FD. See also the proof of INSERT Success - ID.
- 28. Learn INSERT ID 1. The proof of this case is similar to that of Learn INSERT ID.
- 29. Learn INSERT Backward 1. Let *i* be such that $r^i = r^{i-1} \cdot t \cdot s$, where $s = \langle db', U', sec', T', V', c' \rangle \in \Omega_M$, last $(r^{i-1}) = \langle db, U, sec, T, V, c \rangle$, and $t \in \mathcal{TRIGGER}_D$, and ϕ be *t*'s actual WHEN condition, where all free variables are replaced with the values in $tpl(last(r^{i-1}))$. From the rule's definition, it follows that secEx(s) = T. From this, the LTS semantics, and secEx(s) =

 \top , it follows that $f_{conf}^u(last(r^{i-1}), \langle u', \text{SELECT}, \phi \rangle) = \top$. From this and f_{conf}^u 's definition, it follows that $secure(u, \phi, last(r^{i-1})) = \top$. From this and Lemma F.7, it follows that also $secure_{P,u}(r, i-1 \vdash_u \phi)$ holds.

30. Learn INSERT Backward - 2. Let i be such that $r^i =$ $r^{i-1} \cdot t \cdot s$, where $s = \langle db', U', sec', T', V', c' \rangle \in \Omega_M$, $last(r^{i-1}) = \langle db, U, sec, T, V, c \rangle$, and $t \in TRIGGER_D$, and ϕ be $\neg R(\bar{t})$. Furthermore, let $act = \langle u', \text{INSERT}, R, \rangle$ \overline{t} be t's actual action and γ be t's actual WHEN condition obtained by replacing all free variables with the values in $tpl(last(r^{i-1}))$. From the rule's definition, it follows that $secEx(s) = \top$ and there is a ψ such that $r, i - 1 \vdash_u \psi$ and $r, i \vdash_u \neg \psi$. We claim that $[\gamma]^{db} = \top$. From this and $secEx(s) = \top$, it follows $f_{conf}^{u}(s', \langle u', \text{INSERT}, R, \bar{t} \rangle) = \top$, where s' is the state obtained after the evaluation of t's WHEN condition. From this and f_{conf}^{u} 's definition, it follows $secure(u, \phi, s') = \top$ since ϕ is equivalent to getInfo($\langle u', \text{INSERT}, R, \overline{t} \rangle$). From this, $pState(last(r^{i-1})) = pState(s')$, and Lemma F.8, it follows that $secure(u, \phi, last(r^{i-1})) = \top$. From this and Lemma F.7, it follows $secure_{P,u}(r, i - 1 \vdash_u \phi)$. We now prove our claim that $[\gamma]^{db} = \top$. Assume, for

We now prove our claim that $|\gamma|^{ab} = 1$. Assume, for contradiction's sake, that this is not the case. From this and the LTS rules, it follows that db = db'. From the rule's definition, it follows that there is a ψ such that $r, i-1 \vdash_u \psi$ and $r, i \vdash_u \neg \psi$. From this, Lemma B.1, s = $\langle db', U', sec', T', V', c' \rangle$, and $last(r^{i-1}) = \langle db, U, sec, T,$ $V, c \rangle$, it follows that $[\psi]^{db} = \top$ and $[\neg \psi]^{db'} = \top$. Therefore, $[\psi]^{db} = \top$ and $[\psi]^{db'} = \bot$. Hence, $db \neq db'$, which contradicts db = db'.

- 31. Learn DELETE Forward. The proof of this case is similar to that of Learn INSERT Forward.
- 32. Learn DELETE ID. The proof of this case is similar to that of Learn INSERT FD. See also the proof of DELETE Success ID.
- 33. Learn DELETE ID 1. The proof of this case is similar to that of Learn DELETE ID.
- 34. Learn DELETE Backward 1. The proof of this case is similar to that of Learn INSERT Backward 1.
- 35. Learn DELETE Backward 2. The proof of this case is similar to that of Learn INSERT Backward 2.
- 36. Propagate Forward Trigger Action. Let *i* be such that $r^i = r^{i-1} \cdot t \cdot s$, where *t* is a trigger, $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and $last(r^{i-1}) = \langle db', U', sec', T', V', c' \rangle$. From the rule's definition, $r, i 1 \vdash_u \phi$ holds. From this and the induction hypothesis, it follows that $secure_{P,u}(r, i 1 \vdash_u \phi)$ holds. From Lemma F.16, the trigger *t* preserves the equivalence class with respect to r^{i-1} , *P*, and *u*. We claim that the execution of *t* does not alter the content of the tables in $tables(\phi)$. From this, Lemma F.11, and $secure_{P,u}(r, i 1 \vdash_u \phi)$, it follows that also the judgment $r, i \vdash_u \phi$ is secure, i.e., $secure_{P,u}(r, i \vdash_u \phi)$ holds.

We now prove our claim that the execution of t does not alter the content of the tables in $tables(\phi)$. If the trigger is not enabled, proving the claim is trivial. In the following, we assume the trigger is enabled. There are four cases:

• *t*'s action is an INSERT statement. This case amount to claiming that the INSERT statement $\langle u', \text{INSERT}, R, \bar{t} \rangle$ does not alter the content of the tables in $tables(\phi)$ in case $reviseBelif(r^{i-1}, \phi, r^i) = \top$. We

proved the claim above in the *Propagate Forward INSERT/DELETE Success* case.

- *t*'s action is an DELETE statement. The proof is similar to that of the INSERT case.
- *t*'s action is an GRANT statement. In this case, the action does not alter the database state and the claim follows trivially.
- *t*'s action is an REVOKE statement. The proof is similar to that of the GRANT case.
- 37. Propagate Backward Trigger Action. The proof of this case is similar to Propagate Backward Trigger Action.
- 38. Propagate Forward INSERT Trigger Action. Let *i* be such that $r^i = r^{i-1} \cdot t \cdot s$, where *t* is a trigger, $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and $last(r^{i-1}) = \langle db', U', sec', T', V', c' \rangle$. From the rule's definition, $r, i-1 \vdash_u \phi$ holds. From this and the induction hypothesis, it follows that $secure_{P,u}(r, i-1 \vdash_u \phi)$ holds. From Lemma F.16, the trigger *t* preserves the equivalence class with respect to r^{i-1} , *P*, and *u*. We claim that the execution of *t* does not alter the content of the tables in $tables(\phi)$. From this, Lemma F.11, and $secure_{P,u}(r, i-1 \vdash_u \phi)$, it follows that also the judgment $r, i \vdash_u \phi$ is secure, i.e., $secure_{P,u}(r, i \vdash_u \phi)$ holds.

We now prove our claim that the execution of t does not alter the content of the tables in $tables(\phi)$. If the trigger is not enabled, proving the claim is trivial. In the following, we assume the trigger is enabled. Then, t's action is an INSERT statement. This case amount to claiming that the INSERT statement $\langle u', \text{INSERT}, R, \bar{t} \rangle$ does not alter the content of the tables in $tables(\phi)$ in case $r, i - 1 \vdash_u R(\bar{t})$ holds. We proved the claim above in the Propagate Forward INSERT Success - 1 case.

- 39. Propagate Forward DELETE Trigger Action. The proof of this case is similar to that of Propagate Forward IN-SERT Trigger Action.
- 40. Propagate Backward INSERT Trigger Action. The proof of this case is similar to that of Propagate Forward IN-SERT Trigger Action.
- 41. Propagate Backward DELETE Trigger Action. The proof of this case is similar to that of Propagate Forward IN-SERT Trigger Action.
- 42. Trigger FD INSERT Disabled Backward. Let *i* be such that $r^i = r^{i-1} \cdot t \cdot s$, where $s = \langle db', U', sec', T', V', c' \rangle \in \Omega_M$, $t \in \mathcal{TRIGGER}_D$, $last(r^{i-1}) = \langle db, U, sec, T, V, c \rangle$, and ψ be *t*'s actual WHEN condition obtained by replacing all free variables with the values in $tpl(last(r^{i-1}))$. Furthermore, let $act = \langle u', \text{INSERT}, R, (\bar{v}, \bar{w}, \bar{q}) \rangle$ be *t*'s actual action and α be $\exists \bar{y}, \bar{z}.R(\bar{v}, \bar{y}, \bar{z}) \wedge \bar{y} \neq \bar{w}$. From the rule's definition, it follows that $secEx(s) = \bot$. From this, it follows that $f_{conf}^{u}(last(r^{i-1}), \langle u', \text{SELECT}, \psi \rangle) = \top$. From this and f_{uonf}^{u} 's definition, it follows that $secure(u, \neg \psi, last(r^{i-1})) = \top$. From this and Lemma F.7, it follows $secure_{P,u}(r, i 1 \vdash_u \psi)$.
- 43. Trigger ID INSERT Disabled Backward. The proof of this case is similar to that of Trigger FD INSERT Disabled Backward.
- 44. Trigger ID DELETE Disabled Backward. The proof of this case is similar to that of Trigger FD INSERT Disabled Backward.
- This completes the proof of the induction step. This completes the proof. \Box

F.3 Complexity proofs

In this section, we prove that data complexity of f_{conf}^{u} is AC^{0} . Note that the complexity class AC^{0} identifies those problems that can be solved using constant-depth, polynomialsize boolean circuits with AND, OR, and NOT gates with unbounded fan-in. Note also that, in the following, with AC^{0} we usually refer to uniform- AC^{0} . Given a database schema D and a database state $db \in \Omega_{D}^{\Gamma}$, the size of db, denoted also as |db|, is $|db| = \sum_{R \in D} \sum_{\bar{t} \in db(R)} |\bar{t}|$, where the size $|\bar{t}|$ of a tuple \bar{t} is just its cardinality. Similarly, the the size of the schema D, denoted |D|, is $\sum_{R \in D} |R|$. Finally, given a set of views V over D, the size of the extended vocabulary extVocabulary(D, V), denoted |extVoc(D, V)|, is $\sum_{o \in R \cup V} \sum_{0 \le i < |o|} \frac{|o|!}{(|o| - i)! \cdot i!}$. Note that, given a view V, we denote by |V| it.

we denote by |V| its cardinality. Furthermore, given a *RC*-formula ϕ , the size of ϕ , denoted as $|\phi|$, is defined as follows:

$$|\phi| = \begin{cases} 1 + |\overline{x}| & \text{if } \phi := R(\overline{x}) \\ 1 & \text{if } \phi := \top \\ 1 & \text{if } \phi := \bot \\ 3 & \text{if } \phi := x = y \\ 1 + |\psi| + |\gamma| & \text{if } \phi := \psi \ O \ \gamma \ \text{and } O \in \{\lor, \land\} \\ 1 + |\psi| & \text{if } \phi := \neg \psi \\ 2 + |\psi| & \text{if } \phi := Q \ x. \ \psi \ \text{and } Q \in \{\exists, \forall\} \end{cases}$$

Lemma F.18 shows that the rewritten formula $\phi_{s,u}^v$, for some $v \in \{\top, \bot\}$, is linear in the size of the original formula ϕ .

LEMMA F.17. Let $M = \langle D, \Gamma \rangle$ be a system configuration, $s = \langle db, U, sec, T, V \rangle$ be a partial M-state, $u \in U$ be a user, and ϕ be a D-formula. For all formulae ϕ and all $v \in \{\top, \bot\}, |\phi_{s,u}^v| \leq (|extVoc(D, V)| + 1) \cdot |\phi|.$

PROOF. Let $M = \langle D, \Gamma \rangle$ be a system configuration, $s = \langle db, U, sec, T, V \rangle$ be a partial *M*-state, and $u \in U$ be a user. Let ϕ be an arbitrary formula over $D \cup V$ and v be an arbitrary value in $\{\top, \bot\}$. We now prove that $|\phi_{s,u}^v| \leq m \cdot |\phi|$ by induction over the structure of the formula ϕ .

Base Case There are four cases:

- 1. $\phi := x = y$. In this case, $\phi_{s,u}^v = \phi$. From this, $|\phi_{s,u}^v| = |\phi|$. From this, it follows trivially that $|\phi_{s,u}^v| \leq (|extVoc(D,V)|+1) \cdot |\phi|$.
- 2. $\phi := \top$. The proof of this case is similar to that of $\phi := x = y$.
- 3. $\phi := \bot$. The proof of this case is similar to that of $\phi := x = y$.
- 4. $\phi := R(\overline{x})$. Without loss of generality, we assume that $v = \top$. From this, it follows that $\phi_{s,u}^{\top} := \bigvee_{S \in R_{s,u}^{\top}} S(\overline{x})$.

From this, it follows that $|\phi_{s,u}^{\top}| = (|R_{s,u}^{\top}| - 1) + \Sigma_{S \in R_{s,u}^{\top}}|$ $|S(\overline{x})|$. From this and $|S(\overline{x})| = 1 + |\overline{x}|$, it follows that $|\phi_{s,u}^{\top}| = (|R_{s,u}^{\top}| - 1) + \Sigma_{S \in R_{s,u}^{\top}}(1 + |\overline{x}|)$. From this, it follows that $|\phi_{s,u}^{\top}| = (|R_{s,u}^{\top}| - 1) + |R_{s,u}^{\top}| \cdot (1 + |\overline{x}|)$. From $\phi := R(\overline{x})$, it follows that $|\phi| = 1 + |\overline{x}|$. From this and $|\phi_{s,u}^{\top}| = (|R_{s,u}^{\top}| - 1) + |R_{s,u}^{\top}| \cdot (1 + |\overline{x}|)$, it follows that $|\phi_{s,u}^{\top}| = |R_{s,u}^{\top}| \cdot |\phi| + (|R_{s,u}^{\top}| - 1)$. We claim that $|R_{s,u}^{\top}| \leq |extVoc(D, V)|$. From this and $|\phi_{s,u}^{\top}| = |R_{s,u}^{\top}| \cdot |\phi| + (|R_{s,u}^{\top}| - 1)$, it follows that $|\phi_{s,u}^{\top}| \leq |extVoc(D, V)|$. From this, and $|\phi_{s,u}^{\top}| \leq |extVoc(D, V)| \cdot |\phi| + |extVoc(D, V)|$. From this, it follows that $|\phi_{s,u}^{\top}| \leq (|extVoc(D, V)| + 1) \cdot |\phi|$.

We now prove our claim that $|R_{s,u}^{\top}| \leq |extVoc(D,V)|$. The set $R_{s,u}^{\top}$ is a subset of extVocabulary(D,V) by construction. The set extVocabulary(D, V) contains any possible projection of tables in D and views in V. It is easy to check that the cardinality of extVocabulary(D, V) is, indeed, |extVoc(D, V)|.

This completes the proof of the base case.

Induction Step Assume that our claim holds for all subformulae of ϕ . We now show that our claim holds also for ϕ . There are a number of cases depending on ϕ 's structure.

- 1. $\phi := \psi \wedge \gamma$. From this, it follows that $\phi_{s,u}^v := \psi_{s,u}^v \wedge \gamma_{s,u}^v$. From this, it follows that $|\phi_{s,u}^v| = 1 + |\psi_{s,u}^v| + |\gamma_{s,u}^v|$. From the induction hypothesis, it follows that $|\psi_{s,u}^v| \leq (|extVoc(D,V)|+1) \cdot |\psi|$ and $|\gamma_{s,u}^v| \leq (|extVoc(D,V)|+1) \cdot |\psi|$. The this and $|\phi_{s,u}^v| = 1 + |\psi_{s,u}^v| + |\gamma_{s,u}^v|$, it follows that $|\phi_{s,u}^v| \leq 1 + (|extVoc(D,V)|+1) \cdot |\psi| + (|extVoc(D,V)|+1) \cdot |\psi|$. From this and $|\phi_{s,u}^v| \leq |extVoc(D,V)|+1 + (|extVoc(D,V)|+1) \cdot |\psi|$. From this, it follows that $|\phi_{s,u}^v| \leq (|extVoc(D,V)|+1) \cdot (1+|\psi|+|\gamma|)$. From this and $|\phi| = 1 + |\psi| + |\gamma|$, it follows that $|\phi_{s,u}^v| \leq (|extVoc(D,V)|+1) \cdot |\phi|$.
- 2. $\phi := \psi \lor \gamma$. The proof of this case is similar to that of $\phi := \psi \land \gamma$.
- 3. $\phi := \neg \psi$. From this, it follows that $\phi_{s,u}^v := \neg \psi_{s,u}^{\neg v}$. From this, it follows that $|\phi_{s,u}^v| = 1 + |\psi_{s,u}^{\neg v}|$. From the induction hypothesis, it follows that $|\psi_{s,u}^{\neg v}| \leq (|extVoc(D,V)| + 1) \cdot |\psi|$. From this and $|\phi_{s,u}^v| = 1 + |\psi_{s,u}^v|$, it follows that $|\phi_{s,u}^v| \leq 1 + (|extVoc(D,V)| + 1) \cdot |\psi|$. From this and $|extVoc(D,V)| \geq 0$, it follows that $|\phi_{s,u}^v| \leq |extVoc(D,V)| + 1 + (|extVoc(D,V)| + 1) \cdot |\psi|$. From this, it follows that $|\phi_{s,u}^v| \leq (|extVoc(D,V)| + 1) \cdot (1 + |\psi|)$. From this and $|\phi| = 1 + |\psi|$, it follows that $|\phi_{s,u}^v| \leq (|extVoc(D,V)| + 1) \cdot (1 + |\psi|)$.
- 4. $\phi := \exists x. \psi$. If $\phi_{s,u}^v$ is $\neg v$, then the claim holds trivially since $|\phi_{s,u}^v| = 1$. In the following, we assume that $\phi_{s,u}^v := \exists x. \psi_{s,u}^v$. From this, it follows that $|\phi_{s,u}^v| = 2 + |\psi_{s,u}^v|$. From the induction hypothesis, it follows that $|\psi_{s,u}^v| \leq (|extVoc(D,V)| + 1) \cdot |\psi|$. From this and $|\phi_{s,u}^v| = 2 + |\psi_{s,u}^v|$, it follows that $|\phi_{s,u}^v| \leq 2 + (|extVoc(D,V)| + 1) \cdot |\psi|$. From this and $|extVoc(D,V)| + 1 \cdot |\psi|$. From this and $|extVoc(D,V)| \geq 0$, it follows that $|\phi_{s,u}^v| \leq 2 \cdot |extVoc(D,V)| + 2 + (|extVoc(D,V)| + 1) \cdot |\psi|$. From this, it follows that $|\phi_{s,u}^v| \leq (|extVoc(D,V)| + 1) \cdot |\psi|$. From this, it follows that $|\phi_{s,u}^v| \leq (|extVoc(D,V)| + 1) \cdot |\psi|$. From this, it follows that $|\phi_{s,u}^v| \leq (|extVoc(D,V)| + 1) \cdot |\psi|$. From this and $|\phi| = 2 + |\psi|$, it follows that $|\phi_{s,u}^v| \leq (|extVoc(D,V)| + 1) \cdot |\phi|$.
- 5. $\phi := \forall x. \psi$. The proof of this case is similar to that of $\phi := \exists x. \psi$.

This completes the proof of the induction step. This completes the proof of our claim. \Box

LEMMA F.18. Let $M = \langle D, \Gamma \rangle$ be a system configuration, $s = \langle db, U, sec, T, V \rangle$ be a partial *M*-state, $u \in U$ be a user, and ϕ be a *D*-formula. For all sentences ϕ and all $v \in \{\top, \bot\}, |\phi_{s,u}^v| \leq (|extVoc(D, V)|+1) \cdot |\phi| \text{ and } |\neg \phi_{s,u}^\top \land \phi_{s,u}^\perp| \leq 2(|extVoc(D, V)|+1) \cdot |\phi|.$

PROOF. Let $M = \langle D, \Gamma \rangle$ be a system configuration, $s = \langle db, U, sec, T, V \rangle$ be a partial *M*-state, $u \in U$ be a user, and ϕ be a *D*-formula. Furthermore, let ϕ be a sentence and v be a value in $\{\top, \bot\}$. The fact that $|\phi_{s,u}^v| \leq (|extVoc(D,V)|+1) \cdot |\phi|$ follows trivially from Lemma *F*.17. Let ψ be the formula $\neg \phi_{s,u}^{\top} \land \phi_{s,u}^{\perp}$. The size of ψ is $2 + |\phi_{s,u}^{\top}| + |\phi_{s,u}^{\perp}|$. From this and Lemma *F*.17, it follows that $|\psi| \leq 2 + (|extVoc(D,V)| + 1) \cdot |\phi| + (|extVoc(D,V)| + 1) \cdot |\phi|$. From this, it follows that $|\psi| \leq 2(|extVoc(D,V)| + 1) \cdot |\phi|$. This completes the

proof.

In the following, we study the data complexity of our PDP. Note that, given a PDP f, the data complexity of f is the data complexity of the following decision problem:

Definition F.4. Let $M = \langle D, \Gamma \rangle$ be some fixed system configuration, $a \in \mathcal{A}_{D,U}$ be some fixed action, $u \in \mathcal{U}$ be some fixed user, $U \subseteq \mathcal{U}$ be some fixed set of users, $sec \in \Omega_{UD}^{sec}$ be some fixed policy, T be some fixed set of triggers over Dwhose owners are in U, V be some fixed set of views over Dwhose owners are in U, and c be some fixed context.

INPUT: A database state db such that $\langle db, U, sec, T, V, c \rangle \in$ Ω_M .

Question: Is $f(\langle db, U, sec, T, V, c \rangle, a) = \top$?

We define in a similar way the data complexity of the secure procedure.

THEOREM F.2. The data complexity of f_{conf}^{u} is AC^{0} .

PROOF. Let $M = \langle D, \Gamma \rangle$ be some fixed system configuration, $a \in \mathcal{A}_{D,U}$ be some fixed action, $u \in \mathcal{U}$ be some fixed user, $U \subseteq \mathcal{U}$ be some fixed set of users, $sec \in \Omega_{U,D}^{sec}$ be some fixed policy, T be some fixed set of triggers over D whose owners are in U, V be some fixed set of views over D whose owners are in U, and c be some fixed context. The data complexity of f_{conf}^u is the maximum of the data complexities of plexity of j_{conf} is the maximum of the data from $f_{conf,I,D}^{u}$, $f_{conf,G}^{u}$, and $f_{conf,S}^{u}$. We claim that: 1. the data complexity of $f_{conf,I,D}^{u}$ is AC^{0} , 2. the data complexity of $f_{conf,S}^{u}$ is AC^{0} , and 3. the data complexity of $f_{conf,G}^{u}$ is O(1).

From this, it follows that the data complexity of f_{conf}^{u} is $max(AC^0, O(1))$. From this, it follows that the data complexity of f_{conf}^u is AC^0 .

Our claims on the data complexity of $f_{conf,I,D}^{u}$, $f_{conf,S}^{u}$, and $f_{conf,G}^{u}$ are proved respectively in Lemma F.19, Lemma F.21, and Lemma F.20.

LEMMA F.19. The data complexity of $f^u_{conf,I,D}$ is AC^0 .

PROOF. Let $M = \langle D, \Gamma \rangle$ be some fixed system configuration, $a \in \mathcal{A}_{D,U}$ be some fixed INSERT or DELETE action, $u \in \mathcal{U}$ be some fixed user, $U \subseteq \mathcal{U}$ be some fixed set of users, $sec \in \Omega_{U,D}^{sec}$ be some fixed policy, T be some fixed set of triggers over D whose owners are in U, V be some fixed set of views over D whose owners are in U, and c be some fixed context. Furthermore, let $db \in \Omega_D^{\Gamma}$ be a database state such that $\langle db, U, sec, T, V, c \rangle \in \Omega_M$. We can check whether $f^{u}_{conf, \underline{I}, \underline{D}}(\langle db, U, sec, T, V, c \rangle, a) = \top$ as follows:

- 1. If $trigger(s) = \epsilon$ and $a \notin \mathcal{A}_{D,u}$, return \top .
- 2. If $trigger(s) \neq \epsilon$ and $invoker(s) \neq u$, return \top .
- Compute the result of noLeak(s, a, u). If noLeak(s, a, u) $= \bot$, then returns \bot .
- 4. Compute the set $Dep(\Gamma, a)$.
- 5. Compute secure(u, getInfo(a), s). If its result is \bot , return \perp .
- 6. For each $\gamma \in Dep(\Gamma, a)$, compute secure(u, getInfoV(a, a)) γ), s). If its result is \perp , return \perp .
- 7. For each $\gamma \in Dep(\Gamma, a)$, compute secure(u, getInfoS(a, a)) γ), s). If its result is \perp , return \perp .
- 8. Return \top .

The data complexity of the steps 1 and 2 is O(1). We claim that also the data complexity of the third step is O(1). The complexity of the fourth step is $O(|\Gamma|)$. From the definition

of getInfo, the resulting formula is constant in the size of the database. Furthermore, also constructing the formula can be done in constant time in the size of the database. From this and Lemma F.22, it follows that the data complexity of the fifth step is AC^0 . For a similar reason, the data complexity of the sixth and seventh steps is also AC^{0} . Therefore, the overall data complexity of the $f^u_{conf,I,D}$ procedure is AC'

We now prove our claim that the data complexity of the *noLeak* procedure is O(1). An algorithm implementing the noLeak procedure is as follows:

- 1. for each view $v \in V$, for each grant $g \in sec$, if g = $\langle op, u, \langle \text{SELECT}, v \rangle, u' \rangle$, then
 - (a) compute the set tDet(v, s, M).
 - (b) if $R \in tDet(v, s, M)$, for each $o \in tDet(v, s, M)$, check whether $\langle op, u, \langle \text{SELECT}, o \rangle, u'' \rangle \in sec.$

The size of the set tDet(v, s, M) is at most |D|. From this, it follows that the complexity of the step 1.(b) is $O(|D| \cdot$ |sec|). From Lemma E.10 and the definition of tDet, the complexity of computing tDet(v, s, M) is $O(|\phi|^3)$, where ϕ is v's definition. The overall complexity is, therefore, $O(|V| \cdot$ $|sec| \cdot (|D| \cdot |sec| + 2^{|D|} \cdot |\phi|))$, where ϕ is the definition of the longest view in V. From this, it is easy to see that the data complexity of the *noLeak* procedure is O(1).

LEMMA F.20. The data complexity of $f^u_{conf,G}$ is O(1).

PROOF. Let $M = \langle D, \Gamma \rangle$ be some fixed system configuration, $a \in \mathcal{A}_{D,U}$ be some fixed **GRANT** action, $u \in \mathcal{U}$ be some fixed user, $U \subseteq \mathcal{U}$ be some fixed set of users, $sec \in \Omega_{U,D}^{sec}$ be some fixed policy, T be some fixed set of triggers over D whose owners are in U, V be some fixed set of views over D whose owners are in U, and c be some fixed context. Furthermore, let $db \in \Omega_D^{\Gamma}$ be a database state such that $\langle db, U, sec, T, V, c \rangle \in \Omega_M$. We can check whether $f^u_{conf, G}(\langle db,$ $U, sec, T, V, c\rangle, \langle op, u'', p, u' \rangle)) = \top$ as follows.

- 1. If $trigger(s) = \epsilon$ and $a \notin \mathcal{A}_{D,u}$, return \top .
- 2. If $trigger(s) \neq \epsilon$ and $invoker(s) \neq u$, return \top .
- 3. If p is not a SELECT privilege, return \top .
- 4. If $u'' \neq u$, return \top .
- 5. For each $g \in sec$, if $g = \langle op, u, p, u' \rangle$, return \top .
- 6. Return \perp .

The complexity of the fifth step is O(|sec|), whereas the complexity of the other steps is O(1). Therefore, the overall complexity of the $f_{conf,G}^u$ procedure is O(|sec|). From this, it follows that the data complexity of $f^u_{conf,G}$ procedure is O(1).

LEMMA F.21. The data complexity of $f_{conf,S}^u$ is AC^0 .

PROOF. Let $M = \langle D, \Gamma \rangle$ be some fixed system configuration, $a \in \mathcal{A}_{D,U}$ be some fixed SELECT action, $u \in \mathcal{U}$ be some fixed user, $U \subseteq \mathcal{U}$ be some fixed set of users, $sec \in \Omega_{U,D}^{sec}$ be some fixed policy, T be some fixed set of triggers over D whose owners are in U, V be some fixed set of views over D whose owners are in U, and c be some fixed context. Furthermore, let $db \in \Omega_D^{\Gamma}$ be a database state such that $\langle db, U, sec, T, V, c \rangle \in \Omega_M$. We can check whether $f^u_{conf, S}(\langle db, db \rangle)$ $U, sec, T, V, c\rangle, a)) = \top$ as follows.

- 1. If $trigger(s) = \epsilon$ and $a \notin \mathcal{A}_{D,u}$, return \top .
- 2. If $trigger(s) \neq \epsilon$ and $invoker(s) \neq u$, return \top .
- 3. Compute $secure(u, \phi, s)$ and return its result.

The complexity of the first and second steps is O(1). From Lemma F.22, it follows that the data complexity of the third step is AC^0 . From this, it follows that the data complexity of $f^u_{conf,S}$ procedure is AC^0 . \square

LEMMA F.22. The data complexity of secure is AC^0 .

PROOF. Let $M = \langle D, \Gamma \rangle$ be some fixed system configuration, ϕ be some fixed sentence, $u \in \mathcal{U}$ be some fixed user, $U \subseteq \mathcal{U}$ be some fixed set of users, $sec \in \Omega_{U,D}^{sec}$ be some fixed policy, T be some fixed set of triggers over D whose owners are in U, V be some fixed set of views over D whose owners are in U, and c be some fixed context. Furthermore, let $db \in$ Ω_D^{Γ} be a database state such that $\langle db, U, sec, T, V, c \rangle \in \Omega_M$. We denote by s the state $\langle db, U, sec, T, V, c \rangle$. We can check whether $secure(u, \phi, \langle db, U, sec, T, V, c \rangle) = \top$ as follows:

- 1. Compute the formula $\phi_{s,u}^{rw}$.
- 2. Compute $[\phi_{s,u}^{rw}]^{db}$.

3. $secure(u, \phi, \langle db, U, sec, T, V, c \rangle) = \top$ iff $[\phi_{s,u}^{rw}]^{db} = \bot$. We claim that the first step can be done in constant time in terms of data complexity. It is well-known that the data complexity of query execution is AC^0 [3]. From this, it follows that the data complexity of secure is also AC^0 .

We now prove our claim that computing the formula $\phi_{s,u}^{rw}$ can be done in constant time in terms of data complexity. The extended vocabulary extVocabulary(D, V) does not depend on the database state. From this and the definition of R_s^v , where R is a predicate symbol and $v \in \{\top, \bot\}$, the set R_s^v (and the time needed to compute it) depends just on the database schema D and the set of views V. The set $AUTH_{s,u}$ and the time needed to compute it depend just on the size of the policy sec. Furthermore, the time needed to compute $AUTH_{s,u}^*$ depends just on the size of the policy sec and of the extended vocabulary. Therefore, for any predicate R, the set R_s^v can be computed in constant time in terms of database size. The computation of the formula ϕ' , obtained by replacing sub-formulae of the form $\exists \overline{x}. R(\overline{x}, \overline{y})$ with the corresponding predicates in the extended vocabulary, can be done in linear time in terms of $|\phi|$ and in constant time in terms of |db|. Note that the size of the resulting formula is linear in $|\phi|$. It is easy to see that also computing $\phi_{s,u}^{\top}$ and $\phi_{s,u}^{\perp}$ can be done in linear time in terms of $|\phi|$ and in constant time in terms of |db|. As shown in Lemma F.18, the size of the resulting formula is linear in $|\phi|$. Finally, we can replace the predicates in the extended vocabulary with the corresponding sub-formulae again in linear time in terms of $|\phi|$. Note that, again, the size of the resulting formula is linear in $|\phi|$. Therefore, the overall rewriting process can be done in linear time in the size of ϕ and in constant time in the size of db.

G. COMPOSITION

Here, we model the PDP f, presented in Section 6, which is obtained by composing the PDPs f_{int} and f_{conf}^{u} presented above. The PDP f is obtained by composing f_{int} and f_{conf}^{u} as follows:

$$f(s, act) = f_{int}(s, act) \wedge f_{conf}^{user(act, s)}(s, act)$$

The function user takes as input an action and a state and returns the actual user executing the action. It is defined as follows, where *i* denotes the *invoker* function and *tr* denotes the *trigger* function.

$$user(act, s) = \begin{cases} i(s) & \text{if } tr(s) \neq \epsilon \\ u & \text{if } tr(s) = \epsilon \text{ and } act \in \mathcal{A}_{D,u} \end{cases}$$

We now show our main results, namely that (1) f provides both database integrity and data confidentiality, and (2) f's data complexity is AC^{0} .

Theorem G.1. Let M be a system configuration, f be as above, and $P = \langle M, f \rangle$ be an extended configuration.

- For any user u ∈ U, the PDP f provides data confidentiality with respect to ⊢u, P, and u.
- 2. The PDP f provides database integrity with respect to P.

PROOF. It follows from Lemma G.1 and Lemma G.6.

THEOREM G.2. The data complexity of f is AC^0 .

PROOF. From f's definition, it follows that f's data complexity is the maximum complexity between f_{conf}^u 's complexity and f_{int} 's complexity. From this, Theorem E.2, and Theorem F.2, it follows that the data complexity of f is AC^0 . \Box

G.1 Database Integrity

Here, we show that f provides database integrity.

LEMMA G.1. Let $M = \langle D, \Gamma \rangle$ be a system configuration, f be as above, and $P = \langle M, f \rangle$ be an extended configuration. The PDP f provides database integrity with respect to P.

PROOF. We prove the lemma by contradiction. Assume, for contradiction's sake, that f does not satisfy the database integrity property. There are three cases:

- there is a reachable state s and an action act ∈ A_{D,U} such that trigger(s) = ε, f(s, act) = ⊤, and s γ→_{auth} act. From f(s, act) = ⊤, it follows that f_{int}(s, act) = ⊤. From this fact, trigger(s) = ε, and Lemma E.5, it follows s →_{auth} act, which leads to a contradiction.
- there is a reachable state s and a trigger $t \in \mathcal{TRIGGER}_D$ such that trigger(s) = t, $f(s,c) = \top$, $[\psi]^{s.db} = \bot$, and $s \not\sim_{auth} t$, where $c = \langle u, \texttt{SELECT}, \psi \rangle$ is t's condition. From $f(s,c) = \top$, it follows that $f_{int}(s,c) = \top$. From $f_{int}(s,c) = \top$, $[\psi]^{s.db} = \bot$, trigger(s) = t, and Lemma E.7, it follows $s \sim_{auth} t$, which leads to a contradiction.
- there is a reachable state s and a trigger $t \in TRIGGER_D$ such that trigger(s) = t, $f(s,c) = \top$, $[\psi]^{s,db} = \top$, $f(s',a) = \top$, and $s \not\sim_{auth} t$, where $c = \langle u, \text{SELECT}, \psi \rangle$ is t's condition, a is t's action, and s' is the state obtained from s by updating the context's history. From $f(s',a) = \top$, it follows that $f_{int}(s',a) = \top$. Since s and s' are equivalent modulo the context's history and f_{int} does not depend on the context's history, it follows

that $f_{int}(s, a) = \top$. From $f_{int}(s, c) = \top$, $[\psi]^{s.db} = \top$, $f_{int}(s, a) = \top$, trigger(s) = t, and Lemma E.7, it follows $s \rightsquigarrow_{auth} t$, which leads to a contradiction. This completes the proof. \Box

LEMMA G.2. Let $P = \langle M, f \rangle$ be an extended configuration, where $M = \langle D, \Gamma \rangle$ is a system configuration and f is as above, and L be the P-LTS. For each reachable state $s = \langle db, U, sec, T, V, c \rangle$, $s \rightsquigarrow_{auth} g$ for all $g \in sec$.

PROOF. The proof is very similar to that of Lemma E.9.

G.2 Data Confidentiality

Here, we show that f provides the desired data confidentiality guarantees. First, we show that the PDP f', defined as $f'(s, act) := f_{conf}^{user(act,s)}(s, act)$, provides data confidentiality. Afterwards, we analyse the security of f.

In Lemma G.3 and Lemma G.4, we prove some preliminary results about f'. These results will then be used to prove f's security.

LEMMA G.3. Let $M = \langle D, \Gamma \rangle$ be a system configuration, a be an action in $\mathcal{A}_{D,\mathcal{U}}$, and $s, s' \in \Omega_M$ be two *M*-states such that $pState(s) \cong_{user(a,s),M}^{data} pState(s')$, invoker(s) = invoker(s'), and trigger(s) = trigger(s'). Then, $f_{conf}^{user(a,s)}(s,$ $a) = \top$ iff $f_{conf}^{user(a,s')}(s', a) = \top$.

PROOF. Let $s = \langle db, U, sec, T, V, c \rangle$ and $s' = \langle db', U', sec', T', V', c' \rangle$ be two *M*-states such that $pState(s) \cong_{M,user(a,s)}^{data} pState(s')$, invoker(s) = invoker(s'), and trigger(s) = trigger(s'). We first show that user(a, s) = user(a, s'). Since trigger(s)

= trigger(s'), there are two cases:

- $trigger(s) = \epsilon$. In this case, the result of user(a, s) depends just on a. Therefore, user(a, s) = user(a, s').
- $trigger(s) \neq \epsilon$. In this case, user(a, s) = invoker(s)and user(a, s') = invoker(s'). From invoker(s) =invoker(s'), it follows that user(a, s) = user(a, s').

Let u be the user user(a, s). From Lemma F.9, it follows that $f_{conf}^{u}(s, a) = f_{conf}^{u}(s', a)$. This completes the proof. \Box

LEMMA G.4. Let M be a system configuration, f' be as above, and $P = \langle M, f' \rangle$ be an extended configuration. For any user $u \in \mathcal{U}$, the PDP f' satisfies the data confidentiality property with respect to P, u, \mathcal{ATK}_u , and $\cong_{P,u}$.

PROOF. It is easy to see that Lemmas F.9, F.11, F.12, F.13, F.14, F.15, and F.16 hold as well for f'. Therefore, we can easily adapt the proof of Theorem F.1 to f'. \Box

In Lemma G.5, we show that the PDP f returns the same result in any two data-indistinguishable states.

LEMMA G.5. Let $M = \langle D, \Gamma \rangle$ be a system configuration, $s, s' \in \Omega_M$ be two *M*-states such that $pState(s) \cong_{M,user(a,s)}^{data}$ pState(s'), tuple(s) = tuple(s'), invoker(s) = invoker(s'), and trigger(s) = trigger(s'), and f be the PDP as above. The following conditions hold:

- 1. If trigger(s) = ϵ , for any action a in $\mathcal{A}_{D,\mathcal{U}}$, $f(s,a) = \top$ iff $f(s', a) = \top$.
- 2. If $trigger(s) \in TRIGGER_D$, $f(s, trigCond(s)) = \top$ iff $f(s', trigCond(s)) = \top$.
- 3. If $trigger(s) \in \mathcal{TRIGGER}_D$, $trigCond(s) = \langle u, \text{SELECT}, \psi \rangle$, $[\psi]^{s.db} = [\psi]^{s'.db} = \top$, $f(s, trigAct(s)) = \top$ iff $f(s', trigAct(s')) = \top$.
PROOF. We prove our three claims by contradiction.

- 1. Assume, for contradiction's sake, that there are two states s and s' and an action a such that trigger(s) = $trigger(s') = \epsilon$, $pState(s) \cong_{user(a,s),M}^{data} pState(s')$, f(s,a) = \top , and $f(s',a) = \bot$. From f's definition, f(s,a) = \top , $f(s',a) = \bot$, and Lemma G.3, it follows that $f_{int}(s,a) =$ \top , $f_{int}(s',a) = \bot$, and $f_{conf}^{user(a,s)}(s,a) = f_{conf}^{user(a,s')}(s', a) = \top$. From this, it follows that $s' \not\sim_{auth}^{approx} a$. From $f_{int}(s,a) = \top$, it follows $s \sim_{auth}^{approx} a$. From $f_{int}(s,a) = \top$, it follows $s' \sim_{auth}^{approx} a$, which contradicts $s' \not\sim_{auth}^{approx} a$. This completes the proof for the first claim.
- 2. Assume, for contradiction's sake, that there are two states s and s' such that trigger(s) = trigger(s'), $trigger(s) \neq \epsilon$, $pState(s) \cong_{user(a,s),M}^{data} pState(s')$, $f(s,a) = \top$, and $f(s',a) = \bot$, where trigCond(s) = trigCond(s') = a. From f's definition, $f(s,a) = \top$, $f(s',a) = \bot$, and Lemma G.3, it follows that $f_{int}(s,a) = \top$, $f_{int}(s',a) = \bot$, and $f_{conf}^{user(a,s)}(s,a) = f_{conf}^{user(a,s')}(s',a) = \top$. From f_{int} 's definition, $trigger(s') \neq \epsilon$, and a = trigCond(s'), it follows that $f_{int}(s',a) = \top$, which contradicts $f_{int}(s',a) = \bot$. This completes the proof for the second claim.
- 3. Assume, for contradiction's sake, that there are two states s and s' such that trigger(s) = trigger(s') = t, $trigger(s) \neq \epsilon$, $pState(s) \cong_{user(a,s),M}^{data} pState(s')$, $[\psi]^{s.db}$ $= [\psi]^{s'.db} = \top$, $f(s,a) = \top$, and $f(s',a) = \bot$, where a = trigAct(s) = trigAct(s'). From f's definition, $f(s,a) = \top$, $f(s',a) = \bot$, and Lemma G.3, it follows that $f_{conf}^{user(a,s)}(s,a) = f_{conf}^{user(a,s')}(s',a) = \top$, $f_{int}(s,a) =$ \top , and $f_{int}(s',a) = \bot$. From this, it follows that $s' \not\sim_{auth}^{approx} t$. From $f_{int}(s,a) = \top$, it follows $s \sim_{auth}^{approx} t$. There are two cases depending on t's security mode:
 - (a) mode(t) = A. From this and s → ^{approx}_{auth} t, it follows that s → ^{approx}_{auth} a and s → ^{approx}_{auth} a', where a' = getAction(statement(t), owner(t), tuple(s)) is the trigger's action associated with the trigger's owner. Note that s and s' are data indistinguishable. From this, a, a' ∈ A_{D,U}, and Lemma E.4, it follows that s' → ^{approx}_{auth} a and s' → ^{approx}_{auth} a'. From s' → ^{approx}_{auth} a, s' → ^{approx}_{auth} a', [ψ]^{s'.db} = T, and the rule EXECUTE TRIGGER 2, it follows that s' → ^{approx}_{auth} t.
 (b) mode(t) = O. From this and s → ^{approx}_{auth} t, it follows that s → ^{approx}_{auth} a. Note that s and s' are data indistinguishable. From this and s → ^{approx}_{auth} t, it follows that that s → ^{approx}_{auth} a. Note that s and s' are data indistinguishable. From this, a, a' ∈ A_{D,U}, and Lemma E.4, it follows that s → ^{approx}_{auth} a. Note that s and s' are data indistinguishable. From this, a, a' ∈ A_{D,U}, and Lemma E.4, it follows that s → ^{approx}_{auth} a. Note that s and s' are data indistinguishable. From this, a, a' ∈ A_{D,U}, and Lemma E.4, it follows that s → ^{approx}_{auth} a. Note that s and s' are data indistinguishable. From this, a, a' ∈ A_{D,U}, and Lemma E.4, it follows that s' → ^{approx}_{auth} a. Note that s and s' are data indistinguishable.
 - (b) mode(t) = O. From this and s → ^{approx}_{auth} t, it follows that s → ^{approx}_{auth} a. Note that s and s' are data indistinguishable. From this, a, a' ∈ A_{D,U}, and Lemma E.4, it follows that s' → ^{approx}_{auth} a. From this, [ψ]^{s'.db} = T, and the rule EXECUTE TRIGGER
 1, it follows that s' → ^{approx}_{auth} t, which contradicts s' → ^{approx}_{auth} t.

This completes the proof for the third claim. This completes the proof. \Box

In Lemma G.6, we prove the main result of this section, namely that f provides data confidentiality. We first recall the concept of *derivation*. Given a judgment $r, i \vdash_u \phi$, a *derivation of* $r, i \vdash_u \phi$ with respect to \mathcal{ATK}_u , or a *derivation* of $r, i \vdash_u \phi$ for short, is a proof tree, obtained by applying the rules defining \mathcal{ATK}_u , that ends in $r, i \vdash_u \phi$. With a slight abuse of notation, we use $r, i \vdash_u \phi$ to denote both the judgment and its derivation. The length of a derivation, denoted $|r, i \vdash_u \phi|$, is the number of rule applications in it. LEMMA G.6. Let M be a system configuration, f be as above, and $P = \langle M, f \rangle$ be an extended configuration. For any user $u \in \mathcal{U}$, the PDP f provides data confidentiality with respect to P, u, \mathcal{ATK}_u , and $\cong_{P,u}$.

PROOF. Let u be a user in $\mathcal{U}, P = \langle M, f \rangle$ be an extended configuration, where $M = \langle D, \Gamma \rangle$ is a system configuration and f is as above, and L be the P-LTS. Furthermore, let rbe a run in traces(L), i be an integer such that $1 \leq i \leq |r|$, and ϕ be a sentence such that $r, i \vdash_u \phi$ holds. We claim that also $secure_{P,u}(r, i \vdash_u \phi)$ holds. The theorem follows trivially from the claim.

We now show that for all $r \in traces(L)$, all i such that $1 \leq i \leq |r|$, and all sentences ϕ such that $r, i \vdash_u \phi$ holds, then also $secure_{P,u}(r, i \vdash_u \phi)$ holds. We prove our claim by induction on the length of the derivation $r, i \vdash_u \phi$. In the following, we denote by e the function extend.

Base Case: Assume that $|r, i \vdash_u \phi| = 1$. There are a number of cases depending on the rule used to obtain $r, i \vdash_u \phi$.

- 1. SELECT Success 1. Let *i* be such that $r^i = r^{i-1} \cdot \langle u, \text{SELECT}, \phi \rangle \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and $last(r^{i-1}) = s'$, where $s' = \langle db, U, sec, T, V, c' \rangle$. From the rules, it follows that $f(s', \langle u, \text{SELECT}, \phi \rangle) = \top$. From this and *f*'s definition, it follows that $f_{int}(s', \langle u, \text{SELECT}, \phi \rangle) = \top$ and $f^u_{conf}(s', \langle u, \text{SELECT}, \phi \rangle) = \top$, because $user(s', \langle u, \text{SELECT}, \phi \rangle) = u$. From $f^u_{conf}(s', \langle u, \text{SELECT}, \phi \rangle) = \top$, it follows $secure(u, \phi, s') = \top$. From this, Lemma F.8, and pState(s) = pState(s'), it follows $secure(u, \phi, s) = \top$. From this, Lemma F.7, and $last(r^i) = s$, it follows that $secure_{P,u}(r, i \vdash_u \phi)$ holds.
- 2. SELECT Success 2. The proof for this case is similar to that of SELECT Success 1.
- 3. INSERT Success. Let *i* be such that $r^i = r^{i-1} \cdot \langle u, \text{INSERT}, R, \bar{t} \rangle \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and $last(r^{i-1}) = \langle db', U, sec, T, V, c' \rangle$, and ϕ be $R(\bar{t})$. Then, $secure_{P,u}(r, i \vdash_u R(\bar{t}))$ holds. Indeed, in all runs r' (P, u)-indistinguishable from r^i the last action is $\langle u, \text{INSERT}, R, \bar{t} \rangle$. Furthermore, the action has been executed successfully. Therefore, according to the LTS rules, $\bar{t} \in last(r').db(R)$ for all runs $r' \in [\![r^i]\!]_{P,u}$. From this and the relational calculus semantics, it follows that $[R(\bar{t})]^{last(r').db} = \top$ for all runs $r' \in [\![r^i]\!]_{P,u}$. Hence, $secure_{P,u}(r, i \vdash_u R(\bar{t}))$ holds.
- 4. INSERT Success FD. Let *i* be such that $r^i = r^{i-1} \cdot \langle u, \text{INSERT}, R, (\overline{v}, \overline{w}, \overline{q}) \rangle \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and $last(r^{i-1}) = \langle db', U, sec, T, V, c' \rangle$, and ϕ be $\neg \exists \overline{y}, \overline{z}. R(\overline{v}, \overline{y}, \overline{z}) \land \overline{y} \neq \overline{w}$. From the rule's definition, it follows that $secEx(s) = \bot$. From this and the LTS rules, it follows that $f(s', \langle u, \text{INSERT}, R, (\overline{v}, \overline{w}, \overline{q}) \rangle) = \top$. From this and f's definition, it follows that $f(s', \langle u, \text{INSERT}, R, (\overline{v}, \overline{w}, \overline{q}) \rangle) = \top$. From this and f's definition, it follows that $f_{conf}(s', \langle u, \text{INSERT}, R, (\overline{v}, \overline{w}, \overline{q}) \rangle) = \bot$, because $user(s', \langle u, \text{INSERT}, R, (\overline{v}, \overline{w}, \overline{q}) \rangle) = u$. From this and f_{conf}^u 's definition, it follows that $secure(u, \phi, last(r^{i-1})) = \top$ holds because ϕ is equivalent to $getInfoS(\gamma, a)$ for some $\gamma \in Dep(\Gamma, a)$, where $a = \langle u, \text{INSERT}, R, (\overline{v}, \overline{w}, \overline{q}) \rangle$. From this and Lemma F.7, it follows that $secure_{P,u}(r, i 1 \vdash_u \phi)$ holds. We claim that $secure_{P,u}(r, i \vdash_u \phi)$ holds. From this and Lemma F.2, it follows that also $secure_{P,u}(r, i \vdash_u \phi)$ holds.

We now prove our claim that $secure_{P,u}^{data}(r, i \vdash_u \phi)$ holds. Let s' be the state $last(r^{i-1})$. Furthermore, for brevity's sake, in the following we omit the *pState* function where needed. For instance, with a slight abuse of notation, we write $[\![s']\!]_{u,M}^{data}$ instead of $[\![pState(s')]\!]_{u,M}^{data}$. There are two cases:

- (a) the INSERT command has caused an integrity constraint violation, i.e., $Ex(s) \neq \emptyset$. From $secure(u, \phi, s') = \top$ and Lemma F.7, it follows that $secure_{P,u}^{data}(r, i-1 \vdash_u \phi)$ holds. From this, it follows that $[\phi]^v = [\phi]^{s'}$ for any $v \in [s']_{u,M}^{data}$. From this and the fact that the INSERT command caused an exception (i.e., s' = s), it follows that $[\phi]^v = [\phi]^s$ for any $v \in [s]_{u,M}^{data}$. From this, it follows that $secure_{P,u}^{data}(r, i \vdash_u \phi)$ holds.
- (b) the INSERT command has not caused exceptions, i.e., $Ex(s) = \emptyset$. From $secure(u, \phi, s') = \top$ and Lemma F.7, it follows that $secure_{P,u}^{data}(r, i-1 \vdash_u$ ϕ) holds. From this, it follows that $[\phi]^v = [\phi]^{s'}$ for any $v \in [\![s']\!]_{u,M}^{data}$. Furthermore, from F.7 and $Ex(s) = \emptyset$, it follows that ϕ holds in s'. Let $A_{s',R,\overline{t}}$ be the set $\{\langle db[R \oplus \overline{t}], U, sec, T, V \rangle \in \Pi_M \,|\, \exists db' \in$ $\Omega_D.\langle db', U, sec, T, V \rangle \in [s']_{M,u}^{data}$. It is easy to see that $[\![s]\!]_{M,u}^{data} \subseteq A_{s',R,\overline{t}}$. We now show that ϕ holds for any $z \in A_{s',R,\overline{t}}$. Let $z_1 \in [s']_{M,u}^{data}$. From $[\phi]^v =$ $[\phi]^{s'}$ for any $v \in [\![s']\!]_{u,M}^{data}$ and the fact that ϕ holds in s', it follows that $[\phi]^{z_1} = \top$. Therefore, for any $(\overline{k}_1, \overline{k}_2, \overline{k}_3) \in R(z_1)$ such that $|\overline{k}_1| = |\overline{v}|, |\overline{k}_2| = |\overline{w}|,$ and $|k_3| = |\overline{z}|$, if $k_1 = \overline{v}$, then $k_2 = \overline{w}$. Then, for any $(k_1, \underline{k}_2, k_3) \in R(z_1) \cup \{(\overline{v}, \overline{w}, \overline{q})\}$ such that $|\overline{k}_1| = |\overline{v}|, |\overline{k}_2| = |\overline{w}|, \text{ and } |\overline{k}_3| = |\overline{z}|, \text{ if } k_1 = \overline{v},$ then $k_2 = \overline{w}$. Therefore, ϕ holds also in $z_1[R \oplus$ $\overline{t}] \, \in \, A_{pState(s'),R,\overline{t}}. \ \, \text{Hence,} \ \, [\phi]^z \, = \, \top \ \, \text{for any} \ \, z \, \in \,$ $A_{s',R,\overline{t}}$. From this and $[s]_{M,u}^{data} \subseteq A_{s',R,\overline{t}}$, it follows that $[\phi]^z = \top$ for any $z \in [s]_{M,u}^{data}$. From this, it follows that $secure_{P,u}^{data}(r, i, u, \phi)$ holds.
- 5. INSERT Success ID. The proof of this case is similar to that for the INSERT Success FD.
- 6. DELETE Success. The proof for this case is similar to that of INSERT Success.
- 7. DELETE Success ID. The proof of this case is similar to that for the INSERT Success FD.
- 8. INSERT Exception. Let i be such that $r^i = r^{i-1} \cdot \langle u, \text{INSER}, R, \overline{t} \rangle \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and $last(r^{i-1}) = \langle db', U, sec, T, V, c' \rangle$, and ϕ be $\neg R(\overline{t})$. From the rule's definition, it follows that $secEx(s) = \bot$. From this and the LTS rules, it follows that $f(s', \langle u, \text{INSERT}, R, \overline{t} \rangle) = \top$. From this and f's definition, it follows that $f_{conf}^u(s', \langle u, \text{INSERT}, R, \overline{t} \rangle) = \top$, because $user(s', \langle u, \text{INSERT}, R, \overline{t} \rangle) = u$. From this and f_{conf}^u 's definition, it follows that $secure(u, \phi, last(r^{i-1})) = \top$ holds because $\phi = getInfo(\langle u, \text{INSERT}, R, \overline{t} \rangle)$. From this and Lemma F.7, it follows that $secure_{P,u}(r, i - 1 \vdash_u \phi)$ holds. From the LTS semantics, it follows that $pState(s) \cong_{u,M}^{data} pState(last(r^{i-1}))$. From this, $secure(u, \phi, last(r^{i-1})) = \top$, and Lemma F.8, it follows that $secure(u, \phi, last(r^{i-1})) = \top$. From this and Lemma F.7, it follows that $secure(u, \phi, last(r^{i-1})) = \top$. From this and Lemma F.7, it follows that $secure(u, \phi, last(r^{i-1})) = \top$. From this and Lemma F.7, it follows that $secure(u, \phi, last(r^{i-1})) = \top$. From this and Lemma F.7, it follows that $secure(u, \phi, last(r^{i-1})) = \top$. From this and Lemma F.7, it follows that $secure(u, \phi, last(r^{i-1})) = \top$. From this and Lemma F.7, it follows that $secure(u, \phi, last(r^{i-1})) = \top$. From this and Lemma F.7, it follows that $secure(u, \phi, last(r^{i-1})) = \top$. From this and Lemma F.7, it follows that $secure(u, \phi, last(r^{i-1})) = \top$. From this and Lemma F.7, it follows that $secure(u, \phi, last(r^{i-1})) = \top$. From this and Lemma F.7, it follows that $secure(u, \phi, last(r^{i-1})) = \top$.
- 9. DELETE Exception. The proof for this case is similar to that of INSERT Exception.
- 10. INSERT FD Exception. Let *i* be such that $r^i = r^{i-1} \cdot \langle u, \text{INSERT}, R, (\overline{v}, \overline{w}, \overline{q}) \rangle \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and $last(r^{i-1}) = \langle db', U, sec, T, V, c' \rangle$, and ϕ be $\exists \overline{y}, \overline{z}, R(\overline{v}, \overline{y}, \overline{z}) \land \overline{y} \neq \overline{w}$. From the rule's definition, it

follows that $secEx(s) = \bot$. From this and the LTS rules, it follows that $f(s', \langle u, \text{INSERT}, R, (\overline{v}, \overline{w}, \overline{q}) \rangle) = \top$. From this and f's definition, it follows that $f_{conf}^u(s', \langle u, \text{INSERT}, R, (\overline{v}, \overline{w}, \overline{q}) \rangle) = \top$, because $user(s', \langle u, \text{INSERT}, R, \overline{t} \rangle) = u$. From this and f_{conf}^u 's definition, it follows that $secure(u, \phi, last(r^{i-1})) = \top$ because $\phi = getInfoV(\gamma, \langle u, \text{INSERT}, R, (\overline{v}, \overline{w}, \overline{q}) \rangle)$ for some constraint $\gamma \in Dep(\Gamma, \langle u, \text{INSERT}, R, (\overline{v}, \overline{w}, \overline{q}) \rangle)$. From this and Lemma F.7, it follows that $secure_{P,u}(r, i - 1 \vdash_u \phi)$ holds. From the LTS semantics, it follows that $pState(s) \cong_{u,M}^{data} pState(last(r^{i-1}))$. From this, Lemma F.8, and $secure(u, \phi, last(r^{i-1})) = \top$, it follows that $secure(u, \phi, last(r^{i})) = \top$. From this and Lemma F.7, it follows that $secure(u, \phi, last(r^{i})) = \top$. From this and Lemma F.8, it follows that $secure(u, \phi, last(r^{i})) = \top$. From this and Lemma F.7, it follows that $secure(u, \phi, last(r^{i-1})) = \top$. From this and Lemma F.7, it follows that $secure(u, \phi, last(r^{i})) = \top$. From this and Lemma F.8, it follows that $secure(u, \phi, last(r^{i})) = \top$. From this and Lemma F.7, it follows that $secure(u, \phi, last(r^{i})) = \top$. From this and Lemma F.7, it follows that also $secure_{P,u}(r, i \vdash_u \phi)$ holds.

- 11. INSERT ID Exception. The proof for this case is similar to that of INSERT FD Exception.
- 12. DELETE FD Exception. The proof for this case is similar to that of INSERT FD Exception.
- 13. Integrity Constraint. The proof of this case follows trivially from the fact that for any state $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and any $\gamma \in \Gamma$, $[\gamma]^{db} = \top$ by definition.
- 14. Learn GRANT/REVOKE Backward. Let *i* be such that $r^i = r^{i-1} \cdot t \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$, $last(r^{i-1}) = \langle db, U, sec', T, V, c' \rangle$, and *t* be a trigger whose WHEN condition is ϕ and whose action is either a GRANT or a REVOKE. From the rule's definition, it follows that $secEx(s) = \bot$. From this and the LTS rules, it follows that $f(last(r^{i-1}), \langle u', \text{SELECT}, \phi \rangle) = \top$, where u' is either the trigger's owner or the trigger's invoker depending on the security mode. From this and f's definition, it follows $f_{conf}^u(last(r^{i-1}), \langle u', \text{SELECT}, \phi \rangle) = \top$, because $user(last(r^{i-1}), \langle u', \text{SELECT}, \phi \rangle) = u$ because t's invoker is u according to the rules. From this and f_{conf}^u 's definition, it follows $secure(u, \phi, last(r^{i-1})) = \top$. From this and F.7, it follows that $secure_{P,u}(r, i 1 \vdash_u \phi)$ holds.
- 15. Trigger GRANT Disabled Backward. Let *i* be such that $r^i = r^{i-1} \cdot t \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$, $last(r^{i-1}) = \langle db, U, sec', T, V, c' \rangle$, and *t* be a trigger whose WHEN condition is ψ , and ϕ be $\neg \psi$. From the rule's definition, it follows that $secEx(s) = \bot$. From this and the LTS rules, it follows that $f(last(r^{i-1}), \langle u', SELECT, \phi \rangle) = \top$, where *u'* is either the trigger's owner or the trigger's invoker depending on the security mode. From this and *f*'s definition, it follows $f_{conf}^u(last(r^{i-1}), \langle u', SELECT, \phi \rangle) = \top$, as $user(last(r^{i-1}), \langle u', SELECT, \phi \rangle) = u$ because *t*'s invoker is *u* according to the rules. From this and f_{conf}^u 's definition, it follows that also $secure(u, \phi, last(r^{i-1})) = \top$. From this and F.7, it follows that $secure_{P,u}(r, i-1 \vdash_u \phi)$ holds.
- 16. Trigger REVOKE Disabled Backward. The proof for this case is similar to that of Trigger GRANT Disabled Backward.
- 17. Trigger INSERT FD Exception. Let *i* be such that $r^i = r^{i-1} \cdot t \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$, $last(r^{i-1}) = \langle db, U, sec', T, V, c' \rangle$, and *t* be a trigger whose WHEN condition is ϕ and whose action act is a INSERT statement $\langle u', \text{INSERT}, R, (\overline{v}, \overline{w}, \overline{q}) \rangle$. Furthermore, let ϕ be $\exists \overline{y}, \overline{z}. R(\overline{v}, \overline{y}, \overline{z}) \land \overline{y} \neq \overline{w}$. From the rule's definition, it follows that $secEx(s) = \bot$. From this and the LTS rules, it follows that $f(last(r^{i-1}), act) = \top$. From this and f's definition, it follows that $f_{conf}^u(last(r^{i-1}), act) = \Box$

 \top , because $user(last(r^{i-1}), act) = u$ because t's invoker is u according to the rules. From this and f^u_{conf} 's definition, it follows that $secure(u, \phi, last(r^{i-1})) = \top$ because $\phi = getInfoV(\gamma, act)$ for some constraint $\gamma \in$ $Dep(\Gamma, act)$. From this and Lemma F.7, it follows that $secure_{P,u}(r, i-1 \vdash_u \phi)$ holds.

- 18. Trigger INSERT ID Exception. The proof for this case is similar to that of Trigger INSERT ID Exception.
- 19. Trigger DELETE ID Exception. The proof for this case is similar to that of Trigger DELETE ID Exception.
- 20. Trigger Exception. Let *i* be such that $r^i = r^{i-1} \cdot t \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$, $last(r^{i-1}) = \langle db, U, sec', T, V, c' \rangle$, and *t* be a trigger whose WHEN condition is ϕ and whose action is *act*. From the rule's definition, it follows that $f(last(r^{i-1}), \langle u', \text{SELECT}, \phi \rangle) = \top$, where *u'* is either the trigger's owner or the trigger's invoker depending on the security mode. From this and *f*'s definition, it follows $f_{conf}^u(last(r^{i-1}), \langle u', \text{SELECT}, \phi \rangle) = \Box$, because $user(last(r^{i-1}), \langle u', \text{SELECT}, \phi \rangle) = u$ since *t*'s invoker is *u* according to the rules. From this and f_{conf}^u 's definition, it follows that $secure(u, \phi, last(r^{i-1})) = \top$. From this and F.7, it follows that $secure_{P,u}(r, i 1 \vdash_u \phi)$ holds.
- 21. Trigger INSERT Exception. The proof for this case is similar to that of INSERT Exception.
- 22. Trigger DELETE Exception. The proof for this case is similar to that of DELETE Exception.
- 23. Trigger Rollback INSERT. Let *i* be such that $r^i = r^{i-n-1}$. $\langle u, \text{INSERT}, R, \overline{t} \rangle \cdot s_1 \cdot t_1 \cdot s_2 \dots \cdot t_n \cdot s_n$, where $s_1, s_2, \dots, s_n \in \Omega_M$ and $t_1, \dots, t_n \in \mathcal{TRIGGER}_D$, and ϕ be $\neg R(\overline{t})$. Furthermore, let $last(r^{i-n-1}) = \langle db', U', sec', T', V', c' \rangle$ and s_n be $\langle db, U, sec, T, V, c \rangle$. From the rule's definition, it follows that $secEx(s_1) = \bot$. From this, it follows that $f(last(r^{i-n-1}), \langle u, \text{INSERT}, R, \overline{t} \rangle) = \top$. From this and f's definition, it follows $f_{conf}^u(last(r^{i-n-1}), \langle u, \text{INSERT}, R, \overline{t} \rangle) = U$. From this and f_{conf}^u 's definition, it follows $secure(u, \phi, last(r^{i-n-1})) = \top$ because $\phi = getInfo(\langle u, \text{INSERT}, R, \overline{t} \rangle)$. From the LTS semantics, it follows that $last(r^{i-n-1}) \cong_{M,u}^{data} s_n$ because $pState(last(r^{i-n-1})) = pState(s_n)$. From this, Lemma F.8, and $secure(u, \phi, last(r^{i-n-1})) = \top$, it follows that $secure_{P,u}(r, i \vdash_u \phi)$ holds.
- 24. Trigger Rollback DELETE. The proof for this case is similar to that of Trigger Rollback INSERT.

This completes the proof of the base step.

Induction Step: Assume that the claim hold for any derivation of $r, j \vdash_u \psi$ such that $|r, j \vdash_u \psi| < |r, i \vdash_u \phi|$. We now prove that the claim also holds for $r, i \vdash_u \phi$. There are a number of cases depending on the rule used to obtain $r, i \vdash_u \phi$.

- 1. *View.* The proof of this case follows trivially from the semantics of the relational calculus extended over views.
- 2. Propagate Forward SELECT. Let *i* be such that $r^{i+1} = r^i \cdot \langle u, \text{SELECT}, \psi \rangle \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and $last(r^i) = \langle db', U', sec', T', V', c' \rangle$. From the rule, it follows that $r, i \vdash_u \phi$ holds. From this and the induction hypothesis, it follows that $secure_{P,u}(r, i \vdash_u \phi)$ holds. From Lemma G.7, the action $\langle u, \text{SELECT}, \psi \rangle$ preserves the equivalence class with respect to r^i, P ,

and u. From this, Lemma F.12, and $secure_{P,u}(r, i \vdash_u \phi)$, it follows that also $secure_{P,u}(r, i + 1 \vdash_u \phi)$ holds.

- 3. Propagate Forward GRANT/REVOKE. Let *i* be such that $r^{i+1} = r^i \cdot \langle op, u', p, u \rangle \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and $last(r^i) = \langle db', U', sec', T', V', c' \rangle$. From the rule, it follows that $r, i \vdash_u \phi$ holds. From this and the induction hypothesis, it follows that $secure_{P,u}(r, i \vdash_u \phi)$ holds. From Lemma G.7, the action $\langle op, u', p, u \rangle$ preserves the equivalence class with respect to r^i , P, and u. From this, Lemma F.13, and $secure_{P,u}(r, i \vdash_u \phi)$ holds.
- 4. Propagate Forward CREATE. The proof for this case is similar to that of Propagate Forward SELECT.
- 5. Propagate Backward SELECT. Let *i* be such that $r^{i+1} = r^i \cdot \langle u, \text{SELECT}, \psi \rangle \cdot s$, where $s = \langle db', U', sec', T', V', c' \rangle \in \Omega_M$ and $last(r^i) = \langle db, U, sec, T, V, c \rangle$. From the rule, it follows that $r, i+1 \vdash_u \phi$ holds. From this and the induction hypothesis, it follows that $secure_{P,u}(r, i+1 \vdash_u \phi)$ holds. From Lemma G.7, the action $\langle u, \text{SELECT}, \psi \rangle$ preserves the equivalence class with respect to r^i , P, and u. From this, Lemma F.12, and $secure_{P,u}(r, i+1 \vdash_u \phi)$ holds.
- 6. Propagate Backward GRANT/REVOKE. Let *i* be such that $r^{i+1} = r^i \cdot \langle op, u', p, u \rangle \cdot s$, where $s = \langle db', U', sec', T', V', c' \rangle \in \Omega_M$ and $last(r^i) = \langle db, U, sec, T, V, c \rangle$. From the rule, it follows that $r, i + 1 \vdash_u \phi$ holds. From this and the induction hypothesis, it follows that $secure_{P,u}(r, i + 1 \vdash_u \phi)$ holds. From Lemma G.7, the action $\langle op, u', p, u \rangle$ preserves the equivalence class with respect to r^i , P, and u. From this, Lemma F.13, and $secure_{P,u}(r, i + 1 \vdash_u \phi)$, it follows that also $secure_{P,u}(r, i \vdash_u \phi)$ holds.
- 7. Propagate Backward CREATE TRIGGER. The proof for this case is similar to that of Propagate Backward SE-LECT.
- 8. Propagate Backward CREATE VIEW. Note that the formulae ψ and $replace(\psi, o)$ are semantically equivalent. This is the only difference between the proof for this case and the one for the Propagate Backward SELECT case.
- 9. Rollback Backward 1. Let i be such that $r^i = r^{i-n-1}$. $\langle u, op, R, \overline{t} \rangle \cdot s_1 \cdot t_1 \cdot s_2 \cdot \ldots \cdot t_n \cdot s_n$, where $s_1, s_2, \ldots, s_n \in$ $\Omega_M, t_1, \ldots, t_n \in \mathcal{TRIGGER}_D$, and *op* is one of {INSERT, DELETE}. Furthermore, let s_n be $\langle db', U', sec', T', V', c' \rangle$ and $last(r^{i-n-1})$ be $\langle db, U, sec, T, V, c \rangle$. From the rule's definition, $r, i \vdash_u \phi$ holds. From this and the induction hypothesis, it follows that $secure_{P,u}(r, i \vdash_u \phi)$ holds. From Lemma G.8, the triggers t_j preserve the equivalence class with respect to $r^{i-n-1+j}$, P, and u for any $1 \leq j \leq n$. Therefore, for any $v \in [\![r^{i-1}]\!]_{P,u}$, the run $e(v, t_n)$ contains the roll-back. Therefore, for any $v \in \llbracket r^{i-1} \rrbracket_{P,u}$, the state $last(e(v,t_n))$ is the state just before the action $\langle u, op, R, \overline{t} \rangle$. Let A be the set of partial states associated with the roll-back states. It is easy to see that A is the same as $\{pState(last(t'))|t' \in$ $\llbracket r^{i-n-1} \rrbracket_{P,u}$. From $secure_{P,u}(r, i \vdash_u \phi)$, it follows that ϕ has the same result over all states in A. From this and $A = \{pState(last(t'))|t' \in [\![r^{i-n-1}]\!]_{P,u}\}, \text{ it follows that}$ ϕ has the same result over all states in $\{pState(last(t'))|$ $t' \in \llbracket r^{i-n-1} \rrbracket_{P,u}$. From this, it follows that $secure_{P,u}$ $(r, i - n - 1 \vdash_u \phi)$ holds.
- 10. Rollback Backward 2. Let *i* be such that $r^{i} = r^{i-1} \cdot \langle u, op, R, \overline{t} \rangle \cdot s$, where $s = \langle db', U', sec', T', V', c' \rangle \in \Omega_{M}$, $last(r^{i-1}) = \langle db, U, sec, T, V, c \rangle$, and *op* is one of

{INSERT, DELETE}. From the rule's definition, $r, i \vdash_u \phi$ holds. From this and the induction hypothesis, it follows that $secure_{P,u}(r, i \vdash_u \phi)$ holds. From Lemma G.7, the action $\langle u, op, R, \overline{t} \rangle$ preserves the equivalence class with respect to r^{i-1} , P, and u. From this, Lemma F.11, the fact that the action does not modify the database state, and $secure_{P,u}(r, i \vdash_u \phi)$, it follows $secure_{P,u}(r, i-1 \vdash_u \phi)$.

11. Rollback Forward - 1. Let i be such that $r^i = r^{i-n-1}$. $\langle u, op, R, \overline{t} \rangle \cdot s_1 \cdot t_1 \cdot s_2 \cdot \ldots \cdot t_n \cdot s_n$, where $s_1, s_2, \ldots, s_n \in$ $\Omega_M, t_1, \ldots, t_n \in \mathcal{TRIGGER}_D$, and *op* is one of {INSERT, **DELETE**}. Furthermore, let s_n be $\langle db, U, sec, T, V, c \rangle$ and $last(r^{i-n-1})$ be $\langle db', U', sec', T', V', c' \rangle$. From the rule's definition, $r, i - n - 1 \vdash_u \phi$ holds. From this and the induction hypothesis, it follows that $secure_{P,u}(r, i - i)$ $n-1 \vdash_u \phi$) holds. From Lemma G.8, the triggers t_j preserve the equivalence class with respect to $r^{i-n-1+j}$, P, and u for any $1 \leq j \leq n$. Independently on the cause of the roll-back (either a security exception or an integrity constraint violation), we claim that the set A of roll-back partial states is $\{pState(last(t'))|t' \in$ $[r^{i-n-1}]_{P,u}$. From $secure_{P,u}(r, i-n-1 \vdash_u \phi)$, the result of ϕ is the same for all states in A. From this and $A = \{pState(last(t'))|t' \in [r^{i-n-1}]_{P,u}\}, \text{ it follows}$ that also $secure_{P,u}(r, i \vdash_u \phi)$ holds.

We now prove our claim. It is trivial to see (from the LTS's semantics) that the set of rollback's states is a subset of $\{last(v)|v \in [\![r^{i-n-1}]\!]_{P,u}\}$. Assume, for contradiction's sake, that there is a state in $\{last(v)|v \in [\![r^{i-n-1}]\!]_{P,u}\}$ that is not a rollback state for the runs in $[\![r^i]\!]_{P,u}$. This is impossible since all triggers t_1, \ldots, t_n preserve the equivalence class.

- 12. Rollback Forward 2. Let *i* be such that $r^i = r^{i-1} \cdot \langle u, op, R, \bar{t} \rangle \cdot s$, where $op \in \{\text{INSERT}, \text{DELETE}\}$, $s = \langle db, U$, $sec, T, V, c \rangle \in \Omega_M$ and $last(r^{i-1}) = \langle db', U', sec', T', V', c' \rangle$. From the rule's definition, $r, i 1 \vdash_u \phi$ holds. From this and the induction hypothesis, it follows that $secure_{P,u}(r, i 1 \vdash_u \phi)$ holds. From Lemma G.7, the action $\langle u, op, R, \bar{t} \rangle$ preserves the equivalence class with respect to r^{i-1} , P, and u. From this, Lemma F.11, the fact that the action does not modify the database state, and $secure_{P,u}(r, i 1 \vdash_u \phi)$ holds.
- 13. Propagate Forward INSERT/DELETE Success. Let *i* be such that $r^i = r^{i-1} \cdot \langle u, op, R, \bar{t} \rangle \cdot s$, where $op \in \{\text{INSERT}, \text{DELETE}\}$, $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and $last(r^{i-1}) = \langle db', U', sec', T', V', c' \rangle$. From the rule's definition, $r, i-1 \vdash_u \phi$ holds. From this and the induction hypothesis, it follows that $secure_{P,u}(r, i-1 \vdash_u \phi)$ holds. From Lemma G.7, the action $\langle u, op, R, \bar{t} \rangle$ preserves the equivalence class with respect to r^{i-1} , P, and u. From $reviseBelif(r^{i-1}, \phi, r^i)$, it follows that the execution of $\langle u, op, R, \bar{t} \rangle$ does not alter the content of the tables in $tables(\phi)$ for any $v \in [\![r^{i-1}]\!]_{P,u}$. From this, Lemma F.11, and $secure_{P,u}(r, i-1 \vdash_u \phi)$, it follows that $secure_{P,u}(r, i \vdash_u \phi)$ holds.
- 14. Propagate Forward INSERT Success 1. Let *i* be such that $r^i = r^{i-1} \cdot \langle u, op, R, \overline{t} \rangle \cdot s$, where *op* is one of {INSERT, DELETE}, $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$, and $last(r^{i-1}) = \langle db', U', sec', T', V', c' \rangle$. From the rule's definition, $r, i-1 \vdash_u \phi$ holds. From this and the induction hypothesis, it follows that $secure_{P,u}(r, i-1 \vdash_u \phi)$ holds. From Lemma G.7, the action $\langle u, op, R, \overline{t} \rangle$ pre-

serves the equivalence class with respect to r^{i-1} , P, and u. We claim that the execution of $\langle u, \text{INSERT}, R, \overline{t} \rangle$ does not alter the content of the tables in $tables(\phi)$. From this, Lemma F.11, and $secure_{P,u}(r, i-1 \vdash_u \phi)$, it follows that $secure_{P,u}(r, i \vdash_u \phi)$ holds.

We now prove our claim that the execution of $\langle u, \text{INSERT}, R, \bar{t} \rangle$ does not alter the content of the tables in $tables(\phi)$. From the rule's definition, it follows that $r, i - 1 \vdash_u R(\bar{t})$ holds. From this and Lemma B.1, it follows that $[R(\bar{t})]^{last(r^{i-1}).db} = \top$. From $r, i - 1 \vdash_u R(\bar{t})$ and the induction hypothesis, it follows that $secure_{P,u}(r, i - 1 \vdash_u R(\bar{t}))$ holds. From this and $[R(\bar{t})]^{last(r^{i-1}).db} = \top$, it follows that $[R(\bar{t})]^{last(v).db} = \top$ for any $v \in [\![r^{i-1}]\!]_{P,u}$. From this and the relational calculus semantics, it follows that the execution of $\langle u, op, R, \bar{t} \rangle$ does not alter the content of the tables in $tables(\phi)$ for any $v \in [\![r^{i-1}]\!]_{P,u}$.

- 15. Propagate Forward DELETE Success 1. The proof for this case is similar to that of Propagate Forward INSERT Success - 1.
- 16. Propagate Backward INSERT/DELETE Success. Let *i* be such that $r^i = r^{i-1} \cdot \langle u, op, R, \overline{t} \rangle \cdot s$, where $op \in \{\text{INSERT}, \text{DELETE}\}$, $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and $last(r^{i-1}) = \langle db', U', sec', T', V', c' \rangle$. From the rule's definition, $r, i \vdash_u \phi$ holds. From this and the induction hypothesis, it follows that $secure_{P,u}(r, i \vdash_u \phi)$ holds. From Lemma G.7, the action $\langle u, op, R, \overline{t} \rangle$ preserves the equivalence class with respect to r^{i-1} , P, and u. From $reviseBelif(r^{i-1}, \phi, r^i)$, it follows that the execution of $\langle u, op, R, \overline{t} \rangle$ does not alter the content of the tables in $tables(\phi)$ for any $v \in [\![r^{i-1}]\!]_{P,u}$. From this, Lemma F.11, and $secure_{P,u}(r, i \vdash_u \phi)$, it follows that $secure_{P,u}(r, i - 1 \vdash_u \phi)$ holds.
- 17. Propagate Backward INSERT Success 1. Let *i* be such that $r^i = r^{i-1} \cdot \langle u, op, R, \overline{t} \rangle \cdot s$, where *op* is one of {INSERT, DELETE}, $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and $last(r^{i-1}) = \langle db', U', sec', T', V', c' \rangle$. From the rule's definition, $r, i \vdash_u \phi$ holds. From this and the induction hypothesis, it follows that $secure_{P,u}(r, i \vdash_u \phi)$ holds. From Lemma G.7, the action $\langle u, op, R, \overline{t} \rangle$ preserves the equivalence class with respect to r^{i-1} , P, and u. We claim that the execution of $\langle u, \text{INSERT}, R, \overline{t} \rangle$ does not alter the content of the tables in $tables(\phi)$ for any $v \in [r^{i-1}]_{P,u}$ (the proof of this claim is in the proof of the Propagate Forward INSERT Success 1 case). From this, Lemma F.11, and $secure_{P,u}(r, i \vdash_u \phi)$, it follows that $secure_{P,u}(r, i 1 \vdash_u \phi)$ holds.
- 18. Propagate Backward DELETE Success 1. The proof for this case is similar to that of Propagate Forward DELETE Success - 1.
- Reasoning. Let Δ be a subset of {δ | r, i ⊢_u δ} and last(rⁱ) = ⟨db, U, sec, T, V, c⟩. From the induction hypothesis, it follows that secure_{P,u}(r, i ⊢_u δ) holds for any δ ∈ Δ. Note that, given any δ ∈ Δ, from r, i ⊢_u δ and Lemma B.1, it follows that δ holds in last(rⁱ). From this, secure_{P,u}(r, i ⊢_u δ) holds for any δ ∈ Δ, Δ ⊨_{fin} φ, and Lemma F.10, it follows that secure_{P,u}(r, i ⊢_u φ) holds.
- 20. Learn INSERT Backward 3. Let *i* be such that $r^i = r^{i-1} \cdot \langle u, \text{INSERT}, R, \bar{t} \rangle \cdot s$, where $s = \langle db', U', sec', T', V', c' \rangle \in \Omega_M$ and $last(r^{i-1}) = \langle db, U, sec, T, V, c \rangle$, and ϕ be $\neg R(\bar{t})$. From the rule's definition, $secEx(s) = \bot$. From this and the LTS rules, it follows that $f(last(r^{i-1}), \langle u, \langle u, v \rangle)$.

INSERT, $R, \bar{t}\rangle = \top$. From this and f's definition, it follows that $f_{conf}^u(last(r^{i-1}), \langle u, \text{INSERT}, R, \bar{t}\rangle) = \top$ because $user(last(r^{i-1}), \langle u, \text{INSERT}, R, \bar{t}\rangle) = u$. From this and f_{conf}^u 's definition, it follows $secure(u, \phi, last(r^{i-1}))$ $= \top$ because $\phi = getInfo(\langle u, \text{INSERT}, R, \bar{t}\rangle)$. From this and Lemma F.7, it follows that $secure_{P,u}(r, i-1 \vdash_u \phi)$ holds.

- 21. Learn DELETE Backward 3. The proof for this case is similar to that of Learn INSERT Backward 3.
- 22. Propagate Forward Disabled Trigger. Let i be such that $r^{i} = r^{i-1} \cdot t \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_{M}$, $last(r^{i-1}) = \langle db, U, sec, T, V, c \rangle$, and t be a trigger. Furthermore, let ψ be t's condition where all free variables are replaced with $tpl(last(r^{i-1}))$. From the rule, it follows that $r, i - 1 \vdash_u \phi$. From this and the induction hypothesis, it follows that $secure_{P,u}(r, i - 1 \vdash_u \phi)$ holds. Furthermore, from Lemma G.8, it follows that t preserves the equivalence class with respect to r^{i-1} , P, and u. If the trigger's action is an **INSERT** or a DELETE operation, we claim that the operation does not change the content of any table in $tables(\phi)$ for any run $v \in [\![r^{i-1}]\!]_{P,u}$. From this, the fact that t preserves the equivalence class with respect to r^{i-1} , P, and u, Lemma F.14, and secure_{P,u}(r, i - 1 \vdash_u \phi), it follows that also $secure_{P,u}(r, i \vdash_u \phi)$ holds.

We now prove our claim. Assume that t's action in either an **INSERT** or a **DELETE** operation. From the rule, it follows that $r, i - 1 \vdash_u \neg \psi$. From this and Lemma B.1, $[\psi]^{last(r^{i-1})} = \bot$. From $r, i - 1 \vdash_u \neg \psi$ and the induction hypothesis, it follows that $secure_{P,u}(r, i - 1 \vdash_u \psi)$ holds. From this and $[\psi]^{last(r^{i-1}).db} = \bot$, it follows that $[\psi]^{v.db} = \bot$ for any run $v \in [\![r^{i-1}]\!]_{P,u}$. Therefore, the trigger t is disabled in any run $v \in [\![r^{i-1}]\!]_{P,u}$. From this and the LTS semantics, it follows that t's execution does not change the content of any table in $tables(\phi)$ for any run $v \in [\![r^{i-1}]\!]_{P,u}$.

- 23. Propagate Backward Disabled Trigger. The proof for this case is similar to that of Propagate Forward Disabled Trigger.
- 24. Learn INSERT Forward. Let i be such that $r^i = r^{i-1}$. $t \cdot s$, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$, $last(r^{i-1}) =$ $\langle db, U, sec, T, V, c \rangle$, and t be a trigger, and ϕ be $R(\bar{t})$. Furthermore, let ψ be t's condition where all free variables are replaced with $tpl(last(r^{i-1}))$. From the rule's definition, it follows that t's action is $\langle u', \text{INSERT}, R, \bar{t} \rangle$ and that $r, i - 1 \vdash_u \psi$ holds. From Lemma B.1 and $r, i-1 \vdash_u \psi$, it follows that $[\psi]^{last(r^{i-1}).db} = \top$. From this, $secEx(s) = \bot$, and $Ex(s) = \emptyset$, it follows that t's action has been executed successfully. From this, it follows that $\overline{t} \in s.db(R)$. From $r, i-1 \vdash_u \psi$ and the induction hypothesis, it follows that $secure_{P,u}(r, i-1 \vdash_u$ ψ). From this and $[\psi]^{last(r^{i-1}).db} = \top$, it follows that $[\psi]^{last(v).db} = \top$ for any $v \in [r^{i-1}]_{P,u}$. From this, it follows that the trigger t is enabled in any run $v \in$ $[\![r^{i-1}]\!]_{P,u}$. From Lemma G.8, it follows that t preserves the equivalence class with respect to r^{i-1} , P, and u. From this, $secEx(s) = \bot$, $Ex(s) = \emptyset$, and the fact that the trigger t is enabled in any run $v \in [\![r^{i-1}]\!]_{P,u}$, it follows that t's action is executed successfully in any run e(v,t), where $v \in [\![r^{i-1}]\!]_{P,u}$. From this, it follows that db''(R), where $db'' = \bar{t} \in last(e(v,t)).db$, for any $v \in \llbracket r^{i-1} \rrbracket_{P,u}$. Therefore, $secure_{P,u}(r, i \vdash_u \phi)$ holds.

25. Learn INSERT - FD. Let i be such that $r^i = r^{i-1} \cdot t$. s, where $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$, $last(r^{i-1}) =$ $\langle db', U', sec', T', V', c' \rangle$, and $t \in \mathcal{TRIGGER}_D$, and ϕ be $\neg \exists \overline{y}, \overline{z}. R(\overline{v}, \overline{y}, \overline{z}) \land \overline{y} \neq \overline{w}$. Furthermore, let ψ be t's condition where all free variables are replaced with the values in $tpl(last(r^{i-1}))$ and $\langle u', INSERT, R, (\overline{v}, \overline{w}, \overline{q}) \rangle$ be t's actual action. From the rule, it follows that r, i - r $1 \vdash_u \psi$. From this and Lemma *B*.1, it follows that $[\psi]^{last(r^{i-1}).db} = \top$. From this, $Ex(s) = \emptyset$, and secEx(s) $= \bot$, it follows that $f(s', \langle u', \text{INSERT}, R, \overline{t} \rangle) = \top$, where s' is the state just after the execution of the SELECT statement associated with t's WHEN clause. From this and f's definition, it follows that $f_{conf}^{u}(s', \langle u', \text{INSERT}, R,$ $|\bar{t}\rangle = \top$ because $user(s', \langle u', \text{INSERT}, R, \bar{t}\rangle) = u$ since uis t's invoker. From this and f^u_{conf} 's definition, it follows that $secure(u, \phi, s') = \top$. From this, pState(s') = $pState(last(r^{i-1}))$, and Lemma F.8, it follows $secure(u, \phi, last(r^{i-1})) = \top$. From this and Lemma F.7, it follows secure $P_{u}(r, i-1 \vdash_{u} \phi)$. We claim that secure $P_{u}^{data}(r, i-1 \vdash_{u} \phi)$. $i \vdash_u \phi$ holds. From this and Lemma F.2, it follows that also $secure_{P,u}(r, i \vdash_u \phi)$ holds.

We now prove our claim that $secure_{P,u}^{data}(r, i \vdash_u \phi)$ holds. Let s' be the state just after the execution of the SE-LECT statement associated with t's WHEN clause and s''be the state $last(r^{i-1})$. Furthermore, for brevity's sake, in the following we omit the pState function where needed. For instance, with a slight abuse of notation, we write $[\![s']\!]_{u,M}^{data}$ instead of $[\![pState(s')]\!]_{u,M}^{data}$. From $secure(u, \phi, s') = \top, s' \cong_{M,u}^{data} s''$, Lemma F.8, and Lemma F.7, it follows that $secure_{P,u}^{data}(r, i-1 \vdash_u \phi)$ holds. From this, it follows that $[\phi]^v = [\phi]^{s''}$ for any $v \in [s'']_{u,M}^{data}$. Furthermore, from Proposition F.7 and $Ex(s) = \emptyset$, it follows that ϕ holds in s''. Let $A_{s'',R,\overline{t}}$ be the set $\{\langle db[R \oplus \overline{t}], U, sec, T, V \rangle \in \Pi_M \mid \exists db' \in \Omega_D. \langle db', db' \rangle \}$ $U, sec, T, V \in [\![s'']\!]_{M,u}^{data}$. It is easy to see that $[\![s]\!]_{M,u}^{data} \subseteq$ $A_{s'',R,\overline{t}}$. We now show that ϕ holds for any $z \in A_{s'',R,\overline{t}}$. Let $z_1 \in [\![s'']\!]_{M,u}^{data}$. From $[\phi]^v = [\phi]^{s''}$ for any $v \in [\![s'']\!]_{u,M}^{data}$ and the fact that ϕ holds in s'', it follows that $[\phi]^{z_1} = \top$. Therefore, for any $(\overline{k}_1, \overline{k}_2, \overline{k}_3) \in R(z_1)$ such that $|\overline{k}_1| = |\overline{v}|, |\overline{k}_2| = |\overline{w}|, \text{ and } |\overline{k}_3| = |\overline{q}|, \text{ if } k_1 = \overline{v}, \text{ then }$ $k_2 = \overline{w}$. Then, for any $(\overline{k}_1, \overline{k}_2, \overline{k}_3) \in R(z_1) \cup \{(\overline{v}, \overline{w}, \overline{q})\}$ such that $|\overline{k}_1| = |\overline{v}|, |\overline{k}_2| = |\overline{w}|, \text{ and } |\overline{k}_3| = |\overline{q}|, \text{ if } k_1 = \overline{v}, \text{ then } k_2 = \overline{w}.$ Therefore, ϕ holds also in $z_1[R \oplus \overline{t}] \in A_{pState(s''),R,\overline{t}}.$ Hence, $[\phi]^z = \top$ for any $z \in A_{s'',R,\overline{t}}$. From this and $[\![s]\!]_{M,u}^{data} \subseteq A_{s'',R,\overline{t}}$, it follows that $[\![\phi]\!]^z = \top$ for any $z \in [\![s]\!]_{M,u}^{data}$. From this, it follows that $secure_{P,u}^{data}(r, i \vdash_u \phi)$ holds.

- 26. Learn INSERT FD 1. The proof of this case is similar to that of Learn INSERT FD.
- 27. Learn INSERT ID. The proof of this case is similar to that of Learn INSERT FD. See also the proof of INSERT Success ID.
- 28. Learn INSERT ID 1. The proof of this case is similar to that of Learn INSERT ID.
- 29. Learn INSERT Backward 1. Let *i* be such that $r^i = r^{i-1} \cdot t \cdot s$, where $s = \langle db', U', sec', T', V', c' \rangle \in \Omega_M$, last $(r^{i-1}) = \langle db, U, sec, T, V, c \rangle$, and $t \in \mathcal{TRIGGER}_D$, and ϕ be *t*'s actual WHEN condition, where all free variables are replaced with the values in $tpl(last(r^{i-1}))$. From the rule's definition, it follows that $secEx(s) = \top$. From this, the LTS semantics, and $secEx(s) = \top$, it fol-

lows that $f(last(r^{i-1}), \langle u', \texttt{SELECT}, \phi \rangle) = \top$. From this and f's definition, it follows $f^u_{conf}(last(r^{i-1}), \langle u', \texttt{SELECT}, \phi \rangle) = \top$ because $user(last(r^{i-1}), \langle u', \texttt{SELECT}, \phi \rangle) = u$ since u is t's invoker. From this and f^u_{conf} 's definition, it follows that $secure(u, \phi, last(r^{i-1})) = \top$. From this and Lemma F.7, it follows that also $secure_{P,u}(r, i-1 \vdash_u \phi)$ holds.

30. Learn INSERT Backward - 2. Let i be such that $r^i =$ $r^{i-1} \cdot t \cdot s$, where $s = \langle db', U', sec', T', V', c' \rangle \in \Omega_M$, $last(r^{i-1}) = \langle db, U, sec, T, V, c \rangle$, and $t \in TRIGGER_D$, and ϕ be $\neg R(\bar{t})$. Furthermore, let $act = \langle u', \text{INSERT}, R, \rangle$ \overline{t} be t's actual action and γ be t's actual WHEN condition obtained by replacing all free variables with the values in $tpl(last(r^{i-1}))$. From the rule's definition, it follows $secEx(s) = \top$ and there is a ψ such that $r, i - 1 \vdash_u \psi$ and $r, i \vdash_u \neg \psi$. We claim that $[\gamma]^{db} = \top$. From this and $secEx(s) = \top$, it follows that $f(s', \langle u', \text{INSERT}, R, \overline{t} \rangle) =$ \top , where s' is the state obtained after the evaluation of t's WHEN condition. From this and f's definition, it follows $f_{conf}^{u}(s', \langle u', \text{INSERT}, R, \bar{t} \rangle) = \top$ as $user(s', \langle u', u', u', u') = \tau$ INSERT, $R, \tilde{t} \rangle$) = u because u is t's invoker. From this and f_{conf}^{u} 's definition, it follows $secure(u, \phi, s') = \top$ since ϕ is equivalent to getInfo($\langle u', \text{INSERT}, R, \bar{t} \rangle$). From this, Lemma F.8, and $pState(s') = pState(last(r^{i-1})),$ it follows $secure(u, \phi, \hat{last}(r^{i-1})) = \top$. From this and Lemma F.7, it follows $secure_{P,u}(r, i-1 \vdash_u \phi)$. We now prove our claim that $[\gamma]^{db} = \top$. Assume, for

We now prove our claim that $[\gamma]^{ab} = \top$. Assume, for contradiction's sake, that this is not the case. From this and the LTS rules, it follows that db = db'. From the rule's definition, it follows that there is a ψ such that $r, i-1 \vdash_u \psi$ and $r, i \vdash_u \neg \psi$. From this, Lemma B.1, s = $\langle db', U', sec', T', V', c' \rangle$, and $last(r^{i-1}) = \langle db, U, sec, T,$ $V, c \rangle$, it follows that $[\psi]^{ab} = \top$ and $[\neg \psi]^{db'} = \top$. Therefore, $[\psi]^{db} = \top$ and $[\psi]^{db'} = \bot$. Hence, $db \neq db'$, which contradicts db = db'.

- 31. Learn DELETE Forward. The proof of this case is similar to that of Learn INSERT Forward.
- 32. Learn DELETE ID. The proof of this case is similar to that of Learn INSERT FD. See also the proof of DELETE Success ID.
- 33. Learn DELETE ID 1. The proof of this case is similar to that of Learn DELETE ID.
- 34. Learn DELETE Backward 1. The proof of this case is similar to that of Learn INSERT Backward 1.
- 35. Learn DELETE Backward 2. The proof of this case is similar to that of Learn INSERT Backward 2.
- 36. Propagate Forward Trigger Action. Let *i* be such that $r^i = r^{i-1} \cdot t \cdot s$, where *t* is a trigger, $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and $last(r^{i-1}) = \langle db', U', sec', T', V', c' \rangle$. From the rule's definition, $r, i 1 \vdash_u \phi$ holds. From this and the induction hypothesis, it follows that $secure_{P,u}(r, i 1 \vdash_u \phi)$ holds. From Lemma G.8, the trigger *t* preserves the equivalence class with respect to r^{i-1} , *P*, and *u*. We claim that the execution of *t* does not alter the content of the tables in $tables(\phi)$. From this, Lemma F.11, and $secure_{P,u}(r, i 1 \vdash_u \phi)$, it follows $secure_{P,u}(r, i \vdash_u \phi)$. We now prove our claim that the execution of *t* does not alter the content of the tables in $tables(\phi)$. If the trigger is not enabled, the claim is trivial. In the following, we assume the trigger is enabled. There are four cases:
 - t's action is an INSERT statement. This case amount to claiming that the INSERT statement $\langle u', \text{INSERT}, \rangle$

 R, \overline{t} does not alter the content of the tables in $tables(\phi)$ in case $reviseBelif(r^{i-1}, \phi, r^i) = \top$. We proved the claim above in the *Propagate Forward INSERT/DELETE Success* case.

- *t*'s action is an DELETE statement. The proof is similar to that of the INSERT case.
- *t*'s action is an GRANT statement. In this case, the action does not alter the database state and the claim follows trivially.
- *t*'s action is an **REVOKE** statement. The proof is similar to that of the **GRANT** case.
- 37. Propagate Backward Trigger Action. The proof of this case is similar to Propagate Backward Trigger Action.
- 38. Propagate Forward INSERT Trigger Action. Let *i* be such that $r^i = r^{i-1} \cdot t \cdot s$, where *t* is a trigger, $s = \langle db, U, sec, T, V, c \rangle \in \Omega_M$ and $last(r^{i-1}) = \langle db', U', sec', T', V', c' \rangle$. From the rule's definition, $r, i-1 \vdash_u \phi$ holds. From this and the induction hypothesis, it follows that $secure_{P,u}(r, i-1 \vdash_u \phi)$ holds. From Lemma G.8, the trigger *t* preserves the equivalence class with respect to r^{i-1} , *P*, and *u*. We claim that the execution of *t* does not alter the content of the tables in $tables(\phi)$. From this, Lemma F.11, and $secure_{P,u}(r, i-1 \vdash_u \phi)$, it follows $secure_{P,u}(r, i \vdash_u \phi)$.

We now prove our claim that the execution of t does not alter the content of the tables in $tables(\phi)$. If the trigger is not enabled, the claim is trivial. In the following, we assume the trigger is enabled. Then, t's action is an INSERT statement. This case amount to claiming that the INSERT statement $\langle u', \text{INSERT}, R, \bar{t} \rangle$ does not alter the content of the tables in $tables(\phi)$ in case $r, i - 1 \vdash_u R(\bar{t})$ holds. We proved the claim above in the Propagate Forward INSERT Success - 1 case.

- 39. Propagate Forward DELETE Trigger Action. The proof of this case is similar to that of Propagate Forward IN-SERT Trigger Action.
- 40. Propagate Backward INSERT Trigger Action. The proof of this case is similar to that of Propagate Forward IN-SERT Trigger Action.
- 41. Propagate Backward DELETE Trigger Action. The proof of this case is similar to that of Propagate Forward IN-SERT Trigger Action.
- 42. Trigger FD INSERT Disabled Backward. Let *i* be such that $r^i = r^{i-1} \cdot t \cdot s$, where $s = \langle db', U', sec', T', V', c' \rangle \in \Omega_M$, $t \in \mathcal{TRIGGER}_D$, $last(r^{i-1}) = \langle db, U, sec, T, V, c \rangle$, and ϕ be *t*'s actual WHEN condition obtained by replacing all free variables with the values in $tpl(last(r^{i-1}))$. Furthermore, let $act = \langle u', \text{INSERT}, R, (\bar{v}, \bar{w}, \bar{q}) \rangle$ be *t*'s actual action and α be $\exists \bar{y}, \bar{z}.R(\bar{v}, \bar{y}, \bar{z}) \wedge \bar{y} \neq \bar{w}$. From the rule's definition, it follows that $secEx(s) = \bot$. From this, it follows that $f(last(r^{i-1}), \langle u', \text{SELECT}, \phi \rangle) = \top$ since $user(last(r^{i-1}), \langle u', \text{SELECT}, \phi \rangle) = \Box$ since *u* is *t*'s invoker. From this and f_{conf}^u 's definition, it follows that $secure(u, \neg \phi, last(r^{i-1})) = \top$. From this, it follows that $secure(u, \phi, last(r^{i-1})) = \top$. From this and Lemma *F*.7, it follows that also $secure_{P,u}(r, i-1 \vdash_u \phi)$.
- 43. Trigger ID INSERT Disabled Backward. The proof of this case is similar to that of Trigger FD INSERT Disabled Backward.
- 44. Trigger ID DELETE Disabled Backward. The proof of this case is similar to that of Trigger FD INSERT Dis-

abled Backward.

This completes the proof of the induction step.

This completes the proof. \Box

In Lemma G.7 and Lemma G.8, we show that actions and triggers preserve the equivalence class for any LTS that uses f as PDP.

Lemma G.7. Let u be a user in $\mathcal{U}, P = \langle M, f \rangle$ be an extended configuration, where $M = \langle D, \Gamma \rangle$ is a system configuration and f is as above, L be the P-LTS. For any run $r \in traces(L)$ and any action $a \in \mathcal{A}_{D,u}$, if extend(r,a) is defined, then a preserves the equivalence class for r, P, and u.

PROOF. Let u be a user in \mathcal{U} , $P = \langle M, f \rangle$ be an extended configuration, where $M = \langle D, \Gamma \rangle$ is a system configuration and f is as above, and L be the P-LTS. In the following, we use e to refer to the *extend* function. We prove our claim by contradiction. Assume, for contradiction's sake, that there is a run $r \in traces(L)$ and an action $a \in \mathcal{A}_{D,u}$ such that e(r, a) is defined and a does not preserve the equivalence class for r, P, and u. According to the LTS semantics, the fact that e(r, a) is defined implies that triggers(last(r)) = ϵ . Therefore, $triggers(last(r')) = \epsilon$ holds as well for any for any $r' \in [\![r]\!]_{P,u}$ (because r and r' are indistinguishable and, therefore, their projections are consistent), and, thus, e(r', a) is defined as well for any $r' \in [\![r]\!]_{P,u}$. There are a number of cases depending on a:

1. $a = \langle u, \text{SELECT}, q \rangle$. There are two cases:

- (a) $secEx(last(e(r, a))) = \bot$. From the LTS rules and $secEx(last(e(r, a))) = \bot$, it follows that f(last(r), a) $= \top$. From this and Lemma G.5, it follows that $f(last(r'), a) = \top$ for any $r' \in [[r]]_{P,u}$. From this and the LTS rules, it follows secEx(last(e(r', a))) == u for any $r' \in [\bar{r}]_{P,u}$ because trigger(last(r')) = ϵ and $u \in \mathcal{A}_{D,u}$. From this, $f_{conf}^{user(last(r'),a)}(last(r'),$ a) = \top for any $r' \in [\![r]\!]_{P,u}$, and f^u_{conf} 's definition, it follows that $secure(u, q, last(r')) = \top$ for any $r' \in [\![r]\!]_{P,u}$. From this and Lemma F.7, it follows that $[q]^{last(r').db} = [q]^{last(r).db}$ for all $r' \in$ $[r]_{P,u}$. Furthermore, it follows trivially from the LTS rule *SELECT Success*, that the state after a's execution is data indistinguishable from last(r). It is also easy to see that e(r', a) is well-defined for any $r' \in [\![r]\!]_{P,u}$. From the considerations above and $r' \in \llbracket r \rrbracket_{P,u}$, it follows trivially that $e(r', a) \in \llbracket e(r, a) \rrbracket_{P,u}$. The bijection b is trivially b(r') =e(r', a). This leads to a contradiction.
- (b) $secEx(last(e(r, a))) = \top$. From the LTS rules and $secEx(last(e(r, a))) = \top$, it follows that f(last(r), a) $= \perp$. From this and Lemma G.5, it follows that $f(last(r'), a) = \bot$ for any $r' \in [[r]]_{P,u}$. From this and the LTS rules, it follows secEx(last(e(r', a))) = \top for any $r' \in [\![r]\!]_{P,u}$. The data indistinguishability between last(e(r', a)) and last(e(r, a)) follows trivially from the data indistinguishability between last(r') and last(r). Therefore, for any run $r' \in$ $[\![r]\!]_{P,C}$, there is exactly one run e(r', a). From the considerations above, it follows trivially that e(r', a)

 $\in [e(r,a)]_{P,u}$. The bijection b is trivially b(r') =e(r', a). This leads to a contradiction.

Both cases leads to a contradiction. This completes the proof for $a = \langle u, \text{SELECT}, q \rangle$.

- 2. $a = \langle u, \text{INSERT}, R, \overline{t} \rangle$. In the following, we denote by gIthe function getInfo, by gS the function getInfoS, and by qV the function getInfoV. There are three cases:
 - (a) $secEx(last(e(r, a))) = \bot$ and $Ex(last(e(r, a))) = \emptyset$. From the LTS rules and $secEx(last(e(r, a))) = \bot$, it follows that $f(last(r), a) = \top$. From this and Lemma G.5, it follows that $f(last(r'), a) = \top$ for any $r' \in [\![r]\!]_{P,u}$. From this and the LTS rules, it follows that $secEx(last(e(r', a))) = \bot$ for any $r' \in \llbracket r \rrbracket_{P,u}$. From $f(last(r), a) = \top$, it follows that $f_{conf}^{u}(last(r), a) = \top$ because user(last(r), a) = usince $trigger(last(r), a) = \epsilon$ and $a \in \mathcal{A}_{D,u}$. From this and f_{conf}^{u} 's definition, it follows that $secure(u, gS(\gamma, act), last(r))$ holds for any integrity constraint γ in $Dep(\Gamma, a)$. From $Ex(last(e(r, a))) = \emptyset$ and Proposition F.7, it follows $[gS(\gamma, act)]^{last(r).db} =$ \top . From this, $secure(u, gS(\gamma, act), last(r))$, and Lemma F.7, it follows that $[gS(\gamma, act)]^{last(r').db} =$ \top for any $r' \in [\![r]\!]_{P,u}$. From this and Proposition F.7, it follows that $Ex(last(e(r', a))) = \emptyset$ for any $r' \in [\![r]\!]_{P,u}$. We claim that, for any $r' \in$ $[r]_{P,u}$, last(e(r, a)) and last(e(r', a)) are data indistinguishable. From this and the above considerations, it follows trivially that $e(r', a) \in \llbracket e(r, a) \rrbracket_{P,u}$. The bijection b is trivially b(r') = e(r', a). This leads to a contradiction.

We now prove our claim that for any $r' \in [\![r]\!]_{P,u}$, last(e(r, a)) and last(e(r', a)) are data indistinguishable. We prove the claim by contradiction. Let $s_2 = \langle db_2, U_2, sec_2, T_2, V_2 \rangle$ be pState(last(e(r, a))), $s_2' = \langle db_2', U_2', sec_2', T_2', V_2' \rangle \text{ be } pState(last(e(r', a)))),$ $s_1 = \langle db_1, U_1, sec_1, T_1, V_1 \rangle$ be pState(last(r)), and $s_1' = \langle db_1', U_1', sec_1', T_1', V_1' \rangle$ be pState(last(r')). In the following, we denote the *permissions* function by p. Furthermore, note that s_1 and s'_1 are dataindistinguishable because $r' \in [\![r]\!]_{P,u}$. There are a number of cases:

- i. $U_2 \neq U'_2$. Since a is an INSERT operation, it follows that $U_1 = U_2$ and $U'_1 = U'_2$. Furthermore, from $s_1 \cong_{M,u}^{data} s'_1$, it follows that $U_1 = U_2$. Furthermore, from $s_1 \cong_{M,u}^{data} s'_1$, it follows that $U_1 = U'_1$. Therefore, $U_2 = U'_2$ leading to a contradiction.
- $U_2 \neq U_2'$. iii. $T_2 \neq T_2'$. The proof is similar to the case $U_2 \neq U_2'$. $U_2 \neq U_2'$. ii. $sec_2 \neq sec'_2$. The proof is similar to the case
- iv. $V_2 \neq V'_2$. The proof is similar to the case $U_2 \neq$ U_2' .
- v. there is a table R' for which $\langle \oplus, \text{SELECT}, R \rangle \in$ $p(s_2, u)$ and $db_2(R') \neq db'_2(R')$. Note that $p(s_2, u) = p(s_1, u)$. There are two cases:
 - R = R'. From $s_1 \cong_{M,u}^{data} s'_1$ and $\langle \oplus, \text{SELECT}, R \rangle$ $\in p(s_2, u)$, it follows that $db_1(R') = db'_1(R')$. From this and the fact that a has been executed successfully both in e(r, a) and e(r', a), it follows that $db_2(R') = db_1(R') \cup \{\overline{t}\}$ and $db'_2(R') = db'_1(R') \cup \{\overline{t}\}$. From this and $db_1(R') = db'_1(R')$, it follows that $db_2(R') =$ $db'_2(R')$ leading to a contradiction.
 - $R \neq R'$. From $s_1 \cong_{M,u}^{data} s'_1$ and $\langle \oplus, \text{SELECT}, R \rangle$

 $\in p(s_2, u)$, it follows that $db_1(R') = db'_1(R')$. From this and the fact that a does not modify R', it follows that $db_1(R') = db_2(R')$ and $db'_1(R') = db'_2(R')$. From this and $db_1(R') =$ $db'_1(R')$, it follows that $db_2(R') = db'_2(R')$ leading to a contradiction.

- vi. there is a view v for which $\langle \oplus, \text{SELECT}, v \rangle \in p(s_2, u)$ and $db_2(v) \neq db'_2(v)$. Note that $p(s_2, u) = p(s_1, u)$. Since a has been successfully executed in both states, we know that $leak(s_1, a, u)$ hold. There are two cases:
 - R ∉ tDet(v, s, M). Then, v(s₁) = v(s₂) and v(s'₁) = v(s'₂) (because R's content does not determine v's materialization). From s₁ ≅^{data}_{M,u} s'₁ and the fact that a modifies only R, it follows that v(db₂) = v(db'₂) leading to a contradiction.
 - $R \in tDet(v, s, M)$ and for all $o \in tDet(v, s, M)$, $\langle \oplus, \mathsf{SELECT}, o \rangle \in p(s_1, u)$. From this and s_1 $\cong_{M,u}^{data} s'_1$, it follows that, for all $o \in tDet(v, s, v)$ M), $o(s_1) = o(s'_1)$. If $o \neq R$, $o(s_1) = o(s'_1) =$ $o(s_2) = o(s'_2)$. From $\langle \oplus, \text{SELECT}, R \rangle \in p(s_1, u)$ and $s_1 \cong_{M,u}^{data} s'_1$, it follows that $db_1(R) =$ $db'_1(R)$. From this and the fact that a has been executed successfully both in e(r, a) and e(r', a), it follows that $db_2(R) = db_1(R) \cup \{\overline{t}\}$ and $db'_2(R) = db'_1(R) \cup \{\overline{t}\}$. From this and $db_1(R) = db'_1(R)$, it follows that $db_2(R) =$ $db'_{2}(R)$. From this and for all $o \in tDet(v, s, M)$ such that $o \neq R$, $o(s_2) = o(s'_2)$, it follows that for all $o \in tDet(v, s, M)$, $o(s_2) = o(s'_2)$. Since the content of all tables determining v is the same in s_2 and s'_2 , it follows that $db_2(v) = db'_2(v)$ leading to a contradiction.
- All the cases lead to a contradiction.
- (b) $secEx(last(e(r, a))) = \bot$ and $Ex(last(e(r, a))) \neq \emptyset$. From the LTS rules and $secEx(last(e(r, a))) = \bot$, it follows that $f(last(r), a) = \top$. From this and Lemma G.5, it follows that $f(last(r'), a) = \top$ for any $r' \in [\![r]\!]_{P,u}$. From this and the LTS rules, it follows that $secEx(last(e(r', a))) = \bot$ for any $r' \in$ $[r]_{P,u}$. Assume that the exception has been caused by the constraint γ , i.e., $\gamma \in Ex(last(e(r, a)))$. From this and Proposition F.7, it follows that $qV(\gamma, a)$ holds in last(r).db. From $f(last(r), a) = \top$ and f's definition, it follows that $f_{conf}^u(last(r), a) = \top$ because user(last(r), a) = u since $trigger(last(r)) = \epsilon$ and $a \in \mathcal{A}_{D,u}$. From this and f_{conf}^{u} 's definition, it follows that $secure(u, gV(\gamma, a), last(r))$ holds. From this, Lemma F.7, and $[gV(\gamma, a)]^{last(r).db} = \top$, it follows that also $[gV(\gamma, act)]^{last(r').db} = \top$ for any $r' \in [\![r]\!]_{P,u}$. From this and Proposition F.7, it follows that $\gamma \in Ex(last(e(r', a)))$ for any $r' \in [\![r]\!]_{P,u}$. The data indistinguishability between last(e(r, a))and last(e(r', a)) follows trivially from the data indistinguishability between last(r) and last(r') for any $r' \in [\![r]\!]_{P,u}$. Therefore, for any run $r' \in [\![r]\!]_{P,u}$, there is exactly one run e(r', a). From the considerations above, it follows trivially that $e(r', a) \in$ $\llbracket e(r,a) \rrbracket_{P,u}$. The bijection b is trivially b(r') =e(r', a). This leads to a contradiction.
- (c) $secEx(last(e(r, a))) = \top$. From the LTS rules and $secEx(last(e(r, a))) = \top$, it follows that f(last(r), a)

= \bot . From this and Lemma G.5, it follows that $f(last(r'), a) = \bot$ for any $r' \in [\![r]\!]_{P,u}$. From this and the LTS rules, it follows $secEx(last(e(r', a))) = \top$ for any $r' \in [\![r]\!]_{P,u}$. The data indistinguishability between last(e(r, a)) and last(e(r', a)) follows trivially from that between last(r) and last(r') for any $r' \in [\![r]\!]_{P,u}$. Therefore, for any run $r' \in [\![r]\!]_{P,u}$, there is exactly one run e(r', a). From the considerations above, it follows trivially that $e(r', a) \in [\![e(r, a)]\!]_{P,u}$. The bijection b is trivially b(r') = e(r', a). This leads to a contradiction.

All cases lead to a contradiction. This completes the proof for $a = \langle u, \text{INSERT}, R, \overline{t} \rangle$.

- 3. $a = \langle u, \text{DELETE}, R, \overline{t} \rangle$. The proof is similar to that for $a = \langle u, \text{INSERT}, R, \overline{t} \rangle$.
- 4. $a = \langle \oplus, u', p, u \rangle$. There are two cases:
- (a) $secEx(last(e(r, a))) = \bot$. We assume that $p = \langle SELECT, \rangle$
 - O for some $O \in D \cup V$. If this is not the case, the proof is trivial. Furthermore, we also assume that u' = u, otherwise the proof is, again, trivial since the new permission does not influence u's permissions. From the LTS rules and secEx(last(e(r, a))) = \perp , it follows that $f(last(r), a) = \top$. From this and Lemma G.5, it follows that f(last(r'), a) = \top for any $r' \in [[r]]_{P,u}$. From this and the LTS rules, it follows that $secEx(last(e(r', a))) = \bot$ for any $r' \in [[r]]_{P,u}$. From $secEx(last(e(r', a))) = \bot$ and f_{conf}^{u} 's definition, it follows that last(r').sec = last(e(r', a)).sec. Therefore, since last(r) and last(r')are data indistinguishable, for any $r' \in [\![r]\!]_{P,u}$, then also last(e(r, a)) and last(e(r', a)) are data indistinguishable. Therefore, for any run $r' \in [\![r]\!]_{P,u}$, there is exactly one run e(r', a). From the considerations above, it follows trivially that $e(r', a) \in$ $[e(r,a)]_{P,u}$. The bijection b is trivially b(r') =e(r', a). This leads to a contradiction.
- (b) $secEx(last(e(r, a))) = \top$. From the LTS rules and $secEx(last(e(r, a))) = \top$, it follows $f(last(r), a) = \bot$. From this and Lemma G.5, it follows that $f(last(r'), a) = \bot$ for any $r' \in [\![r]\!]_{P,u}$. From this and the LTS rules, it follows $secEx(last(e(r', a))) = \top$ for any $r' \in [\![r]\!]_{P,u}$. The data indistinguishability between last(e(r', a)) and last(e(r, a)) follows trivially from the data indistinguishability between last(r). Therefore, for any $r' \in [\![r]\!]_{P,u}$, there is exactly one run e(r', a). From the considerations above, it follows trivially $e(r', a) \in [\![e(r, a)]\!]_{P,u}$. The bijection b is trivially b(r') = e(r', a). This leads to a contradiction.

Both cases lead to a contradiction. This completes the proof for $a = \langle \oplus, u', p, u \rangle$.

- 5. $a = \langle \oplus^*, u', p, u \rangle$. The proof is similar to that for $a = \langle \oplus, u', p, u \rangle$.
- 6. $a = \langle \ominus, u', p, u \rangle$. The proof is similar to that for $a = \langle u, \text{SELECT}, q \rangle$. The only difference is in proving that for any $r' \in [\![r]\!]_{P,u}$, last(e(r, a)) and last(e(r', a)) are data indistinguishable. Assume, for contradiction's sake, that this is not the case. Let $s_2 = \langle db_2, U_2, sec_2, T_2, V_2 \rangle$ be pState(last(e(r, a))) and $s'_2 = \langle db'_2, U'_2, sec'_2, T'_2, V'_2 \rangle$ be pState(last(e(r', a))). Furthermore, let $s_1 = \langle db_1, U_1, sec_1, T_1, V_1 \rangle$ be pState(last(r)) and $s'_1 = \langle db'_1, U'_1, sec'_1, T'_1, V'_1 \rangle$ be pState(last(r')). In the following, we de-

note the *permissions* function by p. Furthermore, note that s_1 and s'_1 are data-indistinguishable because $r' \in$ $\llbracket r \rrbracket_{P,u}$. There are a number of cases:

- (a) $U_2 \neq U'_2$. Since a is an **REVOKE** operation, it follows that $U_1 = U_2$ and $U'_1 = U'_2$. Furthermore, from $s_1 \cong_{u,M}^{data} s'_1$, it follows that $U_1 = U'_1$. Therefore, $U_2 = U'_2$ leading to a contradiction.
- (b) $sec_2 \neq sec'_2$. From $s_1 \cong_{u,M}^{data} s'_1$, it follows that $sec_1 = sec'_1$. From *a*'s definition and the LTS rules, it follows that $sec_2 = revoke(sec_1, u', p, u)$ and $sec'_{2} = revoke(sec'_{1}, u', p, u)$. From this and $sec_1 = sec'_1$, it follows that $sec_2 = sec'_2$ leading to a contradiction.
- (c) $T_2 \neq T'_2$. The proof is similar to the case $U_2 \neq U'_2$. (d) $V_2 \neq V'_2$. The proof is similar to the case $U_2 \neq U'_2$.
- (e) there is a table R for which $\langle \oplus, \text{SELECT}, R \rangle \in p(s_2, u)$ and $db_2(R) \neq db'_2(R)$. Since a is an REVOKE operation, it follows that $db_1 = db_2$ and $db'_1 = db'_2$. Furthermore, from $s_1 \cong_{u,M}^{data} s'_1$, it follows that $db_1(R) =$ $db'_1(R)$. From this, $db_1 = db_2$, and $db'_1 = db'_2$, it follows that $db_2(R) = db'_2(R)$ leading to a contradiction.
- (f) there a view v for which $\langle \oplus, \text{SELECT}, v \rangle \in p(s_2, v)$
- u) and $db_2(v) \neq db'_2(v)$. Since a is an REVOKE operation, it follows that $db_1 = db_2$ and $db'_1 =$ db'_2 . Furthermore, from $s_1 \cong_{u,M}^{data} s'_1$, it follows that $db_1(v) = db'_1(v)$. From this, $db_1 = db_2$, and $db'_1 = db'_2$, it follows that $db_2(v) = db'_2(v)$ leading to a contradiction.

All the cases lead to a contradiction.

- 7. $a = \langle u, CREATE, o \rangle$. The proof is similar to that for $a=\langle\ominus,u',p,u\rangle.$
- 8. $a = \langle u, \text{ADD}_{USER}, u' \rangle$. The proof is similar to that for $a = \langle \ominus, u', p, u \rangle.$

This completes the proof. $\hfill\square$

Lemma G.8. Let u be a user in \mathcal{U} , $P = \langle M, f \rangle$ be an extended configuration, where $M = \langle D, \Gamma \rangle$ is a system configuration and f is as above, and L be the P-LTS. For any run $r \in traces(L)$ such that invoker(last(r)) = u and any trigger $t \in TRIGGER_D$, if extend(r,t) is defined, then t preserves the equivalence class for r, M, and u.

PROOF. Let u be a user in \mathcal{U} , $P = \langle M, f_{conf}^u \rangle$ be an extended configuration, where $M = \langle D, \Gamma \rangle$ is a system configuration and f_{conf}^{u} is as above, and L be the P-LTS. In the following, we use e to refer to the *extend* function. The proof in cases where the trigger t is not enabled or t's WHEN condition is not secure are similar to the proof of the SELECT case of Lemma G.7. In the following, we therefore assume that the trigger t is enabled and that its WHEN condition is secure. We prove our claim by contradiction. Assume, for contradiction's sake, that there is a run $r \in traces(L)$ such that invoker(last(r)) = u and a trigger t such that e(r, t)is defined and t does not preserve the equivalence class for r, P, and u. Since invoker(last(r)) = u and e(r, t) is defined, then e(r',t) is defined as well for any $r' \in [\![r]\!]_{P,u}$ (indeed, from invoker(last(r)) = u, it follows that the last action in r is either an action issued by u or a trigger invoker by u. From this, the fact that e(r, t) is defined, and the fact that r and r' are indistinguishable, it follows that trigger(last(r)) = trigger(last(r')) = t). Let a be t's action and $w = \langle u', \text{SELECT}, q \rangle$ be the SELECT command associated with t's WHEN condition. Let s be the state last(r), s' be the

state obtained just after the execution of the WHEN condition, and s'' be the state last(e(r, t)). There are a number of cases depending on t's action a:

- 1. $a = \langle u', \text{INSERT}, R, \overline{t} \rangle$. There are three cases:
 - (a) $secEx(last(e(r, a))) = \bot$ and $Ex(last(e(r, a))) = \emptyset$. The proof of this case is similar to that of the corresponding case in Lemma G.7.
 - (b) $secEx(last(e(r, a))) = \bot$ and $Ex(last(e(r, a))) \neq \emptyset$. The only difference between the proof of this case in this Lemma and in that of Lemma G.7 is that we have to establish again the data indistinguishability between last(e(r, t)) and last(e(r', t)). Indeed, for triggers the roll-back state is, in general, different from the one immediately before the trigger's execution, i.e., it may be that pState(last(e(r, t))) $\neq pState(last(r))$. We now prove that last(e(r,t))and last(e(r', t)) are data indistinguishable. From the LTS semantics, it follows that $r = p \cdot s_0$. $\langle invoker(last(r)), op, R', \overline{v} \rangle \cdot s_1 \cdot t_1 \cdot \ldots \cdot s_{n-1} \cdot t_n \cdot s_n,$ where $p \in traces(L)$ and $t_1, \ldots, t_n \in TRIGGER_D$. Similarly, $r' = p' \cdot s'_0 \cdot \langle invoker(last(r)), op, R', \overline{v} \rangle$. $s'_1 \cdot t_1 \cdot \ldots \cdot s'_{n-1} \cdot t_n \cdot s'_n$, where $p' \in traces(L)$, $p \cong_{P,u} p'$, and all states s_i and s'_i are data indistinguishable. Then, the roll-back states are, respectively, s_0 and s'_0 , which are data indistinguishable. From the LTS rules, $last(e(r, a)) = s_0$ and $last(e(r', a)) = s'_0$. Therefore, the data indistinguishability between last(e(r, a)) and last(e(r', a))follows trivially for any $r' \in [\![r]\!]_{P,u}$.
 - (c) $secEx(e(r, a)) = \top$. The proof is similar to the previous case.

All cases lead to a contradiction. This completes the proof for $a = \langle u', \text{INSERT}, R, \overline{t} \rangle$.

- 2. $a = \langle u', \text{DELETE}, R, \overline{t} \rangle$. The proof is similar to that for $a = \langle u', \text{INSERT}, R, \overline{t} \rangle.$
- 3. $a = \langle \oplus, u'', p, u' \rangle$. There are two cases:
 - (a) $secEx(last(e(r, a))) = \bot$. In this case, the proof is similar to the corresponding case in Lemma G.7.
 - (b) $secEx(last(e(r, a))) = \top$. The proof is similar to the $secEx(last(e(r, a))) = \top$ case of $a = \langle u', \text{INSERT},$ $R, \overline{t} \rangle.$

Both cases lead to a contradiction. This completes the

- proof for $a = \langle \oplus, u'', p, u' \rangle$. 4. $a = \langle \oplus^*, u'', p, u' \rangle$. The proof is similar to that for $a = \langle \oplus, u'', p, u' \rangle$. 5. $a = \langle \oplus, u'', p, u' \rangle$. The proof is similar to that for $a = \langle \oplus, u'', p, u' \rangle$.
- $\langle u', \text{INSERT}, R, \overline{t} \rangle.$

This completes the proof. \Box

H. DATABASE ACCESS CONTROL AND IN-FORMATION FLOW CONTROL

Here, we first show that the notion of secure judgment can be seen as an instance of non-interference. Afterwards, we present NI-data confidentiality, a security notion for database access control that is an instance of non-interference. Finally, we show that data confidentiality and NI-data confidentiality are equivalent. For non-interference, we use terminology and notation taken from [28].

It is easy to see that the notion of secure judgment is an instance of non-interference over relational calculus sentences. Indeed, the set of all programs is just the set of all sentences, the set of inputs is the set of all runs, the equivalence relation between the inputs is $\cong_{P,u}$, the set of outputs is $\{\top, \bot\}$, the equivalence relation between the outputs is the equality, and the semantics of the programs is obtained by evaluating the sentences, according to the relational calculus semantics, over the database state in the last state of a run. Using a similar argument, one can easily show that both determinacy [34] and instance-based determinacy [30] are just instances of non-interference over relational calculus sentences.

Before defining NI-data confidentiality, we need some machinery. Let $P = \langle M, f \rangle$ be an extended configuration, Lbe the P-LTS, $u \in \mathcal{U}$ be a user, \vdash_u be a (P, u)-attacker model, and \cong be a P-indistinguishability relation. Given a run r, we denote by K(r) the set of all formulae that the user u can derive from any extension of r using A, i.e., $\{\phi \in RC_{bool} | \exists s \in traces(L), i \in \mathbb{N}. s, i \vdash_u \phi \in A \land s^{|r|} = r\}$. Moreover, given a set of formulae K, we say that two runs r and r' agree on K, denoted by $r \equiv_K r'$, iff for all $\phi \in K$, ϕ holds in the last states of r and r'. Given a system state $s = \langle db, U, sec, T, V, c \rangle$, we denote by s.db the database state db.

We are now ready to define NI-data confidentiality notion.

Definition H.1. Let $P = \langle M, f \rangle$ be an extended configuration, L be the P-LTS, $u \in \mathcal{U}$ be a user, A be a (P, u)attacker model, and \cong be a P-indistinguishability relation. We say that f provides NI-data confidentiality with respect to P, u, A, and \cong iff for all runs $r, r' \in traces(L)$, if $r \cong r'$ holds, then $r \equiv_{K(r) \cup K(r')} r'$ holds. \Box

Finally, we prove that NI-data confidentiality and data confidentiality are equivalent.

PROPOSITION H.1. Let $P = \langle M, f \rangle$ be an extended configuration, L be the P-LTS, $u \in \mathcal{U}$ be a user, \vdash_u be a (P, u)attacker model, and $\cong_{P,u}$ be a (P, u)-indistinguishability relation. The PDP f provides data confidentiality iff it provides NI-data confidentiality.

PROOF. We prove the two directions separately.

 (\Rightarrow) We prove this direction by contradiction. Assume that f provides data confidentiality but it does not provide NIdata confidentiality. From the fact that NI-data confidentiality does not hold, it follows that there are two runs $r, r' \in traces(L)$ such that $r \cong r'$ but $r \not\equiv_{K(r) \cup K(r')} r'$. From $r \not\equiv_{K(r) \cup K(r')} r'$, it follows that there are two cases:

1. there is a run $s \in traces(L)$ such that $s^{|r|} = r, s, |r| \vdash_u \phi \in A$, and $[\phi]^{last(r).db} \neq [\phi]^{last(r').db}$. From this, it follows that $secure_{P,\cong}(s, |r| \vdash_u \phi)$ does not hold, since $s^{|r|} = r, [\phi]^{last(r).db} \neq [\phi]^{last(r').db}$, and $r \cong r'$. This

contradicts the fact that f provides data confidentiality.

2. there is a run $s \in traces(L)$ such that $s^{|r'|} = r', s, |r'| \vdash_u \phi \in A$, and $[\phi]^{last(r).db} \neq [\phi]^{last(r').db}$. From this, it follows that $secure_{P,\cong}(s, |r'| \vdash_u \phi)$ does not hold, that is not secure, since $s^{|r'|} = r', \ [\phi]^{last(r).db} \neq [\phi]^{last(r').db}$, and $r \cong r'$. This contradicts the fact that f provides data confidentiality.

Since both cases lead to a contradiction, this concludes the proof of this direction.

 (\Leftarrow) We prove this direction by contradiction. Assume that f provides NI-data confidentiality but it does not provide data confidentiality. From the fact that data confidentiality does not hold, it follows that there is a runs $r \in traces(L)$, an index i, and a sentence ϕ such that $r, i \vdash_u \phi \in A$ and $secure_{P,\cong}(r,i\vdash_u \phi)$ does not hold. From this and $secure_{P,\cong}$ $(r, i \vdash_u \phi)$'s definition, it follows that there are two runs $r, r' \in traces(L)$, an index i, and a sentence ϕ such that $r, i \vdash_u \phi \in A, r^i \cong r', \text{ and } [\phi]^{last(r^i).db} \neq [\phi]^{last(r').db}.$ From this and $|r^i| = i$, it follows that there are two runs $r, r' \in$ traces(L) and a sentence ϕ such that $r, |r^i| \vdash_u \phi \in A, r^i \cong r',$ and $\left[\phi\right]^{last(r^i).db} \neq \left[\phi\right]^{last(r').db}$. By renaming r^i as k and by considering the fact that r is, by definition, an extension of k, it follows that there are two runs $r, r' \in traces(L)$ and a sentence ϕ such that $r, |k| \vdash_u \phi \in A$, $r^{|k|} = k, k \cong r'$, and $[\phi]^{last(k).db} \neq [\phi]^{last(r').db}$. From this and K(k)'s definition, it follows that there are two runs $k, r' \in traces(L)$ and a sentence ϕ such that $\phi \in K(k), k \cong r'$, and $[\phi]^{last(k).db} \neq$ $[\phi]^{last(r').db}$. From this and $\phi \in K(k)$, it follows that there are two runs $k, r' \in traces(L)$ and a sentence ϕ such that $k \cong r'$ and $k \not\equiv_{K(k)} r'$. From this, it follows that there are two runs $k, r' \in traces(L)$ and a sentence ϕ such that $k \cong_{P,u} r'$, and $k \not\equiv_{K(k) \cup K(r')} r'$. This contradicts the fact that f provides NI-data confidentiality. \Box

We now show that NI-data confidentiality can be seen as an instance of non-interference. Let M be a system configuration and u be a user. The set of programs \mathcal{P} is the set of all pairs of the form (f, \vdash_u) , where f is a system configuration and \vdash_u is a $(\langle M, f \rangle, u)$ -attacker model. The set of inputs \mathcal{I} is the set $\{(s, evs) \mid s \in \mathcal{I}_M \land evs \in (\mathcal{A}_{D,\mathcal{U}} \cup \mathcal{TRIGGER}_D)^*\}.$ The set of outputs \mathcal{O} is the set of all possible sequences of *M*-states and labels in $\mathcal{A}_{D,\mathcal{U}} \cup \mathcal{TRIGGER}_D$. The semantics of the programs $\sigma : \mathcal{P} \times \mathcal{I} \to (\mathcal{O} \cup \{\bot\})$ is a total function defined as follows: $\sigma((f, \vdash_u), (s, evs)) = r$ iff (1) r is a run in traces(L), where L is the $\langle M, f \rangle$ -LTS, (2) r starts from the state s, and (3) the labels of r are equivalent to evs; $\sigma((f,\vdash_u),(s,evs)) = \bot$ otherwise. Finally, the relation ~ over the set \mathcal{I} is $\sim = \mathcal{I} \times \mathcal{I}$, i.e., any two inputs are indistinguishable, whereas the relation \equiv over the set \mathcal{O} is as follows: for any two $r, r' \in \mathcal{O}, r \equiv r'$ iff (1) $r = \bot$, (2) $r' = \bot$, or (3) $r \neq \bot$, $r' \neq \bot$, and if $r \cong_{P,u} r'$, then $r \equiv_{K(r) \cup K(r')} r'$. Note that \equiv is not an equivalence relation, i.e., it is reflexive and symmetric but it is not transitive. Therefore, a PDP fprovides NI-data confidentiality (and, therefore, data confidentiality) with respect to an attacker model \vdash_u iff (f, \vdash_u) satisfies non-interferences, where $\mathcal{P}, \mathcal{I}, \mathcal{O}, \sigma, \sim, \text{ and } \equiv \text{ are}$ as above.

```
SqlStmt := SelectStmt | SqlBasicStmt | CreateTrigger | CreateView
SqlBasicStmt := InsertStmt | DeleteStmt | GrantStmt | RevokeStmt
SelectStmt := "SELECT DISTINCT" columnList "FROM" tableList "WHERE" expr
columnList := columnId | columnList "," columnId
tableList := tableId | tableList "," tableId
expr := varId "=" const | varId "=" varId | "NOT" "("expr")" | expr ("AND"|"OR") expr |
"EXISTS" "("SelectStmt")"
InsertStmt := "INSERT INTO" tableId "VALUES ("valueList")"
valueList := const | valueList "," const
DeleteStmt := "DELETE FROM" tableId "WHERE" restrictedExpr
restrictedExpr := varId "=" const | restrictedExpr "AND" varId "=" const
GrantStmt := "GRANT" privilege "TO" userId ("WITH GRANT OPTION")
RevokeStmt := "REVOKE" privilege "FROM" userId "WITH CASCADE"
privilege := "SELECT ON" (tableId | viewId) | "CREATE VIEW" |
( "INSERT" | "DELETE" | "CREATE TRIGGER" ) "ON" tableId
CreateTrigger := "CREATE TRIGGER" triggerId "AFTER" ("INSERT" | "DELETE") "ON" tableId
                    ("SECURITY DEFINER" | "SECURITY INVOKER") SqlBasicStmt
Create View := "CREATE VIEW" viewId ("SECURITY DEFINER" | "SECURITY INVOKER")
                    AS SelectStmt
```

Figure 41: This is the syntax of the SQL fragment that corresponds to the features we support in this paper.