Strong and Provably Secure Database Access Control

Marco Guarnieri
Institute of Information Security Department of Computer Science
ETH Zurich, Switzerland
marco.guarnieri@inf.ethz.ch

Srdjan Marinovic
The Wireless Registry, Inc.
Washington DC, US
srdjan@wirelessregistry.com

David Basin
Institute of Information Security
Department of Computer Science ETH Zurich, Switzerland
basin@inf.ethz.ch

Abstract

Existing SQL access control mechanisms are extremely limited. Attackers can leak information and escalate their privileges using advanced database features such as views, triggers, and integrity constraints. This is not merely a problem of vendors lagging behind the state-of-the-art. The theoretical foundations for database security lack adequate security definitions and a realistic attacker model, both of which are needed to evaluate the security of modern databases. We address these issues and present a provably secure access control mechanism that prevents attacks that defeat popular SQL database systems.

1. INTRODUCTION

It is essential to control access to databases that store sensitive information. To this end, the SQL standard defines access control rules and all SQL database vendors have accordingly developed access control mechanisms. The standard however fails to define a precise access control semantics, the attacker model, and the security properties that the mechanisms ought to satisfy. As a consequence, existing access control mechanisms are implemented in an ad hoc fashion, with neither precise security guarantees nor the means to verify them.
This deficit has dire and immediate consequences. We show that popular database systems are susceptible to two types of attacks. Integrity attacks allow an attacker to perform non-authorized changes to the database. Confidentiality attacks allow an attacker to learn sensitive data. These attacks exploit advanced SQL features, such as triggers, views, and integrity constraints, and they are easy to carry out.

Current research efforts in database security are neither adequate for evaluating the security of modern databases, nor do they account for their advanced features. In more detail, existing research 4, 12, 35, 46 implicitly considers attackers who use SELECT commands. But the capabilities offered by databases go far beyond SELECT. Users, in general, can modify the database's state and security policy, as well as use features such as triggers, views, and integrity constraints. Consequently, all proposed research solutions fail to prevent attacks such as those we present in $\S 2$.

In summary, the database vendors have been left to develop access control mechanisms without guidance from either the SQL standard or existing research in database security. It is therefore not surprising that modern databases are open to abuse.
Contributions. We develop a comprehensive formal frame-
work for the design and analysis of database access control. We use it to design and verify an access control mechanism that prevents confidentiality and integrity attacks that defeat existing mechanisms.
First, we develop an operational semantics for databases that supports SQL's core features, as well as triggers, views, and integrity constraints. Our semantics models both the security-critical aspects of these features and the database's dynamic behaviour at the level needed to capture realistic attacks. Our semantics is substantially more detailed than those used in previous works 35,46 , which ignore the database's dynamics.
Second, we develop a novel attacker model that, in addition to SQL's core features, incorporates advanced features such as triggers, views, and integrity constraints. Furthermore, our attacker can infer information based on the semantics of these features. Note that our attacker model subsumes the SELECT-only attacker considered in previous works [35], 46]. We also develop an executable version of our operational semantics and attacker model using the Maude term-rewriting framework [14]. The executable model acts as a reference implementation for our semantics. Given the complexity of databases and their features, having an executable version of our models provides a way to validate them against existing database systems and against the examples we use in this paper.
Third, we present two security definitions-database integrity and data confidentiality-that reflect two principal security requirements for database access control. There is a natural and intuitive relationship between these definitions and the types of attacks that we identify. We thus argue that these definitions provide a strong measure of whether a given access control mechanism prevents our attacker from exploiting modern SQL databases.
Finally, using our framework, we build a database access control mechanism that is provably secure with respect to our attacker model and security definitions. In contrast to existing mechanisms, our solution prevents all the attacks that we report on in 82

Related Work. Surprisingly, and in contrast to other areas of information security 19, there does not exist a welldefined attacker model for database access control. From the literature, we extracted the SELECT-only attacker model, where the attacker uses just SELECT commands. A number of access control mechanisms, such as 1, 1, 4, 8, 9, 13, 27, 31 . 35, 41, 43, 46, implicitly consider this attacker model. The boundaries of this model are blurred and the attacker's capabilities are unclear. For instance, only a few works, such
as 46, explicitly state that update commands are not supported, whereas others [4, 8, 9, 35] ignore what the attacker can learn from update commands. Works on Inference Control $12,20,44$ and Controlled Query Evaluation 11 consider a variation of the SELECT-only attacker, in which the attacker additionally has some initial knowledge about the data and can derive new information from the query's results through inference rules. Note that while 44 supports update commands, it treats them just as a way of increasing data availability, rather than considering them as a possible attack vector.
Database access control mechanisms can be classified into two distinct families 35. Mechanisms in the Truman model 446 transparently modify query results to restrict the user's access to the data authorized by the policy. In contrast, mechanisms in the Non-Truman model [8, 9, 35] either accept or reject queries without modifying their results. Different notions of security have been proposed for these models 24, 35, 46]. They are, however, based on SELECT-only attackers and provide no security guarantees against realistic attackers that can alter the database and the policy or use advanced SQL features. We refer the reader to $\$ 7$ for further comparison with related work.
Organization. In $\$ 2$ we present attacks that illustrate serious weaknesses in existing Database Management Systems (DBMSs). In $\$ 3$ we introduce background and notation about queries, views, triggers, and access control. In $\$ 4$ we formalize our system and attacker models, and in $\$ 5$ we define the desired security properties. In \S_{6} we present our access control mechanism, and in $\$ 7$ we discuss related work. Finally, we draw conclusions in $\$ 8$ The system's operational semantics, the attacker model, and complete proofs of all results are in Appendices $\mathrm{A}[\mathrm{H}$ A prototype of our enforcement mechanism and its executable semantics are available at 26]. This technical report is an extended version of 25].

2. ILLUSTRATIVE ATTACKS

We demonstrate here how attackers can exploit existing DBMSs using standard SQL features. We classify these attacks as either Integrity Attacks or Confidentiality Attacks. In the former, an attacker makes unauthorized changes to the database, which stores the data, the policy, the triggers, and the views. In the latter, an attacker learns sensitive data by interacting with the system and observing the outcome. No existing access control mechanism prevents all the attacks we present. Moreover, many related attacks can be constructed using variants of the ideas presented here. We manually carried out the attacks against IBM DB2, Oracle Database, PostgreSQL, MySQL, SQL Server, and Firebird. We summarize our findings at the end of this section.

2.1 Integrity Attacks

Our three integrity attacks combine different database features: INSERT, DELETE, GRANT, and REVOKE commands together with views and triggers. In the first attack, an attacker creates a trigger, i.e., a procedure automatically executed by the DBMS in response to user commands, that will be activated by an unaware user with a higher security clearance and will perform unauthorized changes to the database. The attack requires triggers to be executed under the privileges of the users activating them. Such triggers are supported by PostgreSQL, SQL Server, and Firebird.

Attack 1. Triggers with activator's privileges. Consider a database with two tables P and S and two users u_{1} and u_{2}. The attacker is the user u_{1}, whose goal is to delete the content of S. The policy is that u_{1} is not authorized ${ }^{11}$ to alter S, u_{1} can create triggers on P, and u_{2} can read and modify S and P. The attack is as follows:

1. u_{1} creates the trigger:
```
CREATE TRIGGER }t\mathrm{ ON }P\mathrm{ AFTER INSERT
    DELETE FROM S;
```

2. u_{1} waits until u_{2} inserts a tuple into the table P. The trigger will then be invoked using u_{2} 's privileges and S 's content will be deleted.

An attacker can use similar attacks to execute arbitrary commands with administrative privileges. Despite the threat posed by such simple attacks, the existing countermeasures $\sqrt{2}$ are unsatisfactory; they are either too restrictive, for instance completely disabling triggers in the database, or too time consuming and error prone, namely manually checking if "dangerous" triggers have been created.
In our second attack, an attacker escalates his privileges by delegating the read permission for a table without being authorized to delegate this permission. The attacker first creates a view over the table and, afterwards, delegates the access to the view to another user. This attack exploits DBMSs, such as PostgreSQL, where a user can grant any read permission over his own views. Note that GRANT and REVOKE commands are write operations, which target the database's internal configuration instead of the tables.

Attack 2. Granting views. Consider a database with a table S, two users u_{1} and u_{2}, and the following policy: u_{1} can create views and read S (without being able to delegate this permissions), and u_{2} cannot read S. The attack is as follows:

1. u_{1} creates the view: CREATE VIEW v AS SELECT $* \operatorname{FROM} S$.
2. u_{1} issues the command GRANT SELECT ON v TO u_{2}. Now, u_{2} can read S through v. However, u_{1} is not authorized to delegate the read permission on S.

This attack exploits several subtleties in the commands' semantics: (a) users can create views over all tables they can read, (b) the views are executed under the owner's privileges, and (c) view's owners can grant arbitrary permissions over their own views. These features give u_{1} the implicit ability to delegate the read access over S. As a result, the overall system's behaviour does not conform with the given policy. That is, u_{1} should not be permitted to delegate the read access to S or to any view that depends on it. Note that the commands' semantics may vary between different DBMSs.
In our third attack, an attacker exploits the failure of access control mechanisms to propagate REVOKE commands.

Attack 3. Revoking views. Consider a database with a table S, three users u_{1}, u_{2}, and u_{3}, and the following policy: u_{1} can read S and delegate this permission, u_{2} can create views, and u_{3} cannot read S. The attack proceeds as follows:

1. u_{1} issues the command GRANT SELECT ON S TO u_{2} WITH GRANT OPTION.
2. u_{2} creates the view: CREATE VIEW v AS SELECT $*$ FROM S.
3. u_{2} issues the command GRANT SELECT ON v TO u_{3}.
[^0]| DBMS | Integrity Attacks | | | Confidentiality Attacks
 Granting | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | Triggers with
 activator's privileges | Revoking
 views | Table updates and
 Triggers with | | |
| integrity constraints | | | | | | | owner's privileges |
| :--- |

Figure 1: The \checkmark symbol indicates a successful attack, whereas \mathcal{X} indicates a failed attack. The \dagger symbol indicates that the DBMS does not support the features necessary to launch the attack.
4. u_{1} revokes the permission to read S (and to delegate the permission) from u_{2} : REVOKE SELECT ON S FROM u_{2}. Now, u_{3} cannot read v because u_{2}, which is v 's owner, cannot read S.
5. u_{1} grants again the permission to read S to u_{2} : GRANT SELECT ON S TO u_{2}. Now, u_{3} can again read v but u_{2} can no longer delegate the read permission on v.

This attack succeeds because, in the fourth step, the REVOKE statement does not remove the GRANT granted by u_{2} to u_{3} to read v. This GRANT only becomes ineffective because u_{2} is no longer authorized to read S. However, after the fifth step, this GRANT becomes effective again, even though u_{2} can no longer delegate the read permission on v. Thus, the policy is left in an inconsistent state.

2.2 Confidentiality Attacks

We now present two attacks that use InSERT and SELECT commands together with triggers and integrity constraints. In our fourth attack, an attacker exploits integrity constraint violations to learn sensitive information. An integrity constraint is an invariant that must be satisfied for a database state to be considered valid. Integrity constraint violations arise when the execution of an SQL command leads the database from a valid state into an invalid one.

Attack 4. Table updates and integrity constraints. Consider a database with two tables P and S. Suppose the primary key of both tables is the user's identifier. Furthermore, the set of user identifiers in S is contained in the set of user identifiers in P, i.e., there is a foreign key from S to P. The attacker is the user u whose goal is to learn whether Bob is in S. The access control policy is that u can read P and insert tuples in S. The attacker u can learn whether Bob is in S as follows:

1. He reads P and learns Bob's identifier.
2. He issues an INSERT statement in S using Bob's id.
3. If Bob is already in S, then u gets an error message about the primary key's violation. Alternatively, there is no violation and u learns that Bob is not in S.

Even though similar attacks have been identified before 29 40, existing DBMSs are still vulnerable.
In our fifth attack, an attacker learns sensitive information by exploiting the system's triggers. The trigger in this attack is executed under the privileges of the trigger's owner. Such triggers are supported by IBM DB2, Oracle Database, PostgreSQL, MySQL, SQL Server, and Firebird.

Attack 5. Triggers with owner's privileges. Consider a database with three tables N, P, and T. The attacker is
the user u, who wishes to learn whether v is in T. The policy is that u is not authorized to read the table T, and he can read and modify the tables N and P. Moreover, the following trigger has been defined by the administrator.

CREATE TRIGGER t ON P AFTER INSERT FOR EACH ROW
IF exists (SELECT $*$ FROM T WHERE id = NEW.id) INSERT INTO N VALUES (NEW.id);

The attack is as follows:
. u deletes v from N.
2. u issues the command INSERT INTO P VALUES (v).
3. u checks the table N. If it contains v 's id, then v is in T. Otherwise, v is not in T.

This attack exploits that the trigger t conditionally modifies the database. Furthermore, the attacker can activate t, by inserting tuples in P, and then observe t 's effects, by reading the table N. He therefore can exploit t 's execution to learn whether t 's condition holds. We assume here that the attacker knows the triggers in the system. This is, in general, a weak assumption as triggers usually describe the domain-specific rules regulating a system's behaviour and users are usually aware of them.

2.3 Discussion

We manually carried out all five attacks against IBM DB2, Oracle Database, PostgreSQL, MySQL, SQL Server, and Firebird. Figure 1 summarizes our findings. None of these systems prevent the confidentiality attacks. They are however more successful in preventing the integrity attacks. The most successful is Oracle Database, which prevents two of the three attacks, while Attack 1 cannot be carried out due to missing features. IBM DB2, MySQL, and Firebird prevent just one of the three attacks, namely Attack 2 However, they all fail to prevent Attack 3 Note that Firebird also fails to prevent Attack 1 In contrast, Attack 1 cannot be carried out against MySQL and IBM DB2 due to missing features. SQL Server also fails to prevent Attack 1 however the remaining two attacks cannot be carried out due to missing features. PostgreSQL fails to prevent all three attacks.
We argue that the dire state of database access control mechanisms, as illustrated by these attacks, comes from the lack of clearly defined security properties that such mechanisms ought to satisfy and the lack of a well-defined attacker model. We therefore develop a formal attacker model and precise security properties and we use them to design a provably secure access control mechanism that prevents all the above attacks.

3．DATABASE MODEL

We now formalize databases including features like views， access control policies，and triggers．Our formalization of databases and queries follows［3］，and our access control poli－ cies formalize SQL policies．

3．1 Overview

In this paper we consider the following SQL features：SE－ LECT，INSERT，DELETE，GRANT，REVOKE，CREATE TRIGGER，CRE－ ATE VIEW，and ADD USER commands．
For SELECT commands，rather than using SQL，we use the relational calculus（ $R C$ ），i．e．，function－free first－order logic，which has a simple and well－defined semantics［3］．We support GRANT commands with the GRANT OPTION and RE－ VOKE commands with the CASCADE OPTION，i．e．，when a user revokes a privilege，he also revokes all the privileges that depend on it．We support INSERT and DELETE commands that explicitly identify the tuple to be inserted or deleted， i．e．，commands of the form INSERT INTO table（ x_{1}, \ldots, x_{n} ） VALUES $\left(v_{1}, \ldots, v_{n}\right)$ and DELETE FROM table WHERE $x_{1}=v_{1} \wedge$ $\ldots \wedge x_{n}=v_{n}$ ，where x_{1}, \ldots, x_{n} are table＇s attributes and v_{1}, \ldots, v_{n} are the tuple＇s values．More complex INSERT and DELETE commands，as well as UPDATEs，can be simulated by combining SELECT，INSERT，and DELETE commands．
We support only AFTER triggers on INSERT and DELETE events，i．e．，triggers that are executed in response to IN－ SERT and DELETE commands．The triggers＇WHEN conditions are arbitrary boolean queries and their actions are GRANT， REVOKE，INSERT，or DELETE commands．Note that DBMSs usually impose severe restrictions on the WHEN clause，such as it must not contain sub－queries．However，most DBMSs can express arbitrary conditions on triggers by combining control flow statements with SELECT commands inside the trigger＇s body．Thus，we support the class of triggers whose body is of the form BEGIN IF expr THEN act END，where act is either a GRANT，REVOKE，INSERT，or DELETE command． Note that all triggers used in $\S 2$ belong to this class．
We support two kinds of integrity constraints：functional dependencies and inclusion dependencies［3］．They model the most widely used families of SQL integrity constraints， namely the UNIQUE，PRIMARY KEY，and FOREIGN KEY con－ straints．We also support views with both the owner＇s priv－ ileges and the activator＇s privileges．
The SQL fragment we support，shown in Figure 41，con－ tains the most common SQL commands for data manipu－ lation and access control as well as the core commands for creating triggers and views．The ideas and the techniques presented in this paper are general and can be extended to the entire SQL standard．

3．2 Databases and Queries

Let $\mathcal{R}, \mathcal{U}, \mathcal{V}$ ，and \mathcal{T} be mutually disjoint，countably in－ finite sets，respectively representing identifiers of relation schemas，users，views，and triggers．
A database schema D is a pair $\langle\Sigma$ ，dom \rangle ，where Σ is a first－order signature and dom is a fixed countably infinite domain．The signature Σ consists of a set of relation schemas $R \in \mathcal{R}$ ，also called tables，with arity $|R|$ and sort sort (R) ．A state s of D is a finite Σ－structure over dom．We denote by Ω_{D} the set of all states．Given a table $R \in D, s(R)$ denotes the set of tuples that belong to R in s ．
A query q over a schema D is of the form $\{\bar{x} \mid \phi\}$ ，where \bar{x} is a sequence of variables，ϕ is a relational calculus formula
over D ，and ϕ＇s free variables are those in \bar{x} ．A boolean query is a query $\{\mid \phi\}$ ，also written as ϕ ，where ϕ is a sentence． The result of executing a query q on a state s ，denoted by $[q]^{s}$ ，is a boolean value in $\{\top, \perp\}$ ，if q is a boolean query，or a set of tuples otherwise．We denote by $R C$（respectively $R C_{\text {bool }}$ ）the set of all relational calculus queries（respectively sentences）．We consider only domain－independent queries as is standard，and we employ the standard relational calculus semantics 3 ．
Let $D=\langle\Sigma, \operatorname{dom}\rangle$ be a schema，s be a state in Ω_{D}, R be a table in D ，and \bar{t} be a tuple in $\operatorname{dom}^{|R|}$ ．The result of inserting（respectively deleting） \bar{t} in R in the state s is the state s^{\prime} ，denoted by $s[R \oplus \bar{t}]$（respectively $s[R \ominus \bar{t}$ ），where $s^{\prime}(T)=s(T)$ for all $T \in \Sigma$ such that $T \neq R$ ，and $s^{\prime}(R)=$ $s(R) \cup\{\bar{t}\}$（respectively $\left.s^{\prime}(R)=s(R) \backslash\{\bar{t}\}\right)$ ．

An integrity constraint over D is a relational calculus sen－ tence γ over D ．Given a state s ，we say that s satisfies the constraint γ iff $[\gamma]^{s}=\mathrm{T}$ ．Given a set of constraints Γ ， Ω_{D}^{Γ} denotes the set of all states satisfying the constraints in Γ ，i．e．，$\Omega_{D}^{\Gamma}=\left\{s \in \Omega_{D} \mid \bigwedge_{\gamma \in \Gamma}[\gamma]^{s}=\top\right\}$ ．We consider two types of integrity constraints：functional dependencies， which are sentences of the form $\forall \bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{z}, \bar{z}^{\prime} .((R(\bar{x}, \bar{y}, \bar{z}) \wedge$ $\left.\left.R\left(\bar{x}, \bar{y}^{\prime}, \bar{z}^{\prime}\right)\right) \Rightarrow \bar{y}=\bar{y}^{\prime}\right)$ ，and inclusion dependencies，which are sentence of the form $\forall \bar{x}, \bar{y} \cdot(R(\bar{x}, \bar{y}) \Rightarrow \exists \bar{z} \cdot S(\bar{x}, \bar{z}))$ ．

3．3 Views

Let D be a schema．A view V over D is a tuple $\langle i d, o, q$ ， $m\rangle$ ，where $i d \in \mathcal{V}$ is the view identifier，$o \in \mathcal{U}$ is the view＇s owner，q is the non－boolean query over D defining the view， and $m \in\{A, O\}$ is the security mode，where A stands for activator＇s privileges and O stands for owner＇s privileges． Note that the query q may refer to other views．We assume， however，that views have no cyclic dependencies between them．We denote by $\mathcal{V I E L} \mathcal{W}_{D}$ the set of all views over D ． The materialization of a view $\langle V, o, q, m\rangle$ in a state s ，de－ noted by $s(V)$ ，is $[q]^{s}$ ．We extend the relational calculus in the standard way to work with views［3］．

3．4 Access Control Policies

We now formalize the SQL access control model．We first formalize five privileges．Let D be a database schema．A SELECT privilege over D is a tuple $\langle\operatorname{SELECT}, R\rangle$ ，where R is a relation schema in D or a view over D ．A CREATE VIEW priv－ ilege over D is a tuple 〈CREATE VIEW〉．An INSERT privilege over D is a tuple $\langle\operatorname{INSERT}, R\rangle$ ，a DELETE privilege over D is a tuple 〈DELETE，$R\rangle$ ，and a CREATE TRIGGER privilege over D is a tuple＜CREATE TRIGGER，R ，where R is a relation schema in D ．We denote by $\mathcal{P R} \mathcal{I} \mathcal{V}_{D}$ the set of privileges over D ．
Following SQL，we use GRANT commands to assign priv－ ileges to users．Let $U \subseteq \mathcal{U}$ be a set of users and D be a database schema．We now define (U, D)－grants and (U, D)－ revokes．There are two types of (U, D)－grants．A (U, D)－ simple grant is a tuple $\left\langle\oplus, u, p, u^{\prime}\right\rangle$ ，where $u \in U$ is the user receiving the privilege $p \in \mathcal{P} \mathcal{R} \mathcal{I} \mathcal{V}_{D}$ and $u^{\prime} \in U$ is the user granting this privilege．A (U, D)－grant with grant option is a tuple $\left\langle\oplus^{*}, u, p, u^{\prime}\right\rangle$ ，where u, p ，and u^{\prime} are as before．A （ U, D ）－revoke is a tuple $\left\langle\ominus, u, p, u^{\prime}\right\rangle$ ，where $u \in U$ is the user from which the privilege $p \in \mathcal{P} \mathcal{R} \mathcal{I V}_{D}$ will be revoked and $u^{\prime} \in U$ is the user revoking this privilege．We denote by $\Omega_{U, D}^{s e c}$ the set of all（ U, D ）－grants and（ U, D ）－revokes．A grant $\left\langle\oplus, u, p, u^{\prime}\right\rangle$ models the command GRANT p TO u issued by u^{\prime} ， a grant with grant option $\left\langle\oplus^{*}, u, p, u^{\prime}\right\rangle$ models the command GRANT p TO u WITH GRANT OPTION issued by u^{\prime} ，and a revoke

Figure 2: System model.
$\left\langle\ominus, u, p, u^{\prime}\right\rangle$ models the command REVOKE p FROM u CASCADE issued by u^{\prime}.
Finally, we define a (U, D)-access control policy S as a finite set of (U, D)-grants. We denote by $\mathcal{S}_{U, D}$ the set of all (U, D)-policies.

Example 3.1. Consider the policy described in Attack 5 The database D has three tables: N, P, and T. The set U is $\{u, a d m i n\}$ and the policy S contains the following grants: $\langle\oplus, u,\langle$ SELECT,$P\rangle, a d m i n\rangle,\langle\oplus, u,\langle$ INSERT,$P\rangle, a d m i n\rangle$, $\langle\oplus, u,\langle\mathrm{DELETE}, P\rangle, a d m i n\rangle,\langle\oplus, u,\langle\operatorname{SELECT}, N\rangle, a d m i n\rangle,\langle\oplus, u$, \langle INSERT, $N\rangle, a d m i n\rangle$, and $\langle\oplus, u,\langle$ DELETE, $N\rangle, a d m i n\rangle$.

3.5 Triggers

Let D be a database schema. A trigger over D is a tuple $\langle i d, u, e, R, \phi, a, m\rangle$, where $i d \in \mathcal{T}$ is the trigger identifier, $u \in \mathcal{U}$ is the trigger's owner, $e \in\{I N S, D E L\}$ is the trigger event (where INS stands for INSERT and DEL stands for DELETE), $R \in D$ is a relation schema, the trigger condition ϕ is a relational calculus formula such that free $(\phi) \subseteq\left\{x_{1}, \ldots, x_{|R|}\right\}$, and the trigger action a is one of: (1) $\left\langle\right.$ INSERT, $\left.R^{\prime}, \bar{t}\right\rangle$, where $R^{\prime} \in D$ and \bar{t} is a $\left|R^{\prime}\right|$-tuple of values in dom and variables in $\left\{x_{1}, \ldots, x_{|R|}\right\},(2)\left\langle\right.$ DELETE, $\left.R^{\prime}, \bar{t}\right\rangle$, where R^{\prime} and \bar{t} are as before, or (3) $\langle o p, u, p\rangle$, where op \in $\left\{\oplus, \oplus^{*}, \ominus\right\}, u \in \mathcal{U}$, and p is a privilege over D. Finally, $m \in\{A, O\}$ is the security mode, where A stands for activator's privileges and O stands for owner's privileges. We denote by $\mathcal{T R} \mathcal{I G G E} \mathcal{R}_{D}$ the set of all triggers over D.
We assume that any command a is executed atomically together with all the triggers activated by a. We also assume that triggers do not recursively activate other triggers. Hence all executions terminate. We enforce this condition syntactically at the trigger's creation time; see Appendix Afor additional details. The trigger $\left\langle t\right.$, admin, $I N S, P, T\left(x_{1}\right)$,〈INSERT, $\left.\left.N, x_{1}\right\rangle, O\right\rangle$ models the trigger in Attack 5 Here, x_{1} is bound, at run-time, to the value inserted in P by the trigger's invoker.

4. SYSTEM AND ATTACKER MODEL

We next present our system and attacker models. Executable versions of these models, built in the Maude framework [14], are available at [26. The models can be used for simulating the execution of our operational semantics, as well as computing the information that an attacker can infer from the system's behaviour. We have executed and validated all of our examples using these models.

4.1 Overview

In our system model, shown in Figure 2 users interact with two components: a database system and an access control system. The access control system contains both a policy enforcement point and a policy decision point. We assume that all the communication between the users and the components is over secure channels.

Database System. The database system (or database for short) manages the data. The database's state is represented by a mapping from relation schemas to sets of tuples. We assume that all database operations are atomic.
Users. Users interact with the database where each command is checked by the access control system. Each user has a unique account through which he can issue SELECT, INSERT, DELETE, GRANT, REVOKE, CREATE TRIGGER, and CREATE VIEW commands.

The system administrator is a distinguished user responsible for defining the database schema and the access control policy. In addition to issuing queries and commands, he can create user accounts and assign them to users. The administrator interacts with the access control system through a special account admin.
The attacker is a user, other than the administrator, with an assigned user account who attempts to violate the access control policy. Namely, his goals are: (1) to read or infer data from the database for which he lacks the necessary SELECT privileges, and (2) to alter the system state in unauthorized ways, e.g., changing data in relations for which he lacks the necessary InSERT and DELETE privileges. The attacker can issue any command available to users and he sees the results of his commands. The attacker's inference capabilities are specified using deduction rules.
Access Control System. The access control system protects the confidentiality and integrity of the data in the database. It is configured with an access control policy S, it intercepts all commands issued by the users, and it prevents the execution of commands that are not authorized by S. When a user u issues a command c, the access control system decides whether u is authorized to execute c. If c complies with the policy, then the access control system forwards the command to the DBMS, which executes c and returns its result to u. Otherwise, it raises a security exception and rejects c. Note that this corresponds to the Non-Truman model 35]; see related work for more details.
The access control system also logs all issued commands. When evaluating a command, the access control system can access the database's current state and the log.

4.2 System Model

We formalize our system model as a labelled transition system (LTS). First, we define a system configuration, which describes the database schema and the integrity constraints, and the user actions. Afterwards, we define the system's state, which represents a snapshot of the system that contains the database's state, the identifiers of the users interacting with the system, the access control policy, and the current triggers and views in the system. Finally, we formalize the system's behaviour as a small step operational semantics, including all features necessary to reason about security, even in the presence of attacks like those illustrated in $\$ 2$
A system configuration is a tuple $\langle D, \Gamma\rangle$ such that D is a schema and Γ is a finite set of integrity constraints over D. Let $M=\langle D, \Gamma\rangle$ be a system configuration and $u \in \mathcal{U}$ be a user. A (D, u)-action is one of the following tuples:

- $\left\langle u\right.$, ADD_USER, $\left.u^{\prime}\right\rangle$, where $u=$ admin and $u^{\prime} \in \mathcal{U} \backslash\{$ admin $\}$,
- $\langle u$, SELECT, $q\rangle$, where q is a boolean query y^{2} over D,
$\overline{{ }^{2} \text { Without loss of generality, we focus only on boolean queries }}$ 3]. We can support non-boolean queries as follows. Given a
- $\langle u$, INSERT, $R, \bar{t}\rangle$, where $R \in D$ and $\bar{t} \in \operatorname{dom}^{|R|}$,
- $\langle u$, DELETE, $R, \bar{t}\rangle$, where R and \bar{t} are as above,
- $\left\langle o p, u^{\prime}, p, u\right\rangle$, where $\left\langle o p, u^{\prime}, p, u\right\rangle \in \Omega_{D, \mathcal{U}}^{s e c}$, or
- $\langle u$, CREATE, $o\rangle$, where $o \in \mathcal{T} \mathcal{R} \mathcal{I G G \mathcal { E }} \mathcal{R}_{D} \cup \mathcal{V} \mathcal{E} \mathcal{W}_{D}$. We denote by $\mathcal{A}_{D, u}$ the set of all (D, u)-actions and by $\mathcal{A}_{D, U}$, for some $U \subseteq \mathcal{U}$, the set $\bigcup_{u \in U} \mathcal{A}_{D, u}$.

An M-context describes the system's history, the scheduled triggers that must be executed, and how to modify the system's state in case a roll-back occurs. We denote by \mathcal{C}_{M} the set of all M-contexts. We assume that \mathcal{C}_{M} contains a distinguished element ϵ representing the empty context, which is the context in which the system starts. Contexts are formalized in Appendix A
An M-state is a tuple $\langle d b, U, s e c, T, V, c\rangle$ such that $d b \in$ Ω_{D}^{Γ} is a database state, $U \subset \mathcal{U}$ is a finite set of users such that admin $\in U$, sec $\in \mathcal{S}_{U, D}$ is a security policy, T is a finite set of triggers over D owned by users in U, V is a finite set of views over D owned by users in U, and $c \in \mathcal{C}_{M}$ is an M-context. We denote by Ω_{M} the set of all M-states. An M-state $\langle d b, U, s e c, T, V, c\rangle$ is initial iff (a) sec contains only grants issued by admin, (b) T (respectively V) contains only triggers (respectively views) owned by admin, and (c) $c=\epsilon$. We denote by \mathcal{I}_{M} the set of all initial states.
An M-Policy Decision Point (M-PDP) is a total function $f: \Omega_{M} \times \mathcal{A}_{D, \mathcal{U}} \rightarrow\{\top, \perp\}$ that maps each state s and action a to an access control decision represented by a boolean value, where \top stands for permit and \perp stands for deny. An extended configuration is a tuple $\langle M, f\rangle$, where M is a system configuration and f is an M-PDP.
We now define the LTS representing the system model.
Definition 4.1. Let $P=\langle M, f\rangle$ be an extended configuration, where $M=\langle D, \Gamma\rangle$ and f is an M-PDP. The $P-L T S$ is the labelled transition system $\left\langle S, A \rightarrow_{f}, I\right\rangle$ where $S=\Omega_{M}$ is the set of states, $A=\mathcal{A}_{D, \mathcal{U}} \cup \mathcal{T} \mathcal{R} \mathcal{G G E} \mathcal{R}_{D}$ is the set of actions, $\rightarrow_{f} \subseteq S \times A \times S$ is the transition relation, and $I=\mathcal{I}_{M}$ is the set of initial states.

Let $P=\langle M, f\rangle$ be an extended configuration. A run r of a P-LTS L is a finite alternating sequence of states and actions, which starts with an initial state s, ends in some state s^{\prime}, and respects the transition relation \rightarrow_{f}. We denote by $\operatorname{traces}(L)$ the set of all L 's runs. Given a run $r,|r|$ denotes the number of states in r, last (r) denotes r 's last state, and r^{i}, where $1 \leq i \leq|r|$, denotes the run obtained by truncating r at the i-th state.
The relation \rightarrow_{f} formalizes the system's small step operational semantics. Figure 3 shows three rules describing the successful execution of SELECT and INSERT commands, as well as triggers. In the rules, we represent context changes using the update function upd, which takes as input an M state and an action $a \in \mathcal{A}_{D, \mathcal{U}} \cup \mathcal{T} \mathcal{R} \mathcal{I} \mathcal{G G E} \mathcal{R}_{D}$, and returns the updated context. This function, for instance, updates the system's history stored in the context. The function trg takes as input a system state s and returns the first trigger in the list of scheduled triggers stored in s 's context. If there are no triggers to be executed, then $\operatorname{trg}(s)=\epsilon$. The rule SELECT Success models the system's behaviour when the user u issues a SELECT query q that is authorized by the
database state s and a query $q:=\{\bar{x} \mid \phi\}$, if the access control mechanism authorizes the boolean query $\bigwedge_{\bar{t} \in[q]^{s}} \phi[\bar{x} \mapsto$ $\bar{t}] \wedge\left(\forall \bar{x} \cdot \phi \Rightarrow \bigvee_{\bar{t} \in[q]^{s}} \bar{x}=\bar{t}\right)$, then we return q 's result, and otherwise we reject q as unauthorized.

PDP f. The only component of the M-state s that changes is the context c. Namely, c^{\prime} is obtained from c by updating the history and storing q 's result. Similarly, the rule INSERT Success describes how the system behaves after a successful INSERT command, i.e., one that neither violates the integrity constraints nor causes security exceptions. The database state $d b$ is updated by adding the tuple \bar{t} to R and the context is updated from c to c^{\prime} by (a) storing the action's result, (b) storing the triggers that must be executed in response to the INSERT event, and (c) keeping track of the previous state in case a roll-back is needed.
The Trigger INSERT Success rule describes how the system executes a trigger whose action is an INSERT. The system extracts from the context the trigger t to be executed, i.e., $t=\operatorname{trg}(s)$. It determines, using the function user, the user u under whose privileges the trigger t is executed, which is, depending on t 's security mode, either the invoker invoker (s) or t 's owner. It then checks that u is authorized to execute the SELECT statement associated with t 's WHEN condition, and that this condition is satisfied. Afterwards, it computes the actual action using the function act, which instantiates the free variables in t 's definition with the values in the tuple $\operatorname{tpl}(s)$, i.e., the tuple associated with the action that fired t. Finally, the system updates the database state $d b$ by adding the tuple \bar{v}^{\prime} to R and the context by storing the results of t 's execution and removing t from the list of scheduled triggers.
In Appendix A, we give the complete formalization of our labelled transition system. This includes formalizing contexts and all the rules defining the transition relation \rightarrow_{f}. Our operational semantics can be tailored to model the behaviour of specific DBMSs. Thus, using our executable model, available at 26 , it is possible to validate our operational semantics against different existing DBMSs.

4.3 Attacker Model

We model attackers that interact with the system through SQL commands and infer information from the system's behaviour by exploiting triggers, views, and integrity constraints. We argue that database access control mechanisms should be secure with respect to such strong attackers, as this reflects how (malicious) users may interact with modern databases. Furthermore, any mechanism secure against such strong attackers is also secure against weaker attackers.

Any user other than the administrator can be an attacker, and we assume that users do not collude to subvert the system. Note that our attacker model, the security properties in $\$ 5$ and the mechanism we develop in $\S 6$, can easily be extended to support colluding users. We also assume that an attacker can issue any command available to the system's users, and he knows the system's operational semantics, the database schema, and the integrity constraints.
We assume that an attacker has access to the system's security policy, the set of users, and the definitions of the triggers and views in the system's state. In more detail, given an M-state $\langle d b, U, s e c, T, V, c\rangle$, an attacker can access U, sec, T, and V. Users interacting with existing DBMSs typically have access to some, although not all, of this information. For instance, in PostgreSQL a user can read all the information about the triggers defined on the tables for which he has some non-SELECT privileges. Note that the more information an attacker has, the more attacks he can launch. Finally, we assume that an attacker knows whether any two of his commands c and c^{\prime} have been executed consec-

$\begin{aligned} & s=\langle d b, s e c, U, T, V, c\rangle f^{\prime}(s,\langle u, \text { SELECT }, q\rangle)=\top \operatorname{trg}(s)= \\ & s^{\prime}=\left\langle d b, s e c, U, T, V, c^{\prime}\right\rangle \quad c^{\prime}=u p d(s,\langle u, \operatorname{SELECT}, q\rangle \end{aligned}$	SELECT Success	$\begin{gathered} s=\begin{array}{c} \langle d b, \sec , U, T, V, c\rangle \\ u=\operatorname{user}(m, \text { owner }, \text { invoker }(s)) \end{array} \bar{v}=\operatorname{tpl}(s) \\ \hline \end{gathered}$		
$s{ }^{\langle u, \text { SELECT }, q\rangle}{ }_{f} s^{\prime}$		$\operatorname{trg}(s)=\langle i d$, owner, ev,	$, \phi, s t, m\rangle$	
		$f(s,\langle u$, SELECT, $\phi[\bar{x} \mapsto \bar{v}]\rangle)=\top$ $\left\langle u\right.$, INSERT, $\left.R, \bar{v}^{\prime}\right\rangle=a c$	$\left.\left[\begin{array}{l} {[\phi[\bar{x} \mapsto} \\ \text { st } u, \bar{v}) \end{array}\right]\right]^{d b}=\top$	
$s=\langle d b, s e c, U, T, V, c\rangle \quad f(s,\langle u, \operatorname{INSERT}, R, \bar{t}\rangle)=\top$	INSERT Success	$f\left(s,\left\langle u, \text { INSERT }, R, \bar{v}^{\prime}\right\rangle\right)=\top$	$=u p d(s, \operatorname{trg}(s))$	
$\begin{array}{rr} s^{\prime}=\left\langle d b\left[R \oplus \bar{t}, \text { sec, } U, T, V, c^{\prime}\right\rangle\right. & d b[R \oplus \bar{t}] \in \Omega_{D}^{\Gamma} \\ c^{\prime}=u p d(s,\langle u, \text { INSERT, } R, \bar{t}\rangle) & \operatorname{trg}(s)=\epsilon \end{array}$		$s^{\prime}=\left\langle d b\left[R \oplus \bar{v}^{\prime}\right], s e c, U, T, V, c^{\prime}\right\rangle$	$d b\left[R \oplus \bar{v}^{\prime}\right] \in \Omega_{D}^{\Gamma}$	Trigger
$\left\langle^{\langle u, \mathrm{INSERT}, R, \bar{t}\rangle}\right.$,		$s \xrightarrow{\operatorname{trg}(s)}{ }_{f} s^{\prime}$		

Figure 3: Examples of system model's rules.

$$
\begin{aligned}
& \begin{array}{c}
r^{i+1}=r^{i} \cdot t \cdot s \quad \text { invoker }\left(\operatorname{last}\left(r^{i}\right)\right)=u \quad s \in \Omega_{M} \quad 1 \leq i<|r| \\
\sec \operatorname{Ex}(s)=\perp \quad \operatorname{Ex}(s)=\emptyset
\end{array} \\
& \sec \operatorname{Ex}(s)=\perp \quad \operatorname{Ex}(s) \underset{ }{=} \quad r, i \vdash_{u} \neg \psi \quad r, i+1 \vdash_{u} \psi \quad \text { Learn } \quad r^{i+1}=r^{i} \cdot\langle u, \text { SELECT, } \phi\rangle \cdot s \\
& t=\left\langle i d, o w, e v, R^{\prime}, \phi(\bar{x}),\langle\operatorname{INSERT}, R, \bar{t}\rangle, m\right\rangle \\
& r, i \vdash_{u} \phi\left[\bar{x} \mapsto \operatorname{tpl}\left(\operatorname{last}\left(r^{i}\right)\right)\right] \\
& r, i-1 \vdash_{u} \phi \quad r^{i}=r^{i-1} \cdot\langle u, o p, R, \bar{t}\rangle \cdot s \quad s \in \Omega_{M} \quad 1<i \leq|r| \\
& \operatorname{secEx}(s)=\perp \quad \operatorname{Ex}(s)=\emptyset \quad \operatorname{revise}\left(r^{i-1}, \phi, r^{i}\right)=\top \quad o p \in\{\text { INSERT, DELETE }\} \quad \text { Propagate Forward } \\
& r, i \vdash_{u} \phi \\
& \text { Update Success }
\end{aligned}
$$

Figure 4: Example of attacker inference rules, where $r, i \vdash_{u} \phi$ denotes that this judgment holds in $\mathcal{A T} \mathcal{K}_{u}$.
utively by the system, i.e., if there are commands executed by other users occurring between c and c^{\prime}. The attacker's knowledge about the sequential execution of his commands is needed to soundly propagate his knowledge about the system's state between his commands. Since the mechanism we develop in $\sqrt{6}$ is secure with respect to this attacker, it is also secure with respect to weaker attackers who have less information or cannot detect whether their commands have been executed consecutively.

An attacker model describes what information an attacker knows, how he interacts with the system, and what he learns about the system's data by observing the system's behaviour. Since every user is a potential attacker, for each user $u \in \mathcal{U}$ we define an attacker model specifying u 's inference capabilities. To represent u 's knowledge, we introduce judgments. A judgment is a four-tuple $\langle r, i, u, \phi\rangle$, written $r, i \vdash_{u} \phi$, denoting that from the run r, which represents the system's behaviour, the user u can infer that ϕ holds in the i-th state of r. An attacker model for u is thus a set of judgments associating to each position of each run, the sentences that u can infer from the system's behaviour. The idea of representing the attacker's knowledge using sentences ϕ is inspired by existing formalisms for Inference Control 12,20 and Controlled Query Evaluation 11.

Definition 4.2. Let P be an extended configuration, L be the P-LTS, and $u \in \mathcal{U}$ be a user. A (P, u)-judgment is a tuple $\langle r, i, u, \phi\rangle$, written $r, i \vdash_{u} \phi$, where $r \in \operatorname{traces}(L)$, $1 \leq i \leq|r|$, and $\phi \in R C_{\text {bool }}$. A (P, u)-attacker model is a set of (P, u)-judgments. A (P, u)-judgment $r, i \vdash_{u} \phi$ holds in a (P, u)-attacker model A iff $r, i \vdash_{u} \phi \in A$.

For each user $u \in \mathcal{U}$, we now define the (P, u)-attacker model $\mathcal{A} \mathcal{T} \mathcal{K}_{u}$ that we use in the rest of the paper. We formalize this model using a set of inference rules, where $\mathcal{A} \mathcal{T} \mathcal{K}_{u}$ is the smallest set of judgments satisfying the inference rules. Figure 4 shows five representative rules. The complete formalization of all rules is given in Appendix B.

In the following, when we say that a judgment $r, i \vdash_{u} \phi$ holds, we always mean with respect to the attacker model $\mathcal{A T} \mathcal{K}_{u}$.

Note that $\mathcal{A T} \mathcal{K}_{u}$ is sound with respect to the $R C$ semantics, i.e., if $r, i \vdash_{u} \phi$ holds, then the formula ϕ holds in the i-th state of r. Intuitively, $\mathcal{A T} \mathcal{K}_{u}$ models how u infers information from the system's behaviour, namely (a) how u learns information from his commands and their results, (b) how u learns information from triggers, their execution, their interleavings, and their side effects, (c) how u propagates his knowledge along a run, and (d) how u learns information from exceptions caused by either integrity constraint violations or security violations. This model is substantially more powerful than the SELECT-only attacker model.

The rules DELETE Success and SELECT Success describe how the user u infers information from his successful actions, i.e., those actions that generate neither security exceptions nor integrity violations. In the rules, $\sec E x(s)=\perp$ denotes that there were no security exceptions caused by the action leading to s, and $E x(s)=\emptyset$ denotes that the action leading to s has not violated the integrity constraints. After a successful DELETE, u knows that the deleted tuple is no longer in the database, and after a successful SELECT he learns the query's result, denoted by res(s).

The rules Propagate Backward SELECT and Propagate Forward Update Success describe how u propagates information along the run. Propagate Backward SELECT states that if the user u knows that ϕ holds after a SELECT command, then he knows that ϕ also holds just before the SELECT command because SELECT commands do not modify the database state. Propagate Forward Update Success states that if u knows that ϕ holds before a successful INSERT or DELETE command and he can determine that the command's execution does not influence ϕ 's truth value, denoted by $\operatorname{revise}\left(r^{i-1}, \phi, r^{i}\right)=\top$, then he also knows that ϕ holds after the command. The function revise is formalized in Appendix B

Finally, the rule Learn INSERT Backward models u's reasoning when he activates a trigger that successfully inserts a tuple in the database. If u knows that immediately before the trigger the formula ψ does not hold and immediately after the trigger the formula ψ holds, then the trigger's execution is the cause of the database state's change. Therefore, u can infer that the trigger's condition ϕ holds just before the trigger's execution. Note that invoker (s) denotes the user who fired the trigger that is executed in the state s, whereas $\operatorname{tpl}(s)$ denotes the tuple associated with the action that fired the trigger that is executed in the state s.

Example 4.1. Let the schema, the set of users U, and the policy S be as in Example 3.1. The database state $d b$ is $d b(N)=\{v\}, d b(P)=\emptyset$, and $d b(T)=\{v\}$. The only trigger in the system is $t=\left\langle i d\right.$, admin, INS $, P, T\left(x_{1}\right),\langle$ InSERT, $\left.\left.N, x_{1}\right\rangle, O\right\rangle$. The run r is as follows:

1. u deletes v from N.
2. u inserts v in P. This activates the trigger t, which inserts v in N.
3. u issues the SELECT query $N(v)$.

We used Maude to generate the following run, which illustrates how the system's state changes. Note that there are no exceptions during the run.

Figure 5 models u 's reasoning in Attack 5 . The user u first applies the SELECT Success rule to derive $r, 5 \vdash_{u} N(v)$, i.e., he learns the query's result. By applying the rule Propagate Backward SELECT to $r, 5 \vdash_{u} N(v)$, he obtains $r, 4 \vdash_{u}$ $N(v)$, i.e., he learns that $N(v)$ holds before the SELECT query. Similarly, he applies the rule DELETE Success to derive $r, 2 \vdash_{u} \neg N(v)$, and he obtains $r, 3 \vdash_{u} \neg N(v)$ by applying the Propagate Forward Update Success rule. Finally, by applying the rule Learn INSERT Backward to $r, 3 \vdash_{u} \neg N(v)$ and $r, 4 \vdash_{u} N(v)$, he learns the value of the trigger's WHEN condition $r, 3 \vdash_{u} T(v)$. Since the user u should not be able to learn information about T, the attack violates the intended confidentiality guarantees. We used our executable attacker model 26 to derive the judgments.

5. SECURITY PROPERTIES

Here we define two security properties: database integrity and data confidentiality. These properties capture the two essential aspects of database security. Database integrity states that all actions modifying the system's state are authorized by the system's policy. In contrast, data confidentiality states that all information that an attacker can learn by observing the system's behaviour is authorized.

These two properties formalize security guarantees with respect to the two different classes of attacks previously identified. An access control mechanism providing database integrity prevents non-authorized changes to the system's state and, thereby, prevents integrity attacks. Similarly, by preventing the leakage of sensitive data, a mechanism providing data confidentiality prevents confidentiality attacks.

$$
\begin{aligned}
& s=\langle d b, U, s e c, T, V, c\rangle \quad u, o \in U \quad o p \in\left\{\oplus, \oplus^{*}\right\} \\
& \text { priv }=\langle\text { SELECT, } v\rangle \quad v=\langle i d, o, q, O\rangle \quad v \in V \\
& h a s A c c e s s\left(s, v, o, \oplus^{*}\right) \\
& s \sim_{\text {auth }}\langle o p, u, \text { priv, } o\rangle \\
& \begin{array}{l}
s=\langle d b, U, \text { sec, } T, V, c\rangle \quad t=\langle i d, \text { ow, ev, } R, \phi, s t, A\rangle \\
{\left[\phi[\bar{x} \mapsto \operatorname{tpl}(s)] d \operatorname{db}=\mathrm{T} \quad s \sim_{\text {auth }} \text { act }(s t, \text { ow }, \operatorname{tpl}(s))\right.} \\
s \sim_{\text {auth }} \text { act }(s t, \text { invoker }(s), \text { tpl }(s)) \quad t \in T \\
s \sim_{\text {auth }} t \\
\text { TRIGGER }
\end{array} \\
& s=\langle d b, U, s e c, T, V, c\rangle \quad s^{\prime}=\left\langle d b, U, s e c^{\prime}, T, V, c\right\rangle \\
& \frac{s^{\prime}=\operatorname{apply}\left(\left\langle\ominus, u, p, u^{\prime}\right\rangle, s\right) \quad \forall g \in \sec ^{\prime} . s^{\prime} \sim_{\text {auth }} g}{s \sim \sim_{\text {auth }}\left\langle\ominus, u, p, u^{\prime}\right\rangle} \text { REVOKE }
\end{aligned}
$$

Figure 6: Examples of $\overbrace{\text { auth }}$ rules.

5.1 Database Integrity

Database integrity requires a formalization of authorized actions. We therefore define the relation $\sim{ }_{\text {auth }}$ between states and actions, modelling which actions are authorized in a given state. Let $P=\langle M, f\rangle$ be an extended configuration, where $M=\langle D, \Gamma\rangle$ and f is an M-PDP. The relation $\sim_{a u t h} \subseteq$ $\Omega_{M} \times\left(\mathcal{A}_{D, \mathcal{U}} \cup \mathcal{T} \mathcal{R} \mathcal{I G G E} \mathcal{R}_{D}\right)$ is defined by a set of rules given in Appendix C Figure 6 shows three representative rules. The GRANT rule says that the owner o of a view v with owner's privileges is authorized to delegate the SELECT privilege over v to a user u in the state s, if o has the SELECT privilege with grant option over a set of tables and views that determine v 's materialization 34], denoted by hasAccess $\left(s, v, o, \oplus^{*}\right)$. The TRIGGER rule says that the execution of an enabled trigger, i.e., one whose WHEN condition is satisfied, with the activator's privileges is authorized if both the invoker and the trigger's owner are authorized to execute the trigger's action according to $\leadsto{ }_{\text {auth }}$. Note that the act function instantiates the action given in the trigger's definition to a concrete action by identifying the user performing the action and replacing the free variables with values from dom. Finally, the REVOKE rule says that a REVOKE statement is authorized if the resulting state, obtained using the function apply, has a consistent policy, namely one in which all the GRANTs are authorized by \leadsto auth .
We now define database integrity. Intuitively, a PDP provides database integrity iff all the actions it authorizes are explicitly authorized by the policy, i.e., they are authorized by \leadsto auth. This notion comes directly from the SQL standard, and it is reflected in existing enforcement mechanisms. Recall that, given a state $s, \sec E x(s)=\perp$ denotes that there were no security exceptions caused by the action or trigger leading to s.

Definition 5.1. Let $P=\langle M, f\rangle$ be an extended configuration, where $M=\langle D, \Gamma\rangle$ and f is an M-PDP, and let L be the P-LTS. We say that f provides database integrity with respect to P iff for all reachable states $s, s^{\prime} \in \Omega_{M}$, if s^{\prime} is reachable in one step from s by an action $a \in \mathcal{A}_{D, u} \cup \mathcal{T} \mathcal{R} \mathcal{G G E} \mathcal{R}_{D}$ and $\operatorname{secEx}\left(s^{\prime}\right)=\perp$, then $s \sim_{\text {auth }} a$.

Example 5.1. We consider a run corresponding to Attack 1 which illustrates a violation of database integrity. The database $d b$ is such that $d b(P)=\emptyset$ and $d b(S)=\{z\}$, the policy sec is $\left\{\left\langle\oplus, u_{1},\langle\right.\right.$ CREATE TRIGGER,$P\rangle$, admin $\rangle,\left\langle\oplus, u_{2},\langle\right.$ INSERT,$P\rangle$, admin $\rangle,\left\langle\oplus, u_{2},\langle\right.$ DELETE,$S\rangle$, admin $\rangle,\left\langle\oplus, u_{2},\langle\right.$ SELECT,$~ P\rangle$, admin \rangle, $\left\langle\oplus, u_{2},\langle\right.$ SELECT, $\left.\left.S\rangle, a d m i n\right\rangle\right\}$, and the set U is $\left\{u_{1}, u_{2}, a d m i n\right\}$. The run r is as follows:

$\overline{r, 2 \vdash_{u} \neg N(v)}$	DELETE Success Propagate Forward Update Success	$\overline{r, 5 \vdash_{u} N(v)}$	SELECT Success
$\overline{r, 3 \vdash_{u} \neg N(v)}$	$\overline{r, 4 \vdash_{u} N(v)}$	Propagate Backward SELECT	

$r, 3 \vdash_{u} T(v)$
Learn INSERT Backward
Figure 5: Template Derivation of Attack 5 (contains just selected subgoals)

1. The user u_{1} creates the trigger $t=\left\langle i d, u_{1}, I N S, P, \top\right.$, \langle DELETE, $S, z\rangle, A\rangle$.
2. The user u_{2} inserts the value v in P. This activates the trigger t and deletes the content of S, i.e., the value z. We used Maude to generate the following run, which illustrates how the system's state changes. Note that there are no exceptions during the run.

Access control mechanisms that do not restrict the execution of triggers with activator's privileges violate database integrity because they do not throw security exceptions when $\left\langle d b[P \oplus v], U, s e c,\{t\}, \emptyset, c_{3}\right\rangle \not \chi_{{ }_{\text {auth }} t} t$.

5.2 Data Confidentiality

To model data confidentiality, we first introduce the concept of indistinguishability of runs, which formalizes the desired confidentiality guarantees by specifying whether users can distinguish between different runs based on their observations. Formally, a P-indistinguishability relation is an equivalence relation over traces (L), where P is an extended configuration and L is the P-LTS. Indistinguishable runs, intuitively, should disclose the same information.

We now define the concept of a secure judgment, which is a judgment that does not leak sensitive information or, equivalently, one that cannot be used to differentiate between indistinguishable runs.

Definition 5.2. Let P be an extended configuration, L be the P-LTS, and \cong be a P-indistinguishability relation. A judgment $r, i \vdash_{u} \phi$ is secure with respect to P and \cong, written secure $_{P, \cong}\left(r, i \vdash_{u} \phi\right)$, iff for all $r^{\prime} \in \operatorname{traces}(L)$ such that $r^{i} \cong r^{\prime}$, it holds that $[\phi]^{d b}=[\phi]^{d b^{\prime}}$, where last $\left(r^{i}\right)=$ $\langle d b, U, S, T, V, c\rangle$ and last $\left(r^{\prime}\right)=\left\langle d b^{\prime}, U^{\prime}, S^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$.

We are now ready to define data confidentiality. Intuitively, an access control mechanism provides data confidentiality iff all judgments that an attacker can derive are secure.

Definition 5.3. Let $P=\langle M, f\rangle$ be an extended configuration, L be the P-LTS, $u \in \mathcal{U}$ be a user, A be a (P, u)-attacker model, and \cong be a P-indistinguishability relation. We say that f provides data confidentiality with respect to P, u, A, and \cong iff secure $_{P, \cong} \cong\left(r, i \vdash_{u} \phi\right)$ for all judgments $r, i \vdash_{u} \phi$ that hold in A.

We now define the indistinguishability relation that we use in the rest of the paper, which captures what each user can observe (as stated in $\$ 4.3$) and the effects of the system's access control policy. Let $P=\langle\langle D, \Gamma\rangle, f\rangle$ be an extended configuration, L be the P-LTS, and u be a user in \mathcal{U}. Given a run $r \in \operatorname{traces}(L)$, the user u is aware only

$r\left(d b_{2}\right)$	N	\{v\}	N	0	N	0	N	\{v\}	N	\{v\}
	P	0	P	0	P	\{v\}	P	$\{v\}$	P	\{v\}
	T	$\{j, v\}$								

$r\left(d b_{3}\right)$

\mathbf{N}	$\{v\}$			
P	\emptyset			
T	\emptyset	\rightarrow	N	\emptyset
:---:	:---:			
P	\emptyset			
T	\emptyset	\rightarrow	N	θ
:---:	:---:			
P	$\{v\}$			
T	\emptyset	\rightarrow	N	θ
:---:	:---:			
P	$\{v\}$			
T	\emptyset	\rightarrow	N	\emptyset
:---:	:---:			
P	$\{v\}$			
T	\emptyset			

Figure 7: The runs $r\left(d b_{1}\right)$ and $r\left(d b_{2}\right)$ are indistinguishable, whereas $r\left(d b_{1}\right)$ and $r\left(d b_{3}\right)$ are not.
of his actions and not of the actions of the other users in r. This is represented by the u-projection of r, which is obtained by masking all sequences of actions that are not issued by u using a distinguished symbol $*$. Specifically, the u-projection of r is a sequence of states in Ω_{M} and actions in $\mathcal{A}_{D, u} \cup \mathcal{T R} \mathcal{I G G E} \mathcal{R}_{D} \cup\{*\}$ that is obtained from r by (1) replacing each action not issued by u with $*$, (2) replacing each trigger whose invoker is not u with $*$, and (3) replacing all non-empty sequences of $*$-transitions with a single $*$-transition. For each user $u \in \mathcal{U}$, we define the P-indistinguishability relation $\cong_{P, u}$, which is formally defined in Appendix D. Intuitively, two runs r and r^{\prime} are $\cong_{P, u^{-}}$ indistinguishable, denoted $r \cong_{P, u} r^{\prime}$, iff (1) the labels of the u-projections of r and r^{\prime} are the same, (2) u executes the same actions a_{1}, \ldots, a_{n} in r and r^{\prime}, in the same order, and with the same results, and (3) before each action a_{i}, where $1 \leq i \leq n$, as well as in the last states of r and r^{\prime}, the views, the triggers, the users, and the data disclosed by the policy are the same in r and r^{\prime}.

We remark that there is a close relation between $\cong_{P, u}$ and state-based indistinguishability $24,35,46$. For any two $\cong_{P, u}$-indistinguishable runs r and r^{\prime}, the database states that precede all actions issued by u as well as the last states in r and r^{\prime} are pairwise indistinguishable under existing state-based notions $24,35,46$.

Example 5.2 illustrates our indistinguishability notion.
Example 5.2. Let the schema, the set of users, the policy, and the triggers be as in Example4.1 Consider the following run $r(d b)$, parametrized by the initial database state $d b$:

1. u deletes v from N.
2. u inserts v in P. If v is in T, this activates the trigger t, which, in turn, inserts v in N.
3. u issues the SELECT query $N(v)$.

Let $d b_{1}, d b_{2}$, and $d b_{3}$ be three database states such that $d b_{1}(T)=\{v\}, d b_{2}(T)=\{j, v\}$, and $d b_{3}(T)=\emptyset$, whereas $d b_{i}(N)=\{v\}$ and $d b_{i}(P)=\emptyset$, for $1 \leq i \leq 3$. Note that $r\left(d b_{1}\right)$ is the run used in Example 4.1 Figure 7 depicts how the database's state changes during the runs $r\left(d b_{i}\right)$, for $1 \leq i \leq 3$. Gray indicates those tables that the user u cannot read. The runs $r\left(d b_{1}\right)$ and $r\left(d b_{2}\right)$ are indistinguishable for the user u. The only difference between them is the content
of the table T, which u cannot read. In contrast, u can distinguish between $r\left(d b_{1}\right)$ and $r\left(d b_{3}\right)$ because the trigger has been executed in the former and not in the latter.
Indistinguishability may also depend on the actions of the other users. Consider the runs r^{\prime} and $r^{\prime \prime}$ obtained by extending $r\left(d b_{1}\right)$ respectively with one and two SELECT queries issued by the administrator just after u 's query. The user u can distinguish between $r\left(d b_{1}\right)$ and r^{\prime} because he knows that other users interacted with the system in r^{\prime} but not in $r\left(d b_{1}\right)$, i.e., the u-projections have different labels. In contrast, the runs r^{\prime} and $r^{\prime \prime}$ are indistinguishable for u because he only knows that, after his own SELECT, other users interacted with the system, i.e., the u-projections have the same labels. However, he does not know the number of commands, the commands themselves, or their results.

Example 5.3 shows that existing PDPs leak sensitive information and therefore do not provide data confidentiality.

Example 5.3. In Example 4.1, we showed how the user u derives $r, 3 \vdash_{u} T(v)$. The judgment is not secure because there is a run indistinguishable from r^{3}, i.e., the run $r^{3}\left(d b_{3}\right)$ in Example 5.2 in which $T(v)$ does not hold.

Example 5.4 shows how views may leak information about the underlying tables. Even though this leakage might be considered legitimate, there is no way in our setting to distinguish between intended and unintended leakages. If this is desired, data confidentiality can be extended with the concept of declassification [6, 7].

Example 5.4. Consider a database with two tables T and Z and a view $V=\langle v$, admin, $\{x \mid T(x) \wedge Z(x)\}, O\rangle$. The set U is $\{u, a d m i n\}$ and the policy S is $\{\langle\oplus, u,\langle$ SELECT,$T\rangle, a d m i n\rangle$, $\langle\oplus, u,\langle$ SELECT, $V\rangle, a d \min \rangle,\langle\oplus, u,\langle$ INSERT, $T\rangle, a d m i n\rangle\}$. Consider the following run r, parametrized by the initial database state $d b$, where u first inserts 27 into T and afterwards issues the SELECT query $V(27)$. We assume there are no exceptions in r.

$$
\frac{\left.\left\langle d b, U, S, \emptyset,\{V\}, c_{1}\right\rangle\right\rangle}{\langle u, \text { INSERT, } T, 27\rangle} \underset{\substack{\left.\left\langle d b[T \oplus 27], U, S, \emptyset,\{V\}, c_{2}\right\rangle\right)}}{\langle u, \text { SELECT, } V(27)\rangle \downarrow}
$$

We used Maude to generate the runs $r(d)$ and $r\left(d^{\prime}\right)$ with the initial database states d and d^{\prime} such that $d(T)=d(Z)=$ $d^{\prime}(T)=\emptyset$ and $d^{\prime}(Z)=\{27\}$. The runs $r^{1}(d)$ and $r^{1}\left(d^{\prime}\right)$ are indistinguishable for u because they differ only in the content of Z, which u cannot read. After the INSERT, u can distinguish between $r^{2}(d)$ and $r^{2}\left(d^{\prime}\right)$ by reading V. Indeed, $d[T \oplus 27](V)=\emptyset$, because $d(Z)=\emptyset$, whereas $d^{\prime}[T \oplus 27](V)=$ $\{27\}$. The user u derives $r\left(d^{\prime}\right), 1 \vdash_{u} Z(27)$, which is not secure because $r^{1}(d)$ and $r^{1}\left(d^{\prime}\right)$ are indistinguishable for u, but $Z(27)$ holds just in the latter.

In contrast to existing security notions 24.3546 , we have defined data confidentiality over runs. This is essential to model and detect attacks, such as those in Examples 5.3 and 5.4. where an attacker infers sensitive information from the transitions between states. For instance, the leakage in Example5.4 is due to the execution of the INSERT command. Although the SELECT command is authorized by the policy, u can use it to infer sensitive information about the system's state before the INSERT execution.

6. A PROVABLY SECURE PDP

We now present a PDP that provides both database integrity and data confidentiality. We first explain the ideas behind it using examples. Afterwards, we show that it satisfies the desired security properties and has acceptable overhead. Finally, we argue that it is more permissive than existing access control solutions.

Figure 8 depicts our PDP f together with the functions $f_{\text {int }}$ and $f_{\text {conf }}$. Additional details about the PDP are given in Appendices F G The PDP takes as input a state s and an action a and outputs T iff both $f_{\text {int }}$ and $f_{\text {conf }}$ authorize a in s, i.e., iff a 's execution neither violates database integrity nor data confidentiality. Note that our algorithm is not complete in that it may reject some secure commands. However, from the results in $24,30,34$, it follows that no algorithm can be complete and provide database integrity and data confidentiality for the relational calculus.
Our PDP is invoked by the database system each time a user u issues an action a to check whether u is authorized to execute a. The PDP is also invoked whenever the database system executes a scheduled trigger t : once to check if the SELECT statement associated with t 's WHEN condition is authorized and once, in case t is enabled, to check if t 's action is authorized.

6.1 Enforcing Database Integrity

The function $f_{\text {int }}$ takes as input a state s and an action a. If the system is not executing a trigger, denoted by $\operatorname{trg}(s)=\epsilon, f_{\text {int }}$ checks (line 1) whether a is authorized with respect to s. In line $2, f_{\text {int }}$ checks whether a is the current trigger's condition. If this is the case, it returns T because the triggers' conditions do not violate database integrity. Finally, the algorithm checks (line 3) whether a is the current trigger's action, and if this is the case, it checks whether the current trigger $\operatorname{trg}(s)$ is authorized with respect to s. The function auth, which checks if a is authorized with respect to s, is a sound and computable under-approximation of \sim auth . Thus, any action authorized by $f_{\text {int }}$ is authorized according to \leadsto auth. This ensures database integrity. Note that \leadsto auth relies on the concept of determinacy 34 to decide whether a query is determined by a set of views. Since determinacy is undecidable [34], in auth we implement a sound underapproximation of it, given in Appendix E, that checks syntactically if a query is determined by a set of views.

Example 6.1. Consider a database with three tables: R, T, and Z. The set U is $\left\{u, u^{\prime}, a d m i n\right\}$ and the policy S is $\left\{\langle\oplus, u,\langle\mathrm{SELECT}, R\rangle, a d m i n\rangle,\left\langle\oplus^{*}, u,\langle\mathrm{SELECT}, T\rangle, a d m i n\right\rangle\right.$, $\left.\left\langle\oplus^{*}, u,\langle\operatorname{SELECT}, Z\rangle, a d \min \right\rangle\right\}$. There are two views $V=\langle v$, admin, $\{x \mid T(x) \wedge Z(x)\}, O\rangle$ and $W=\langle w, u,\{x \mid R(x) \vee$ $V(x)\}, O\rangle$. The user u tries to grant to u^{\prime} read access to W, i.e., he issues $\left\langle\oplus, u^{\prime},\langle\operatorname{SELECT}, W\rangle, u\right\rangle$. The PDP $f_{\text {int }}$ rejects the command and raises a security exception because u is authorized to delegate the read access only for T and Z but W 's result depends also on R, for which u cannot delegate read access. Assume now that the policy is $\left\{\left\langle\oplus^{*}, u,\langle\operatorname{SELECT}, R\rangle, a d \min \right\rangle,\left\langle\oplus^{*}, u,\langle\operatorname{SELECT}, T\rangle, a d \min \right\rangle,\left\langle\oplus^{*}, u\right.\right.$, $\langle\operatorname{SELECT}, Z\rangle, a d \min \rangle\}$. In this case, $f_{\text {int }}$ authorizes the GRANT. The reason is that W 's definition can be equivalently rewritten as $\{x \mid R(x) \vee(T(x) \wedge Z(x))\}$ and u is authorized to delegate the read access for R, T, and Z.

$\triangleright s$ is a state and a is an action

 function $f(s, a)$1. return $f_{\text {int }}(s, a) \wedge f_{\text {conf }}(s, a, \operatorname{user}(s, a))$
```
\(\triangleright s\) is a state and \(a\) is an action
function \(f_{\text {int }}(s, a)\)
if \(\operatorname{trg}(s)=\epsilon\) return auth \((s, a)\)
    else if \(a=\operatorname{cond}(\operatorname{trg}(s), s)\) return \(\top\)
        else if \(a=\operatorname{act}(\operatorname{trg}(s), s)\) return \(\operatorname{auth}(s, \operatorname{trg}(s))\)
            else return \(\perp\)
```

$\triangleright s$ is a state, a is an action, and u is a user
function $f_{\text {conf }}(s, a, u)$
switch a
case $\left\langle u^{\prime}\right.$, $\left.\operatorname{SELECT}, q\right\rangle$: return $\operatorname{secure~}(u, q, s)$
case $\left\langle u^{\prime}\right.$, INSERT, $\left.R, \bar{t}\right\rangle$: case $\left\langle u^{\prime}\right.$, DELETE, $\left.R, \bar{t}\right\rangle$:
if $\operatorname{leak}(a, s, u) \vee \neg \operatorname{secure}(u, \operatorname{getInfo}(a), s)$ return \perp
for $\gamma \in \operatorname{Dep}(a, \Gamma)$
if $(\neg \operatorname{secure}(u, \operatorname{getInfoS}(\gamma, a), s) \vee \neg \operatorname{secure}(u, \operatorname{getInfo} V(\gamma, a), s))$ return \perp
case $\left\langle\oplus, u^{\prime \prime}, p r, u^{\prime}\right\rangle,\left\langle\oplus^{*}, u^{\prime \prime}, p r, u^{\prime}\right\rangle:$ return $\neg l e a k(a, s, u)$
return \top

Figure 8: The PDP f uses the two subroutines $f_{i n t}$ and $f_{\text {conf }}$. The former provides database integrity and the latter provides data confidentiality with respect to the user user (s, a), which denotes either the user issuing the action, when the system is not executing a trigger, or the trigger's invoker.

6.2 Enforcing Data Confidentiality

The function $f_{\text {conf }}$, shown in Figure 8 takes as input an action a, a state s, and a user u. Note that any user other than the administrator is a potential attacker. The requirement for $f_{\text {conf }}$ is that it authorizes only those commands that result in secure judgments for u as required by Definition 5.3 To achieve this, $f_{\text {conf }}$ over-approximates the set of judgments that u can derive from a 's execution. For instance, the algorithm assumes that u can always derive the trigger's condition from the run, even though this is not always the case. Then, $f_{\text {conf }}$ authorizes a iff it can determine that all u 's judgements are secure. This can be done by analysing just a finite subset of the over-approximated set of u 's judgments.

In more detail, $f_{\text {conf }}$ performs a case distinction on the action a (line 1). If a is a SELECT command (line 2), $f_{\text {conf }}$ checks whether the query is secure with respect to the current state s and the user u using the secure procedure. If a is an INSERT or DELETE command (lines $3-7$), $f_{\text {conf }}$ checks (line 4), using the leak procedure, whether a 's execution may leak sensitive information through the views that u can read, as in Example 5.4 Afterwards, $f_{\text {conf }}$ also checks (line 4) whether the information u can learn from a 's execution, modelled by the sentence computed by the procedure $\operatorname{getInfo}(a)$, is secure. In line $5-7, f_{\text {conf }}$ computes the set of all integrity constraints that a 's execution may violate, denoted by $\operatorname{Dep}(a, \Gamma)$, and for all constraints γ, it checks whether the information that u may learn from γ is secure. The procedure getInfoS (respectively getInfoV) computes the sentence modelling the information learned by u from γ if a is executed successfully (respectively violates γ). If a is a GRANT command (line 8), $f_{\text {conf }}$ checks whether a 's successful execution discloses sensitive information to u. In the remaining cases (line 9), $f_{\text {conf }}$ authorizes a.

Secure judgments. Determining if a given judgment is secure is undecidable for $R C$ [24,30]. Hence, the secure procedure implements a sound and computable under-approximation of this notion. We now present our solution. Other sound under-approximations can alternatively be used without affecting $f_{\text {conf }}$'s data confidentiality guarantees.

Let $M=\langle D, \Gamma\rangle$ be a system configuration, $r, i \vdash_{u} \phi$ be a judgment, and $s=\langle d b, U, s e c, T, V, c\rangle$ be the i-th state in r. As a first under-approximation, instead of the set of all runs indistinguishable from r^{i}, we consider the larger set of all runs r^{\prime} whose last state $s^{\prime}=\left\langle d b^{\prime}, U, s e c, T, V, c^{\prime}\right\rangle$ is
such that the disclosed data in $d b$ and $d b^{\prime}$ are the same. Note that if a judgment is secure with respect to this larger set, it is secure also with respect to the set of indistinguishable runs because the former set contains the latter. This larger set depends just on the database state $d b$ and the policy sec, not on the run or the attacker model $\mathcal{A T} \mathcal{K}_{u}$. Determining judgment's security is, however, still undecidable even on this larger set. We therefore employ a second under-approximation that uses query rewriting. We rewrite the sentence ϕ to a sentence $\phi_{r w}$ such that if $r, i \vdash_{u} \phi$ is not secure for the user u, then $\left[\phi_{r w}\right]^{d b}=\top$. The formula $\phi_{r w}$ is $\neg \phi_{s, u}^{\top} \wedge \phi_{s, u}^{\perp}$, where $\phi_{s, u}^{\top}$ and $\phi_{s, u}^{\perp}$ are defined inductively over ϕ. A formal definition of secure is given in Appendix F

We now explain how we construct $\phi_{s, u}^{\top}$ and $\phi_{s, u}^{\perp}$. We assume that both ϕ and V contain only views with the owner's privileges. The extension to the general case is given in Appendix F. First, for each table or view $o \in D \cup V$, we create additional views representing any possible projection of o. The extended vocabulary contains the tables in D, the views in V, and their projections. For instance, given a table $R(x, y)$, we create the views R_{x} and R_{y} representing respectively $\{y \mid \exists x . R(x, y)\}$ and $\{x \mid \exists y . R(x, y)\}$. Second, we compute the formula ϕ^{\prime} by replacing each sub-formula $\exists \bar{x} . R(\bar{x}, \bar{y})$ in ϕ with the view $R_{\bar{x}}(\bar{y})$ associated with the corresponding projection. Third, for each predicate R in the formula ϕ^{\prime}, we compute the sets $R_{s, u}^{\top}$ and $R_{s, u}^{\perp}$. The set $R_{s, u}^{\top}$ (respectively $R_{s, u}^{\perp}$) contains all the tables and views K in the extended vocabulary such that (1) K is contained in (respectively contains) R, and (2) the user u is authorized to read K in s, i.e., there is a grant $\left\langle o p, u,\left\langle\operatorname{SELECT}, K^{\prime}\right\rangle, u^{\prime}\right\rangle \in \sec$ such that either $K^{\prime}=K$ or K is obtained from K^{\prime} through a projection. The formula $\phi_{s, u}^{v}$, where $v \in\{\top, \perp\}$, is:

$$
\phi_{s, u}^{v}= \begin{cases}\bigvee_{S \in R_{s, u}^{\top}} S(\bar{x}) & \text { if } \phi=R(\bar{x}) \text { and } v=\top \\ \bigwedge_{S \in R_{s, u}} S(\bar{x}) & \text { if } \phi=R(\bar{x}) \text { and } v=\perp \\ \neg \psi_{s, u}^{\neg v} & \text { if } \phi=\neg \psi \\ \psi_{s, u}^{v} * \gamma_{s, u}^{v} & \text { if } \phi=\psi * \gamma \text { and } * \in\{\vee, \wedge\} \\ Q x . \psi_{s, u}^{v} & \text { if } \phi=Q x . \psi \text { and } Q \in\{\exists, \forall\} \\ \phi & \text { otherwise }\end{cases}
$$

The formulae are such that if $\phi_{s, u}^{\top}$ holds, then ϕ holds and if $\neg \phi_{s, u}^{\perp}$ holds, then $\neg \phi$ holds. To compute the sets $R_{s, u}^{\top}$ and $R_{s, u}^{\perp}$, we check the containment between queries. Since query containment is undecidable 3], we implement a sound

Extended Vocabulary Containment Sets

$S_{x}=\{y \mid \exists x . S(x, y)\} \quad V_{x}=\{y \mid \exists x . V(x, y)\}$
$S_{y}=\{x \mid \exists y . S(x, y)\} \quad V_{y}=\{x \mid \exists y . V(x, y)\}$
Original Sentence
$\phi:=(\exists y \cdot S(2, y)) \wedge(\neg R(5) \vee \exists y \cdot S(4, y)) \equiv S_{y}(2) \wedge\left(\neg R(5) \vee S_{y}(4)\right)$
Rewriting
$\phi_{r w}:=\neg \phi_{s, u}^{\top} \wedge \phi_{s, u}^{\perp}$
$\phi_{s, u}^{\top}:=S_{y}(2)_{s, u}^{\top} \wedge\left(\neg R(5)_{s, u}^{\perp} \vee S_{y}(4)_{s, u}^{\top}\right) \equiv V_{y}(2) \wedge\left(\neg W(5) \vee V_{y}(4)\right)$
$\phi_{s, u}^{\perp}:=S_{y}(2) \stackrel{\perp}{s, u} \wedge\left(\neg R(5)_{s, u}^{\top} \vee S_{y}(4) \stackrel{\perp}{s, u}\right) \equiv \top$

Figure 9: Checking the security of the judgment $r, 1 \vdash_{u}(\exists y \cdot S(2, y)) \wedge(\neg R(5) \vee \exists y \cdot S(4, y))$ from Example 6.2.
under-approximation of it, described in Appendix F Other sound under-approximations can be used as well.

Our $\phi_{s, u}^{\top}$ and $\phi_{s, u}^{\perp}$ rewritings share similarities with the low and high evaluations of Wang et al. 46. Both try to approximate the result of a query just by looking at the authorized data. However, we use $\phi_{s, u}^{\top}$ and $\phi_{s, u}^{\perp}$ to determine a judgment's security, whereas Wang et al. use evaluations to restrict the query's results only to authorized data.

Example 6.2. Consider a database with three tables S, R, and Q, and two views $V=\langle v$, admin, $\{x, y \mid S(x, y) \wedge(x=1 \vee$ $y=3)\}, O\rangle$ and $W=\langle w$, admin, $\{x \mid R(x) \vee Q(x)\}, O\rangle$. The database state $d b$ is $d b(S)=\{(1,1),(2,3),(4,2)\}, d b(R)=$ $\{3\}$, and $d b(Q)=\{4\}$, the set U is $\{u$, admin $\}$, and the policy sec is $\{\langle\oplus, u,\langle$ SELECT, $V\rangle$, admin $\rangle,\langle\oplus, u,\langle$ SELECT, $W\rangle$, $a d m i n\rangle\}$. Let the state s be $\langle d b, U$, sec $, \emptyset,\{V, W\}, \epsilon\rangle$ and the run r be s. We want to check the security of $r, 1 \vdash_{u} \phi$, where $\phi:=(\exists y . S(2, y)) \wedge(\neg R(5) \vee \exists y . S(4, y))$, for the user u. Figure 9 depicts the database state $d b$, the materializations of the views V and W, and the materializations of the views S_{x}, S_{y}, V_{x}, and V_{y} in the extended vocabulary. Gray indicates those tables and views that u cannot read.
The rewriting process, depicted also in Figure 9 proceeds as follows. We first rewrite the formula ϕ as $S_{y}(2) \wedge(\neg R(5) \vee$ $\left.S_{y}(4)\right)$. The sets $S_{y_{s, u}}^{\top}, S_{y_{s, u}}^{\perp}, R_{s, u}^{\top}$, and $R_{s, u}^{\perp}$ are respectively $\left\{V_{y}\right\}, \emptyset, \emptyset$, and $\{W\}$. The formulae $\phi_{s, u}^{\top}$ and $\phi_{s, u}^{\perp}$ are respectively $S_{y}(2)_{s, u}^{\top} \wedge\left(\neg R(5)_{s, u}^{\perp} \vee S_{y}(4)_{s, u}^{\top}\right)$, which is equivalent to $V_{y}(2) \wedge\left(\neg W(5) \vee V_{y}(4)\right)$, and $S_{y}(2)_{s, u}^{\perp} \wedge\left(\neg R(5)_{s, u}^{\top} \vee S_{y}(4)_{s, u}^{\perp}\right)$, which is equivalent to T. They are both secure, as they depend only on V and W. Furthermore, since $\phi_{s, u}^{\top}$ holds in s, then ϕ holds as well. Finally, $\phi_{r w}$ is $\neg \phi_{s, u}^{\top} \wedge \phi_{s, u}^{\perp}$. Since $\phi_{r w}$ does not hold in s, it follows that $r, 1 \vdash_{u} \phi$ is secure.

6.3 Theoretical Evaluation

Our PDP provides the desired security guarantees and its data complexity, i.e., the complexity of executing f when the action, the policy, the triggers, and the views are fixed,
is $A C^{0}$. This means that f can be evaluated in logarithmic space in the database's size, as $A C^{0} \subseteq L O G S P A C E$, and evaluation is highly parallelizable. Note that secure's data complexity is $A C^{0}$ because it relies on query evaluation, whose data complexity is $A C^{0}$ 3]. In contrast, all other operations in f are executed in constant time in terms of data complexity. Note also that on a single processor, f 's data complexity is polynomial in the database's size. We believe that this is acceptable because the database is usually very large, whereas the query, which determines the degree of the polynomial, is small. The proofs are given in Appendices $\mathrm{F} G$

Theorem 6.1. Let $P=\langle M, f\rangle$ be an extended configuration, where M is a system configuration and f is as above. The PDP f (1) provides data confidentiality with respect to $P, u, \mathcal{A T} \mathcal{K}_{u}$, and $\cong_{P, u}$, for any user $u \in \mathcal{U}$, and (2) provides database integrity with respect to P. Moreover, the data complexity of f is $A C^{0}$.

As the Examples 6.3 and 6.4 below show, f is more permissive than existing PDPs for those actions that violate neither database integrity nor data confidentiality.

Example 6.3. Our PDP is more permissive than existing mechanisms for commands of the form GRant SELECT ON V TO u, where V is a view with owner's privileges, u is a user, and the statement is issued by the view's owner o. Such mechanisms, in general, authorize the GRANT iff o is authorized to delegate the read permission for all tables and views that occur in v 's definition. Consider again Example 6.1 Our PDP authorizes $\left\langle\oplus, u^{\prime},\langle\right.$ SELECT, $\left.W\rangle, u\right\rangle$ under the policy S^{\prime}. However, existing mechanisms reject it because u is not directly authorized to read V, although u can read the underlying tables. Our PDP also authorizes all the secure GRANT statements authorized by existing mechanisms.

Example 6.4. Our PDP is more permissive than the mechanisms used in existing DBMSs for secure SELECT statements. Such mechanisms, in general, authorize a SELECT statement issued by a user u iff u is authorized to read all tables and views used in the query. They will reject the query in Example 6.2 even though the query is secure. Furthermore, any secure SELECT statement authorized by them will be authorized by our solution as well. Also the PDP proposed by Rizvi et al. 35 rejects the query in Example 6.2 as insecure. However, our solution and the proposal of Rizvi et al. 35 are incomparable in terms of permissiveness, i.e., some secure SELECT queries are authorized by one mechanism and not by the other.

6.4 Implementation

To evaluate the feasibility and security of our approach in practice, we implemented our PDP in Java. The prototype, available at [26], implements both our PDP and the operational semantics of our system model. It relies on the underlying PostgreSQL database for executing the SELECT, INSERT, and DELETE commands. Note that our prototype also handles all the differences between the relational calculus and SQL. For instance, it translates every relational calculus query into an equivalent SELECT SQL query over the underlying database. We performed a preliminary experimental evaluation of our prototype. Our experiments were run on a PC with an Intel i7 processor and 32 GB of RAM. Note that we materialized the content of all the views.

Figure 11: Example 8 : $f_{\text {conf }}$'s execution time.

Figure 10: PDP Execution time.

Our evaluation has two objectives: (1) to empirically validate that the prototype provides the desired security guarantees, and (2) to evaluate its overhead. For (1), we ran the attacks in $\S 2$ against our prototype. As expected, our PDP prevents all the attacks. For (2), we simulated Examples 6.1 and 6.2 on database states where the number of tuples ranges from 1,000 to 100,000 . Figure 10 shows the PDP's execution time. Our results show that our solution is feasible. In more detail, $f_{\text {int }}$'s execution time does not depend on the database size, whereas $f_{\text {conf }}$'s execution time does. We believe that the overhead introduced by the PDP is acceptable for a proof of concept. Even with 100,000 tuples, the PDP's running time is under a second. In Example 6.2 $f_{\text {conf }}$'s execution time is comparable to the execution time of the user's query. As Figure 11 shows, $f_{\text {conf }}$'s query rewriting time does not depend on the database's size, whereas $f_{\text {conf }}$'s query execution time does.
To improve $f_{\text {conf }}$'s performance, one could strike a different balance between simple syntactic checks and our query rewriting solution. This, however, would result in more restrictive PDPs. We will investigate further optimizations as a future work.

7. RELATED WORK AND DISCUSSION

We compare our work against two lines of research: database access control and information flow control. Both of these have similar goals, namely preventing the leakage and corruption of sensitive information.

7.1 Database Access Control

Discretionary Database Access Control. Our framework builds on prior research in database access control [24 35, 46 as well as established notions from database theory, such as determinacy 34 and instance-based determinacy 30 .
Specifically, our notion of secure judgments extends instance based determinacy from database states to runs, while data confidentiality extends existing security notions 24,35 , 46 to dynamic settings, where both the database and the policy may change. Similarly, our indistinguishability notion extends those in 24,46 from database states to runs. Finally, our formalization of $\sim_{\text {auth }}$ relies on determinacy to decide whether the content of a view is fully determined by a set of other views.
Griffiths and Wade propose a PDP 23 that prevents At-
tacks 2 and 3 by using syntactic checks and by removing all views whose owners lack the necessary permissions. In contrast, we prevent the execution of GRANT and REVOKE operations leading to inconsistent policies.
Mandatory Database Access Control. Research on mandatory database access control has historically focused on Multi-Level Security (MLS) 17, where both the data and the users are associated with security levels, which are compared to control data access. Our PDP extends the SQL discretionary access control model with additional mandatory checks to provide database integrity and data confidentiality. In the following, we compare our work with the access control policies and semantics used by MLS systems.

With respect to policies, our work uses the SQL access control model, where policies are sets of GRANT statements. In this model, users can dynamically modify policies by delegating permissions. In contrast, MLS policies are usually expressed by labelling each subject and object in the system with labels from a security lattice 37 . The policy is, in general, fixed (cf. the tranquillity principle [37]).

With respect to semantics, existing MLS solutions are based on the so-called Truman model [35, where they transparently modify the commands issued by the users to restrict the access to only the authorized data. In contrast, we use the same semantics as SQL, that is, we execute only the secure commands. This is called the Non-Truman model 35 . For an in-depth comparison of these access control models, see 24 . 35 . Operationally, MLS mechanisms use polyinstantiation 29, which is neither supported by the relational model nor by the SQL standard, and requires ad-hoc extensions 17,38]. Furthermore, the operational semantics of MLS systems differs from the standard relational semantics. In contrast, our operational semantics supports the relational model and is directly inspired by SQL.
The above differences influence how security properties are expressed. Data confidentiality, which relies on a precise characterization of security based on a possible worlds semantics, is a key component of the Non-Truman model (and SQL) access control semantics. Similarly, database integrity requires that any "write" operation is authorized according to the policy and is directly inspired by the SQL access control semantics. The security properties in MLS systems, in contrast, combine the multilevel relational semantics 17,38 with MLS and BIBA properties 37.
MLS systems prevent attacks similar to Attacks 4 and 5 using poly-instantiated tuples and triggers [38,42, whereas attacks similar to Attack 1 cannot be carried out because triggers with activator's privileges are not supported 42. The SeaView system [17], which combines discretionary access control and MLS, additionally prevents attacks similar to Attacks 2 and 3 by relying on Griffiths and Wade's PDP 23. However, these solutions cannot be applied to SQL databases for the aforementioned reasons.

7.2 Information Flow Control

Various authors have applied ideas from information flow control to databases. Davis and Chen 16 study how crossapplication information flows can be tracked through databases. Other researchers $15,32,39$ present languages for developing secure applications that use databases. They employ secure type systems to track information flows through databases. However, they neither model nor prevent the attacks we identified because they do not account for the
advanced database features and the strong attacker model we study in this paper.
Schultz and Liskov [40] extend decentralized information flow control 33 to databases, based on concepts from multilevel security 17. They identify one attack on data confidentiality that exploits integrity constraints. Their solution relies on poly-instantiation 29] and cannot be applied to SQL databases that do not support multi-level security. Their mechanism neither prevents the other attacks we identify nor provides provable and precise security guarantees.

Several researchers have studied attacker models in information flow control [5. 21. Giacobazzi and Mastroeni 21, model attackers as data-flow analysers that observe the program's behaviour, whereas Askarov and Chong (5) model attackers as automata that observe the program's events. They both model passive attackers, who can observe, but do not influence, the program's execution. In contrast, our attacker is active and interacts with the database.

7.3 Discussion

Historically, database access control and information flow control rely on different foundations, formalisms, security notions, and techniques. We see our paper as a starting point for bridging these topics: we combine database access control theory with an operational semantics and an attacker model, which are common in information flow control, but have been largely ignored in database access control. We thereby give a precise logical characterization of the attacker's capabilities and of a judgment's security. Furthermore, our indistinguishability notion has similarities with the low-equivalence notions used in $[6|7| 10$, whereas both data confidentiality and the notion of secure judgments have a precise characterization as instances of non-interference 22 36; see Appendix H for more details.
We believe our framework provides a basis for (1) further investigating the connections between these two topics, (2) applying information flow mechanisms, such as type systems or multi-execution 18, to database access control, and (3) investigating how integrity notions used in information flow control can best be applied to databases.

8. CONCLUSION

Motivated by practical attacks against existing databases, we have initiated several new research directions. First, we developed the idea that attacker models should be studied and formalized for databases. Rather than being implicit, the relevant models must be made explicit, just like when analysing security in other domains. In this respect, we presented a concrete attacker model that accounts for relevant features of modern databases, like triggers and views, and attacker inference capabilities.
Second, access control mechanisms must be designed to be secure, and provably so, with respect to the formalized attacker capabilities. This requires research on mechanism design, complemented by a formal operational semantics of databases as a basis for security proofs. We presented such a mechanism, proved that it is secure, and built and evaluated a prototype of it in PostgreSQL. As a future work, we will extend our framework and our PDP to directly support the SQL language, and we will investigate efficiency improvements for our PDP.
Acknowledgments. We thank Ùlfar Erlingsson, Erwin Fang, Andreas Lochbihler, Ognjen Maric, Mohammad Torabi

Dashti, Dmitriy Traytel, Petar Tsankov, Thilo Weghorn, Der-Yeuan Yu, Eugen Zalinescu, as well as the anonymous reviewers for their comments.

9. REFERENCES

[1] "New Security Features in Sybase Adaptive Server Enterprise," Sybase Technical White Paper, Sybase, an SAP company, 2003.
[2] (2014, Sep.) Manage trigger security, Microsoft MSDN Library. [Online]. Available: http: //msdn.microsoft.com/en-us/library/ms191134.aspx/
[3] S. Abiteboul, R. Hull, and V. Vianu, Foundations of databases. Addison-Wesley Reading, 1995, vol. 8.
[4] R. Agrawal, P. Bird, T. Grandison, J. Kiernan, S. Logan, and W. Rjaibi, "Extending relational database systems to automatically enforce privacy policies," in Proc. 2005 IEEE Int. Conf. Data Engineering.
[5] A. Askarov and S. Chong, "Learning is change in knowledge: Knowledge-based security for dynamic policies," in Proc. 2012 IEEE Symp. Computer Security Foundations.
[6] A. Askarov and A. Sabelfeld, "Gradual release: Unifying declassification, encryption and key release policies," in Proc. 2007 IEEE Symp. Security and Privacy.
[7] —_, "Tight enforcement of information-release policies for dynamic languages," in Proc. 2009 IEEE Symp. Computer Security Foundations.
[8] G. Bender, L. Kot, and J. Gehrke, "Explainable security for relational databases," in Proc. 2014 ACM Intl. Conf. Management of data.
[9] G. M. Bender, L. Kot, J. Gehrke, and C. Koch, "Fine-grained disclosure control for app ecosystems," in Proc. 2013 ACM Intl. Conf. Management of data.
[10] A. Bohannon, B. C. Pierce, V. Sjöberg, S. Weirich, and S. Zdancewic, "Reactive noninterference," in Proc. 2009 ACM Conf. Computer and Communications Security.
[11] P. A. Bonatti, S. Kraus, and V. Subrahmanian, "Foundations of secure deductive databases," IEEE Trans. Knowl. Data Eng., vol. 7, no. 3, 1995.
[12] A. Brodsky, C. Farkas, and S. Jajodia, "Secure databases: Constraints, inference channels, and monitoring disclosures," IEEE Trans. Knowl. Data Eng., vol. 12, no. 6, 2000.
[13] K. Browder and M. Davidson, "The virtual private database in oracle9ir2," Oracle Technical White Paper, Oracle Corporation, vol. 500, 2002.
[14] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and C. Talcott, "The maude 2.0 system," in Rewriting Techniques and Applications. Springer, 2003.
[15] B. J. Corcoran, N. Swamy, and M. Hicks, "Cross-tier, label-based security enforcement for web applications," in Proc. 2009 ACM Intl. Conf. Management of data.
[16] B. Davis and H. Chen, "DBTaint: cross-application information flow tracking via databases," Proc. 2010 USENIX Conf. Web Application Development.
[17] D. E. Denning and T. F. Lunt, "A multilevel relational data model," in Proc. 1987 IEEE Symp. Security and Privacy.
[18] D. Devriese and F. Piessens, "Noninterference through secure multi-execution," in Proc. 2010 IEEE Symp. Security and Privacy.
[19] D. Dolev and A. C. Yao, "On the security of public key protocols," IEEE Trans. Inf. Theory, vol. 29, no. 2, 1983.
[20] C. Farkas and S. Jajodia, "The inference problem: a survey," ACM SIGKDD Explorations, vol. 4, no. 2, 2002.
[21] R. Giacobazzi and I. Mastroeni, "Abstract non-interference: Parameterizing non-interference by abstract interpretation," in Proc. 2004 ACM Symp. Principles of Programming Languages.
[22] J. A. Goguen and J. Meseguer, "Security policies and security models," in IEEE Symp. Security and Privacy, 1982.
[23] P. P. Griffiths and B. W. Wade, "An authorization mechanism for a relational database system," $A C M$ Trans. on Database Syst., vol. 1, no. 3, 1976.
[24] M. Guarnieri and D. Basin, "Optimal security-aware query processing," in Proc. 2014 Int. Conf. Very Large Data Bases.
[25] M. Guarnieri, S. Marinovic, and D. Basin, "Strong and provably secure database access control," in Proc. 2016 IEEE European Symp. Security and Privacy.
[26] ——. Strong and Provably Secure Database Access Control - Prototype and Maude models. [Online]. Available: http: //www.infsec.ethz.ch/research/projects/FDAC.html
[27] R. Halder and A. Cortesi, "Fine grained access control for relational databases by abstract interpretation," in Software and Data Technologies, 2013, vol. 170.
[28] D. Hedin and A. Sabelfeld, "A perspective on information-flow control," Proc. 2011 Marktoberdorf Summer School. IOS Press, 2011.
[29] S. Jajodia and R. Sandhu, "Polyinstantiation integrity in multilevel relations," in Proc. 1990 IEEE Symp. Security and Privacy.
[30] P. Koutris, P. Upadhyaya, M. Balazinska, B. Howe, and D. Suciu, "Query-based data pricing," in Proc. 2012 ACM Symp. Principles of Database Systems.
[31] K. LeFevre, R. Agrawal, V. Ercegovac, R. Ramakrishnan, Y. Xu, and D. DeWitt, "Limiting disclosure in hippocratic databases," in Proc. 2004 Int. Conf. Very Large Data Bases.
[32] P. Li and S. Zdancewic, "Practical information flow control in web-based information systems," in Proc. 2005 IEEE Workshop on Computer Security Foundations.
[33] A. C. Myers and B. Liskov, "A decentralized model for information flow control," in Proc. 1997 ACM Symp. Operating Systems Principles.
[34] A. Nash, L. Segoufin, and V. Vianu, "Views and queries: Determinacy and rewriting," ACM Trans. Database Syst., vol. 35, no. 3, 2010.
[35] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy, "Extending query rewriting techniques for fine-grained access control," in Proc. 2004 ACM Int. Conf. Management of data.
[36] A. Sabelfeld and A. C. Myers, "Language-based information-flow security," IEEE J. Sel. Areas

Commun., vol. 21, no. 1, 2003.
[37] P. Samarati and S. Capitani de Vimercati, "Access Control: Policies, Models, and Mechanisms," Springer Lecture Notes in Computer Science, vol. 2171, 2001.
[38] R. Sandhu and F. Chen, "The multilevel relational (MLR) data model," ACM Trans. Inf. Syst. Sec., vol. 1, no. 1, 1998.
[39] D. Schoepe, D. Hedin, and A. Sabelfeld, "SeLINQ: tracking information across application-database boundaries," in Proc. 2014 ACM Intl. Conf. Functional Programming.
[40] D. Schultz and B. Liskov, "IFDB: decentralized information flow control for databases," in Proc. 2013 ACM European Conf. Computer Systems.
[41] J. Shi, H. Zhu, G. Fu, and T. Jiang, "On the soundness property for sql queries of fine-grained access control in dbmss," in Proc. 2009 IEEE/ACIS Int. Conf. Computer and Information Science.
[42] K. Smith and M. Winslett, "Multilevel secure rules: Integrating the multilevel secure and active data models," in Database Security VI: Status and Prospects. North-Holland, 1993.
[43] M. Stonebraker and E. Wong, "Access control in a relational data base management system by query modification," in Proc. 1974 ACM Annual Conference.
[44] T. S. Toland, C. Farkas, and C. M. Eastman, "The inference problem: Maintaining maximal availability in the presence of database updates," Computers \mathcal{E} Security, vol. 29, no. 1, 2010.
[45] A. Van Gelder and R. W. Topor, "Safety and translation of relational calculus," ACM Trans. Database Syst., vol. 16, no. 2, pp. 235-278, May 1991.
[46] Q. Wang, T. Yu, N. Li, J. Lobo, E. Bertino, K. Irwin, and J.-W. Byun, "On the correctness criteria of fine-grained access control in relational databases," in Proc. 2007 Int. Conf. Very Large Data Bases.

APPENDIX

In this appendix we formalize the system's operational semantics, the attacker model, and the security properties. Furthermore, we present complete proofs of all results.

For simplicity's sake, in the following we assume, without loss of generality, that all the relational calculus formulae do not use constant symbols inside predicates. For instance, instead of the formula $\exists x . R(x, 5,10)$, we consider the equivalent formula $\exists x, y, z . R(x, y, z) \wedge y=5 \wedge z=10$. Note that this does not restrict the scope of our work as all formulae can be trivially expressed without using constant symbols inside predicates.
Structure. In Appendix A, we provide a complete formalization of our system model. In Appendix B, we present all the rules defining the \vdash_{u} relation and we prove the soundness of \vdash_{u} with respect to the relational calculus semantics. In Appendix C we provide the complete formalization of the $\sim_{\text {auth }}$ relation. In Appendix $[$] we formalize u-projections and the indistinguishability relation $\cong_{P, u}$. In Appendix E we formalize the access control function $f_{\text {int }}$, we prove that it provides database integrity, and we prove its data complexity. In Appendix Fwe formalize the access control function $f_{\text {conf }}^{u}$, we prove that it provides data confidentiality, and we prove its data complexity. In Appendix G we prove that the function f, which is obtained by composing the PDPs $f_{\text {int }}$ and $f_{\text {conf }}^{u}$, provides both database integrity and data confidentiality. We also prove that its data complexity is $A C^{0}$. Finally, in Appendix H we show that the concepts of secure judgment and data confidentiality have precise interpretations in terms of non-interference.

A. FORMALIZING THE SYSTEM MODEL

In this section, we precisely formalize the system model introduced in 4.2 We first introduce some auxiliary definitions about queries, views, privileges, and triggers. Afterwards, we introduce the concept of partial state. Then, we formalize contexts and we refine the notion of M-state given in $\$ 4.2$ Finally, we formalize the transition relation \rightarrow_{f} together with some auxiliary predicates and functions.

A. 1 Auxiliary definitions on queries, views, privileges, and triggers

Triggers can give rise to non-terminating executions, for example when the action associated with trigger t_{1} activates trigger t_{2}, which in turn activates t_{1}. We say that a set T of triggers is safe iff no trigger in T can activate another trigger in T. Note that safety ensures termination. Even though this termination condition is simple, it is sufficient for the purpose of this paper. Note that more complex and permissive termination conditions do not influence our results. We say that a set of triggers T is safe, denoted by $\operatorname{safe}(T)$, iff for all triggers $t_{1}, t_{2} \in T$:

- if the t_{1} 's activation event is an INSERT on the table R, then t_{2} 's action is not of the form \langle InSERT, $R, \bar{t}\rangle$, or
- if the t_{1} 's activation event is a DELETE on the table R, then t_{2} 's action is not of the form 〈DELETE, $\left.R, \bar{t}\right\rangle$.
Let D be a database schema, U be a set of users, t be a trigger over D, and V be a set of views over D. We say that t is a U-trigger, denoted by usersIn (t, U), if and only if owner $(t) \in U$ and t 's statement mentions just users in U. We say that a query q is defined over D and V, denoted by defined (q, D, V), iff all the predicates in q are either tables in D or views in V. We say that a privilege p is defined over D and V, denoted by defined (p, D, V), iff the table or view referred in p is in $D \cup V$. We say that a view v is defined over D and V, denoted by defined (v, D, V), iff its definition is defined over D and V. Finally, we say that a trigger t is defined over D and V, denoted by defined (t, D, V), iff (1) the table on which t is defined is in D, (2) t 's WHEN condition is defined over D and V, and (3) t 's action refers only to tables and views in $D \cup V$.

A. 2 Revoke Semantics

We now define the function revoke that models the semantics of SQL's REVOKE statements with cascade. In the following, let S be a security policy, i.e., a set of GRANTs, $u_{1}, u_{2}, u_{3}, u_{4}, u$, and u^{\prime} be user identifiers, $o p, o p^{\prime} \in\left\{\oplus, \oplus^{*}\right\}$, and p be a privilege. We say that a chain is a sequence of grants $g_{1} \cdot g_{2} \cdot \ldots \cdot g_{n}$ such that (1) $g_{1}=\left\langle o p^{\prime}, u_{4}, p\right.$, start \rangle, (2) if $p \neq\langle$ SELECT, $V\rangle$, where V is a view with owner's privileges, then start $=$ admin, whereas if $p=\langle$ SELECT, $V\rangle$, then start $\in\{\operatorname{admin}$, owner $(V)\}$, and (3) for each $1 \leq i \leq n-1$, $g_{i}=\left\langle\oplus^{*}, u_{2}, p, u_{1}\right\rangle$ and $g_{i+1}=\left\langle o p, u_{3}, p, u_{2}\right\rangle$. We first define the chain function that takes as input a policy S and
constructs all possible chains.

$$
\begin{gathered}
\operatorname{chain}(S):=\left\{\left\langle o p, u, p, u^{\prime}\right\rangle \in S \mid u^{\prime}=\text { admin }\right\} \cup \\
\left\{\left\langle o p, u,\langle\text { SELECT }, V\rangle, u^{\prime}\right\rangle \in S \mid V=\langle v, o, q, O\rangle\right. \\
\left.\wedge u^{\prime}=o\right\} \cup \\
\bigcup_{g_{1} \cdots \cdots \cdot g_{n} \in \text { chain }(S)}\left\{g_{1} \cdot \ldots \cdot g_{n} \cdot g \mid g \in S \wedge\right. \\
g=\left\langle o p, u, p, u^{\prime}\right\rangle \wedge g_{n}=\left\langle\oplus^{*}, u^{\prime}, p, u^{\prime \prime}\right\rangle \wedge \\
\left.\forall i \in\{1, \ldots, n\} . g_{i} \neq g\right\} .
\end{gathered}
$$

The function filter takes as input a set of chains C and a grant g and returns as output the set of all chains in C that do not contain g :

$$
\text { filter }(C, g):=\left\{g_{1} \cdot \ldots \cdot g_{n} \in C \mid \forall i \in\{1, \ldots, n\} . g_{i} \neq g\right\} .
$$

The function policy takes as input a set of chains and constructs a policy, i.e., a set of grants, out of it:

$$
\text { policy }(C):=\bigcup_{g_{1} \ldots \cdot g_{n} \in C} \bigcup_{1 \leq i \leq n}\left\{g_{i}\right\} .
$$

Finally, the function revoke, which models the semantics of the REVOKE command with cascade, is as follows:

$$
\begin{aligned}
\operatorname{revoke}\left(S, u, p, u^{\prime}\right):= & \operatorname{policy}(\text { filter }(\text { chain }(\text { policy }(\text { filter }(\\
& \left.\left.\left.\left.\left.\operatorname{chain}(S),\left\langle\oplus, u, p, u^{\prime}\right\rangle\right)\right)\right),\left\langle\oplus^{*}, u, p, u^{\prime}\right\rangle\right)\right) .
\end{aligned}
$$

Given a policy S, $\operatorname{revoke}\left(S, u, p, u^{\prime}\right)$ denotes the policy obtained by applying $\left\langle\ominus, u, p, u^{\prime}\right\rangle$ to S.

A. 3 Partial States

An M-partial state is a tuple $\langle d b, U, s e c, T, V\rangle$ such that $d b \in \Omega_{D}^{\Gamma}$ is a database state, $U \subset \mathcal{U}$ is a finite set of users such that admin $\in U$, sec $\in \mathcal{S}_{U, D}$ is a security policy, T is a finite set of safe triggers over D, and V is a finite set of views over D. We denote by Π_{M} the set of all M-partial states. Given an M-state $s=\langle d b, U, s e c, T, V, c\rangle$, we denote by $p \operatorname{State}(s)$ the M-partial state $\langle d b, U, s e c, T, V\rangle$ obtained from s by dropping the context c.

A. 4 Contexts

Let $M=\langle D, \Gamma\rangle$ be a system configuration and u be a user. An (M, u)-action effect is a tuple $\langle a c t, a c c D e c, r e s, E\rangle$, where act $\in \mathcal{A}_{D, u}$ is an action, accDec $\in\{\top, \perp\}$ is the access control decision for that action (where T stands for permit and \perp stands for deny), res $\in\{T, \perp\}$ is the action result, and $E \subseteq \Gamma$ is the set of integrity constraints violated by the action. We denote by $\Omega_{M, u}^{a c t E f f}$ the set of all (M, u)-action effects and by $\Omega_{M, U}^{a c t E f f}$, for some $U \subseteq \mathcal{U}$, the set $\bigcup_{u \in U} \Omega_{M, u}^{a c t E f f}$. An (M, u)-trigger effect is a triple $\langle t$, when, stm $t\rangle$ where $t \in$ $\mathcal{T R} \mathcal{I G G E R}{ }_{D}$ is a trigger, when $\in \Omega_{M, u}^{\text {actEff }}$ is the action effect associated with the WHEN condition of the trigger, and stmt \in $\Omega_{M, u}^{a c t E f f} \cup\{\epsilon\}$ is the action effect associated with the statement in the trigger's body. We denote by $\Omega_{M, u}^{\text {triEff }}$ the set of all (M, u)-trigger effects and by $\Omega_{M, U}^{\text {triEff }}$, for some $U \subseteq \mathcal{U}$, the set $\bigcup_{u \in U} \Omega_{M, u}^{\text {triEff }}$.
An M-pending trigger transaction is a 4-tuple $\langle s, \bar{t}, u, t r\rangle$, where $s \in \Pi_{M} \cup\{\epsilon\}$ is an M-partial state representing the "roll-back state", i.e., the state that we must restore in case a roll-back happens, $\bar{t} \in\{\epsilon\} \cup \bigcup_{n \in \mathbb{N}^{+}}$dom n is the tuple involved in the event that has fired the transaction, $u \in \mathcal{U} \cup\{\epsilon\}$ is the user that has activated the triggers in the transactions,
and $\operatorname{tr} \in \mathcal{T} \mathcal{R} \mathcal{G G G E} \mathcal{R}_{D}^{*}$ is a sequence of triggers. Note that we denote by \cdot the concatenation operation between strings over $\mathcal{T R} \mathcal{I G G E} R_{D}^{*}$, by ϵ the empty string in $\mathcal{T R} \mathcal{I G G E} \mathcal{R}_{D}^{*}$, and by $\langle\epsilon, \epsilon, \epsilon, \epsilon\rangle$ the empty M-pending transaction.

An M-history h is a sequence of action effects and trigger effects, i.e., $h \in\left(\Omega_{M, \mathcal{U}}^{\text {actEff }} \cup \Omega_{M, \mathcal{H}}^{\text {triEff }}\right)^{*}$. We denote by \mathcal{H}_{M} the set of all M-histories, by \cdot the concatenation operation over \mathcal{H}_{M}, and by ϵ the empty history.
We are now ready to formally define contexts. Let $M=$ $\langle D, \Gamma\rangle$ be a system configuration. An M-context is a tuple $\langle h, a c t E f f, t r\rangle$, where $h \in \mathcal{H}_{M}$ models the system's history, actEff $\in \Omega_{M, \mathcal{U}}^{\text {actEff }} \cup \Omega_{M, \mathcal{U}}^{\text {triEff }} \cup\{\epsilon\}$ describes the effect of the last action, i.e., whether the action has been accepted by the access control mechanism and the action's result, and $t r$ is an M-pending transaction. Furthermore, the empty context ϵ is the element $\langle\epsilon, \epsilon,\langle\epsilon, \epsilon, \epsilon, \epsilon\rangle\rangle$.

A.4.1 Auxiliary Functions over contexts

Given an M-context $c=\langle h$, actEff, tr \rangle, we denote by $\sec E x$ the following function, which returns \top if the last action has caused a security exception.
$\sec E x(\langle h, a E, t r\rangle)= \begin{cases}\top & \text { if } a E=\langle a c t, \perp, \text { res }, E\rangle \\ \top & \text { if } a E=\langle t,\langle\text { act, } \perp, \text { res }, E\rangle, \epsilon\rangle \\ \top & \text { if } a E=\langle t, \text { when, }\langle\text { act }, \perp, \text { res }, E\rangle\rangle \\ \perp & \text { otherwise }\end{cases}$
Similarly, we denote by $E x(c)$ the function extracting the integrity constraints violated by the last action.
$E x(\langle h, a E, t r\rangle)= \begin{cases}E & \text { if } a E=\langle a c t, a C, \text { res, } E\rangle \\ E & \text { if } a E=\langle t, \text { when, }\langle\text { act, } a C, r e s, E\rangle\rangle \\ \emptyset & \text { otherwise }\end{cases}$
We also denote by $\operatorname{res}(c)$ the function extracting the last action's result:

$$
\operatorname{res}(\langle h, a E, \operatorname{tr}\rangle)= \begin{cases}r e s & \text { if } a E=\langle a c t, a C, \text { res }, E\rangle \\ a C & \text { if } a E=\langle t,\langle a c t, a C, r e s, E\rangle, \epsilon\rangle \\ a C \wedge a C^{\prime} & \text { if } a E=\langle t,\langle a c t, a C, r e s, E\rangle, \\ \wedge r e s^{\prime} & \left.\left\langle a c t^{\prime}, a C^{\prime}, r e s^{\prime}, E^{\prime}\right\rangle\right\rangle \wedge \\ & \left\langle a c t^{\prime}, a C^{\prime}, r e s^{\prime}, E^{\prime}\right\rangle \neq \epsilon\end{cases}
$$

Similarly, we denote by $a c A(c)$ and $a c C(c)$ the functions that extract the access control decision for the trigger's action and condition:

$$
\left.\begin{array}{c}
a c A(\langle h, a E, t r\rangle)=\left\{\begin{array}{cc}
a C^{\prime} & \text { if } a E=\langle t,\langle a c t, a C, r e s, E\rangle, \\
& \left.\left\langle a c t^{\prime}, a C^{\prime}, r e s^{\prime}, E^{\prime}\right\rangle\right\rangle \wedge \\
\perp & \left\langle a c t^{\prime}, a C^{\prime}, r e s^{\prime}, E^{\prime}\right\rangle \neq \epsilon
\end{array}\right. \\
\text { otherwise }
\end{array}\right\}
$$

We denote by invoker (c) the function extracting the user in the transaction, i.e., invoker $(\langle h, a E,\langle s, \bar{t}, u, \operatorname{trL}\rangle\rangle)=u$. Similarly, we denote by $\operatorname{tpl}(c)$ the function extracting the tuple that has fired the transaction, namely $\operatorname{tpl}(\langle h, a E,\langle s, \bar{t}, u$, $\operatorname{trL} L\rangle)=\bar{t}$, by triggers (c) the function extracting the list of triggers, i.e., $\operatorname{triggers}(\langle h, a E,\langle s, \bar{t}, u, \operatorname{trL} L\rangle)=\operatorname{trL} L$, and by $\operatorname{trigger}(c)$, or $\operatorname{tr}(c)$ for short, the first trigger in the sequence triggers(c).

A. 5 States

We can now define M-states. Let $M=\langle D, \Gamma\rangle$ be a system configuration. An M-state is a tuple $\langle d b, U, s e c, T, V, c\rangle$ such that $d b \in \Omega_{D}^{\Gamma}$ is a database state, $U \subset \mathcal{U}$ is a finite set of users such that admin $\in U$, sec $\in \mathcal{S}_{U, D}$ is a security policy, T is a finite set of safe triggers over D such that for any trigger $t \in T$, both usersIn (t, U) and defined (t, D, V) hold, V is a finite set of views over D such that (1) there are no cyclic dependencies between the views in V, and (2) for any view $v \in V$, defined $\left(t, D, V^{\prime}\right)$, for some $V^{\prime} \subseteq V$, and v 's owner is in U, and $c \in \mathcal{C}_{M}$ is an M-context.
In Section 4.2 we denoted an M-state as a tuple $\langle d b, s e c, U$, $T, V, c\rangle$, where $c=\langle h, a c t E f f, t r\rangle$ is an element of \mathcal{C}_{M}. In the following, instead of representing states as $\langle d b, \sec , U, T, V$, $\langle h, a E, t r\rangle\rangle$, we represent them as $\langle d b, s e c, U, T, V, h, a E, t r\rangle$. Given an M-state $s:=\langle d b, s e c, U, T, V, h, a E, t r\rangle$, we denote by $c t x(s)$ the context $\langle h, a E, t r\rangle$. With a slight abuse of notation, we extend the functions $E x$, secEx, res, tpl, acA, $a c C$, triggers, tr, and invoker from contexts to M-states, e.g., $\operatorname{Ex}(s)$ is just $\operatorname{Ex}(c t x(s))$. Furthermore, given an M state $s:=\langle d b, s e c, U, T, V, h, a E, t r\rangle$, we use a dot notation to refer to its components. For instance, we use $s . d b$ to refer to the database's state in s and $s . s e c$ to refer to the policy in s.

A. 6 Transition Relation \rightarrow_{f}

The transition rules describing the \rightarrow_{f} transition relation are shown in Figures 1219 . The \rightarrow_{f} relation is, thus, the smallest relation satisfying all the inference rules. Note that we ignore the upd function introduced in Section 4.2 since the rules explicitly encode the changes to the contexts.

We now define the functions we used in the rules in Figures 12 19. The getActualUser (m, invk, ow) function, where $m \in$ $\{A, O\}$ and invk, ow $\in \mathcal{U}$, is defined as follows:

$$
\text { getActualUser }(m, \text { invk, ow })= \begin{cases}i n v k & \text { if } m=A \\ o w & \text { if } m=O\end{cases}
$$

The $I D$ function takes as input an action act $\in \mathcal{A}_{D, \mathcal{U}}$ and returns T if act is either $\langle u, \operatorname{INSERT}, R, \bar{t}\rangle$ or $\langle u$, DELETE, $R, \bar{t}\rangle$, for some $u \in \mathcal{U}, R \in D$, and $\bar{t} \in \operatorname{dom}^{|R|}$. The function $I D$ returns \perp otherwise.
The apply function, which takes as input an action act \in $\mathcal{A}_{M, \mathcal{U}}$ that is either an INSERT or a DELETE action and a database state $d b \in \Omega_{D}$, is defined as follows:
$\operatorname{apply}(a c t, d b)= \begin{cases}d b[R \oplus \bar{t}] & \text { if act }=\langle u, \text { INSERT }, R, \bar{t}\rangle \\ d b[R \ominus \bar{t}] & \text { if act }=\langle u, D E L E T E, R, \bar{t}\rangle\end{cases}$
Let $t=\left\langle i d, o w, e v, R^{\prime}, \phi, s t m t, m\right\rangle$ be a trigger and R be a relation schema. We denote t 's owner by owner (t), i.e., owner $(t)=o w$. Similarly, given a view V, we denote by $\operatorname{owner}(V)$ the owner of V. We also denote by $\bar{x}^{|R|}$ the tuple of variables $\left\langle x_{1}, \ldots, x_{|R|}\right\rangle$. Furthermore, given a tuple $\bar{t}:=\left\langle t_{1}, \ldots, t_{n}\right\rangle$, we denote by $\bar{t}(i)$ the i-th value t_{i}. Finally, we denote by $\bar{t}\left[\bar{x}^{|R|} \mapsto \bar{v}\right]$, where \bar{t} is a tuple of values in dom and variables in $\left\{x_{1}, \ldots, x_{|R|}\right\}$ and \bar{v} is a tuple in dom ${ }^{|R|}$, the tuple $\bar{z} \in \mathbf{d o m}^{n}$ obtained as follows: for each $i \in\{1, \ldots, n\}$, if $\bar{t}(i)=x_{j}$, where $x_{j} \in\left\{x_{1}, \ldots, x_{|R|}\right\}$, then $\bar{z}(i)=\bar{v}(j)$, and otherwise $\bar{z}(i)=\bar{t}(i)$. We are now ready to define the function getAction, which takes as input the trigger's statement stmt, a user u, and a tuple $\bar{t}^{\prime} \in \operatorname{dom}^{\left|R^{\prime}\right|}$, and returns the concrete action executed by the system. Formally, getAction is as follows:

- getAction($\left.\langle\mathrm{INSERT}, R, \bar{t}\rangle, u, \bar{t}^{\prime}\right)=\langle u$, INSERT, $R, \bar{t}| \bar{x}^{\left|R^{\prime}\right|}$ $\left.\left.\mapsto \overline{t^{\prime}}\right]\right\rangle$,
- getAction $\left(\langle\right.$ DELETE, $\left.R, \bar{t}\rangle, u, \bar{t}^{\prime}\right)=\left\langle u\right.$, DELETE, $R, \bar{t}\left[\bar{x}^{\left|R^{\prime}\right|}\right.$ $\left.\left.\mapsto \overline{t^{\prime}}\right]\right\rangle$, and
- getAction $\left(\langle o p, u, p\rangle, u, \bar{t}^{\prime}\right)=\langle o p, u, p, u\rangle$, where $o p \in$ $\left\{\ominus, \oplus, \oplus^{*}\right\}$.
We assume there is a total-order relation $\preceq_{\mathcal{T}}$ over \mathcal{T}. We use this ordering to determine the order in which triggers are executed. Given a set of triggers T and a database schema D, we denote by $\operatorname{filter}(T, e v, R)$, where ev $\in\{I N S, D E L\}$ and $R \in D$, the sequence of triggers in T (ordered according to $\preceq \mathcal{T}$) whose event is $e v$ and whose relation schema is R.

$$
\frac{a d m i n \in U \quad a E^{\prime}=\langle\langle a d m i n, \text { ADD_USER, } u\rangle, \top, \top, \emptyset\rangle \quad f\left(\left\langle d b, U, s e c, T, V, h, a E,\left\langle r S, \bar{t}^{\prime}, u^{\prime}, \epsilon\right\rangle\right\rangle,\langle a d m i n, \text { ADD_USER, } u\rangle\right)=\top}{\left\langle d b, U, s e c, T, V, h, a E,\left\langle r S, \bar{t}^{\prime}, u^{\prime}, \epsilon\right\rangle\right\rangle \xrightarrow{\langle a d m i n, \text { ADD_USER, } u\rangle}{ }_{f}\left\langle d b, U \cup\{u\}, s e c, T, V, h \cdot a E, a E^{\prime},\langle\epsilon, \epsilon, \epsilon, \epsilon\rangle\right\rangle}
$$

$a d m i n \in U \quad a E^{\prime}=\langle\langle a d m i n$, ADD_USER, $u\rangle, \perp, \perp, \emptyset\rangle \quad f\left(\left\langle d b, U, s e c, T, V, h, a E,\left\langle r S, \bar{t}^{\prime}, u^{\prime}, \epsilon\right\rangle\right\rangle,\langle a d m i n\right.$, ADD_USER, $\left.u\rangle\right)=\perp$
 $\left\langle d b, U, s e c, T, V, h, a E,\left\langle r S, \bar{t}^{\prime}, u^{\prime}, \epsilon\right\rangle\right\rangle \xrightarrow{\langle a d m i n, \text { ADD_USER, } u\rangle}{ }_{f}\left\langle d b, U, s e c, T, V, h \cdot a E, a E^{\prime},\langle\epsilon, \epsilon, \epsilon, \epsilon\rangle\right\rangle$

$\begin{gathered} u \in U \quad \begin{array}{c} f\left(\left\langle d b, U, s e c, T, V, h, a E,\left\langle r S, \bar{t}^{\prime}, u^{\prime}, \epsilon\right\rangle\right\rangle,\langle u, \operatorname{SELECT}, q\rangle\right)=\top \\ a E^{\prime}=\langle\langle u, \operatorname{SELECT}, q\rangle, \top, v, \emptyset\rangle \end{array} \text { defined }(q, D, V)^{d b}=v \\ \hline \end{gathered}$	SELECT
$\overline{\left\langle d b, U, s e c, T, V, h, a E,\left\langle r S, \bar{t}^{\prime}, u^{\prime}, \epsilon\right\rangle\right\rangle{ }^{\langle u, \text { SELECT, } q\rangle}{ }_{f}\left\langle d b, U, s e c, T, V, h \cdot a E, a E^{\prime},\langle\epsilon, \epsilon, \epsilon, \epsilon\rangle\right\rangle}$	Success
$\begin{gathered} u \in U \quad f\left(\left\langle d b, U, \text { sec }, T, V, h, a E,\left\langle r S, \bar{t}^{\prime}, u^{\prime}, \epsilon\right\rangle\right\rangle,\langle u, \text { SELECT, } q\rangle\right)=\perp \\ a E^{\prime}=\langle\langle u, \operatorname{SELECT}, q\rangle, \perp, \perp, \emptyset\rangle \\ \text { defined }(q, D, V) \end{gathered}$	SELECT
$\left\langle d b, U, s e c, T, V, h, a E,\left\langle r S, \bar{t}^{\prime}, u^{\prime}, \epsilon\right\rangle\right\rangle \xrightarrow{\langle u, \text { SELECT }, q\rangle}_{f}\left\langle d b, U, s e c, T, V, h \cdot a E, a E^{\prime},\langle\epsilon, \epsilon, \epsilon, \epsilon\rangle\right\rangle$	Deny

Figure 12: Rules defining the \rightarrow_{f} relation for SELECT and ADD USER

$u \in U \quad R \in D \quad f\left(\left\langle d b, U, s e c, T, V, h, a E,\left\langle r S, \bar{t}^{\prime}, u^{\prime}, \epsilon\right\rangle\right\rangle, a c t\right)=\top \quad a c t=\langle u$, INSERT, $R, \bar{t}\rangle$			
$d b[R \oplus \bar{t}] \in \Omega_{D}^{\Gamma}$	$a E^{\prime}=\langle a c t, \top, \top, \emptyset\rangle$	filter $(T, I N S, R)=\epsilon \vee \bar{t} \in d b(R)$	INSERT
$\left\langle d b, U, s e c, T, V, h, a E,\left\langle r S, \bar{t}^{\prime}, u^{\prime}, \epsilon\right\rangle\right\rangle \xrightarrow{\langle u, \mathrm{INSERT}, R, \bar{t}\rangle}{ }_{f}\left\langle d b[R \oplus \bar{t}], U, s e c, T, V, h \cdot a E, a E^{\prime},\langle\epsilon, \epsilon, \epsilon, \epsilon\rangle\right\rangle$			Success 1

$u \in U \quad R \in D \quad f\left(\left\langle d b, U, s e c, T, V, h, a E,\left\langle r S, \bar{t}^{\prime}, u^{\prime}, \epsilon\right\rangle\right\rangle, a c t\right)=\top \quad$ act $=\langle u$, INSERT, $R, \bar{t}\rangle \quad d b[R \oplus \bar{t}] \in \Omega_{D}^{\Gamma}$ $a E^{\prime}=\langle a c t, \top, \top, \emptyset\rangle \quad \operatorname{tr}=\operatorname{filter}(T, I N S, R) \quad \operatorname{tr} \neq \epsilon \quad \bar{t} \notin d b(R) \quad r S^{\prime}=\langle d b, U, s e c, T, V\rangle \quad$ INSERT
$\left\langle d b, U, s e c, T, V, h, a E,\left\langle r S, \bar{t}^{\prime}, u^{\prime}, \epsilon\right\rangle\right\rangle \xrightarrow{\langle u, \text { INSERT }, R, \bar{t}\rangle} \underset{f}{ }\left\langle d b[R \oplus \bar{t}], U, s e c, T, V, h \cdot a E, a E^{\prime},\left\langle r S^{\prime}, \bar{t}, u, t r\right\rangle\right\rangle$
Success 2

$$
\begin{array}{ccccc}
u \in U \quad R \in D \quad f\left(\left\langle d b, U, \sec , T, V, h, a E,\left\langle r S, \bar{t}^{\prime}, u^{\prime}, \epsilon\right\rangle\right\rangle,\langle u, \text { INSERT, } R, \bar{t}\rangle\right)=\top \\
E^{\prime}=\left\{\phi \in \Gamma \mid[\phi]^{d b[R \oplus \bar{t}]}=\perp\right\} & E^{\prime} \neq \emptyset \quad a E^{\prime}=\left\langle\langle u, \text { INSERT, } R, \bar{t}\rangle, \top, \perp, E^{\prime}\right\rangle & \text { INSERT } \\
\text { IN }
\end{array}
$$

$$
\frac{u \in U \quad R \in D \quad f\left(\left\langle d b, U, s e c, T, V, h, a E,\left\langle r S, \bar{t}^{\prime}, u^{\prime}, \epsilon\right\rangle\right\rangle,\langle u, \text { INSERT, } R, \bar{t}\rangle\right)=\perp \quad a E^{\prime}=\langle\langle u, \text { INSERT }, R, \bar{t}\rangle, \perp, \perp, \emptyset\rangle}{\left\langle d b, U, s e c, T, V, h, a E,\left\langle r S, \bar{t}^{\prime}, u^{\prime}, \epsilon\right\rangle\right\rangle \xrightarrow{\langle u, \text { INSERT }, R, \bar{t}\rangle} f\left\langle d b, U, s e c, T, V, h \cdot a E, a E^{\prime},\langle\epsilon, \epsilon, \epsilon, \epsilon\rangle\right\rangle} \quad \text { INSERT }
$$

Figure 13: Rules defining the \rightarrow_{f} relation for INSERT

$$
\left.\begin{array}{ccc}
u \in U \quad R \in D \quad f\left(\left\langle d b, U, s e c, T, V, h, a E,\left\langle r S, \bar{t}^{\prime}, u^{\prime}, \epsilon\right\rangle\right\rangle, a c t\right)=\top \quad a c t=\langle u, \operatorname{DELETE}, R, \bar{t}\rangle \\
d b[R \ominus \bar{t}] \in \Omega_{D}^{\Gamma} \quad a E^{\prime}=\langle a c t, \top, \top, \emptyset\rangle & \text { filter }(T, D E L, R)=\epsilon \vee \bar{t} \notin d b(R) & \text { DELETE } \\
\left\langle d b, U, s e c, T, V, h, a E,\left\langle r S, \bar{t}^{\prime}, u^{\prime}, \epsilon\right\rangle\right\rangle \xrightarrow{\langle u, \operatorname{DELETE}, R, \bar{t}\rangle} \\
f
\end{array}\left\langle d b[R \ominus \bar{t}], U, s e c, T, V, h \cdot a E, a E^{\prime},\langle\epsilon, \epsilon, \epsilon, \epsilon\rangle\right\rangle\right) \quad \text { Success } 1
$$

$$
u \in U \quad R \in D \quad f\left(\left\langle\left\langle d b, U, s e c, T, V, h, a E,\left\langle r S, \bar{t}^{\prime}, u^{\prime}, \epsilon\right\rangle\right\rangle, a c t\right)=\top \quad a c t=\langle u, \text { DELETE, } R, \bar{t}\rangle \quad d b[R \ominus \bar{t}] \in \Omega_{D}^{\Gamma}\right.
$$

$$
a E^{\prime}=\langle a c t, \top, \top, \emptyset\rangle \quad \operatorname{tr}=\operatorname{filter}(T, D E L, R) \quad \operatorname{tr} \neq \epsilon \quad \bar{t} \in d b(R) \quad r S^{\prime}=\langle d b, U, \sec , T, V\rangle \quad \text { DELETE }
$$

$\left\langle d b, U, s e c, T, V, h, a E,\left\langle r S, \bar{t}^{\prime}, u^{\prime}, \epsilon\right\rangle\right\rangle \xrightarrow{\langle u, \text { DeLETE }, R, \bar{t}\rangle} \underset{f}{ }\left\langle d b[R \ominus \bar{t}], U, s e c, T, V, h \cdot a E, a E^{\prime},\left\langle r S^{\prime}, \bar{t}, u, t r\right\rangle\right\rangle$

$$
\begin{array}{cccc}
u \in U \quad R \in D \quad f\left(\left\langle d b, U, s e c, T, V, h, a E,\left\langle r S, \bar{t}^{\prime}, u^{\prime}, \epsilon\right\rangle\right\rangle,\langle u, \text { DELETE }, R, \bar{t}\rangle\right)=\top \\
E^{\prime}=\left\{\phi \in \Gamma \mid[\phi]^{d b[R \ominus \bar{t}]}=\perp\right\} \quad E^{\prime} \neq \emptyset \quad a E^{\prime}=\left\langle\langle u, \text { DELETE, } R, \bar{t}\rangle, \top, \perp, E^{\prime}\right\rangle & \quad \text { DELETE } \\
\left\langle d b, U, s e c, T, V, h, a E,\left\langle r S, \bar{t}^{\prime}, u^{\prime}, \epsilon\right\rangle\right\rangle \xrightarrow{\langle u, \text { DELETE }, R, \bar{t}\rangle}^{\longrightarrow}\left\langle d b, U, s e c, T, V, h \cdot a E, a E^{\prime},\langle\epsilon, \epsilon, \epsilon, \epsilon\rangle\right\rangle & \text { Exception }
\end{array}
$$

$$
\frac{u \in U \quad R \in D \quad f\left(\left\langle d b, U, s e c, T, V, h, a E,\left\langle r S, \bar{t}^{\prime}, u^{\prime}, \epsilon\right\rangle\right\rangle,\langle u, \text { DELETE, } R, \bar{t}\rangle\right)=\perp \quad a E^{\prime}=\langle\langle u, \text { DELETE }, R, \bar{t}\rangle, \perp, \perp, \emptyset\rangle}{\left\langle d b, U, s e c, T, V, h, a E,\left\langle r S, \bar{t}^{\prime}, u^{\prime}, \epsilon\right\rangle\right\rangle \xrightarrow{\langle u, \text { DeLETE }, R, \bar{t}\rangle} f\left(d b, U, s e c, T, V, h \cdot a E, a E^{\prime},\langle\epsilon, \epsilon, \epsilon, \epsilon\rangle\right\rangle} \quad \text { DELETE }
$$

Figure 14: Rules defining the \rightarrow_{f} relation for DELETE

$$
\text { invk, ow } \in U \quad t=\left\langle i d, \text { ow, ev, } R^{\prime}, \phi, \text { stmt }, m\right\rangle \quad u=\operatorname{getActualUser}(m, o w, i n v k) \quad \phi^{\prime}=\phi\left[\bar{x}^{\left|R^{\prime}\right|} \mapsto \bar{t}\right]
$$

$$
f\left(\langle d b, U, s e c, T, V, h, a E,\langle r S, \bar{t}, \text { invk }, t \cdot t r\rangle\rangle,\left\langle u, \text { SELECT, } \phi^{\prime}\right\rangle\right)=\top \quad\left[\phi^{\prime}\right]^{d b}=\top \quad a E^{\prime}=\left\langle\left\langle u, \text { SELECT, } \phi^{\prime}\right\rangle, \top, \top, \emptyset\right\rangle
$$ $a c t=\operatorname{getAction}(s t m t, u, \bar{t}) \quad d b^{\prime}=\operatorname{apply}(a c t, d b) \quad f\left(\left\langle d b, U, \sec , T, V, h \cdot a E, a E^{\prime},\langle r S, \bar{t}, i n v k, t \cdot t r\rangle\right\rangle, a c t\right)=\top$ $\begin{array}{cccc}d b^{\prime} \in \Omega_{D}^{\Gamma} & a E^{\prime \prime}=\langle a c t, \top, \top, \emptyset\rangle & t E^{\prime}=\left\langle t, a E^{\prime}, a E^{\prime \prime}\right\rangle & I D(a c t)=\top\end{array}$

$\langle d b, U, s e c, T, V, h, a E,\langle r S, \bar{t}, i n v k, t \cdot t r\rangle\rangle \xrightarrow{t}_{f}\left\langle d b^{\prime}, U, s e c, T, V, h \cdot a E, t E^{\prime},\langle r S, \bar{t}, i n v k, t r\rangle\right\rangle$
invk, ow $\in U \quad t=\left\langle i d\right.$, ow, ev, R^{\prime}, ϕ, stmt,$\left.m\right\rangle \quad u=$ getActualUser (m, ow, invk $) \quad r S=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}\right\rangle$ $f\left(\langle d b, U, s e c, T, V, h, a E,\langle r S, \bar{t}\right.$, invk,$t \cdot t r\rangle\rangle,\left\langle u\right.$, SELECT, $\left.\left.\phi^{\prime}\right\rangle\right)=\top \quad\left[\phi^{\prime}\right]^{d b}=\top \quad a E^{\prime}=\left\langle\left\langle u\right.\right.$, SELECT, $\left.\left.\phi^{\prime}\right\rangle, \top, \top, \emptyset\right\rangle$ $a c t=$ getAction $(\operatorname{stmt}, u, \bar{t}) \quad f\left(\left\langle d b, U, \sec , T, V, h \cdot a E, a E^{\prime},\langle r S, \bar{t}, i n v k, t \cdot t r\rangle\right\rangle, a c t\right)=\top \quad I D(a c t)=\top$ $\phi^{\prime}=\phi\left[\bar{x}^{\left|R^{\prime}\right|} \mapsto \bar{t}\right] \quad E^{\prime}=\left\{\phi \in \Gamma \mid[\phi]^{\text {apply }(a c t, d b)}\right\} \quad E^{\prime} \neq \emptyset \quad a E^{\prime \prime}=\left\langle a c t, \top, \perp, E^{\prime}\right\rangle \quad t E^{\prime}=\left\langle t, a E^{\prime}, a E^{\prime \prime}\right\rangle$
$\langle d b, U, s e c, T, V, h, a E,\langle r S, \bar{t}, i n v k, t \cdot t r\rangle\rangle \xrightarrow{t}_{f}\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, h \cdot a E, t E^{\prime},\langle\epsilon, \epsilon, \epsilon, \epsilon\rangle\right\rangle$
Figure 15: Rules defining the \rightarrow_{f} relation for triggers with INSERT/DELETE action

$$
\begin{aligned}
& i n v k, o w \in U \quad t=\left\langle i d, o w, e v, R^{\prime}, \phi, \text { stmt }, m\right\rangle \quad u=\operatorname{getActualUser}(m, o w, i n v k) \quad \phi^{\prime}=\phi\left[\bar{x}^{\left|R^{\prime}\right|} \mapsto \bar{t}\right] \\
& f\left(\langle d b, U, \text { sec }, T, V, h, a E,\langle r S, \bar{t}, \text { invk, } t \cdot t r\rangle\rangle,\left\langle u, \text { SELECT, } \phi^{\prime}\right\rangle\right)=\top \quad\left[\phi^{\prime}\right]^{d b}=\top \quad a E^{\prime}=\left\langle\left\langle u, \text { SELECT, } \phi^{\prime}\right\rangle, \top, \top, \emptyset\right\rangle \\
& \left\langle o p, u^{\prime}, p, u\right\rangle=\text { getAction }(\text { stmt }, u, \bar{t}) \quad f\left(\left\langle d b, U, s e c, T, V, h \cdot a E, a E^{\prime},\langle r S, \bar{t}, i n v k, t \cdot t r\rangle\right\rangle,\left\langle o p, u^{\prime}, p, u\right\rangle\right)=T \\
& \begin{array}{ccc}
a E^{\prime \prime}=\left\langle\left\langle o p, u^{\prime}, p, u\right\rangle, \top, \top, \emptyset\right\rangle & t E^{\prime}=\left\langle t, a E^{\prime}, a E^{\prime \prime}\right\rangle & o p \in\left\{\oplus, \oplus^{*}\right\} \\
\langle d b, U, s e c, T, V, h, a E,\langle r S, \bar{t}, \text { invk }, t \cdot t r\rangle\rangle \xrightarrow{t}_{f}\left\langle d b, U, s e c \cup\left\{\left\langle o p, u^{\prime}, p, u\right\rangle\right\}, T, V, h \cdot a E, t E^{\prime},\langle r S, \bar{t}, i n v k, t r\rangle\right\rangle
\end{array} \\
& i n v k, o w \in U \quad t=\left\langle i d, o w, e v, R^{\prime}, \phi, s t m t, m\right\rangle \quad u=\operatorname{getActualUser}(m, o w, i n v k) \quad \phi^{\prime}=\phi\left[\bar{x}^{\left|R^{\prime}\right|} \mapsto \bar{t}\right] \\
& f\left(\langle d b, U, \text { sec, } T, V, h, a E,\langle r S, \bar{t}, \text { invk }, t \cdot t r\rangle\rangle,\left\langle u, \operatorname{SELECT}, \phi^{\prime}\right\rangle\right)=\top \quad\left[\phi^{\prime}\right]^{d b}=\top \quad a E^{\prime}=\left\langle\left\langle u, \text { SELECT, } \phi^{\prime}\right\rangle, \top, \top, \emptyset\right\rangle \\
& \left\langle\ominus, u^{\prime}, p, u\right\rangle=\operatorname{getAction}(s t m t, u, \bar{t}) \quad f\left(\left\langle d b, U, s e c, T, V, h \cdot a E, a E^{\prime},\langle r S, \bar{t}, i n v k, t \cdot t r\rangle\right\rangle,\left\langle\Theta, u^{\prime}, p, u\right\rangle\right)=\top \\
& a E^{\prime \prime}=\left\langle\left\langle\ominus, u^{\prime}, p, u\right\rangle, \top, \top, \emptyset\right\rangle \quad t E^{\prime}=\left\langle t, a E^{\prime}, a E^{\prime \prime}\right\rangle \\
& \langle d b, U, \text { sec }, T, V, h, a E,\langle r S, \bar{t}, i n v k, t \cdot t r\rangle\rangle{ }_{\rightarrow}^{t}\left\langle d b, U \text {, revoke }\left(s e c, u, p, u^{\prime}\right), T, V, h \cdot a E, t E^{\prime},\langle r S, \bar{t}, i n v k, t r\rangle\right\rangle \\
& \text { Trigger } \\
& \text { GRANT } \\
& \text { Success } \\
& \text { Trigger } \\
& \text { REvOKE } \\
& \text { Success }
\end{aligned}
$$ Figure 16: Rules defining the \rightarrow_{f} relation for triggers with GRANT/REVOKE action

$$
\begin{aligned}
& \text { invk, ow } \in U \quad t=\left\langle i d, o w, e v, R^{\prime}, \phi, s t m t, m\right\rangle \quad u=\operatorname{getActualUser}(m, o w, i n v k) \\
& \phi^{\prime}=\phi\left[\bar{x}^{\left|R^{\prime}\right|} \mapsto \bar{t}\right] \quad f\left(\langle d b, U, \text { sec }, T, V, h, a E,\langle r S, \bar{t}, \text { inv }, t r\rangle\rangle,\left\langle u, \text { SELECT, } \phi^{\prime}\right\rangle\right)=\top \\
& {\left[\phi^{\prime}\right]^{d b}=\perp \quad a E^{\prime}=\left\langle\left\langle u, \text { SELECT, } \phi^{\prime}\right\rangle, \top, \perp, \emptyset\right\rangle \quad t E^{\prime}=\left\langle t, a E^{\prime}, \epsilon\right\rangle} \\
& \overline{\langle d b, U, s e c, T, V, h, a E,\langle r S, \bar{t}, i n v k, t \cdot t r\rangle\rangle{ }_{\rightarrow}^{t}\left\langle d b, U, s e c, T, V, h \cdot a E, t E^{\prime},\langle r S, \bar{t}, i n v k, t r\rangle\right\rangle} \\
& \text { Trigger } \\
& \text { Disabled } \\
& \text { invk, ow } \in U \quad t=\left\langle i d, \text { ow, ev, } R^{\prime}, \phi, s t m t, m\right\rangle \quad u=\operatorname{getActualUser}(m, o w, i n v k) \\
& r S=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}\right\rangle \quad f\left(\langle d b, U, \text { sec }, T, V, h, a E,\langle r S, \bar{t}, i n v k, t r\rangle\rangle,\left\langle u, \text { SELECT, } \phi^{\prime}\right\rangle\right)=\perp \\
& \begin{array}{llll}
a E^{\prime}=\left\langle\left\langle u, \operatorname{SELECT}, \phi^{\prime}\right\rangle, \perp, \perp, \emptyset\right\rangle & t E^{\prime}=\left\langle t, a E^{\prime}, \epsilon\right\rangle & \phi^{\prime}=\phi\left[\bar{x}^{\left|R^{\prime}\right|} \mapsto \bar{t}\right] & \text { Trigger } \\
\langle d b, U, s e c, T, V, h, a E,\langle r S, \bar{t}, i n v k, t \cdot t r\rangle\rangle \xrightarrow[\rightarrow]{t}_{f}\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, h \cdot a E, t E^{\prime},\langle\epsilon, \epsilon, \epsilon, \epsilon\rangle\right\rangle & \text { Deny } \\
\text { Condition }
\end{array}
\end{aligned}
$$

Trigger
Deny
Action

Figure 17: Rules defining the \rightarrow_{f} relation for triggers

GRANT
Success

REVOKE
Success

$$
\begin{aligned}
& u, u^{\prime} \in U \quad f\left(\left\langle d b, U, s e c, T, V, h, a E,\left\langle r S, \bar{t}, u^{\prime \prime}, \epsilon\right\rangle\right\rangle,\left\langle o p, u, p, u^{\prime}\right\rangle\right)=\top \\
& a E^{\prime}=\left\langle\left\langle o p, u, p, u^{\prime}\right\rangle, \top, \top, \emptyset\right\rangle \quad o p \in\left\{\oplus, \oplus^{*}\right\} \quad \text { defined }(p, D, V) \\
& \left\langle d b, U, s e c, T, V, h, a E,\left\langle r S, \bar{t}, u^{\prime \prime}, \epsilon\right\rangle\right\rangle \xrightarrow{\left\langle o p, u, p, u^{\prime}\right\rangle}{ }_{f}\left\langle d b, U, \sec \cup\left\{\left\langle o p, u, p, u^{\prime}\right\rangle\right\}, T, V, h \cdot a E, a E^{\prime},\langle\epsilon, \epsilon, \epsilon, \epsilon\rangle\right\rangle \\
& u, u^{\prime} \in U \quad f\left(\left\langle d b, U, s e c, T, V, h, a E,\left\langle r S, \bar{t}, u^{\prime \prime}, \epsilon\right\rangle\right\rangle,\left\langle\ominus, u, p, u^{\prime}\right\rangle\right)=\top \\
& a E^{\prime}=\left\langle\left\langle\ominus, u, p, u^{\prime}\right\rangle, \top, \top, \emptyset\right\rangle \quad \text { defined }(p, D, V) \\
& \left\langle d b, U, s e c, T, V, h, a E,\left\langle r S, \bar{t}, u^{\prime \prime}, \epsilon\right\rangle\right\rangle \xrightarrow{\left\langle\ominus, u, p, u^{\prime}\right\rangle} f_{f}\left\langle d b, U \text {, revoke }\left(\sec , u, p, u^{\prime}\right), T, V, h \cdot a E, a E^{\prime},\langle\epsilon, \epsilon, \epsilon, \epsilon\rangle\right\rangle \\
& u, u^{\prime} \in U \quad f\left(\left\langle d b, U, s e c, T, V, h, a E,\left\langle r S, \bar{t}, u^{\prime \prime}, \epsilon\right\rangle\right\rangle,\left\langle o p, u, p, u^{\prime}\right\rangle\right)=\perp \\
& a E^{\prime}=\left\langle\left\langle o p, u, p, u^{\prime}\right\rangle, \perp, \perp, \emptyset\right\rangle \quad \text { op } \in\left\{\oplus, \oplus^{*}, \ominus\right\} \quad \text { defined }(p, D, V) \\
& \left\langle d b, U, s e c, T, V, h, a E,\left\langle r S, \bar{t}, u^{\prime \prime}, \epsilon\right\rangle\right\rangle \xrightarrow{\left\langle o p, u, p, u^{\prime}\right\rangle}{ }_{f}\left\langle d b, U, s e c, T, V, h \cdot a E, a E^{\prime},\langle\epsilon, \epsilon, \epsilon, \epsilon\rangle\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& u \in U \text { defined }(t, D, V) \quad \operatorname{safe}(\{t\} \cup T) \quad \text { usersIn }(t, U) \quad f\left(\left\langle d b, U, \sec , T, V, h, a E,\left\langle r S, \bar{t}, u^{\prime}, \epsilon\right\rangle\right\rangle,\langle u, \text {, CREATE, } t\rangle\right)=\top \\
& t=\langle i d, u, e v, R, \phi, \text { stm } t, m\rangle \quad a E^{\prime}=\langle\langle u, \text { CREATE, } t\rangle, \top, \top, \emptyset\rangle \quad \neg \exists t^{\prime} \in T . t^{\prime}=\left\langle i d, o w^{\prime}, e v^{\prime}, R^{\prime}, \phi^{\prime}, s t m t^{\prime}, m^{\prime}\right\rangle \\
& \left.\left\langle d b, U, s e c, T, V, h, a E,\left\langle r S, \bar{t}, u^{\prime}, \epsilon\right\rangle\right\rangle \xrightarrow{\langle u, \text { CREATE }, t\rangle} f d b, U, s e c, T \cup\{t\}, V, h \cdot a E, a E^{\prime},\langle\epsilon, \epsilon, \epsilon, \epsilon\rangle\right\rangle \\
& u \in U \quad \text { defined }(t, D, V) \quad \operatorname{safe}(\{t\} \cup T) \quad \text { usersIn }(t, U) \quad f\left(\left\langle d b, U, \sec , T, V, h, a E,\left\langle r S, \bar{t}, u^{\prime}, \epsilon\right\rangle\right\rangle,\langle u, \text { CREATE, } t\rangle\right)=\top \\
& t=\langle i d, u, e v, R, \phi, s t m t, m\rangle \quad a E^{\prime}=\langle\langle u, \operatorname{CREATE}, t\rangle, \top, \perp, \emptyset\rangle \quad t^{\prime}=\left\langle i d, o w^{\prime}, e v^{\prime}, R^{\prime}, \phi^{\prime}, s t m t^{\prime}, m^{\prime}\right\rangle \quad t^{\prime} \in T \quad t^{\prime} \neq t \\
& \left\langle d b, U, s e c, T, V, h, a E,\left\langle r S, \bar{t}, u^{\prime}, \epsilon\right\rangle\right\rangle \xrightarrow{\langle u, \text { CREATE }, t\rangle}{ }_{f}\left\langle d b, U, s e c, T, V, h \cdot a E, a E^{\prime},\langle\epsilon, \epsilon, \epsilon, \epsilon\rangle\right\rangle \\
& u \in U \quad \text { defined }(v, D, V) \quad f\left(\left\langle d b, U, s e c, T, V, h, a E,\left\langle r S, \bar{t}, u^{\prime}, \epsilon\right\rangle\right\rangle,\langle u, \operatorname{CREATE}, v\rangle\right)=\top \\
& v=\langle i d, u, q, m\rangle \quad a E^{\prime}=\langle\langle u, \text { CREATE, } v\rangle, \top, \top, \emptyset\rangle \quad \neg \exists v^{\prime} \in V \cdot v^{\prime}=\left\langle i d, o w^{\prime}, q^{\prime}, m^{\prime}\right\rangle \\
& \overline{\left\langle d b, U, s e c, T, V, h, a E,\left\langle r S, \bar{t}, u^{\prime}, \epsilon\right\rangle\right\rangle \xrightarrow{\langle u, \mathrm{CREATE}, v\rangle}} \underset{f}{ }\left\langle d b, U, s e c, T, V \cup\{v\}, h \cdot a E, a E^{\prime},\langle\epsilon, \epsilon, \epsilon, \epsilon\rangle\right\rangle \quad \text { Success } \\
& u \in U \quad \text { defined }(v, D, V) \quad f\left(\left\langle d b, U, \text { sec }, T, V, h, a E,\left\langle r S, \bar{t}, u^{\prime}, \epsilon\right\rangle\right\rangle,\langle u, \operatorname{CREATE}, v\rangle\right)=\top \text {, } \\
& v=\langle i d, u, q, m\rangle \quad a E^{\prime}=\langle\langle u, \operatorname{CREATE}, v\rangle, \top, \perp, \emptyset\rangle \quad v^{\prime}=\left\langle i d, o w^{\prime}, q^{\prime}, m^{\prime}\right\rangle \quad v^{\prime} \in V \quad v \neq v^{\prime} \quad \text { CREATE } \\
& \left\langle d b, U, s e c, T, V, h, a E,\left\langle r S, \bar{t}, u^{\prime}, \epsilon\right\rangle\right\rangle \xrightarrow{\langle u, \text { CREATE }, v\rangle}_{f}\left\langle d b, U, s e c, T, V, h \cdot a E, a E^{\prime},\langle\epsilon, \epsilon, \epsilon, \epsilon\rangle\right\rangle \quad \text { Deny } \\
& \left\langle d b, U, s e c, T, V, h, a E,\left\langle r S, \bar{t}, u^{\prime}, \epsilon\right\rangle\right\rangle \xrightarrow{\langle u, \text { CREATE }, o\rangle}_{f}\left\langle d b, U, s e c, T, V, h \cdot a E, a E^{\prime},\langle\epsilon, \epsilon, \epsilon, \epsilon\rangle\right\rangle
\end{aligned}
$$

Figure 19: Rules defining the \rightarrow_{f} relation for CREATE triggers and views

B. ATTACKER MODEL

In this section, we formalize our attacker model $\mathcal{A T} \mathcal{K}_{u}$. Let $P=\langle M, f\rangle$ be an extended configuration, where $M=$ $\langle D, \Gamma\rangle$ is a system configuration and f is an M-PDP, L be the P-LTS, and $u \in \mathcal{U}$ be a user. The set $\mathcal{A T} \mathcal{K}_{u}$ is the smallest set of judgments satisfying the inference rules in Figures 21 33 With a slight abuse of notation, in the rules we use $r, i \vdash_{u} \phi$ to denote that this judgment holds in $\mathcal{A T} \mathcal{K}_{u}$, i.e., $r, i \vdash_{u} \phi \in \mathcal{A T} \mathcal{K}_{u}$. Note that we redefine here also the rules we presented before in Figure 4
In the rules, we use $\models_{f i n}$ to denote the standard semantic entailment relation for first-order logic over finite models. We also denote by replace (ψ, o), where ψ is a sentence and o is a view $\langle V, o w,\{\bar{x} \mid \phi\}, m\rangle \in \mathcal{V I E W}_{D}$, the formula ψ^{\prime} obtained from ψ by replacing all occurrences of $V(\bar{x})$ with $\phi(\bar{x})$. Note that ψ and replace (ψ, o) are semantically equivalent. Finally, given a database schema D, a state $s=\langle d b, U, s e c, T, V, c t x\rangle$, and an action $a \in$ $\mathcal{A}_{D, \mathcal{U}} \cup \mathcal{T} \mathcal{R} \mathcal{I} \mathcal{G E} \mathcal{R}_{D}$, we denote by $\operatorname{user}(s, a)$ the following function:
$\operatorname{user}(s, a)= \begin{cases}\operatorname{invoker}(s) & \text { if } \operatorname{tr}(s) \neq \epsilon \\ u & \text { if } \operatorname{tr}(s)=\epsilon \wedge u \in \mathcal{U} \wedge a \in \mathcal{A}_{D, u}\end{cases}$
In the rules, we omit some details when dealing with integrity constraints. For instance, when we refer to functional dependencies of the form $\forall \bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{z}, \bar{z}^{\prime} .(R(\bar{x}, \bar{y}, \bar{z}) \wedge$ $\left.R\left(\bar{x}, \bar{y}^{\prime}, \bar{z}^{\prime}\right)\right) \Rightarrow \bar{y}=\bar{y}^{\prime}$, we implicitly assume that $|\bar{y}|=\left|\bar{y}^{\prime}\right|$ and $|\bar{z}|=\left|\bar{z}^{\prime}\right|$. Furthermore, when we refer to tuples in R, we use the notation $(\bar{v}, \bar{w}, \bar{q})$ and we implicitly assume that $|\bar{v}|=|\bar{x}|,|\bar{w}|=|\bar{y}|$, and $|\bar{q}|=|\bar{z}|$. We make similar simplifications for the inclusion dependencies.
In our attacker model, we consider a very simple syntactic criterion for revising believes. Intuitively, the attacker is able to propagate the knowledge of a sentence ϕ after (or before) an INSERT or a DELETE action on a table R iff the predicate R does not occur in ϕ. We formalize this using the function reviseBelief: $\operatorname{traces}(L) \times R C_{\text {bool }} \times \operatorname{traces}(L) \rightarrow\{T, \perp\}$. In Figure 20 we give the definition for the function only for the inputs r^{\prime}, ϕ, r such that $\phi \in R C_{\text {bool }}$ is a sentence and $r=$
r^{\prime}. act $\cdot s$, where act $\in \mathcal{A}_{D, \mathcal{U}} \cup \mathcal{T} \mathcal{R} \mathcal{I} \mathcal{G E R} \mathcal{R}_{D}$ and $s \in \Omega_{M}$. If this is not the case, then reviseBelif $\left(r^{\prime}, \phi, r\right)=\perp$. Note that the function tables takes as input a formula ϕ and returns as output the set of all tables mentioned in ϕ^{\prime}, where ϕ^{\prime} is the formula obtained from ϕ by replacing all views with their definitions. We remark that, given a formula ϕ, if $R \notin \operatorname{tables}(\phi)$, then the value of ϕ is independent on R, i.e., R does not determine ϕ.
In Lemma $B .1$ we prove that our attacker model is sound with respect to the relational calculus semantics, i.e., every judgment $r, i \vdash_{u} \phi$ that holds in $\mathcal{A} \mathcal{T} \mathcal{K}_{u}$ is such that ϕ is satisfied in the i-th state of r. We first introduce the concept of derivation. Given a judgment $r, i \vdash_{u} \phi$, a derivation of $r, i \vdash_{u} \phi$ with respect to $\mathcal{A} \mathcal{T} \mathcal{K}_{u}$, or a derivation of $r, i \vdash_{u} \phi$ for short, is a proof tree, obtained by applying the rules defining $\mathcal{A} \mathcal{T} \mathcal{K}_{u}$, that ends in $r, i \vdash_{u} \phi$. With a slight abuse of notation, we use $r, i \vdash_{u} \phi$ to denote both the judgment and its derivation. The length of a derivation, denoted $\mid r, i \vdash_{u}$ $\phi \mid$, is the number of rule applications in it. Note that a judgments $r, i \vdash_{u} \phi$ holds in $\mathcal{A T} \mathcal{K}_{u}$ iff there is a derivation for it.

Lemma B.1. Let P be an extended configuration, L be the P-LTS, u be a user, $r \in \operatorname{traces}(L)$ be an L run, $\phi \in R C_{\text {bool }}$ be a sentence, and $1 \leq i \leq|r|$. If $r, i \vdash_{u} \phi$ holds in $\mathcal{A T} \mathcal{K}_{u}$, then $[\phi]^{d b}=\top$, where last $\left(r^{i}\right)=\langle d b, U$, sec $, T, V, c\rangle$.

Proof. Let P be an extended configuration, L be the P LTS, u be a user, $r \in \operatorname{traces}(L)$ be an L run, $\phi \in R C_{\text {bool }}$ be a sentence, and $1 \leq i \leq|r|$. Furthermore, let $r, i \vdash_{u} \phi$ be a judgment that holds, i.e., there is a derivation d that ends on this judgment. We prove our claim by induction on the length of d.

Base Case: The base case is a derivation of length 1. Thus, there are a number of cases depending on the rule used to obtain $r, i \vdash_{u} \phi$.

1. SELECT Success - 1. Let i be such that $r^{i}=r^{i-1}$. $\langle u$, SELECT, $\phi\rangle \cdot s$, where $s=\langle d b, U$, sec, $T, V, c\rangle \in \Omega_{M}$ and $\operatorname{last}\left(r^{i-1}\right)=\left\langle d b, U, s e c, T, V, c^{\prime}\right\rangle$. From the rules, it follows that $\operatorname{res}(s)=\mathrm{T}$. From this and the LTS rules, it follows that $[\phi]^{d b}=T$.
2. SELECT Success - 2. The proof for this case is similar to that of SELECT Success - 1 .
3. INSERT Success. Let i be such that $r^{i}=r^{i-1} \cdot\langle u$, INSERT, $R, \bar{t}\rangle \cdot s$, where $s=\langle d b, U$, sec, $T, V, c\rangle \in \Omega_{M}$ and $\operatorname{last}\left(r^{i-1}\right)=\left\langle d b^{\prime}, U, \sec , T, V, c^{\prime}\right\rangle$, and ϕ be $R(\bar{t})$. From the LTS rules, it follows that $d b=d b^{\prime}[R \oplus \bar{t}]$. From \oplus 's definition, it follows that $\bar{t} \in d b(R)$. Therefore, from the RC's semantics, it follows that $[R(\bar{t})]^{d b}=\mathrm{T}$. Since $\phi:=R(\bar{t})$, it follows that $[\phi]^{d b}=T$.
4. INSERT Success - FD. Let i be such that $r^{i}=r^{i-1}$. $\langle u, \operatorname{INSERT}, R,(\bar{v}, \bar{w}, \bar{q})\rangle \cdot s$, where $s=\langle d b, U, s e c, T, V, c\rangle$ $\in \Omega_{M}$ and $\operatorname{last}\left(r^{i-1}\right)=\left\langle d b^{\prime}, U\right.$, sec, $\left.T, V, c^{\prime}\right\rangle$, and ϕ be $\neg \exists \bar{y}, \bar{z} . R(\bar{v}, \bar{y}, \bar{z}) \wedge \bar{y} \neq \bar{w}$. We claim that $[\phi]^{d b^{\prime}}$ holds. From this claim and the LTS semantics, it follows that there is no tuple $\left(\bar{v}^{\prime}, \bar{w}^{\prime}, \bar{q}^{\prime}\right)$ in $d b^{\prime}(R)$ such that $\bar{v}^{\prime}=\bar{v}$ and $\bar{w}^{\prime} \neq \bar{w}$. There are two cases:
(a) The INSERT command causes an integrity exception, i.e., $E x(s) \neq \emptyset$. From this and the LTS semantics, it follows that $d b=d b^{\prime}$. From this and $[\phi]^{d b^{\prime}}$ holds, it follows that also $[\phi]^{d b}$ holds.
(b) The INSERT command does not cause any integrity exception, i.e., $E x(s)=\emptyset$. From this, $[\phi]^{d b^{\prime}}=\top$,

$$
\left.\operatorname{reviseBelief}\left(p^{\prime}, \phi, p^{\prime} \cdot a c t \cdot s\right)\right)= \begin{cases}\top & \text { if } \text { act }=\langle u, o p, R, \bar{t}\rangle \wedge R \notin \operatorname{tables}(\phi) \wedge o p \in\{\text { INSERT, DELETE }\} \\ \top & \text { if } a c t=\left\langle i d, o w, e v, R^{\prime}, \phi,\langle o p, R, \bar{t}\rangle, m\right\rangle \wedge R \notin \operatorname{tables}(\phi) \wedge o p \in\{\text { InSERT, DELETE }\} \\ \top & \text { if } \text { act }\left\langle\langle i d, o w, e v, R, \phi,\langle o p, u, p\rangle, m\rangle \wedge o p \in\left\{\oplus, \oplus^{*}, \ominus\right\}\right. \\ \perp & \text { otherwise }\end{cases}
$$

Figure 20: Belief Revision
and $d b(R)=d b^{\prime}(R) \cup\{(\bar{v}, \bar{w}, \bar{q})\}$, it follows that there is no tuple ($\bar{v}^{\prime}, \bar{w}^{\prime}, \bar{q}^{\prime}$) in $d b(R)$ such that $\bar{v}^{\prime}=$ \bar{v} and $\bar{w}^{\prime} \neq \bar{w}$. From this, it follows that also $[\phi]^{d b}$ holds.
We now prove our claim that $[\phi]^{d b^{\prime}}$ holds. Assume, for contradiction's sake, that this is not the case. This means that there is a tuple $\left(\bar{v}^{\prime}, \bar{w}^{\prime}, \bar{q}^{\prime}\right)$ in $d b^{\prime}(R)$ such that $\bar{v}^{\prime}=\bar{v}$ and $\bar{w}^{\prime} \neq \bar{w}$. Let $d b^{\prime \prime}$ be the state $d b^{\prime}[R \oplus$ $(\bar{v}, \bar{w}, \bar{q})]$. From $d b^{\prime \prime}=d b^{\prime}[R \oplus(\bar{v}, \bar{w}, \bar{q})]$, and the fact that there is a tuple ($\left.\bar{v}^{\prime}, \bar{w}^{\prime}, \bar{q}^{\prime}\right)$ in $d b^{\prime}(R)$ such that $\bar{v}^{\prime}=\bar{v}$ and $\bar{w}^{\prime} \neq \bar{w}$, it follows that there are two tuples $(\bar{v}, \bar{w}, \bar{q})$ and $\left(\bar{v}, \bar{w}^{\prime}, \bar{q}^{\prime}\right)$ in $d b^{\prime \prime}(R)$ such that $\bar{w}^{\prime} \neq \bar{w}$. From this and the relational calculus semantics, it follows that $\left[\forall \bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{z}, \bar{z}^{\prime} \cdot\left(\left(R(\bar{x}, \bar{y}, \bar{z}) \wedge R\left(\bar{x}, \bar{y}^{\prime}, \bar{z}^{\prime}\right)\right) \Rightarrow\right.\right.$ $\left.\bar{y}=\bar{y}^{\prime}\right]^{d b^{\prime \prime}}=\perp$. This contradicts the fact that $\forall \bar{x}, \bar{y}, \bar{y}^{\prime}$, $\bar{z}, \bar{z}^{\prime} \cdot\left(\left(R(\bar{x}, \bar{y}, \bar{z}) \wedge R\left(\bar{x}, \bar{y}^{\prime}, \bar{z}^{\prime}\right)\right) \Rightarrow \bar{y}=\bar{y}^{\prime}\right.$ is not in $E x(s)$.
5. INSERT Success - ID. Let i be such that $r^{i}=r^{i-1}$. $\langle u$, INSERT, $R,(\bar{v}, \bar{w})\rangle \cdot s$, where $s=\langle d b, U, s e c, T, V, c\rangle$ $\in \Omega_{M}$ and $\operatorname{last}\left(r^{i-1}\right)=\left\langle d b^{\prime}, U, \sec , T, V, c^{\prime}\right\rangle$, and ϕ be $\exists \bar{y} \cdot S(\bar{v}, \bar{y})$. We claim that $[\phi]^{d b^{\prime}}$ holds. From this claim and the LTS semantics, it follows that there is a tuple $\left(\bar{v}^{\prime}, \bar{w}^{\prime}\right)$ in $d b^{\prime}(S)$ such that $\bar{v}^{\prime}=\bar{v}$. There are two cases: (a) The INSERT command causes an integrity exception, i.e., $E x(s) \neq \emptyset$. From this and the LTS semantics, it follows that $d b=d b^{\prime}$. From this and $[\phi]^{d b^{\prime}}$ holds, it follows that also $[\phi]^{d b}$ holds.
(b) The INSERT command does not cause any integrity exception, i.e., $E x(s)=\emptyset$. From this, $[\phi]^{d b^{\prime}}=\mathrm{T}$, and $d b(S)=d b^{\prime}(S)$, it follows that there a tuple $\left(\bar{v}^{\prime}, \bar{w}^{\prime}\right)$ in $d b(S)$ such that $\bar{v}^{\prime}=\bar{v}$. From this, it follows that also $[\phi]^{d b}$ holds.
We now prove our claim that $[\phi]^{d b^{\prime}}$ holds. Assume, for contradiction's sake, that this is not the case. This means that there is no tuple $\left(\bar{v}^{\prime}, \bar{w}^{\prime}\right)$ in $d b^{\prime}(S)$ such that $\bar{v}^{\prime}=\bar{v}$. Let $d b^{\prime \prime}$ be the state $d b^{\prime}[R \oplus(\bar{v}, \bar{w})]$. From $d b^{\prime \prime}=d b^{\prime}[R \oplus(\bar{v}, \bar{w})]$, and the fact that there is no tuple $\left(\bar{v}^{\prime}, \bar{w}^{\prime}\right)$ in $d b^{\prime}(S)$ such that $\bar{v}^{\prime}=\bar{v}$, it follows that there is a tuple (\bar{v}, \bar{w}) in $d b^{\prime \prime}(R)$ and there is no tuple ($\bar{v}^{\prime}, \bar{w}^{\prime}$) in $d b^{\prime \prime}(S)$ such that $\bar{v}^{\prime}=\bar{v}$. From this and the relational calculus semantics, it follows that $[\forall \bar{x}, \bar{z} \cdot(R(\bar{x}, \bar{z}) \Rightarrow \exists \bar{w} \cdot S(\bar{x}, \bar{w}))]^{d b^{\prime \prime}}=\perp$. This contradicts the fact that $\forall \bar{x}, \bar{z} \cdot(R(\bar{x}, \bar{z}) \Rightarrow \exists \bar{w} . S(\bar{x}, \bar{w}))$ is not in $E x(s)$.
6. DELETE Success. The proof for this case is similar to that of INSERT Success.
7. DELETE Success - ID. Let i be such that $r^{i}=r^{i-1}$. $\langle u$, DELETE, $R,(\bar{v}, \bar{w})\rangle \cdot s$, where $s=\langle d b, U, s e c, T, V, c\rangle$ $\in \Omega_{M}$ and last $\left(r^{i-1}\right)=\left\langle d b^{\prime}, U, \sec , T, V, c^{\prime}\right\rangle$, and ϕ be $\forall \bar{x}, \bar{z} \cdot(S(\bar{x}, \bar{z}) \Rightarrow \bar{x} \neq \bar{v}) \vee \exists \bar{y} .(R(\bar{v}, \bar{y}) \wedge \bar{y} \neq \bar{w})$. We claim that $[\phi]^{d b}$ holds. From this claim and the LTS semantics, it follows that there are two cases:
(a) all tuples $(\bar{x}, \bar{y}) \in d b(S)$ are such that $\bar{v} \neq \bar{x}$. There are two cases:
i. The DELETE command causes an integrity ex-
ception, i.e., $E x(s) \neq \emptyset$. From this and the LTS semantics, it follows that $d b=d b^{\prime}$. From this and $[\phi]^{d b^{\prime}}$ holds, it follows that also $[\phi]^{d b}$ holds.
ii. The DELETE command does not cause any integrity exception, i.e., $E x(s)=\emptyset$. From this, $[\phi]^{d b^{\prime}}=\mathrm{T}$, and $d b(S)=d b^{\prime}(S)$, it follows that all tuples $(\bar{x}, \bar{y}) \in d b(S)$ are such that $\bar{v} \neq \bar{x}$. Therefore, also $[\phi]^{d b}$ holds.
(b) there is a tuple $\left(\bar{v}, \bar{w}^{\prime}\right) \in d b(R)$ such that $\bar{w} \neq \bar{w}^{\prime}$. There are two cases:
i. The DELETE command causes an integrity exception, i.e., $E x(s) \neq \emptyset$. From this and the LTS semantics, it follows that $d b=d b^{\prime}$. From this and $[\phi]^{d b^{\prime}}$ holds, it follows that also $[\phi]^{d b}$ holds.
ii. The DELETE command does not cause any integrity exception, i.e., $E x(s)=\emptyset$. From this, $[\phi]^{d b^{\prime}}=\top$, and $d b(R)=d b^{\prime}(R) \backslash\{(\bar{v}, \bar{w})\}$, it follows that there is a tuple $\left(\bar{v}, \bar{w}^{\prime}\right) \in d b(R)$ such that $\bar{w} \neq \bar{w}^{\prime}$. Therefore, also $[\phi]^{d b}$ holds.
We now prove our claim that $[\phi]^{d b^{\prime}}$ holds. Assume, for contradiction's sake, that this is not the case. This means that there is a tuple (\bar{v}, \bar{z}) in $d b^{\prime}(S)$ and there is no tuple $(\bar{v}, \bar{y}) \in d b^{\prime}(R)$ such that $\bar{y} \neq \bar{w}$. Let $d b^{\prime \prime}$ be the state $d b^{\prime}[R \ominus(\bar{v}, \bar{w})]$. From $d b^{\prime \prime}=d b^{\prime}[R \ominus(\bar{v}, \bar{w})]$, and the fact that there is a tuple (\bar{v}, \bar{z}) in $d b^{\prime}(S)$ and there is no tuple $(\bar{v}, \bar{y}) \in d b^{\prime}(R)$ such that $\bar{y} \neq \bar{w}$, it follows that there is a tuple (\bar{v}, \bar{z}) in $d b^{\prime \prime}(S)$ and there is no tuple $(\bar{v}, \bar{y}) \in d b^{\prime \prime}(R)$ such that $\bar{y} \neq \bar{w}$. From this and the relational calculus semantics, it follows that $\left[\forall \bar{x}, \bar{z} \cdot(S(\bar{x}, \bar{z}) \Rightarrow \exists \bar{w} \cdot R(\bar{x}, \bar{w})]^{d b^{\prime \prime}}=\perp\right.$. This contradicts the fact that $\forall \bar{x}, \bar{z} .(S(\bar{x}, \bar{z}) \Rightarrow \exists \bar{w} . R(\bar{x}, \bar{w})$ is not in $E x(s)$.
8. INSERT Exception. Let i be such that $r^{i}=r^{i-1}$. $\langle u$, INSER, $R, \bar{t}\rangle \cdot s$, where $s=\langle d b, U$, sec $, T, V, c\rangle \in \Omega_{M}$ and $\operatorname{last}\left(r^{i-1}\right)=\left\langle d b^{\prime}, U\right.$, sec $\left., T, V, c^{\prime}\right\rangle$, and ϕ be $\neg R(\bar{t})$. We claim that $[\neg R(\bar{t})]^{d b^{\prime}}=\top$ holds. From the LTS semantics, it follows that $d b=d b^{\prime}$. Therefore, also $[\neg R(\bar{t})]^{d b}=\mathrm{T}$ holds.
We now prove our claim. Assume, for contradiction's sake, that $[\neg R(\bar{t})]^{d b^{\prime}}=\perp$. Therefore, $\bar{t} \in d b^{\prime}(R)$. From this and the definition of \oplus, it follows that $d b^{\prime}=$ $d b^{\prime}[R \oplus \bar{t}]$. From the rules, it follows that $E x(s) \neq$ \emptyset. Therefore, from the LTS semantics, it follows that $d b^{\prime}[R \oplus \bar{t}] \notin \Omega_{D}^{\Gamma}$. From last $\left(r^{i-1}\right)=\left\langle d b^{\prime}, U, s e c, T, V, c^{\prime}\right\rangle$, it follows that $d b^{\prime} \in \Omega_{D}^{\Gamma}$. However, from $d b^{\prime}=d b^{\prime}[R \oplus \bar{t}]$ and $d b^{\prime} \in \Omega_{D}^{\Gamma}$, it follows that $d b^{\prime}[R \oplus \bar{t}] \in \Omega_{D}^{\Gamma}$ leading to a contradiction.
9. DELETE Exception. The proof for this case is similar to that of INSERT Exception.
10. INSERT FD Exception. Let i be such that $r^{i}=r^{i-1}$. $\langle u$, INSERT, $R,(\bar{v}, \bar{w}, \bar{q})\rangle \cdot s$, where $s=\langle d b, U, s e c, T, V, c\rangle$ $\in \Omega_{M}$ and $\operatorname{last}\left(r^{i-1}\right)=\left\langle d b^{\prime}, U, \sec , T, V, c^{\prime}\right\rangle$, and ϕ be
$\exists \bar{y}, \bar{z} \cdot R(\bar{v}, \bar{y}, \bar{z}) \wedge \bar{y} \neq \bar{w}$. We claim that $[\phi]^{d b^{\prime}}$ holds. From this claim and the LTS semantics, it follows that there is a tuple $\left(\bar{v}, \bar{w}^{\prime}, \bar{q}^{\prime}\right)$ in $d b^{\prime}(R)$ such that $\bar{w}^{\prime} \neq \bar{w}$. From this and $d b=d b^{\prime}$, it follows that there is a tuple $\left(\bar{v}, \bar{w}^{\prime}, \bar{q}^{\prime}\right)$ in $d b(R)$ such that $\bar{w}^{\prime} \neq \bar{w}$. From this, it follows that also $[\phi]^{d b}$ holds.
We now prove our claim that $[\phi]^{d b^{\prime}}$ holds. Assume, for contradiction's sake, that this is not the case. This means that there is no tuple ($\left.\bar{v}^{\prime}, \bar{w}^{\prime}, \bar{q}^{\prime}\right)$ in $d b^{\prime}(R)$ such that $\bar{v}^{\prime}=\bar{v}$ and $\bar{w}^{\prime} \neq \bar{w}$. Therefore, for all tuples $\left(\bar{v}^{\prime}, \bar{w}^{\prime}, \bar{q}^{\prime}\right)$ in $d b^{\prime}(R)$, if $\bar{v}=\bar{v}^{\prime}$, then $\bar{w}^{\prime}=\bar{w}$. From this and $d b^{\prime}[R \oplus(\bar{v}, \bar{w}, \bar{q})](R)=d b^{\prime}(R) \cup\{(\bar{v}, \bar{w}, \bar{q})\}$, it follows that for all tuples ($\bar{v}^{\prime}, \bar{w}^{\prime}, \bar{q}^{\prime}$) in $d b^{\prime}[R \oplus(\bar{v}, \bar{w}, \bar{q})](R)$, if $\bar{v}=\bar{v}^{\prime}$, then $\bar{w}^{\prime}=\bar{w}$. Furthermore, from $d b^{\prime} \in \Omega_{D}^{\Gamma}$, it follows that for all tuples ($\bar{v}^{\prime}, \bar{w}^{\prime}, \bar{q}^{\prime}$) and ($\bar{v}^{\prime}, \bar{w}^{\prime \prime}, \bar{q}^{\prime \prime}$) in $d b(R)$ such that $\bar{v}^{\prime} \neq \bar{v}$, then $\bar{w}^{\prime}=\bar{w}$. From this and $d b[R \oplus(\bar{v}, \bar{w}, \bar{q})](R)=d b^{\prime}(R) \cup\{(\bar{v}, \bar{w}, \bar{q})\}$, it follows that for all tuples ($\bar{v}^{\prime}, \bar{w}^{\prime}, \bar{q}^{\prime}$) and ($\left.\bar{v}^{\prime}, \bar{w}^{\prime \prime}, \bar{q}^{\prime \prime}\right)$ in $d b^{\prime}[R \oplus$ $(\bar{v}, \bar{w}, \bar{q})](R)$ such that $\bar{v}^{\prime} \neq \bar{v}$, then $\bar{w}^{\prime}=\bar{w}$. From these facts and the relational calculus semantics, it follows that $\left[\forall \bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{z}, \bar{z}^{\prime} \cdot\left(\left(R(\bar{x}, \bar{y}, \bar{z}) \wedge R\left(\bar{x}, \bar{y}^{\prime}, \bar{z}^{\prime}\right)\right) \Rightarrow\right.\right.$ $\left.\bar{y}=\bar{y}^{\prime}\right]^{d b^{\prime}}[R \oplus(\bar{v}, \bar{w}, \bar{q})]=\mathrm{T}$. This is in contradiction with the fact that the constraint $\forall \bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{z}, \bar{z}^{\prime} .((R(\bar{x}, \bar{y}, \bar{z}) \wedge$ $\left.R\left(\bar{x}, \bar{y}^{\prime}, \bar{z}^{\prime}\right)\right) \Rightarrow \bar{y}=\bar{y}^{\prime}$ is in $\operatorname{Ex}\left(\operatorname{last}\left(r^{i}\right)\right)$.
11. INSERT ID Exception. Let i be such that $r^{i}=r^{i-1}$. $\langle u, \operatorname{INSERT}, R,(\bar{v}, \bar{w})\rangle \cdot s$, where $s=\langle d b, U, s e c, T, V, c\rangle$ $\in \Omega_{M}$ and last $\left(r^{i-1}\right)=\left\langle d b^{\prime}, U, \sec , T, V, c^{\prime}\right\rangle$, and ϕ be $\forall \bar{x}, \bar{y} \cdot S(\bar{x}, \bar{y}) \Rightarrow \bar{x} \neq \bar{v}$. We claim that $[\phi]^{d b^{\prime}}$ holds. From this claim and the LTS semantics, it follows that there is no tuple $\left(\bar{v}, \bar{w}^{\prime}\right)$ in $d b^{\prime}(S)$. From this and $d b(S)=$ $d b^{\prime}(S)$, it follows that there no tuple $\left(\bar{v}, \bar{w}^{\prime}\right)$ in $d b(S)$. From this, it follows that also $[\phi]^{d b}$ holds.
We now prove our claim that $[\phi]^{d b^{\prime}}$ holds. Assume, for contradiction's sake, that this is not the case. This means that there is a tuple ($\bar{v}, \bar{w}^{\prime}$) in $d b^{\prime}(S)$, for some \bar{w}^{\prime}. From $d b^{\prime} \in \Omega_{D}^{\Gamma}$, it follows that for all tuples $(\bar{x}, \bar{z}) \in$ $d b^{\prime}(R)$ such that $\bar{x} \neq \bar{v}$, there is a tuple $(\bar{x}, \bar{y}) \in d b^{\prime}(S)$. From this, $\left(\bar{v}, \bar{w}^{\prime}\right)$ in $d b^{\prime}(S), d b^{\prime}[R \oplus(\bar{v}, \bar{w})](S)=d b^{\prime}(S)$, and $d b^{\prime}[R \oplus(\bar{v}, \bar{w})](R)=d b^{\prime}(R) \cup\{(\bar{v}, \bar{w})\}$, it follows that for all tuples $(\bar{x}, \bar{z}) \in d b^{\prime}[R \oplus(\bar{v}, \bar{w})](R)$, there is a tuple $(\bar{x}, \bar{y}) \in d b^{\prime}[R \oplus(\bar{v}, \bar{w})](S)$. From these facts and the relational calculus semantics, it follows that $[\forall \bar{x}, \bar{z} \cdot(R(\bar{x}, \bar{z}) \Rightarrow \exists \bar{w} \cdot S(\bar{x}, \bar{w}))]^{d b^{\prime}[R \oplus(\bar{v}, \bar{w})]}=\mathrm{\top}$. This is in contradiction with the fact that the constraint $\forall \bar{x}, \bar{z} \cdot(R(\bar{x}, \bar{z}) \Rightarrow \exists \bar{w} \cdot S(\bar{x}, \bar{w}))$ is in $\operatorname{Ex}\left(\operatorname{last}\left(r^{i}\right)\right)$.
12. DELETE FD Exception. Let i be such that $r^{i}=r^{i-1}$. $\langle u$, DELETE, $R,(\bar{v}, \bar{w})\rangle \cdot s$, where $s=\langle d b, U, s e c, T, V, c\rangle$ $\in \Omega_{M}$ and last $\left(r^{i-1}\right)=\left\langle d b^{\prime}, U, s e c, T, V, c^{\prime}\right\rangle$, and ϕ be $\exists \bar{z} \cdot S(\bar{v}, \bar{z}) \wedge \forall \bar{y} .(R(\bar{v}, \bar{y}) \Rightarrow \bar{y}=\bar{w})$. We claim that $[\phi]^{d b^{\prime}}$ holds. From this claim and the LTS semantics, it follows that there is a tuple (\bar{v}, \bar{z}) in $d b^{\prime}(S)$ and all tuples $(\bar{v}, \bar{y}) \in d b^{\prime}(R)$ are such that $\bar{y}=\bar{w}$. From (\bar{v}, \bar{z}) in $d b^{\prime}(S)$ and $d b(S)=d b^{\prime}(S)$, it follows that (\bar{v}, \bar{z}) in $d b^{\prime}(S)$. From the fact that all tuples $(\bar{v}, \bar{y}) \in d b^{\prime}(R)$ are such that $\bar{y}=\bar{w}$ and $\left.d b(R)=d b^{\prime}(R)\right\}$, it follows that all tuples $(\bar{v}, \bar{y}) \in d b(R)$ are such that $\bar{y}=\bar{w}$. From (\bar{v}, \bar{z}) in $d b(S)$ and the fact that all tuples $(\bar{v}, \bar{y}) \in d b(R)$ are such that $\bar{y}=\bar{w}$, it follows that $[\phi]^{d b}$ holds.
We now prove our claim that $[\phi]^{d b^{\prime}}$ holds. Assume, for contradiction's sake, that this is not the case. There are two cases:
(a) all tuples $(\bar{x}, \bar{y}) \in d b^{\prime}(S)$ are such that $\bar{v} \neq \bar{x}$. Fur-
thermore, from $d b^{\prime} \in \Omega_{D}^{\Gamma}$, it follows that for all tuples $(\bar{x}, \bar{y}) \in d b(S)$ such that $\bar{v} \neq \bar{x}$, there is a tuple $(\bar{x}, \bar{z}) \in d b(R)$. From these facts, $d b^{\prime}[R \ominus$ $(\bar{v}, \bar{w})](S)=d b^{\prime}(S)$, and $d b^{\prime}[R \ominus(\bar{v}, \bar{w})](R)=d b^{\prime}(R)$ $\backslash\{(\bar{v}, \bar{w})\}$, it follows that for all tuples $(\bar{x}, \bar{y}) \in$ $d b^{\prime}[R \ominus(\bar{v}, \bar{w})](S)$, there is a tuple $(\bar{x}, \bar{z}) \in d b^{\prime}[R \ominus$ $(\bar{v}, \bar{w})](R)$. From this and the relational calculus semantics, it follows that

$$
\left[\forall \bar{x}, \bar{z} \cdot(S(\bar{x}, \bar{z}) \Rightarrow \exists \bar{w} \cdot R(\bar{x}, \bar{w})]^{\left.d b^{\prime}[R \ominus(\bar{v}, \bar{w}))\right]}=\top\right.
$$

This contradicts the fact that the constraint $\forall \bar{x}, \bar{z}$. $(S(\bar{x}, \bar{z}) \Rightarrow \exists \bar{w} . R(\bar{x}, \bar{w}))$ is in $\operatorname{Ex}\left(\operatorname{last}\left(r^{i}\right)\right)$.
(b) there is a tuple $\left(\bar{v}, \bar{w}^{\prime}\right) \in d b^{\prime}(R)$ such that $\bar{w} \neq \bar{w}^{\prime}$. Furthermore, from $d b^{\prime} \in \Omega_{D}^{\Gamma}$, it follows that for all tuples $(\bar{x}, \bar{y}) \in d b^{\prime}(S)$ such that $\bar{v} \neq \bar{x}$, there is a tuple $(\bar{x}, \bar{z}) \in d b^{\prime}(R)$. From these facts, $d b^{\prime}[R \ominus$ $(\bar{v}, \bar{w})](S)=d b^{\prime}(S)$, and $d b^{\prime}[R \ominus(\bar{v}, \bar{w})](R)=d b^{\prime}(R)$ $\backslash\{(\bar{v}, \bar{w})\}$, it follows that for all tuples $(\bar{x}, \bar{y}) \in$ $d b^{\prime}[R \ominus(\bar{v}, \bar{w})](S)$, there is a tuple $(\bar{x}, \bar{z}) \in d b^{\prime}[R \ominus$ $(\bar{v}, \bar{w})](R)$. From this and the relational calculus semantics, it follows that

$$
\left[\forall \bar{x}, \bar{z} \cdot(S(\bar{x}, \bar{z}) \Rightarrow \exists \bar{w} \cdot R(\bar{x}, \bar{w})]^{\left.d b^{\prime}[R \ominus(\bar{v}, \bar{w}))\right]}=\top\right.
$$

This contradicts the fact that the constraint $\forall \bar{x}, \bar{z}$. $(S(\bar{x}, \bar{z}) \Rightarrow \exists \bar{w} \cdot R(\bar{x}, \bar{w}))$ is in $\operatorname{Ex}\left(\operatorname{last}\left(r^{i}\right)\right)$.
13. Integrity Constraint. The proof of this case follows trivially from the fact that for any state $s=\langle d b, U, s e c, T$, $V, c\rangle \in \Omega_{M}$ and any $\gamma \in \Gamma,[\gamma]^{d b}=\top$ holds by definition.
14. Learn GRANT/REVOKE Backward. Let i be such that $r^{i}=r^{i-1} \cdot t \cdot s$, where $s=\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}$, last $\left(r^{i-1}\right)=\left\langle d b, U, \sec ^{\prime}, T, V, c^{\prime}\right\rangle$, and t be a trigger whose WHEN condition is ϕ and whose action is either a GRANT or a REVOKE. From the rule's definition, it follows $s e c \neq s e c^{\prime}$. We now prove that $[\phi]^{d b}=T$. Assume, for contradiction's sake, that $[\phi]^{d b}=\perp$. From this and the LTS rules for the triggers, it follows that the trigger t is disabled. Therefore, according to the Trigger Disabled rule, $s e c=s e c^{\prime}$, which leads to a contradiction.
15. Trigger GRANT Disabled Backward. Let i be such that $r^{i}=r^{i-1} \cdot t \cdot s$, where $s=\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}$, last $\left(r^{i-1}\right)=\left\langle d b, U, s e c^{\prime}, T, V, c^{\prime}\right\rangle$, and t be a trigger whose WHEN condition is ψ, and ϕ be $\neg \psi$. Furthermore, let $g \in \Omega_{\mathcal{U}, D}^{s e c}$ be the GRANT added by the trigger. From the rule's definition, it follows $g \notin s e c^{\prime}$. We now prove that $[\phi]^{d b}=T$. Assume, for contradiction's sake, that $[\phi]^{d b} \stackrel{\perp}{=}$. This would imply that the trigger t is enabled. There are two cases:
(a) t 's execution is authorized. Therefore, $g \in \sec ^{\prime}$, which contradicts $g \notin \sec ^{\prime}$.
(b) t 's execution is not authorized. This contradicts $\sec E x(s)=\perp$.
16. Trigger REVOKE Disabled Backward. The proof for this case is similar to that of Trigger GRANT Disabled Backward.
17. Trigger INSERT FD Exception. The proof for this case is similar to that of INSERT FD Exception.
18. Trigger INSERT ID Exception. The proof for this case is similar to that of INSERT ID Exception.
19. Trigger DELETE ID Exception. The proof for this case is similar to that of DELETE ID Exception.
20. Trigger Exception. Let i be such that $r^{i}=r^{i-1} \cdot t \cdot$
s, where $s=\langle d b, U, \sec , T, V, c\rangle \in \Omega_{M}, \operatorname{last}\left(r^{i-1}\right)=$ $\left\langle d b, U, \sec ^{\prime}, T, V, c^{\prime}\right\rangle$, and t be a trigger whose WHEN condition is ϕ and whose action is act. From the rule's definition, it follows that t is enabled and that the evaluation of the WHEN condition is authorized. From this and the LTS's rules, it follows that $[\phi]^{d b}=T$.
21. Trigger INSERT Exception. The proof for this case is similar to that of INSERT Exception.
22. Trigger DELETE Exception. The proof for this case is similar to that of DELETE Exception.
23. Trigger Rollback INSERT. Let i be such that $r^{i}=r^{i-n-1}$. $\langle u$, INSERT, $R, \bar{t}\rangle \cdot s_{1} \cdot t_{1} \cdot s_{2} \cdots \cdot t_{n} \cdot s_{n}$, where $s_{1}, s_{2}, \ldots, s_{n}$ $\in \Omega_{M}$ and $t_{1}, \ldots, t_{n} \in \mathcal{T R} \mathcal{I G G E R}_{D}$, and ϕ be $\neg R(\bar{t})$. Furthermore, let last $\left(r^{i-n-1}\right)=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$ and s_{n} be $\langle d b, U, s e c, T, V, c\rangle$. Assume, for contradiction's sake, that $[\phi]^{d b}=\perp$. Therefore, $\bar{t} \in d b(R)$. From the LTS rules, it follows that $d b^{\prime}=d b$. From this and $\bar{t} \in d b(R)$, it follows $\bar{t} \in d b^{\prime}(R)$. From r 's definition and the LTS rule INSERT Success - 2, it follows that $\bar{t} \notin d b^{\prime}(R)$, which leads to a contradiction.
24. Trigger Rollback DELETE. The proof for this case is similar to that of Trigger Rollback INSERT.
This completes the proof of the base step.
Induction Step: Assume that the claim hold for any derivation of $r, j \vdash_{u} \psi$ such that $\left|r, j \vdash_{u} \psi\right|<\left|r, i \vdash_{u} \phi\right|$. We now prove that the claim also holds for $r, i \vdash_{u} \phi$. There are a number of cases depending on the rule used to obtain $r, i \vdash_{u} \phi$.

1. View. The proof of this case follows trivially from the semantics of the relational calculus extended over views.
2. Propagate Forward SELECT. Let i be such that $r^{i+1}=$ $r^{i} \cdot\langle u$, SELECT,$\psi\rangle \cdot s$, where $s=\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}$ and $\operatorname{last}\left(r^{i}\right)=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$. From the rule's definition, $r, i \vdash_{u} \phi$ holds. From this, the induction hypothesis, and $\operatorname{last}\left(r^{i}\right)=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$, it follows that $[\phi]^{d b^{\prime}}=T$. From the LTS semantics, it follows that $d b=d b^{\prime}$. From this and $[\phi]^{d b^{\prime}}=\mathrm{T}$, it follows that $[\phi]^{d b}=T$.
3. Propagate Forward GRANT/REVOKE. The proof for this case is similar to that of Propagate Forward SELECT.
4. Propagate Forward CREATE. The proof for this case is similar to that of Propagate Forward SELECT.
5. Propagate Backward SELECT. Let i be such that $r^{i+1}=$ $r^{i} \cdot\langle u, \operatorname{SELECT}, \psi\rangle \cdot s$, where $s=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$ $\in \Omega_{M}$ and $\operatorname{last}\left(r^{i}\right)=\langle d b, U, s e c, T, V, c\rangle$. From the rule's definition, $r, i+1 \vdash_{u} \phi$ holds. From this, the induction hypothesis, $r^{i+1}=r^{i} \cdot\langle u$, SELECT, $\psi\rangle \cdot s$, and $s=\langle d b, U, s e c, T, V, c\rangle$, it follows that $[\phi]^{d b^{\prime}}=T$. From the LTS semantics, it follows that $d b=d b^{\prime}$. From this and $[\phi]^{d b^{\prime}}=\mathrm{T}$, it follows that $[\phi]^{d b}=\mathrm{T}$.
6. Propagate Backward GRANT/REVOKE. The proof for this case is similar to that of Propagate Backward SELECT.
7. Propagate Backward CREATE TRIGGER. The proof for this case is similar to that of Propagate Backward SELECT.
8. Propagate Backward CREATE VIEW. Let i be such that $r^{i+1}=r^{i} \cdot\langle u$, CREATE, $o\rangle \cdot s$, where $s=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}\right.$, $\left.V^{\prime}, c^{\prime}\right\rangle \in \Omega_{M}$ and last $\left(r^{i}\right)=\langle d b, U, \sec , T, V, c\rangle$. From the rule's definition, $r, i+1 \vdash_{u} \phi^{\prime}$ holds. From this, the induction hypothesis, $r^{i+1}=r^{i} \cdot\langle u$, SELECT, $\psi\rangle \cdot s$, and $s=\langle d b, U, s e c, T, V, c\rangle$, it follows that $\left[\phi^{\prime}\right]^{d b^{\prime}}=\mathrm{T}$.

From the definition of replace, it follows that replace (ϕ^{\prime}, o) and ϕ^{\prime} are semantically equivalent. From this and $\left[\phi^{\prime}\right]^{d b^{\prime}}=\top$, $\left[\text { replace }\left(\phi^{\prime}, o\right)\right]^{d b^{\prime}}=\top$. From the LTS semantics, it follows that $d b=d b^{\prime}$. From this and $\left[\text { replace }\left(\phi^{\prime}, o\right)\right]^{d b^{\prime}}=\mathrm{T}$, it follows that $\left[\text { replace }\left(\phi^{\prime}, o\right)\right]^{d b}$ $=\mathrm{T}$.
9. Rollback Backward - 1. Let i be such that $r^{i}=r^{i-n-1}$. $\langle u, o p, R, \bar{t}\rangle \cdot s_{1} \cdot t_{1} \cdot s_{2} \cdot \ldots \cdot t_{n} \cdot s_{n}$, where $s_{1}, s_{2}, \ldots, s_{n} \in$ $\Omega_{M}, t_{1}, \ldots, t_{n} \in \mathcal{T} \mathcal{R} \mathcal{G G E} \mathcal{R}_{D}$, and $o p$ is one of \{INSERT, DELETE $\}$. Furthermore, let s_{n} be $\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$ and last $\left(r^{i-n-1}\right)$ be $\langle d b, U$, sec, $T, V, c\rangle$. From the rule's definition, $r, i \vdash_{u} \phi$ holds. From this, the induction hypothesis, and $s_{n}=\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}$, it follows that $[\phi]^{d b^{\prime}}=T$. From the LTS semantics, it follows that $d b=d b^{\prime}$ (because a roll-back happened). From this and $[\phi]^{d b^{\prime}}=\mathrm{T}$, it follows that $[\phi]^{d b}=\mathrm{T}$.
10. Rollback Backward - 2. Let i be such that $r^{i}=r^{i-1}$. $\langle u, o p, R, \bar{t}\rangle \cdot s$, where $s=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle \in$ $\Omega_{M}, \operatorname{last}\left(r^{i-1}\right)=\langle d b, U, s e c, T, V, c\rangle$, and op is one of \{INSERT, DELETE\}. From the rule's definition, $r, i \vdash_{u}$ ϕ holds. From this, the induction hypothesis, $r^{i}=$ $r^{i-1} \cdot\langle u, o p, R, \bar{t}\rangle \cdot s$, and $s=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$, it follows that $[\phi]^{d b^{\prime}}=T$. From the LTS semantics, it follows that $d b=d b^{\prime}$ (because a roll-back happened). From this and $[\phi]^{d b^{\prime}}=\mathrm{T}$, it follows that $[\phi]^{d b}=\mathrm{T}$.
11. Rollback Forward - 1. Let i be such that $r^{i}=r^{i-n-1}$. $\langle u, o p, R, \bar{t}\rangle \cdot s_{1} \cdot t_{1} \cdot s_{2} \cdot \ldots \cdot t_{n} \cdot s_{n}$, where $s_{1}, s_{2}, \ldots, s_{n} \in$ $\Omega_{M}, t_{1}, \ldots, t_{n} \in \mathcal{T} \mathcal{R} \mathcal{G G E} \mathcal{R}_{D}$, and $o p$ is one of \{INSERT, DELETE $\}$. Furthermore, let s_{n} be $\langle d b, U$, sec $, T, V, c\rangle$ and last $\left(r^{i-n-1}\right)$ be $\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$. From the rule's definition, $r, i-n-1 \vdash_{u} \phi$ holds. From this, the induction hypothesis, and last $\left(r^{i-n-1}\right)=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}\right.$, $\left.T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$., it follows that $[\phi]^{d b^{\prime}}=T$. From the LTS semantics, it follows that $d b=d b^{\prime}$ (because a roll-back happened). From this and $[\phi]^{d b^{\prime}}=T$, it follows that $[\phi]^{d b}=T$.
12. Rollback Forward - 2. Let i be such that $r^{i}=r^{i-1}$. $\langle u, o p, R, \bar{t}\rangle \cdot s$, where $o p \in\{$ INSERT, DELETE $\}, s=\langle d b, U$, $\sec , T, V, c\rangle \in \Omega_{M}$ and last $\left(r^{i-1}\right)=\left\langle d b^{\prime}, U^{\prime}, \sec ^{\prime}, T^{\prime}, V^{\prime}\right.$, $\left.c^{\prime}\right\rangle$. From the rule's definition, $r, i-1 \vdash_{u} \phi$ holds. From this, the induction hypothesis, and last $\left(r^{i-1}\right)=$ $\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$, it follows that $[\phi]^{d b^{\prime}}=T$. From the LTS semantics, it follows that $d b=d b^{\prime}$ (because a roll-back happened). From this and $[\phi]^{d b^{\prime}}=T$, it follows that $[\phi]^{d b}=T$.
13. Propagate Forward INSERT/DELETE Success. Let i be such that $r^{i}=r^{i-1} \cdot\langle u, o p, R, \bar{t}\rangle \cdot s$, where $o p \in\{$ INSERT, DELETE $\}, s=\langle d b, U$, sec, $T, V, c\rangle \in \Omega_{M}$ and last $\left(r^{i-1}\right)=$ $\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$. From the rule's definition, $r, i-$ $1 \vdash_{u} \phi$ holds. From this, the induction hypothesis, and last $\left(r^{i-1}\right)=\left\langle d b^{\prime}, U^{\prime}, \sec ^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$, it follows that $[\phi]^{d b^{\prime}}=\top$. From reviseBelief $\left(r^{i-1}, \phi, r^{i}\right)=\mathrm{T}$, it follows that R does not occur in ϕ. From the LTS semantics, it follows that $d b\left(R^{\prime}\right)=d b^{\prime}\left(R^{\prime}\right)$ for all $R^{\prime} \neq R$. From this and the fact that R does not occur in ϕ, it follows that $[\phi]^{d b}=T$.
14. Propagate Forward INSERT Success - 1. Let i be such that $r^{i}=r^{i-1} \cdot\langle u, o p, R, \bar{t}\rangle \cdot s$, where $o p$ is one of $\{$ INSERT, DELETE $\}, s=\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}$ and last $\left(r^{i-1}\right)=\left\langle d b^{\prime}, U^{\prime}, \sec ^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$. From the rule's definition, $r, i-1 \vdash_{u} \phi$ and $r, i-1 \vdash_{u} R(\bar{t})$ hold.

From this, the induction hypothesis, and $\operatorname{last}\left(r^{i-1}\right)=$ $\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$, it follows that $[\phi]^{d b^{\prime}}=\top$ and $[R(\bar{t})]^{d b^{\prime}}=\mathrm{T}$. From $[R(\bar{t})]^{d b^{\prime}}=\mathrm{T}$ and the relational calculus' semantics, it follows that $\bar{t} \in d b^{\prime}(R)$. From the LTS semantics, $d b=d b^{\prime}[R \oplus \bar{t}]$. From this, it follows that $d b\left(R^{\prime}\right)=d b^{\prime}\left(R^{\prime}\right)$ for all $R^{\prime} \neq R$ and $d b(R)=$ $d b^{\prime}(R) \cup\{\bar{t}\}$. From this and $\bar{t} \in d b^{\prime}(R)$, it follows that $d b(R)=d b^{\prime}(R)$. Therefore, $d b=d b^{\prime}$. From this and $[\phi]^{d b^{\prime}}=\mathrm{T}$, it follows that $[\phi]^{d b}=\mathrm{T}$.
15. Propagate Forward DELETE Success - 1. The proof for this case is similar to that of Propagate Forward INSERT Success - 1.
16. Propagate Backward INSERT/DELETE Success. The proof for this case is similar to that of Propagate Forward INSERT/DELETE Success.
17. Propagate Backward INSERT Success - 1. The proof for this case is similar to that of Propagate Forward INSERT Success - 1 .
18. Propagate Backward DELETE Success - 1. The proof for this case is similar to that of Propagate Forward DELETE Success - 1.
19. Reasoning. Let Φ be a subset of $\left\{\phi \mid r, i \vdash_{u} \phi\right\}$ and $\operatorname{last}\left(r^{i}\right)=\langle d b, U, s e c, T, V, c\rangle$. From the induction hypothesis, it follows that $[\phi]^{d b}=\top$ for any $\phi \in \Phi$. From the rule's definition, it follows that $\Phi=_{\text {fin }} \gamma$. From this and $[\phi]^{d b}=\mathrm{T}$ for any $\phi \in \Phi$, it follows that $[\gamma]^{d b}=\mathrm{T}$.
20. Learn INSERT Backward - 3. Let i be such that $r^{i}=$ $r^{i-1} \cdot\langle u$, INSERT, $R, \bar{t}\rangle \cdot s$, where $s=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}\right.$, $\left.c^{\prime}\right\rangle \in \Omega_{M}$ and last $\left(r^{i-1}\right)=\langle d b, U, \sec , T, V, c\rangle$, and ϕ be $\neg R(\bar{t})$. We prove that $[\neg R(\bar{t})]^{d b}=\mathrm{T}$. Assume, for contradiction's sake, that $[\neg R(\bar{t})]^{d b}=\perp$. From this and the relational calculus semantics, it follows that $\bar{t} \in d b(R)$. From this and the LTS semantics, it follows that $d b=d b^{\prime}$ because $d b^{\prime}=d b[R \oplus \bar{t}]$. However, from the rule's definition, there is a ψ such that $r, i-1 \vdash_{u} \psi$ and $r, i \vdash_{u} \neg \psi$ hold. From this, the induction hypothesis, $s=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$, and $\operatorname{last}\left(r^{i-1}\right)=\langle d b, U, \sec , T, V, c\rangle$, it follows that $[\psi]^{d b}=$ \top and $[\neg \psi]^{d b^{\prime}}=\mathrm{T}$. Therefore, $[\psi]^{d b}=\mathrm{T}$ and $[\psi]^{d b^{\prime}}=$ \perp. Hence, $d b \neq d b^{\prime}$ leading to a contradiction with $d b=d b^{\prime}$.
21. Learn DELETE Backward - 3. The proof for this case is similar to that of Learn INSERT Backward - 3.
22. Propagate Forward Disabled Trigger. Let i be such that $r^{i}=r^{i-1} \cdot t \cdot s$, where $s=\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}$, last $\left(r^{i-1}\right)=\langle d b, U, \sec , T, V, c\rangle$, and t be a trigger. Furthermore, let ψ be t 's condition where all free variables are replaced with the values in $\operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)$. From the rule's definition, it follows that $r, i-1 \vdash_{u} \neg \psi$ holds. From this and the induction hypothesis, it follows that $[\psi]^{d b^{\prime}}=\perp$. From this, the fact that ψ is t 's WHEN condition, and the rule Trigger Disabled, it follows that $d b=d b^{\prime}$. From the rule's definition, it follows that $r, i-1 \vdash_{u} \phi$ holds. From this, the induction hypothesis, and last $\left(r^{i-1}\right)=\langle d b, U, s e c, T, V, c\rangle$, it follows that $[\phi]^{d b^{\prime}}=\mathrm{T}$. From this and $d b=d b^{\prime}$, it follows that $[\phi]^{d b}=\mathrm{T}$.
23. Propagate Backward Disabled Trigger. The proof for this case is similar to that of Propagate Forward Disabled Trigger.
24. Learn INSERT Forward. Let i be such that $r^{i}=r^{i-1}$. $t \cdot s$, where $s=\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}, \operatorname{last}\left(r^{i-1}\right)=$
$\langle d b, U, \sec , T, V, c\rangle$, and t be a trigger, and ϕ be $R(\bar{t})$. Furthermore, let ψ be t 's condition where all free variables are replaced with the values in $\operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)$. From the rule's definition, it follows that $r, i-1 \vdash_{u} \psi$ holds. From this and the induction hypothesis, it follows that $[\psi]^{d b^{\prime}}=\perp$. Furthermore, from the rule's definition, it follows that $\sec E x(s)=\perp$ and $E x(s)=\emptyset$. From this, the fact that ψ is t 's WHEN condition, $[\psi]^{d b^{\prime}}=$ \perp, and the rule Trigger DELETE-INSERT Success, it follows that $d b=d b^{\prime}[R \oplus \bar{t}]$. From the definition of \oplus, it follows that $\bar{t} \in d b(R)$. From this and the relational calculus semantics, it follows that $[\phi]^{d b}=T$.
25. Learn INSERT - FD. Let i be such that $r^{i}=r^{i-1} \cdot t$. s, where $s=\langle d b, U$, sec $, T, V, c\rangle \in \Omega_{M}, \operatorname{last}\left(r^{i-1}\right)=$ $\left\langle d b^{\prime}, U^{\prime}, \sec ^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$, and $t \in \mathcal{T R} \mathcal{I G G E} \mathcal{R}_{D}$, and ϕ be $\neg \exists \bar{y}, \bar{z} . R(\bar{v}, \bar{y}, \bar{z}) \wedge \bar{y} \neq \bar{w}$. Furthermore, let ψ be t 's condition where all free variables are replaced with the values in $\operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)$ and $\left\langle u^{\prime}\right.$, InSERT, $\left.R,(\bar{v}, \bar{w}, \bar{q})\right\rangle$ be t 's actual action. We claim that $d b(R)=d b^{\prime}(R) \cup$ $\{(\bar{v}, \bar{w}, \bar{q})\}$. Furthermore, we claim that $[\phi]^{d b}$ holds. From this claim and the relational calculus semantics, it follows that there is no tuple ($\bar{v}^{\prime}, \bar{w}^{\prime}, \bar{q}^{\prime}$) in $d b(R)$ such that $\bar{v}^{\prime}=\bar{v}$ and $\bar{w}^{\prime} \neq \bar{w}$. From this and $d b(R)=$ $d b^{\prime}(R) \cup\{(\bar{v}, \bar{w}, \bar{q})\}$, it follows that there is no tuple $\left(\bar{v}^{\prime}, \bar{w}^{\prime}, \bar{q}^{\prime}\right)$ in $d b^{\prime}(R)$ such that $\bar{v}^{\prime}=\bar{v}$ and $\bar{w}^{\prime} \neq \bar{w}$. From this, it follows that also $[\phi]^{d b^{\prime}}$ holds.
We now prove our claim that $d b(R)=d b^{\prime}(R) \cup\{(\bar{v}, \bar{w}, \bar{q})\}$. Assume, for contradiction's sake, that this is not the case. Since $d b$ is obtained from $d b^{\prime}$, this would imply that the trigger t is disabled. Hence, this would imply that $[\psi]^{d b^{\prime}}=\perp$. From the rule's definition, $r, i-1 \vdash_{u} \psi$. From this, the induction's hypothesis, and $\operatorname{last}\left(r^{i-1}\right)=\left\langle d b^{\prime}, U, s e c, T, V, c^{\prime}\right\rangle$, it follows that $[\psi]^{d b^{\prime}}=\mathrm{T}$, which contradicts $[\psi]^{d b^{\prime}}=\perp$.
We now prove our claim that $[\phi]^{d b}$ holds. Assume, for contradiction's sake, that this is not the case. This means that there is a tuple $\left(\bar{v}^{\prime}, \bar{w}^{\prime}, \bar{q}^{\prime}\right)$ in $d b(R)$ such that $\bar{v}^{\prime}=\bar{v}$ and $\bar{w}^{\prime} \neq \bar{w}$. Note that, as we proved before, $(\bar{v}, \bar{w}, \bar{q}) \in d b(R)$. Therefore, there are two tuples $(\bar{v}, \bar{w}, \bar{q})$ and $\left(\bar{v}, \bar{w}^{\prime}, \bar{q}^{\prime}\right)$ in $d b(R)$ such that $\bar{w}^{\prime} \neq \bar{w}$. From this and the relational calculus semantics, it follows that $\left[\forall \bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{z}, \bar{z}^{\prime} \cdot\left(\left(R(\bar{x}, \bar{y}, \bar{z}) \wedge R\left(\bar{x}, \bar{y}^{\prime}, \bar{z}^{\prime}\right)\right) \Rightarrow\right.\right.$ $\left.\bar{y}=\bar{y}^{\prime}\right]^{d b}=\perp$. This is in contradiction with the fact that the constraint $\forall \bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{z}, \bar{z}^{\prime} .\left(\left(R(\bar{x}, \bar{y}, \bar{z}) \wedge R\left(\bar{x}, \bar{y}^{\prime}\right.\right.\right.$, $\left.\left.\bar{z}^{\prime}\right)\right) \Rightarrow \bar{y}=\bar{y}^{\prime}$ is in Γ. Indeed, since the constraint is in Γ, any state in Ω_{D}^{Γ} must satisfy it.
26. Learn INSERT - FD - 1. Let i be such that $r^{i}=r^{i-1}$. $t \cdot s$, where $s=\langle d b, U, \sec , T, V, c\rangle \in \Omega_{M}, \operatorname{last}\left(r^{i-1}\right)=$ $\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$, and $t \in \mathcal{T} \mathcal{R} \mathcal{I} \mathcal{G G E} \mathcal{R}_{D}$, and ϕ be $\neg \exists \bar{y}, \bar{z} . R(\bar{v}, \bar{y}, \bar{z}) \wedge \bar{y} \neq \bar{w}$. Furthermore, let ψ be t 's condition where all free variables are replaced with the values in $\operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)$ and $\left\langle u^{\prime}\right.$, InSERT, $\left.R,(\bar{v}, \bar{w}, \bar{q})\right\rangle$ be t 's actual action. From the rule's definition, $r, i-1 \vdash_{u} \psi$. From this, the induction's hypothesis, and last $\left(r^{i-1}\right)=$ $\left\langle d b^{\prime}, U\right.$, sec, $\left.T, V, c^{\prime}\right\rangle$, it follows that $[\psi]^{d b^{\prime}}=\mathrm{T}$. From this and the LTS semantics, it follows that the trigger t is enabled in $\operatorname{last}\left(r^{i-1}\right)$. We now prove our claim that $[\phi]^{d b^{\prime}}$ holds. Assume, for contradiction's sake, that this is not the case. This means that there is a tuple $\left(\bar{v}^{\prime}, \bar{w}^{\prime}, \bar{q}^{\prime}\right)$ in $d b^{\prime}(R)$ such that $\bar{v}^{\prime}=\bar{v}$ and $\bar{w}^{\prime} \neq \bar{w}$. Let $d b^{\prime \prime}$ be the state $d b^{\prime}[R \oplus(\bar{v}, \bar{w}, \bar{q})]$. From $d b^{\prime \prime}=d b^{\prime}[R \oplus$ $(\bar{v}, \bar{w}, \bar{q})]$, and the fact that there is a tuple $\left(\bar{v}^{\prime}, \bar{w}^{\prime}, \bar{q}^{\prime}\right)$
in $d b^{\prime}(R)$ such that $\bar{v}^{\prime}=\bar{v}$ and $\bar{w}^{\prime} \neq \bar{w}$, it follows that there are two tuples $(\bar{v}, \bar{w}, \bar{q})$ and ($\left.\bar{v}, \bar{w}^{\prime}, \bar{q}^{\prime}\right)$ in $d b^{\prime \prime}(R)$ such that $\bar{w}^{\prime} \neq \bar{w}$. From this and the relational calculus semantics, it follows that $\left[\forall \bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{z}, \bar{z}^{\prime} \cdot((R(\bar{x}, \bar{y}, \bar{z}) \wedge\right.$ $\left.\left.R\left(\bar{x}, \bar{y}^{\prime}, \bar{z}^{\prime}\right)\right) \Rightarrow \bar{y}=\bar{y}^{\prime}\right]^{d b^{\prime \prime}}=\perp$. Since the trigger t is enabled, this contradicts the fact that $\forall \bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{z}, \bar{z}^{\prime} .((R(\bar{x}$, $\left.\bar{y}, \bar{z}) \wedge R\left(\bar{x}, \bar{y}^{\prime}, \bar{z}^{\prime}\right)\right) \Rightarrow \bar{y}=\bar{y}^{\prime}$ is not in $E x(s)$.
27. Learn INSERT - ID. The proof of this case is similar to that of Learn INSERT - FD. See also the proof of INSERT Success - ID.
28. Learn INSERT - ID - 1. The proof of this case is similar to that of Learn INSERT - FD-1. See also the proof of INSERT Success - ID.
29. Learn INSERT Backward - 1. Let i be such that $r^{i}=$ $r^{i-1} \cdot t \cdot s$, where $s=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle \in \Omega_{M}$, last $\left(r^{i-1}\right)=\langle d b, U, s e c, T, V, c\rangle$, and $t \in \mathcal{T} \mathcal{R} \mathcal{I G G E R}{ }_{D}$, and ϕ be t 's actual WHEN condition, where all free variables are replaced with the values in $\operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)$. From the rule's definition, it follows that there is a ψ such that $r, i-1 \vdash_{u} \psi$ and $r, i \vdash_{u} \neg \psi$. From this, the induction's hypothesis, $s=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$, and last $\left(r^{i-1}\right)=\langle d b, U, \sec , T, V, c\rangle$, it follows that $[\psi]^{d b}=$ T and $[\neg \psi]^{d b^{\prime}}=\mathrm{T}$. Therefore, $[\psi]^{d b}=\mathrm{T}$ and $[\psi]^{d b^{\prime}}=$ \perp. Hence, $d b \neq d b^{\prime}$. We now prove that $[\phi]^{d b}=$ T. Assume, for contradiction's sake, that $[\phi]^{d b}=\perp$. From the rule's definition, it follows that $\sec \operatorname{Ex}(s)=$ \perp. Therefore, $f\left(\operatorname{last}\left(r^{i-1}\right),\left\langle u^{\prime}\right.\right.$, SELECT,$\left.\left.\phi\right\rangle\right)=\mathrm{T}$. From this, $[\phi]^{d b}=\perp$, and the rule Trigger Disabled, it follows that $d b=d b^{\prime}$, which contradicts $d b \neq d b^{\prime}$.
30. Learn INSERT Backward - 2. Let i be such that $r^{i}=$ $r^{i-1} \cdot t \cdot s$, where $s=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle \in \Omega_{M}$, last $\left(r^{i-1}\right)=\langle d b, U$, sec, $T, V, c\rangle$, and $t \in \mathcal{T} \mathcal{R} \mathcal{I G G E R}{ }_{D}$, and ϕ be $\neg R(\bar{t})$. Furthermore, let act $=\left\langle u^{\prime}\right.$, INSERT, R, $\bar{t}\rangle$ be t 's actual action. From the rule's definition, it follows that there is a ψ such that $r, i-1 \vdash_{u} \psi$ and $r, i \vdash_{u} \neg \psi$. From this, the induction's hypothesis, $s=$ $\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$, and last $\left(r^{i-1}\right)=\langle d b, U, s e c, T$, $V, c\rangle$, it follows that $[\psi]^{d b}=\top$ and $[\neg \psi]^{d b^{\prime}}=\mathrm{T}$. Therefore, $[\psi]^{d b}=\top$ and $[\psi]^{d b^{\prime}}=\perp$. Hence, $d b \neq d b^{\prime}$. We now prove that $[\phi]^{d b}=T$. Assume, for contradiction's sake, that $[\phi]^{d b}=\perp$. Therefore, $\bar{t} \in d b(R)$. From this and act $=\left\langle u^{\prime}\right.$, INSERT, $\left.R, \bar{t}\right\rangle$, it follows that $d b^{\prime}=d b[R \oplus \bar{t}]$. From this and \oplus 's definition, it follows that $d b^{\prime}\left(R^{\prime}\right)=d b\left(R^{\prime}\right)$ for all $R^{\prime} \neq R$ and $d b^{\prime}(R)=$ $d b(R) \cup\{\bar{t}\}$. From $d b^{\prime}(R)=d b(R) \cup\{\bar{t}\}$ and $\bar{t} \in$ $d b(R)$, it follows that $d b^{\prime}(R)=d b(R)$. From this and $d b^{\prime}\left(R^{\prime}\right)=d b\left(R^{\prime}\right)$ for all $R^{\prime} \neq R$, it follows that $d b^{\prime}=$ $d b$, which contradicts $d b \neq d b^{\prime}$.
31. Learn DELETE Forward. The proof of this case is similar to that of Learn INSERT Forward.
32. Learn DELETE - ID. The proof of this case is similar to that of Learn INSERT - FD. See also the proof of DELETE Success - ID.
33. Learn DELETE - ID - 1. The proof of this case is similar to that of Learn INSERT - FD-1. See also the proof of DELETE Success - ID.
34. Learn DELETE Backward - 1. The proof of this case is similar to that of Learn INSERT Backward - 1 .
35. Learn DELETE Backward - 2. The proof of this case is similar to that of Learn INSERT Backward - 2.
36. Propagate Forward Trigger Action. The proof of this case is similar to Propagate Forward INSERT/DELETE

Success.
37. Propagate Backward Trigger Action. The proof of this case is similar to Propagate Backward INSERT/DELETE Success.
38. Propagate Forward INSERT Trigger Action. The proof of this case is similar to that of Propagate Forward INSERT Success - 1 .
39. Propagate Forward DELETE Trigger Action. The proof of this case is similar to that of Propagate Forward DELETE Success - 1 .
40. Propagate Backward INSERT Trigger Action. The proof of this case is similar to that of Propagate Backward INSERT Success - 1 .
41. Propagate Backward DELETE Trigger Action. The proof of this case is similar to that of Propagate Backward DELETE Success - 1 .
42. Trigger FD INSERT Disabled Backward. Let i be such that $r^{i}=r^{i-1} \cdot t \cdot s$, where $s=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle \in$ $\Omega_{M}, t \in \mathcal{T R} \mathcal{I G G E} \mathcal{R}_{D}$, and last $\left(r^{i-1}\right)=\langle d b, U$, sec, T, V, $c\rangle$, and ψ be $\neg \phi\left[\bar{x}^{\left|R^{\prime}\right|} \mapsto \operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)\right]$. Furthermore, let act $=\left\langle u^{\prime}\right.$, INSERT, $\left.R,(\bar{v}, \bar{w}, \bar{q})\right\rangle$ be t^{\prime} s actual action. From the rule's definition, it follows that $r, i-1 \vdash_{u}$ $\exists \bar{y}, \bar{z} . R(\bar{v}, \bar{y}, \bar{z}) \wedge \bar{y} \neq \bar{w}$ holds. From this, the induction hypothesis, and last $\left(r^{i-1}\right)=\langle d b, U, s e c, T, V, c\rangle$, it follows that $[\exists \bar{y}, \bar{z} \cdot R(\bar{v}, \bar{y}, \bar{z}) \wedge \bar{y} \neq \bar{w}]^{d b}=\top$. Therefore, there is a tuple $\left(\bar{v}, \bar{w}^{\prime}, \bar{z}^{\prime}\right) \in d b(R)$ such that $\bar{w}^{\prime} \neq \bar{w}$. We now prove that $[\psi]^{d b}=T$. Assume, for contradiction's sake, that this is not the case, namely that $\left[\phi\left[\bar{x} \mapsto \operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)\right]\right]^{d b}=\mathrm{T}$. There are two cases:
(a) the trigger t is enabled and the action act is authorized. In this case, the database $d b[R \oplus\{(\bar{v}, \bar{w}, \bar{q})\}]$ $\notin \Omega_{D}^{\Gamma}$ because $\forall \bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{z}, \bar{z}^{\prime} .\left(R(\bar{x}, \bar{y}, \bar{z}) \wedge R\left(\bar{x}, \bar{y}^{\prime}, \bar{z}^{\prime}\right)\right)$ $\Rightarrow \bar{y}=\bar{y}^{\prime} \in \Gamma$ and there is a tuple $\left(\bar{v}, \bar{w}^{\prime}, \bar{z}^{\prime}\right) \in$ $d b(R)$ such that $\bar{w}^{\prime} \neq \bar{w}$. Therefore, the resulting state would be such that $E x(s) \neq \emptyset$. This contradicts the fact that, according to the rule's definition, $E x(s)=\emptyset$.
(b) the trigger t is enabled and the action act is not authorized. Therefore, the resulting state would be such that $\sec E x(s)=T$. This contradicts the fact that, according to the rule's definition, $\sec E x(s)=$ \perp.
43. Trigger ID INSERT Disabled Backward. The proof of this case is similar to that of Trigger FD INSERT Disabled Backward.
44. Trigger ID DELETE Disabled Backward. The proof of this case is similar to that of Trigger FD INSERT Disabled Backward.
This completes the proof of the induction step.
This completes the proof of the theorem.

$$
\begin{array}{cc}
\frac{r, i \vdash_{u} \psi \quad r^{i+1}=r^{i} \cdot\langle u, \operatorname{SELECT}, \phi\rangle \cdot s \quad 1 \leq i<|r|}{r, i+1 \vdash_{u} \psi} \quad s \in \Omega_{M} & \begin{array}{c}
\text { Propagate Forward } \\
\text { SELECT }
\end{array} \\
\frac{r, i \vdash_{u} \psi \quad r^{i+1}=r^{i} \cdot\left\langle o p, u^{\prime}, p r, u\right\rangle \cdot s \quad 1 \leq i<|r| \quad o p \in\left\{\oplus, \oplus^{*}, \ominus\right\}}{r, i+1 \vdash_{u} \psi} \quad s \in \Omega_{M} & \begin{array}{c}
\text { Propagate Forward } \\
\text { GRANT/REVOKE }
\end{array} \\
\frac{r, i \vdash_{u} \psi \quad r^{i+1}=r^{i} \cdot\langle u, \text { CREATE, } o\rangle \cdot s \quad 1 \leq i<|r| \quad o \in \mathcal{T R \mathcal { L G G \mathcal { G E } } \mathcal { R } _ { D } \cup \mathcal { V I E W } \mathcal { W } _ { D }} \quad s \in \Omega_{M}}{r, i+1 \vdash_{u} \psi} & \text { Propagate Forward } \\
\text { CREATE }
\end{array}
$$

Figure 21: Rules defining how the attacker propagates (forward) the knowledge

$$
\begin{aligned}
& r, i \nvdash_{u} \psi \\
& \begin{array}{cccc|c|c|c|c|}
r, i+1 \vdash_{u} \psi \quad r^{i+1}=r^{i} \cdot\left\langle o p, u^{\prime}, p r, u\right\rangle \cdot s \quad 1 \leq i<|r| \quad o p \in\left\{\oplus, \oplus^{*}, \ominus\right\} \quad s \in \Omega_{M} & \left.\begin{array}{c}
\text { Propagate Backward } \\
\text { GRANT/REVOKE }
\end{array}\right)
\end{array} \\
& \begin{array}{ccccc}
r, i+1 \vdash_{u} \psi \quad r^{i+1}=r^{i} \cdot\langle u, \text { CREATE, } o\rangle \cdot s \quad 1 \leq i<|r| \quad o \in \mathcal{T R} \mathcal{I G G \mathcal { G R }} \\
D
\end{array} \quad s \in \Omega_{M} \quad \text { Propagate Backward }
\end{aligned}
$$

Figure 22: Rules defining how the attacker propagates (backward) the knowledge
$\frac{1<i \leq|r| \quad r^{i}=r^{i-1} \cdot\langle u, \text { SELECT, } \phi\rangle \cdot s \quad s=\langle d b, U, s e c, T, V, h,\langle\langle u, \text { SELECT, } \phi\rangle, \top, \top, \emptyset\rangle,\langle\epsilon, \epsilon, \epsilon, \epsilon\rangle\rangle}{r, i \vdash_{u} \phi}$ SELECT Success - 1
$\frac{1<i \leq|r| \quad r^{i}=r^{i-1} \cdot\langle u, \text { SELECT, } \phi\rangle \cdot s \quad s=\langle d b, U, \sec , T, V, h,\langle\langle u, \text { SELECT, } \phi\rangle, \top, \perp, \emptyset\rangle,\langle\epsilon, \epsilon, \epsilon, \epsilon\rangle\rangle}{r, i \vdash_{u} \neg \phi}$ SELECT Success - 2
$\frac{1<i \leq|r| \quad r^{i}=r^{i-1} \cdot\langle u, \text { INSERT, } R, \bar{t}\rangle \cdot s \quad s=\left\langle d b, U, s e c, T, V, h,\langle\langle u, \text { INSERT, } R, \bar{t}\rangle, \top, \top, \emptyset\rangle,\left\langle r S^{\prime}, \bar{t}, u, t r\right\rangle\right\rangle}{r, i \vdash_{u} R(\bar{t})}$ INSERT Success

$$
1<i \leq|r| \quad r^{i}=r^{i-1} \cdot\langle u, \text { INSERT, } R, \bar{t}\rangle \cdot s \quad l \in\{i, i-1\}
$$

$s=\left\langle d b, U, \sec , T, V, h,\langle\langle u\right.$, INSERT, $\left.R, \bar{t}\rangle, \top, \top, E\rangle,\left\langle r S^{\prime}, \bar{t}, u, t r\right\rangle\right\rangle$
$\frac{\forall \bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{z}, \bar{z}^{\prime} \cdot\left(\left(R(\bar{x}, \bar{y}, \bar{z}) \wedge R\left(\bar{x}, \bar{y}^{\prime}, \bar{z}^{\prime}\right)\right) \Rightarrow \bar{y}=\bar{y}^{\prime} \in \Gamma \backslash E \quad \bar{t}=(\bar{v}, \bar{w}, \bar{q})\right.}{r, l \vdash_{u} \neg \exists \bar{y}, \bar{z} \cdot R(\bar{v}, \bar{y}, \bar{z}) \wedge \bar{y} \neq \bar{w}}$ INSERT Success - FD
$1<i \leq|r|$
$s=\left\langle d b, U, r^{i-1} \cdot\langle u\right.$, INSERT, $R, \bar{t}\rangle \cdot s \quad l \in\{i, i-1\}$
T
$s=\left\langle d b, U\right.$, sec $, T, V, h,\langle\langle u$, INSERT, $\left.R, \bar{t}\rangle, \top, \top, E\rangle,\left\langle r S^{\prime}, \bar{t}, u, t r\right\rangle\right\rangle$
$\begin{array}{cc}\forall \bar{x}, \bar{z} \cdot(R(\bar{x}, \bar{z}) \Rightarrow \exists \bar{y} \cdot S(\bar{x}, \bar{y})) \in \Gamma \backslash E & \bar{t}=(\bar{v}, \bar{w}) \\ r, l \vdash_{u} \exists \bar{y} \cdot S(\bar{v}, \bar{y}) & \text { INSERT Success - ID }\end{array}$
$1<i \leq|r| \quad r^{i}=r^{i-1} \cdot\langle u$, DELETE, $R, \bar{t}\rangle \cdot s \quad s=\left\langle d b, U, s e c, T, V, h,\langle\langle u\right.$, DELETE, $\left.R, \bar{t}\rangle, \top, \top, \emptyset\rangle,\left\langle r S^{\prime}, \bar{t}, u, t r\right\rangle\right\rangle$
$r, i \vdash_{u} \neg R(\bar{t})$
DELETE Success

$$
\begin{gathered}
1<i \leq|r| \quad r^{i}=r^{i-1} \cdot\langle u, \operatorname{DELETE}, R, \bar{t}\rangle \cdot s \quad l \in\{i, i-1\} \\
s=\langle d b, U, s e c, T, V, h,\langle\langle u, \operatorname{DELETE}, R, \bar{t}\rangle, \mathrm{T}, \perp, E\rangle,\langle\epsilon, \epsilon, \epsilon, \epsilon\rangle\rangle \quad E \neq \emptyset \\
r, l \vdash_{u} R(\bar{t})
\end{gathered}
$$

$$
1<i \leq|r| \quad r^{i}=r^{i-1} \cdot\langle u, \operatorname{INSERT}, R, \bar{t}\rangle \cdot s \quad l \in\{i, i-1\}
$$

$$
s=\langle d b, U, \text { sec }, T, V, h,\langle\langle u, \text { INSERT, } R, \bar{t}\rangle, \top, \perp, E\rangle,\langle\epsilon, \epsilon, \epsilon, \epsilon\rangle\rangle
$$

$\frac{\left(\forall \bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{z}, \bar{z}^{\prime} \cdot\left(\left(R(\bar{x}, \bar{y}, \bar{z}) \wedge R\left(\bar{x}, \bar{y}^{\prime}, \bar{z}^{\prime}\right)\right) \Rightarrow \bar{y}=\bar{y}^{\prime}\right) \in E \quad \bar{t}=(\bar{v}, \bar{w}, \bar{q})\right.}{r, l \vdash_{u} \exists \bar{y}, \bar{z} \cdot R(\bar{v}, \bar{y}, \bar{z}) \wedge \bar{y} \neq \bar{w}}$ INSERT FD Exception

$$
\begin{aligned}
& 1<i \leq|r| \quad r^{i}=r^{i-1} \cdot\langle u, \text { INSERT, } R, \bar{t}\rangle \cdot s \quad l \in\{i, i-1\} \\
& s=\langle d b, U, \text { sec }, T, V, h,\langle\langle u, \text { INSERT, } R, \bar{t}\rangle, \top, \perp, E\rangle,\langle\epsilon, \epsilon, \epsilon, \epsilon\rangle\rangle \\
& \frac{\forall \bar{x}, \bar{z} \cdot(R(\bar{x}, \bar{z}) \Rightarrow \exists \bar{y} \cdot S(\bar{x}, \bar{y})) \in E}{r, l \vdash_{u} \forall \bar{x}, \bar{y} \cdot S(\bar{x}, \bar{y}) \Rightarrow \bar{x} \neq \bar{v}} \bar{t}=(\bar{v}, \bar{w}) \text { INSERT ID Exception } \\
& 1<i \leq|r| \quad r^{i}=r^{i-1} \cdot\langle u, \text { DELETE, } R, \bar{t}\rangle \cdot s \quad l \in\{i, i-1\} \\
& s=\langle\bar{d}, U, \sec , T, V, h,\langle\langle u, \text { DELETE, } R, \bar{t}\rangle, \top, \perp, E\rangle,\langle\epsilon, \epsilon, \epsilon, \epsilon\rangle\rangle \\
& \frac{\forall \bar{x}, \bar{z} \cdot(S(\bar{x}, \bar{z}) \Rightarrow \exists \bar{y} \cdot R(\bar{x}, \bar{y})) \in E}{r, l \vdash_{u} \exists \bar{z} \cdot S(\bar{v}, \bar{z}) \wedge \forall \bar{y} \cdot(R(\bar{v}, \bar{y}) \Rightarrow \bar{y}=\bar{w})} \bar{t}=(\bar{v}, \bar{w}) \text { DELETE ID Exception } \\
& \frac{1 \leq i \leq|r| \quad \gamma \in \Gamma}{r, i \vdash_{u} \gamma} \text { Integrity Constraint } \\
& \frac{1 \leq i \leq|r| \quad v \in \operatorname{last}\left(r^{i}\right) \cdot V \quad r, i \vdash_{u} \psi \quad \psi^{\prime}=\operatorname{replace}(\psi, v)}{r, i \vdash_{u} \psi^{\prime}} \text { View }
\end{aligned}
$$

$1<i \leq|r| \quad r^{i}=r^{i-1} \cdot\langle u$, DELETE, $R, \bar{t}\rangle \cdot s \quad l \in\{i, i-1\}$
$s=\left\langle d b, U, s e c, T, V, h,\langle\langle u\right.$, DELETE, $\left.R, \bar{t}\rangle, \top, \top, E\rangle,\left\langle r S^{\prime}, \bar{t}, u, t r\right\rangle\right\rangle$
$\begin{array}{ll}\forall \bar{x}, \bar{z} \cdot(S(\bar{x}, \bar{z}) \Rightarrow \exists \bar{y} \cdot R(\bar{x}, \bar{y})) \in \Gamma \backslash E & \bar{t}=(\bar{v}, \bar{w}) \\ r, l \vdash_{u} \forall \bar{x}, \bar{z} \cdot(S(\bar{x}, \bar{z}) \Rightarrow \bar{x} \neq \bar{v}) \vee \exists \bar{y} \cdot(R(\bar{v}, \bar{y}) \wedge \bar{y} \neq \bar{w})\end{array}$ DELETE Success - ID
$1<i \leq|r| \quad r^{i}=r^{i-1} \cdot\langle u, \operatorname{INSERT}, R, \bar{t}\rangle \cdot s \quad l \in\{i, i-1\}$
$\frac{s=\langle d b, U, \text { sec }, T, V, h,\langle\langle u, \text { InSERT }, R, \bar{t}\rangle, T, \perp, E\rangle,\langle\epsilon, \epsilon, \epsilon, \epsilon\rangle\rangle \quad E \neq \emptyset}{r, l \vdash_{u} \neg R(\bar{t})}$ INSERT Exception

Figure 23: Rules defining how the attacker extracts knowledge from the run

$$
\begin{aligned}
& r, i \vdash_{u} \phi \quad n+1<i \leq|r| \quad s_{1}, s_{2}, \ldots, s_{n} \in \Omega_{M} \quad t_{1}, \ldots, t_{n} \in \mathcal{T} \mathcal{R} \mathcal{I} \mathcal{G G E} \mathcal{R}_{D} \\
& \operatorname{secEx}\left(s_{n}\right)=\top \vee E x\left(s_{n}\right) \neq \emptyset \quad r^{i}=r^{i-n-1} \cdot\langle u, o p, R, \bar{t}\rangle \cdot s_{1} \cdot t_{1} \cdot s_{2} \cdot \ldots \cdot t_{n} \cdot s_{n} \\
& \frac{s_{n}=\left\langle d b, U, \text { sec }, T, V, h,\left\langle t_{n}, \text { when }, \text { stm } t\right\rangle,\langle\epsilon, \epsilon, \epsilon, \epsilon\rangle\right\rangle}{r, i-n-1 \vdash_{u} \phi} \quad \text { op } \in\{\text { INSERT, DELETE }\} \quad \text { Rollback Backward - } 1 \\
& r, i \vdash_{u} \phi \quad 1<i \leq|r| \quad \sec E x(s)=\top \vee E x(s) \neq \emptyset \quad o p \in\{\text { INSERT, DELETE }\} \\
& \frac{r^{i}=r^{i-1} \cdot\langle u, o p, R, \bar{t}\rangle \cdot s \quad s=\left\langle d b, U, s e c, T, V, h,\left\langle\langle u, \mathrm{op}, R, \bar{t}\rangle, v, v^{\prime}, E\right\rangle,\langle\epsilon, \epsilon, \epsilon, \epsilon\rangle\right\rangle}{r, i-1 \vdash_{u} \phi} \text { Rollback Backward - } 2 \\
& r, i-n-1 \vdash_{u} \phi \quad n+1<i \leq|r| \quad s_{1}, s_{2}, \ldots, s_{n} \in \Omega_{M} \quad t_{1}, \ldots, t_{n} \in \mathcal{T R I G G E R}{ }_{D} \\
& \sec \operatorname{Ex}\left(s_{n}\right)=\top \vee \operatorname{Ex}\left(s_{n}\right) \neq \bar{\emptyset} \quad r^{i}=r^{i-n-1} \cdot\langle u, o p, R, \bar{t}\rangle \cdot s_{1} \cdot t_{1} \cdot s_{2} \cdot \ldots \cdot t_{n} \cdot s_{n} \\
& \frac{s_{n}=\left\langle d b, U, s e c, T, V, h,\left\langle t_{n}, \text { when }, \operatorname{stm} t\right\rangle,\langle\epsilon, \epsilon, \epsilon, \epsilon\rangle\right\rangle}{r, i \vdash_{u} \phi} \quad \text { op } \in\{\text { INSERT, DELETE }\} \text { Rollback Forward - } 1 \\
& r, i-1 \vdash_{i} \phi \quad 1<i \leq|r| \quad \sec E x(s)=\top \vee \operatorname{Ex}(s) \neq \emptyset \quad o p \in\{\text { INSERT, DELETE }\} \\
& r^{i}=r^{i-1} \cdot\langle u, o p, R, \bar{t}\rangle \cdot s \quad s=\left\langle d b, U, s e c, T, V, h,\left\langle\langle u, \text { op, } R, \bar{t}\rangle, v, v^{\prime}, E\right\rangle,\langle\epsilon, \epsilon, \epsilon, \epsilon\rangle\right) \\
& r, i \vdash_{u} \phi
\end{aligned}
$$

Figure 24: Rules regulating how information propagates in case of rollbacks

Figure 25: Rules regulating how information propagates in case of successful INSERT and DELETE

$$
\frac{1 \leq i \leq|r| \quad \Phi \subseteq\left\{\phi \mid r, i \vdash_{u} \phi\right\} \quad \Phi \mid=_{f i n} \gamma}{r, i \vdash_{u} \gamma} \text { Reasoning }
$$

Figure 26: Rules regulating the reasoning

$$
\begin{array}{cc}
r^{i}=r^{i-1} \cdot\langle u, \text { INSERT, } R, \bar{t}\rangle \cdot s & 1<i \leq|r| \\
s=\langle d b, U, s e c, T, V, h, a E, t r\rangle & \operatorname{secEx}(s)=\perp \\
E x(s)=\emptyset \quad r, i-1 \vdash_{u} \psi & r, i \vdash_{u} \neg \psi \\
\hline & r, i-1 \vdash_{u} \neg R(\bar{t}) \\
\hline
\end{array} \quad \text { Learn INSERT Backward - } 3
$$

Figure 27: Rules describing how the attacker learns facts about INSERT and DELETE commands

$$
\begin{aligned}
& r, i-1 \vdash_{u} \phi \quad r^{i}=r^{i-1} \cdot t \cdot s \quad \text { invoker }\left(\operatorname{last}\left(r^{i-1}\right)\right)=u \\
& s=\langle d b, U, \sec , T, V, h,\langle t, \text { when, stmt }\rangle, t r\rangle \quad \operatorname{secEx}(s)=\perp \\
& t=\langle i d, o w, e v, R, \psi, a c t, m\rangle \quad r, i-1 \vdash_{u} \neg \psi\left[\bar{x}^{|R|} \mapsto \operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)\right] \quad \text { Propagate Forward } \\
& \text { Disabled Trigger } \\
& \begin{array}{c}
r, i \vdash_{u} \phi \quad r^{i}=r^{i-1} \cdot t \cdot s \quad \operatorname{invoker}\left(\operatorname{last}\left(r^{i-1}\right)\right)=u \\
s=\langle d b, U, \sec , T, V, h,\langle t, w h e n, s t m t\rangle, \operatorname{tr}\rangle \quad \operatorname{secEx}(s)=\perp \\
t=\langle i d, o w, e v, R, \psi, \text { act }, m\rangle \quad r, i-1 \vdash_{u} \neg \psi\left[\bar{x}^{|R|} \mapsto \operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)\right] \\
r, i-1 \vdash_{u} \phi
\end{array} \\
& \text { Propagate Backward } \\
& \text { Disabled Trigger }
\end{aligned}
$$

Figure 28: Rules regulating the propagation of information through disabled triggers
$r, i-1 \vdash_{u} \phi\left[\bar{x}^{\left|R^{\prime}\right|} \mapsto \operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)\right] \quad 1<i \leq|r| \quad r^{i}=r^{i-1} \cdot t \cdot s \quad \operatorname{invoker}\left(\operatorname{last}\left(r^{i-1}\right)\right)=u$
$s=\left\langle d b, U, s e c, T, V, h,\left\langle t, w h e \bar{n},\left\langle\left\langle u^{\prime}\right.\right.\right.\right.$, INSERT, $\left.\left.\left.R, \bar{t}\right\rangle, \top, \top, \emptyset\right\rangle\right\rangle$, tr \rangle
$\sec \operatorname{Ex}(s)=\perp \quad E x(s)=\emptyset \quad t=\left\langle i d, o w, e v, R^{\prime}, \phi, a c t, m\right\rangle$
$r, i \vdash_{u} R(\bar{t})$
$r, i-1 \vdash_{u} \phi\left[\bar{x}^{\left|R^{\prime}\right|} \mapsto \operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)\right] \quad 1<i \leq|r| \quad r^{i}=r^{i-1} \cdot t \cdot s \quad \operatorname{invoker}\left(\operatorname{last}\left(r^{i-1}\right)\right)=u$
$s=\left\langle d b, U\right.$, sec $, T, V, h,\left\langle t, w h e n,\left\langle\left\langle u^{\prime}\right.\right.\right.$, INSERT $\left.\left.\left.\left., R, \bar{t}\right\rangle, \top, \top, \emptyset\right\rangle\right\rangle, t r\right\rangle \quad l \in\{i, i-1\}$
$\begin{array}{ll}\sec E x(s)=\perp & E x(s)=\emptyset \\ \forall \bar{x} \bar{y} \bar{y}^{\prime}=\bar{z}^{\prime} & t=\left\langle i d, o w, ~ e v, R^{\prime}, \phi, \text { act, } m\right\rangle\end{array}$
$\forall \bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{z}, \bar{z}^{\prime} .\left(\left(R(\bar{x}, \bar{y}, \bar{z}) \wedge R\left(\bar{x}, \bar{y}^{\prime}, \bar{z}^{\prime}\right)\right) \Rightarrow \bar{y}=\bar{y}^{\prime} \in \Gamma \quad \bar{t}=(\bar{v}, \bar{w}, \bar{q})\right.$
$r, l \vdash_{u} \neg \exists \bar{y}, \bar{z} . R(\bar{v}, \bar{y}, \bar{z}) \wedge \bar{y} \neq \bar{w}$
$r, i-1 \vdash_{u} \phi\left[\bar{x}^{\left|R^{\prime}\right|} \mapsto \operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)\right] \quad 1<i \leq|r| \quad r^{i}=r^{i-1} \cdot t \cdot s \quad$ invoker $\left(\operatorname{last}\left(r^{i-1}\right)\right)=u$
$s=\left\langle d b, U, \sec , T, V, h,\left\langle t\right.\right.$, when, $\left\langle\left\langle u^{\prime}\right.\right.$, INSERT, $\left.\left.\left.\left.\bar{R}, \bar{t}\right\rangle, \top, \top, E\right\rangle\right\rangle, \operatorname{tr}\right\rangle \quad \bar{t}=(\bar{v}, \bar{w}, \bar{q}) \quad \sec E x(s)=\perp$
$\frac{t=\left\langle i d, o w, e v, R^{\prime}, \phi, a c t, m\right\rangle \quad \forall \bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{z}, \bar{z}^{\prime} \cdot\left(\left(R(\bar{x}, \bar{y}, \bar{z}) \wedge R\left(\bar{x}, \bar{y}^{\prime}, \bar{z}^{\prime}\right)\right) \Rightarrow \bar{y}=\bar{y}^{\prime} \in \Gamma \backslash E\right.}{r, i-1 \vdash_{u} \neg \exists \bar{y}, \bar{z} \cdot R(\bar{v}, \bar{y}, \bar{z}) \wedge \bar{y} \neq \bar{w}}$ Learn INSERT - FD - 1
$r, i-1 \vdash_{u} \phi\left[\bar{x}^{\left|R^{\prime}\right|} \mapsto \operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)\right] \quad 1<i \leq|r| \quad r^{i}=r^{i-1} \cdot t \cdot s \quad \operatorname{invoker}\left(\operatorname{last}\left(r^{i-1}\right)\right)=u$
$s=\left\langle d b, U\right.$, sec $, T, V, h,\left\langle t\right.$, when, $\left\langle\left\langle u^{\prime}\right.\right.$, INSERT, $\left.\left.\left.\left.R, \bar{t}\right\rangle, \bar{\top}, \top, \emptyset\right\rangle\right\rangle, t r\right\rangle \quad l \in\{i, i-1\}$
$\operatorname{secEx}(s)=\perp \quad \operatorname{Ex}(s)=\emptyset \quad t=\left\langle i d, o w, e v, R^{\prime}, \phi, a c t, m\right\rangle$
$(\forall \bar{x}, \bar{z} \cdot(R(\bar{x}, \bar{z}) \Rightarrow \exists \bar{w} . S(\bar{x}, \bar{w})) \in \Gamma \quad \bar{t}=(\bar{v}, \bar{w})$
$r, l \vdash_{u} \exists \bar{y} . S(\bar{v}, \bar{y})$
$r, i-1 \vdash_{u} \phi\left[\bar{x}^{\left|R^{\prime}\right|} \mapsto \operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)\right] \quad 1<i \leq|r| \quad r^{i}=r^{i-1} \cdot t \cdot s \quad \operatorname{invoker}\left(\operatorname{last}\left(r^{i-1}\right)\right)=u$
$s=\left\langle d b, U, \sec , T, V, h,\left\langle t\right.\right.$, when,$\left.\left.\left\langle\left\langle u^{\prime}, \operatorname{INSERT}, R, \bar{t}\right\rangle, \top, \top, E\right\rangle\right\rangle, \operatorname{tr}\right\rangle \quad \operatorname{coser}(\bar{t}=(\bar{v}, \bar{w})$
$\frac{\sec E x(s)=\perp \quad t=\left\langle i d, o w, e v, R^{\prime}, \phi, a c t, m\right\rangle \quad(\forall \bar{x}, \bar{z} \cdot(R(\bar{x}, \bar{z}) \Rightarrow \exists \bar{w} \cdot S(\bar{x}, \bar{w})) \in \Gamma \backslash E}{r, i-1 \vdash_{u} \exists \bar{y} \cdot S(\bar{v}, \bar{y})}$ Learn INSERT - ID - 1

Figure 29: Extracting knowledge from triggers

$$
\begin{aligned}
& r, i-1 \vdash_{u} \phi\left[\bar{x}^{\left|R^{\prime}\right|} \mapsto \operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)\right] \quad 1<i \leq|r| \quad r^{i}=r^{i-1} \cdot t \cdot s \quad \operatorname{invoker}\left(\operatorname{last}\left(r^{i-1}\right)\right)=u \\
& s=\left\langle d b, U, \sec , T, V, h,\left\langle t, \text { when, }\left\langle\left\langle u^{\prime}, \operatorname{DELETE}, R, \bar{t} \bar{t}, \top, \top, E\right\rangle\right\rangle, \operatorname{tr}\right\rangle \quad(\bar{v}, \bar{w})\right. \\
& \operatorname{secEx}(s)=\perp \quad t=\langle i d, o w, e v, R, \phi, \text { act }, m\rangle \quad(\forall \bar{x}, \bar{z} \cdot(S(\bar{x}, \bar{z}) \Rightarrow \exists \bar{w} \cdot R(\bar{x}, \bar{w})) \in \Gamma \backslash E \\
& r, i-1 \vdash_{u} \forall \bar{x}, \bar{z} \cdot(S(\bar{x}, \bar{z}) \Rightarrow \bar{x} \neq \bar{v}) \vee \exists \bar{y} \cdot(R(\bar{v}, \bar{y}) \wedge \bar{y} \neq \bar{w})
\end{aligned}
$$

$$
\begin{gathered}
1<i \leq|r| \quad r^{i}=r^{i-1} \cdot t \cdot s \quad \text { invoker }\left(\operatorname{last}\left(r^{i-1}\right)\right)=u \\
s=\left\langle d b, U, \sec , T, V, h,\left\langle t, w h e n,\left\langle\left\langle u^{\prime}, \operatorname{DELETE}, R, \bar{t}\right\rangle, \top, \top, \emptyset\right\rangle\right\rangle, t r\right\rangle \\
\sec \operatorname{Ex}(s)=\perp \quad \operatorname{Ex}(s)=\emptyset \quad t=\left\langle i d, o w, e v, R^{\prime}, \phi, a c t, m\right\rangle \\
r, i-1 \vdash_{u} \psi \\
r, i-1 \vdash_{u} \phi\left[\bar{x}^{\left|R^{\prime}\right|} \mapsto \operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)\right]
\end{gathered} \text { Learn DELETE Backward - } 1
$$

$$
1<i \leq|r| \quad r^{i}=r^{i-1} \cdot t \cdot s \quad \text { invoker }\left(\operatorname{last}\left(r^{i-1}\right)\right)=u
$$

$$
s=\left\langle d b, U, \text { sec }, T, V, h,\left\langle t, \text { when },\left\langle\left\langle u^{\prime}, \text { DELETE }, R, \bar{t}\right\rangle, \top, \top, \emptyset\right\rangle\right\rangle, t r\right\rangle
$$

$$
\sec \operatorname{Ex}(s)=\perp \quad E x(s)=\emptyset \quad t=\left\langle i d, o w, e v, R^{\prime}, \phi, a c t, m\right\rangle
$$

$$
\frac{r, i-1 \vdash_{u} \psi}{r, i-1 \vdash_{u} R(\bar{t})} \text { Learn DELETE Backward - } 2
$$

$$
1<i \leq|r| \quad r^{i}=r^{i-1} \cdot t \cdot s \quad \text { invoker }\left(\operatorname{last}\left(r^{i-1}\right)\right)=u
$$

$$
s=\left\langle d b, U, s e c, T, V, h,\left\langle t, w h e n,\left\langle\left\langle o p, u^{\prime \prime}, p r, u^{\prime}\right\rangle, \top, \top, \emptyset\right\rangle\right\rangle, t r\right\rangle
$$

$$
\sec \operatorname{Ex}(s)=\perp \quad \operatorname{Ex}(s)=\emptyset \quad t=\left\langle i d, o w, e v, R^{\prime}, \phi, \text { act }, m\right\rangle
$$

$$
\frac{u^{\prime}, u^{\prime \prime} \in U \quad \text { op } \in\left\{\oplus, \oplus^{*}, \ominus\right\} \quad \operatorname{last}\left(r^{i-1}\right) \cdot \sec \neq \operatorname{last}\left(r^{i}\right) \cdot s e c}{r, i-1 \vdash_{u} \phi\left[\bar{x}^{\left|R^{\prime}\right|} \mapsto \operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)\right]} \text { Learn GRANT/REVOKE Backward }
$$

Figure 30: Extracting knowledge from triggers

$$
\begin{aligned}
& r, i-1 \vdash_{u} \phi\left[\bar{x}^{\left|R^{\prime}\right|} \mapsto \operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)\right] \quad 1<i \leq|r| \quad r^{i}=r^{i-1} \cdot t \cdot s \quad \operatorname{invoker}\left(\operatorname{last}\left(r^{i-1}\right)\right)=u \\
& s=\left\langle d b, U, \text { sec }, T, V, h,\left\langle t, \text { when, }\left\langle\left\langle u^{\prime}, \text { DELETE, } R, \bar{t}\right\rangle, \top, \top, \emptyset\right\rangle\right\rangle, \text { tr }\right\rangle \quad l \in\{i, i-1\} \\
& \sec E x(s)=\perp \quad E x(s)=\emptyset \quad t=\left\langle i d, \text { ow, ev, } R^{\prime}, \phi, a c t, m\right\rangle \\
& (\forall \bar{x}, \bar{z} \cdot(S(\bar{x}, \bar{z}) \Rightarrow \exists \bar{w} \cdot R(\bar{x}, \bar{w})) \in \Gamma \quad \bar{t}=(\bar{v}, \bar{w}) \\
& r, l \vdash_{u} \forall \bar{x}, \bar{z} .(S(\bar{x}, \bar{z}) \Rightarrow \bar{x} \neq \bar{v}) \vee \exists \bar{y} .(R(\bar{v}, \bar{y}) \wedge \bar{y} \neq \bar{w})
\end{aligned}
$$

$$
\begin{aligned}
& r, i-1 \vdash_{u} \phi\left[\bar{x}^{\left|R^{\prime}\right|} \mapsto \operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)\right] \quad 1<i \leq|r|, \quad r^{i}=r^{i-1} \cdot t \cdot s \quad \text { invoker }\left(\operatorname{last}\left(r^{i-1}\right)\right)=u \\
& s=\left\langle d b, U, \text { sec, } T, V, h,\left\langle t, \text { when, }\left\langle\left\langle u^{\prime}, \text { DELETE, } R, \bar{t}\right\rangle, \top, \top, \emptyset\right\rangle\right\rangle, t r\right\rangle \\
& \sec E x(s)=\perp \quad \begin{array}{l}
\operatorname{Ex}(s)=\emptyset \\
r, i \vdash_{u} \neg R(\bar{t}) \\
t=\left\langle i d, o w, e v, R^{\prime}, \phi, a c t, m\right\rangle \\
\text { Learn DELETE Forward }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& r, i-1 \vdash_{u} \psi \quad 1<i \leq|r| \quad r^{i}=r^{i-1} \cdot t \cdot s \quad \text { invoker }\left(\operatorname{last}\left(r^{i-1}\right)\right)=u \\
& s=\langle d b, U, s e c, T, \bar{V}, h,\langle t, \text { when }, \text { stm }\rangle, t r\rangle \quad E x(s)=\emptyset \\
& \underline{\sec E x}(s)=\perp \quad t=\langle i d, o w, e v, R, \phi, a c t, m\rangle \quad \text { reviseBelief }\left(r^{i-1}, \psi, r^{i}\right)=T \quad \text { Propagate Forward } \\
& r, i \vdash_{u} \psi \\
& \text { Trigger Action } \\
& r, i \vdash_{u} \psi \quad 1<i \leq|r| \quad r^{i}=r^{i-1} \cdot t \cdot s \quad \operatorname{invoker}\left(\operatorname{last}\left(r^{i-1}\right)\right)=u \\
& s=\langle d b, U, s e c, \bar{T}, V, h,\langle t, \text { when }, \text { stm } t\rangle, t r\rangle \quad E x(s)=\emptyset \\
& \sec E x(s)=\perp \quad t=\langle i d, o w, e v, R, \phi, a c t, m\rangle \quad \text { reviseBelief }\left(r^{i-1}, \psi, r^{i}\right)=\top \quad \text { Propagate Backward } \\
& r, i-1 \vdash_{u} \psi \quad \text { Trigger Action } \\
& r, i \vdash_{u} \psi \quad r, i-1 \vdash_{u} \neg R(\bar{t}) \quad 1<i \leq|r| \quad r^{i}=r^{i-1} \cdot t \cdot s \quad \text { invoker }\left(\operatorname{last}\left(r^{i-1}\right)\right)=u \\
& s=\left\langle d b, U, s e c, T, V, h,\left\langle t, \text { when, }\left\langle\left\langle u^{\prime}, \operatorname{DELETE}, R, \bar{t}\right\rangle, \top, \top, \emptyset\right\rangle\right\rangle, \operatorname{tr}\right\rangle \quad E x(s)=\emptyset \\
& \sec \operatorname{Ex}(s)=\perp \quad t=\left\langle i d, o w, e v, R^{\prime}, \phi, a c t, m\right\rangle \\
& \text { INSERT Trigger Action }
\end{aligned}
$$

Figure 31: Rules for propagating knowledge through triggers

$$
\begin{aligned}
& 1<i \leq|r| \quad \begin{array}{r}
r^{i}=r^{i-1} \cdot t \cdot s \quad \operatorname{invoker}\left(\operatorname{last}\left(r^{i-1}\right)\right)=u
\end{array} \\
& s=\langle d b, U, s e c, T, V, h,\langle t, \text { when, stmt }\rangle, t r\rangle \\
& \operatorname{secEx}(s)=\perp \quad E x(s)=\emptyset \quad t=\langle i d, o w, e v, R, \phi, a c t, m\rangle \\
& \operatorname{getAction}\left(\operatorname{act}, \operatorname{user}\left(\operatorname{last}\left(r^{i-1}\right), t\right), \operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)=\left\langle u^{\prime}, \operatorname{INSERT}, R,(\bar{v}, \bar{w}, \bar{q})\right\rangle\right. \\
& r, i-1 \vdash_{u} \exists \bar{y}, \bar{z} \cdot R(\bar{v}, \bar{y}, \bar{z}) \wedge \bar{y} \neq \bar{w} \\
& \frac{\forall \bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{z}, \bar{z}^{\prime} \cdot\left(R(\bar{x}, \bar{y}, \bar{z}) \wedge R\left(\bar{x}, \bar{y}^{\prime}, \bar{z}^{\prime}\right)\right) \Rightarrow \bar{y}=\bar{y}^{\prime} \in \Gamma}{r, i-1 \vdash_{u} \neg \phi\left[\bar{x}^{\left|R^{\prime}\right|} \mapsto \operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)\right]} \\
& \text { Trigger } \\
& \text { FD } \\
& \text { INSERT } \\
& \text { Disabled } \\
& \text { Backward } \\
& 1<i \leq|r| \quad \quad r^{i}=r^{i-1} \cdot t \cdot s \quad \quad \operatorname{invoker}\left(\operatorname{last}\left(r^{i-1}\right)\right)=u \\
& s=\langle d b, U, s e c, T, V, h,\langle t, \text { when, stmt }\rangle, t r\rangle \\
& \operatorname{secEx}(s)=\perp \quad E x(s)=\emptyset \quad t=\langle i d, o w, e v, R, \phi, a c t, m\rangle \\
& \text { getAction }\left(\operatorname{act}, \operatorname{user}\left(\operatorname{last}\left(r^{i-1}\right), t\right), \operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)=\left\langle u^{\prime}, \text { DELETE, } R,(\bar{v}, \bar{w})\right\rangle\right. \\
& r, i-1 \vdash_{u} \exists \bar{z} . S(\bar{v}, \bar{z}) \wedge \forall \bar{y} .(R(\bar{x}, \bar{y}) \Rightarrow \bar{y}=\bar{w}) \quad \forall \bar{x}, \bar{z} . S(\bar{x}, \bar{z}) \Rightarrow \exists \bar{w} . R(\bar{x}, \bar{w}) \in \Gamma \\
& r, i-1 \vdash_{u} \neg \phi\left[\bar{x}^{\left|R^{\prime}\right|} \mapsto \operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)\right] \\
& 1<i \leq|r| \quad r^{i}=r^{i-1} \cdot t \cdot s \quad \operatorname{invoker}\left(\operatorname{last}\left(r^{i-1}\right)\right)=u \\
& s=\langle d b, U, s e c, T, V, h,\langle t, \text { when }, \text { stmt }\rangle, t r\rangle \\
& \operatorname{secEx}(s)=\perp \quad \operatorname{Ex}(s)=\emptyset \quad t=\left\langle i d, \text { ow, ev, } R^{\prime}, \phi, a c t, m\right\rangle \\
& \operatorname{getAction}\left(\operatorname{act}, \operatorname{user}\left(\operatorname{last}\left(r^{i-1}\right), t\right), \operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)=\left\langle o p, u^{\prime \prime}, p, u^{\prime}\right\rangle\right. \\
& \frac{u^{\prime}, u^{\prime \prime} \in U \quad \text { op } \in\left\{\oplus, \oplus^{*}\right\} \quad\left\langle\text { op, } u^{\prime \prime}, p, u^{\prime}\right\rangle \notin \operatorname{last}\left(r^{i-1}\right) \text {.sec } \quad \operatorname{last}\left(r^{i-1}\right) \text {.sec }=\sec }{r, i-1 \vdash_{u} \neg \phi\left[\bar{x}^{\left|R^{\prime}\right|} \mapsto \operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)\right]} \\
& \text { Trigger } \\
& \text { GRANT } \\
& \text { Disabled } \\
& \text { Backward } \\
& 1<i \leq|r| \quad \quad r^{i}=r^{i-1} \cdot t \cdot s \quad \quad \operatorname{invoker}\left(\operatorname{last}\left(r^{i-1}\right)\right)=u \\
& \sec \operatorname{Ex}(s)=\perp \quad s=\left\langle d, \quad \operatorname{Ex}(s)=\emptyset \quad t=\left\langle i d, o w, e v, R^{\prime}, \phi, a c t, m\right\rangle\right. \\
& \text { getAction }\left(\operatorname{act}, \operatorname{user}\left(\operatorname{last}\left(r^{i-1}\right), t\right), \operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)=\left\langle\ominus, u^{\prime \prime}, p, u^{\prime}\right\rangle\right. \\
& \frac{u^{\prime}, u^{\prime \prime} \in U \quad o p \in\left\{\oplus, \oplus^{*}\right\} \quad\left\langle o p, u^{\prime \prime}, p, u^{\prime}\right\rangle \in \operatorname{last}\left(r^{i-1}\right) . \sec \quad \operatorname{last}\left(r^{i-1}\right) . \sec =\sec }{r, i-1 \vdash_{u} \neg \phi\left[\bar{x}^{\left|R^{\prime}\right|} \mapsto \operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)\right]} \\
& \text { Trigger } \\
& \text { REVOKE } \\
& \text { Disabled } \\
& \text { Backward }
\end{aligned}
$$

Figure 32: Extracting knowledge from triggers

$$
\begin{aligned}
& 1<i \leq|r| \quad \quad r^{i}=r^{i-1} \cdot t \cdot s \quad \quad \operatorname{invoker}\left(\operatorname{last}\left(r^{i-1}\right)\right)=u \\
& s=\left\langle d b, U, s e c, T, V, h,\left\langle t, \text { when, }\left\langle\left\langle u^{\prime}, \text { INSERT, } R, \bar{t}\right\rangle, \top, \top, E\right\rangle, t r\right\rangle\right. \\
& \operatorname{secEx}(s)=\perp \quad t=\left\langle i d, \text { ow, ev, } R^{\prime}, \phi, a c t, m\right\rangle \quad \text { Trigger } \\
& \begin{array}{cc}
\left(\forall \bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{z}, \bar{z}^{\prime} \cdot\left(\left(R(\bar{x}, \bar{y}, \bar{z}) \wedge R\left(\bar{x}, \bar{y}^{\prime}, \bar{z}^{\prime}\right)\right) \Rightarrow \bar{y}=\bar{y}^{\prime}\right) \in E x(s)\right. & \bar{t}=(\bar{v}, \bar{w}, \bar{q}) \\
r, i-1 \vdash_{u} \exists \bar{y}, \bar{z}, R(\bar{v}, \bar{y}, \bar{z}) \wedge \bar{y} \neq \bar{w} & \text { INSERT } \\
\text { FD }
\end{array} \\
& r, i-1 \vdash_{u} \exists \bar{y}, \bar{z} . R(\bar{v}, \bar{y}, \bar{z}) \wedge \bar{y} \neq \bar{w} \\
& \text { Exception } \\
& 1<i \leq|r| \quad r^{i}=r^{i-1} \cdot t \cdot s \quad \text { invoker }\left(\operatorname{last}\left(r^{i-1}\right)\right)=u \\
& s=\left\langle d b, U, \text { sec }, T, V, h,\left\langle t, \text { when },\left\langle\left\langle u^{\prime}, \text { INSERT, } R, \bar{t}\right\rangle, \top, \top, E\right\rangle, t r\right\rangle\right. \\
& \operatorname{secEx}(s)=\perp \quad t=\left\langle i d, o w, e v, R^{\prime}, \phi, a c t, m\right\rangle \\
& (\forall \bar{x}, \bar{z} \cdot(R(\bar{x}, \bar{z}) \Rightarrow \exists \bar{w} \cdot S(\bar{x}, \bar{w})) \in E x(s) \quad \bar{t}=(\bar{v}, \bar{w}) \\
& r, i-1 \vdash_{u} \forall \bar{x}, \bar{y} \cdot S(\bar{x}, \bar{y}) \Rightarrow \bar{x} \neq \bar{v} \\
& 1<i \leq|r| \quad r^{i}=r^{i-1} \cdot t \cdot s \quad \text { invoker }\left(\operatorname{last}\left(r^{i-1}\right)\right)=u \\
& s=\left\langle d b, U, \text { sec }, T, V, h,\left\langle t, \text { when },\left\langle\left\langle u^{\prime}, \text { DELETE, } R, \bar{t}\right\rangle, \top, \top, E\right\rangle, t r\right\rangle\right. \\
& \operatorname{secEx}(s)=\perp \quad t=\left\langle i d, o w, e v, R^{\prime}, \phi, a c t, m\right\rangle \\
& \frac{(\forall \bar{x}, \bar{z} \cdot(S(\bar{x}, \bar{z}) \Rightarrow \exists \bar{w} \cdot R(\bar{x}, \bar{w})) \in E x(s) \quad \bar{t}=(\bar{v}, \bar{w})}{r, i-1 \vdash_{u} \exists \bar{z} \cdot S(\bar{v}, \bar{z}) \wedge \forall \bar{y} \cdot(R(\bar{v}, \bar{y}) \Rightarrow \bar{y}=\bar{w})}
\end{aligned}
$$

Figure 33: Extracting knowledge from trigger's exceptions

C. DATABASE INTEGRITY

In this section, we present the formal definition of the $\leadsto_{\text {auth }}$ relation, which is used to define database integrity. Let $P=\langle M, f\rangle$ be an extended configuration, where $M=$ $\langle D, \Gamma\rangle$ is a system configuration and f is an M-PDP. We denote by $\mathcal{V} \mathcal{E} \mathcal{W}_{D}^{\text {owner }}$ the set of all D-views with the owner's privileges, i.e., $\mathcal{V I E W}_{D}^{\text {owner }}=\left\{\langle V, o, q, m\rangle \in \mathcal{V} \mathcal{I E} \mathcal{W}_{D} \mid m=\right.$ $O\}$, and by $\mathcal{P R} \mathcal{I} \mathcal{V}_{D}^{\text {SELECT, } \mathcal{V I E} \mathcal{W}_{D}^{\text {ouner }}}$ the set of privileges $\{p r \in$ $\mathcal{P R I V}_{D} \mid p r=\langle$ SELECT, $\left.V\rangle \wedge V \in \mathcal{V I E} \mathcal{W}_{D}^{\text {ouner }}\right\}$. Given a state an M-state $s=\langle d b, U, s e c, T, V, c\rangle$ and a revoke command $r=\left\langle\Theta, u, p, u^{\prime}\right\rangle$, we denote by $\operatorname{applyRev}(s, r)$ the state $\left\langle d b, U\right.$, revoke (sec, u, p, u^{\prime}), $\left.T, V, c\right\rangle$ obtained by executing the REVOKE command. Given a system's configuration $M=\langle D, \Gamma\rangle$, a query q, a set of views V with owner's privileges, and a set of tables T, we say that V and T determine q, denoted by determines $_{M}(T, V, q)$, iff for all $d b \in \Omega_{D}^{\Gamma}$, for all $d b_{1}, d b_{2} \in \llbracket d b \rrbracket_{V, T,},[q]^{d b_{1}}=[q]^{d b_{2}}$, where $\llbracket d b \rrbracket_{V, T}$ denotes the set $\left\{d b^{\prime} \in \Omega_{D}^{\Gamma} \mid \forall T_{1} \in T . T_{1}(d b)=\right.$ $\left.T_{1}\left(d b^{\prime}\right) \wedge \forall V_{1} \in V . V_{1}(d b)=V_{1}\left(d b^{\prime}\right)\right\}$. Further details on the concept of determinacy can be found in 34]. Finally, the relation $\sim_{\text {auth }} \subseteq \Omega_{M} \times\left(\mathcal{A}_{D, \mathcal{U}} \cup \mathcal{T R} \mathcal{I G G \mathcal { G }} \mathcal{R}_{D}\right)$ is the smallest relation satisfying the inference rules given in Figure 34

$$
\begin{aligned}
& u, u^{\prime} \in U \quad R \in D \quad \bar{t} \in \operatorname{dom}^{|R|} \quad g=\left\langle o p, u,\left\langle o p^{\prime}, R\right\rangle, u^{\prime}\right\rangle \quad g \in s e c \\
& \langle d b, U, s e c, T, V, c\rangle \sim_{\text {auth }} g \quad o p^{\prime} \in\{\text { INSERT, DELETE }\} \quad \text { INSERT } \\
& \langle d b, U, s e c, T, V, c\rangle \sim_{\text {auth }}\left\langle u, o p^{\prime}, R, \bar{t}\right\rangle \\
& u, u^{\prime} \in U \quad t=\langle i d, o w, e v, R, \phi, \text { stmt }, m\rangle \\
& t \in \mathcal{T} \mathcal{R} \mathcal{I} \mathcal{G E} \mathcal{R}_{D} \\
& u, u^{\prime} \underset{g \in \sec }{U} \quad v \in \mathcal{V I E} \mathcal{W}_{D} \underset{\langle d b, U, s e c, T, V, c\rangle}{g=\left\langle o p, u,\langle\operatorname{CREATE} \operatorname{VIEW}\rangle, u^{\prime}\right\rangle} \\
& g \in \sec \quad\langle d b, U, \sec , T, V, c\rangle \sim_{\text {auth }} g \\
& \begin{array}{c}
\quad g=\langle o p, u,\langle\text { CREATE } \\
\text { CREATE } \\
g \in \sec \quad\langle d b, U, s e c, T, V, c\rangle \sim \text { auth } g \\
\hline
\end{array} \\
& \text { VIEW } \quad\langle d b, U, s e c, T, V, c\rangle \sim_{\text {auth }}\langle u, \text { CREATE, } t\rangle \quad \text { TRIGGER } \\
& \frac{R \in D \quad \bar{t} \in \operatorname{dom}^{|R|} \quad o p^{\prime} \in\{\text { INSERT, DELETE }\}}{\langle d b, U, \text { sec }, T, V, c\rangle \sim \text { auth }\left\langle a d m i n, o p^{\prime}, R, \bar{t}\right\rangle} \quad \begin{array}{c}
\text { INSERT } \\
\text { DELETE } \\
\text { admin }
\end{array} \quad v \in \mathcal{V} \mathcal{I} \mathcal{E} \mathcal{W}_{D} \quad v=\langle i d, a d m i n, q, m\rangle \\
& \begin{array}{c}
t=\langle i d, a d \min , \text { ev }, R, \phi, s t m t, m\rangle \\
t \in \mathcal{T R} \mathcal{I} \mathcal{G} \mathcal{G} \mathcal{R}_{D} \\
\langle d b, U, s e c, T, V, c\rangle \sim_{a u t h}\langle a d m i n, \text { CREATE, } t\rangle
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& T^{\prime} \subseteq D ~ d e t e r m i n e s ~\left(T^{\prime}, V^{\prime}, q\right) \quad V^{\prime} \subseteq V \cap \mathcal{V I E W}_{D}^{\text {owner }} \quad T^{\prime} \subseteq D \text { determines } M_{M}\left(T^{\prime}, V^{\prime}, q\right)
\end{aligned}
$$

$$
\begin{aligned}
& u, \text { owner } \in U \quad \text { op } \in\left\{\oplus, \oplus^{*}\right\} \quad v \in V \\
& \frac{p r i v=\langle\operatorname{SELECT}, v\rangle \quad v=\langle i d, \text { owner }, q, A\rangle}{\langle d b, U, \text { sec }, T, V, c\rangle \sim_{a u t h}\langle o p, u, \text { priv, owner }\rangle} \text { GRANT-5 } \frac{u \in \mathcal{U} \quad u^{\prime}=a d m i n}{\langle d b, U, s e c, T, V, c\rangle \sim_{a u t h}\left\langle u^{\prime}, \text { ADD_USER, } u\right\rangle} \text { ADD USER } \\
& t=\langle i d, o w, e v, R, \phi, \text { stmt }, O\rangle \quad t \in T \\
& \langle d b, U, \sec , T, V, c\rangle \underset{\sim}{\sim} \text { auth getAction }(\text { stmt }, \text { ow, } \operatorname{tpl}(c)) \\
& \begin{array}{l}
{\left[\phi\left[\bar{x}^{|R|} \mapsto \operatorname{tpl}(c)\right]\right]^{d b}=\mathrm{\top}} \\
\langle d b, U, \text { sec }, T, V, c\rangle \overbrace{\text { auth }} t
\end{array} \\
& \text { EXECUTE } \\
& \text { TRIGGER-1 } \\
& t=\langle i d, o w, e v, R, \phi, s t m t, A\rangle \quad t \in T \\
& \langle d b, U, \text { sec }, T, V, c\rangle \underset{\text { auth }}{ } \text { getAction }(\text { stmt }, \text { invoker }(c), \operatorname{tpl}(c)) \\
& \langle d b, U, \text { sec }, T, V, c\rangle \sim \text { auth getAction(stmt, ow, tpl }(c)) \\
& \begin{array}{l}
{\left[\phi\left[\bar{x}^{|R|} \mapsto \operatorname{tpl}(c)\right]\right]^{d b}=\mathrm{\top}} \\
\langle d b, U, \sec , T, V, c\rangle \sim \\
\text { EXECUTE }
\end{array}
\end{aligned}
$$

Figure 34: Definition of the $\sim_{\text {auth }}$ relation

D. DATA CONFIDENTIALITY

In this section, we define indistinguishability of runs. We first formalize the notion of u-projection. Afterwards, we define the notion of consistency between u-projections. Finally, we formalize the indistinguishability relation $\cong_{P, u}$.
We recall that, given a run r, we denote by r^{i}, where $1 \leq i \leq|r|$, the prefix of r obtained by truncating r at the i-th state. In the rest of the paper, we use r^{0} to denote the empty run.

D. 1 Projections

Let $P=\langle M, f\rangle$ be an extended configuration, where $M=$ $\langle D, \Gamma\rangle$ and f is an M-PDP, L be the P-LTS, and u be a user in \mathcal{U}. Given a run $r \in \operatorname{traces}(L)$, its u-projection, denoted by $\left.r\right|_{u}$, is obtained by (1) replacing each action not issued by u with $*$, (2) replacing each trigger whose invoker is not u with *, and (3) replacing all non-empty sequences of $*$-transitions with a single $*$-transition. Note that the $*$-transitions in the u-projections represent whether u 's actions are executed consecutively or not. With a slight abuse of notation, we extend all the notation we use for runs also to u-projections. For instance, $\left.r\right|_{u} ^{i}$ denotes the prefix obtained by truncating $\left.r\right|_{u}$ at its i-th state. Formally, the u-projection $\left.r\right|_{u}$ is defined as $c(v(r, u))$. The function v takes as input a run r and a user u and returns another run in which all non- u actions are replaced with $*$.

The function c takes as input a run r containing *-transitions and replaces each sequence of $*$-transitions with a single $*-$ transition. Note that the function c is obtained by repeatedly applying the function c^{\prime} until the computation reaches a fixed point. The function c^{\prime} is as follows:
$c^{\prime}(r)= \begin{cases}c^{\prime}\left(r^{|r|-1}\right) \cdot a \cdot s & \text { if } r=r^{|r|-1} \cdot a \cdot s \text { and } a \neq * \\ & \text { and } s \in \Omega_{M} \text { and }|r|>1 \\ c^{\prime}\left(r^{|r|-2}\right) \cdot * \cdot s & \text { if } r=r^{|r|-2} \cdot * \cdot s^{\prime} \cdot * \cdot s \text { and } \\ & s, s^{\prime} \in \Omega_{M} \text { and }|r|>2 \\ s & \text { if } r=s \text { and } s \in \Omega_{M} \\ r & \text { if } r=s \cdot * \cdot s^{\prime} \text { and } s, s^{\prime} \in \Omega_{M}\end{cases}$

D. 2 Consistency

Before defining the notion of consistency, we define the function labels which takes as input a run r and returns as output the sequence of labels in the run. In more detail, labels (r) is obtained from r by dropping all the states. We now define the notion of consistency between two u projections.

Definition D.1. Let $P=\langle M, f\rangle$ be an extended configu-

Figure 35: The runs r_{1}, r_{2}, r_{3}, and r_{4}, where the states are represented using black dots, the actions a_{1}, a_{2}, and a_{3} issued by the user u are written above the edges connecting the states, and the actions of the other users are omitted. The u-projections of these runs are, respectively, $\left.r_{1}\right|_{u},\left.r_{2}\right|_{u},\left.r_{3}\right|_{u}$, and $\left.r_{4}\right|_{u}$. The runs r_{1} and r_{2} have u-projections with the same labels, whereas the runs r_{3} and r_{4} have u-projections with different labels.
ration, where $M=\langle D, \Gamma\rangle$ and f is an M-PDP, L be the P-LTS, and u be a user in \mathcal{U}. Furthermore, let $\left.r\right|_{u}$ and $\left.r^{\prime}\right|_{u}$ be two u-projections for the runs r and r^{\prime} in $\operatorname{traces}(L)$. We say that $\left.r\right|_{u}$ and $\left.r^{\prime}\right|_{u}$ are consistent iff the following conditions hold:

1. $|r|_{u}\left|=\left|r^{\prime}\right|_{u}\right|$.
2. $\operatorname{labels}\left(\left.r\right|_{u}\right)=\operatorname{labels}\left(\left.r^{\prime}\right|_{u}\right)$.
3. $\operatorname{triggers}\left(\operatorname{last}\left(\left.r\right|_{u}\right)\right)=\epsilon \mathrm{iff} \operatorname{triggers}\left(\operatorname{last}\left(\left.r^{\prime}\right|_{u}\right)\right)=\epsilon$.
4. for all i such that $1 \leq i \leq|r|_{u} \mid$, if $\left.r\right|_{u} ^{i}=\left.r\right|_{u} ^{i-1} \cdot a \cdot s$ and $a \neq *$, then

- $\operatorname{res}\left(\operatorname{last}\left(\left.r\right|_{u} ^{i}\right)\right)=\operatorname{res}\left(\operatorname{last}\left(\left.r^{\prime}\right|_{u} ^{i}\right)\right)$,
- $\sec \operatorname{Ex}\left(\operatorname{last}\left(\left.r\right|_{u} ^{i}\right)\right)=\sec E x\left(\operatorname{last}\left(\left.r^{\prime}\right|_{u} ^{i}\right)\right)$,
- if a is a trigger, then $\operatorname{acC} C\left(\operatorname{last}\left(\left.r\right|_{u} ^{i}\right)\right)=a c C\left(\operatorname{last}\left(\left.r^{\prime}\right|_{u} ^{i}\right)\right)$,
- $\operatorname{invoker}\left(\operatorname{last}\left(\left.r\right|_{u} ^{i}\right)\right)=\operatorname{invoker}\left(\operatorname{last}\left(\left.r^{\prime}\right|_{u} ^{i}\right)\right)$,
- $\operatorname{triggers}\left(\operatorname{last}\left(\left.r\right|_{u} ^{i}\right)\right)=\operatorname{triggers}\left(\operatorname{last}\left(\left.r^{\prime}\right|_{u} ^{i}\right)\right)$,
- $\operatorname{tpl}\left(\operatorname{last}\left(\left.r\right|_{u} ^{i}\right)\right)=\operatorname{tpl}\left(\operatorname{last}\left(\left.r^{\prime}\right|_{u} ^{i}\right)\right)$,
- and $\operatorname{Ex}\left(\operatorname{last}\left(\left.r\right|_{u} ^{i}\right)\right)=\operatorname{Ex}\left(\operatorname{last}\left(\left.r^{\prime}\right|_{u} ^{i}\right)\right)$.

Figure 35 depicts four runs. The states are represented just as black dots and the action between two states is written above the edge connecting them. Note that we represent just the actions a_{1}, a_{2}, and a_{3} issued by the user u. Assume that (a) the action's effects are the same in all the runs and (b) the invoker, res, secEx, triggers, tpl, and Ex functions return the same results in all runs. It is easy to see that $\left.r_{1}\right|_{u}$ and $\left.r_{2}\right|_{u}$ are consistent projections, whereas $\left.r_{3}\right|_{u}$ and $\left.r_{4}\right|_{u}$ are not. Furthermore, there is no other pair of consistent u-projections between the runs in the figure.

D. 3 Indistinguishability

Let $M=\langle D, \Gamma\rangle$ be a system configuration, $s=\langle d b, U, s e c$, $T, V\rangle$ be an M-partial state, and $u \in U$ be a user. The set
permissions (s, u) is permissions $(s, u):=\left\{\langle\oplus, \operatorname{SELECT}, O\rangle \mid \exists u^{\prime}\right.$ $\in U, o p \in\left\{\oplus, \oplus^{*}\right\} .\left\langle o p, u,\langle\right.$ SELECT, $\left.\left.O\rangle, u^{\prime}\right\rangle \in s e c\right\}$. Note that permissions $(s, a d m i n)=D \cup V$ since the administrator has read access to the whole database. We extend permissions to M-states as follows. Given an M-state $s^{\prime}=$ $\langle d b, U, s e c, T, V, c\rangle$, permissions $\left(s^{\prime}, u\right)=$ permissions $(\langle d b, U$, sec, $T, V\rangle, u)$.
We are now ready to introduce the notion of indistinguishability between two runs. Intuitively, two runs r and r^{\prime} are indistinguishable for a user u iff (1) their u-projections are consistent, and (2) for each action of the user u as well as for the last states in the two runs, the policy, the triggers, the views, the users, and the data disclosed by the policy are the same in r and r^{\prime}.

Definition D.2. Let $P=\langle M, f\rangle$ be an extended configuration, L be the P-LTS, and u be a user.
We say that two runs r and r^{\prime} in $\operatorname{traces}(L)$ are (P, u) indistinguishable, written $r \cong_{u, P} r^{\prime}$, iff

1. $\left.r\right|_{u}$ and $\left.r^{\prime}\right|_{u}$ are consistent,
2. $p \operatorname{State}(\operatorname{last}(r))$ and $\operatorname{pState}\left(\operatorname{last}\left(r^{\prime}\right)\right)$ are (M, u)-data indistinguishable, and
3. for all i such that $1 \leq i \leq|r|_{u} \mid-1$, if $\left.r\right|_{u} ^{i+1}=\left.r\right|_{u} ^{i}$. $a \cdot s, a \neq *$, and $s \in \Omega_{M}$, then $\operatorname{pState}\left(\operatorname{last}\left(\left.r\right|_{u} ^{i}\right)\right)$ and $p \operatorname{State}\left(\operatorname{last}\left(\left.r^{\prime}\right|_{u} ^{i}\right)\right)$ are (M, u)-data indistinguishable.
We say that two M-partial states $s=\langle d b, U, s e c, T, V\rangle$ and $s^{\prime}=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}\right\rangle$ are (M, u)-data indistinguishable, written $s \cong_{u, M}^{\text {data }} s^{\prime}$, iff
4. $U=U^{\prime}$,
5. $s e c=s e c^{\prime}$,
6. $T=T^{\prime}$,
7. $V=V^{\prime}$,
8. for all relation schema $R \in D$ for which $\langle\oplus$, SELECT, $R\rangle \in$ permissions $(s, u), d b(R)=d b^{\prime}(R)$, and
9. for all views $v \in \mathcal{V} \mathcal{I E} \mathcal{W}_{D}^{\text {ouner }}$ for which $\langle\oplus$, $\operatorname{SELECT}, v\rangle \in$ permissions $(s, u), d b(v)=d b^{\prime}(v)$.

Proposition D.1. Let $P=\langle M, f\rangle$ be an extended configuration, L be the P-LTS, and $u \in \mathcal{U}$ be a user. The indistinguishability relation $\cong_{P, u}$ is an equivalence relation over traces (L).

Proof. We now prove that $\cong_{P, u}$ is reflexive, symmetric, and transitive. This implies the fact that $\cong_{P, u}$ is an equivalence relation over traces (L). In the following, let $P=\langle M, f\rangle$ be an extended configuration, L be the P-LTS, and $u \in \mathcal{U}$ be a user. From the definition of data indistinguishability and the results in 24, it follows that the dataindistinguishability relation $\cong_{u, M}^{d a t a}$ is an equivalence relation over the set of all partial states.
Reflexivity Let $r \in \operatorname{traces}(L)$ be a run. It follows trivially that $\left.r\right|_{u}=\left.r\right|_{u}$. From this, it follows that $\left.r\right|_{u}$ and $\left.r\right|_{u}$ are consistent. It is easy to see that r is indistinguishable from r. Indeed, the database states are the same in r and r and the data-indistinguishability relation is reflexive 24 .
Symmetry Let $r, r^{\prime} \in \operatorname{traces}(L)$ be two runs such that $r \cong_{P, u} r^{\prime}$. From this, it follows that $\left.r\right|_{u}$ and $\left.r^{\prime}\right|_{u}$ are consistent. Note that the consistency definition is symmetric. Therefore, also $\left.r^{\prime}\right|_{u}$ and $\left.r\right|_{u}$ are consistent. From this and the symmetry of data indistinguishability [24, it follows the symmetry of $\cong_{P, u}$.
Transitivity Let $r, r^{\prime}, r^{\prime \prime} \in \operatorname{traces}(L)$ be three runs such that $r \cong_{P, u} r^{\prime}$ and $r^{\prime} \cong_{P, u} r^{\prime \prime}$. From this it follows that $\left.r\right|_{u}$
and $\left.r^{\prime}\right|_{u}$ are consistent and $\left.r^{\prime}\right|_{u}$ and $\left.r^{\prime \prime}\right|_{u}$ are consistent. It is easy to see that also $\left.r\right|_{u}$ and $\left.r^{\prime \prime}\right|_{u}$ are consistent. From this and the transitivity of data indistinguishability 24, it follows the transitivity of $\cong_{P, u}$.

Given a run r, we denote by $\llbracket r \rrbracket_{P, u}$ the equivalence class of r defined by $\cong_{P, u}$ over $\operatorname{traces}(L)$. Similarly, we denote by $\llbracket s \rrbracket_{u, M}^{d a t a}$ the equivalence class of s defined by $\cong_{u, M}^{d a t a}$ over Π_{M}.

E. ENFORCING DATABASE INTEGRITY

In this section, we first define the access control function $f_{\text {int }}$, which models the $f_{\text {int }}$ procedure described in $\$_{6}$. Afterwards, we prove that the function $f_{i n t}$ satisfies the database integrity property. Finally, we prove that the data complexity of $f_{\text {int }}$ is $A C^{0}$.
The function $f_{\text {int }}$ is as follows:

The function $\operatorname{trig} \operatorname{Cond}(s)$ (respectively $\operatorname{trigAct}(s))$ returns the condition (respectively the action) associated with the trigger $\operatorname{trigger}(s)$. If $\operatorname{trigger}(s)=\langle i d, o w, e, R, \phi, s t, O\rangle$, then $\operatorname{trigAct}(s)=\operatorname{getAction}(s t, o w, \operatorname{tpl}(s))$ and $\operatorname{trigCond}(s)=$ $\left\langle o w\right.$, SELECT, $\left.\phi\left[\bar{x}^{|R|} \mapsto \operatorname{tpl}(s)\right]\right\rangle$. If $\operatorname{trigger}(s)=\langle i d, o w, e, R, \phi$,
 $\operatorname{trigCond}(s)=\left\langle\right.$ invoker (s), SELECT, $\left.\phi\left[\bar{x}^{|R|} \mapsto \operatorname{tpl}(s)\right]\right\rangle$.
Recall that, given an M-state $s=\langle d b, U, s e c, T, V, c\rangle$ and a revoke statement $r=\left\langle\ominus, u, p, u^{\prime}\right\rangle$, apply $\operatorname{Rev}(s, r)$ denotes the state $\left\langle d b, U\right.$, revoke $\left.\left(\sec , u, p, u^{\prime}\right), T, V, c\right\rangle$.
The relation $\sim_{{ }_{a u t h}{ }^{a p p r} \subseteq \Omega_{M} \times\left(\mathcal{A}_{D, \mathcal{U}} \cup \mathcal{T} \mathcal{R} \mathcal{I} \mathcal{G G E R}\right.}^{D}$) is the smallest relation satisfying the inference rules given in Figure 37. We remark that $\overbrace{a u t h}^{a p p r}$ is a sound and computable under-approximation of the relation $\sim \sim_{a u t h}$. In the rules, we use a number of auxiliary functions. The most important ones are:
(a) the $a T$ (respectively $a V$) function that takes as input a database state, an operator op in $\left\{\oplus, \oplus^{*}\right\}$, and a user, and returns the set of tables (respectively views) that the user is authorized to read (if $o p=\oplus$) or to delegate the read access (if $o p=\oplus^{*}$) according to our approximation of $\sim{ }_{\text {auth }}$, and
(b) the apprDet function is used to determine whether a set of tables and a set of views completely determine the result of a formula ϕ in all possible database states. Note that the function apprDet is a sound under-approximation of the concept of query determinacy 34].
In the following, we define the functions extend and apprDet. The functions $a T$ and $a V$ are defined in Figure 37 We assume that both the formula ϕ and the set of views V in the state s contain just views with owner's privileges. This is without loss of generality. Indeed, views with activator's privileges are just syntactic sugar, they do not disclose additional information to a user u other than what he is already authorized to read because they are executed under u 's privileges. If ϕ and s contain views with activator's privileges, we can compute another formula ϕ^{\prime} and a state s^{\prime} without views with activator's privileges as follows. We replace, in the formula ϕ, the predicates of the form $V(\bar{x})$, where V is a view with activator's privileges, with V 's definition, and we repeat this process until the resulting formula ϕ^{\prime} no longer contains views with activator's privileges. Similarly, the set V^{\prime} is obtained from V by (1) removing all views with activator's privileges, and (2) for each view $v \in V$ with owner's privileges, replacing the predicates of the form $V(\bar{x})$ in v 's definition, where V is a view with activator's privileges, with V 's definition until v 's definition no longer contains views with activator's privileges. The security policy $s e c^{\prime}$ is also obtained from sec by removing all references to
views with activator's privileges. Therefore, in §E.1-E.2 we ignore views with activator's privileges as the extension to the general case is trivial.

E. 1 Extend function

We now define the extend function, which takes as input a system configuration M, an M-state s, and a set of views with owner's privileges, and returns a set of views V^{\prime} such that $V \subseteq V^{\prime}$. Given a system configuration M, an M-partial state $s=\langle d b, U, s e c, T, V\rangle$, and a normalized view $\langle v, o, q, O\rangle \in V$, we denote by inline ${ }_{M}(\langle v, o, q, O\rangle, s)$ the view $\left\langle v, o, q^{\prime}, O\right\rangle$ where q^{\prime} is obtained from q by replacing all occurrences of views in V with owner's privileges with their definitions. Note that inline $_{M}$ does not compute a fixpoint, i.e., if a view's definition refers to another view, the latter is not replaced with its definition. The function extend (M, s, V) returns the set $V \cup\{\operatorname{inline}(v, s) \mid v \in$ $\operatorname{extend}(M, s, V)\}$.

Lemma E.1. Let $M=\langle D, \Gamma\rangle$ be a system configuration, $s=\langle d b, U$, sec $, T, V\rangle$ be an M-partial state, $V^{\prime} \subseteq V$ be a set of views with owner's privileges. For each view $v \in$ extend $\left(M, s, V^{\prime}\right)$, there is a view $v^{\prime} \in V^{\prime}$ such that v and v^{\prime} disclose the same data.

Proof. Sketch: Assume, for contradiction's sake, that there is a view $v \in \operatorname{extend}\left(M, s, V^{\prime}\right)$ such that all the views in V^{\prime} disclose different data from v. This is impossible because v has been obtained by a view $v^{\prime} \in V^{\prime}$ just by replacing the views with their definitions and the definitions of v and v^{\prime} are semantically equivalent.

E. 2 A sound under-approximation of query determinacy

The definition of the function $\operatorname{appr} \operatorname{Det}(T, V, q)$ is shown in Figure 36 Before proving that apprDet is a sound approximation of determines, we extend determines from sentences to formulae.

We first introduce assignments. Let dom be the universe and var be an infinite countably set of variable identifiers. An assignment ν is a partial function from var to dom that maps variables to values in the universe. Given a formula ϕ and an assignment ν, we say that ν is well-formed for ϕ iff ν is defined for all variables in free (ϕ). Given an assignment ν and a sequence of variables \bar{x} such that ν is defined for each $x \in \bar{x}$, we denote by $\nu(\bar{x})$ the tuple obtained by replacing each occurrence of $x \in \bar{x}$ with $\nu(x)$. Given an assignment ν, a variable $v \in$ var, and a value $u \in \operatorname{dom}$, we denote by $\nu \oplus[v \mapsto u]$ the assignment ν^{\prime} obtained as follows: $\nu^{\prime}\left(v^{\prime}\right)=$ $\nu\left(v^{\prime}\right)$ for any $v^{\prime} \neq v$, and $\nu^{\prime}(v)=u$. Finally, given a formula ϕ with free variables free (ϕ) and an assignment ν, we denote by $\phi \circ \nu$ the formula ϕ^{\prime} obtained by replacing, for each free variable $x \in$ free (ϕ) such that $\nu(x)$ is defined, all the free occurrences of x with $\nu(x)$.

Given a system's configuration $M=\langle D, \Gamma\rangle$, a formula ϕ, a set of views V with owner's privileges, a set of tables T, and a well-formed assignment ν for ϕ, we say that V and T determine (ϕ, ν), denoted by determines ${ }_{M}(T, V, \phi, \nu)$, iff for all $d b \in \Omega_{D}^{\Gamma}$, for all $d b_{1}, d b_{2} \in \llbracket d b \rrbracket_{V, T},[\phi \circ \nu]^{d b_{1}}=$ $[\phi \circ \nu]^{d b_{2}}$. In the following, given a view $\langle u, o, q, m\rangle$, we denote by $\operatorname{def}(\langle u, o, q, m\rangle)$ its definition q.
In Lemma E.2 we show that apprDet is, indeed, a sound under-approximation of query determinacy.

$$
\operatorname{apprDet}(T, V, \phi, s, M)= \begin{cases}\top & \text { if } \exists\langle v, o, q, O\rangle \in \operatorname{extend}(M, s, V) . q=\{\bar{x} \mid \phi(\bar{x})\} \\ \top & \text { if } \phi=(x=v) \vee \phi=\top \vee \phi=\perp \\ \top & \text { if } \phi=R(\bar{x}) \wedge R \in T \\ \top & \text { if } \phi=V(\bar{x}) \wedge \exists u \in \mathcal{U}, q \in R C \cdot\langle V, u, q, O\rangle \in V \\ \top & \text { if } \phi=(\psi \wedge \gamma) \wedge \operatorname{apprDet}(T, V, \psi, s, M)=\top \wedge \operatorname{apprDet}(T, V, \gamma, s, M)=\top \\ \top & \text { if } \phi=(\psi \vee \gamma) \wedge \operatorname{apprDet}(T, V, \psi, s, M)=\top \wedge \operatorname{apprDet}(T, V, \gamma, s, M)=\top \\ \top & \text { if } \phi=(\neg \psi \wedge \operatorname{apprDet}(T, V, \psi, s, M)=\top \\ \top & \text { if } \phi=(\exists x \cdot \psi) \wedge \operatorname{apprDet}(T, V, \psi, s, M)=\top \\ \top & \text { if } \phi=(\forall x . \psi) \wedge \operatorname{apprDet}(T, V, \psi, s, M)=\top \\ \perp & \text { otherwise }\end{cases}
$$

Figure 36: apprDet function

Lemma E.2. Let $M=\langle D, \Gamma\rangle$ be a system configuration, $s=\langle d b, U, s e c, T, V\rangle$ be an M-partial state, $T^{\prime} \subseteq D$ be a set of tables, $V^{\prime} \subseteq V$ be a set of views with owner's privileges, and ϕ be a formula. If apprDet $\left(T^{\prime}, V^{\prime}, \phi, s, M\right)=\mathrm{T}$, then for all well-formed assignments ν for ϕ, determines ${ }_{M}\left(T^{\prime}, V^{\prime}\right.$, $\phi, \nu)$ holds.

Proof. Let $M=\langle D, \Gamma\rangle$ be a system configuration, $s=$ $\langle d b, U, s e c, T, V\rangle$ be an M-partial state, $T^{\prime} \subseteq D$ be a set of tables, $V^{\prime} \subseteq V$ be a set of views with owner's privileges, and ϕ be a formula. We prove the lemma by structural induction over the formula ϕ.
Base Case: There are a number of alternatives.
$\phi:=\boldsymbol{R}(\overline{\boldsymbol{x}})$ Assume that $\operatorname{apprDet}(T, V, R(\bar{x}), s, M)=\mathrm{T}$.
There are two cases:

1. $R \in T^{\prime}$. In this case, the set T^{\prime} trivially determines the formula $R(\bar{x})$ for any well-formed assignment ν. Therefore, determines ${ }_{M}\left(T^{\prime}, V^{\prime}, R(\bar{x}), \nu\right)$ holds. Indeed, assume that this is not the case. Thus, there are three database states $d b, d b_{1}$, and $d b_{2}$ such that $d b_{1}, d b_{2} \in \llbracket d b \rrbracket_{V^{\prime}, T^{\prime}}$ and $[R(\bar{x}) \circ \nu]^{d b_{1}} \neq$ $[R(\bar{x}) \circ \nu]^{d b_{2}}$. From this and the $R C$ semantics, it follows that $d b_{1}(R) \neq d b_{2}(R)$. From this, $R \in T^{\prime}$, and $d b_{1}, d b_{2} \in \llbracket d b \rrbracket_{V^{\prime}, T^{\prime}}$, it follows that $d b_{1}(R)=$ $d b_{2}(R)$ leading to a contradiction.
2. there is a view v^{\prime} in $\operatorname{extend}\left(M, s, V^{\prime}\right)$ such that $\operatorname{def}\left(v^{\prime}\right)=\{\bar{x} \mid R(\bar{x})\}$. This means that there is a sequences of views V_{1}, \ldots, V_{n} in s such that $\operatorname{def}\left(V_{1}\right)=$ $\{\bar{x} \mid R(\bar{x})\}, \operatorname{def}\left(V_{2}\right)=\left\{\bar{x} \mid V_{1}(\bar{x})\right\}, \ldots, \operatorname{def}\left(V_{n}\right)=$ $\left\{\bar{x} \mid V_{n-1}(\bar{x})\right\}$, and $V_{n} \in V^{\prime}$. Therefore, the set V^{\prime} trivially determines the formula $R(\bar{x})$ for any wellformed assignment ν, and V_{n} and R are equivalent. Therefore, determines ${ }_{M}\left(T^{\prime}, V^{\prime}, R(\bar{x}), \nu\right)$ holds.
$\phi:=\boldsymbol{V}(\overline{\boldsymbol{x}})$ Assume that $\operatorname{apprDet}(T, V, V(\bar{x}), s, M)=\mathrm{\top}$. There are two cases:
3. There is a view $\langle V, o, q, O\rangle \in V^{\prime}$. In this case, the set V^{\prime} trivially determines the formula $V(\bar{x})$ for any assignment ν that is well-formed for ϕ. Therefore, determines $_{M}\left(T^{\prime}, V^{\prime}, V(\bar{x}), \nu\right)$ holds.
4. there is a view v^{\prime} in $\operatorname{extend}\left(M, s, V^{\prime}\right)$ such that $\operatorname{def}\left(v^{\prime}\right)=\{\bar{x} \mid V(\bar{x})\}$. This means that there is a sequences of views V_{1}, \ldots, V_{n} in s such that $\operatorname{def}\left(V_{1}\right)=\{\bar{x} \mid V(\bar{x})\}, \operatorname{def}\left(V_{2}\right)=\left\{\bar{x} \mid V_{1}(\bar{x})\right\}, \ldots$, $\operatorname{def}\left(V_{n}\right)=\left\{\bar{x} \mid V_{n-1}(\bar{x})\right\}$, and $V_{n} \in V^{\prime}$. Therefore, the set V^{\prime} trivially determines the formula $V(\bar{x})$ for any well-formed assignment ν, and V_{n} and V are equivalent. Therefore, determines ${ }_{M}\left(T^{\prime}, V^{\prime}, V(\bar{x}), \nu\right)$ holds.
$\phi:=\boldsymbol{x}=\boldsymbol{v}$ For any well-formed assignment ν, the empty set trivially determines the formula $x=v$ and apprDet $\left(T^{\prime}, V^{\prime}, x=v, s, M\right)=T$.
$\phi:=\top$ The proof of this case is similar to that of $\phi:=x=$ v.
$\phi:=\perp$ The proof of this case is similar to that of $\phi:=x=$ v.
This concludes the proof of the base case.
Induction Step: Assume that the claim holds for all sub-formulae of ϕ. There are a number of cases:
$\phi:=\psi \wedge \gamma$ Assume that $\operatorname{apprDet}\left(T^{\prime}, V^{\prime}, \psi \wedge \gamma, s, M\right)=\mathrm{T}$. There are two cases:
5. $\operatorname{apprDet}\left(T^{\prime}, V^{\prime}, \psi, s, M\right)=\top$ and $\operatorname{apprDet}\left(T^{\prime}, V^{\prime}\right.$, $\gamma, s, M)=\mathrm{T}$. From the induction hypothesis, it follows that both determines ${ }_{M}\left(T^{\prime}, V^{\prime}, \psi, \nu\right)$ and determines $_{M}\left(T^{\prime}, V^{\prime}, \gamma, \nu\right)$ hold for all well-formed assignments ν. Therefore, also determines ${ }_{M}\left(T^{\prime}, V^{\prime}\right.$, $\psi \wedge \gamma, \nu)$ holds for all well-formed assignments ν. Indeed, assume that this is not the case. Then, there are three database states $d b, d b_{1}$, and $d b_{2}$ such that $d b_{1}, d b_{2} \in \llbracket d b \rrbracket_{V^{\prime}, T^{\prime}}$ and $[(\psi \wedge \gamma) \circ \nu]^{d b_{1}} \neq$ $[(\psi \wedge \gamma) \circ \nu]^{d b_{2}}$. From this and the $R C$ semantics, there are two cases:
(a) $[\psi \circ \nu]^{d b_{1}} \neq[\psi \circ \nu]^{d b_{2}}$. From this, it follows that determines $_{M}\left(T^{\prime}, V^{\prime}, \psi, \nu\right)$ does not hold. This contradicts the fact that determines ${ }_{M}\left(T^{\prime}, V^{\prime}, \psi\right.$, $\nu)$ holds.
(b) $[\gamma \circ \nu]^{d b_{1}} \neq[\gamma \circ \nu]^{d b_{2}}$. The proof of this case is similar to the previous one.
6. there is a view v^{\prime} in $\operatorname{extend}\left(M, s, V^{\prime}\right)$ such that $\operatorname{def}\left(v^{\prime}\right)=\{\bar{x} \mid \psi \wedge \gamma\}$. From Lemma E.1, it follows that there is a view $v^{\prime \prime} \in V^{\prime}$ that is equivalent to v^{\prime}, and, therefore, to $\{\bar{x} \mid \psi \wedge \gamma\}$. Thus, determines $_{M}\left(T^{\prime}, V^{\prime}, \psi \wedge \gamma, \nu\right)$ holds for all assignments ν that are well-formed for ϕ.
$\phi:=\psi \vee \gamma$ This case is similar to $\psi \wedge \gamma$.
$\phi:=\neg \psi$ Assume that $\operatorname{apprDet}\left(T^{\prime}, V^{\prime}, \neg \psi, s, M\right)=\mathrm{T}$. There are two cases:
7. $\operatorname{apprDet}\left(T^{\prime}, V^{\prime}, \psi, s, M\right)=\mathrm{T}$. From the induction hypothesis, it follows that determines ${ }_{M}\left(T^{\prime}, V^{\prime}, \psi, \nu\right)$ holds. Therefore, also determines ${ }_{M}\left(T^{\prime}, V^{\prime}, \neg \psi, \nu\right)$ holds. Indeed, assume that this is not the case. This means that there are three database states $d b, d b_{1}$, and $d b_{2}$ such that $d b_{1}, d b_{2}$ are in $\llbracket d b \rrbracket_{V^{\prime}, T^{\prime}}$ and $[\neg \psi \circ \nu]^{d b_{1}} \neq[\neg \psi \circ \nu]^{d b_{2}}$. From this and the $R C$ semantics, it follows that $[\psi \circ \nu]^{d b_{1}} \neq[\psi \circ \nu]^{d b_{2}}$. From this, it follows that determines ${ }_{M}\left(T^{\prime}\right.$, $\left.V^{\prime}, \psi, \nu\right)$ does not hold. This contradicts the fact that determines ${ }_{M}\left(T^{\prime}, V^{\prime}, \psi, \nu\right)$ holds.
8. there is a view v^{\prime} in $\operatorname{extend}\left(M, s, V^{\prime}\right)$ such that $\operatorname{def}\left(v^{\prime}\right)=\{\bar{x} \mid \neg \psi\}$. From Lemma E. 1 it follows that there is a view $v^{\prime \prime} \in V^{\prime}$ that is equivalent to v^{\prime}, and, therefore, to $\{\bar{x} \mid \neg \psi\}$. Thus, determines ${ }_{M}$
$\left(T^{\prime}, V^{\prime}, \neg \psi, \nu\right)$ holds for all well-formed assignments ν.
$\phi:=\exists \boldsymbol{x} . \boldsymbol{\psi}$ Assume that $\operatorname{apprDet}\left(T^{\prime}, V^{\prime}, \exists x . \psi, s, M\right)=\top$. There are two cases:
9. apprDet $\left(T^{\prime}, V^{\prime}, \psi, s, M\right)=\top$. From the induction hypothesis, it follows that determines ${ }_{M}\left(T^{\prime}, V^{\prime}, \psi, \nu\right)$ holds for all well-formed assignments ν. Therefore, also determines ${ }_{M}\left(T^{\prime}, V^{\prime}, \exists x . \psi, \nu\right)$ holds for all well-formed assignments ν (note that any wellformed assignment for ψ is also a well-formed assignment for $\exists x . \psi)$. Indeed, assume that this is not the case. This means that there are three database states $d b, d b_{1}$, and $d b_{2}$ such that $d b_{1}$, $d b_{2}$ are in $\llbracket d b \rrbracket_{V^{\prime}, T^{\prime}}$ and $[(\exists x . \psi) \circ \nu]^{d b_{1}} \neq[(\exists x . \psi) \circ$ $\nu]^{d b_{2}}$. From this and the $R C$ semantics, it follows that there is a value $v \in$ dom such that $[\psi \circ \nu[x \mapsto v]]^{d b_{1}} \neq[\psi \circ \nu[x \mapsto v]]^{d b_{2}}$. Note that $\nu[x \mapsto v]$ is a well-formed assignment for ψ. Let's call the assignment ν^{\prime}. From this, it follows that $\left[\psi \circ \nu^{\prime}\right]^{d b_{1}} \neq\left[\psi \circ \nu^{\prime}\right]^{d b_{2}}$. From this, it follows that determines $_{M}\left(T^{\prime}, V^{\prime}, \psi, \nu^{\prime}\right)$ does not hold. This contradicts the fact that determines ${ }_{M}\left(T^{\prime}, V^{\prime}, \psi, \nu\right)$ holds for any well-formed assignment ν.
10. there is a view v^{\prime} in $\operatorname{extend}\left(M, s, V^{\prime}\right)$ such that $\operatorname{def}\left(v^{\prime}\right)=\{\bar{x} \mid \exists x \cdot \psi\}$. From Lemma E.1. it follows that there is a view $v^{\prime \prime} \in V^{\prime}$ that is equivalent to v^{\prime}, and, therefore, to $\{\bar{x} \mid \exists x . \psi\}$. Thus, determines $_{M}\left(T^{\prime}, V^{\prime}, \exists x . \psi, \nu\right)$ holds for all well-formed assignments for $\exists x . \psi$.
$\phi:=\forall \boldsymbol{x} . \boldsymbol{\psi}$ This case is similar to $\exists x . \psi$.
This concludes the proof of the induction step.
This completes the proof.
We now show that $\sim{ }_{\text {auth }}^{\text {appr }}$ is a sound approximation of $\sim_{\text {auth }}$, i.e., if $s \sim_{\text {auth }}^{\text {appr }}$ act, then $s \sim_{\text {auth }}$ act. A derivation of $s \leadsto{ }_{\text {apth }}^{\text {appr }}$ act is a proof tree, obtained using the rules defining $\sim{ }_{\text {auth }}^{a p p r}$, which ends in $s \leadsto{ }_{\text {auth }}^{\text {appr }}$ act. The size of a derivation is the number of \leadsto appr $\begin{aligned} & \text { auth } \\ & \text { auth } \\ & \text { rupr }\end{aligned}$ rules that are used to show that $s \overbrace{\text { auth }}^{\text {appr }}$ act. In the following, we switch freely between statements of the form $s \overbrace{\text { auth }}^{a p p r}$ act and their derivations. We denote the size of the derivation of $s \sim_{\text {auth }}^{\text {appr }}$ act as $\mid s \sim_{\text {auth }}^{a p p r}$ act \mid.

Lemma E.3. Let $M=\langle D, \Gamma\rangle$ be a system configuration, s be an M-state, c be an M-context, and act $\in \mathcal{A}_{D, \mathcal{U}} \cup$ $\mathcal{T} \mathcal{R} \mathcal{G G E} \mathcal{R}_{D}$. If $s \sim{ }_{\text {auth }}^{\text {appr }}$ act, then $s \sim{ }_{\text {auth }}$ act.

Proof. Let $M=\langle D, \Gamma\rangle$ be a system configuration, s be an M-state, c be an M-context, and act $\in \mathcal{A}_{D, \mathcal{U}} \cup$ $\mathcal{T} \mathcal{R} \mathcal{I G G \mathcal { E }}{ }_{D}$. Furthermore, we assume that there is a derivation of $s \sim{ }_{\text {auth }}^{\text {appr }}$ act. We prove our claim by structural induction on the size of $s \leadsto \underset{\text { auth }}{\text { appr }}$ act's derivation.

Base Case: We now show that, for all s and act such that $\mid s \overbrace{\text { auth }}^{\text {appr }}$ act $\mid=1$, if $s \leadsto_{\text {auth }}^{\text {appr }}$ act, then $s \leadsto$ auth act. There are several cases:

1. Rule INSERT DELETE admin: If $s \sim_{\text {auth }}^{\text {appr }}$ act, then $s \leadsto_{\text {auth }}$ act follows trivially from the rule's definition.
2. Rule CREATE VIEW admin: If $s \sim_{\text {auth }}^{\text {appr }}$ act, then $s \sim_{\text {auth }}$ act follows trivially from the rule's definition.
3. Rule CREATE TRIGGER admin: If $s \sim_{\text {auth }}^{\text {appr }}$ act, then $s \sim$ auth act follows trivially from the rule's definition.
4. Rule SELECT: If $s \leadsto{ }_{\text {auth }}^{\text {appr }}$ act, then $s \sim_{\text {auth }}$ act follows trivially from the rule's definition.
5. Rule EXECUTE TRIGGER-3: If $s \sim{ }_{\text {auth }}^{\text {appr }}$ act, then $s \sim_{a u t h}$ act follows trivially from the rule's definition.
6. Rule GRANT-2: If $s \sim{ }_{\text {auth }}^{\text {appr }}$ act, then $s \leadsto$ auth act follows trivially from the rule's definition.
7. Rule GRANT-5: If $s \sim{ }_{\text {auth }}^{\text {appr }}$ act, then $s \sim$ auth act follows trivially from the rule's definition.
8. Rule $A D D$ USER: If $s \sim_{\text {auth }}^{\text {appr }}$ act, then $s \leadsto_{\text {auth }}$ act follows trivially from the rule's definition.
Induction Step: We now assume that, for all derivations of size less than $\mid s \leadsto{ }_{\text {auth }}^{\text {appr }}$ act \mid, it holds that if $s^{\prime} \sim{ }_{\text {auth }}^{\text {appr }}$ $a c t^{\prime}$, then $s^{\prime} \sim_{\text {auth }}$ act ${ }^{\prime}$. There are several cases:
9. Rule INSERT DELETE: Assume that $s \leadsto{ }_{\text {auth }}^{a p p r}$ act holds and that act $=\left\langle u, \mathrm{op}^{\prime}, R, \bar{t}\right\rangle$, where $o p^{\prime}$ is one of \{INSERT, DELETE $\}$. From the rule's definition, it follows that there is a grant $g=\left\langle o p, u,\left\langle o p^{\prime}, R\right\rangle, u^{\prime}\right\rangle$ in s.sec such that $s \sim{ }_{\text {auth }}^{\text {appr }} g$. From this and the induction hypothesis, it follows that $s \sim_{\text {auth }} g$. Therefore, $s \sim_{\text {auth }}$ act holds because we can apply the INSERT DELETE rule in \sim auth.
10. Rule CREATE VIEW: The proof is similar to the one for the INSERT DELETE rule.
11. Rule CREATE TRIGGER: The proof is similar to the one for the INSERT DELETE rule.
12. Rule EXECUTE TRIGGER-2: Assume that $s \sim_{\text {auth }}^{\text {appr }}$ act holds and that act $=\langle i, o, e, R, \phi, s t, A\rangle$ such that $\left[\phi\left[\bar{x}^{|R|}\right.\right.$ $\mapsto \operatorname{tpl}(s)]]^{s . d b}=\top$. From the rule's definition, it follows that both $s \leadsto{ }_{\text {auth }}^{\text {appr }}$ getAction $(s t$, ow, $\operatorname{tpl}(s))$ and $s \sim_{\text {auth }}^{\text {appr }}$ getAction(st, invoker $(s), \operatorname{tpl}(s))$ hold. From this and the induction hypothesis, both $s \leadsto$ auth $\operatorname{getAction}(s t$, ow, $\operatorname{tpl}(s))$ and $s \sim_{\text {auth }}$ getAction (st, invoker $\left.(s), \operatorname{tpl}(s)\right)$ hold. From this and the EXECUTE TRIGGER-2 rule in \sim auth , it follows that also $s \leadsto$ auth act holds.
13. Rule EXECUTE TRIGGER-1: The proof is similar to the one for the EXECUTE TRIGGER-2 rule.
14. Rule GRANT-1: Assume that $s \leadsto{ }_{\text {auth }}^{\text {appr }}$ act holds and that act $=\left\langle o p, u, p, u^{\prime}\right\rangle$, where $o p \in\left\{\oplus, \oplus^{*}\right\}$. From the rule's definition, it follows that there is a grant $g=$ $\left\langle\oplus^{*}, u^{\prime}, p, u^{\prime \prime}\right\rangle$ in $s . s e c$ such that $s \sim_{a u t h}^{a p p r} g$. From this and the induction hypothesis, ti follows that $s \sim$ auth g. From this and the GRANT-1 rule in $\sim_{\text {auth }}$, it follows that $s \sim_{\text {auth }}$ act holds.
15. Rule GRANT-3: Assume that $s \sim{ }_{\text {auth }}^{\text {appr }}$ act holds and that act $=\langle o p, u, p, o\rangle$, where $p=\langle\operatorname{SELECT}, v\rangle, v \in$ $\mathcal{V} \mathcal{I} \mathcal{W}_{D}^{\text {owner }}$, op $\in\left\{\oplus, \oplus^{*}\right\}$, and $o=$ owner (v) such that $o \neq$ admin. Let T^{\prime} be the set obtained through the $a T$ function and V^{\prime} be the set obtained through the $a V$ function. From the rule's definition, it follows that apprDet $\left(T^{\prime}, V^{\prime}, \operatorname{def}(v)\right)=\top$. From this and Lemma E.2 it follows that determines $M_{M}\left(T^{\prime}, V^{\prime}, \operatorname{def}(v)\right)$ holds. We now show that for any obj $\in T^{\prime} \cup V^{\prime}$, $\operatorname{hasAccess}\left(s^{\prime},\{o b j\}, o, \oplus^{*}\right)$ holds. There are four cases:
(a) $o=$ admin and obj $\in D$. Since $o b j \in T^{\prime}$, it follows that there is a $g=\left\langle\oplus^{*}, o,\langle\right.$ SELECT, $\left.o b j\rangle, u^{\prime}\right\rangle$ such that $s \sim{ }_{\text {auth }}^{\text {appr }} g$. From this and the induction hypothesis, it follows that $s \leadsto$ auth g. Therefore, hasAccess $\left(s^{\prime},\{o b j\}, o, \oplus^{*}\right)$ holds.
(b) $o \neq$ admin and obj $\in D$. Since obj $\in T^{\prime}$, it follows that there is a $g=\left\langle\oplus^{*}, o,\langle\right.$ SELECT, $\left.o b j\rangle, u^{\prime}\right\rangle$ in sec such that $s \sim$ aupr g. From this and the induction hypothesis, it follows that $s \leadsto$ auth g. Thus, hasAccess $\left(s^{\prime},\{o b j\}, o, \oplus^{*}\right)$ holds.
(c) $o=a d \min$ and obj $\in V$. The proof of this case is similar to that of $o=a d m i n$ and $o b j \in D$.
(d) $o \neq a d m i n$ and $o b j \in V$. The proof of this case is similar to that of $o \neq a d m i n$ and $o b j \in D$.

Note that from hasAccess $\left(s^{\prime}, A, o, o p\right)$ and hasAccess (s^{\prime}, $B, o, o p)$, it follows that hasAccess $\left(s^{\prime}, A \cup B, o, o p\right)$. Thus, hasAccess ($s, T^{\prime} \cup V^{\prime}, o, \oplus^{*}$) holds. From this, it follows that $s \sim_{\text {auth }}$ act holds because we can apply the corresponding rule in \sim auth.
8. Rule GRANT-4: The proof is similar to the one for the GRANT-3 rule.
9. Rule REVOKE: Assume that $s \overbrace{\text { auth }}^{\text {appr }}$ act holds and that act $=\left\langle\ominus, u, p, u^{\prime}\right\rangle$. From the rule's definition, it follows that $s^{\prime} \leadsto_{\text {auth }}^{\text {apr }} g$ for any $g \in s^{\prime}$.sec, where $s^{\prime}=$ $\operatorname{apply} \operatorname{Rev}\left(s,\left\langle\ominus, u, p, u^{\prime}\right\rangle\right)$. From the induction's hypothesis, it follows that $s^{\prime} \rightarrow_{\text {auth }} g$ for any $g \in s^{\prime}$.sec. Therefore, we can apply the rule REVOKE of $\sim_{\text {auth }}$ to derive $s \sim_{\text {auth }}$ act.
This completes our proof.

E. 3 Database Integrity Proofs

We are now ready to prove that $f_{\text {int }}$ satisfies the database integrity property.
Lemma E.4. For any two states $s=\langle d b, U, s e c, T, V, c\rangle$, $s^{\prime}=\left\langle d b^{\prime}, U, s e c, T, V, c^{\prime}\right\rangle$ in Ω_{M} and any action $a \in \mathcal{A}_{D, \mathcal{U}}$:

1. $s \sim_{\text {auth }}$ a iff $s^{\prime} \sim_{\text {auth }}$ a, and
2. $s \sim_{a u t h}^{\text {appr }}$ a iff $s^{\prime} \overbrace{\text { auth }}^{\text {appr }}$ a.

Proof. It is easy to see that the only rules that depends on $d b, d b^{\prime}, c$, and c^{\prime} are EXECUTE TRIGGER - 1, EXECUTE TRIGGER - 2, and EXECUTE TRIGGER - 3. Since they are not used to evaluate whether $s \sim_{\text {auth }} a$ and $s \sim_{a u t h}^{a p p r} a$ hold for actions in $\mathcal{A}_{D, \mathcal{U}}$, the lemma follows trivially.

Lemma E.5. Let $P=\left\langle M, f_{\text {int }}\right\rangle$ be an extended configuration, where M is a system configuration, and L be the P-LTS. Then, for all M-states $s=\langle d b, U$, sec $, T, V, c\rangle \in \Omega_{M}$ such that trigger $(s)=\epsilon$ and all actions act $\in \mathcal{A}_{D, \mathcal{U}}$, if $f_{\text {int }}(s, a c t)=\mathrm{T}$, then $s \sim_{\text {auth }}$ act.

Proof. We prove the theorem by contradiction. Assume, for contradiction's sake, that the claim does not hold. Therefore, there is a state s and an action act such that $f_{\text {int }}(s$, act $)=\mathrm{T}$, trigger $(s)=\epsilon$, and $s \chi_{\text {auth }}$ act. Thus, from $f_{\text {int }}(s, a c t)=\mathrm{T}$, $\operatorname{trigger}(s)=\epsilon$, and $f_{\text {int }}$'s definition, it follows $s \sim_{\text {auth }}^{a p p r}$ act. From this and Lemma E.3 it follows that $s \sim$ auth act leading to a contradiction.

Lemma E.6. Let $P=\left\langle M, f_{\text {int }}\right\rangle$ be an extended configuration, where M is a system configuration, and L be the P-LTS. Then, for all M-states $s=\langle d b, U$, sec $, T, V, c\rangle \in \Omega_{M}$ such that trigger $(s)=\epsilon$ and all actions act $\in \mathcal{A}_{D, \mathcal{U}}$, and all M-states s^{\prime} reachable from s in one step through t, if $\sec E x\left(s^{\prime}\right)=\perp$, then $s \sim_{\text {auth }}$ act.

Proof. We prove the theorem by contradiction. Assume, for contradiction's sake, that the claim does not hold. Therefore, there are two states s and s^{\prime} and an action act such that s^{\prime} is reachable in one step from s through act, $\sec E x\left(s^{\prime}\right)=\perp$, $\operatorname{trigger}(s)=\epsilon$, and $s \not \chi_{\rightarrow_{\text {auth }}}$ act. From $\operatorname{secEx}\left(s^{\prime}\right)=\perp$ and the LTS's rules, it follows that $f_{\text {int }}(s, a c t)=T$. From this, $\operatorname{trigger}(s)=\epsilon$, and $f_{\text {int }}$'s definition, it follows $s \sim_{\text {auth }}^{\text {appr }}$ act. From this and Lemma E.3, it follows that $s \sim$ auth act leading to a contradiction.

Lemma E.7. Let $P=\left\langle M, f_{\text {int }}\right\rangle$ be an extended configuration, where M is a system configuration, and L be the P-LTS. Then, for all M-states $s=\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}$ and all triggers $t \in \mathcal{T} \mathcal{R} \mathcal{I G G E} \mathcal{R}_{D}$ such that trigger $(s)=t$, the following hold:

1. If $f_{\text {int }}(s, c)=\top$ and $[\psi]^{d b}=\perp$, then $s \leadsto_{\text {auth }} t$, where $c=\operatorname{trigCond}(s)=\langle u$, SELECT, $\psi\rangle$.
2. If $f_{\text {int }}(s, c)=\mathrm{T},[\psi]^{d b}=\mathrm{T}$, and $f_{\text {int }}(s, a)=\mathrm{T}$, then $s \sim_{\text {auth }} t$, where $c=\operatorname{trigCond}(s)=\langle u, \operatorname{SELECT}, \psi\rangle$ and $a=\operatorname{trigAct}(s)$.
Proof. We prove both claims by contradiction. Assume, for contradiction's sake, that the first claim does not hold. Therefore, there is a state s and a trigger t such that $f_{\text {int }}(s, c)$
 $\operatorname{trigger}(s)=t$, and the rule EXECUTE TRIGGER - 3 , it follows that $s \sim_{a u t h} t$ holds, which leads to a contradiction. Assume, for contradiction's sake, that the second claim does not hold. Therefore, there is a state s and a trigger t such that $f_{\text {int }}(s, c)=\mathrm{T},[\psi]^{d b}=\mathrm{T}, f_{\text {int }}(s, a)=\mathrm{T}$, and $s \not \psi_{\text {auth }} t$. From $f_{\text {int }}(s, a)=\top$, it follows $s \sim \overbrace{\text { apth }}^{\text {appr }} t$. From this and Lemma E.3 it follows that $s \sim_{\text {auth }} t$ holds leading to a contradiction. This completes the proof.

Lemma E.8. Let $P=\left\langle M, f_{\text {int }}\right\rangle$ be an extended configuration, where M is a system configuration, and L be the P LTS. Then, for all M-states $s=\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}$, all triggers $t \in \mathcal{T} \mathcal{R} \mathcal{G G E R}_{D}$, and all M-states s^{\prime} reachable from s in one step through t, if $\sec E x\left(s^{\prime}\right)=\perp$, then $s \sim_{\text {auth }} t$.

Proof. We prove the theorem by contradiction. Assume, for contradiction's sake, that the claim does not hold. Therefore, there are two states s and s^{\prime} and a trigger t such that s^{\prime} is reachable in one step through t from $s, \sec E x\left(s^{\prime}\right)=\perp$, and $s \not \psi_{\text {auth }} t$. In the following, let $c=\langle u$, SELECT, $\psi\rangle$ be $\operatorname{trigCond}(s)$ and a be $\operatorname{trigAct}(s)$. Since t is a trigger, s^{\prime} is reachable in one-step from s through t, and $\sec E x\left(s^{\prime}\right)=\perp$, there are two cases, according to the LTS rules:

1. $f_{\text {int }}(s, c)=\top$ and $[\psi]^{d b}=\perp$. In this case, we can always apply the rule EXECUTE TRIGGER - 3 in the state s to derive $s \sim \sim_{\text {auth }} t$ leading to a contradiction.
2. $f_{\text {int }}(s, c)=\mathrm{T},[\psi]^{d b}=\mathrm{T}$, and $f_{\text {int }}\left(s^{\prime \prime}, a\right)=\mathrm{T}$, where $s^{\prime \prime}$ is the state obtained from s by updating the context according to the LTS rules. From $f_{\text {int }}$'s definition and $f_{\text {int }}\left(s^{\prime \prime}, a\right)=\mathrm{T}$, it follows $s^{\prime \prime} \sim_{\text {auth }}^{\text {appr }} t$. From this and Lemma E.3, it follows $s^{\prime \prime} \sim_{\text {auth }} t$. Since s and $s^{\prime \prime}$ are equivalent modulo the context's history and the context's history is not used in the rules defining $\sim_{a u t h}$, it also follows that $s \sim_{\text {auth }} t$ holds. This lead to a contradiction.
Both cases lead to a contradiction. This completes the proof.

We are now ready to prove our main result, namely that $f_{\text {int }}$ provides database integrity.

Theorem E.1. Let $P=\left\langle M, f_{\text {int }}\right\rangle$ be an extended configuration, where $M=\langle D, \Gamma\rangle$ is a system configuration. The $P D P f_{\text {int }}$ provides database integrity with respect to P.
Proof. To show that $f_{\text {int }}$ satisfies the database integrity property, we have to prove that for all reachable states $s=$ $\langle d b, U, s e c, T, V, c\rangle$:

1. for all states s^{\prime} reachable from s in one step through an action $a \in \mathcal{A}_{D, \mathcal{u}}$, if $\sec E x\left(s^{\prime}\right)=\perp$, then $s \sim_{\text {auth }} a$,
2. for all states s^{\prime} reachable from s in one step through a trigger $t \in \mathcal{T} \mathcal{R} \mathcal{G G E} \mathcal{R}_{D}$, if $\sec E x\left(s^{\prime}\right)=\perp$, then $s \sim_{\text {auth }} t$.
The first condition has been proved in Lemma E.6 and the second one has been proved in Lemma E.8 Therefore, $f_{\text {int }}$ satisfies the database integrity property.

We also prove that, by using $f_{\text {int }}$, any reachable state has a consistent policy. This is the underlying reason why $f_{\text {int }}$ prevents Attacks 2 and 3 .

Lemma E.9. Let $P=\left\langle M, f_{\text {int }}\right\rangle$ be an extended configuration, where $M=\langle D, \Gamma\rangle$ is a system configuration. For each reachable state $s=\langle d b, U, s e c, T, V, c\rangle, s \sim_{\text {auth }} g$ for all $g \in$ sec.

Proof. We claim that, for any run r, the state $\operatorname{last}(r)$ is such that for all $p \in \operatorname{last}(r)$.sec, last $(r) \sim{ }_{\text {auth }} p$. From this, the lemma follows trivially.
We now prove that for any run r, the state last (r) is such that for all $p \in \operatorname{last}(r)$.sec, $\operatorname{last}(r) \sim_{\text {auth }} p$. We do this by structural induction on the length of the run r.
Base Case: The base case consists of the runs containing only one initial state. Note that an initial state contains only grants issued by admin, together with views and triggers owned by admin. It is easy to see that for any permission $p=\langle o p, u, p r, a d m i n\rangle$ in a policy sec in an initial state s, it holds that $s \sim_{\text {auth }} p$. There are two cases:

1. The privilege $p r$ in p is such that $p r \in \mathcal{P} \mathcal{R} \mathcal{I} \mathcal{V}_{D} \backslash$ $\mathcal{P} \mathcal{R I} \mathcal{V}_{D}^{\text {SELECT, } \mathcal{V I E} \mathcal{W}_{D}^{\text {ouner }}}$. Then, $s \sim_{\text {auth }} p$ by the rule GRANT-2.
2. The privilege $p r$ in p is such that $p r$ is in the set $\mathcal{P} \mathcal{R I} \mathcal{V}_{D}^{\text {SELECT, } \mathcal{V I E} \mathcal{W}_{D}^{\text {ouner }}}$. Recall that admin is the owner of all views in the state. Then, $s \sim_{\text {auth }} p$ by the rule GRANT-3. Indeed, admin can read (and delegate the SELECT permission over) all tables in the database. Therefore, hasAccess (s, D, admin, \oplus^{*}) and determines ${ }_{M}$ (D, \emptyset, q) hold for any query q.
This complete the proof for the base case.
Induction Step: We now assume that for all runs r^{\prime} of length less than the length of r, the state $\operatorname{last}\left(r^{\prime}\right)$ is such that for all $p \in \operatorname{last}\left(r^{\prime}\right) . \sec , \operatorname{last}\left(r^{\prime}\right) \sim{ }_{\text {auth }} p$. Let r^{\prime} be the run $r^{|r|-1}$. There are two cases, depending on whether act raises an exception or not.
3. $\sec E x(\operatorname{last}(r))=\perp$ and $\operatorname{Ex}(\operatorname{last}(r))=\emptyset$. There are a number of cases depending on act:
(a) act is $\langle u$, INSERT, $R, \bar{t}\rangle,\langle u$, DELETE, $R, \bar{t}\rangle,\langle u$, SELECT, $q\rangle,\left\langle u\right.$, ADD_USER, $\left.u^{\prime}\right\rangle$, or $\langle u$, CREATE, $o\rangle$. In these cases, last $\left(r^{\prime}\right) \cdot s e c=$ last $(r) . s e c$. Furthermore, last $\left(r^{\prime}\right) \cdot U \subseteq$ $\operatorname{last}(r) \cdot U, \operatorname{last}\left(r^{\prime}\right) \cdot T \subseteq \operatorname{last}(r) \cdot T$, and $\operatorname{last}\left(r^{\prime}\right) \cdot V \subseteq$ last $(r) . V$. From this and the fact that last $\left(r^{\prime}\right) \sim_{\text {auth }}$ g for all $g \in \operatorname{last}\left(r^{\prime}\right)$. sec, it follows that last $(r) \sim$ auth g for all $g \in \operatorname{last}(r)$.sec.
(b) act is $\left\langle o p, u, p, u^{\prime}\right\rangle$, where $o p \in\left\{\oplus, \oplus^{*}\right\}$. From $\operatorname{secEx}(\operatorname{last}(r))=\perp$, it follows that last $\left(r^{\prime}\right) \sim_{\text {auth }}$ act. From the induction hypothesis, it follows that $\operatorname{last}\left(r^{\prime}\right) \leadsto_{\text {auth }} g$ for all $g \in \operatorname{last}\left(r^{\prime}\right) . s e c$. We claim that, for any grant statement g, if $\langle d b, U, s e c, T, V, c\rangle$ \sim auth g, then $\left\langle d b^{\prime}, U, s e c^{\prime}, T, V, c^{\prime}\right\rangle \sim_{\text {auth }} g$ for any policy such that $s e c \subseteq s e c^{\prime}$. From the claim, it follows that last $(r) \overbrace{\text { auth }}$ act and last $(r) \overbrace{\text { auth }} g$ for all $g \in \operatorname{last}\left(r^{\prime}\right)$.sec. From this and last $(r) . s e c=$ $\{a c t\} \cup \operatorname{last}\left(r^{\prime}\right) . s e c$, it follows that last $(r) \leadsto_{\text {auth }} g$ for all $g \in \operatorname{last}(r)$.sec.
Our claim that, for any grant statement g, if $\langle d b, U$, sec, $T, V, c\rangle \sim{ }_{\text {auth }} g$, then $\left\langle d b^{\prime}, U, s e c^{\prime}, T, V, c^{\prime}\right\rangle \sim_{\text {auth }}$ g, where $s e c \subseteq s e c^{\prime}$, follows trivially from the definition of the rules for GRANT statements.
(c) act is $\left\langle\ominus, u, p, u^{\prime}\right\rangle$. From $\sec E x(\operatorname{last}(r))=\perp$, it follows that $\operatorname{last}\left(r^{\prime}\right) \sim$ auth act. From this, it fol-
lows that $s^{\prime} \overbrace{\text { auth }}^{\text {appr }} g$ for all $g \in s^{\prime}$.sec, where $s^{\prime}=$ $\operatorname{applyRev}\left(\operatorname{last}\left(r^{\prime}\right)\right.$, act $)$. From this and LemmaE. 3 it follows that $s^{\prime} \sim_{\text {auth }} g$ for all $g \in s^{\prime}$.sec. Recall that last (r) and s^{\prime} are equivalent modulo the database and the context. From this, Lemma E. 4 and $s^{\prime} \sim_{\text {auth }} g$ for all $g \in s^{\prime}$.sec, it follows that last $(r) \sim{ }_{\text {auth }} g$ for all $g \in \operatorname{last}(r)$.sec.
(d) act is a trigger and the WHEN condition is not satisfied. In this case, last $\left(r^{\prime}\right)$ and last (r) are equivalent modulo the context. From this, the induction hypothesis, and Lemma E.4 , it follows that last $(r) \sim_{\text {auth }} g$ for all $g \in \operatorname{last}(r)$.sec.
(e) act is a trigger and the WHEN condition is satisfied. In this case, the proof is the same as the previous cases depending on the trigger's action.
4. $\sec E x(\operatorname{last}(r))=\mathrm{T}$ or $\operatorname{Ex}(\operatorname{last}(r)) \neq \emptyset$. From this and the LTS's rules, it follows that there is a state $s^{\prime} \in$ $\left\{\operatorname{last}\left(r^{i}\right)|1 \leq i \leq|r|-1\}\right.$ such that $p \operatorname{State}(\operatorname{last}(r))=$ pState (s^{\prime}) (because there has been a roll-back). Let $s e c$ be the policy in s^{\prime}. From the induction hypothesis, it follows that for all $p \in \sec , s^{\prime} \sim_{\text {auth }} p$. From this fact, the $\leadsto \rightarrow_{\text {auth }}$'s definition, $p \operatorname{State}(\operatorname{last}(r))=p \operatorname{State}\left(s^{\prime}\right)$, and Lemma E.4 it follows that for all $p \in \operatorname{last}(r)$.sec, also last $(r) \leadsto_{\text {auth }} p$.
This complete the proof for the induction step.
This completes the proof.

E. 4 Complexity Proofs

Theorem E.2. The data complexity of $f_{\text {int }}$ is $O(1)$.
Proof. Let $M=\langle D, \Gamma\rangle$ be some fixed system configuration, $a \in \mathcal{A}_{D, U}$ be some fixed action, $u \in \mathcal{U}$ be some fixed user, $U \subseteq \mathcal{U}$ be some fixed set of users, sec $\in \Omega_{U, D}^{\text {sec }}$ be some fixed policy, T be some fixed set of triggers over D whose owners are in U, V be some fixed set of views over D whose owners are in U, and c be some fixed context. Furthermore, let $d b \in \Omega_{D}^{\Gamma}$ be a database state such that $\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}$. We denote by s the state $\langle d b, U, s e c, T, V, c\rangle$. We can check whether $f_{\text {int }}(s, a)=\top$ as follows:

1. If $\operatorname{trigger}(s)=\epsilon$, then return \top iff $s \overbrace{{ }_{\text {auth }}}^{\text {appr }} a$.
2. If $\operatorname{trigger}(s) \neq \epsilon$ and $a=\operatorname{trigCond}(s)$, return T.
3. If $\operatorname{trigger}(s) \neq \epsilon$ and $a=\operatorname{trigAct(s)}$, return \top iff both $s \sim_{\text {auth }}^{\text {appr }}$ getAction $(s t m t$, ow, $\operatorname{tpl}(s))=\top$ and $s \sim_{\text {auth }}^{\text {appr }}$ getAction $(\operatorname{stmt}, \operatorname{invoker}(s), \operatorname{tpl}(s))=\top$, where trigger $(s)=\langle i d, o w, e v, R, \phi, s t m t, m\rangle$.
4. Otherwise return \perp.

Note that in the above algorithm we use all the rules in $\overbrace{\text { auth }}^{\text {appr }}$ other than EXECUTE TRIGGER - 1, EXECUTE TRIGGER - 2, and EXECUTE TRIGGER - 3. These are the only rules that depend on the database state. Therefore, evaluating any statement of the form $s \sim_{a u t h}^{a p p r} a$ can be done in constant time in terms of data complexity. Therefore, all steps $1-4$ can be executed in constant time in terms of data complexity.

Lemma E.10. The complexity of apprDet is $O\left(|\phi|^{3}+|\phi|\right.$. $\left.\max ^{2} \cdot|V|^{3}\right)$.

Proof. Let $M=\langle D, \Gamma\rangle$ be a system configuration, $T \subseteq$ D be a set of tables, $V \subseteq \mathcal{V} \mathcal{I E} \mathcal{W}_{D}^{\text {owner }}$ be a set of views over D, ϕ be a formula over D, and s be an M-state. An algorithm that computes $\operatorname{apprDet}(T, V, \phi, s, M)$ is as follows:

1. Compute the set $\operatorname{extend}(M, s, V)$.
2. Compute the set S of all sub-formulae of ϕ, i.e., $S=$ $\operatorname{subF}(\phi)$. Note that $\phi \in \operatorname{subF}(\phi)$.
3. Sort by length the set of sub-formulae in such a way that the shortest formula is the first one.
4. Let $S^{\prime}:=\emptyset$.
5. For each sub-formula ψ in the sequence:
(a) Check whether there is a view $v \in \operatorname{extend}(M, s, V)$ such that ψ is v 's definition. If this is the case, let $S^{\prime}=S^{\prime} \cup \operatorname{subF}(\psi)$.
(b) Make a case distinction on ψ :
i. If $\psi:=R(\bar{x})$ and $R \in T, S^{\prime}=S^{\prime} \cup \operatorname{subF}(\psi)$.
ii. If $\psi:=V(\bar{x})$ and $\langle V, u, q, O\rangle \in V, S^{\prime}=S^{\prime} \cup$ $\operatorname{subF}(\psi)$.
iii. If $\psi:=\alpha \wedge \beta$ and $\alpha, \beta \in S^{\prime}$, then $S^{\prime}=S^{\prime} \cup$ $\operatorname{subF}(\psi)$.
iv. If $\psi:=\alpha \vee \beta$ and $\alpha, \beta \in S^{\prime}$, then $S^{\prime}=S^{\prime} \cup$ $\operatorname{subF}(\psi)$.
v. If $\psi:=\neg \alpha$ and $\alpha \in S^{\prime}$, then $S^{\prime}=S^{\prime} \cup \operatorname{subF}(\psi)$.
vi. If $\psi:=\exists x . \alpha$ and $\alpha \in S^{\prime}$, then $S^{\prime}=S^{\prime} \cup$ $\operatorname{subF}(\psi)$.
vii. If $\psi:=\forall x . \alpha$ and $\alpha \in S^{\prime}$, then $S^{\prime}=S^{\prime} \cup$ $\operatorname{subF}(\psi)$.
6. $\operatorname{apprDet}(T, V, \phi, s, M)=\mathrm{T}$ iff $S=S^{\prime}$.

We claim that the size of $\operatorname{subF}(\phi)$ is $O(|\phi|)$ and that computing $\operatorname{subF}(\psi)$ can be done in $O\left(|\phi|^{2}\right)$. Let max be the maximum length of the definitions of the views in V. We also claim that the size of the set extend (M, s, V) is $O\left(\max \cdot|V|^{3}\right)$ and that extend (M, s, V) can be computed in $O\left(|V|^{3} \cdot \max ^{2}\right)$. From these claims, it follows that the fifth step can be executed in $\left.O\left(|S| \cdot\left((|\operatorname{extend}(M, s, V)|+|S|)+|S|^{2}\right)\right)\right)$. After some simplification, it follows that the fifth step can be executed in $O\left(|S|^{3}+|S| \cdot|\operatorname{extend}(M, s, V)|\right)$. From this, $|S|=O(|\phi|)$, and $|\operatorname{extend}(M, s, V)|=O\left(\max \cdot|V|^{3}\right)$, it follows that the fifth step can be executed in $O\left(|\phi|^{3}+|\phi| \cdot \max \cdot|V|^{3}\right)$. Therefore, the overall complexity is $O\left(|\phi|^{3}+|\phi| \cdot \max ^{2} \cdot|V|^{3}\right)$.
We now prove our claims about $\operatorname{subF}(\phi)$. It is easy to see that the size of $\operatorname{subF}(\phi)$ is $O(|\phi|)$. Indeed, we can view the formula ϕ as a tree, where the operators are the internal nodes and the predicates and equalities are the leaves. Then, there is a sub-formula for each sub-tree. From this and from the fact that the number of sub-tree of a tree is linear in the number of nodes, it follows that $|\operatorname{subF}(\phi)|$ is $O(|\phi|)$. Note that computing $\operatorname{subF}(\psi)$ can be done in $O\left(|\phi|^{2}\right)$.

We now prove our claims about extend (M, s, V). Let max be the maximum length of the definitions of the views in V. For each $v \in V$, computing inline (v, s) can be done in $O(|v| \cdot|V| \cdot \max)$. Furthermore, since the views' definitions are acyclic, after $|V|$ applications of inline there are no views in the view's definition. Therefore, for each $v \in V$, we can compute all views derivable from v in $O\left(|v| \cdot|V|^{2}\right.$. $\max)$. Therefore, we can compute the set extend (M, s, V) in $O\left(|V|^{3} \cdot \max ^{2}\right)$. Therefore, also the size of $\operatorname{extend}(M, s, V)$ is less than $O\left(\max \cdot|V|^{3}\right)$.

$$
\begin{aligned}
& u, u^{\prime} \in U \quad R \in D \quad \bar{t} \in \operatorname{dom}^{|R|} \quad g=\left\langle o p, u,\left\langle o p^{\prime}, R\right\rangle, u^{\prime}\right\rangle \quad g \in s e c \\
& \langle d b, U, s e c, T, V, c\rangle \sim_{a}^{a p p r} \Rightarrow \quad o p \in\left\{\oplus, \oplus^{*}\right\} \quad o p^{\prime} \in\{\text { INSERT, DELETE }\} \quad \text { INSERT } \\
& \langle d b, U, \text { sec, } T, V, c\rangle \sim_{a u t h}^{a p p r}\left\langle u, o p^{\prime}, R, \bar{t}\right\rangle \quad \text { DELETE }
\end{aligned}
$$

Figure 37: Definition of the $\sim_{\text {auth }}^{\text {appr }}$ relation

F. ENFORCING DATA CONFIDENTIALITY

Here, we first formalize the PDP $f_{\text {conf }}$. Afterwards, we prove that it provides the data confidentiality property. Finally, we show that its data complexity is $A C^{0}$.
Let $M=\langle D, \Gamma\rangle$ be a system configuration. The PDP $f_{\text {conf }}^{u}$ is shown in Figure 38. The function is parametrized by the user u against which the PDP provides data confidentiality. The PDP $f_{\text {Gonf }}^{u}(s, a)$ models the function $f_{\text {conf }}(s, a, u)$ shown in Figure 8 The mapping between the PDP $f_{\text {conf }}^{u}$ and the pseudo-code shown in Figure 8 is immediate.

The PDP $f_{\text {conf }}^{u}$ uses a number of auxiliary functions. Recall that the function $t r$, defined in Appendix A takes as input an M-state $s \in \Omega_{M}$ and returns the definition of the trigger that the system is executing. If the system is not executing any trigger, then $\operatorname{tr}(s)=\epsilon$. Equivalently, $\operatorname{tr}(s)$ is the first trigger in the sequence of triggers returned by triggers (s).
The function $t D e t$ takes as input a view $v=\langle i, o,\{\bar{x} \mid \phi\}, m\rangle$ $\in \mathcal{V I E W}_{D}$, a state $s \in \Omega_{M}$, and a system configuration $M=\langle D, \Gamma\rangle$ and returns as output the smallest set of tables in D that determines v, namely the smallest set $T \in \mathbb{P}(D)$ such that $\operatorname{apprDet}(T, \emptyset, \phi, s, M)$ holds, where apprDet is defined in Appendix E Note that such a set is always unique.

The function noLeak, defined in Figure 38, takes as input a state s, an INSERT or DELETE action a, and a user u and checks whether the execution of the action a may leak sensitive information through the views that the user u can read, as shown in Example 5.4 Note that the function noLeak returns T if there is no leakage of sensitive information and returns \perp if the action a may leak sensitive information through the views the user u can read in the state s. We remark that the function leak (a, s, u) used in the algorithm in Section 6 returns is defined as leak $(a, s, u)=\operatorname{noLeak}(s, a, u)$.
We now define the Dep, getInfoS, getInfoV, and getInfo functions. The function Dep is as follows. $\operatorname{Dep}(\langle u$, INSERT, R, $\bar{t}\rangle, \Gamma$) returns the set containing all the formulae in Γ of the form $\forall \bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{z}, \bar{z}^{\prime} .\left(R(\bar{x}, \bar{y}, \bar{z}) \wedge R\left(\bar{x}, \bar{y}^{\prime}, \bar{z}^{\prime}\right)\right) \Rightarrow \bar{y}=\bar{y}^{\prime}$ or $\forall \bar{x}, \bar{z} \cdot R(\bar{x}, \bar{z}) \Rightarrow \exists \bar{w} \cdot S(\bar{x}, \bar{w})$, whereas $\operatorname{Dep}(\langle u$, DELETE, $R, \bar{t}\rangle$, Γ) returns the set containing all the formulae in Γ of the form $\forall \bar{x}, \bar{z} . S(\bar{x}, \bar{z}) \Rightarrow \exists \bar{w} . R(\bar{x}, \bar{w})$.
The function getInfoS is defined as follows:

- getInfo $S\left(\langle u\right.$, INSERT, $\left.R,(\bar{v}, \bar{w}, \bar{q})\rangle, \phi_{\text {funct }}^{R}\right)$ is the formula $\neg \exists \bar{y}, \bar{z} \cdot R(\bar{v}, \bar{y}, \bar{z}) \wedge \bar{y} \neq \bar{w}$, where $\phi_{f u n c t}^{R}$ is a formula of the form $\forall \bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{z}, \bar{z}^{\prime} .\left(R(\bar{x}, \bar{y}, \bar{z}) \wedge R\left(\bar{x},,^{\prime}, \bar{z}^{\prime}\right)\right) \Rightarrow \bar{y}=\bar{y}^{\prime}$.
- getInfo $S\left(\langle u\right.$, INSERT, $\left.R,(\bar{v}, \bar{w})\rangle, \phi_{\text {incl }}^{R, S}\right)$ is the formula $\exists \bar{y}$. $S(\bar{v}, \bar{y})$, where $\phi_{\text {incl }}^{R, S}$ is a formula of the form $\forall \bar{x}, \bar{z} . R(\bar{x}, \bar{z})$ $\Rightarrow \exists \bar{w} \cdot S(\bar{x}, \bar{w})$.
- getInfo $S\left(\langle u, \operatorname{DELETE}, R,(\bar{v}, \bar{w})\rangle, \phi_{\text {incl }}^{S, R}\right)$ is the formula $\forall \bar{x}$, $\bar{z} \cdot(S(\bar{x}, \bar{z}) \Rightarrow \bar{x} \neq \bar{v}) \vee \exists \bar{y} .(R(\bar{v}, \bar{y}) \wedge \bar{y} \neq \bar{w})$, where $\phi_{\text {incl }}^{S, R}$ is a formula of the form $\forall \bar{x}, \bar{z} \cdot S(\bar{x}, \bar{z}) \Rightarrow \exists \bar{w} . R(\bar{x}, \bar{w})$.
- getInfoS $(a c t, \phi)=\mathrm{T}$ otherwise.

The function getInfoV is defined as follows:

- getInfo $V\left(\langle u, \operatorname{INSERT}, R,(\bar{v}, \bar{w}, \bar{q})\rangle, \phi_{\text {funct }}^{R}\right)$ is the formula $\exists \bar{y}, \bar{z} \cdot R(\bar{v}, \bar{y}, \bar{z}) \wedge \bar{y} \neq \bar{w}$, where $\phi_{\text {funct }}^{R}$ is a formula of the form $\forall \bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{z}, \bar{z}^{\prime} .\left(R(\bar{x}, \bar{y}, \bar{z}) \wedge R\left(\bar{x}, \bar{y}^{\prime}, \bar{z}^{\prime}\right)\right) \Rightarrow \bar{y}=\bar{y}^{\prime}$.
- getInfo $V\left(\langle u, \operatorname{INSERT}, R,(\bar{v}, \bar{w})\rangle, \phi_{i n c l}^{R, S}\right)$ is the formula $\forall \bar{x}$, $\bar{y} \cdot S(\bar{x}, \bar{y}) \Rightarrow \bar{x} \neq \bar{v}$, where $\phi_{\text {incl }}^{R, S}$ is a formula of the form $\forall \bar{x}, \bar{z} . R(\bar{x}, \bar{z}) \Rightarrow \exists \bar{w} . S(\bar{x}, \bar{w})$.
- getInfo $V\left(\langle u, \operatorname{DELETE}, R,(\bar{v}, \bar{w})\rangle, \phi_{i n c l}^{S, R}\right)$ is the formula $\exists \bar{z}$. $S(\bar{v}, \bar{z}) \wedge \forall \bar{y} .(R(\bar{v}, \bar{y}) \Rightarrow \bar{y}=\bar{w})$, where $\phi_{i n c l}^{S, R}$ is a formula of the form $\forall \bar{x}, \bar{z} \cdot S(\bar{x}, \bar{z}) \Rightarrow \exists \bar{w} . R(\bar{x}, \bar{w})$.
- getInfo $V(a c t, \phi)=\top$ otherwise.

The function getInfo is as follows:

$$
\operatorname{getInfo}(\langle u, o p, R, \bar{t}\rangle)= \begin{cases}\neg R(\bar{t}) & \text { if } o p=\operatorname{INSERT} \\ R(\bar{t}) & \text { if } o p=\operatorname{DELETE}\end{cases}
$$

In F.1 we describe the secure function and we show that it is a sound, under-approximation of the concept of secure judgments. Afterwards, in $\$ \bar{F} .2$ we prove that $f_{\text {conf }}^{u}$ provides data confidentiality with respect to the user u. Finally, in F. 3 we prove that the data complexity of $f_{\text {conf }}^{u}$ is $A C^{0}$. In the rest of the paper, instead of writing secure $_{P, \cong_{P, u}}$ we simply write $\operatorname{secure}_{P, u}$ and we omit the reference to the indistinguishability relation $\cong_{P, u}$ defined in Appendix D

F. 1 Checking a judgment's security

We still have to define the secure : $\mathcal{U} \times R C_{\text {bool }} \times \Omega_{M} \rightarrow$ $\{\top, \perp\}$ function that determines a given judgment's security. In more detail, the secure function is as follows:

$$
\operatorname{secure}(u, \phi, s)= \begin{cases}\top & \text { if }\left[\phi_{s, u}^{r w}\right]^{s . d b}=\perp \\ \perp & \text { otherwise }\end{cases}
$$

In the following, we assume that both the formula ϕ and the set of views V in the state s contain just views with owner's privileges. This is without loss of generality. Indeed, views with activator's privileges are just syntactic sugar, they do not disclose additional information to a user other than what he is already authorized to read because they are executed under the activator's privileges. If ϕ and s contain views with activator's privileges, we can compute another formula ϕ^{\prime} and a state s^{\prime} without views with activator's privileges as follows. We replace, in the formula ϕ, the predicates of the form $V(\bar{x})$, where V is a view with activator's privileges, with V 's definition, and we repeat this process until the resulting formula ϕ^{\prime} no longer contains views with activator's privileges. Similarly, the set V^{\prime} is obtained from V by (1) removing all views with activator's privileges, and (2) for each view $v \in V$ with owner's privileges, replacing the predicates of the form $V(\bar{x})$ in v 's definition, where V is a view with activator's privileges, with V 's definition until v 's definition no longer contains views with activator's privileges. The security policy $s e c^{\prime}$ is also obtained from sec by removing all references to views with activator's privileges. Finally, secure $(u, \phi,\langle d b, U, s e c, T, V, c\rangle)$ is just secure ($u, \phi^{\prime},\left\langle d b, U, \sec ^{\prime}, T, V^{\prime}, c\right\rangle$).
Before defining the $\phi_{s, u}^{\top}$ and $\phi_{s, u}^{\perp}$ rewritings, we define query containment. Let $M=\langle D, \Gamma\rangle$ be a system configuration. Given two formulae $\phi(\bar{x})$ and $\psi(\bar{y})$, we write $\phi \subseteq_{M} \psi$ to denote that ϕ is contained in ψ, i.e., $\forall d \in \Omega_{D}^{\Gamma} .[\{\bar{x} \mid \phi\}]^{d} \subseteq$ $[\{\bar{y} \mid \psi\}]^{d}$. Determining whether $\phi \subseteq_{M} \psi$ holds is undecidable for $R C$ 3]. Hence, we develop a sound, under-approximation of query containment. Figure 39 describes the rules defining our under-approximation. For simplicity's sake, the rules are defined only for relational calculus formulae that do not use views. To check whether $\phi \subseteq_{M} \psi$ holds for two formulae ϕ and ψ that use views, we first compute the formulae ϕ^{\prime} and ψ^{\prime}, obtained by replacing views' identifiers with their definitions, and then we check whether $\phi^{\prime} \subseteq_{M} \psi^{\prime}$ using the rules in Figure 39. This preserves containment since ϕ and ψ are semantically equivalent to ϕ^{\prime} and ψ^{\prime}. Both in the rules and in the proof of Lemma F.1, we assume that there is a total ordering $\preceq_{\text {var }}$ over the set of all possible variable identifiers. This ensures that, given a formula ϕ, there is a unique non-boolean query $\{\bar{x} \mid \phi\}$ associated to it, where the

$$
f_{c o n f}^{u}(s, a c t)= \begin{cases}f_{\text {conf }, \mathrm{S}}^{u}(s, a c t) & \text { if } a c t=\left\langle u^{\prime}, \operatorname{SELECT}, q\right\rangle \\ f_{\text {conf } \mathrm{I}, \mathrm{D}}(s, a c t) & \text { if } a c t=\left\langle u^{\prime}, \operatorname{INSERT}, R, \bar{t}\right\rangle \\ f_{\text {conf } \mathrm{I}, \mathrm{D}}(s, a c t) & \text { if } a c t=\left\langle u^{\prime}, \operatorname{DELETE}, R, \bar{t}\right\rangle \\ f_{\text {conf }, \mathrm{G}, \mathrm{R}}^{u}(s, a c t) & \text { if } a c t=\left\langle o p, u^{\prime \prime}, p, u^{\prime}\right\rangle \wedge o p \in\left\{\oplus, \oplus^{*}\right\} \\ \mathrm{T} & \text { if } u=\text { admin } \\ \top & \text { otherwise }\end{cases}
$$

Figure 38: Access control function $f_{\text {conf }}^{u}$
variables in \bar{x} are those in free (ϕ) ordered according to $\preceq_{v a r}$. Lemma F.1 proves that the rules in Figure 39 are a sound, under-approximation of query containment.

Lemma F.1. Let $M=\langle D, \Gamma\rangle$ be a system configuration, and $\phi(\bar{x})$ and $\psi(\bar{y})$ be two formulae. If $\phi \subseteq_{M} \psi$, according to the rules in Figure 39 , then $\forall d \in \Omega_{D}^{\Gamma} \cdot[\{\bar{x} \mid \phi\}]^{d} \subseteq[\{\bar{y} \mid \psi\}]^{d}$, where \bar{x} (respectively \bar{y}) is the tuple defined by the variables in free (ϕ) (respectively free (ψ)) ordered according to $\preceq_{\text {var }}$.

Proof. $\phi \subseteq_{M} \psi$ iff there is a finite derivation that ends in $\phi \subseteq_{M} \psi$ created using the rules in Figure 39 . We prove our claim by structural induction on the derivation's length.
Base Case Assume that the derivation has length 1. There are four cases depending on the rule used to derive $\phi \subseteq_{M} \psi$:

1. Rule And. From the rule's definition, it follows that $\operatorname{free}(\phi)=\operatorname{free}(\phi \wedge \psi)=\bar{x}$. Let $d \in \Omega_{D}^{\Gamma}$ and $\bar{t} \in[\{\bar{x} \mid \phi \wedge$ $\psi\}]^{d}$. From $\bar{t} \in[\{\bar{x} \mid \phi \wedge \psi\}]^{d}$ and the definition of nonboolean query, it follows that $[(\phi \wedge \psi)[\bar{x} \mapsto \bar{t}]]^{d}=\mathrm{T}$. From this and the relational calculus semantics, it follows that $[\phi[\bar{x} \mapsto \bar{t}]]^{d}=\mathrm{T}$. From this and the definition of non-boolean query, $\bar{t} \in[\{\bar{x} \mid \phi\}]^{d}$. Therefore, $[\{\bar{x} \mid \phi \wedge \psi\}]^{d} \subseteq[\{\bar{x} \mid \phi\}]^{d}$.
2. Rule Or. From the rule's definition, it follows that free $(\phi)=$ free $(\phi \vee \psi)=\bar{x} . \quad$ Let $d \in \Omega_{D}^{\Gamma}$ and $\bar{t} \in$ $[\{\bar{x} \mid \phi\}]^{d}$. From $\bar{t} \in[\{\bar{x} \mid \phi\}]^{d}$ and the definition of nonboolean query, it follows that $[\phi[\bar{x} \mapsto \bar{t}]]^{d}=T$. From this and the relational calculus semantics, it follows that $[(\phi \vee \psi)[\bar{x} \mapsto \bar{t}]]^{d}=\mathrm{T}$. From this and the definition of non-boolean query, $\bar{t} \in[\{\bar{x} \mid \phi \vee \psi\}]^{d}$. Therefore, $[\{\bar{x} \mid \phi\}]^{d} \subseteq[\{\bar{x} \mid \phi \vee \psi\}]^{d}$.
3. Rule Identity. From the rule's definition, it follows that $\operatorname{free}(\phi)=\bar{x}$, free $(\psi)=\bar{y}$, and $\phi[\bar{x} \mapsto \bar{y}]=\psi$. Let $d \in \Omega_{D}^{\Gamma}$ and $\bar{t} \in[\{\bar{x} \mid \phi\}]^{d}$. From $\bar{t} \in[\{\bar{x} \mid \phi\}]^{d}$ and the definition of non-boolean query, it follows that $[\phi[\bar{x} \mapsto$ $\bar{t}]]^{d}=\mathrm{T}$. From this and $\phi[\bar{x} \mapsto \bar{y}]=\psi$, it follows that $[\psi[\bar{y} \mapsto \bar{t}]]^{d}=\mathrm{T}$. From this and the definition of nonboolean query, $\bar{t} \in[\{\bar{y} \mid \psi\}]^{d}$. Therefore, $[\{\bar{x} \mid \phi\}]^{d} \subseteq$ $[\{\bar{y} \mid \psi\}]^{d}$.
4. Rule Inclusion Dependency. From the rule's definition, it follows that $\gamma:=\forall \bar{x}, \bar{z} \cdot(R(\bar{x}, \bar{z}) \Rightarrow \exists \bar{w} \cdot S(\bar{x}, \bar{w}))$ is in Γ. Let $d \in \Omega_{D}^{\Gamma}$ and $\bar{t} \in[\{\bar{x} \mid \exists \bar{z} \cdot R(\bar{x}, \bar{z})\}]^{d}$. From $\bar{t} \in[\{\bar{x} \mid \exists \bar{z} \cdot R(\bar{x}, \bar{z})\}]^{d}$ and the definition of non-boolean query, it follows that $[\exists \bar{z} \cdot R(\bar{t}, \bar{z})]^{d}=\mathrm{T}$. Therefore, there is a tuple $(\bar{t}, \bar{w}) \in d(R)$. From this and $\gamma \in \Gamma$, it follows that there is a tuple $\left(\bar{t}, \bar{w}^{\prime}\right) \in d(S)$. From this, it follows that $[\exists \bar{w} \cdot S(\bar{t}, \bar{w})]^{d}=\mathrm{T}$. From this and the definition of non-boolean query, it follows that $\bar{t} \in$ $[\{\bar{x} \mid \exists \bar{w} . S(\bar{x}, \bar{w})\}]^{d}$. Therefore, it follows that $[\{\bar{x} \mid \exists \bar{z}$. $R(\bar{x}, \bar{z})\}]^{d} \subseteq[\{\bar{x} \mid \exists \bar{w} . S(\bar{x}, \bar{w})\}]^{d}$ holds.
This completes the proof for the base case.
Induction Step Assume now that the claim holds for all derivations of length less than that of $\phi \subseteq_{M} \psi$. We now prove that it holds also for $\phi \subseteq_{M} \psi$. There is just one case, namely $\phi \subseteq_{M} \psi$ is of the form $\exists x_{i} . \alpha \subseteq_{M} \exists y_{i} . \beta$ and it is obtained by applying the rule Projection to $\alpha \subseteq_{M} \beta$. From the rule, it follows that $\alpha \subseteq_{M} \beta$ holds. Let $1 \leq u \leq n$ and \bar{t}^{\prime} (respectively \bar{x}^{\prime} and \bar{y}^{\prime}) be the tuple obtained from \bar{t} (respectively \bar{x} and \bar{y}) by dropping the i-th value (respectively variable). We now prove that $\left[\left\{\bar{x}^{\prime} \mid \exists x_{i} . \alpha\right\}\right]^{d} \subseteq\left[\left\{\bar{y}^{\prime} \mid \exists y_{i} . \beta\right\}\right]^{d}$. Assume, for contradiction's sake, that this is not the case, namely there is a tuple \bar{v} such that $\bar{v} \in\left[\left\{\bar{x}^{\prime} \mid \exists x_{i} . \alpha\right\}\right]^{d}$ but $\bar{v} \notin\left[\left\{\bar{y}^{\prime} \mid \exists y_{i} . \beta\right\}\right]^{d}$. From $\bar{v} \in\left[\left\{\bar{x}^{\prime} \mid \exists x_{i} . \alpha\right\}\right]^{d}$ and the relational
calculus semantics, it follows that there is a tuple \bar{v}_{1}, obtained by adding a value to \bar{v} in the i-th position, such that $\bar{v}_{1} \in[\{\bar{x} \mid \alpha\}]^{d}$. From this, $\alpha \subseteq_{M} \beta$, and the induction hypothesis, it follows that $\bar{v}_{1} \in[\{\bar{y} \mid \beta\}]^{d}$. From this and the relational calculus semantics, it follows that $\bar{v} \in\left[\left\{\bar{y}^{\prime} \mid \exists y_{i} \cdot \beta\right\}\right]^{d}$. This contradicts the fact that $\bar{v} \notin\left[\left\{\bar{y}^{\prime} \mid \exists y_{i} . \beta\right\}\right]^{d}$.
This completes the proof.

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{c}
\operatorname{free}(\phi \wedge \psi)=\operatorname{free}(\phi) \\
M=\langle D, \Gamma\rangle \quad \text { free }(\phi) \neq \emptyset \\
\phi \wedge \psi \subseteq_{M} \phi
\end{array} \text { And }
\end{array} \\
& \begin{array}{c}
\text { free }(\phi)=\text { free }(\phi \vee \psi) \\
\frac{M=\langle D, \Gamma\rangle \text { free }(\phi) \neq \emptyset}{\phi \subseteq_{M} \phi \vee \psi} \text { Or }
\end{array} \\
& \begin{array}{c}
M=\langle D, \Gamma\rangle \quad n>1 \\
\text { free }(\phi)=\left\{x_{1}, \ldots, x_{n}\right\} \\
\text { free }(\psi)=\left\{y_{1}, \ldots, y_{n}\right\}
\end{array} \\
& \begin{array}{l}
\operatorname{free}(\psi)=\left\{y_{1}, \ldots, y_{n}\right\} \\
1<i<n \quad \phi \subseteq_{M} \psi
\end{array} \\
& \frac{1 \leq i \leq n \quad \phi \subseteq_{M} \psi}{\exists x_{i} . \phi \subseteq_{M} \exists y_{i} . \phi} \text { Projection } \quad \frac{\phi\left[x_{1} \mapsto y_{1}, \ldots, x_{n} \mapsto y_{n}\right]=\psi}{\phi \subseteq_{M} \psi} \text { Identity } \\
& \begin{array}{c}
M=\langle D, \Gamma\rangle \\
\forall \bar{x}, \bar{z} \cdot(\bar{x}, \bar{z}) \Rightarrow \exists \bar{w} \cdot S(\bar{x} \mid>0
\end{array} \\
& \frac{\forall \bar{x}, \bar{z} \cdot(R(\bar{x}, \bar{z}) \Rightarrow \exists \bar{w} \cdot S(\bar{x}, \bar{w})) \in \Gamma}{\exists \bar{z} \cdot R(\bar{x}, \bar{z}) \subseteq_{M} \exists \bar{w} \cdot S(\bar{x}, \bar{w})} \quad \begin{array}{c}
\text { Inclusion } \\
\text { Dependency }
\end{array}
\end{aligned}
$$

Figure 39: Containment rules
Given a table or a view O and a sequence of distinct integers $\bar{i}:=\left(i_{1}, \ldots, i_{n}\right)$ such that $1 \leq i_{j} \leq|O|$ for all $1 \leq j \leq n$, where $0 \leq n<|O|$, the \bar{i}-projection of O, denoted by $O_{\bar{i}}$, is the formula $\exists x_{i_{1}}, \ldots, x_{i_{n}} . O\left(x_{1}, \ldots, x_{|O|}\right)$. Given a database schema D and a set of views V defined over D, we denote by extVocabulary (D, V) the extended vocabulary obtained by defining all possible projections of tables in D and views in V, i.e., for each $O \in D \cup V$, we define a predicate $O_{\bar{i}}$ for each projection $\exists x_{i_{1}}, \ldots, x_{i_{n}} . O\left(x_{1}, \ldots, x_{|O|}\right)$ of O. Furthermore, given a relational calculus formula ϕ over D, we denote by $\operatorname{ext}^{\operatorname{Voc}}{ }_{V, D}(\phi)$ the formula obtained by replacing all sub-formulae of the form $\exists \bar{x} \cdot R(\bar{x}, \bar{y})$ with the predicates in extVocabulary (D, V) representing the corresponding projections $R_{\bar{i}}$. Finally, we denote by inline $_{D, V}(\phi)$, where ϕ is a relational calculus formula over extVocabulary (D, V), the formula ϕ^{\prime} obtained by replacing all predicates associated with projections with the corresponding formulae.

Let S be predicate in extVocabulary (D, V) and s be an M-state. We denote by S_{s}^{\top} the set of all projections of tables in D and views in V that are contained in S, i.e., $\left.S_{s}^{\top}:=\left\{R \in \operatorname{extVocabulary}(D, V) \mid R(\bar{x}) \subseteq_{M} S(\bar{y})\right\}\right]^{3}$ Similarly, we denote by S_{s}^{\perp} the set of all projections of tables in D and views in V that contains S, i.e., $S_{s}^{\perp}:=\{R \in$ extVocabulary $\left.(D, V) \mid S(\bar{x}) \subseteq_{M} R(\bar{y})\right\}$. Furthermore, we denote by $\operatorname{AUTH}_{s, u}$ the set of all tables and views that u is authorized to read in s, i.e., $\operatorname{AUTH}_{s, u}:=\{v \mid\langle\oplus$, SELECT, $v\rangle \in$ permissions $(s, u)\}$, and by $\operatorname{AUTH}_{s, u}^{*}$ the set of all the projections obtained from tables and views in $A U T H_{s, u}$.
We are now ready to formally define the $\phi_{s, u}^{\top}$ and $\phi_{s, u}^{\perp}$ rewritings.

Definition F.1. Let $M=\langle D, \Gamma\rangle$ be a system configuration, $s=\langle d b, U, s e c, T, V, c\rangle$ be an M-state, u be a user, and ϕ be a relational calculus sentence over $\operatorname{ext} \operatorname{Vocabulary}(D, V)$.
The function bound takes as input a formula ϕ, a state s, a user u, a variable identifier x, and a value v in $\{T, \perp\}$. It is inductively defined as follows:

- bound $(R(\bar{y}), s, u, x, v)$, where R is a predicate symbol in extVocabulary (D, V), is \top iff (a) x occurs in \bar{y}, and (b) the set $R_{s, u}^{v}$, which is $R_{s}^{v} \cap A U T H_{s, u}^{*}$, is not empty.
${ }^{3}$ With a slight abuse of notation, we write $R(\bar{x}) \subseteq_{M} S(\bar{y})$ instead of inline $_{D, V}(R(\bar{x})) \subseteq_{M}$ inline $_{D, V}(S(\bar{y}))$.
- bound $(y=z, s, u, x, v)$ is Т iff $x=y$ and z is a constant symbol or $x=z$ and y is a constant symbol.
- bound (T, $s, u, x, v):=\perp$.
- bound $(\perp, s, u, x, v):=\perp$.
- bound $(\neg \psi, s, u, x, v):=\operatorname{bound}(\psi, s, u, x, \neg v)$, where ψ is a relational calculus formula.
- bound $(\psi \wedge \gamma, s, u, x, v):=\operatorname{bound}(\psi, s, u, x, v) \vee \operatorname{bound}(\gamma$, $s, u, x, v)$, where ψ and γ are relational calculus formulae.
- bound $(\psi \vee \gamma, s, u, x, v):=\operatorname{bound}(\psi, s, u, x, v) \wedge \operatorname{bound}(\gamma$, $s, u, x, v)$, where ψ and γ are relational calculus formulae.
- bound $(\exists y \cdot \psi, s, u, x, v)$, where ψ is a relational calculus formula, is bound $(\psi, s, u, x, v) \wedge \operatorname{bound}(\psi, s, u, y, v)$ if $x \neq y$, and bound $(\exists y \cdot \psi, s, u, x, v):=\perp$ otherwise.
- bound $(\forall y \cdot \psi, s, u, x, v)$, where ψ is a relational calculus formula, is bound $(\psi, s, u, x, v) \wedge \operatorname{bound}(\psi, s, u, y, v)$ if $x \neq y$, and bound $(\forall y \cdot \psi, s, u, x, v):=\perp$ otherwise.
The formula $\phi_{s, u}^{\top}$ is inductively defined as follows:
- $R(\bar{x})_{s, u}^{\top}:=\bigvee_{S \in R_{s, u}^{\top}} S(\bar{x})$, where R is a predicate symbol in extVocabulary (D, V) and $R_{s, u}^{\top}:=R_{s}^{\top} \cap A U T H_{s, u}^{*}$.
- $(x=v)_{s, u}^{\top}:=(x=v)$, where x and v are either variable identifiers or constant symbols.
- $(\top)_{s, u}^{\top}:=\top$.
- $(\perp)_{s, \underline{u}}^{\top}:=\perp$.
- $(\neg \psi)_{s, u}^{\top}:=\neg \psi_{s, u}^{\perp}$, where ψ is a relational calculus formula.
- $(\psi \wedge \gamma)_{s, u}^{\top}:=\psi_{s, u}^{\top} \wedge \gamma_{s, u}^{\top}$, where ψ and γ are relational calculus formulae.
- $(\psi \vee \gamma)_{s, u}^{\top}:=\psi_{s, u}^{\top} \vee \gamma_{s, u}^{\top}$, where ψ and γ are relational calculus formulae.
- $(\exists x . \psi)_{s, u}^{\top}$, where ψ is a relational calculus formula and x is a variable identifier, is $\exists x . \psi_{s, u}^{\top}$ if $\operatorname{bound}(\psi, s, u, x, \top)$ $=\top$ and $(\exists x . \psi)_{s, u}^{\top}:=\perp$ otherwise.
- $(\forall x . \psi)_{s, u}^{\top}$, where ψ is a relational calculus formula and x is a variable identifier, is $\forall x . \psi_{s, u}^{\top}$ if $\operatorname{bound}(\psi, s, u, x, \top)$ $=\top$ and $(\forall x . \psi)_{s, u}^{\top}:=\perp$ otherwise.
The formula $\phi_{s, u}^{\perp}$ is inductively defined as follows:
- $R(\bar{x})_{s, u}^{\perp}:=\bigwedge_{S \in R_{s, u}^{\perp}} S(\bar{x})$, where R is a predicate symbol in extVocabulary (D, V) and $R_{s, u}^{\perp}:=R_{s}^{\perp} \cap A U T H_{s, u}^{*}$.
- $(x=v)_{s, u}^{\perp}:=(x=v)$, where x and v are either variable identifiers or constant symbols.
- $(\top)_{s, u}^{\perp}:=\top$.
- $(\perp)_{s, u}^{\perp}:=\perp$.
- $(\neg \psi)_{s, u}^{\perp}:=\neg \psi_{s, u}^{\top}$, where ψ is a relational calculus formula.
- $(\psi \wedge \gamma)_{s, u}^{\perp}:=\psi_{s, u}^{\perp} \wedge \gamma_{s, u}^{\perp}$, where ψ and γ are relational calculus formulae.
- $(\psi \vee \gamma)_{s, u}^{\perp}:=\psi_{s, u}^{\perp} \vee \gamma_{s, u}^{\perp}$, where ψ and γ are relational calculus formulae.
- $(\exists x . \psi)_{s, u}^{\perp}$, where ψ is a relational calculus formula and x is a variable identifier, is $\exists x . \psi_{s, u}^{\perp}$ if $\operatorname{bound}(\psi, s, u, x, \perp)$ $=\top$ and $(\exists x . \psi)_{s, u}^{\perp}:=\perp$ otherwise.
- $(\forall x . \psi)_{s, u}^{\perp}$, where ψ is a relational calculus formula and x is a variable identifier, is $\forall x . \psi_{s, u}^{\perp}$ if $\operatorname{bound}(\psi, s, u, x, \perp)$ $=\top$ and $(\forall x . \psi)_{s, u}^{\perp}:=\perp$ otherwise.
Finally, we define the formula $\phi_{s, u}^{r w}$ which represents the overall rewritten formula.

Definition F.2. Let $M=\langle D, \Gamma\rangle$ be a system configura-
tion, $s=\langle d b, U, s e c, T, V, c\rangle$ be an M-state, u be a user, and ϕ be a relational calculus sentence over D. The formula $\phi_{s, u}^{r w}$ is defined as inline ${ }_{V, D}\left(\neg \psi_{s, u}^{\top} \wedge \psi_{s, u}^{\perp}\right)$, where $\psi:=$ $\operatorname{ext}^{\operatorname{Voc}}{ }_{V, D}(\phi)$.

Let $P=\langle M, f\rangle$ be an extended configuration, L be the P LTS, $u \in \mathcal{U}$ be a user, $r \in \operatorname{traces}(L)$ be an L-run, $\phi \in R C_{\text {bool }}$ is a sentence, and $1 \leq i \leq|r|$. Furthermore, let s be the i th state of r. The judgment $r, i \vdash_{u} \phi$ is data-secure for M, u, and s, denoted by $\operatorname{secure}_{P, u}^{d a t a}\left(r, i \vdash_{u} \phi\right)$, iff for all $s^{\prime}, s^{\prime \prime} \in \llbracket p \operatorname{State}(s) \rrbracket_{u, M}^{d a t a},[\phi]^{s^{\prime} \cdot d b}=[\phi]^{s^{\prime \prime}} \cdot d b$, where $\cong_{u, M}^{d a t a}$ is the data-indistinguishability relation defined in Appendix D and $\llbracket s \rrbracket_{u, M}^{\text {data }}:=\left\{s^{\prime} \in \Pi_{M} \mid s \cong{ }_{u, M}^{\text {data }} s^{\prime}\right\}$.

We first recall our definitions and notations for assignments. Let dom be the universe and var be an infinite countably set of variable identifiers. An assignment ν is a partial function from var to dom that maps variables to values in the universe. Given a formula ϕ and an assignment ν, we say that ν is well-formed for ϕ iff ν is defined for all variables in free (ϕ). Given an assignment ν and a sequence of variables \bar{x} such that ν is defined for each $x \in \bar{x}$, we denote by $\nu(\bar{x})$ the tuple obtained by replacing each occurrence of $x \in \bar{x}$ with $\nu(x)$. Given an assignment ν, a variable $v \in \operatorname{var}$, and a value $u \in$ dom, we denote by $\nu \oplus[v \mapsto u]$ the assignment ν^{\prime} obtained as follows: $\nu^{\prime}\left(v^{\prime}\right)=\nu\left(v^{\prime}\right)$ for any $v^{\prime} \neq v$, and $\nu^{\prime}(v)=u$. Finally, given a formula ϕ with free variables free (ϕ) and an assignment ν, we denote by $\phi \circ \nu$ the formula ϕ^{\prime} obtained by replacing, for each free variable $x \in \operatorname{free}(\phi)$ such that $\nu(x)$ is defined, all the free occurrences of x with $\nu(x)$.

Lemma F.2 shows that secure ${ }_{P, u}^{d a t a}$ is a sound, under approximation of secure $_{P, u}$. However, as shown in 24, deciding whether $\operatorname{secure}_{P, u}^{d a t a}\left(r, i \vdash_{u} \phi\right)$ holds for a given judgment is still undecidable for the relational calculus.

Lemma F.2. Let $P=\langle M, f\rangle$ be an extended configuration, L be the P-LTS, $u \in \mathcal{U}$ be a user, $r \in \operatorname{traces}(L)$ be an L-run, $\phi \in R C_{\text {bool }}$ is a sentence, and $1 \leq i \leq|r|$. Given a judgment $r, i \vdash_{u} \phi$, if $\operatorname{secure}_{P, u}^{\text {data }}\left(r, i \vdash_{u} \phi\right)$, then $\operatorname{secure}_{P, u}\left(r, i \vdash_{u} \phi\right)$.

Proof. We prove the claim by contradiction. Let $P=$ $\langle M, f\rangle$ be an extended configuration, L be the P-LTS, $u \in \mathcal{U}$ be a user, $r \in \operatorname{traces}(L)$ be an L-run, $\phi \in R C_{\text {bool }}$ is a sentence, and $1 \leq i \leq|r|$. Furthermore, let $s=\langle d b, U, s e c, T, V$, $c)$ be the i-th state of r. Assume, for contradiction's sake, that secure ${ }_{P, u}^{\text {data }}\left(r, i \vdash_{u} \phi\right)$ holds and $\operatorname{secure}_{P, u}\left(r, i \vdash_{u} \phi\right)$ does not hold. We denote, for brevity's sake, the fact that $\operatorname{secure}_{P, u}\left(r, i \vdash_{u} \phi\right)$ does not hold as $\neg \operatorname{secure}_{P, u}\left(r, i \vdash_{u} \phi\right)$. From \neg secure $_{P, u}\left(r, i \vdash_{u} \phi\right)$, it follows that there is a run $r^{\prime} \in$ $\operatorname{traces}(L)$, whose last state is $s^{\prime}=\left\langle d b^{\prime}, U^{\prime}, \sec ^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$, such that $r^{i} \cong_{P, u} r^{\prime}$ and $[\phi]^{d b} \neq[\phi]^{d b^{\prime}}$. From the (P, u) indistinguishability definition, it follows that $p \operatorname{State}\left(\operatorname{last}\left(r^{i}\right)\right.$) and $p \operatorname{State}\left(\operatorname{last}\left(r^{\prime}\right)\right)$ are data indistinguishable according to M and u, i.e., $p \operatorname{State}\left(\operatorname{last}\left(r^{i}\right)\right) \cong{ }_{u, M}^{\text {data }} \operatorname{pState}\left(\operatorname{last}\left(r^{\prime}\right)\right)$. From $\operatorname{secure}_{P, u}^{d a t a}\left(r, i \vdash_{u} \phi\right)$, it also follows that for all $s^{\prime}, s^{\prime \prime} \in$ $\llbracket p \operatorname{State}(s) \rrbracket_{u, M}^{d a t a},[\phi]^{s^{\prime} \cdot d b}=[\phi]^{s^{\prime \prime} \cdot d b}$. From this and the fact that $p \operatorname{State}\left(\operatorname{last}\left(r^{i}\right)\right) \cong{ }_{u, M}^{\text {data }}$ pState $\left(\operatorname{last}\left(r^{\prime}\right)\right)$, it follows that $[\phi]^{d b}=[\phi]^{d b^{\prime}}$, which contradicts $[\phi]^{d b} \neq[\phi]^{d b^{\prime}}$. This completes the proof.

We now show that the rewritings $\phi_{s, u}^{\top}$ and $\phi_{s, u}^{\perp}$ provide the desired properties. First, Lemma F.3 proves that the
two rewriting satisfy the following invariants: "if $\phi_{s, u}^{\top}$ holds in s, then also ϕ holds in s " and "if $\phi_{s, u}^{\perp}$ does not hold in s, then also ϕ does not hold in s ". Afterwards, Lemma F. 4 shows that both $\phi_{s, u}^{\top}$ and $\phi_{s, u}^{\perp}$ are secure. Then, Lemma F.5 shows that $\phi_{s, u}^{\top}$ and $\phi_{s, u}^{\perp}$ are equivalent to $\phi_{s^{\prime}, u}^{\top}$ and $\phi_{s^{\prime}, u}^{\perp}$ for any two data indistinguishable M-state s and s^{\prime}. Finally, Lemma F.6 shows that both $\phi_{s, u}^{\top}$ and $\phi_{s, u}^{\perp}$ are domainindependent.

Lemma F.3. Let $M=\langle D, \Gamma\rangle$ be a system configuration, $s=\langle d b, U$, sec $, T, V\rangle$ be a partial M-state, $u \in U$ be a user, and ϕ be a D-formula. For all assignments ν over dom that are well-formed for ϕ, the following conditions hold:

- if $\left[\phi_{s, u}^{\top} \circ \nu\right]^{d b}=\mathrm{T}$, then $[\phi \circ \nu]^{d b}=\mathrm{T}$, and
- if $\left[\phi_{s, u}^{\perp} \circ \nu\right]^{d b}=\perp$, then $[\phi \circ \nu]^{d b}=\perp$.

Proof. Let $M=\langle D, \Gamma\rangle$ be a system configuration, $s=$ $\langle d b, U, s e c, T, V\rangle$ be a partial M-state, $u \in U$ be a user, and ϕ be a D-formula. Furthermore, let ν be an assignment that is well-formed for ϕ. We prove our claim by induction on the structure of the formula ϕ.
Base Case There are four cases:

1. $\phi:=x=y$. In this case, $\phi_{s, u}^{\top}=\phi_{s, u}^{\perp}=\phi$. From this, it follows that $\left[(x=v)_{s, u}^{\top} \circ \nu\right]^{d b}=[(x=v) \circ \nu]^{d b}$ and $\left[(x=v)_{s, u}^{\perp} \circ \nu\right]^{d b}=[(x=v) \circ \nu]^{d b}$. Therefore, our claim follows trivially.
2. $\phi:=\mathrm{T}$. The proof of this case is similar to that of $\phi:=x=y$.
3. $\phi:=\perp$. The proof of this case is similar to that of $\phi:=x=y$.
4. $\phi:=R(\bar{x})$. Let \bar{t} be the tuple $\nu(\bar{x})$. Note that since ν is well-formed for ϕ, \bar{t} is well-defined.
Assume that $\left[\phi_{s, u}^{\top} \circ \nu\right]^{d b}=\top$. From this and $\phi_{s, u}^{\top}:=$ $\bigvee_{S \in R_{s, u}^{\top}} S(\bar{x})$, it follows that there is an $S \in R_{s, u}^{\top}$ such that $\bar{t} \in d b(S)$. Since $S \in R_{s, u}^{\top}$, it follows that $S \subseteq_{M} R$. From $S \subseteq_{M} R, \bar{t} \in d b(S)$, and Lemma $F .1$ it follows that $\bar{t} \in d b(R)$. From this and the relational calculus semantics, it follows that $[\phi \circ \nu]^{d b}=T$.
Assume that $\left[\phi_{s, u}^{\perp} \circ \nu\right]^{d b}=\perp$. From this and $\phi_{s, u}^{\perp}:=$ $\bigwedge_{S \in R_{s, u}^{\perp}} S(\bar{x})$, it follows that there is an $S \in R_{s, u}^{\perp}$ such that $\bar{t} \notin d b(S)$. Since $S \in R_{s, u}^{\perp}$, it follows that $R \subseteq_{M} S$. From $R \subseteq_{M} S, \bar{t} \notin d b(S)$, and Lemma $F .1$ it follows that $\bar{t} \notin d b(R)$. From this and the relational calculus semantics, it follows that $[\phi \circ \nu]^{d b}=\perp$.
This completes the proof of the base case.
Induction Step Assume that our claim holds for all formulae whose length is less than ϕ 's length. We now show that our claim holds also for ϕ. There are a number of cases depending on ϕ 's structure.
5. $\phi:=\psi \wedge \gamma$. Assume that $\left[\phi_{s, u}^{\top} \circ \nu\right]^{d b}=\top$. From this and $\phi_{s, u}^{\top}:=\psi_{s, u}^{\top} \wedge \gamma_{s, u}^{\top}$, it follows that $\left[\psi_{s, u}^{\top} \circ \nu\right]^{d b}=\top$ and $\left[\gamma_{s, u}^{\top} \circ \nu\right]^{d b}=T$. Since ν is well-formed for ϕ, it is also well-formed for ψ and γ because free $(\psi) \subseteq$ free (ϕ) and $\operatorname{free}(\gamma) \subseteq$ free (ϕ). From $\left[\psi_{s, u}^{\top} \circ \nu\right]^{d b}=\top$ and the induction hypothesis, it follows that $[\psi \circ \nu]^{d b}=T$. From $\left[\gamma_{s, u}^{\top} \circ \nu\right]^{d b}=\top$ and the induction hypothesis, it follows that $[\gamma \circ \nu]^{d b}=\mathrm{T}$. From $[\psi \circ \nu]^{d b}=\mathrm{T},[\gamma \circ \nu]^{d b}=\mathrm{T}$, $\phi:=\psi \wedge \gamma$, and the relational calculus semantics, it follows that $[\phi \circ \nu]^{d b}=T$.
Assume that $\left[\phi_{s, u}^{\perp} \circ \nu\right]^{d b}=\perp$. From this and $\phi_{s, u}^{\perp}:=$ $\psi_{s, u}^{\perp} \wedge \gamma_{s, u}^{\perp}$, there are two cases:
(a) $\left[\psi_{s, u}^{\perp} \circ \nu\right]^{d b}=\perp$. From $\left[\psi_{s, u}^{\perp} \circ \nu\right]^{d b}=\perp$ and the induction hypothesis, it follows that $[\psi \circ \nu]^{d b}=\perp$. From this, $\phi:=\psi \wedge \gamma$, and the relational calculus semantics, it follows that $[\phi \circ \nu]^{d b}=\perp$
(b) $\left[\gamma_{s, u}^{\perp} \circ \nu\right]^{d b}=\perp$. From $\left[\gamma_{s, u}^{\perp} \circ \nu\right]^{d b}=\perp$ and the induction hypothesis, it follows that $[\gamma \circ \nu]^{d b}=\perp$. From this, $\phi:=\psi \wedge \gamma$, and the relational calculus semantics, it follows that $[\phi \circ \nu]^{d b}=\perp$
6. $\phi:=\psi \vee \gamma$. The proof of this case is similar to that of $\phi:=\psi \wedge \gamma$.
7. $\phi:=\neg \psi$. Assume that $\left[\phi_{s, u}^{\top} \circ \nu\right]^{d b}=\top$. From this and $\phi_{s, u}^{\top}:=\neg \psi_{s, u}^{\perp}$, it follows that $\left[\psi_{s, u}^{\perp} \circ \nu\right]^{d b}=\perp$. From this and the induction hypothesis, it follows that $[\psi \circ \nu]^{d b}=\perp$. From this, $\phi:=\neg \psi$, and the relational calculus semantics, it follows that $[\phi \circ \nu]^{d b}=T$.
Assume that $\left[\phi_{s, u}^{\perp} \circ \nu\right]^{d b}=\perp$. From this and $\phi_{s, u}^{\perp}:=$ $\neg \psi_{s, u}^{\top}$, it follows that $\left[\psi_{s, u}^{\top} \circ \nu\right]^{d b}=\top$. From this and the induction hypothesis, it follows that $[\psi \circ \nu]^{d b}=T$. From this, $\phi:=\neg \psi$, and the relational calculus semantics, it follows that $[\phi \circ \nu]^{d b}=\perp$.
8. $\phi:=\exists x \cdot \psi$. Assume that $\left[\phi_{s, u}^{\top} \circ \nu\right]^{d b}=T$. From this and $\phi_{s, u}^{\top}:=\exists x . \psi_{s, u}^{\top}$, it follows that there is a $v \in \operatorname{dom}$ such that $\left[\psi_{s, u}^{\top} \circ \nu[x \mapsto v]\right]^{d b}=\mathrm{T}$. Note that since v is well-formed for $\phi, \nu[x \mapsto v]$ is well-formed for ψ because $\phi:=\exists x . \psi$. From this, $\left[\psi_{s, u}^{\top} \circ \nu[x \mapsto v]\right]^{d b}=\top$, and the induction hypothesis, it follows that $[\psi \circ \nu[x \mapsto v]]^{d b}=$ T. From this, $\phi:=\exists x . \psi$, and the relational calculus semantics, it follows that $[\phi \circ \nu]^{d b}=T$.
Assume that $\left[\phi_{s, u}^{\perp} \circ \nu\right]^{d b}=\perp$. From this and $\phi_{s, u}^{\perp}:=$ $\exists x . \psi_{s, u}^{\perp}$, it follows that for all $v \in \operatorname{dom},\left[\psi_{s, u}^{\perp} \circ \nu[x \mapsto\right.$ $v]]^{d b}=\perp$. Note that since v is well-formed for $\phi, \nu[x \mapsto$ v] is well-formed for ψ because $\phi:=\exists x . \psi$. From this, $\left[\psi_{s, u}^{\perp} \circ \nu[x \mapsto v]\right]^{d b}=\perp$, and the induction hypothesis, it follows that for all $v \in \operatorname{dom},[\psi \circ \nu[x \mapsto v]]^{d b}=\perp$. From this, $\phi:=\exists x \cdot \psi$, and the relational calculus semantics, it follows that $[\phi \circ \nu]^{d b}=\perp$.
9. $\phi:=\forall x . \psi$. The proof of this case is similar to that of $\phi:=\exists x . \psi$.
This completes the proof of the induction step.
This completes the proof of our claim.
In Lemma F.4 we prove that our rewritings are secure.
Lemma F.4. Let $P=\langle M, f\rangle$ be an extended configuration, where $M=\langle D, \Gamma\rangle$ is a system configuration and f is an M-PDP, $r \in \operatorname{traces}(L)$ be a run, ϕ be a RC-formula, and $1 \leq i \leq r$. Furthermore, let s be the i-th state of r. For all assignments ν over dom that are well-formed for ϕ, secure $_{P, u}^{\text {data }}\left(r, i \vdash_{u} \phi_{s, u}^{\top} \circ \nu\right)$, secure $e_{P, u}^{\text {data }}\left(r, i \vdash_{u} \phi_{s, u}^{\perp} \circ \nu\right)$, and secure $e_{P, u}^{\text {data }}\left(r, i \vdash_{u} \phi_{s, u}^{r w} \circ \nu\right)$ hold.

Proof. The security of $r, i \vdash_{u} \phi_{s, u}^{r w}$ follows trivially from that of $r, i \vdash_{u} \phi_{s, u}^{\top}$ and $r, i \vdash_{u} \phi_{s, u}^{\perp}$. Therefore, in the following we prove just that secure ${ }_{P, u}^{\text {data }}\left(r, i \vdash_{u} \phi_{s, u}^{\top} \circ \nu\right)$ and secure $_{P, u}^{\text {data }}\left(r, i \vdash_{u} \phi_{s, u}^{\perp} \circ \nu\right)$ hold. Let $M=\langle D, \Gamma\rangle$ be a system configuration, $s=\langle d b, U, s e c, T, V\rangle$ be a partial M-state, $u \in U$ be a user, and ϕ be a D-formula. Furthermore, let ν be an assignment that is well-formed for ϕ. We prove our claim by induction on the structure of the formula ϕ.
Base Case There are four cases:

1. $\phi:=x=y$. The claim holds trivially. Indeed, $\phi_{s, u}^{\top} \circ \nu$ and $\phi_{s, u}^{\perp} \circ \nu$ are always equivalent either to \top or to \perp.

Since for all $s^{\prime}, s^{\prime \prime} \in \llbracket p \operatorname{State}\left(\operatorname{last}\left(r^{i}\right)\right) \rrbracket_{u, M}^{d a t a},[T]^{s^{\prime} \cdot d b}=$ $[T]^{s^{\prime \prime}} \cdot d b$ and $[\perp]^{s^{\prime} \cdot d b}=[\perp]^{s^{\prime \prime}} \cdot d b$, it follows that both secure $_{P, u}^{\text {data }}\left(r, i \vdash_{u} \phi_{s, u}^{\top} \circ \nu\right)$ and secure ${ }_{P, u}^{\text {data }}\left(r, i \vdash_{u} \phi_{s, u}^{\perp} \circ \nu\right)$ hold.
2. $\phi:=\mathrm{T}$. The proof of this case is similar to that of $\phi:=x=y$.
3. $\phi:=\perp$. The proof of this case is similar to that of $\phi:=x=y$.
4. $\phi:=R(\bar{x})$. Assume, for contradiction's sake, that secure $_{P, u}^{\text {data }}\left(r, i \vdash_{u} \phi_{s, u}^{\top} \circ \nu\right)$ does not hold. From this and secure ${ }_{P, u}^{\text {data }}$, s definition, it follows that there are two M partial states $s^{\prime}=\left\langle d b^{\prime}, U, s e c, T, V\right\rangle$ and $s^{\prime \prime}=\left\langle d b^{\prime \prime}, U\right.$, sec, $T, V\rangle$ in $\llbracket p \operatorname{State}\left(\operatorname{last}\left(r^{i}\right)\right) \rrbracket_{u, M}^{\text {data }}$ such that $\left[\phi_{s, u}^{\top} \circ \nu\right]^{d b^{\prime}}$ $\neq\left[\phi_{s, u}^{\top} \circ \nu\right]^{d b^{\prime \prime}}$. Note that this rule out the cases in which $R_{s, u}^{v}=\emptyset$ for any $v \in\{\top, \perp\}$. We assume without loss of generality that $\left[\phi_{s, u}^{\top} \circ \nu\right]^{d b^{\prime}}=\top$ and $\left[\phi_{s, u}^{\top} \circ \nu\right]^{d b^{\prime \prime}}=\perp$. From this and $\phi_{s, u}^{\top}:=\bigvee_{S \in R_{s, u}^{\top}} S(\bar{x})$, it follows that there is an predicate symbol S in the extended vocabulary such that $\nu(\bar{x}) \in d b^{\prime}(S)$ and $\nu(\bar{x}) \notin d b^{\prime \prime}(S)$. There are two cases:

- S is a table in D or a view in V. Since $S \in R_{s, u}^{\top}$, it follows that $\langle\oplus$, SELECT, $S\rangle \in$ permissions $\left(\operatorname{last}\left(r^{i}\right)\right.$, u). Note that permissions $\left(s^{\prime}, u\right)=$ permissions $\left(s^{\prime \prime}\right.$, $u)=$ permissions $\left(\operatorname{last}\left(r^{i}\right), u\right)$ because all the states are in the same equivalence class. From $s^{\prime} \cong \cong_{u, M}^{\text {data }} s^{\prime \prime}$, $\langle\oplus$, SELECT, $S\rangle \in$ permissions $\left(s^{\prime}, u\right)$, and the definition of data indistinguishability, it follows that $d b^{\prime}(S)=d b^{\prime \prime}(S)$. From this, it follows that $\nu(\bar{x}) \in$ $d b^{\prime}(S)$ iff $\nu(\bar{x}) \in d b^{\prime \prime}(S)$, which contradicts $\nu(\bar{x}) \in$ $d b^{\prime}(S)$ and $\nu(\bar{x}) \notin d b^{\prime \prime}(S)$.
- S is a projection of O, which is either a table in D or a view in V. From $S \in R_{s, u}^{\top}$ and $R_{s, u}^{\top}$'s definition, it follows that $\langle\oplus$, SELECT, $O\rangle \in$ permissions $\left(\operatorname{last}\left(r^{i}\right), u\right)$. From $s^{\prime} \cong_{u, M}^{\text {data }} s^{\prime \prime},\langle\oplus$, SELECT, $O\rangle \in$ permissions $\left(s^{\prime}, u\right)$, and the definition of data indistinguishability, it follows that $d b^{\prime}(O)=d b^{\prime \prime}(O)$. From this and the definition of S, it also follows that $d b^{\prime}(S)=d b^{\prime \prime}(S)^{4}$ From this, it follows that $\nu(\bar{x}) \in d b^{\prime}(S)$ iff $\nu(\bar{x}) \in d b^{\prime \prime}(S)$, which contradicts $\nu(\bar{x}) \in d b^{\prime}(S)$ and $\nu(\bar{x}) \notin d b^{\prime \prime}(S)$.
The proof of $\operatorname{secure}_{P, u}^{\text {data }}\left(r, i \vdash_{u} \phi_{s, u}^{\perp} \circ \nu\right)$ is analogous.
This completes the proof of the base case.
Induction Step Assume that our claim holds for all formulae whose length is less than ϕ 's length. We now show that our claim holds also for ϕ. There are a number of cases depending on ϕ 's structure.

1. $\phi:=\psi \wedge \gamma$. Assume, for contradiction's sake, that $\operatorname{secure}_{P, u}^{\text {data }}\left(r, i \vdash_{u} \phi_{s, u}^{\top} \circ \nu\right)$ does not hold. From this and secure $e_{P, u}^{\text {data }}$, definition, it follows that there are two M partial states $s^{\prime}=\left\langle d b^{\prime}, U, s e c, T, V\right\rangle$ and $s^{\prime \prime}=\left\langle d b^{\prime \prime}, U\right.$, sec, $T, V\rangle$ in $\llbracket p \operatorname{State}\left(\operatorname{last}\left(r^{i}\right)\right) \rrbracket_{u, M}^{\text {data }}$ such that $\left[\phi_{s, u}^{\top} \circ \nu\right]^{d b^{\prime}}$ $\neq\left[\phi_{s, u}^{\top} \circ \nu\right]^{d b^{\prime \prime}}$. We assume, without loss of generality, that $\left[\phi_{s, u}^{\top} \circ \nu\right]^{d b^{\prime}}=\top$ and $\left[\phi_{s, u}^{\top} \circ \nu\right]^{d b^{\prime \prime}}=\perp$. From this and $\phi_{s, u}^{\top}=\psi_{s, u}^{\top} \wedge \gamma_{s, u}^{\top}$, it follows that either $\left[\psi_{s, u}^{\top} \circ\right.$ $\nu]^{d b^{\prime}}=\top$ and $\left[\psi_{s, u}^{\top} \circ \nu\right]^{d b^{\prime \prime}}=\perp$ or $\left[\gamma_{s, u}^{\top} \circ \nu\right]^{d b^{\prime}}=\top$ and $\left[\gamma_{s, u}^{\top} \circ \nu\right]^{d b^{\prime \prime}}=\perp$. We assume, without loss of generality, that $\left[\psi_{s, u}^{\top} \circ \nu\right]^{d b^{\prime}}=\top$ and $\left[\psi_{s, u}^{\top} \circ \nu\right]^{d b^{\prime \prime}}=$ \perp. From this, it follows that $\operatorname{secure}_{P, u}^{\text {data }}\left(r, i \vdash_{u} \psi_{s, u}^{\top} \circ\right.$

[^1]ν) does not hold. From the induction hypothesis, it follows that secure ${ }_{P, u}^{\text {data }}\left(r, i \vdash_{u} \psi_{s, u}^{\top} \circ \nu\right)$ holds leading to a contradiction.
The proof of secure ${ }_{P, u}^{\text {data }}\left(r, i \vdash_{u} \phi_{s, u}^{\perp} \circ \nu\right)$ is analogous.
2. $\phi:=\psi \vee \gamma$. The proof of this case is similar to that of $\phi:=\psi \wedge \gamma$.
3. $\phi:=\neg \psi$. Assume, for contradiction's sake, that secure $_{P, u}^{\text {data }}\left(r, i \vdash_{u} \phi_{s, u}^{\top} \circ \nu\right)$ does not hold. From this and secure $e_{P, u}^{\text {data }}$, definition, it follows that there are two M partial states $s^{\prime}=\left\langle d b^{\prime}, U\right.$, sec $\left., T, V\right\rangle$ and $s^{\prime \prime}=\left\langle d b^{\prime \prime}, U\right.$, sec, $T, V\rangle$ in $\llbracket p \operatorname{State}\left(\right.$ last $\left.\left(r^{i}\right)\right) \rrbracket_{u, M}^{\text {data }}$ such that $\left[\phi_{s, u}^{\top} \circ \nu\right]^{\text {db }}$ $\neq\left[\phi_{s, u}^{\top} \circ \nu\right]^{d b^{\prime \prime}}$. We assume, without loss of generality, that $\left[\phi_{s, u}^{\top} \circ \nu\right]^{d b^{\prime}}=\top$ and $\left[\phi_{s, u}^{\top} \circ \nu\right]^{d b^{\prime \prime}}=\perp$. From this and $\phi_{s, u}^{\top}=\neg \psi_{s, u}^{\perp}$, it follows that $\left[\psi_{s, u}^{\perp} \circ\right.$ $\nu]^{d b^{\prime}}=\perp$ and $\left[\psi_{s, u}^{\perp} \circ \nu\right]^{d b^{\prime \prime}}=\top$. From this, it follows that secure ${ }_{P, u}^{\text {data }}\left(r, i \vdash_{u} \psi_{s, u}^{\perp} \circ \nu\right)$ does not hold. From the induction hypothesis and $\phi:=\neg \psi$, it follows that $\operatorname{secure}_{P, u}^{\text {data }}\left(r, i \vdash_{u} \psi_{s, u}^{\perp} \circ \nu\right)$ holds leading to a contradiction.
The proof of $\operatorname{secure}_{P, u}^{\text {data }}\left(r, i \vdash_{u} \phi_{s, u}^{\perp} \circ \nu\right)$ is analogous.
4. $\phi:=\exists x . \psi$. Assume, for contradiction's sake, that secure ${ }_{P, u}^{\text {data }}\left(r, i \vdash_{u} \phi_{s, u}^{\top} \circ \nu\right)$ does not hold. From this and secure $e_{P, u}^{\text {data }}$, definition, it follows that there are two M partial states $s^{\prime}=\left\langle d b^{\prime}, U\right.$, sec $\left., T, V\right\rangle$ and $s^{\prime \prime}=\left\langle d b^{\prime \prime}, U\right.$, sec, $T, V\rangle$ in $\llbracket p \operatorname{State}\left(\operatorname{last}\left(r^{i}\right)\right) \rrbracket_{u, M}^{\text {data }}$ such that $\left[\phi_{s, u}^{\top} \circ \nu\right]^{d b^{\prime}}$ $\neq\left[\phi_{s, u}^{\top} \circ \nu\right]^{d b^{\prime \prime}}$. We assume, without loss of generality, that $\left[\phi_{s, u}^{\top} \circ \nu\right]^{d b^{\prime}}=\top$ and $\left[\phi_{s, u}^{\top} \circ \nu\right]^{d b^{\prime \prime}}=\perp$. From this and $\phi_{s, u}^{\top}=\exists x \cdot \psi_{s, u}^{\top}$, it follows that there is a $v^{\prime} \in \operatorname{dom}$ such that $\left[\psi_{s, u}^{\top} \circ \nu\left[x \mapsto v^{\prime}\right]\right]^{d b^{\prime}}=\top$ and there is no $v^{\prime \prime} \in$ dom such that $\left[\psi_{s, u}^{\top} \circ \nu\left[x \mapsto v^{\prime \prime}\right]\right]^{d b^{\prime \prime}}=\top$. Therefore, $\left[\psi_{s, u}^{\top} \circ \nu\left[x \mapsto v^{\prime}\right]\right]^{d b^{\prime}}=\top$ and $\left[\psi_{s, u}^{\top} \circ \nu\left[x \mapsto v^{\prime}\right]\right]^{d b^{\prime \prime}}=\perp$. Note that $\nu\left[x \mapsto v^{\prime}\right]$ is well-formed for $\psi_{s, u}^{\top}$. From this, it follows that $\operatorname{secure}_{P, u}^{\text {data }}\left(r, i \vdash_{u} \psi_{s, u}^{\top} \circ \nu\left[x \mapsto v^{\prime}\right]\right)$ does not hold. However, from the fact that $\nu\left[x \mapsto v^{\prime}\right]$ is wellformed for $\psi_{s, u}^{\top}$ and the induction hypothesis, it follows that secure $P_{P, u}^{\text {data }}\left(r, i \vdash_{u} \psi_{s, u}^{\top} \circ \nu\left[x \mapsto v^{\prime}\right]\right)$ holds leading to a contradiction.
The proof of $\operatorname{secure}_{P, u}^{d a t a}\left(r, i \vdash_{u} \phi_{s, u}^{\perp} \circ \nu\right)$ is analogous.
5. $\phi:=\forall x . \psi$. The proof of this case is similar to that of $\phi:=\exists x . \psi$.
This completes the proof of the induction step.
This completes the proof of our claim.
Proposition F.1. Let $M=\langle D, \Gamma\rangle$ be a system configuration, $s=\langle d b, U, s e c, T, V\rangle$ and $s^{\prime}=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}\right\rangle$ be two partial M-states, $u \in U$ be a user, $v \in\{\top, \perp\}$, and ϕ be a D-formula. If $s \cong$ data s^{\prime}, then bound $(\phi, s, u, x, v)=$ bound $\left(\phi, s^{\prime}, u, x, v\right)$.
Proof. Let $M=\langle D, \Gamma\rangle$ be a system configuration, $s=$ $\langle d b, U, s e c, T, V\rangle$ and $s^{\prime}=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}\right\rangle$ be two partial M-states, $u \in U$ be a user, $v \in\{\top, \perp\}$, and ϕ be a D-formula. We prove our claim by induction on the structure of the formula ϕ.
Base Case There are four cases:

1. $\phi:=y=z$. The result of $\operatorname{bound}(\phi, s, u, x, v)$ and bound $\left(\phi, s^{\prime}, u, x, v\right)$ does not depend on s. Therefore, bound $(\phi, s, u, x, v)=$ bound $\left(\phi, s^{\prime}, u, x, v\right)$.
2. $\phi:=\mathrm{T}$. bound $(\phi, s, u, x, v)=\operatorname{bound}\left(\phi, s^{\prime}, u, x, v\right)=\perp$.
3. $\phi:=\perp$. bound $(\phi, s, u, x, v)=\operatorname{bound}\left(\phi, s^{\prime}, u, x, v\right)=\perp$.
4. $\phi:=R(\bar{x})$. The result of bound (ϕ, s, u, x, v) and bound ($\phi, s^{\prime}, u, x, v$) depend only on the sets $R_{s, u}^{v}$ and $R_{s^{\prime}, u}^{v}$, which in turn depend on the content of the sets $R_{s}^{v}, R_{s^{\prime}}^{v}$, $A U T H_{s, u}^{*}$, and $A U T H_{s^{\prime}, u}^{*}$. Assume that $s \cong{ }_{u, M}^{d a t a} s^{\prime}$. From this, it follows that $R_{s}^{v}=R_{s^{\prime}}^{v}$ (because D is the same and $V=V^{\prime}$) and $A U T H_{s, u}^{*}=A U T H_{s^{\prime}, u}^{*}$ (because sec $\left.=s e c^{\prime}\right)$. From this, it follows that $\operatorname{bound}(\phi, s$, $u, x, v)=$ bound $\left(\phi, s^{\prime}, u, x, v\right)$.
This completes the proof of the base case.
Induction Step Assume that our claim holds for all formulae whose length is less than ϕ. We now show that our claim holds also for ϕ. There are a number of cases depending on ϕ 's structure.
5. $\phi:=\psi \wedge \gamma$. Assume that $s \cong{ }_{u, M}^{d a t a} s^{\prime}$. From this and the induction hypothesis, it follows that bound (ψ, s, u, x, v) $=$ bound $\left(\psi, s^{\prime}, u, x, v\right)$ and bound $(\gamma, s, u, x, v)=$ bound $\left(\gamma, s^{\prime}, u, x, v\right)$. From this and bound $(\phi, s, u, x, v):=$ bound $(\psi, s, u, x, v) \vee$ bound (γ, s, u, x, v), it follows that bound $(\phi, s, u, x, v)=\operatorname{bound}\left(\phi, s^{\prime}, u, x, v\right)$.
6. $\phi:=\psi \vee \gamma$. The proof of this case is similar to that of $\phi:=\psi \wedge \gamma$.
7. $\phi:=\neg \psi$. Assume that $s \cong{ }_{u, M}^{d a t a} s^{\prime}$. From this and the induction hypothesis, it follows that bound (ψ, s, u, x, v) $=$ bound $\left(\psi, s^{\prime}, u, x, v\right)$. From this, bound $(\neg \psi, s, u, x, v)$ $=\operatorname{bound}(\psi, s, u, x, \neg v)$, and bound $\left(\neg \psi, s^{\prime}, u, x, v\right)=$ bound $\left(\psi, s^{\prime}, u, x, \neg v\right)$, it follows that bound (ϕ, s, u, x, v) $=\operatorname{bound}\left(\phi, s^{\prime}, u, x, v\right)$.
8. $\phi:=\exists y \cdot \psi$. Assume that $s \cong{ }_{u, M}^{d a t a} s^{\prime}$. There are two cases:
(a) $x=y$. In this case, the proof is trivial as bound $(\phi, s$, $u, x, v)=\operatorname{bound}\left(\phi, s^{\prime}, u, x, v\right)=\perp$.
(b) $x \neq y$. In this case, $\operatorname{bound}(\phi, s, u, x, v)=\operatorname{bound}(\psi$, $s, u, x, v) \wedge$ bound (ψ, s, u, y, v) and bound $\left(\phi, s^{\prime}, u, x\right.$, $v)=$ bound $\left(\psi, s^{\prime}, u, x, v\right) \wedge$ bound $\left(\psi, s^{\prime}, u, y, v\right)$. From $s \cong{ }_{u, M}^{d a t a} s^{\prime}$ and the induction hypothesis, it follows that bound $(\psi, s, u, x, v)=$ bound $\left(\psi, s^{\prime}, u, x, v\right)$ and bound $(\psi, s, u, y, v)=$ bound $\left(\psi, s^{\prime}, u, y, v\right)$. From this, bound $(\phi, s, u, x, v)=$ bound $(\psi, s, u, x, v) \wedge$ bound $(\psi$, $s, u, y, v)$, and bound $\left(\phi, s^{\prime}, u, x, v\right)=$ bound $\left(\psi, s^{\prime}, u\right.$, $x, v) \wedge$ bound $\left(\psi, s^{\prime}, u, y, v\right)$, it follows that bound $(\phi, s$, $u, x, v)=$ bound $\left(\phi, s^{\prime}, u, x, v\right)$.
9. $\phi:=\forall x . \psi$. The proof of this case is similar to that of $\phi:=\exists x . \psi$.
This completes the proof of the induction step.
This completes the proof of our claim.
Lemma F.5. Let $M=\langle D, \Gamma\rangle$ be a system configuration, $s=\langle d b, U, s e c, T, V\rangle$ and $s^{\prime}=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}\right\rangle$ be two partial M-states, $u \in U$ be a user, and ϕ be a D-formula. If $s \cong{ }_{u, M}^{\text {data }} s^{\prime}$, then $\phi_{s, u}^{\top}=\phi_{s^{\prime}, u}^{\top}, \phi_{s, u}^{\perp}=\phi_{s^{\prime}, u}^{\perp}$, and $\phi_{s, u}^{r w}=\phi_{s^{\prime}, u}^{r w}$.

Proof. Let $M=\langle D, \Gamma\rangle$ be a system configuration, $s=$ $\langle d b, U, s e c, T, V\rangle$ and $s^{\prime}=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}\right\rangle$ be two partial M-states, $u \in U$ be a user, and ϕ be a D-formula. We prove our claim by induction on the structure of the formula ϕ.
Base Case There are four cases:

1. $\phi:=x=y$. The claim holds trivially. Indeed, $\phi_{s, u}^{\top}=$ $\phi_{s, u}^{\perp}=\phi$.
2. $\phi:=\top$. The proof of this case is similar to that of $\phi:=x=y$.
3. $\phi:=\perp$. The proof of this case is similar to that of $\phi:=x=y$.
4. $\phi:=R(\bar{x})$. The formulae $\phi_{s, u}^{\top}$ and $\phi_{s^{\prime}, u}^{\top}$ depend only on the sets $R_{s, u}^{\top}$ and $R_{s^{\prime}, u}^{\top}$, which in turn depends on $R_{s}^{\top}, R_{s^{\prime}}^{\top}, A U T H_{s, u}^{*}$, and $A U T H_{s^{\prime}, u}^{*}$. If $s \cong{ }_{u, M}^{\text {data }} s^{\prime}$, then $R_{s}^{\top}=R_{s^{\prime}}^{\top}$ (because D is the same and $V=V^{\prime}$) and $A U T H_{s, u}^{*}=A U T H_{s^{\prime}, u}^{*}$ (because sec $=s e c^{\prime}$). Therefore, $\phi_{s, u}^{\top}=\phi_{s^{\prime}, u}^{\top}$. The proof for $\phi_{s, u}^{\perp}$ is analogous.
This completes the proof of the base case.
Induction Step Assume that our claim holds for all formulae whose length is less than ϕ. We now show that our claim holds also for ϕ. There are a number of cases depending on ϕ 's structure.
5. $\phi:=\psi \wedge \gamma$. Assume that $s \cong{ }_{u, M}^{d a t a} s^{\prime}$. From this and the induction hypothesis, it follows that $\psi_{s, u}^{\top}=\psi_{s^{\prime}, u}^{\top}$ and $\gamma_{s, u}^{\top}=\gamma_{s^{\prime}, u}^{\top}$. From this, $\phi:=\psi \wedge \gamma, \phi_{s, u}^{\top}:=\psi_{s, u}^{\top} \wedge \gamma_{s, u}^{\top}$, and $\phi_{s^{\prime}, u}^{\top}:=\psi_{s^{\prime}, u}^{\top} \wedge \gamma_{s^{\prime}, u}^{\top}$, it follows that $\phi_{s, u}^{\top}=\phi_{s^{\prime}, u}^{\top}$. The proof of $\phi_{s, u}^{\perp}=\phi_{s^{\prime}, u}^{\perp}$ is analogous.
6. $\phi:=\psi \vee \gamma$. The proof of this case is similar to that of $\phi:=\psi \wedge \gamma$.
7. $\phi:=\neg \psi$. Assume that $s \cong{ }_{u, M}^{\text {data }} s^{\prime}$. From this and the induction hypothesis, it follows that $\psi_{s, u}^{\top}=\psi_{s^{\prime}, u}^{\top}$ and $\psi_{s, u}^{\perp}=\psi_{s^{\prime}, u}^{\perp}$. From this, $\phi:=\neg \psi, \phi_{s, u}^{\top}:=\neg \psi_{s, u}^{\perp}$, and $\phi_{s^{\prime}, u}^{\top}:=\neg \psi_{s^{\prime}, u}^{\perp}$, it follows that $\phi_{s, u}^{\top}=\phi_{s^{\prime}, u}^{\top}$.
The proof of $\phi_{s, u}^{\perp}=\phi_{s^{\prime}, u}^{\perp}$ is analogous.
8. $\phi:=\exists x . \psi$. Assume that $s \cong{ }_{u, M}^{d a t a} s^{\prime}$. From this and the induction hypothesis, it follows that $\psi_{s, u}^{\top}=\psi_{s^{\prime}, u}^{\top}$. We remark that bound $(\psi, s, u, x, \top)=\operatorname{bound}\left(\psi, s^{\prime}, u, x, \top\right)$, as proved in Proposition F.1. There are two cases:
(a) bound $(\psi, s, u, x, \top)=\top$. From this, bound $(\psi, s, u$, $x, \top)=\operatorname{bound}\left(\psi, s^{\prime}, u, x, \top\right), \psi_{s, u}^{\top}=\psi_{s^{\prime}, u}^{\top}, \phi:=$ $\exists x . \psi, \phi_{s, u}^{\top}:=\exists x . \psi_{s, u}^{\top}$, and $\phi_{s^{\prime}, u}^{\top}:=\exists x . \psi_{s^{\prime}, u}^{\top}$, it follows that $\phi_{s, u}^{\top}=\phi_{s^{\prime}, u}^{\top}$.
(b) bound $(\psi, s, u, x, \top)=\perp$. From this, bound $(\psi, s, u$, $x, \top)=\operatorname{bound}\left(\psi, s^{\prime}, u, x, \top\right)$, and $\phi_{s, u}^{\top}$ definition, it follows that $\phi_{s^{\prime}, u}^{\top}=\phi_{s^{\prime}, u}^{\top}=\perp$.
The proof of $\phi_{s, u}^{\perp}=\phi_{s^{\prime}, u}^{\perp}$ is analogous.
9. $\phi:=\forall x . \psi$. The proof of this case is similar to that of $\phi:=\exists x . \psi$.
This completes the proof of the induction step.
The equivalence $\phi_{s, u}^{r w}=\phi_{s^{\prime}, u}^{r w}$ follows trivially from $\phi_{s, u}^{r w}$'s definition and the fact that $\phi_{s, u}^{\top}=\phi_{s^{\prime}, u}^{\top}$ and $\phi_{s, u}^{\perp}=\phi_{s^{\prime}, u}^{\perp}$. This completes the proof of our claim.

Before proving the domain independence of $\phi_{s, u}^{\top}$ and $\phi_{s, u}^{\perp}$, we introduce some notation. The relation gen, introduced in 45, is the smallest relation defined by the rules in Figure 40 Note that we extended gen by adding the rules Equiv, Const 1, and Const 2. A relational calculus formula ϕ is allowed iff it satisfies the following conditions:

- for all $x \in \operatorname{free}(\phi), \operatorname{gen}(x, \phi)$ holds,
- for every sub-formula $\exists x . \psi$ in $\phi, \operatorname{gen}(x, \psi)$ holds, and
- for every sub-formula $\forall x . \psi$ in $\phi, \operatorname{gen}(x, \neg \psi)$ holds.

As shown in 45, every allowed formula is domain independent. Note that the addition of the Equiv, Const 1, and Const 2 rules does not modify this result.

Proposition F.2. Let $M=\langle D, \Gamma\rangle$ be a system configuration, $s=\langle d b, U, s e c, T, V\rangle$ be an M-partial state, $u \in U$ be a user, and $v \in\{\top, \perp\}$. For any formulae ϕ and ψ, the following equivalences hold:

- $(\neg \phi)_{s, u}^{v} \equiv \neg \phi_{s, u}^{\neg v}$,

$$
\begin{aligned}
& \frac{x \in \bar{x}}{\operatorname{gen}(x, R(\bar{x}))} \text { Pred } \quad \frac{\operatorname{gen}(x, \operatorname{push}(\neg \phi))}{\operatorname{gen}(x, \neg \phi)} \text { Neg } \\
& \frac{x \neq y \quad \operatorname{gen}(x, \phi)}{\operatorname{gen}(x, \exists y \cdot \phi)} \text { Exists } \frac{x \neq y \operatorname{gen}(x, \phi)}{\operatorname{gen}(x, \forall y \cdot \phi)} \text { For all } \\
& \frac{\operatorname{gen}(x, \phi) \operatorname{gen}(x, \psi)}{\operatorname{gen}(x, \phi \vee \psi)} \text { Or } \frac{\operatorname{gen}(x, \psi) \quad \phi \equiv \psi}{\operatorname{gen}(x, \phi)} \text { Equiv } \\
& \frac{v \in \operatorname{dom}}{\operatorname{gen}(x, x=v)} \text { Const } 1 \quad \frac{v \in \mathbf{d o m}}{\operatorname{gen}(x, v=x)} \text { Const } 2 \\
& \frac{\operatorname{gen}(x, \phi)}{\operatorname{gen}(x, \phi \wedge \psi)} \text { And } 1 \quad \frac{\operatorname{gen}(x, \psi)}{\operatorname{gen}(x, \phi \wedge \psi)} \text { And } 2 \\
& \text { push }(\phi)= \begin{cases}\neg \psi \vee \neg \gamma & \text { if } \phi:=\neg(\psi \wedge \gamma) \\
\neg \psi \wedge \neg \gamma & \text { if } \phi:=\neg(\psi \vee \gamma) \\
\forall x . \neg \psi & \text { if } \phi:=\neg \exists x \cdot \psi \\
\exists x . \neg \psi & \text { if } \phi:=\neg \forall x \cdot \psi \\
\psi & \text { if } \phi:=\neg \neg \psi \\
x \neq y & \text { if } \phi:=\neg(x=y) \\
x=y & \text { if } \phi:=\neg(x \neq y)\end{cases}
\end{aligned}
$$

Figure 40: gen rules

- $(\phi)_{s, u}^{v} \wedge(\psi)_{s, u}^{v} \equiv(\phi \wedge \psi)_{s, u}^{v}$,
- $(\phi)_{s, u}^{v} \vee(\psi)_{s, u}^{v} \equiv(\phi \vee \psi)_{s, u}^{v}$,
- $(\exists x . \phi)_{s, u}^{v} \equiv(\neg \forall x . \neg \phi)_{s, u}^{v}$, and
- $(\forall x \cdot \phi)_{s, u}^{v} \equiv(\neg \exists x . \neg \phi)_{s, u}^{v}$.

Proof. Let $M=\langle D, \Gamma\rangle$ be a system configuration, $s=$ $\langle d b, U, s e c, T, V\rangle$ be an M-partial state, $u \in U$ be a user, $v \in\{\top, \perp\}$, and ϕ, ψ be two formulae.

- $(\neg \phi)_{s, u}^{v} \equiv \neg \phi_{s, u}^{\neg v}$. This case follows trivially from the definition of the rewriting.
- $(\phi)_{s, u}^{v} \wedge(\psi)_{s, u}^{v} \equiv(\phi \wedge \psi)_{s, u}^{v}$. This case follows trivially from the definition of the rewriting.
- $(\phi)_{s, u}^{v} \vee(\psi)_{s, u}^{v} \equiv(\phi \vee \psi)_{s, u}^{v}$ This case follows trivially from the definition of the rewriting.
- $(\exists x \cdot \phi)_{s, u}^{v} \equiv(\neg \forall x . \neg \phi)_{s, u}^{v}$. There are two cases:

1. bound $(\phi, s, u, x, v)=\mathrm{T}$. From this, it follows that $(\exists x \cdot \phi)_{s, u}^{v}=\exists x \cdot \phi_{s, u}^{v}$. From $(\neg \phi)_{s, u}^{v} \equiv \neg \phi_{s, u}^{\urcorner v}$ and $(\neg \forall x . \neg \phi)_{s, u}^{v}$, it follows that $(\neg \forall x . \neg \phi)_{s, u}^{v} \equiv \neg(\forall x$. $\neg \phi)_{s, u}^{\neg v}$. From the definition of bound, it follows that bound $(\neg \phi, s, u, x, \neg v)=$ bound $(\phi, s, u, x, \neg \neg v)$. From this and $v=\neg \neg v$, it follows that bound $(\neg \phi, s$, $u, x, \neg v)=$ bound (ϕ, s, u, x, v). From this and bound ($\phi, s, u, x, v)=\perp$, it follows that bound ($\neg \phi, s, u, x$, $\neg v)=\mathrm{T}$. From this, it follows that $(\forall x . \neg \phi)_{s, u}^{\neg v}=$ $\forall x .(\neg \phi)_{s, u}^{\urcorner v}$. From this and $(\neg \phi)_{s, u}^{v} \equiv \neg \phi_{s, u}^{\neg v}$, it follows that $(\forall x . \neg \phi)_{s, u}^{\neg v} \equiv \forall x$. $\neg \phi_{s, u}^{v}$. From this and $(\neg \forall x . \neg \phi)_{s, u}^{v} \equiv \neg(\forall x . \neg \phi)_{s, u}^{v}$, it follows that $(\neg \forall x . \neg \phi)_{s, u}^{v} \equiv \neg \forall x$. $\neg \phi_{s, u}^{v}$. From this and standard RC equivalences, it follows that $(\neg \forall x . \neg \phi)_{s, u}^{v}$ $\equiv \exists x . \phi_{s, u}^{v}$.
2. $\operatorname{bound}(\phi, s, u, x, v)=\perp$. From this, it follows that $(\exists x . \phi)_{s, u}^{v}=\neg v$. From $(\neg \phi)_{s, u}^{v} \equiv \neg \phi_{s, u}^{v v}$ and $(\neg \forall x$. $\neg \phi)_{s, u}^{v}$, it follows that $(\neg \forall x . \neg \phi)_{s, u}^{v} \equiv \neg(\forall x . \neg \phi)_{s, u}^{\imath v}$. From the definition of bound, it follows that bound $(\neg \phi, s, u, x, \neg v)=$ bound $(\phi, s, u, x, \neg \neg v)$. From this and $v=\neg \neg v$, it follows that bound $(\neg \phi, s, u, x, \neg v)$ $=\operatorname{bound}(\phi, s, u, x, v)$. From this and bound $(\phi, s, u$, $x, v)=\perp$, it follows that bound $(\neg \phi, s, u, x, \neg v)=$ \perp. From this, it follows that $(\forall x . \neg \phi)_{s, u}^{\neg v}=v$. From this and $(\neg \forall x . \neg \phi)_{s, u}^{v} \equiv \neg(\forall x . \neg \phi)_{s, u}^{\neg v}$, it follows
that $(\neg \forall x . \neg \phi)_{s, u}^{v} \equiv \neg v$. From this and $(\exists x . \phi)_{s, u}^{v}=$ $\neg v$, it follows that $(\exists x . \phi)_{s, u}^{v} \equiv(\neg \forall x . \neg \phi)_{s, u}^{v}$.

- $(\forall x \cdot \phi)_{s, u}^{v} \equiv(\neg \exists x . \neg \phi)_{s, u}^{v}$. The proof of this case is similar to that of $(\exists x . \phi)_{s, u}^{v} \equiv(\neg \forall x . \neg \phi)_{s, u}^{v}$.
This completes the proof.
Proposition F.3. Let $M=\langle D, \Gamma\rangle$ be a system configuration, $s=\langle d b, U, s e c, T, V\rangle$ be an M-partial state, $u \in U$ be a user, $v \in\{\top, \perp\}$, and ϕ be a formula. Furthermore, let $x \in \operatorname{free}(\phi) \cap$ free $\left(\phi_{s, u}^{v}\right)$. If gen (x, ϕ) holds, then gen $\left(x, \phi_{s, u}^{v}\right)$ holds.

Proof. Let $M=\langle D, \Gamma\rangle$ be a system configuration, $s=$ $\langle d b, U$, sec, $T, V\rangle$ be an M-partial state, $u \in U$ be a user, $v \in$ $\{\top, \perp\}$, and ϕ be a formula. Furthermore, let $x \in \operatorname{free}(\phi) \cap$ free $\left(\phi_{s, u}^{v}\right)$. We prove our claim by structural induction on the length of ϕ. In the following, the length of ϕ is the number of predicates, quantifiers, negations, conjunctions, and disjunctions in ϕ.
Base Case There are four cases:

1. $\phi:=x=y$. In this case, the claim holds trivially.
2. $\phi:=\mathrm{T}$. In this case, the claim holds trivially.
3. $\phi:=\perp$. In this case, the claim holds trivially.
4. $\phi:=R(\bar{x})$. Assume $g e n(x, \phi)$ holds. From this, it follows that x is one of the free variables in \bar{x}. Furthermore, from $x \in \operatorname{free}\left(\phi_{s, u}^{v}\right)$, it follows that $R_{s, u}^{v} \neq \emptyset$. There are two cases:
(a) $\phi_{s, u}^{v}$ is a conjunction of predicates $S(\bar{x})$ such that $\operatorname{gen}(x, S(\bar{x}))$ holds. From the rule And 1, it follows that $\operatorname{gen}\left(x, \phi_{s, u}^{v}\right)$ holds.
(b) $\phi_{s, u}^{v}$ is a disjunction of predicates $S(\bar{x})$ such that gen $(x, S(\bar{x}))$ holds. From the rule Or, it follows that $\operatorname{gen}\left(x, \phi_{s, u}^{v}\right)$ holds.
This completes the proof of the base case.
Induction Step Assume that our claim holds for all formulae whose length is less than ϕ 's length. We now show that our claim holds also for ϕ. There are a number of cases depending on ϕ 's structure.
5. $\phi:=\psi \wedge \gamma$. Assume that gen (x, ϕ) holds. From this and the rules And 1 and And 2, it follows that either $\operatorname{gen}(x, \psi)$ or $\operatorname{gen}(x, \gamma)$ hold. Assume, without loss of generality, that gen (x, ψ) holds. From this and the induction hypothesis, it follows that gen $\left(x, \psi_{s, u}^{v}\right)$ holds. From this, $\phi_{s, u}^{v}:=\psi_{s, u}^{v} \wedge \gamma_{s, u}^{v}$, and the rule And 1, it follows that $\operatorname{gen}\left(x, \phi_{s, u}^{v}\right)$ holds.
6. $\phi:=\psi \vee \gamma$. Assume that $\operatorname{gen}(x, \phi)$ holds. From this and the rule $O r$, it follows that both $\operatorname{gen}(x, \psi)$ and $\operatorname{gen}(x, \gamma)$ hold. From this and the induction hypothesis, it follows that both $\operatorname{gen}\left(x, \psi_{s, u}^{v}\right)$ and $\operatorname{gen}\left(x, \gamma_{s, u}^{v}\right)$ hold. From this, $\phi_{s, u}^{v}:=\psi_{s, u}^{v} \vee \gamma_{s, u}^{v}$, and the rule $O r$, it follows that $\operatorname{gen}\left(x, \phi_{s, u}^{v}\right)$ holds.
7. $\phi:=\neg \psi$. Assume that $\operatorname{gen}(x, \phi)$ holds. From this and the rule Not, it follows that $\operatorname{gen}(x, \operatorname{push}(\neg \psi))$. There are a number of cases depending on ψ. In the following, we exploit standard relational calculus equivalences, see, for instance, 3, and the equivalences we proved in Proposition F. 2
(a) $\psi:=(\alpha \wedge \beta)$. In this case, $\operatorname{push}(\neg \psi)$ is $(\neg \alpha \vee$ $\neg \beta$). From this and $\operatorname{gen}(x, \operatorname{push}(\neg \psi)$), it follows $\operatorname{gen}(x,(\neg \alpha \vee \neg \beta))$. From this and the Or rule, it follows that $\operatorname{gen}(x, \neg \alpha)$ and $\operatorname{gen}(x, \neg \beta)$ hold. From this and the induction hypothesis, it follows that $\operatorname{gen}\left(x,(\neg \alpha)_{s, u}^{v}\right)$ and $\operatorname{gen}\left(x,(\neg \beta)_{s, u}^{v}\right)$. From this and the Or rule, it follows that $\operatorname{gen}\left(x,(\neg \alpha)_{s, u}^{v} \vee(\neg \beta)_{s, u}^{v}\right)$.

From this, $(\neg \alpha)_{s, u}^{v} \vee(\neg \beta)_{s, u}^{v} \equiv(\neg \alpha \vee \neg \beta)_{s, u}^{v}$, and the Equiv rule, it follows that $\operatorname{gen}\left(x,(\neg \alpha \vee \neg \beta)_{s, u}^{v}\right)$. From this, $(\neg \alpha \vee \neg \beta)_{s, u}^{v} \equiv(\neg(\alpha \wedge \beta))_{s, u}^{v}$, and the Equiv rule, it follows that $\operatorname{gen}\left(x,(\neg(\alpha \wedge \beta))_{s, u}^{v}\right)$. From this, $(\neg(\alpha \wedge \beta))_{s, u}^{v} \equiv \neg(\alpha \wedge \beta)_{s, u}^{\neg v}$, and the Equiv rule, it follows that $\operatorname{gen}\left(x, \neg(\alpha \wedge \beta)_{s, u}^{\neg v}\right)$. From this and $\psi:=\alpha \wedge \beta$, it follows that $\operatorname{gen}\left(x, \neg \psi_{s, u}^{\neg v}\right)$. From this and $\phi_{s, u}^{v}:=\neg \psi_{s, u}^{\neg v}$, it follows that $\operatorname{gen}(x$, $\phi_{s, u}^{v}$) holds.
(b) $\psi:=(\alpha \vee \beta)$. The proof is similar to the $\psi:=$ $\neg(\alpha \wedge \beta)$ case.
(c) $\psi:=\exists y$. α. In this case, $\operatorname{push}(\neg \psi)$ is $\forall y$. $\neg \alpha$. From this and $\operatorname{gen}(x, \operatorname{push}(\neg \psi))$, it follows $\operatorname{gen}(x, \forall y, \neg \alpha)$. From this and the induction hypothesis, it follows that $\operatorname{gen}\left(x,(\forall y . \neg \alpha)_{s, u}^{v}\right)$. From this, $\neg \neg(\forall y . \neg \alpha)_{s, u}^{v}$ $\equiv(\forall y . \neg \alpha)_{s, u}^{v}$, and the Equiv rule, it follows that $\operatorname{gen}\left(x, \neg \neg(\forall y . \neg \alpha)_{s, u}^{v}\right)$. From this, $\neg \neg(\forall y . \neg \alpha)_{s, u}^{v} \equiv$ $\neg(\neg \forall y . \neg \alpha)_{s, u}^{\neg v}$, and the Equiv rule, it follows that $\operatorname{gen}\left(x, \neg(\neg \forall y . \neg \alpha)_{s, u}^{\neg v}\right)$. From this, $\neg(\neg \forall y . \neg \alpha)_{s, u}^{\neg v} \equiv$ $\neg(\exists y . \neg \neg \alpha) \stackrel{\rightharpoonup v}{v}, u$, and the Equiv rule, it follows that $\operatorname{gen}\left(x, \neg(\exists y . \neg \neg \alpha)_{s, u}^{\neg v}\right)$. From this, $\neg(\exists y . \neg \neg \alpha)_{s, u}^{\neg v} \equiv$ $\neg(\exists y . \alpha)_{s, u}^{\neg}$, and the Equiv rule, it follows that gen (x, $\left.\neg(\exists y . \alpha)_{s, u}^{\neg}\right)$. From this and $\psi:=\exists y$. α, it follows that $\operatorname{gen}\left(x, \neg \psi_{s, u}^{\neg v}\right)$. From this and $\phi_{s, u}^{v}:=\neg \psi_{s, u}^{\neg v}$, it follows that gen $\left(x, \phi_{s, u}^{v}\right)$ holds.
(d) $\psi:=\forall y . \alpha$. The proof is similar to the $\psi:=\neg \exists y . \alpha$ case.
(e) $\psi:=\neg \alpha$. In this case, $\operatorname{push}(\neg \psi)$ is α. From this and $\operatorname{gen}(x, \operatorname{push}(\neg \psi)$), it follows $\operatorname{gen}(x, \alpha)$. From this and the induction hypothesis, it follows that $\operatorname{gen}\left(x, \alpha_{s, u}^{v}\right)$. From this, $\neg \neg \alpha_{s, u}^{v} \equiv \alpha_{s, u}^{v}$, and the Equiv rule, it follows that $\operatorname{gen}\left(x, \neg \neg \alpha_{s, u}^{v}\right)$. From this, $\neg \neg \alpha_{s, u}^{v} \equiv \neg(\neg \alpha)_{s, u}^{\neg v}$, and the Equiv rule, it follows that $\operatorname{gen}\left(x, \neg(\neg \alpha)_{s, u}^{v}\right)$. From this and $\psi:=$ $\neg \alpha$, it follows that $\operatorname{gen}\left(x, \neg \psi_{s, u}^{\neg v}\right)$. From this and $\phi_{s, u}^{v}:=\neg \psi_{s, u}^{\neg v}$, it follows that $\operatorname{gen}\left(x, \phi_{s, u}^{v}\right)$ holds.
(f) $\psi:=x=y$. The proof for this case is trivial.
(g) $\psi:=x \neq y$. The proof for this case is trivial.
4. $\phi:=\exists x \cdot \psi$. Assume that $\operatorname{gen}(x, \phi)$ holds. From this and the rule Exists, it follows that gen (x, ψ) holds. From this and the induction hypothesis, it follows that $\operatorname{gen}\left(x, \psi_{s, u}^{v}\right)$ holds. From this, $\phi_{s, u}^{v}:=\exists x . \psi_{s, u}^{v}$, and the rule Exists, it follows that $\operatorname{gen}\left(x, \phi_{s, u}^{v}\right)$ holds.
5. $\phi:=\forall x . \psi$. The proof of this case is similar to that of $\phi:=\exists x . \psi$.
This completes the proof of the induction step.
This completes the proof of our claim.
Proposition F.4. Let $M=\langle D, \Gamma\rangle$ be a system configuration, $s=\langle d b, U, s e c, T, V\rangle$ be an M-partial state, $u \in U$ be a user, $v \in\{\top, \perp\}$, and ϕ be a formula. For every subformula $\exists x . \psi$ of ϕ, if gen (x, ψ) holds and $x \in \operatorname{free}(\psi) \cap$ free $\left(\psi_{s, u}^{v}\right)$, then gen $\left(x, \psi_{s, u}^{v}\right)$ holds.

Proof. Let $M=\langle D, \Gamma\rangle$ be a system configuration, $s=$ $\langle d b, U, s e c, T, V\rangle$ be an M-partial state, $u \in U$ be a user, $v \in\{T, \perp\}$, and ϕ be a formula. We prove our claim by structural induction on the length of ϕ. In the following, the size of ϕ is the number of predicates, quantifiers, negations, conjunctions, and disjunctions in ϕ.
Base Case The claim is vacuously satisfied for the base cases as there is no sub-formula of the form $\exists x . \psi$.
Induction Step Assume that our claim holds for all formulae whose length is less than ϕ. We now show that our claim
holds also for ϕ. There are a number of cases depending on ϕ 's structure.

1. $\phi:=\psi \wedge \gamma$. Let α be a sub-formula of ϕ of the form $\exists x . \beta$ such that $\operatorname{gen}(x, \beta)$ holds and $x \in \operatorname{free}(\beta) \cap$ free $\left(\beta_{s, u}^{v}\right)$. The formula α is either a sub-formula of ψ or a subformula of γ. From this and the induction hypothesis, it follows that $\operatorname{gen}\left(x, \beta_{v, u}^{s}\right)$ holds.
2. $\phi:=\psi \vee \gamma$. The proof of this case is similar to that of $\phi:=\psi \wedge \gamma$.
3. $\phi:=\neg \psi$. Let α be a sub-formula of ϕ of the form $\exists x$. β such that $\operatorname{gen}(x, \beta)$ holds and $x \in \operatorname{free}(\beta) \cap$ free $\left(\beta_{s, u}^{v}\right)$. Since $\phi:=\neg \psi$, the formula α is also a sub-formula of ψ. From this and the induction hypothesis, it follows that $\operatorname{gen}\left(x, \beta_{v, u}^{s}\right)$ holds.
4. $\phi:=\exists x \cdot \psi$. Let α be a sub-formula of ϕ of the form $\exists x . \beta$ such that $\operatorname{gen}(x, \beta)$ holds and $x \in \operatorname{free}(\beta) \cap \operatorname{free}\left(\beta_{s, u}^{v}\right)$. There are two cases:
(a) α is a sub-formula of ψ. From this and the induction hypothesis, it follows that $\operatorname{gen}\left(x, \beta_{v, u}^{s}\right)$ holds.
(b) $\alpha=\phi$. From $\operatorname{gen}(x, \beta), x \in \operatorname{free}(\beta) \cap$ free $\left(\beta_{s, u}^{v}\right)$, and Proposition F.3 it follows that gen $\left(x, \beta_{s, u}^{v}\right)$ holds.
5. $\phi:=\forall x \cdot \psi$. The proof of this case is similar to that of $\phi:=\exists x . \psi$.
This completes the proof of the induction step.
This completes the proof of our claim.
Proposition F.5. Let $M=\langle D, \Gamma\rangle$ be a system configuration, $s=\langle d b, U, s e c, T, V\rangle$ be an M-partial state, $u \in U$ be a user, $v \in\{\top, \perp\}$, and ϕ be a formula. For every subformula $\forall x . \psi$ of ϕ, if gen (x, ψ) holds and $x \in \operatorname{free}(\psi) \cap$ free $\left(\psi_{s, u}^{v}\right)$, then gen $\left(x,(\neg \psi)_{s, u}^{v}\right)$ holds.

Proof. The proof is similar to that of Proposition F. 4
Proposition F.6. Let $M=\langle D, \Gamma\rangle$ be a system configuration, $s=\langle d b, U, s e c, T, V\rangle$ be an M-partial state, $u \in U$ be a user, $v \in\{\top, \perp\}$, and ϕ be a formula. Let $Q \in$ $\{\exists, \forall\}$ be a quantifier and $\operatorname{subs}_{Q}(\phi)$ be the set of sub-formulae of ϕ of the form $Q x . \psi$. There is a surjective function f from $\operatorname{subs}_{Q}(\phi)$ to $\operatorname{subs}_{Q}\left(\phi_{s, u}^{v}\right)$ such that for any $Q x . \psi$ in $\operatorname{subs}_{Q}(\phi)$, if $f(Q x . \psi)$ is defined, then $f(Q x . \psi)_{s, u}^{v}=Q x . \psi_{s, u}^{v}$
Proof. The claim follows trivially from the definition of $\phi_{s, u}^{v}$.

Lemma F.6. Let $M=\langle D, \Gamma\rangle$ be a system configuration, $s=\langle d b, U$, sec $, T, V\rangle$ be an M-partial state, $u \in U$ be a user, and ϕ be a formula. If ϕ is allowed and all views in V are allowed, then $\phi_{s, u}^{\top}, \phi_{s, u}^{\perp}$, and $\phi_{s, u}^{r w}$ are domain independent.

Proof. From Proposition F.3, Proposition F.4 Proposition F.5 and Proposition F.6 it follows that if ϕ is allowed, then both $\phi_{s, u}^{\top}$ and $\phi_{s, u}^{\perp}$ are allowed. Since every allowed formula is domain independent 45, it follows that both $\phi_{s, u}^{\top}$ and $\phi_{s, u}^{\perp}$ are domain independent. Finally, the domain independence of $\phi_{s, u}^{r w}$ follows easily from its definition and the domain independence of $\phi_{s, u}^{\top}$ and $\phi_{s, u}^{\perp}$.

We now prove the main result of this section, namely that the secure function is, indeed, a sound, under-approximation of the notion of judgment's security.

Lemma F.7. Let $P=\langle M, f\rangle$ be an extended configuration, L be the P-LTS, $u \in \mathcal{U}$ be a user, $r \in \operatorname{traces}(L)$ be an L-run, $\phi \in R C_{\text {bool }}$ is a sentence, and $1 \leq i \leq|r|$. Furthermore, let s be the i-th state in r. The following statements hold:

1. Given a judgment $r, i \vdash_{u} \phi$, if secure $(u, \phi, s)=\top$, then secure $_{P, u}^{\text {data }}\left(r, i \vdash_{u} \phi\right)$ holds.
2. Given a judgment $r, i \vdash_{u} \phi$, if secure $(u, \phi, s)=\top$, then secure $_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds.
Proof. Note that the second statement follows trivially from Lemma F. 2 and the first statement. Therefore, in the following we prove just that given a judgment $r, i \vdash_{u} \phi$, if secure $(u, \phi, s)=\mathrm{T}$, then secure ${ }_{P, u}^{\text {data }}\left(r, i \vdash_{u} \phi\right)$ holds.
Let $P=\langle M, f\rangle$ be an extended configuration, L be the P-LTS, $u \in \mathcal{U}$ be a user, $r \in \operatorname{traces}(L)$ be an L-run, $\phi \in$ $R C_{\text {bool }}$ is a sentence, and $1 \leq i \leq|r|$. Furthermore, let $s=\langle d b, U, s e c, T, V, c\rangle$ be the i-th state in r. Assume that $\operatorname{secure}(u, \phi, s)=T$. From this and secure's definition, $\left[\phi_{s, u}^{r w}\right]^{d b}$ $=\perp$. In the following, with a slight abuse of notation we ignore the inline and ext functions in $\phi_{s, u}^{r w}$'s definition. This is without loss of generality since inline and ext do not modify ϕ 's result. From this and $\phi_{s, u}^{r w}$'s definition, it follows that either $\left[\phi_{s, u}^{\top}\right]^{d b}=\top$ or $\left[\phi_{s, u}^{\perp}\right]^{d b}=\perp$. Note that from Lemma $F .4$ it follows that $\operatorname{secure}_{P, u}^{\text {data }}\left(r, i \vdash_{u} \phi_{s, u}^{\top}\right)$ and $\operatorname{secure}_{P, u}^{\text {data }}\left(r, i \vdash_{u} \phi_{s, u}^{\perp}\right)$. Furthermore, let Δ be the equivalence class $\llbracket p \operatorname{State}(s) \rrbracket_{u, M}^{\text {data }}$. There are two cases:
3. $\left[\phi_{s, u}^{\top}\right]^{d b}=\top$. From secure $e_{P, u}^{\text {data }}\left(r, i \vdash_{u} \phi_{s, u}^{\top}\right)$, it follows that for all $s^{\prime}, s^{\prime \prime} \in \Delta,\left[\phi_{s, u}^{\top}\right]^{]^{\prime} \cdot d b}=\left[\phi_{s, u}^{\top}\right]^{s^{\prime \prime}} \cdot d b$. From this, $s \in \Delta$, and $\left[\phi_{s, u}^{\top}\right]^{d b}=\top$, it follows that $\left[\phi_{s, u}^{\top}\right]^{s^{\prime} \cdot d b}=\top$ for all $s^{\prime} \in \Delta$. From Lemma $F .5$ it follows that for all $s^{\prime}, s^{\prime \prime} \in \Delta, \phi_{s, u}^{\top}=\phi_{s^{\prime}, u}^{\top}=\phi_{s^{\prime \prime}, u}^{\top}$. From this and the fact that for all $s^{\prime} \in \Delta,\left[\phi_{s, u}^{\top}\right]^{s^{\prime} \cdot d b}=\mathrm{T}$, it follows that for all $s^{\prime} \in \Delta,\left[\phi_{s^{\prime}, u}^{\top}\right]^{s^{\prime}} \cdot d b=T$. From this and Lemma F.3, it follows that for all $s^{\prime} \in \Delta$, $[\phi]^{s^{\prime} \cdot d b}=T$. From this, it follows that for all $s^{\prime}, s^{\prime \prime} \in$ $\Delta,[\phi]^{s^{\prime} \cdot d b}=[\phi]^{s^{\prime \prime} \cdot d b}$. From this, r 's definition, and secure $e_{P, u}^{\text {data }}$, it follows that $\operatorname{secure}_{P, u}^{\text {data }}\left(r, i \vdash_{u} \phi\right)$.
4. $\left[\phi_{s, u}^{\perp}\right]^{d b}=\perp$. From secure ${ }_{P, u}^{\text {data }}\left(r, i \vdash_{u} \phi_{s, u}^{\perp}\right)$, it follows that for all $s^{\prime}, s^{\prime \prime} \in \Delta,\left[\phi_{s, u}^{\perp}\right]^{s^{\prime} \cdot d b}=\left[\phi_{s, u}^{\perp}\right]^{s^{\prime \prime} \cdot d b}$. From this, $s \in \Delta$, and $\left[\phi_{s, u}^{\perp}\right]^{d b}=\perp$, it follows that $\left[\phi_{s, u}^{\perp}\right]^{s^{\prime} . d b}=\perp$ for all $s^{\prime} \in \Delta$. From Lemma F.5 it follows that for all $s^{\prime}, s^{\prime \prime} \in \Delta, \phi_{s, u}^{\perp}=\phi_{s^{\prime}, u}^{\perp}=\phi_{s^{\prime \prime}, u}^{\perp}$. From this and the fact that for all $s^{\prime} \in \Delta,\left[\phi_{s, u}^{\perp}\right]^{s^{\prime} \cdot d b}=\perp$, it follows that for all $s^{\prime} \in \Delta,\left[\phi_{s^{\prime}, u}^{\perp}\right]^{s^{\prime} \cdot d b}=\perp$. From this and Lemma F.3, it follows that for all $s^{\prime} \in \Delta$, $[\phi]^{s^{\prime} \cdot d b}=\perp$. From this, it follows that for all $s^{\prime}, s^{\prime \prime} \in$ $\Delta,[\phi]^{s^{\prime} \cdot d b}=[\phi]^{s^{\prime \prime} \cdot d b}$. From this, r 's definition, and secure $_{P, u}^{\text {data }}$, it follows that $\operatorname{secure}_{P, u}^{\text {data }}\left(r, i \vdash_{u} \phi\right)$.
This completes the proof of our claim.
Lemma $\sqrt[F .8]{ }$ proves that the secure function produces the same result for any two indistinguishable states.

Lemma F.8. Let M be a system configuration, $u \in U$ be a user, $s, s^{\prime} \in \Omega_{M}$ be two M-states such that pState $(s) \cong \cong_{u, M}^{\text {data }}$ p State (s^{\prime}), and ϕ be a sentence. Then, secure $(u, \phi, s)=\top$ iff secure $\left(u, \phi, s^{\prime}\right)=T$.

Proof. Let M be a system configuration, $u \in U$ be a user, $s=\langle d b, U, s e c, T, V, c\rangle$ and $s^{\prime}=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$ be two M-states such that $p \operatorname{State}(s) \cong{ }_{u, M}^{\text {data }} p \operatorname{SState}\left(s^{\prime}\right)$, and ϕ be a sentence. We now prove that $\operatorname{secure}(u, \phi, s)=\operatorname{secure}(u$, $\left.\phi, s^{\prime}\right)$. Assume, for contradiction's sake, that $\operatorname{secure}(u, \phi, s) \neq$ $\operatorname{secure}\left(u, \phi, s^{\prime}\right)$. From this, it follows that $\left[\phi_{s, u}^{r w}\right]^{d b} \neq\left[\phi_{s^{\prime}, u}^{r w}\right]^{] b^{\prime}}$. From $p \operatorname{State}(s) \cong_{u, M}^{\text {data }} p \operatorname{State}\left(s^{\prime}\right)$ and Lemma F.5 it follows
that $\phi_{s, u}^{r w}=\phi_{s^{\prime}, u}^{r w}$. From this and $\left[\phi_{s, u}^{r w}\right]^{d b} \neq\left[\phi_{s^{\prime}, u}^{r w}\right]^{d b^{\prime}}$, it follows that $\left[\phi_{s, u}^{r w}\right]^{d b} \neq\left[\phi_{s, u}^{r w}\right]^{d b^{\prime}}$. This contradicts secure ${ }_{P, u}^{\text {data }}(r, i$ $\vdash_{u} \phi_{s, u}^{r w}$), which has been proved in Lemma F. 4 This completes the proof of our claim.

F. 2 Data Confidentiality Proofs

In this section, we first prove some simple results about $f_{\text {conf }}^{u}$. Afterwards, we prove our main result, namely that $f_{\text {conf }}^{u}$ provides data confidentiality with respect to the user u.

Lemma F.9. Let $M=\langle D, \Gamma\rangle$ be a system configuration, $u \in \mathcal{U}$ be a user, s, $s^{\prime} \in \Omega_{M}$ be two M-states such that $p \operatorname{State}(s) \cong_{u, M}^{\text {data }}$ pState $\left(s^{\prime}\right)$, invoker $(s)=\operatorname{invoker}\left(s^{\prime}\right)$, and $\operatorname{tr}(s)=\operatorname{tr}\left(s^{\prime}\right)$, and a be an action in $\mathcal{A}_{D, \mathcal{U}}$. Then, $f_{\text {conf }}^{u}(s, a)$ $=f_{\text {conf }}^{u}\left(s^{\prime}, a\right)$.

Proof. Let $M=\langle D, \Gamma\rangle$ be a system configuration, $u \in \mathcal{U}$ be a user, $s=\langle d b, U, s e c, T, V, c\rangle$ and $s^{\prime}=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}\right.$, $\left.c^{\prime}\right\rangle$ be two M-states such that $p \operatorname{State}(s) \cong{ }_{u, M}^{\text {data }} \quad \operatorname{pState}\left(s^{\prime}\right)$, $\operatorname{invoker}(s)=\operatorname{invoker}\left(s^{\prime}\right)$, and $\operatorname{tr}(s)=\operatorname{tr}\left(s^{\prime}\right)$, and a be an action in $\mathcal{A}_{D, u}$. There are a number of cases depending on the action a.

1. $a=\left\langle u^{\prime}, \operatorname{SELECT}, \phi\right\rangle$. Assume, for contradiction's sake, that $f_{\text {conf }}^{u},(s, a) \neq f_{\text {conf }}^{u}\left(s^{\prime}, a\right)$. This happens iff secure (u, $\phi, s) \neq \operatorname{secure}\left(u, \phi, s^{\prime}\right)$. This contradicts Lemma F. 8 because $p \operatorname{State}(s) \cong{ }_{u, M}^{\text {data }}$ pState $\left(s^{\prime}\right)$.
2. $a=\left\langle u^{\prime}, \operatorname{INSERT}, R, \bar{t}\right\rangle$. We claim that noLeak $(s, a, u)=$ noLeak (s^{\prime}, a, u). Assume, for contradiction's sake, that $f_{\text {conf },}^{u}(s, a) \neq f_{\text {conf }}^{u}\left(s^{\prime}, a\right)$. This happens iff there is a formula ϕ, which has been derived using the getInfo, getInfoV , or getInfoD functions, such that secure (u, ϕ, $s) \neq \operatorname{secure}\left(u, \phi, s^{\prime}\right)$. This contradicts Lemma $F .8$ because $p \operatorname{State}(s) \cong{ }_{u, M}^{\text {data }}$ pState $\left(s^{\prime}\right)$.
We prove our claim that noLeak $(s, a, u)=n o \operatorname{Leak}\left(s^{\prime}, a\right.$, u) for any two states s and s^{\prime} such that $p \operatorname{State}(s) \cong{ }_{u, M}^{d a t a}$ $p \operatorname{State}\left(s^{\prime}\right)$. Assume, for contradiction's sake, that this is not the case. Without loss of generality we assume that $\operatorname{noLeak}(s, a, u)=\top$ and noLeak $\left(s^{\prime}, a, u\right)=\perp$. From noLeak $(s, a, u)=\top$, it follows that for all views V such that $\langle\oplus$, SELECT, $V\rangle \in \operatorname{permissions}(s, u)$ and $R \in$ $t \operatorname{Det}(V, s, M)$, for all $o \in t \operatorname{Det}(V, s, M),\langle\oplus, \operatorname{SELECT}, o\rangle$ is in permissions (s, u). From p State $(s) \cong \cong_{u, M}^{\text {data }}$ pState $\left(s^{\prime}\right)$, it follows that sec $=s e c^{\prime}$. From this, permissions (s, u) $=\operatorname{permissions}\left(s^{\prime}, u\right)$. From noLeak $\left(s^{\prime}, a, u\right)=\perp$, there are two views V^{\prime} and o such that $\left\langle\oplus\right.$, SELECT, $\left.V^{\prime}\right\rangle \in$ permissions $\left(s^{\prime}, u\right),\langle\oplus$, SELECT, $o\rangle \notin \operatorname{permissions}\left(s^{\prime}, u\right)$, $R \in \operatorname{Det}\left(V^{\prime}, s^{\prime}, M\right)$, and $o \in \operatorname{tet}\left(V^{\prime}, s^{\prime}, M\right)$. Note that $t \operatorname{Det}\left(V^{\prime}, s^{\prime}, M\right)=t \operatorname{Det}\left(V^{\prime}, s, M\right)$ because query determinacy does not consider the database state. From this and permissions $(s, u)=\operatorname{permissions}\left(s^{\prime}, u\right)$, it follows that there is a view V^{\prime} such that $\left\langle\oplus\right.$, SELECT, $\left.V^{\prime}\right\rangle \in$ permissions (s, u) and $R \in \operatorname{tDet}\left(V^{\prime}, s, M\right)$, such that there is a table $o \in t \operatorname{Det}\left(V^{\prime}, s, M\right)$ for which $\langle\oplus$, SELECT, o) $\notin \operatorname{permissions}(s, u)$. This contradicts noLeak (s, a, u) $=\mathrm{T}$.
3. $a=\left\langle u^{\prime}\right.$, DELETE, $\left.R, \bar{t}\right\rangle$. The proof of this case is similar to the $a=\left\langle u^{\prime}\right.$, INSERT, $\left.R, \bar{t}\right\rangle$ case.
4. $a=\left\langle o p, u^{\prime \prime}, p, u^{\prime}\right\rangle$, where $o p \in\left\{\oplus, \oplus^{*}\right\}$. Assume, for contradiction's sake, that $f_{\text {conf. }}^{u}(s, a) \neq f_{\text {conf }}^{u}\left(s^{\prime}, a\right)$. Note that this happens iff $p=\langle$ SELECT,$o\rangle$ for some o. Without loss of generality, we further assume that $f_{\text {conf }}^{u},(s, a)$ $=\top$ and $f_{\text {conf }}^{u}\left(s^{\prime}, a\right)=\perp$. From $f_{\text {conf },}^{u}(s, a)=\top$, it follows that $\langle\oplus$, SELECT, $o\rangle \in \operatorname{permissions}(s, u)$. From
$p \operatorname{State}(s) \cong{ }_{u, M}^{d a t a} p \operatorname{State}\left(s^{\prime}\right)$, it follows permissions (s, u) $=$ permissions $\left(s^{\prime}, u\right)$. From this and $\langle\oplus$, SELECT, $o\rangle \in$ permissions (s, u), it follows that $\langle\oplus, \operatorname{SELECT}, o\rangle$ is in permissions $\left(s^{\prime}, u\right)$. From $f_{\text {conf }}^{u},\left(s^{\prime}, a\right)=\perp$, it follows that $\langle\oplus$, $\operatorname{SELECT}, o\rangle \notin \operatorname{permissions}(s, u)$. This contra$\operatorname{dicts}\langle\oplus, \operatorname{SELECT}, o\rangle \in \operatorname{permissions}\left(s^{\prime}, u\right)$.
5. For any other action a, the proof is trivial.

This completes the proof of our claim.
Lemma F.10. Let P be an extended configuration, L be the P-LTS, $r \in \operatorname{traces}(L)$ be a run, u be a user, γ be a sentence, and Φ be a set of sentences such that $\Phi \models_{\text {fin }} \gamma$. If, for all $\phi \in \Phi$, secure $_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds and $[\phi]^{\text {last }(r) \cdot d b}=\top$, then secure ${ }_{P, u}\left(r, i \vdash_{u} \gamma\right)$ holds and $[\gamma]^{\text {last }\left(r^{i}\right) \cdot d b}=\top$.

Proof. Let P be an extended configuration, L be the P LTS, $r \in \operatorname{traces}(L)$ be a run, u be a user, γ be a sentence, and Φ be a set of sentences such that $\Phi \models_{\text {fin }} \gamma$ such that for all $\phi \in \Phi, \operatorname{secure}_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds and $[\phi]^{\text {last }\left(r^{i}\right) \cdot d b}=\top$. We now show that $\operatorname{secure}_{P, u}\left(r, i \vdash_{u} \gamma\right)$ holds and $[\gamma]^{\text {last }\left(r^{i}\right) \cdot d b}=$ \top. From $\Phi \models_{\text {fin }} \gamma$, the fact that for all $\phi \in \Phi,[\phi]^{\text {last }\left(r^{i}\right) \cdot d b}=$ \top, and $\models_{\text {fin }}$'s definition, it follows that $[\gamma]^{\text {last }\left(r^{i}\right) \cdot d b}=\top$. Assume, for contradiction's sake, that secure ${ }_{P, u}\left(r, i \vdash_{u} \gamma\right)$ does not hold. From this and $[\gamma]^{\text {last }\left(r^{i}\right) \cdot d b}=\top$, it follows that there is a run $r^{\prime} \in \operatorname{traces}(L)$ such that $r^{i} \cong_{P, u} r^{\prime}$ such that $[\gamma]^{\text {last }\left(r^{\prime}\right) \cdot d b}=\perp$. We claim that for all $\phi \in \Phi,[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b}=$ T. From this and $\Phi \models_{\text {fin }} \gamma$, it follows that $[\gamma]^{\text {last }\left(r^{\prime}\right) \cdot d b}=T$, which contradicts $[\gamma]^{\text {last }\left(r^{\prime}\right) \cdot d b}=\perp$.
We now prove our claim that for all $\phi \in \Phi,[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b}=$ \top for any trace r^{\prime} such that $r^{i} \cong_{P, u} r^{\prime}$. From secure ${ }_{P, u}\left(r, i \vdash_{u}\right.$ $\phi)$, it follows that $[\phi]^{\text {last }\left(r^{i}\right) \cdot d b}=[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b}$. From this and $[\phi]^{\text {last }\left(r^{i}\right) \cdot d b}=T$, it follows that $[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b}=T$.

Before proving our main result, namely that $f_{\text {conf }}^{u}$ provides data confidentiality for the user u, we introduce the concept of an action that preserves the equivalence class induced by the indistinguishability relation $\cong_{P, u}$.

Definition F.3. Let $P=\langle M, f\rangle$ be an extended configuration, where $M=\langle D, \Gamma\rangle$ is a system configuration and f is an M-PDP, L be the P-LTS, $r \in \operatorname{traces}(L)$ be a run, a be an action in $\mathcal{A}_{D, \mathcal{U}} \cup \mathcal{T} \mathcal{R} \mathcal{I} \mathcal{G} \mathcal{E} \mathcal{R}_{D}$, and u be a user in \mathcal{U}. We denote by $\operatorname{extend}(r, a)$, where r is a run and a is an action, the run $r^{\prime} \in \operatorname{traces}(L)$, where $s \in \Omega_{M}$ and $r^{\prime}=r \cdot a \cdot s$, obtained by executing the action a at the end of the run r^{\prime}. If there is no such run, then $\operatorname{extend}(r, a)$ is undefined. We say that a preserves the equivalence class for r, P, and u iff (1) extend (r, a) is defined, and (2) there is a bijection b between $\llbracket r \rrbracket_{P, u}$ and $\llbracket \operatorname{extend}(r, a) \rrbracket_{P, u}$ such that for all $r^{\prime} \in \llbracket r \rrbracket_{P, u}, \operatorname{extend}\left(r^{\prime}, a\right)$ is defined and $b\left(r^{\prime}\right)=\operatorname{extend}\left(r^{\prime}, a\right)$.

Lemma F.11. Let $P=\langle M, f\rangle$ be an extended configuration, where $M=\langle D, \Gamma\rangle$ is a system configuration and f is an $M-P D P, L$ be the $P-L T S, u$ be a user in \mathcal{U}, r be a run in $\operatorname{traces}(L), a \in \mathcal{A}_{D, u}$ be an INSERT or DELETE action $\langle u, o p, R, \bar{t}\rangle, \phi$ be a sentence, and i be such that $1 \leq i \leq|r|$, $\operatorname{triggers}\left(\operatorname{last}\left(r^{i}\right)\right)=\epsilon$, and $r^{i+1}=\operatorname{extend}\left(r^{i}, a\right) . \operatorname{If}(1)$ a preserves the equivalence class for r^{i}, P, and u, and (2) the execution of a does not change any table in tables (ϕ) for any run $v \in \llbracket r^{i} \rrbracket_{P, u}$, then secure $_{P, u}\left(r, i \vdash_{u} \quad \phi\right)$ holds iff secure $_{P, u}\left(r, i+1 \vdash_{u} \phi\right)$ holds.

Proof. Let $P=\langle M, f\rangle$ be an extended configuration, where $M=\langle D, \Gamma\rangle$ is a system configuration and f is an M-PDP, L be the P-LTS, u be a user in \mathcal{U}, r be a run in traces $(L), a \in \mathcal{A}_{D, u}$ be an INSERT or DELETE action $\langle u, o p, R, \bar{t}\rangle, \phi$ be a sentence, and i be such that $1 \leq i \leq|r|$, $\operatorname{triggers}\left(\operatorname{last}\left(r^{i}\right)\right)=\epsilon$, and $r^{i+1}=\operatorname{extend}\left(r^{i}, a\right)$. Assume that (1) a preserves the equivalence class for r^{i}, P, and u, and (2) the execution of a does not change any table in $\operatorname{tables}(\phi)$ for any run $v \in \llbracket r^{i} \rrbracket_{P, u}$. Without loss of generality, assume that a is an INSERT action. In the following, we denote the extend function by e. Furthermore, we also denote the fact that $\operatorname{secure}_{P, u}(r, i, u, \phi)$ does not hold as \neg secure $_{P, u}(r, i, u, \phi)$. From Definition F. 3 and a preserves the equivalence class for r^{i}, P, and u, it follows that $e\left(r^{\prime}, a\right)$ is defined for any $r^{\prime} \in \llbracket r^{i} \rrbracket_{P, u}$. Assume, for contradiction's sake, that our claim does not hold. There are two cases:

- $\operatorname{secure}_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds and $\operatorname{secure}_{P, u}\left(r, i+1 \vdash_{u} \phi\right)$ does not hold. From $\operatorname{secure}_{P, u}\left(r, i \vdash_{u} \phi\right)$, it follows that for all $r^{\prime} \in \llbracket r^{i} \rrbracket_{P, u},[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b}=[\phi]^{\text {last }\left(r^{i}\right) \cdot d b}$. We claim that $[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b}=[\phi]^{\text {last }\left(e\left(r^{\prime}, a\right)\right) \cdot d b}$ holds for any $r^{\prime} \in$ $\llbracket r^{i} \rrbracket_{P, u}$. From this and $[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b}=[\phi]^{\text {last }\left(r^{i}\right) \cdot d b}$ for all $r^{\prime} \in \llbracket r^{i} \rrbracket_{P, u}$, it follows that $[\phi]^{\text {last }\left(r^{i}\right) \cdot d b}=[\phi]^{\text {last }\left(e\left(r^{\prime}, a\right)\right) \cdot d b}$ holds for any $r^{\prime} \in \llbracket r^{i} \rrbracket_{P, u}$. From $\neg \operatorname{secure}_{P, u}\left(r, i+1 \vdash_{u}\right.$ $\phi)$, it follows that there is a run $r^{\prime} \in \llbracket r^{i+1} \rrbracket_{P, u}$ such that $[\phi]^{\text {last }\left(r^{i+1}\right) \cdot d b} \neq[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b}$. From this, $[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b}=$ $[\phi]^{\text {last }\left(e\left(r^{\prime}, a\right)\right) \cdot d b}$ for any $r^{\prime} \in \llbracket r^{i} \rrbracket_{P, u}$, and $e\left(r^{i}, a\right)=r^{i+1}$, it follows that $[\phi]^{\text {last }\left(r^{i}\right) \cdot d b} \neq[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b}$. Let b be the bijection showing that a preserves the equivalence class with respect to r^{i}, P, and u. From $e\left(r^{i}, a\right)=r^{i+1}$ and $r^{\prime} \in \llbracket r^{i+1} \rrbracket_{P, u}$, it follows that $r^{\prime} \in \llbracket e\left(r^{i}, a\right) \rrbracket_{P, u}$. From this, it follows that there is a $r^{\prime \prime}=b^{-1}\left(r^{\prime}\right)$ such that $r^{\prime \prime} \in \llbracket r^{i} \rrbracket_{P, u}$ and $e\left(r^{\prime \prime}, a\right)=r^{\prime}$. From this and $[\phi]^{\text {last }(v) \cdot d b}=[\phi]^{\text {last }(e(v, a)) \cdot d b}$ for any $v \in \llbracket r^{i} \rrbracket_{P, u}$, it follows that $[\phi]^{\text {last }\left(r^{\prime \prime}\right) \cdot d b}=[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b}$. From this and $[\phi]^{\text {last }\left(r^{i}\right) \cdot d b} \neq[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b}$, it follows that $[\phi]^{\text {last }\left(r^{i}\right) \cdot d b} \neq$ $[\phi]^{\text {last }\left(r^{\prime \prime}\right) \cdot d b}$. This contradicts the fact that for all $r^{\prime} \in$ $\llbracket r^{i} \rrbracket_{P, u},[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b}=[\phi]^{\text {last }\left(r^{i}\right) \cdot d b}$. Indeed, $r^{\prime \prime} \in \llbracket r^{i} \rrbracket_{P, u}$ and $[\phi]^{\text {last }\left(r^{i}\right) \cdot d b} \neq[\phi]^{\text {last }\left(r^{\prime \prime}\right) \cdot d b}$.
We prove our claim that $[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b}=[\phi]^{\text {last }\left(e\left(r^{\prime}, a\right)\right) \cdot d b}$ holds for any $r^{\prime} \in \llbracket r^{i} \rrbracket_{P, u}$. Assume that this is not the case. This implies that the content of one of the relations that determines ϕ is different in last $\left(r^{\prime}\right) \cdot d b$ and $\operatorname{last}\left(e\left(r^{\prime}, a\right)\right) . d b$. This is impossible. Indeed, if a 's execution has been successful, i.e., $\sec \operatorname{Ex}\left(\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)\right)=$ \perp and $\operatorname{Ex}\left(\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)\right)=\emptyset$, then a 's execution does not change any table in tables (ϕ), and the set of relations that determines ϕ is always a subset of tables (ϕ). This leads to a contradiction, and, therefore, $[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b}$ $=[\phi]^{\text {last }\left(e\left(r^{\prime}, a\right)\right) \cdot d b}$ holds. Similarly, if a^{\prime} 's execution has not been successful, i.e., $\sec E x\left(\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)\right)=\top$ or $\operatorname{Ex}\left(\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)\right) \neq \emptyset$, then last $\left(r^{\prime}\right) \cdot d b$ is the same as last $\left(e\left(r^{\prime}, a\right)\right) . d b$, and the claim holds trivially.
- $\operatorname{secure}_{P, u}\left(r, i+1 \vdash_{u} \phi\right)$ holds and $\operatorname{secure}_{P, u}\left(r, i \vdash_{u} \phi\right)$ does not hold. We have already shown that $[\phi]^{\operatorname{last}\left(r^{\prime}\right) \cdot d b}$ $=[\phi]^{\text {last }\left(e\left(r^{\prime}, a\right)\right) \cdot d b}$ holds for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. From \neg secure $_{P, u}\left(r, i \vdash_{u} \phi\right)$, it follows that there is $r^{\prime} \in \llbracket r^{i} \rrbracket_{P, u}$ such that $[\phi]^{\text {last }\left(r^{i}\right) \cdot d b} \neq[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b}$. Let b the bijection showing that a preserves the equivalence class with respect to r, P, and u. Since $r^{\prime} \in \llbracket r^{i} \rrbracket_{P, u}$, then let $r^{\prime \prime}=$
$b\left(r^{\prime}\right)=e\left(r^{\prime}, a\right)$. From $[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b}=[\phi]^{\text {last }\left(e\left(r^{\prime}, a\right)\right) \cdot d b}$ holds for any $r^{\prime} \in \llbracket r^{i} \rrbracket_{P, u}$, it follows that $[\phi]^{\text {last }\left(r^{i}\right) \cdot d b} \neq$ $[\phi]^{\text {last }\left(e\left(r^{\prime}, a\right)\right) \cdot d b}$. From this, $e\left(r^{i}, a\right)=r^{i+1}$, and the fact that $[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b}=[\phi]^{\text {last }\left(e\left(r^{\prime}, a\right)\right) \cdot d b}$ holds for any $r^{\prime} \in$ $\llbracket r \rrbracket_{P, u}$, it follows that $[\phi]^{\text {last }\left(r^{i+1}\right) \cdot d b} \neq[\phi]^{\text {last }\left(e\left(r^{\prime}, a\right)\right) \cdot d b}$. From this and $e\left(r^{\prime}, a\right) \in \llbracket r^{i+1} \rrbracket_{P, u}$, it follows \neg secure $_{P, u}$ $\left(r, i+1 \vdash_{u} \phi\right)$. This contradicts the fact that $\operatorname{secure}_{P, u}(r$, $\left.i+1 \vdash_{u} \phi\right)$ holds.
This completes the proof.
Lemma F.12. Let $P=\langle M, f\rangle$ be an extended configuration, where $M=\langle D, \Gamma\rangle$ is a system configuration and f is an M-PDP, L be the P-LTS, u be a user in \mathcal{U}, r be a run in $\operatorname{traces}(L), a \in \mathcal{A}_{D, u}$ be a SELECT or CREATE action, ϕ be a sentence, and i be such that $1 \leq i \leq|r|$, $\operatorname{triggers}\left(\operatorname{last}\left(r^{i}\right)\right)=$ ϵ, and $r^{i+1}=\operatorname{extend}\left(r^{i}, a\right)$. If a preserves the equivalence class for r^{i}, P, and u, then secure ${ }_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds iff secure $_{P, u}\left(r, i+1 \vdash_{u} \phi\right)$ holds.

Proof. Proof similar to that of Lemma F. 11
Lemma F.13. Let $P=\langle M, f\rangle$ be an extended configuration, where $M=\langle D, \Gamma\rangle$ is a system configuration and f is an M-PDP, L be the P-LTS, u be a user in \mathcal{U}, r be a run in $\operatorname{traces}(L), a \in \mathcal{A}_{D, u}$ be a GRANT or REVOKE action, ϕ be a sentence, and i be such that $1 \leq i \leq|r|$, $\operatorname{triggers}\left(\operatorname{last}\left(r^{i}\right)\right)=\epsilon$, and $r^{i+1}=\operatorname{extend}\left(r^{i}, a\right)$. If a preserves the equivalence class for r^{i}, P, and u, then secure ${ }_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds iff secure $_{P, u}\left(r, i+1 \vdash_{u} \phi\right)$ holds.

Proof. Proof similar to that of Lemma F. 11
Lemma F.14. Let $P=\langle M, f\rangle$ be an extended configuration, where $M=\langle D, \Gamma\rangle$ is a system configuration and f is an M-PDP, L be the P-LTS, u be a user in \mathcal{U}, r be a run in traces (L), a be a trigger in $\mathcal{T} \mathcal{R} \mathcal{I G G E R}_{D}$, ϕ be a sentence, and i be such that $1 \leq i \leq|r|$, invoker $\left(\operatorname{last}\left(r^{i}\right)\right)=u$, and $r^{i+1}=\operatorname{extend}\left(r^{i}, a\right)$. If (1) a preserves the equivalence class for r^{i}, P, and u, (2) if a's action is either an INSERT or DELETE, then t 's execution does not change any table in tables (ϕ) for any run $v \in \llbracket r^{i} \rrbracket_{P, u}$, and (3) secEx (last(extend $\left.\left(r^{i}, a\right)\right)=\perp$ and $\operatorname{Ex}\left(\operatorname{last}\left(\operatorname{extend}\left(r^{i}, a\right)\right)=\emptyset\right.$, then $\operatorname{secure}_{P, u}(r$, $\left.i \vdash_{u} \phi\right)$ holds iff $\operatorname{secure}_{P, u}\left(r, i+1 \vdash_{u} \phi\right)$ holds.

Proof. Let $P=\langle M, f\rangle$ be an extended configuration, where $M=\langle D, \Gamma\rangle$ is a system configuration and f is an M-PDP, L be the P-LTS, u be a user in \mathcal{U}, r be a run in $\operatorname{traces}(L), a$ be a trigger in $\mathcal{T} \mathcal{R} \mathcal{G G E R}_{D}, \phi$ be a sentence, and i be such that $1 \leq i \leq|r|$, invoker $\left(\operatorname{last}\left(r^{i}\right)\right)=u$, and $r^{i+1}=\operatorname{extend}\left(r^{i}, a\right)$. Assume also (1) that a preserves the equivalence class for r^{i}, P, and u, and (2) secEx (last (extend $\left.\left(r^{i}, a\right)\right)=\perp$ and $\operatorname{Ex}\left(\operatorname{last}\left(\operatorname{extend}\left(r^{i}, a\right)\right)=\emptyset\right.$. In the following, we denote the extend function by e. Furthermore, we also denote the fact that $\operatorname{secure}_{P, u}\left(r, i \vdash_{u} \phi\right)$ does not hold as \neg secure $_{P, u}\left(r, i \vdash_{u} \phi\right)$. From Definition F. 3 and the fact that a preserves the equivalence class for r^{2}, P, and u, it follows that $e\left(r^{\prime}, a\right)$ is defined for any $r^{\prime} \in \llbracket r^{i} \rrbracket_{P, u}$. Assume, for contradiction's sake, that our claim does not hold. There are two cases:

- $\operatorname{secure}_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds and $\operatorname{secure}_{P, u}\left(r, i+1 \vdash_{u} \phi\right)$ does not hold. From $\operatorname{secure}_{P, u}\left(r, i \vdash_{u} \phi\right)$, it follows that $[\phi]^{\text {last }\left(r^{i}\right) \cdot d b}=[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b}$ for any $r^{\prime} \in \llbracket r^{i} \rrbracket_{P, C}$. We claim that $[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b}=[\phi]^{\text {last }\left(e\left(r^{\prime}, a\right)\right) \cdot d b}$ holds for any $r^{\prime} \in \llbracket r^{i} \rrbracket_{P, u}$. From \neg secure $_{P, u}\left(r, i+1 \vdash_{u} \phi\right)$, it follows
that there is a $r^{\prime \prime} \in \llbracket r^{i+1} \rrbracket_{P, u}$ such that $[\phi]^{\text {last }\left(r^{\prime \prime}\right) \cdot d b} \neq$ $[\phi]^{\text {last }\left(r^{i+1}\right) \cdot d b}$. Let b the bijection showing that a preserves the equivalence class with respect to r^{i}, P, and u. Since $r^{i+1}=e\left(r^{i}, a\right)$ and $r^{\prime} \in \llbracket e(r, a) \rrbracket_{P, u}$, then there is a run $v \in \llbracket r^{i} \rrbracket_{P, u}$ such that $v=b^{-1}\left(r^{\prime \prime}\right)$. From this, $[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b}=[\phi]^{\text {last }\left(e\left(r^{\prime}, a\right)\right) \cdot d b}$ holds for any $r^{\prime} \in$ $\llbracket r^{i} \rrbracket_{P, u}$, and the fact that $[\phi]^{\text {last }\left(r^{\prime \prime}\right) \cdot d b} \neq[\phi]^{\text {last }\left(r^{i+1}\right) \cdot d b}$, it follows that $[\phi]^{\text {last }(v) \cdot d b} \neq[\phi]^{\text {last }\left(r^{i+1}\right) \cdot d b}$. From this, $[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b}=[\phi]^{\text {last }\left(e\left(r^{\prime}, a\right)\right) \cdot d b}$ holds for any $r^{\prime} \in \llbracket r^{i} \rrbracket_{P, u}$, and $r^{i+1}=e\left(r^{i}, a\right)$, it follows $[\phi]^{\text {last }(v) \cdot d b} \neq[\phi]^{\text {last }\left(r^{2}\right) \cdot d b}$. This contradicts the fact that $[\phi]^{\text {last }\left(r^{i}\right) \cdot d b}=[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b}$ for any $r^{\prime} \in \llbracket r^{i} \rrbracket_{P, C}$.
We now prove that $[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b}=[\phi]^{\text {last }\left(e\left(r^{\prime}, a\right)\right) \cdot d b}$ holds for any $r^{\prime} \in \llbracket r^{i} \rrbracket_{P, u}$. Assume, for contradiction's sake, that there is a run $r^{\prime} \in \llbracket r^{i} \rrbracket_{P, u}$ such that $[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b} \neq$ $[\phi]^{\text {last }\left(e\left(r^{\prime}, a\right)\right) \cdot d b}$. There are three cases:
- the trigger a is not enabled in $e\left(r^{\prime}, a\right)$. From this and the LTS semantics, it follows that last $\left(r^{\prime}\right) \cdot d b=$ last $\left(e\left(r^{\prime}, a\right)\right) . d b$. From this, it therefore follows that $[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b}=[\phi]^{\text {last }\left(e\left(r^{\prime}, a\right)\right) \cdot d b}$. This contradicts our assumption.
- the trigger a is enabled in $e\left(r^{\prime}, a\right)$ and its action is a GRaNT or a REvoke. From this and the LTS semantics, it therefore follows that last $\left(r^{\prime}\right) \cdot d b=$ last $\left(e\left(r^{\prime}, a\right)\right) . d b$. From this, it thus follows that $[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b}=[\phi]^{\text {last }\left(e\left(r^{\prime}, a\right)\right) \cdot d b}$. This contradicts our assumption.
- the trigger a is enabled in $e\left(r^{\prime}, a\right)$ and its action is a INSERT or a GRANT. Thus, from $[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b} \neq$ $[\phi]^{\text {last }\left(e\left(r^{\prime}, a\right)\right) \cdot d b}$, it follows that the content of one of the relations that determines ϕ is different in last $\left(r^{\prime}\right) \cdot d b$ and last $\left(e\left(r^{\prime}, a\right)\right) . d b$. This contradicts the fact that the a 's execution does not change the tables in tables (ϕ) for any run $r^{\prime} \in \llbracket r^{i} \rrbracket_{P, u}$.
- $\operatorname{secure}_{P, u}\left(r, i+1 \vdash_{u} \phi\right)$ holds and $\operatorname{secure}_{P, u}\left(r, i \vdash_{u} \phi\right)$ does not hold. We have already shown that $[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b}$ $=[\phi]^{\text {last }\left(e\left(r^{\prime}, a\right)\right) . d b}$ holds for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. From \neg secure $_{P, u}\left(r, i \vdash_{u} \phi\right)$, it follows that there is $r^{\prime} \in \llbracket r^{i} \rrbracket_{P, u}$ such that $[\phi]^{\text {last }\left(r^{i}\right) \cdot d b} \neq[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b}$. Let b the bijection showing that a preserves the equivalence class with respect to r, P, and u. Since $r^{\prime} \in \llbracket r^{i} \rrbracket_{P, u}$, then let $r^{\prime \prime}=$ $b\left(r^{\prime}\right)=e\left(r^{\prime}, a\right)$. From $[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b}=[\phi]^{\text {last }\left(e\left(r^{\prime}, a\right)\right) \cdot d b}$ holds for any $r^{\prime} \in \llbracket r^{i} \rrbracket_{P, u}$, it follows that $[\phi]^{\text {last }\left(r^{i}\right) \cdot d b} \neq$ $[\phi]^{\text {last }\left(e\left(r^{\prime}, a\right)\right) \cdot d b}$. From this, $e\left(r^{i}, a\right)=r^{i+1}$, and the fact that $[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b}=[\phi]^{\text {last }\left(e\left(r^{\prime}, a\right)\right) \cdot d b}$ holds for any $r^{\prime} \in$ $\llbracket r \rrbracket_{P, u}$, it follows that $[\phi]^{\text {last }\left(r^{i+1}\right)} \cdot d b \neq[\phi]^{\text {last }\left(e\left(r^{\prime}, a\right)\right) \cdot d b}$. From this and $e\left(r^{\prime}, a\right) \in \llbracket r^{i+1} \rrbracket_{P, u}$, it follows \neg secure $_{P, u}$ $\left(r, i+1 \vdash_{u} \phi\right)$. This contradicts $\operatorname{secure}_{P, u}\left(r, i+1 \vdash_{u} \phi\right)$. This completes the proof.

Proposition F.7. Let $P=\langle M, f\rangle$ be an extended configuration, where $M=\langle D, \Gamma\rangle$ is a system configuration and f is an M-PDP, L be the P-LTS, $a \in \mathcal{A}_{D, u}$ be an INSERT or DELETE action, and r be a run such that $\operatorname{tr}(\operatorname{last}(r))=\epsilon$. For any constraint γ in $\operatorname{Dep}(\Gamma, a)$, the following statements hold:

- $[\operatorname{getInfoS}(\gamma, a)]^{\operatorname{last}(r) \cdot d b}=\top$ iff $\gamma \notin \operatorname{Ex}(\operatorname{last}(\operatorname{extend}(r, a)))$, and
- $[\text { getInfo } V(\gamma, a)]^{\operatorname{last}(r) \cdot d b}=\top i f f \gamma \in \operatorname{Ex}(\operatorname{last}(\operatorname{extend}(r, a)))$.

Proof. Let $P=\langle M, f\rangle$ be an extended configuration, where $M=\langle D, \Gamma\rangle$ is a system configuration and f is an M PDP, L be the P-LTS, $a \in \mathcal{A}_{D, u}$ be an INSERT or DELETE action, and r be a run such that $\operatorname{tr}(\operatorname{last}(r))=\epsilon$. Furthermore, let γ be a constraint in $\operatorname{Dep}(\Gamma, a)$. We first note that $\operatorname{getInfo} S(\gamma, a)=\neg \operatorname{getInfo} V(\gamma, a)$. From this, it follows trivially that we can prove just one of the two claims. We thus prove that $[\operatorname{getInfo} S(\gamma, a)]^{\text {last }(r) . d b}=\top$ iff $\gamma \notin$ $E x(\operatorname{last}(\operatorname{extend}(r, a)))$. There are two cases:

1. $a=\langle u$, INSERT, $R, \bar{t}\rangle$. There are two cases depending on γ :
(a) γ is of the form $\forall \bar{x}, \bar{y}, \bar{y}^{\prime}, \bar{z}, \bar{z}^{\prime} .\left(R(\bar{x}, \bar{y}, \bar{z}) \wedge R\left(\bar{x}, \bar{y}^{\prime}\right.\right.$, $\left.\left.\bar{z}^{\prime}\right)\right) \Rightarrow \bar{y}=\bar{y}^{\prime}$. Let \bar{t} be $(\bar{v}, \bar{w}, \bar{q}), d b$ be the state last $(r) . d b$, and $d b^{\prime}$ be the state $d b[R \oplus \bar{t}]$.
(\Rightarrow) Assume that $[\operatorname{getInfo}(\gamma, a)]^{\text {last }(r) \cdot d b}=\mathrm{T}$. From this and $\operatorname{getInfo} S(\gamma, a)$'s definition, it follows that for all tuples $\left(\bar{v}, \bar{w}^{\prime}, \bar{q}^{\prime}\right) \in d b(R)$, then $\bar{w}^{\prime}=\bar{w}$. From a 's definition and the LTS semantics, it follows that $d b^{\prime}(R)=d b(R) \cup\{(\bar{v}, \bar{w}, \bar{q})\}$. From this and the fact that for all tuples $\left(\bar{v}, \bar{w}^{\prime}, \bar{q}^{\prime}\right) \in d b(R)$, then $\bar{w}^{\prime}=\bar{w}$, it follows that for all tuples $\left(\bar{v}, \bar{w}^{\prime}, \bar{q}^{\prime}\right)$ $\in d b^{\prime}(R)$, then $\bar{w}^{\prime}=\bar{w}$. Furthermore, since $d b \in$ Ω_{D}^{Γ}, it follows that for all tuples ($\left.\bar{v}^{\prime}, \bar{w}^{\prime}, \bar{q}^{\prime}\right),\left(\bar{v}^{\prime \prime}, \bar{w}^{\prime \prime}\right.$, $\left.\bar{q}^{\prime \prime}\right) \in d b^{\prime}(R)$, if $\bar{v}^{\prime}=\bar{v}^{\prime \prime}$ and $\bar{v}^{\prime} \neq \bar{v}$, then $\bar{w}^{\prime}=\bar{w}$. Therefore, it follows that for all tuples ($\bar{v}^{\prime}, \bar{w}^{\prime}, \bar{q}^{\prime}$), $\left(\bar{v}^{\prime \prime}, \bar{w}^{\prime \prime}, \bar{q}^{\prime \prime}\right) \in d b^{\prime}(R)$, if $\bar{v}^{\prime}=\bar{v}^{\prime \prime}$, then $\bar{w}^{\prime}=\bar{w}$. Therefore, $[\gamma]^{d b^{\prime}}=T$. From this and the LTS semantics, it follows that $\gamma \notin \operatorname{Ex}(\operatorname{last}(\operatorname{extend}(r, a)))$. (\Leftarrow) Assume that $\gamma \notin \operatorname{Ex}(\operatorname{last}(\operatorname{extend}(r, a))))$. From this and the LTS semantics, it follows that $[\gamma]^{d b^{\prime}}=$ T. Therefore, for any two tuples ($\bar{v}^{\prime}, \bar{w}^{\prime}, \bar{q}^{\prime}$) and $\left(\bar{v}^{\prime \prime}, \bar{w}^{\prime \prime}, \bar{q}^{\prime \prime}\right) \in d b^{\prime}(R)$, if $\bar{v}^{\prime}=\bar{v}^{\prime \prime}$, then $\bar{w}^{\prime}=\bar{w}$. Assume, for contradiction's sake, that $[\operatorname{getInfo} S(\gamma, a)]^{d b}$ $=\perp$. This means that there is a tuple $\left(\bar{v}, \bar{w}^{\prime}, \bar{q}^{\prime}\right)$ in $d b(R)$ such that $\bar{w}^{\prime} \neq \bar{w}$. From $d b^{\prime}=d b[R(\bar{v}, \bar{w}, \bar{q})]$ and the LTS semantics, it follows that both ($\bar{v}, \bar{w}^{\prime}, \bar{q}^{\prime}$) and $(\bar{v}, \bar{w}, \bar{q})$ are in $d b^{\prime}(R)$. From this and $\bar{w}^{\prime} \neq$ \bar{w}, it follows that there are two tuples $(\bar{v}, \bar{w}, \bar{q})$ and ($\bar{v}, \bar{w}^{\prime}, \bar{q}^{\prime}$) in $d b(R)$ such that $\bar{w}^{\prime} \neq \bar{w}$. From this and the relational calculus semantics, it follows that $[\gamma]^{d b}=\perp$. This is in contradiction with $[\gamma]^{d b^{\prime}}=\mathrm{T}$.
(b) γ is of the form $\forall \bar{x}, \bar{z} \cdot R(\bar{x}, \bar{z}) \Rightarrow \exists \bar{w} \cdot S(\bar{x}, \bar{w})$. Let \bar{t} be $(\bar{v}, \bar{w}), d b$ be the state last $(r) . d b$, and $d b^{\prime}$ be the state $d b[R \oplus \bar{t}]$.
(\Rightarrow) Assume that $[\operatorname{getInfo} S(\gamma, a)]^{d b}=\mathrm{T}$. From this and $\operatorname{getInfo} S(\gamma, a)$'s definition, it follows that there is a tuple (\bar{v}, \bar{y}) in $d b(S)$. From a 's definition and the LTS semantics, it follows that $d b^{\prime}(S)=d b(S)$. From this, it follows that there is a tuple (\bar{v}, \bar{y}) in $d b^{\prime}(S)$. Furthermore, since $d b \in \Omega_{D}^{\Gamma}$, it follows that for all tuples $\left(\bar{v}^{\prime}, \bar{w}^{\prime}\right) \in d b(R)$, if $\bar{v}^{\prime} \neq \bar{v}$, there is a tuple $\left(\bar{v}^{\prime}, \bar{y}^{\prime}\right) \in d b(S)$. From this and $\overline{d b}^{\prime}=$ $d b[R \oplus(\bar{v}, \bar{w})]$, it follows that for all tuples $\left(\bar{v}^{\prime}, \bar{w}^{\prime}\right) \in$ $d b^{\prime}(R)$, there is a tuple $\left(\bar{v}^{\prime}, \bar{y}^{\prime}\right) \in d b^{\prime}(S)$. Therefore, $[\gamma]^{d b^{\prime}}=\mathrm{T}$. From this and the LTS semantics, it follows that $\gamma \notin \operatorname{Ex}(\operatorname{last}(\operatorname{extend}(r, a)))$.
(\Leftarrow) Assume that $\gamma \notin \operatorname{Ex}(\operatorname{last}(\operatorname{extend}(r, a)))$. From this and the LTS semantics, it follows that $[\gamma]^{d b^{\prime}}=$ T. Therefore, for any tuple $\left(\bar{v}^{\prime}, \bar{w}^{\prime}\right) \in d b^{\prime}(R)$, there is a tuple $\left(\bar{v}^{\prime}, \bar{y}^{\prime}\right) \in d b^{\prime}(S)$. Assume, for contradiction's sake, that $\left[\operatorname{getInfo}(\gamma(\gamma, a)]^{d b}=\perp\right.$. This
means that for any tuple $\left(\bar{v}^{\prime}, \bar{y}^{\prime}\right)$ in $d b(S), \bar{v}^{\prime} \neq \bar{v}$. From $d b^{\prime}(S)=d b(S)$, it follows that for any tuple $\left(\bar{v}^{\prime}, \bar{y}^{\prime}\right)$ in $d b^{\prime}(S), \bar{v}^{\prime} \neq \bar{v}$. From $d b^{\prime}=d b[R \oplus(\bar{v}, \bar{w})]$, it follows that there is a tuple (\bar{v}, \bar{w}) in $d b^{\prime}(R)$ such that there is no tuple ($\bar{v}, \bar{y}^{\prime}$) in $d b^{\prime}(S)$. From this and the relational calculus semantics, it follows that $[\gamma]^{d b}=\perp$. This is in contradiction with $[\gamma]^{d b^{\prime}}=\mathrm{T}$.
2. $a=\langle u$, DELETE, $R, \bar{t}\rangle$. In this case, γ is of the form $\forall \bar{x}, \bar{z} \cdot S(\bar{x}, \bar{z}) \Rightarrow \exists \bar{w} \cdot R(\bar{x}, \bar{w})$. Let \bar{t} be $(\bar{v}, \bar{w}), d b$ be the state last $(r) \cdot d b$, and $d b^{\prime}$ be the state $d b[R \ominus \bar{t}]$.
(\Rightarrow) Assume that $[\operatorname{get} \operatorname{Info} S(\gamma, a)]^{d b}=\mathrm{T}$. From this and $\operatorname{getInfoS}(\gamma, a)$'s definition, it follows that either there is no tuple (\bar{v}, \bar{y}) in $d b(S)$ or there is a tuple ($\left.\bar{v}, \bar{w}^{\prime}\right)$ in $d b(R)$ such that $\bar{w}^{\prime} \neq \bar{w}$. There are two cases:
(a) there is no tuple (\bar{v}, \bar{y}) in $d b(S)$. From this, a 's definition, and the LTS semantics, it follows that there is no tuple (\bar{v}, \bar{y}) in $d b^{\prime}(S)$. From $d b \in \Omega_{D}^{\Gamma}$, it follows that for all tuples $\left(\bar{v}^{\prime}, \bar{y}^{\prime}\right)$ in $d b(S)$ such that $\bar{v}^{\prime} \neq \bar{v}$, there is a tuple $\left(\bar{v}^{\prime}, \bar{w}^{\prime}\right)$ in $d b(R)$. From this, $d b^{\prime}(R)=d b(R) \backslash\{(\bar{v}, \bar{w})\}, d b^{\prime}(S)=d b(S)$, and there is no tuple (\bar{v}, \bar{y}) in $d b^{\prime}(S)$, it follows that for all tuples $\left(\bar{v}^{\prime}, \bar{y}^{\prime}\right)$ in $d b(S)$, there is a tuple $\left(\bar{v}^{\prime}, \bar{w}^{\prime}\right)$ in $d b(R)$. Therefore, $[\gamma]^{d b^{\prime}}=\mathrm{T}$. From this and the LTS semantics, it follows that $\gamma \notin$ Ex (last (extend $(r, a))$).
(b) there is a tuple $\left(\bar{v}, \bar{w}^{\prime}\right)$ in $d b(R)$ such that $\bar{w}^{\prime} \neq \bar{w}$. From this, a 's definition, and the LTS semantics, it follows that there is a tuple $\left(\bar{v}, \bar{w}^{\prime}\right)$ in $d b^{\prime}(R)$ such that $\bar{w}^{\prime} \neq \bar{w}$. From $d b \in \Omega_{D}^{\Gamma}$, it follows that for all tuples ($\bar{v}^{\prime}, \bar{y}^{\prime}$) in $d b(S)$ such that $\bar{v}^{\prime} \neq \bar{v}$, there is a tuple $\left(\bar{v}^{\prime}, \bar{w}^{\prime \prime}\right)$ in $d b(R)$. From this, $d b^{\prime}(R)=$ $d b(R) \backslash\{(\bar{v}, \bar{w})\}, d b^{\prime}(S)=d b(S)$, and there is a tuple ($\left.\bar{v}, \bar{w}^{\prime}\right)$ in $d b^{\prime}(R)$ such that $\bar{w}^{\prime} \neq \bar{w}$, it follows that for all tuples ($\bar{v}^{\prime}, \bar{y}^{\prime}$) in $d b(S)$, there is a tuple $\left(\bar{v}^{\prime}, \bar{w}^{\prime}\right)$ in $d b(R)$. Therefore, $[\gamma]^{d b^{\prime}}=T$. From this and the LTS semantics, it follows that $\gamma \notin$ $E x(\operatorname{last}(\operatorname{extend}(r, a)))$.
(\Leftarrow) Assume that $\gamma \notin \operatorname{Ex}(\operatorname{last}(\operatorname{extend}(r, a)))$. From this and the LTS semantics, it follows that $[\gamma]^{d b^{\prime}}=T$. Therefore, for any tuple $\left(\bar{v}^{\prime}, \bar{y}^{\prime}\right) \in d b^{\prime}(S)$, there is a tuple $\left(\bar{v}^{\prime}, \bar{w}^{\prime}\right) \in d b^{\prime}(R)$. Assume, for contradiction's sake, that $[\operatorname{getInfo} S(\gamma, a)]^{d b}=\perp$. Therefore, there is a tuple (\bar{v}, \bar{y}) in $d b(S)$ and for all tuples ($\left.\bar{v}, \bar{w}^{\prime \prime}\right)$ in $d b(R)$, $\bar{w}^{\prime \prime}=\bar{w}$. From this, $d b^{\prime}(S)=d b(S)$, and $d b^{\prime}=d b[R \ominus$ $(\bar{v}, \bar{w})]$, it follows that there is a tuple (\bar{v}, \bar{y}) in $d b^{\prime}(S)$ and for all tuples $\left(\bar{v}^{\prime \prime}, \bar{w}^{\prime \prime}\right)$ in $d b^{\prime}(R), \bar{v}^{\prime \prime} \neq \bar{v}$. From this and the relational calculus semantics, it follows that $[\gamma]^{d b}=\perp$. This is in contradiction with $[\gamma]^{d b^{\prime}}=T$. This completes the proof.

Lemma F.15. Let u be a user in $\mathcal{U}, P=\left\langle M, f_{\text {conf }}^{u}\right\rangle$ be an extended configuration, where $M=\langle D, \Gamma\rangle$ is a system configuration and $f_{\text {conf }}^{u}$ is as above, and L be the P-LTS. For any run $r \in \operatorname{traces}(L)$ and any action $a \in \mathcal{A}_{D, u}$, if extend (r, a) is defined, then a preserves the equivalence class for r, P, and u.

Proof. Let u be a user in $\mathcal{U}, P=\left\langle M, f_{\text {conf }}^{u}\right\rangle$ be an extended configuration, where $M=\langle D, \Gamma\rangle$ is a system configuration and $f_{\text {conf }}^{u}$ is as above, and L be the P-LTS. In the following, we use e to refer to the extend function and f to refer to $f_{\text {conf }}^{u}$. We prove our claim by contradiction. Assume,
for contradiction's sake, that there is a run $r \in \operatorname{traces}(L)$ and an action $a \in \mathcal{A}_{D, u}$ such that $e(r, a)$ is defined and a does not preserve the equivalence class for r, P, and u. According to the LTS semantics, the fact that $e(r, a)$ is defined implies that $\operatorname{triggers}(\operatorname{last}(r))=\epsilon$. Therefore, $\operatorname{triggers}\left(\operatorname{last}\left(r^{\prime}\right)\right)=\epsilon$ holds as well for any for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$ (because r and r^{\prime} are indistinguishable and, therefore, their projections are consistent), and, thus, $e\left(r^{\prime}, a\right)$ is defined as well for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. There are a number of cases depending on a :

1. $a=\langle u$, SELECT, $q\rangle$. There are two cases:
(a) $\operatorname{secEx}(\operatorname{last}(e(r, a)))=\perp$. From the LTS rules and $\operatorname{secEx}(\operatorname{last}(e(r, a)))=\perp$, it follows that $f(\operatorname{last}(r), a)$ $=\mathrm{T}$. From this and Lemma F.9 it follows that $f\left(\operatorname{last}\left(r^{\prime}\right), a\right)=\mathrm{T}$ for any $r^{\prime} \in \llbracket r \rrbracket \rrbracket_{P, u}$. From this and the LTS rules, it follows $\sec E x\left(\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)\right)=$ \perp for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. From $f\left(\operatorname{last}\left(r^{\prime}\right), a\right)=\top$ for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$, it follows that secure $\left(u, q, \operatorname{last}\left(r^{\prime}\right)\right)$ $=\mathrm{\top}$ for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. From this and Lemma $F .7$, it follows that $[q]^{\text {last }\left(r^{\prime}\right) \cdot d b}=[q]^{\text {last }(r) \cdot d b}$ for all $r^{\prime} \in$ $\llbracket r \rrbracket_{P, u}$. Furthermore, it follows trivially from the LTS rule SELECT Success, that the state after a 's execution is data indistinguishable from last (r). It is also easy to see that $e\left(r^{\prime}, a\right)$ is well-defined for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. From the considerations above and $r^{\prime} \in \llbracket r \rrbracket_{P, u}$, it follows trivially that $e\left(r^{\prime}, a\right) \in$ $\llbracket e(r, a) \rrbracket_{P, u}$. The bijection b is trivially $b\left(r^{\prime}\right)=$ $e\left(r^{\prime}, a\right)$. This leads to a contradiction.
(b) $\sec E x(\operatorname{last}(e(r, a)))=\mathrm{T}$. From the LTS rules and $\sec E x(\operatorname{last}(e(r, a)))=\top$, it follows that $f(\operatorname{last}(r), a)$ $=\perp$. From this and Lemma F.9 it follows that $f\left(\right.$ last $\left.\left(r^{\prime}\right), a\right)=\perp$ for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. From this and the LTS rules, it follows $\sec E x\left(\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)\right)=$ \top for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. The data indistinguishability between last $\left(e\left(r^{\prime}, a\right)\right)$ and $\operatorname{last}(e(r, a))$ follows trivially from the data indistinguishability between $\operatorname{last}\left(r^{\prime}\right)$ and last (r). Therefore, for any run $r^{\prime} \in$ $\llbracket r \rrbracket_{P, C}$, there is exactly one run $e\left(r^{\prime}, a\right)$. From the considerations above, it follows trivially that $e\left(r^{\prime}, a\right)$ $\in \llbracket e(r, a) \rrbracket_{P, u}$. The bijection b is trivially $b\left(r^{\prime}\right)=$ $e\left(r^{\prime}, a\right)$. This leads to a contradiction.
Both cases leads to a contradiction. This completes the proof for $a=\langle u$, SELECT, $q\rangle$.
2. $a=\langle u$, INSERT, $R, \bar{t}\rangle$. In the following, we denote by $g I$ the function getInfo, by $g S$ the function getInfoS, and by $g V$ the function getInfo V. There are three cases:
(a) $\sec E x(\operatorname{last}(e(r, a)))=\perp$ and $\operatorname{Ex}(\operatorname{last}(e(r, a)))=\emptyset$. From the LTS rules and $\sec E x(\operatorname{last}(e(r, a)))=\perp$, it follows that $f(\operatorname{last}(r), a)=T$. From this and Lemma F.9 it follows that $f\left(\operatorname{last}\left(r^{\prime}\right), a\right)=\top$ for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. From this and the LTS rules, it follows that $\sec E x\left(\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)\right)=\perp$ for any $r^{\prime} \in$ $\llbracket r \rrbracket_{P, u}$. From $f_{\text {conf }}^{u}$'s definition and $f($ last $(r), a)=$ T, it follows that secure ($u, g S(\gamma, a c t)$, last $(r))$ holds for any integrity constraint γ in $\operatorname{Dep}(\Gamma, a)$. From $\operatorname{Ex}(\operatorname{last}(e(r, a)))=\emptyset$ and Proposition F.7 it follows $[g S(\gamma, a c t)]^{\text {last }(r) \cdot d b}=\mathrm{T}$. From this, secure $(u$, $g S(\gamma, a c t), \operatorname{last}(r))$, and Lemma F.7, it follows that $[g S(\gamma, a c t)]^{l a s t\left(r^{\prime}\right) \cdot d b}=\top$ for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. From this and Proposition $F .7$ it follows that Ex (last (e $\left(r^{\prime}\right.$, $a)))=\emptyset$ for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. We claim that, for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}, \operatorname{last}(e(r, a))$ and $\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)$ are data indistinguishable. From this and the above considerations, it follows trivially that $e\left(r^{\prime}, a\right) \in$
$\llbracket e(r, a) \rrbracket_{P, u}$. The bijection b is trivially $b\left(r^{\prime}\right)=$ $e\left(r^{\prime}, a\right)$. This leads to a contradiction.
We now prove our claim that for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$, last $(e(r, a))$ and last $\left(e\left(r^{\prime}, a\right)\right)$ are data indistinguishable. We prove the claim by contradiction. Let $s_{2}=\left\langle d b_{2}, U_{2}, s e c_{2}, T_{2}, V_{2}\right\rangle$ be pState $(\operatorname{last}(e(r, a)))$, $s_{2}^{\prime}=\left\langle d b_{2}^{\prime}, U_{2}^{\prime}, s e c_{2}^{\prime}, T_{2}^{\prime}, V_{2}^{\prime}\right\rangle$ be $p \operatorname{State}\left(\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)\right)$, $s_{1}=\left\langle d b_{1}, U_{1}, \sec _{1}, T_{1}, V_{1}\right\rangle$ be $p \operatorname{State}(\operatorname{last}(r))$, and $s_{1}^{\prime}=\left\langle d b_{1}^{\prime}, U_{1}^{\prime}, s e c_{1}^{\prime}, T_{1}^{\prime}, V_{1}^{\prime}\right\rangle$ be $p \operatorname{State}\left(\operatorname{last}\left(r^{\prime}\right)\right)$. In the following, we denote the permissions function by p. Furthermore, note that s_{1} and s_{1}^{\prime} are dataindistinguishable because $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. There are a number of cases:
i. $U_{2} \neq U_{2}^{\prime}$. Since a is an INSERT operation, it follows that $U_{1}=U_{2}$ and $U_{1}^{\prime}=U_{2}^{\prime}$. Furthermore, from $s_{1} \cong{ }_{u, M}^{d a t a} s_{1}^{\prime}$, it follows that $U_{1}=U_{1}^{\prime}$. Therefore, $U_{2}=U_{2}^{\prime}$ leading to a contradiction.
ii. $\sec _{2} \neq \sec _{2}^{\prime}$. The proof is similar to the case $U_{2} \neq U_{2}^{\prime}$.
iii. $T_{2} \neq T_{2}^{\prime}$. The proof is similar to the case $U_{2} \neq$ U_{2}^{\prime}.
iv. $V_{2} \neq V_{2}^{\prime}$. The proof is similar to the case $U_{2} \neq$ U_{2}^{\prime}.
v. there is a table R^{\prime} for which $\langle\oplus$, SELECT, $R\rangle \in$ $p\left(s_{2}, u\right)$ and $d b_{2}\left(R^{\prime}\right) \neq d b_{2}^{\prime}\left(R^{\prime}\right)$. Note that $p\left(s_{2}, u\right)=p\left(s_{1}, u\right)$. There are two cases:

- $R=R^{\prime}$. From $s_{1} \cong{ }_{u, M}^{\text {data }} s_{1}^{\prime}$ and $\langle\oplus$, SELECT, $R\rangle$ $\in p\left(s_{2}, u\right)$, it follows that $d b_{1}\left(R^{\prime}\right)=d b_{1}^{\prime}\left(R^{\prime}\right)$. From this and the fact that a has been executed successfully both in $e(r, a)$ and $e\left(r^{\prime}, a\right)$, it follows that $d b_{2}\left(R^{\prime}\right)=d b_{1}\left(R^{\prime}\right) \cup\{\bar{t}\}$ and $d b_{2}^{\prime}\left(R^{\prime}\right)=d b_{1}^{\prime}\left(R^{\prime}\right) \cup\{\bar{t}\}$. From this and $d b_{1}\left(R^{\prime}\right)=d b_{1}^{\prime}\left(R^{\prime}\right)$, it follows that $d b_{2}\left(R^{\prime}\right)=$ $d b_{2}^{\prime}\left(R^{\prime}\right)$ leading to a contradiction.
- $R \neq R^{\prime}$. From $s_{1} \cong{ }_{P, u}^{\text {data }} s_{1}^{\prime}$ and $\langle\oplus$, SELECT, $R\rangle$ $\in p\left(s_{2}, u\right)$, it follows that $d b_{1}\left(R^{\prime}\right)=d b_{1}^{\prime}\left(R^{\prime}\right)$. From this and the fact that a does not modify R^{\prime}, it follows that $d b_{1}\left(R^{\prime}\right)=d b_{2}\left(R^{\prime}\right)$ and $d b_{1}^{\prime}\left(R^{\prime}\right)=d b_{2}^{\prime}\left(R^{\prime}\right)$. From this and $d b_{1}\left(R^{\prime}\right)=$ $d b_{1}^{\prime}\left(R^{\prime}\right)$, it follows that $d b_{2}\left(R^{\prime}\right)=d b_{2}^{\prime}\left(R^{\prime}\right)$ leading to a contradiction.
vi. there is a view v for which $\langle\oplus$, SELECT, $v\rangle \in$ $p\left(s_{2}, u\right)$ and $d b_{2}(v) \neq d b_{2}^{\prime}(v)$. Note that $p\left(s_{2}\right.$, $u)=p\left(s_{1}, u\right)$. Since a has been successfully executed in both states, we know that noLeak $\left(s_{1}\right.$, $a, u)$ hold. There are two cases:
- $R \notin t \operatorname{Det}(v, s, M)$. Then, $v\left(s_{1}\right)=v\left(s_{2}\right)$ and $v\left(s_{1}^{\prime}\right)=v\left(s_{2}^{\prime}\right)$ (because R 's content does not determine v 's materialization). From $s_{1} \cong_{u, M}^{\text {data }}$ s_{1}^{\prime} and the fact that a modifies only R, it follows that $v\left(d b_{2}\right)=v\left(d b_{2}^{\prime}\right)$ leading to a contradiction.
- $R \in t \operatorname{Det}(v, s, M)$ and for all $o \in t \operatorname{Det}(v, s$, $M),\langle\oplus, \operatorname{SELECT}, o\rangle \in p\left(s_{1}, u\right)$. From this and $s_{1} \cong{ }_{u, M}^{\text {data }} s_{1}^{\prime}$, it follows that, for all $o \in t \operatorname{Det}(v$, $s, M), o\left(s_{1}\right)=o\left(s_{1}^{\prime}\right)$. If $o \neq R, o\left(s_{1}\right)=$ $o\left(s_{1}^{\prime}\right)=o\left(s_{2}\right)=o\left(s_{2}^{\prime}\right)$. From $s_{1} \cong{ }_{u, M}^{d a t a} s_{1}^{\prime}$ and $\langle\oplus, \operatorname{SELECT}, R\rangle \in p\left(s_{1}, u\right)$, it follows that $d b_{1}(R)=d b_{1}^{\prime}(R)$. From this and the fact that a has been executed successfully both in $e(r, a)$ and $e\left(r^{\prime}, a\right)$, it follows that $d b_{2}(R)=$ $d b_{1}(R) \cup\{\bar{t}\}$ and $d b_{2}^{\prime}(R)=d b_{1}^{\prime}(R) \cup\{\bar{t}\}$. From this and $d b_{1}(R)=d b_{1}^{\prime}(R)$, it follows
that $d b_{2}(R)=d b_{2}^{\prime}(R)$. From this and for all $o \in t \operatorname{Det}(v, s, M)$ such that $o \neq R, o\left(s_{2}\right)=$ $o\left(s_{2}^{\prime}\right)$, it follows that for all $o \in t \operatorname{Det}(v, s, M)$, $o\left(s_{2}\right)=o\left(s_{2}^{\prime}\right)$. Since the content of all tables determining v is the same in s_{2} and s_{2}^{\prime}, it follows that $d b_{2}(v)=d b_{2}^{\prime}(v)$ leading to a contradiction.
All the cases lead to a contradiction.
(b) $\sec E x(\operatorname{last}(e(r, a)))=\perp$ and $\operatorname{Ex}(\operatorname{last}(e(r, a))) \neq$ \emptyset. From the LTS rules and $\sec E x(e(r, a))=\perp$, it follows that $f(\operatorname{last}(r), a)=\mathrm{T}$. From this and Lemma F. 9 it follows that $f\left(\operatorname{last}\left(r^{\prime}\right), a\right)=\top$ for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. From this and the LTS rules, it follows that $\sec E x\left(\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)\right)=\perp$ for any $r^{\prime} \in$ $\llbracket r \rrbracket_{P, u}$. Assume that the exception has been caused by the constraint γ, i.e., $\gamma \in \operatorname{Ex}(\operatorname{last}(e(r, a)))$. From this and Proposition F.7. it follows that $g V(\gamma, a)$ holds in last $(r) . d b$. From $f_{\text {conf }}^{u}$'s definition, it thus follows that secure $(u, g V(\gamma, a)$, last $(r))$ holds. From this, $[g V(\gamma, a)]^{\text {last }(r) \cdot d b}=\mathrm{T}$, and Lemma F.7, it follows that $[g V(\gamma, a c t)]^{\text {last }\left(r^{\prime}\right) \cdot d b}=\mathrm{T}$ for any $r^{\prime} \in$ $\llbracket r \rrbracket_{P, u}$. From this and Proposition F.7, it follows that $\gamma \in \operatorname{Ex}\left(\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)\right)$ for any $r \in \llbracket r \rrbracket_{P, u}$. The data indistinguishability between $\operatorname{last}(e(r, a))$ and last $\left(e\left(r^{\prime}, a\right)\right)$ follows trivially from the data indistinguishability between last (r) and last (r^{\prime}) for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. Therefore, for any run $r^{\prime} \in \llbracket r \rrbracket_{P, u}$, there is exactly one run $e\left(r^{\prime}, a\right)$. From the considerations above, it follows trivially that $e\left(r^{\prime}, a\right) \in$ $\llbracket e(r, a) \rrbracket_{P, u}$. The bijection b is trivially $b\left(r^{\prime}\right)=$ $e\left(r^{\prime}, a\right)$. This leads to a contradiction.
(c) $\sec E x(\operatorname{last}(e(r, a)))=\mathrm{T}$. From the LTS rules and $\sec E x(\operatorname{last}(e(r, a)))=\mathrm{\top}$, it follows that $f(\operatorname{last}(r), a)$ $=\perp$. From this and Lemma F.9 it follows that $f\left(\operatorname{last}\left(r^{\prime}\right), a\right)=\perp$ for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. From this and the LTS rules, it follows secEx $\left(\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)\right)=$ \top for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. The data indistinguishability between $\operatorname{last}(e(r, a))$ and $\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)$ follows trivially from the data indistinguishability between $\operatorname{last}(r)$ and last $\left(r^{\prime}\right)$ for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. Therefore, for any run $r^{\prime} \in \llbracket r \rrbracket_{P, u}$, there is exactly one run $e\left(r^{\prime}, a\right)$. From the considerations above, it follows trivially that $e\left(r^{\prime}, a\right) \in \llbracket e(r, a) \rrbracket_{P, u}$. The bijection b is trivially $b\left(r^{\prime}\right)=e\left(r^{\prime}, a\right)$. This leads to a contradiction.
All cases lead to a contradiction. This completes the proof for $a=\langle u$, INSERT, $R, \bar{t}\rangle$.

3. $a=\langle u$, DELETE, $R, \bar{t}\rangle$. The proof is similar to that for $a=\langle u$, INSERT, $R, \bar{t}\rangle$.
4. $a=\left\langle\oplus, u^{\prime}, p, u\right\rangle$. There are two cases:
(a) $\sec E x(\operatorname{last}(e(r, a)))=\perp$. We assume that $p=$ \langle SELECT, $O\rangle$ for some $O \in D \cup V$. If this is not the case, the proof is trivial. Furthermore, we also assume that $u^{\prime}=u$, otherwise the proof is, again, trivial since the new permission does not influence u 's permissions. From the LTS rules and $\sec \operatorname{Ex}(\operatorname{last}(e(r, a)))=\perp$, it follows that $f(\operatorname{last}(r), a)$ $=\mathrm{T}$. From this and Lemma F.9 it follows that $f\left(\operatorname{last}\left(r^{\prime}\right), a\right)=\mathrm{T}$ for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. From this and the LTS rules, it follows $\sec E x\left(\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)\right)=$ \perp for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. From $\operatorname{secEx}(\operatorname{last}(e(r, a)))=$ \perp and $f_{\text {conf }}^{u}$'s definition, it follows that last (r^{\prime}).sec $=$ $\operatorname{last}\left(e\left(r^{\prime}, a\right)\right) . s e c$. Therefore, since $\operatorname{last}(r)$ and $\operatorname{last}\left(r^{\prime}\right)$
are data indistinguishable, for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$, then also last $(e(r, a))$ and $\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)$ are data indistinguishable. Therefore, for any run $r^{\prime} \in \llbracket r \rrbracket_{P, u}$, there is exactly one run $e\left(r^{\prime}, a\right)$. From the considerations above, it follows trivially that $e\left(r^{\prime}, a\right) \in$ $\llbracket e(r, a) \rrbracket_{P, u}$. The bijection b is trivially $b\left(r^{\prime}\right)=$ $e\left(r^{\prime}, a\right)$. This leads to a contradiction.
(b) $\sec E x(\operatorname{last}(e(r, a)))=T$. From the LTS rules and $\sec E x(\operatorname{last}(e(r, a)))=\mathrm{T}$, it follows that $f(\operatorname{last}(r), a)$ $=\perp$. From this and Lemma F.9 it follows that $f\left(\right.$ last $\left.\left(r^{\prime}\right), a\right)=\perp$ for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. From this and the LTS rules, it follows $\sec E x\left(\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)\right)=$ \top for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. The data indistinguishability between $\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)$ and $\operatorname{last}(e(r, a))$ follows trivially from the data indistinguishability between last $\left(r^{\prime}\right)$ and last (r). Therefore, for any run $r^{\prime} \in$ $\llbracket r \rrbracket_{P, u}$, there is exactly one run $e\left(r^{\prime}, a\right)$. From the considerations above, it follows trivially that $e\left(r^{\prime}, a\right)$ $\in \llbracket e(r, a) \rrbracket_{P, u}$. The bijection b is trivially $b\left(r^{\prime}\right)=$ $e\left(r^{\prime}, a\right)$. This leads to a contradiction.
Both cases lead to a contradiction. This completes the proof for $a=\left\langle\oplus, u^{\prime}, p, u\right\rangle$.
5. $a=\left\langle\oplus^{*}, u^{\prime}, p, u\right\rangle$. The proof is similar to that for $a=$ $\left\langle\oplus, u^{\prime}, p, u\right\rangle$.
6. $a=\left\langle\ominus, u^{\prime}, p, u\right\rangle$. The proof is similar to that for $a=$ $\langle u$, SELECT, $q\rangle$. The only difference is in proving that for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$, last $(e(r, a))$ and $\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)$ are data indistinguishable. Assume, for contradiction's sake, that this is not the case. Let $s_{2}=\left\langle d b_{2}, U_{2}, \sec _{2}, T_{2}, V_{2}\right\rangle$ be $p \operatorname{State}(\operatorname{last}(e(r, a))), s_{2}^{\prime}=\left\langle d b_{2}^{\prime}, U_{2}^{\prime}, s e c_{2}^{\prime}, T_{2}^{\prime}, V_{2}^{\prime}\right\rangle$ be $p \operatorname{State}\left(\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)\right), s_{1}=\left\langle d b_{1}, U_{1}, \sec _{1}, T_{1}, V_{1}\right\rangle$ be $p \operatorname{State}(\operatorname{last}(r))$, and, finally, $s_{1}^{\prime}=\left\langle d b_{1}^{\prime}, U_{1}^{\prime}, s e c_{1}^{\prime}, T_{1}^{\prime}, V_{1}^{\prime}\right\rangle$ be $p \operatorname{State}\left(\operatorname{last}\left(r^{\prime}\right)\right)$. In the following, we denote the permissions function by p. Furthermore, note that s_{1} and s_{1}^{\prime} are data-indistinguishable because $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. There are a number of cases:
(a) $U_{2} \neq U_{2}^{\prime}$. Since a is an REVOKE operation, it follows that $U_{1}=U_{2}$ and $U_{1}^{\prime}=U_{2}^{\prime}$. Furthermore, from $s_{1} \cong{ }_{u, M}^{d a t a} s_{1}^{\prime}$, it follows that $U_{1}=U_{1}^{\prime}$. Therefore, $U_{2}=U_{2}^{\prime}$ leading to a contradiction.
(b) $\sec _{2} \neq \sec _{2}^{\prime}$. From $s_{1} \cong{ }_{u, M}^{d a t a} s_{1}^{\prime}$, it follows that $\sec _{1}=\sec _{1}^{\prime}$. From a 's definition and the LTS rules, it follows that $\sec _{2}=\operatorname{revoke}\left(\sec _{1}, u^{\prime}, p, u\right)$ and $\sec _{2}^{\prime}=\operatorname{revoke}\left(\sec _{1}^{\prime}, u^{\prime}, p, u\right)$. From this and $\sec _{1}=\sec _{1}^{\prime}$, it follows that $s e c_{2}=\sec _{2}^{\prime}$ leading to a contradiction.
(c) $T_{2} \neq T_{2}^{\prime}$. The proof is similar to the case $U_{2} \neq U_{2}^{\prime}$.
(d) $V_{2} \neq V_{2}^{\prime}$. The proof is similar to the case $U_{2} \neq U_{2}^{\prime}$.
(e) there is a table R for which $\langle\oplus$, SELECT, $R\rangle \in p\left(s_{2}, u\right)$ and $d b_{2}(R) \neq d b_{2}^{\prime}(R)$. Since a is an REVOKE operation, it follows that $d b_{1}=d b_{2}$ and $d b_{1}^{\prime}=d b_{2}^{\prime}$. Furthermore, from $s_{1} \cong{ }_{a, M}^{\text {data }} s_{1}^{\prime}$, it follows that $d b_{1}(R)=$ $d b_{1}^{\prime}(R)$. From this, $d b_{1}=d b_{2}$, and $d b_{1}^{\prime}=d b_{2}^{\prime}$, it follows that $d b_{2}(R)=d b_{2}^{\prime}(R)$ leading to a contradiction.
(f) there a view v for which $\langle\oplus$, SELECT, $v\rangle \in p\left(s_{2}, u\right)$ and $d b_{2}(v) \neq d b_{2}^{\prime}(v)$. Since a is an REVOKE operation, it follows that $d b_{1}=d b_{2}$ and $d b_{1}^{\prime}=d b_{2}^{\prime}$. Furthermore, from $s_{1} \cong \cong_{a, M}^{d a t a} s_{1}^{\prime}$, it follows that $d b_{1}(v)=$ $d b_{1}^{\prime}(v)$. From this, $d b_{1}=d b_{2}$, and $d b_{1}^{\prime}=d b_{2}^{\prime}$, it follows that $d b_{2}(v)=d b_{2}^{\prime}(v)$ leading to a contradiction.
All the cases lead to a contradiction.
7. $a=\langle u$, CREATE,$o\rangle$. The proof is similar to that for $a=\left\langle\theta, u^{\prime}, p, u\right\rangle$.
8. $a=\left\langle u\right.$, ADD_USER, $\left.u^{\prime}\right\rangle$. The proof is similar to that for $a=\left\langle\ominus, u^{\prime}, p, u\right\rangle$.
This completes the proof.
Lemma F.16. Let u be a user in $\mathcal{U}, P=\left\langle M, f_{\text {conf }}^{u}\right\rangle$ be an extended configuration, where $M=\langle D, \Gamma\rangle$ is a system configuration and $f_{\text {conf }}^{u}$ is as above, and L be the P-LTS. For any run $r \in \operatorname{traces}(L)$ such that invoker $(\operatorname{last}(r))=u$ and any trigger $t \in \mathcal{T} \mathcal{R} \mathcal{G G \mathcal { E R }}_{D}$, if extend (r, t) is defined, then t preserves the equivalence class for r, M, and u.

Proof. Let u be a user in $\mathcal{U}, P=\left\langle M, f_{\text {conf }}^{u}\right\rangle$ be an extended configuration, where $M=\langle D, \Gamma\rangle$ is a system configuration and $f_{\text {conf }}^{u}$ is as above, and L be the P-LTS. In the following, we use e to refer to the extend function. The proof in the cases where the trigger t is not enabled, i.e., its WHEN condition is not satisfied, or t 's WHEN condition is not secure are similar to the proof of the SELECT case of Lemma F.15. In the following, we therefore assume that the trigger t is enabled and that its WHEN condition is secure. We prove our claim by contradiction. Assume, for contradiction's sake, that there is a run $r \in \operatorname{traces}(L)$ such that $\operatorname{invoker}(\operatorname{last}(r))=u$ and a trigger t such that $e(r, t)$ is defined and t does not preserve the equivalence class for r, P, and u. Since invoker $(\operatorname{last}(r))=u$ and $e(r, t)$ is defined, then $e\left(r^{\prime}, t\right)$ is defined as well for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$ (indeed, from $\operatorname{invoker}(\operatorname{last}(r))=u$, it follows that the last action in r is either an action issued by u or a trigger invoker by u. From this, the fact that $e(r, t)$ is defined, and the fact that r and r^{\prime} are indistinguishable, it follows that $\left.\operatorname{tr}(\operatorname{last}(r))=\operatorname{tr}\left(\operatorname{last}\left(r^{\prime}\right)\right)=t\right)$. Let a be t^{\prime} 's action and $w=\left\langle u^{\prime}\right.$, SELECT, $\left.q\right\rangle$ be the SELECT command associated with t 's WHEN condition. Let s be the state last $(r), s^{\prime}$ be the state obtained just after the execution of the WHEN condition, and $s^{\prime \prime}$ be the state last $(e(r, t))$. There are a number of cases depending on t 's action a :

1. $a=\left\langle u^{\prime}\right.$, INSERT, $\left.R, \bar{t}\right\rangle$. There are three cases:
(a) $\sec E x\left(s^{\prime \prime}\right)=\perp$ and $E x\left(s^{\prime \prime}\right)=\emptyset$. The proof of this case is similar to that of the corresponding case in Lemma F. 15
(b) $\sec E x\left(s^{\prime \prime}\right)=\perp$ and $E x\left(s^{\prime \prime}\right) \neq \emptyset$. The only difference between the proof of this case in this Lemma and in that of Lemma $F .15$ is that we have to establish again the data indistinguishability between $\operatorname{last}(e(r, t))$ and $\operatorname{last}\left(e\left(r^{\prime}, t\right)\right)$. Indeed, for triggers the roll-back state is, in general, different from the one immediately before the trigger's execution, i.e., it may be that $p \operatorname{State}(\operatorname{last}(e(r, t))) \neq p \operatorname{State}(\operatorname{last}(r))$. We now prove that last $(e(r, t))$ and last $\left(e\left(r^{\prime}, t\right)\right)$ are data indistinguishable. From the LTS semantics, it follows that $r=p \cdot s_{0} \cdot\left\langle\operatorname{invoker}(\operatorname{last}(r)), o p, R^{\prime}, \bar{v}\right\rangle$. $s_{1} \cdot t_{1} \cdot \ldots \cdot s_{n-1} \cdot t_{n} \cdot s_{n}$, where $p \in \operatorname{traces}(L)$ and $t_{1}, \ldots, t_{n} \in \mathcal{T R} \mathcal{I} \mathcal{G G E} \mathcal{R}_{D}$. Similarly, $r^{\prime}=p^{\prime} \cdot s_{0}^{\prime}$. $\left\langle\right.$ invoker $(\operatorname{last}(r))$, op, $\left.R^{\prime}, \bar{v}\right\rangle \cdot s_{1}^{\prime} \cdot t_{1} \cdot \ldots \cdot s_{n-1}^{\prime} \cdot t_{n} \cdot s_{n}^{\prime}$, where $p^{\prime} \in \operatorname{traces}(L), p \cong_{u, M} p^{\prime}$, and all states s_{i} and s_{i}^{\prime} are data indistinguishable. Then, the roll-back states are, respectively, s_{0} and s_{0}^{\prime}, which are data indistinguishable. From the LTS rules, $\operatorname{last}(e(r, a))=s_{0}$ and $\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)=s_{0}^{\prime}$. Therefore, the data indistinguishability between last (e(r, $a))$ and $\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)$ follows trivially for any $r^{\prime} \in$ $\llbracket r \rrbracket_{P, u}$.
(c) $\sec E x\left(s^{\prime \prime}\right)=$ T. The proof is similar to the previous case.
All cases lead to a contradiction. This completes the proof for $a=\left\langle u^{\prime}\right.$, INSERT, $\left.R, \bar{t}\right\rangle$.
2. $a=\left\langle u^{\prime}\right.$, DELETE, $\left.R, \bar{t}\right\rangle$. The proof is similar to that for $a=\left\langle u^{\prime}\right.$, INSERT, $\left.R, \bar{t}\right\rangle$.
3. $a=\left\langle\oplus, u^{\prime \prime}, p, u^{\prime}\right\rangle$. There are two cases:
(a) $\sec E x\left(s^{\prime \prime}\right)=\perp$. In this case, the proof is similar to the corresponding case in Lemma F.15.
(b) $\sec E x\left(s^{\prime \prime}\right)=\top$. The proof is similar to the $\sec E x\left(s^{\prime \prime}\right)$ $=\top$ case of the $a=\left\langle u^{\prime}\right.$, INSERT, $\left.R, \bar{t}\right\rangle$ case.
Both cases lead to a contradiction. This completes the proof for $a=\left\langle\oplus, u^{\prime \prime}, p, u^{\prime}\right\rangle$.
4. $a=\left\langle\oplus^{*}, u^{\prime \prime}, p, u^{\prime}\right\rangle$. The proof is similar to that for $a=\left\langle\oplus, u^{\prime \prime}, p, u^{\prime}\right\rangle$.
5. $a=\left\langle\Theta, u^{\prime \prime}, p, u^{\prime}\right\rangle$. The proof is similar to that for $a=$ $\left\langle u^{\prime}\right.$, INSERT, $\left.R, \bar{t}\right\rangle$.
This completes the proof.
We now prove our main result, namely that $f_{\text {conf }}^{u}$ provides data confidentiality with respect to the user u. We first recall the concept of derivation. Given a judgment $r, i \vdash_{u} \phi$, a derivation of $r, i \vdash_{u} \phi$ with respect to $\mathcal{A} \mathcal{T} \mathcal{K}_{u}$, or a derivation of $r, i \vdash_{u} \phi$ for short, is a proof tree, obtained by applying the rules defining $\mathcal{A} \mathcal{T} \mathcal{K}_{u}$, that ends in $r, i \vdash_{u} \phi$. With a slight abuse of notation, we use $r, i \vdash_{u} \phi$ to denote both the judgment and its derivation. The length of a derivation, denoted $\left|r, i \vdash_{u} \phi\right|$, is the number of rule applications in it.

Theorem F.1. Let u be a user in $\mathcal{U}, P=\left\langle M, f_{\text {conf }}^{u}\right\rangle$ be an extended configuration, where M is a system configuration and $f_{\text {conf }}^{u}$ is as above. The PDP $f_{\text {conf }}^{u}$ provides data confidentiality with respect to $P, u, \mathcal{A} \mathcal{T} \mathcal{K}_{u}$, and $\cong_{P, u}$.

Proof. Let u be a user in $\mathcal{U}, P=\left\langle M, f_{\text {conf }}^{u}\right\rangle$ be an extended configuration, where M is a system configuration and $f_{\text {conf }}^{u}$ is as above, and L be the P-LTS. Furthermore, let r be a run in $\operatorname{traces}(L), i$ be an integer such that $1 \leq i \leq|r|$, and ϕ be a sentence such that $r, i \vdash_{u} \phi$ holds. We claim that also secure $_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds. The theorem follows trivially from the claim.
We now prove our claim that secure $_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds. Let r be a run in $\operatorname{traces}(L), i$ be an integer such that $1 \leq$ $i \leq|r|$, and ϕ be a sentence such that $r, i \vdash_{u} \phi$ holds. Furthermore, in the following we use e to denote the extend function. We prove our claim by induction on the length of the derivation $r, i \vdash_{u} \phi$.
Base Case: Assume that $\left|r, i \vdash_{u} \phi\right|=1$. There are a number of cases depending on the rule used to obtain $r, i \vdash_{u} \phi$.

1. SELECT Success - 1. Let i be such that $r^{i}=r^{i-1}$. $\langle u$, SELECT, $\phi\rangle \cdot s$, where $s=\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}$ and last $\left(r^{i-1}\right)=s^{\prime}$, where $s^{\prime}=\left\langle d b, U, \sec , T, V, c^{\prime}\right\rangle$. From the rules, it follows that $f_{\text {conf }}^{u}\left(s^{\prime},\langle u\right.$, SELECT, $\left.\phi\rangle\right)=$ T. From this and $f_{\text {conf }}^{u}$'s definition, it follows that $\operatorname{secure}\left(u, \phi, s^{\prime}\right)=\top$ holds. From this, Lemma F.8 and $p \operatorname{State}(s)=p \operatorname{State}\left(s^{\prime}\right)$, it follows that $\operatorname{secure}(u, \phi, s)=$ T holds. From this, Lemma F.7, and $\operatorname{last}\left(r^{i}\right)=s$, it follows that secure $_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds.
2. SELECT Success - 2. The proof for this case is similar to that of SELECT Success - 1 .
3. INSERT Success. Let i be such that $r^{i}=r^{i-1} \cdot\langle u$, INSERT, $R, \bar{t}\rangle \cdot s$, where $s=\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}$ and last $\left(r^{i-1}\right)=\left\langle d b^{\prime}, U, \sec , T, V, c^{\prime}\right\rangle$, and ϕ be $R(\bar{t})$. Then,
secure $_{P, u}\left(r, i \vdash_{u} R(\bar{t})\right)$ holds. Indeed, in all runs r^{\prime} indistinguishable from r^{i} the last action is $\langle u$, INSERT, R, $\bar{t}\rangle$. Furthermore, the action has been executed successfully. Therefore, according to the LTS rules, $\bar{t} \in$ $d b^{\prime \prime}(R)$, where $d b^{\prime \prime}=\operatorname{last}\left(r^{\prime}\right) \cdot d b$. From this and the relational calculus semantics, it follows that $[R(\bar{t})]^{\text {last }\left(r^{\prime}\right) \cdot d b}$ $=\mathrm{T}$. Therefore, $[R(\bar{t})]^{\text {last }\left(r^{\prime}\right) \cdot d b}=\mathrm{T}$ for any run $r^{\prime} \in$ $\llbracket r^{i} \rrbracket_{P, u}$. Hence, secure $_{P, u}\left(r, i \vdash_{u} R(\bar{t})\right)$ holds.
4. INSERT Success - FD. Let i be such that $r^{i}=r^{i-1}$. $\langle u, \operatorname{INSERT}, R,(\bar{v}, \bar{w}, \bar{q})\rangle \cdot s$, where $s=\langle d b, U, s e c, T, V, c\rangle$ $\in \Omega_{M}$ and last $\left(r^{i-1}\right)=\left\langle d b^{\prime}, U, s e c, T, V, c^{\prime}\right\rangle$, and ϕ be $\neg \exists \bar{y}, \bar{z} \cdot R(\bar{v}, \bar{y}, \bar{z}) \wedge \bar{y} \neq \bar{w}$. From the rule's definition, it follows that $\sec E x(s)=\perp$. From this and the LTS rules, it follows that $f_{\text {conf }}^{u}\left(s^{\prime},\langle u\right.$, INSERT, $\left.R,(\bar{v}, \bar{w}, \bar{q})\rangle\right)=$ T. From this and $f_{\text {conf }}^{u}$'s definition, it follows that $\operatorname{secure}\left(u, \phi, \operatorname{last}\left(r^{i-1}\right)\right)=\top$ holds because ϕ is equivalent to $\operatorname{getInfoS}(\gamma, a)$ for some $\gamma \in \operatorname{Dep}(\Gamma, a)$, where $a=\langle u$, InSERT, $R,(\bar{v}, \bar{w}, \bar{q})\rangle$. From this and Lemma F.7. it follows that $\operatorname{secure}_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$ holds. We claim that secure $e_{P, u}^{\text {data }}\left(r, i \vdash_{u} \phi\right)$ holds. From Lemma $F .2$ and $\operatorname{secure}_{P, u}^{\text {data }}\left(r, i \vdash_{u} \phi\right)$, it follows $\operatorname{secure}_{P, u}\left(r, i \vdash_{u} \phi\right)$.
We now prove our claim that secure ${ }_{P, u}^{d a t a}\left(r, i \vdash_{u} \phi\right)$ holds. Let s^{\prime} be the state last $\left(r^{i-1}\right)$. Furthermore, for brevity's sake, in the following we omit the p State function where needed. For instance, with a slight abuse of notation, we write $\llbracket s^{\prime} \rrbracket_{u, M}^{\text {data }}$ instead of $\llbracket p \operatorname{State}\left(s^{\prime}\right) \rrbracket_{u, M}^{\text {data }}$. There are two cases:
(a) the INSERT command has caused an integrity constraint violation, i.e., $E x(s) \neq \emptyset$. From secure $(u, \phi$, $\left.s^{\prime}\right)=\top$ and Lemma F.7. it follows that secure ${ }_{P, u}^{\text {data }}(r$, $i-1 \vdash_{u} \phi$) holds. From this, it follows that [$\left.\phi\right]^{v}=$ $[\phi]^{s^{\prime}}$ for any $v \in \llbracket s^{\prime} \rrbracket_{u, M}^{d a t a}$. From this and the fact that the INSERT command caused an exception (i.e., $s^{\prime}=s$), it follows that $[\phi]^{v}=[\phi]^{s}$ for any $v \in$ $\llbracket s \rrbracket_{u, M}^{d a t a}$. From this, it follows that secure ${ }_{P, u}^{d a t a}\left(r, i \vdash_{u}\right.$ $\phi)$ holds.
(b) the INSERT command has not caused exceptions, i.e., $E x(s)=\emptyset$. From $\operatorname{secure}\left(u, \phi, s^{\prime}\right)=\top$ and Lemma F. 7 it follows that $\operatorname{secure}_{P, u}^{d a t a}\left(r, i-1 \vdash_{u}\right.$ $\phi)$ holds. From this, it follows that $[\phi]^{v}=[\phi]^{s^{\prime}}$ for any $v \in \llbracket s^{\prime} \rrbracket_{u, M}^{d a t a}$. Furthermore, from Proposition F. 7 and $E x(s)=\emptyset$, it follows that ϕ holds in s^{\prime}. Let $A_{s^{\prime}, R, \bar{t}}$ be the set $\{\langle d b[R \oplus \bar{t}], U, s e c, T, V\rangle \in$ $\left.\Pi_{M} \mid \exists d b^{\prime} \in \Omega_{D} .\left\langle d b^{\prime}, U, s e c, T, V\right\rangle \in \llbracket s^{\prime} \rrbracket_{u, M}^{d a t a}\right\}$. It is easy to see that $\llbracket s \rrbracket_{u, M}^{d a t a} \subseteq A_{s^{\prime}, R, \bar{t}}$. We now show that ϕ holds for any $z \in A_{s^{\prime}, R, \bar{t}}$. Let $z_{1} \in \llbracket s^{\prime} \rrbracket_{u, M}^{\text {data }}$. From $[\phi]^{v}=[\phi]^{s^{\prime}}$ for any $v \in \llbracket s^{\prime} \rrbracket_{u, M}^{d a t a}$ and the fact that ϕ holds in s^{\prime}, it follows that $[\phi]^{z_{1}}=T$. Therefore, for any $\left(\bar{k}_{1}, \bar{k}_{2}, \bar{k}_{3}\right) \in R\left(z_{1}\right)$ such that $\left|\bar{k}_{1}\right|=$ $|\bar{v}|,\left|\bar{k}_{2}\right|=|\bar{w}|$, and $\left|\bar{k}_{3}\right|=|\bar{z}|$, if $k_{1}=\bar{v}$, then $k_{2}=$ \bar{w}. Then, for any $\left(\bar{k}_{1}, \bar{k}_{2}, \bar{k}_{3}\right) \in R\left(z_{1}\right) \cup\{(\bar{v}, \bar{w}, \bar{q})\}$, if $k_{1}=\bar{v}$, then $k_{2}=\bar{w}$. Therefore, ϕ holds also in $z_{1}[R \oplus \bar{t}] \in A_{p S t a t e\left(s^{\prime}\right), R, \bar{t}}$. Hence, $[\phi]^{z}=\top$ for any $z \in A_{s^{\prime}, R, \bar{t}}$. From this and $\llbracket s \rrbracket_{u, M}^{d a t a} \subseteq A_{s^{\prime}, R, \bar{t}}$, it follows that $[\phi]^{z}=\top$ for any $z \in \llbracket s \rrbracket_{u, M}^{\text {data }}$. From this, it follows that secure $e_{P, u}^{\text {data }}\left(r, i \vdash_{u} \phi\right)$ holds.
5. INSERT Success - ID. The proof of this case is similar to that for the INSERT Success - FD.
6. DELETE Success. The proof for this case is similar to that of INSERT Success.
7. DELETE Success - ID. The proof of this case is similar to that for the INSERT Success - FD.
8. INSERT Exception. Let i be such that $r^{i}=r^{i-1}$. $\langle u$, INSER, $R, \bar{t}\rangle \cdot s$, where $s=\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}$ and $\operatorname{last}\left(r^{i-1}\right)=\left\langle d b^{\prime}, U\right.$, sec $\left., T, V, c^{\prime}\right\rangle$, and ϕ be $\neg R(\bar{t})$. From the rule's definition, it follows that $\sec E x(s)=\perp$. From this and the LTS rules, it follows that $f_{\text {conf }}^{u}\left(s^{\prime}\right.$, $\langle u$, INSERT, $R, \bar{t}\rangle)=\mathrm{T}$. From this and $f_{\text {conf }}^{u}$'s definition, it follows that $\operatorname{secure}\left(u, \phi, \operatorname{last}\left(r^{i-1}\right)\right)=\top$ holds because $\phi=\operatorname{getInfo}(\langle u$, InSERT, $R, \bar{t}\rangle)$. From this and Lemma F. 7 it follows that secure ${ }_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$ holds. From the LTS semantics, it follows that $p \operatorname{State}(s)$ $\cong_{u, M}^{\text {data }} \quad$ pState $\left(\operatorname{last}\left(r^{i-1}\right)\right)$. From this, Lemma F.8, and $\operatorname{secure}\left(u, \phi, \operatorname{last}\left(r^{i-1}\right)\right)=\top$, it follows that $\operatorname{secure}(u, \phi$, $\left.\operatorname{last}\left(r^{i}\right)\right)=\mathrm{T}$. From this and Lemma F.7, it follows that secure $_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds.
9. DELETE Exception. The proof for this case is similar to that of INSERT Exception.
10. INSERT FD Exception. Let i be such that $r^{i}=r^{i-1}$. $\langle u$, INSERT, $R,(\bar{v}, \bar{w}, \bar{q})\rangle \cdot s$, where $s=\langle d b, U, s e c, T, V, c\rangle$ $\in \Omega_{M}$ and last $\left(r^{i-1}\right)=\left\langle d b^{\prime}, U, \sec , T, V, c^{\prime}\right\rangle$, and ϕ be $\exists \bar{y}, \bar{z} \cdot R(\bar{v}, \bar{y}, \bar{z}) \wedge \bar{y} \neq \bar{w}$. From the rule's definition, it follows that $\sec E x(s)=\perp$. From this and the LTS rules, it follows that $f_{\text {conf }}^{u}\left(s^{\prime},\langle u\right.$, INSERT, $\left.R,(\bar{v}, \bar{w}, \bar{q})\rangle\right)=$ T. From this and $f_{\text {conf }}^{u}$'s definition, it follows that $\operatorname{secure}\left(u, \phi, \operatorname{last}\left(r^{i-1}\right)\right)=\top$ because $\phi=\operatorname{getInfo} V(\gamma$, $\langle u, \operatorname{INSERT}, R,(\bar{v}, \bar{w}, \bar{q})\rangle)$ for some constraint $\gamma \in \operatorname{Dep}(\Gamma$, $\langle u$, INSERT, $R,(\bar{v}, \bar{w}, \bar{q})\rangle)$. From this and Lemma F.7, it follows that secure $_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$ holds. From the LTS semantics, it follows that $p \operatorname{State}(s) \cong{ }_{u, M}^{d a t a} p \operatorname{State}($ $\left.\operatorname{last}\left(r^{i-1}\right)\right)$. From this, $\operatorname{secure}\left(u, \phi, \operatorname{last}\left(r^{i-1}\right)\right)=\top$, and Lemma F.8, it follows that $\operatorname{secure}\left(u, \phi, \operatorname{last}\left(r^{i}\right)\right)=$ T. From this and Lemma F.7, it follows that also secure $_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds.
11. INSERT ID Exception. The proof for this case is similar to that of INSERT FD Exception.
12. DELETE FD Exception. The proof for this case is similar to that of INSERT FD Exception.
13. Integrity Constraint. The proof of this case follows trivially from the fact that for any state $s=\langle d b, U, s e c, T$, $V, c\rangle \in \Omega_{M}$ and any $\gamma \in \Gamma,[\gamma]^{d b}=\top$ holds by definition.
14. Learn GRANT/REVOKE Backward. Let i be such that $r^{i}=r^{i-1} \cdot t \cdot s$, where $s=\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}$, last $\left(r^{i-1}\right)=\left\langle d b, U, s e c^{\prime}, T, V, c^{\prime}\right\rangle$, and t be a trigger whose WHEN condition is ϕ and whose action is either a grant or a REVOKE. From the rule's definition, it follows that $\sec E x(s)=\perp$. From this and the LTS rules, it follows that $f_{\text {conf }}^{u}\left(\operatorname{last}\left(r^{i-1}\right),\left\langle u^{\prime}\right.\right.$, SELECT, $\left.\left.\phi\right\rangle\right)=\mathrm{T}$, where u^{\prime} is either the trigger's owner or the trigger's invoker depending on the security mode. From this and $f_{\text {conf }}^{u}$'s definition, it follows that $\operatorname{secure}\left(u, \phi, \operatorname{last}\left(r^{i-1}\right)\right)=\mathrm{T}$. From this and F.7, it follows that secure $_{P, u}\left(r, i-1 \vdash_{u}\right.$ $\phi)$ holds.
15. Trigger GRaNT Disabled Backward. Let i be such that $r^{i}=r^{i-1} \cdot t \cdot s$, where $s=\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}$, $\operatorname{last}\left(r^{i-1}\right)=\left\langle d b, U, \sec ^{\prime}, T, V, c^{\prime}\right\rangle$, and t be a trigger whose WHEN condition is ψ, and ϕ be $\neg \psi$. From the rule's definition, it follows that $\sec E x(s)=\perp$. From this and the LTS rules, it follows that $f_{\text {conf }}^{u}\left(\operatorname{last}\left(r^{i-1}\right)\right.$, $\left\langle u^{\prime}\right.$, SELECT,$\left.\left.\phi\right\rangle\right)=\mathrm{T}$, where u^{\prime} is either the trigger's owner or the trigger's invoker depending on the se-
curity mode. From this and $f_{\text {conf }}^{u}$'s definition, it follows that $\operatorname{secure}\left(u, \phi, \operatorname{last}\left(r^{i-1}\right)\right)=\mathrm{T}$. From this and Lemma F.7. it follows that secure $_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$ holds.
16. Trigger REVOKE Disabled Backward. The proof for this case is similar to that of Trigger GRANT Disabled Backward.
17. Trigger INSERT FD Exception. Let i be such that $r^{i}=$ $r^{i-1} \cdot t \cdot s$, where $s=\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}, \operatorname{last}\left(r^{i-1}\right)$ $=\left\langle d b, U, \sec ^{\prime}, T, V, c^{\prime}\right\rangle$, and t be a trigger whose WHEN condition is ϕ and whose action act is a INSERT statement $\left\langle u^{\prime}\right.$, INSERT, $\left.R,(\bar{v}, \bar{w}, \bar{q})\right\rangle$. Furthermore, let ϕ be $\exists \bar{y}, \bar{z} . R(\bar{v}, \bar{y}, \bar{z}) \wedge \bar{y} \neq \bar{w}$. From the rule's definition, it follows that $\sec E x(s)=\perp$. From this and the LTS rules, it follows that $f_{\text {conf }}^{u}\left(\operatorname{last}\left(r^{i-1}\right), a c t\right)=T$. From this and $f_{\text {conf }}^{u}$'s definition, it follows that secure (u, ϕ, last $\left.\left(r^{i-1}\right)\right)=\top$ because $\phi=\operatorname{getInfoV}(\gamma, a c t)$ for some constraint $\gamma \in \operatorname{Dep}(\Gamma, a c t)$. From this and Lemma F.7. it follows that secure ${ }_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$ holds.
18. Trigger INSERT ID Exception. The proof for this case is similar to that of Trigger INSERT ID Exception.
19. Trigger DELETE ID Exception. The proof for this case is similar to that of Trigger DELETE ID Exception.
20. Trigger Exception. Let i be such that $r^{i}=r^{i-1} \cdot t$. s, where $s=\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}, \operatorname{last}\left(r^{i-1}\right)=$ $\left\langle d b, U, \sec ^{\prime}, T, V, c^{\prime}\right\rangle$, and t be a trigger whose WHEN condition is ϕ and whose action is act. From the rule's definition, it follows $f_{\text {conf }}^{u}\left(\operatorname{last}\left(r^{i-1}\right),\left\langle u^{\prime}\right.\right.$, SELECT, $\left.\left.\phi\right\rangle\right)=\mathrm{T}$, where u^{\prime} is either the trigger's owner or the trigger's invoker depending on the security mode. From this and $f_{\text {conf }}^{u}$'s definition, it follows secure $\left(u, \phi, \operatorname{last}\left(r^{i-1}\right)\right)=\mathrm{T}$. From this and F.7, it follows that secure $_{P, u}\left(r, i-1 \vdash_{u}\right.$ $\phi)$ holds.
21. Trigger INSERT Exception. The proof for this case is similar to that of INSERT Exception.
22. Trigger DELETE Exception. The proof for this case is similar to that of DELETE Exception.
23. Trigger Rollback INSERT. Let i be such that $r^{i}=r^{i-n-1}$. $\langle u$, INSERT, $R, \bar{t}\rangle \cdot s_{1} \cdot t_{1} \cdot s_{2} \cdot \ldots \cdot t_{n} \cdot s_{n}$, where $s_{1}, s_{2}, \ldots, s_{n}$ $\in \Omega_{M}$ and $t_{1}, \ldots, t_{n} \in \mathcal{T R \mathcal { I G G E R }}{ }_{D}$, and ϕ be $\neg R(\bar{t})$. Furthermore, let last $\left(r^{i-n-1}\right)=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$ and s_{n} be $\langle d b, U, s e c, T, V, c\rangle$. From the rule's definition, it follows that $\sec E x\left(s_{1}\right)=\perp$. From this, it follows that $f_{\text {conf }}^{u}\left(\operatorname{last}\left(r^{i-n-1}\right),\langle u\right.$, INSERT, $\left.R, \bar{t}\rangle\right)=\mathrm{T}$. From this and $f_{\text {conf' }}^{u}$'s definition, it follows that secure (u, $\left.\phi, \operatorname{last}\left(r^{i-n-1}\right)\right)=\top$ because $\phi=\operatorname{getInfo}(\langle u$, INSERT, R, $\bar{t}\rangle$). From the LTS semantics, it follows that $\operatorname{last}\left(r^{i-n-1}\right)$ $\cong{ }_{u, M}^{\text {data }} s_{n}$. From this, $\operatorname{secure}\left(u, \phi, \operatorname{last}\left(r^{i-n-1}\right)\right)=\top$, and Lemma $F .8$ it follows that $\operatorname{secure}\left(u, \phi, s_{n}\right)=\mathrm{T}$. From this and Lemma F.7. it follows that secure $_{P, u}(r, i$ $\vdash_{u} \phi$) holds.
24. Trigger Rollback DELETE. The proof for this case is similar to that of Trigger Rollback INSERT.
This completes the proof of the base step.
Induction Step: Assume that the claim hold for any derivation of $r, j \vdash_{u} \psi$ such that $\left|r, j \vdash_{u} \psi\right|<\left|r, i \vdash_{u} \phi\right|$. We now prove that the claim also holds for $r, i \vdash_{u} \phi$. There are a number of cases depending on the rule used to obtain $r, i \vdash_{u} \phi$.
25. View. The proof of this case follows trivially from the semantics of the relational calculus extended over views.
26. Propagate Forward SELECT. Let i be such that $r^{i+1}=$ $r^{i} \cdot\langle u$, SELECT, $\psi\rangle \cdot s$, where $s=\langle d b, U, s e c, T, V, c\rangle \in$ Ω_{M} and $\operatorname{last}\left(r^{i}\right)=\left\langle d b^{\prime}, U^{\prime}, \sec ^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$. From the rule, it follows that $r, i \vdash_{u} \phi$ holds. From this and the induction hypothesis, it follows that secure $_{P, u}\left(r, i \vdash_{u}\right.$ $\phi)$ holds. From Lemma F.15 the action $\langle u$, SELECT, $\psi\rangle$ preserves the equivalence class with respect to r^{i}, P, and u. From this, Lemma $F .12$ and secure $_{P, u}\left(r, i \vdash_{u}\right.$ $\phi)$, it follows that also secure ${ }_{P, u}\left(r, i+1 \vdash_{u} \phi\right)$ holds.
27. Propagate Forward GRANT/REVOKE. Let i be such that $r^{i+1}=r^{i} \cdot\left\langle o p, u^{\prime}, p, u\right\rangle \cdot s$, where $s=\langle d b, U, s e c, T, V, c\rangle \in$ Ω_{M} and $\operatorname{last}\left(r^{i}\right)=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$. From the rule, it follows that $r, i \vdash_{u} \phi$ holds. From this and the induction hypothesis, it follows that $\operatorname{secure}_{P, u}\left(r, i \vdash_{u}\right.$ ϕ) holds. From Lemma F. 15 the action $\left\langle o p, u^{\prime}, p, u\right\rangle$ preserves the equivalence class with respect to r^{i}, P, and u. From this, Lemma F.13 and $\operatorname{secure}_{P, u}\left(r, i \vdash_{u}\right.$ $\phi)$, it follows that also secure ${ }_{P, u}\left(r, i+1 \vdash_{u} \phi\right)$ holds.
28. Propagate Forward CREATE. The proof for this case is similar to that of Propagate Forward SELECT.
29. Propagate Backward SELECT. Let i be such that $r^{i+1}=$ $r^{i} \cdot\langle u$, SELECT, $\psi\rangle \cdot s$, where $s=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$ $\in \Omega_{M}$ and $\operatorname{last}\left(r^{i}\right)=\langle d b, U, s e c, T, V, c\rangle$. From the rule, it follows that $r, i+1 \vdash_{u} \phi$ holds. From this and the induction hypothesis, it follows that $\operatorname{secure}_{P, u}\left(r, i+1 \vdash_{u}\right.$ $\phi)$ holds. From Lemma F. 15 the action $\langle u$, SELECT, $\psi\rangle$ preserves the equivalence class with respect to r^{i}, P, and u. From this, Lemma F.12 and $\operatorname{secure}_{P, u}(r, i+1$ $\left.\vdash_{u} \phi\right)$, it follows that also secure $P_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds.
30. Propagate Backward GRANT/REVOKE. Let i be such that $r^{i+1}=r^{i} \cdot\left\langle o p, u^{\prime}, p, u\right\rangle \cdot s$, where $s=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}\right.$, $\left.c^{\prime}\right\rangle \in \Omega_{M}$ and $\operatorname{last}\left(r^{i}\right)=\langle d b, U$, sec, $T, V, c\rangle$. From the rule, it follows that $r, i+1 \vdash_{u} \phi$ holds. From this and the induction hypothesis, it follows that secure $P_{P, u}(r, i+$ $1 \vdash_{u} \phi$) holds. From Lemma F.15 the action $\left\langle o p, u^{\prime}, p\right.$, u) preserves the equivalence class with respect to r^{i}, P, and u. From this, Lemma F.13, and secure $_{P, u}(r, i+$ $\left.1 \vdash_{u} \phi\right)$, it follows that also secure $P_{, u}\left(r, i \vdash_{u} \phi\right)$ holds.
31. Propagate Backward CREATE TRIGGER. The proof for this case is similar to that of Propagate Backward SELECT.
32. Propagate Backward CREATE VIEW. Note that the formulae ψ and replace (ψ, o) are semantically equivalent. This is the only difference between the proof for this case and the one for the Propagate Backward SELECT case.
33. Rollback Backward - 1. Let i be such that $r^{i}=r^{i-n-1}$. $\langle u, o p, R, \bar{t}\rangle \cdot s_{1} \cdot t_{1} \cdot s_{2} \cdot \ldots \cdot t_{n} \cdot s_{n}$, where $s_{1}, s_{2}, \ldots, s_{n} \in$ $\Omega_{M}, t_{1}, \ldots, t_{n} \in \mathcal{T R} \mathcal{I G G E} \mathcal{R}_{D}$, and $o p$ is one of $\{$ INSERT, DELETE $\}$. Furthermore, let s_{n} be $\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$ and last $\left(r^{i-n-1}\right)$ be $\langle d b, U, s e c, T, V, c\rangle$. From the rule's definition, $r, i \vdash_{u} \phi$ holds. From this and the induction hypothesis, it follows that $\operatorname{secure}_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds. From Lemma F.16 the triggers t_{j} preserve the equivalence class with respect to $r^{i-n-1+j}, P$, and u for any $1 \leq j \leq n$. Therefore, for any $v \in \llbracket r^{i-1} \rrbracket_{P, u}$, the run $e\left(v, t_{n}\right)$ contains the roll-back. Therefore, for any $v \in \llbracket r^{i-1} \rrbracket_{P, u}$, the state last $\left(e\left(v, t_{n}\right)\right)$ is the state just before the action $\langle u, o p, R, \bar{t}\rangle$. Let A be the set of partial states associated with the roll-back states. It is easy to see that A is the same as $\left\{p \operatorname{State}\left(\operatorname{last}\left(t^{\prime}\right)\right) \mid t^{\prime} \in\right.$ $\left.\llbracket r^{i-n-1} \rrbracket_{P, u}\right\}$. From $\operatorname{secure}_{P, u}\left(r, i \vdash_{u} \phi\right)$, it follows that ϕ has the same result over all states in A. From this and
$A=\left\{p \operatorname{State}\left(\operatorname{last}\left(t^{\prime}\right)\right) \mid t^{\prime} \in \llbracket r^{i-n-1} \rrbracket_{P, u}\right\}$, it follows that ϕ has the same result over all states in $\left\{p \operatorname{State}\left(\operatorname{last}\left(t^{\prime}\right)\right) \mid\right.$ $\left.t^{\prime} \in \llbracket r^{i-n-1} \rrbracket_{P, u}\right\}$. From this, it follows that secure $_{P, u}$ ($r, i-n-1 \vdash_{u} \phi$) holds.
34. Rollback Backward - 2. Let i be such that $r^{i}=r^{i-1}$. $\langle u, o p, R, \bar{t}\rangle \cdot s$, where $s=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle \in$ $\Omega_{M}, \operatorname{last}\left(r^{i-1}\right)=\langle d b, U$, sec $, T, V, c\rangle$, and op is one of \{INSERT, DELETE\}. From the rule's definition, $r, i \vdash_{u} \phi$ holds. From this and the induction hypothesis, it follows that secure ${ }_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds. From Lemma F.15 the action $\langle u, o p, R, \bar{t}\rangle$ preserves the equivalence class with respect to r^{i-1}, P, and u. From this, Lemma F.11. the fact that the action does not modify the database state, and secure $_{P, u}\left(r, i \vdash_{u} \phi\right)$, it follows secure $P_{P, u}(r, i-$ $\left.1 \vdash_{u} \phi\right)$.
35. Rollback Forward - 1. Let i be such that $r^{i}=r^{i-n-1}$. $\langle u, o p, R, \bar{t}\rangle \cdot s_{1} \cdot t_{1} \cdot s_{2} \cdot \ldots \cdot t_{n} \cdot s_{n}$, where $s_{1}, s_{2}, \ldots, s_{n} \in$ $\Omega_{M}, t_{1}, \ldots, t_{n} \in \mathcal{T} \mathcal{R} \mathcal{I G G E} \mathcal{R}_{D}$, and $o p$ is one of $\{$ INSERT, DELETE $\}$. Furthermore, let s_{n} be $\langle d b, U, s e c, T, V, c\rangle$ and last $\left(r^{i-n-1}\right)$ be $\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$. From the rule's definition, $r, i-n-1 \vdash_{u} \phi$ holds. From this and the induction hypothesis, it follows that $\operatorname{secure}_{P, u}(r, i-$ $n-1 \vdash_{u} \phi$) holds. From Lemma F.16, the triggers t_{j} preserve the equivalence class with respect to $r^{i-n-1+j}$, P, and u for any $1 \leq j \leq n$. Independently on the cause of the roll-back (either a security exception or an integrity constraint violation), we claim that the set A of roll-back partial states is $\left\{p \operatorname{State}\left(\operatorname{last}\left(t^{\prime}\right)\right) \mid t^{\prime} \in\right.$ $\left.\llbracket r^{i-n-1} \rrbracket_{P, u}\right\}$. From secure $_{P, u}\left(r, i-n-1 \vdash_{u} \phi\right)$, the result of ϕ is the same for all states in A. From this and $A=\left\{p \operatorname{State}\left(\operatorname{last}\left(t^{\prime}\right)\right) \mid t^{\prime} \in \llbracket r^{i-n-1} \rrbracket_{P, u}\right\}$, it follows that also $\operatorname{secure}_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds.
We now prove our claim. It is trivial to see (from the LTS's semantics) that the set of rollback's states is a subset of $\left\{p \operatorname{State}(\operatorname{last}(v)) \mid v \in \llbracket r^{i-n-1} \rrbracket_{P, u}\right\}$. Assume, for contradiction's sake, that there is a state in $\left\{p \operatorname{State}(\operatorname{last}(v)) \mid v \in \llbracket r^{i-n-1} \rrbracket_{P, u}\right\}$ that is not a rollback state for the runs in $\llbracket r^{i} \rrbracket_{P, u}$. This is impossible since all triggers t_{1}, \ldots, t_{n} preserve the equivalence class.
36. Rollback Forward - 2. Let i be such that $r^{i}=r^{i-1}$. $\langle u, o p, R, \bar{t}\rangle \cdot s$, where $o p \in\{$ INSERT, DELETE $\}, s=\langle d b, U$, sec, $T, V, c\rangle \in \Omega_{M}$ and last $\left(r^{i-1}\right)=\left\langle d b^{\prime}, U^{\prime}, \sec ^{\prime}, T^{\prime}, V^{\prime}\right.$, $\left.c^{\prime}\right\rangle$. From the rule's definition, $r, i-1 \vdash_{u} \phi$ holds. From this and the induction hypothesis, it follows that secure $_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$ holds. From Lemma F.15, the action $\langle u, o p, R, \bar{t}\rangle$ preserves the equivalence class with respect to r^{i-1}, P, and u. From this, Lemma F.11, the fact that the action does not modify the database state, and secure $_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$, it follows that also secure $_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds.
37. Propagate Forward INSERT/DELETE Success. Let i be such that $r^{i}=r^{i-1} \cdot\langle u, o p, R, \bar{t}\rangle \cdot s$, where $o p \in\{$ INSERT, DELETE $\}, s=\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}$ and last $\left(r^{i-1}\right)=$ $\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$. From the rule's definition, $r, i-$ $1 \vdash_{u} \phi$ holds. From this and the induction hypothesis, it follows that secure $P_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$ holds. From Lemma F.15 the action $\langle u, o p, R, \bar{t}\rangle$ preserves the equivalence class with respect to r^{i-1}, P, and u. From reviseBelif (r^{i-1}, ϕ, r^{i}), it follows that the execution of $\langle u, o p, R, \bar{t}\rangle$ does not alter the content of the tables in tables (ϕ) for any $v \in \llbracket r^{i-1} \rrbracket_{P, u}$. From this, Lemma F. 11 and secure $_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$, it follows that $\operatorname{secure}_{P, u}$ ($r, i \vdash_{u} \phi$) holds.
38. Propagate Forward INSERT Success - 1. Let i be such that $r^{i}=r^{i-1} \cdot\langle u, o p, R, \bar{t}\rangle \cdot s$, where $o p$ is one if $\{$ INSERT, DELETE $\}, s=\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}$ and last $\left(r^{i-1}\right)=$ $\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$. From the rule's definition, $r, i-$ $1 \vdash_{u} \phi$ holds. From this and the induction hypothesis, it follows that $\operatorname{secure}_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$ holds. From Lemma $F .15$ the action $\langle u, o p, R, \bar{t}\rangle$ preserves the equivalence class with respect to r^{i-1}, P, and u. We claim that the execution of $\langle u$, INSERT, $R, \bar{t}\rangle$ does not alter the content of the tables in tables (ϕ). From this, secure $_{P, u}(r$, $\left.i-1 \vdash_{u} \phi\right)$, and Lemma $F .11$, it follows that $\operatorname{secure}_{P, u}(r, i$ $\vdash_{u} \phi$) holds.
We now prove our claim that the execution of $\langle u$, INSERT, $R, \bar{t}\rangle$ does not alter the content of the tables in tables (ϕ). From the rule's definition, it follows that $r, i-1 \vdash_{u}$ $R(\bar{t})$ holds. From this and Lemma B.1 it follows that $[R(\bar{t})]^{\text {last }\left(r^{i-1}\right) \cdot d b}=\mathrm{T}$. From $r, i-1 \vdash_{u} R(\bar{t})$ and the induction hypothesis, it follows that $\operatorname{secure}_{P, u}(r, i-$ $1, u, R(\bar{t}))$ holds. From this and $[R(\bar{t})]^{\text {last }\left(r^{i-1}\right) \cdot d b}=\mathrm{T}$, it follows that $[R(\bar{t})]^{\text {last }(v) \cdot d b}=\mathrm{T}$ for any $v \in \llbracket r^{i-1} \rrbracket_{P, u}$. From this and the relational calculus semantics, it follows that the execution of $\langle u, o p, R, \bar{t}\rangle$ does not alter the content of the tables in $\operatorname{tables}(\phi)$ for any $v \in \llbracket r^{i-1} \rrbracket_{P, u}$.
39. Propagate Forward DELETE Success - 1. The proof for this case is similar to that of Propagate Forward INSERT Success - 1.
40. Propagate Backward INSERT/DELETE Success. Let i be such that $r^{i}=r^{i-1} \cdot\langle u, o p, R, \bar{t}\rangle \cdot s$, where $o p \in\{$ INSERT, DELETE $\}, s=\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}$ and last $\left(r^{i-1}\right)=$ $\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$. From the rule's definition, r, i $\vdash_{u} \phi$ holds. From this and the induction hypothesis, it follows that secure $_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds. From Lemma F. 15 the action $\langle u, o p, R, \bar{t}\rangle$ preserves the equivalence class with respect to r^{i-1}, P, and u. From reviseBelif (r^{i-1}, ϕ, r^{i}), it follows that the execution of $\langle u, o p, R, \bar{t}\rangle$ does not alter the content of the tables in tables (ϕ) for any $v \in \llbracket r^{i-1} \rrbracket_{P, u}$. From this, Lemma F.11 and secure $_{P, u}\left(r, i \vdash_{u} \phi\right)$, it follows that $\operatorname{secure}_{P, u}(r, i-$ $1 \vdash_{u} \phi$) holds.
41. Propagate Backward INSERT Success - 1. Let i be such that $r^{i}=r^{i-1} \cdot\langle u, o p, R, \bar{t}\rangle \cdot s$, where op is one of $\{$ InSERT, DELETE $\}, s=\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}$, and last $\left(r^{i-1}\right)=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$. From the rule's definition, $r, i \vdash_{u} \phi$ holds. From this and the induction hypothesis, it follows that $\operatorname{secure}_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds. From Lemma F. 15 the action $\langle u, o p, R, \bar{t}\rangle$ preserves the equivalence class with respect to r^{i-1}, P, and u. We claim that the execution of $\langle u$, INSERT, $R, \bar{t}\rangle$ does not alter the content of the tables in tables (ϕ) for any $v \in \llbracket r^{i-1} \rrbracket_{P, u}$ (the proof of this claim is in the proof of the Propagate Forward INSERT Success - 1 case). From this, Lemma F.11, and $\operatorname{secure}_{P, u}\left(r, i \vdash_{u} \phi\right)$, it follows that secure ${ }_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$ holds.
42. Propagate Backward DELETE Success - 1. The proof for this case is similar to that of Propagate Forward DELETE Success - 1 .
43. Reasoning. Let Δ be a subset of $\left\{\delta \mid r, i \vdash_{u} \delta\right\}$ and $\operatorname{last}\left(r^{i}\right)=\langle d b, U, \sec , T, V, c\rangle$. From the induction hypothesis, it follows that secure $_{P, u}\left(r, i \vdash_{u} \delta\right)$ holds for any $\delta \in \Delta$. Note that, given any $\delta \in \Delta$, from $r, i \vdash_{u} \delta$ and Lemma B.1 it follows that δ holds in $\operatorname{last}\left(r^{i}\right)$. From this, secure $_{P, u}\left(r, i \vdash_{u} \delta\right)$ holds for any $\delta \in \Delta$,
$\Delta \models_{f i n} \phi$, and Lemma F.10 it follows that secure $_{P, u}(r$, $i \vdash_{u} \phi$) holds.
44. Learn INSERT Backward - 3. Let i be such that $r^{i}=$ $r^{i-1} \cdot\langle u$, INSERT, $R, \bar{t}\rangle \cdot s$, where $s=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}\right.$, $\left.c^{\prime}\right\rangle \in \Omega_{M}$ and $\operatorname{last}\left(r^{i-1}\right)=\langle d b, U, s e c, T, V, c\rangle$, and ϕ be $\neg R(\bar{t})$. From the rule's definition, $\sec E x(s)=\perp$. From this and the LTS rules, it follows that $f_{\text {conf }}^{u}\left(\operatorname{last}\left(r^{i-1}\right)\right.$, $\langle u$, INSERT, $R, \bar{t}\rangle)=\top$. From this and $f_{\text {conf }}^{u}$'s definition, it follows that $\operatorname{secure}\left(u, \phi, \operatorname{last}\left(r^{i-1}\right)\right)=\top$ because $\phi=$ $\operatorname{getInfo}(\langle u$, InSERT, $R, \bar{t}\rangle)$. From this and Lemma F.7. it follows that $\operatorname{secure}_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$ holds.
45. Learn DELETE Backward - 3. The proof for this case is similar to that of Learn INSERT Backward - 3.
46. Propagate Forward Disabled Trigger. Let i be such that $r^{i}=r^{i-1} \cdot t \cdot s$, where $s=\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}$, $\operatorname{last}\left(r^{i-1}\right)=\langle d b, U, \sec , T, V, c\rangle$, and t be a trigger. Furthermore, let ψ be t 's condition where all free variables are replaced with $\operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)$. From the rule, it follows that $r, i-1 \vdash_{u} \phi$. From this and the induction hypothesis, it follows that $\operatorname{secure}_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$ holds. Furthermore, from Lemma G.8, it follows that t preserves the equivalence class with respect to r^{i-1}, P, and u. If the trigger's action is an INSERT or a DELETE operation, we claim that the operation does not change the content of any table in $\operatorname{tables}(\phi)$ for any run $v \in \llbracket r^{i-1} \rrbracket_{P, u}$. From this, the fact that t preserves the equivalence class with respect to r^{i-1}, P, and u, Lemma F.14 and $\operatorname{secure}_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$, it follows that also secure $_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds.
We now prove our claim. Assume that t's action in either an INSERT or a DELETE operation. From the rule, it follows that $r, i-1 \vdash_{u} \neg \psi$. From this and Lemma B.1, $[\psi]^{\text {last }\left(r^{i-1}\right)}=\perp$. From $r, i-1 \vdash_{u} \neg \psi$ and the induction hypothesis, it follows that $\operatorname{secure}_{P, u}\left(r, i-1 \vdash_{u} \psi\right)$ holds. From this and $[\psi]^{\text {last }\left(r^{i-1}\right) \cdot d b}=\perp$, it follows that $[\psi]^{v . d b}=\perp$ for any run $v \in \llbracket r^{i-1} \rrbracket_{P, u}$. Therefore, the trigger t is disabled in any run $v \in \llbracket r^{i-1} \rrbracket_{P, u}$. From this and the LTS semantics, it follows that t 's execution does not change the content of any table in tables (ϕ) for any run $v \in \llbracket r^{i-1} \rrbracket_{P, u}$.
47. Propagate Backward Disabled Trigger. The proof for this case is similar to that of Propagate Forward Disabled Trigger.
48. Learn INSERT Forward. Let i be such that $r^{i}=r^{i-1}$. $t \cdot s$, where $s=\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}, \operatorname{last}\left(r^{i-1}\right)=$ $\langle d b, U, s e c, T, V, c\rangle$, and t be a trigger, and ϕ be $R(\bar{t})$. Furthermore, let ψ be t 's condition where all free variables are replaced with $\operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)$. From the rule's definition, it follows that t 's action is $\left\langle u^{\prime}\right.$, INSERT, $\left.R, \bar{t}\right\rangle$ and that $r, i-1 \vdash_{u} \psi$ holds. From Lemma B.1 and $r, i-$ $1 \vdash_{u} \psi$, it follows that $[\psi]^{\text {last }\left(r^{i-1}\right) \cdot d b}=T$. From this, $\sec E x(s)=\perp$, and $E x(s)=\emptyset$, it follows that t 's action has been executed successfully. From this, it follows that $\bar{t} \in \operatorname{s.db}(R)$. From $r, i-1 \vdash_{u} \psi$ and the induction hypothesis, it follows secure $P_{P, u}\left(r, i-1 \vdash_{u} \psi\right)$. From this and $[\psi]^{\text {last }\left(r^{i-1}\right) \cdot d b}=\top$, it follows that $[\psi]^{\text {last }(v) \cdot d b}=\top$ for any $v \in \llbracket r^{i-1} \rrbracket_{P, u}$. From this, it follows that the trigger t is enabled in any run $v \in \llbracket r^{i-1} \rrbracket_{P, u}$. From Lemma F.16, it follows that t preserves the equivalence class with respect to r^{i-1}, P, and u. From this, $\sec E x(s)=\perp, E x(s)=\emptyset$, and the fact that the trigger t is enabled in any run $v \in \llbracket r^{i-1} \rrbracket_{P, u}$, it follows that t 's
action is executed successfully in any run $e(v, t)$, where $v \in \llbracket r^{i-1} \rrbracket_{P, u}$. From this, it follows that $\bar{t} \in d b^{\prime \prime}(R)$ for any $v \in \llbracket r^{i-1} \rrbracket_{P, u}$, where $d b^{\prime \prime}=\operatorname{last}(e(v, t))$. $d b$. Therefore, secure $_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds.
49. Learn INSERT - FD. Let i be such that $r^{i}=r^{i-1} \cdot t$. s, where $s=\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}, \operatorname{last}\left(r^{i-1}\right)=$ $\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$, and $t \in \mathcal{T R} \mathcal{I G G E} \mathcal{R}_{D}$, and ϕ be $\neg \exists \bar{y}, \bar{z} . R(\bar{v}, \bar{y}, \bar{z}) \wedge \bar{y} \neq \bar{w}$. Furthermore, let ψ be t 's condition where all free variables are replaced with the values in $\operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)$ and $\left\langle u^{\prime}, \operatorname{INSERT}, R,(\bar{v}, \bar{w}, \bar{q})\right\rangle$ be t^{\prime} 's actual action. From the rule, it follows that $r, i-$ $1 \vdash_{u} \psi$. From this and Lemma B.1 it follows that $[\psi]^{l a s t\left(r^{i-1}\right) \cdot d b}=\top$. From this, $E x(s)=\emptyset$, and $\sec E x(s)$ $=\perp$, it follows that $f_{\text {conf }}^{u}\left(s^{\prime},\left\langle u^{\prime}\right.\right.$, INSERT, $\left.\left.R, \bar{t}\right\rangle\right)=\mathrm{T}$, where s^{\prime} is the state just after the execution of the SELECT statement associated with t 's WHEN clause. From this and $f_{\text {conf }}^{u}$'s definition, it follows that secure (u, ϕ, s^{\prime}) $=\mathrm{T}$. From this, pState $\left(s^{\prime}\right)=p \operatorname{State}\left(\operatorname{last}\left(r^{i-1}\right)\right)$, and Lemma F.8, it follows that $\operatorname{secure}\left(u, \phi, \operatorname{last}\left(r^{i-1}\right)\right)=$ T. From this and Lemma F.7, it follows also that secure $_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$ holds. We claim that secure ${ }_{P, u}^{\text {data }}$ ($r, i \vdash_{u} \phi$) holds. From this and Lemma F.2 it follows that also secure ${ }_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds.
We now prove our claim that secure $e_{P, u}^{\text {data }}\left(r, i \vdash_{u} \phi\right)$ holds. Let s^{\prime} be the state just after the execution of the SELECT statement associated with t 's WHEN clause and $s^{\prime \prime}$ be the state $\operatorname{last}\left(r^{i-1}\right)$. Furthermore, for brevity's sake, in the following we omit the pState function where needed. For instance, with a slight abuse of notation, we write $\llbracket s^{\prime} \rrbracket_{u, M}^{\text {data }}$ instead of $\llbracket p \operatorname{State}\left(s^{\prime}\right) \rrbracket_{u, M}^{\text {data }}$. From $\operatorname{secure}\left(u, \phi, s^{\prime}\right)=\mathrm{T}, s^{\prime} \cong{ }_{u, M}^{d a t a} s^{\prime \prime}$, Lemma $F .8$ and Lemma F. 7 it follows that $\operatorname{secure}_{P, u}^{\text {data }}\left(r, i-1 \vdash_{u} \phi\right)$ holds. From this, it follows that $[\phi]^{v}=[\phi]^{s^{\prime \prime}}$ for any $v \in \llbracket s^{\prime \prime} \rrbracket_{u, M}^{\text {data }}$. Furthermore, from Proposition $F .7$ and $E x(s)=\emptyset$, it follows that ϕ holds in $s^{\prime \prime}$. Let $A_{s^{\prime \prime}, R, \bar{t}}$ be the set $\left\{\langle d b[R \oplus \bar{t}], U, s e c, T, V\rangle \in \Pi_{M} \mid \exists d b^{\prime} \in \Omega_{D} .\left\langle d b^{\prime}\right.\right.$, $\left.U, s e c, T, V\rangle \in \llbracket s^{\prime \prime} \rrbracket_{u, M}^{\text {data }}\right\}$. It is easy to see that $\llbracket s \rrbracket_{u, M}^{\text {data }} \subseteq$ $A_{s^{\prime \prime}, R, \bar{t}}$. We now show that ϕ holds for any $z \in A_{s^{\prime \prime}, R, \bar{t}}$. Let $z_{1} \in \llbracket s^{\prime \prime} \rrbracket_{u, M}^{d a t a}$. From $[\phi]^{v}=[\phi]^{s^{\prime \prime}}$ for any $v \in$ $\llbracket s^{\prime \prime} \rrbracket_{u, M}^{d a t a}$ and the fact that ϕ holds in $s^{\prime \prime}$, it follows that $[\phi]^{z_{1}}=\mathrm{T}$. Therefore, for any $\left(\bar{k}_{1}, \bar{k}_{2}, \bar{k}_{3}\right) \in R\left(z_{1}\right)$, if $k_{1}=\bar{v}$, then $k_{2}=\bar{w}$. Then, for any $\left(\bar{k}_{1}, \bar{k}_{2}, \bar{k}_{3}\right) \in$ $R\left(z_{1}\right) \cup\{(\bar{v}, \bar{w}, \bar{q})\}$, if $k_{1}=\bar{v}$, then $k_{2}=\bar{w}$. Therefore, ϕ holds also in $z_{1}[R \oplus \bar{t}] \in A_{p S t a t e\left(s^{\prime \prime}\right), R, \bar{t}}$. Hence, $[\phi]^{z}=\top$ for any $z \in A_{s^{\prime \prime}, R, \bar{t}}$. From this and $\llbracket s \rrbracket_{u, M}^{d a t a} \subseteq A_{s^{\prime \prime}, R, \bar{t}}$, it follows that $[\phi]^{z}=\top$ for any $z \in \llbracket s \rrbracket_{u, M}^{\text {data }}$. From this, it follows that secure ${ }_{P, u}^{\text {data }}\left(r, i \vdash_{u} \phi\right)$ holds.
50. Learn INSERT - FD-1. The proof of this case is similar to that of Learn INSERT - FD.
51. Learn INSERT - ID. The proof of this case is similar to that of Learn INSERT - FD. See also the proof of INSERT Success - ID.
52. Learn INSERT - ID - 1. The proof of this case is similar to that of Learn INSERT - ID.
53. Learn INSERT Backward - 1. Let i be such that $r^{i}=$ $r^{i-1} \cdot t \cdot s$, where $s=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle \in \Omega_{M}$, last $\left(r^{i-1}\right)=\langle d b, U$, sec, $T, V, c\rangle$, and $t \in \mathcal{T} \mathcal{R} \mathcal{I G G E R}{ }_{D}$, and ϕ be t 's actual WHEN condition, where all free variables are replaced with the values in $\operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)$. From the rule's definition, it follows that $\sec E x(s)=$ T. From this, the LTS semantics, and $\sec E x(s)=$

T , it follows that $f_{\text {conf }}^{u}\left(\operatorname{last}\left(r^{i-1}\right),\left\langle u^{\prime}\right.\right.$, SELECT, $\left.\left.\phi\right\rangle\right)=$ T. From this and $f_{\text {conf }}^{u}$'s definition, it follows that $\operatorname{secure}\left(u, \phi, \operatorname{last}\left(r^{i-1}\right)\right)=T$. From this and Lemma F.7. it follows that also secure $_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$ holds.
30. Learn INSERT Backward - 2. Let i be such that $r^{i}=$ $r^{i-1} \cdot t \cdot s$, where $s=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle \in \Omega_{M}$, last $\left(r^{i-1}\right)=\langle d b, U$, sec, $T, V, c\rangle$, and $t \in \mathcal{T R I G G E R}_{D}$, and ϕ be $\neg R(\bar{t})$. Furthermore, let act $=\left\langle u^{\prime}\right.$, INSERT, R, $\bar{t}\rangle$ be t 's actual action and γ be t 's actual WHEN condition obtained by replacing all free variables with the values in $\operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)$. From the rule's definition, it follows that $\sec E x(s)=\top$ and there is a ψ such that $r, i-1 \vdash_{u} \psi$ and $r, i \vdash_{u} \neg \psi$. We claim that $[\gamma]^{d b}=\mathrm{T}$. From this and $\sec E x(s)=\mathrm{T}$, it follows $f_{\text {conf }}^{u}\left(s^{\prime},\left\langle u^{\prime}\right.\right.$, INSERT, $\left.\left.R, \bar{t}\right\rangle\right)=\top$, where s^{\prime} is the state obtained after the evaluation of t 's WHEN condition. From this and $f_{\text {conf }}^{u}$'s definition, it follows secure $\left(u, \phi, s^{\prime}\right)=\top$ since ϕ is equivalent to $\operatorname{getInfo}\left(\left\langle u^{\prime}, \operatorname{INSERT}, R, \bar{t}\right\rangle\right)$. From this, $\operatorname{pState}\left(\operatorname{last}\left(r^{i-1}\right)\right)=p \operatorname{State}\left(s^{\prime}\right)$, and Lemma F.8. it follows that $\operatorname{secure}\left(u, \phi, \operatorname{last}\left(r^{i-1}\right)\right)=\mathrm{T}$. From this and Lemma $F .7$ it follows secure $_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$.
We now prove our claim that $[\gamma]^{d b}=T$. Assume, for contradiction's sake, that this is not the case. From this and the LTS rules, it follows that $d b=d b^{\prime}$. From the rule's definition, it follows that there is a ψ such that $r, i-1 \vdash_{u} \psi$ and $r, i \vdash_{u} \neg \psi$. From this, Lemma B.1, $s=$ $\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$, and last $\left(r^{i-1}\right)=\langle d b, U, s e c, T$, $V, c\rangle$, it follows that $[\psi]^{d b}=\mathrm{T}$ and $[\neg \psi]^{d b^{\prime}}=\mathrm{T}$. Therefore, $[\psi]^{d b}=\top$ and $[\psi]^{d b^{\prime}}=\perp$. Hence, $d b \neq d b^{\prime}$, which contradicts $d b=d b^{\prime}$.
31. Learn DELETE Forward. The proof of this case is similar to that of Learn INSERT Forward.
32. Learn DELETE - ID. The proof of this case is similar to that of Learn INSERT - FD. See also the proof of DELETE Success - ID.
33. Learn DELETE - ID - 1. The proof of this case is similar to that of Learn DELETE - ID.
34. Learn DELETE Backward - 1. The proof of this case is similar to that of Learn INSERT Backward - 1 .
35. Learn DELETE Backward - 2. The proof of this case is similar to that of Learn INSERT Backward - 2.
36. Propagate Forward Trigger Action. Let i be such that $r^{i}=r^{i-1} \cdot t \cdot s$, where t is a trigger, $s=\langle d b, U, s e c, T, V, c\rangle$ $\in \Omega_{M}$ and last $\left(r^{i-1}\right)=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$. From the rule's definition, $r, i-1 \vdash_{u} \phi$ holds. From this and the induction hypothesis, it follows that secure ${ }_{P, u}(r, i-$ $1 \vdash_{u} \phi$) holds. From Lemma F.16, the trigger t preserves the equivalence class with respect to r^{i-1}, P, and u. We claim that the execution of t does not alter the content of the tables in tables (ϕ). From this, Lemma F.11, and secure $_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$, it follows that also the judgment $r, i \vdash_{u} \phi$ is secure, i.e., secure ${ }_{P, u}$ ($r, i \vdash_{u} \phi$) holds.
We now prove our claim that the execution of t does not alter the content of the tables in tables (ϕ). If the trigger is not enabled, proving the claim is trivial. In the following, we assume the trigger is enabled. There are four cases:

- t 's action is an INSERT statement. This case amount to claiming that the INSERT statement $\left\langle u^{\prime}\right.$, INSERT, $R, \bar{t}\rangle$ does not alter the content of the tables in tables (ϕ) in case reviseBelif $\left(r^{i-1}, \phi, r^{i}\right)=\mathrm{T}$. We
proved the claim above in the Propagate Forward INSERT/DELETE Success case.
- t 's action is an DELETE statement. The proof is similar to that of the INSERT case.
- t 's action is an GRANT statement. In this case, the action does not alter the database state and the claim follows trivially
- t's action is an REVOKE statement. The proof is similar to that of the GRANT case.

37. Propagate Backward Trigger Action. The proof of this case is similar to Propagate Backward Trigger Action.
38. Propagate Forward INSERT Trigger Action. Let i be such that $r^{i}=r^{i-1} \cdot t \cdot s$, where t is a trigger, $s=$ $\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}$ and $\operatorname{last}\left(r^{i-1}\right)=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}\right.$, $\left.T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$. From the rule's definition, $r, i-1 \vdash_{u} \phi$ holds. From this and the induction hypothesis, it follows that secure $_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$ holds. From Lemma F.16, the trigger t preserves the equivalence class with respect to r^{i-1}, P, and u. We claim that the execution of t does not alter the content of the tables in tables (ϕ). From this, Lemma F.11, and secure ${ }_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$, it follows that also the judgment $r, i \vdash_{u} \phi$ is secure, i.e., secure $_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds.
We now prove our claim that the execution of t does not alter the content of the tables in tables (ϕ). If the trigger is not enabled, proving the claim is trivial. In the following, we assume the trigger is enabled. Then, t 's action is an INSERT statement. This case amount to claiming that the INSERT statement $\left\langle u^{\prime}\right.$, INSERT, $\left.R, \bar{t}\right\rangle$ does not alter the content of the tables in $\operatorname{tables}(\phi)$ in case $r, i-1 \vdash_{u} R(\bar{t})$ holds. We proved the claim above in the Propagate Forward INSERT Success - 1 case.
39. Propagate Forward DELETE Trigger Action. The proof of this case is similar to that of Propagate Forward INSERT Trigger Action.
40. Propagate Backward InSERT Trigger Action. The proof of this case is similar to that of Propagate Forward INSERT Trigger Action.
41. Propagate Backward DELETE Trigger Action. The proof of this case is similar to that of Propagate Forward INSERT Trigger Action.
42. Trigger FD INSERT Disabled Backward. Let i be such that $r^{i}=r^{i-1} \cdot t \cdot s$, where $s=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle \in$ $\Omega_{M}, t \in \mathcal{T R} \mathcal{I G G E} \mathcal{R}_{D}, \operatorname{last}\left(r^{i-1}\right)=\langle d b, U$, sec $, T, V, c\rangle$, and ψ be t 's actual WHEN condition obtained by replacing all free variables with the values in $\operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)$. Furthermore, let act $=\left\langle u^{\prime}\right.$, INSERT, $\left.R,(\bar{v}, \bar{w}, \bar{q})\right\rangle$ be t 's actual action and α be $\exists \bar{y}, \bar{z} \cdot R(\bar{v}, \bar{y}, \bar{z}) \wedge \bar{y} \neq \bar{w}$. From the rule's definition, it follows that $\sec E x(s)=\perp$. From this, it follows that $f_{\text {conf }}^{u}\left(l a s t\left(r^{i-1}\right),\left\langle u^{\prime}\right.\right.$, SELECT,$\left.\left.\psi\right\rangle\right)=$ T. From this and $f_{\text {conf }}^{u}$'s definition, it follows that $\operatorname{secure}\left(u, \neg \psi, \operatorname{last}\left(r^{i-1}\right)\right)=\mathrm{T}$. From this, it follows $\operatorname{secure}\left(u, \psi, \operatorname{last}\left(r^{i-1}\right)\right)=\top$. From this and Lemma F.7. it follows $\operatorname{secure}_{P, u}\left(r, i-1 \vdash_{u} \psi\right)$.
43. Trigger ID INSERT Disabled Backward. The proof of this case is similar to that of Trigger FD INSERT Disabled Backward.
44. Trigger ID DELETE Disabled Backward. The proof of this case is similar to that of Trigger FD INSERT Disabled Backward.
This completes the proof of the induction step.
This completes the proof.

F. 3 Complexity proofs

In this section, we prove that data complexity of $f_{\text {conf }}^{u}$ is $A C^{0}$. Note that the complexity class $A C^{0}$ identifies those problems that can be solved using constant-depth, polynomialsize boolean circuits with AND, OR, and NOT gates with unbounded fan-in. Note also that, in the following, with $A C^{0}$ we usually refer to uniform- $A C^{0}$. Given a database schema D and a database state $d b \in \Omega_{D}^{\Gamma}$, the size of $d b$, denoted also as $|d b|$, is $|d b|=\Sigma_{R \in D} \Sigma_{\bar{t} \in d b(R)}|\bar{t}|$, where the size $|\bar{t}|$ of a tuple \bar{t} is just its cardinality. Similarly, the the size of the schema D, denoted $|D|$, is $\Sigma_{R \in D}|R|$. Finally, given a set of views V over D, the size of the extended vocabulary ext $\operatorname{Vocabulary}(D, V)$, denoted $|\operatorname{ext} \operatorname{Voc}(D, V)|$, is $\Sigma_{o \in R \cup V} \Sigma_{0 \leq i<|o|} \frac{|o|!}{(|o|-i)!\cdot i!}$. Note that, given a view V, we denote by $|V|$ its cardinality. Furthermore, given a $R C$ formula ϕ, the size of ϕ, denoted as $|\phi|$, is defined as follows:

$$
|\phi|= \begin{cases}1+|\bar{x}| & \text { if } \phi:=R(\bar{x}) \\ 1 & \text { if } \phi:=\top \\ 1 & \text { if } \phi:=\perp \\ 3 & \text { if } \phi:=x=y \\ 1+|\psi|+|\gamma| & \text { if } \phi:=\psi O \gamma \text { and } O \in\{\vee, \wedge\} \\ 1+|\psi| & \text { if } \phi:=\neg \psi \\ 2+|\psi| & \text { if } \phi:=Q x . \psi \text { and } Q \in\{\exists, \forall\}\end{cases}
$$

Lemma $F .18$ shows that the rewritten formula $\phi_{s, u}^{v}$, for some $v \in\{\bar{\top}, \perp\}$, is linear in the size of the original formula ϕ.

Lemma F.17. Let $M=\langle D, \Gamma\rangle$ be a system configuration, $s=\langle d b, U, s e c, T, V\rangle$ be a partial M-state, $u \in U$ be a user, and ϕ be a D-formula. For all formulae ϕ and all $v \in\{T, \perp\},\left|\phi_{s, u}^{v}\right| \leq(|\operatorname{extVoc}(D, V)|+1) \cdot|\phi|$.
Proof. Let $M=\langle D, \Gamma\rangle$ be a system configuration, $s=$ $\langle d b, U, s e c, T, V\rangle$ be a partial M-state, and $u \in U$ be a user. Let ϕ be an arbitrary formula over $D \cup V$ and v be an arbitrary value in $\{T, \perp\}$. We now prove that $\left|\phi_{s, u}^{v}\right| \leq m \cdot|\phi|$ by induction over the structure of the formula ϕ.
Base Case There are four cases:

1. $\phi:=x=y$. In this case, $\phi_{s, u}^{v}=\phi$. From this, $\left|\phi_{s, u}^{v}\right|=|\phi|$. From this, it follows trivially that $\left|\phi_{s, u}^{v}\right| \leq$ $(|\operatorname{extVoc}(D, V)|+1) \cdot|\phi|$.
2. $\phi:=\mathrm{T}$. The proof of this case is similar to that of $\phi:=x=y$.
3. $\phi:=\perp$. The proof of this case is similar to that of $\phi:=x=y$.
4. $\phi:=R(\bar{x})$. Without loss of generality, we assume that $v=\mathrm{T}$. From this, it follows that $\phi_{s, u}^{\top}:=\bigvee_{S \in R_{s, u}^{\top}} S(\bar{x})$. From this, it follows that $\left|\phi_{s, u}^{\top}\right|=\left(\left|R_{s, u}^{\top}\right|-1\right)+\Sigma_{S \in R_{s, u}^{\top}}$ $|S(\bar{x})|$. From this and $|S(\bar{x})|=1+|\bar{x}|$, it follows that $\left|\phi_{s, u}^{\top}\right|=\left(\left|R_{s, u}^{\top}\right|-1\right)+\Sigma_{S \in R_{s, u}^{\top}}(1+|\bar{x}|)$. From this, it follows that $\left|\phi_{s, u}^{\top}\right|=\left(\left|R_{s, u}^{\top}\right|-1\right)+\left|R_{s, u}^{\top}\right| \cdot(1+|\bar{x}|)$. From $\phi:=R(\bar{x})$, it follows that $|\phi|=1+|\bar{x}|$. From this and $\left|\phi_{s, u}^{\top}\right|=\left(\left|R_{s, u}^{\top}\right|-1\right)+\left|R_{s, u}^{\top}\right| \cdot(1+|\bar{x}|)$, it follows that $\left|\phi_{s, u}^{\top}\right|=\left|R_{s, u}^{\top}\right| \cdot|\phi|+\left(\left|R_{s, u}^{\top}\right|-1\right)$. We claim that $\left|R_{s, u}^{\top}\right| \leq|\operatorname{ext} \operatorname{Voc}(D, V)|$. From this and $\left|\phi_{s, u}^{\top}\right|=\left|R_{s, u}^{\top}\right|$. $|\phi|+\left(\left|R_{s, u}^{\top}\right|-1\right)$, it follows that $\left|\phi_{s, u}^{\top}\right| \leq|\operatorname{ext} \operatorname{Voc}(D, V)|$. $|\phi|+|\operatorname{ext} \operatorname{Voc}(D, V)|$. From this, it follows that $\left|\phi_{s, u}^{\top}\right| \leq$ $(|\operatorname{ext} \operatorname{Voc}(D, V)|+1) \cdot|\phi|$.
We now prove our claim that $\left|R_{s, u}^{\top}\right| \leq|\operatorname{ext} \operatorname{Voc}(D, V)|$. The set $R_{s, u}^{\top}$ is a subset of $\operatorname{extVocabulary}(D, V)$ by con-
struction. The set extVocabulary (D, V) contains any possible projection of tables in D and views in V. It is easy to check that the cardinality of ext Vocabulary (D, V) is, indeed, $|\operatorname{ext} \operatorname{Voc}(D, V)|$.
This completes the proof of the base case.
Induction Step Assume that our claim holds for all subformulae of ϕ. We now show that our claim holds also for ϕ. There are a number of cases depending on ϕ 's structure.
5. $\phi:=\psi \wedge \gamma$. From this, it follows that $\phi_{s, u}^{v}:=\psi_{s, u}^{v} \wedge \gamma_{s, u}^{v}$. From this, it follows that $\left|\phi_{s, u}^{v}\right|=1+\left|\psi_{s, u}^{v}\right|+\left|\gamma_{s, u}^{v}\right|$. From the induction hypothesis, it follows that $\left|\psi_{s, u}^{v}\right| \leq$ $(|\operatorname{ext} \operatorname{Voc}(D, V)|+1) \cdot|\psi|$ and $\left|\gamma_{s, u}^{v}\right| \leq(|\operatorname{ext} \operatorname{Voc}(D, V)|+$ 1) $\cdot|\gamma|$. From this and $\left|\phi_{s, u}^{v}\right|=1+\left|\psi_{s, u}^{v}\right|+\left|\gamma_{s, u}^{v}\right|$, it follows that $\left|\phi_{s, u}^{v}\right| \leq 1+(|\operatorname{extVoc}(D, V)|+1) \cdot|\psi|+$ $(|\operatorname{ext} \operatorname{Voc}(D, V)|+1) \cdot|\gamma|$. From this and $|\operatorname{extVoc}(D, V)|$ ≥ 0, it follows that $\left|\phi_{s, u}^{v}\right| \leq|\operatorname{extVoc}(D, V)|+1+(\mid \operatorname{extVoc}$ $(D, V) \mid+1) \cdot|\psi|+(|\operatorname{ext} \operatorname{Voc}(D, V)|+1) \cdot|\gamma|$. From this, it follows that $\left|\phi_{s, u}^{v}\right| \leq(|\operatorname{ext} \operatorname{Voc}(D, V)|+1) \cdot(1+|\psi|+|\gamma|)$. From this and $|\phi|=1+|\psi|+|\gamma|$, it follows that $\left|\phi_{s, u}^{v}\right| \leq$ $(|\operatorname{ext} \operatorname{Voc}(D, V)|+1) \cdot|\phi|$.
6. $\phi:=\psi \vee \gamma$. The proof of this case is similar to that of $\phi:=\psi \wedge \gamma$.
7. $\phi:=\neg \psi$. From this, it follows that $\phi_{s, u}^{v}:=\neg \psi_{s, u}^{\neg v}$. From this, it follows that $\left|\phi_{s, u}^{v}\right|=1+\left|\psi_{s, u}^{\vec{v}}\right|$. From the induction hypothesis, it follows that $\left|\psi_{s, u}^{\urcorner v}\right| \leq(\mid \operatorname{extVoc}$ $(D, V) \mid+1) \cdot|\psi|$. From this and $\left|\phi_{s, u}^{v}\right|=1+\left|\psi_{s, u}^{v}\right|$, it follows that $\left|\phi_{s, u}^{v}\right| \leq 1+(|\operatorname{ext} \operatorname{Voc}(D, V)|+1) \cdot|\psi|$. From this and $|\operatorname{ext} \operatorname{Voc}(D, V)| \geq 0$, it follows that $\left|\phi_{s, u}^{v}\right| \leq$ $|\operatorname{extVoc}(D, V)|+1+(|\operatorname{ext} \operatorname{Voc}(D, V)|+1) \cdot|\psi|$. From this, it follows that $\left|\phi_{s, u}^{v}\right| \leq(|\operatorname{ext} \operatorname{Voc}(D, V)|+1) \cdot(1+|\psi|)$. From this and $|\phi|=1+|\psi|$, it follows that $\left|\phi_{s, u}^{v}\right| \leq$ $(|\operatorname{ext} \operatorname{Voc}(D, V)|+1) \cdot|\phi|$.
8. $\phi:=\exists x . \psi$. If $\phi_{s, u}^{v}$ is $\neg v$, then the claim holds trivially since $\left|\phi_{s, u}^{v}\right|=1$. In the following, we assume that $\phi_{s, u}^{v}:=\exists x . \psi_{s, u}^{v}$. From this, it follows that $\left|\phi_{s, u}^{v}\right|=$ $2+\left|\psi_{s, u}^{v}\right|$. From the induction hypothesis, it follows that $\left|\psi_{s, u}^{v}\right| \leq(|\operatorname{extVoc}(D, V)|+1) \cdot|\psi|$. From this and $\left|\phi_{s, u}^{v}\right|=2+\left|\psi_{s, u}^{v}\right|$, it follows that $\left|\phi_{s, u}^{v}\right| \leq 2+$ $(|\operatorname{ext} \operatorname{Voc}(D, V)|+1) \cdot|\psi|$. From this and $|\operatorname{ext} \operatorname{Voc}(\bar{D}, V)|$ ≥ 0, it follows that $\left|\phi_{s, u}^{v}\right| \leq 2 \cdot|\operatorname{extVoc}(D, V)|+2+$ $(|\operatorname{ext} \operatorname{Voc}(D, V)|+1) \cdot|\psi|$. From this, it follows that $\left|\phi_{s, u}^{v}\right| \leq(|\operatorname{ext} \operatorname{Voc}(D, V)|+1) \cdot(2+|\psi|)$. From this and $|\phi|=2+|\psi|$, it follows that $\left|\phi_{s, u}^{v}\right| \leq(|\operatorname{ext} \operatorname{Voc}(D, V)|+$ 1) $\cdot|\phi|$.
9. $\phi:=\forall x \cdot \psi$. The proof of this case is similar to that of $\phi:=\exists x . \psi$.
This completes the proof of the induction step.
This completes the proof of our claim.
Lemma F.18. Let $M=\langle D, \Gamma\rangle$ be a system configuration, $s=\langle d b, U$, sec, $T, V\rangle$ be a partial M-state, $u \in U$ be a user, and ϕ be a D-formula. For all sentences ϕ and all $v \in$ $\{\top, \perp\},\left|\phi_{s, u}^{v}\right| \leq(|\operatorname{ext} \operatorname{Voc}(D, V)|+1) \cdot|\phi|$ and $\left|\neg \phi_{s, u}^{\top} \wedge \phi_{s, u}^{\perp}\right| \leq$ $2(|\operatorname{ext} \operatorname{Voc}(D, V)|+1) \cdot|\phi|$.
Proof. Let $M=\langle D, \Gamma\rangle$ be a system configuration, $s=$ $\langle d b, U, s e c, T, V\rangle$ be a partial M-state, $u \in U$ be a user, and ϕ be a D-formula. Furthermore, let ϕ be a sentence and v be a value in $\{\top, \perp\}$. The fact that $\left|\phi_{s, u}^{v}\right| \leq(|\operatorname{ext} \operatorname{Voc}(D, V)|+1)$. $|\phi|$ follows trivially from Lemma F.17. Let ψ be the formula $\neg \phi_{s, u}^{\top} \wedge \phi_{s, u}^{\perp}$. The size of ψ is $2+\left|\phi_{s, u}\right|+\left|\phi_{s, u}^{\perp}\right|$. From this and Lemma F.17 it follows that $|\psi| \leq 2+(|\operatorname{ext} \operatorname{Voc}(D, V)|+$ 1) $\cdot|\phi|+(|\operatorname{extVoc}(D, V)|+1) \cdot|\phi|$. From this, it follows that $|\psi| \leq 2(|\operatorname{ext} \operatorname{Voc}(D, V)|+1) \cdot|\phi|$. This completes the
proof.
In the following, we study the data complexity of our PDP. Note that, given a PDP f, the data complexity of f is the data complexity of the following decision problem:

Definition F.4. Let $M=\langle D, \Gamma\rangle$ be some fixed system configuration, $a \in \mathcal{A}_{D, U}$ be some fixed action, $u \in \mathcal{U}$ be some fixed user, $U \subseteq \mathcal{U}$ be some fixed set of users, sec $\in \Omega_{U, D}^{s e c}$ be some fixed policy, T be some fixed set of triggers over D whose owners are in U, V be some fixed set of views over D whose owners are in U, and c be some fixed context.
INPUT: A database state $d b$ such that $\langle d b, U, s e c, T, V, c\rangle \in$ Ω_{M}.
Question: Is $f(\langle d b, U, s e c, T, V, c\rangle, a)=\mathrm{T}$?
We define in a similar way the data complexity of the secure procedure.

Theorem F.2. The data complexity of $f_{\text {conf }}^{u}$ is $A C^{0}$.

Proof. Let $M=\langle D, \Gamma\rangle$ be some fixed system configuration, $a \in \mathcal{A}_{D, U}$ be some fixed action, $u \in \mathcal{U}$ be some fixed user, $U \subseteq \mathcal{U}$ be some fixed set of users, sec $\in \Omega_{U, D}^{s e c}$ be some fixed policy, T be some fixed set of triggers over D whose owners are in U, V be some fixed set of views over D whose owners are in U, and c be some fixed context. The data complexity of $f_{\text {conf }}^{u}$ is the maximum of the data complexities of $f_{\text {conf }, \mathrm{I}, \mathrm{D}}^{u}, f_{\text {conf }, \mathrm{G}}^{u}$, and $f_{\text {conf, } \mathrm{S}}^{u}$. We claim that:

1. the data complexity of $f_{\text {conf }, \mathrm{I}, \mathrm{D}}^{u}$ is $A C^{0}$,
2. the data complexity of $f_{\text {conf }, \mathrm{S}}^{u}$ is $A C^{0}$, and
3. the data complexity of $f_{\text {conf }, \mathrm{G}}^{u}$ is $O(1)$.

From this, it follows that the data complexity of $f_{\text {conf }}^{u}$ is $\max \left(A C^{0}, O(1)\right)$. From this, it follows that the data complexity of $f_{\text {conf }}^{u}$ is $A C^{0}$.
Our claims on the data complexity of $f_{\text {conf, } \mathrm{I}, \mathrm{D}}^{u}, f_{\text {conf }, \mathrm{S}}^{u}$, and $f_{\text {conf }, \mathrm{G}}^{u}$ are proved respectively in Lemma F.19, Lemma F.21, and Lemma F. 20 .

Lemma F.19. The data complexity of $f_{\text {conf }, I, D}^{u}$ is $A C^{0}$.
Proof. Let $M=\langle D, \Gamma\rangle$ be some fixed system configuration, $a \in \mathcal{A}_{D, U}$ be some fixed INSERT or DELETE action, $u \in \mathcal{U}$ be some fixed user, $U \subseteq \mathcal{U}$ be some fixed set of users, sec $\in \Omega_{U, D}^{s e c}$ be some fixed policy, T be some fixed set of triggers over D whose owners are in U, V be some fixed set of views over D whose owners are in U, and c be some fixed context. Furthermore, let $d b \in \Omega_{D}^{\Gamma}$ be a database state such that $\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}$. We can check whether $f_{\text {conf }, \mathrm{I}, \mathrm{D}}^{u}(\langle d b, U, \sec , T, V, c\rangle, a)=\mathrm{\top}$ as follows:

1. If $\operatorname{trigger}(s)=\epsilon$ and $a \notin \mathcal{A}_{D, u}$, return T .
2. If $\operatorname{trigger}(s) \neq \epsilon$ and $\operatorname{invoker}(s) \neq u$, return T.
3. Compute the result of $\operatorname{noLeak}(s, a, u)$. If $\operatorname{noLeak}(s, a, u)$ $=\perp$, then returns \perp.
4. Compute the set $\operatorname{Dep}(\Gamma, a)$.
5. Compute $\operatorname{secure}(u, \operatorname{getInfo}(a), s)$. If its result is \perp, return \perp.
6. For each $\gamma \in \operatorname{Dep}(\Gamma, a)$, compute secure (u, getInfoV (a, $\gamma), s$). If its result is \perp, return \perp.
7. For each $\gamma \in \operatorname{Dep}(\Gamma, a)$, compute secure (u, getInfoS (a, $\gamma), s)$. If its result is \perp, return \perp.
8. Return T.

The data complexity of the steps 1 and 2 is $O(1)$. We claim that also the data complexity of the third step is $O(1)$. The complexity of the fourth step is $O(|\Gamma|)$. From the definition
of getInfo, the resulting formula is constant in the size of the database. Furthermore, also constructing the formula can be done in constant time in the size of the database. From this and Lemma F.22 it follows that the data complexity of the fifth step is $\overline{A C^{0}}$. For a similar reason, the data complexity of the sixth and seventh steps is also $A C^{0}$. Therefore, the overall data complexity of the $f_{\text {conf, } \mathrm{I}, \mathrm{D}}^{u}$ procedure is $A C^{0}$.
We now prove our claim that the data complexity of the noLeak procedure is $O(1)$. An algorithm implementing the noLeak procedure is as follows:

1. for each view $v \in V$, for each grant $g \in \sec$, if $g=$ $\left\langle o p, u,\langle\right.$ SELECT, $\left.v\rangle, u^{\prime}\right\rangle$, then
(a) compute the set $t \operatorname{Det}(v, s, M)$.
(b) if $R \in \operatorname{tDet}(v, s, M)$, for each $o \in \operatorname{tDet}(v, s, M)$, check whether $\left\langle o p, u,\langle\right.$ SELECT,$\left.o\rangle, u^{\prime \prime}\right\rangle \in s e c$.
The size of the set $t \operatorname{Det}(v, s, M)$ is at most $|D|$. From this, it follows that the complexity of the step 1.(b) is $O(|D|$. $|s e c|)$. From Lemma E. 10 and the definition of t Det, the complexity of computing $\operatorname{tDet}(v, s, M)$ is $O\left(|\phi|^{3}\right)$, where ϕ is v 's definition. The overall complexity is, therefore, $O(|V|$. $\left.|\sec | \cdot\left(|D| \cdot|s e c|+2^{|D|} \cdot|\phi|\right)\right)$, where ϕ is the definition of the longest view in V. From this, it is easy to see that the data complexity of the noLeak procedure is $O(1)$.

Lemma F.20. The data complexity of $f_{\text {conf }, G}^{u}$ is $O(1)$.
Proof. Let $M=\langle D, \Gamma\rangle$ be some fixed system configuration, $a \in \mathcal{A}_{D, U}$ be some fixed GRANT action, $u \in \mathcal{U}$ be some fixed user, $U \subseteq \mathcal{U}$ be some fixed set of users, sec $\in \Omega_{U, D}^{\text {sec }}$ be some fixed policy, T be some fixed set of triggers over D whose owners are in U, V be some fixed set of views over D whose owners are in U, and c be some fixed context. Furthermore, let $d b \in \Omega_{D}^{\Gamma}$ be a database state such that $\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}$. We can check whether $f_{\text {conf , }}^{u}(\langle d b$, $\left.\left.U, s e c, T, V, c\rangle,\left\langle o p, u^{\prime \prime}, p, u^{\prime}\right\rangle\right)\right)=\top$ as follows.

1. If trigger $(s)=\epsilon$ and $a \notin \mathcal{A}_{D, u}$, return T .
2. If $\operatorname{trigger}(s) \neq \epsilon$ and $\operatorname{invoker}(s) \neq u$, return T .
3. If p is not a SELECT privilege, return T.
4. If $u^{\prime \prime} \neq u$, return T.
5. For each $g \in \sec$, if $g=\left\langle o p, u, p, u^{\prime}\right\rangle$, return T.
6. Return \perp.

The complexity of the fifth step is $O(|s e c|)$, whereas the complexity of the other steps is $O(1)$. Therefore, the overall complexity of the $f_{\text {conf }, \mathrm{G}}^{u}$ procedure is $O(|s e c|)$. From this, it follows that the data complexity of $f_{\text {conf }, \mathrm{G}}^{u}$ procedure is $O(1)$.

Lemma F.21. The data complexity of $f_{\text {conf }, s}^{u}$ is $A C^{0}$.

Proof. Let $M=\langle D, \Gamma\rangle$ be some fixed system configuration, $a \in \mathcal{A}_{D, U}$ be some fixed SELECT action, $u \in \mathcal{U}$ be some fixed user, $U \subseteq \mathcal{U}$ be some fixed set of users, $\sec \in \Omega_{U, D}^{s e c}$ be some fixed policy, T be some fixed set of triggers over D whose owners are in U, V be some fixed set of views over D whose owners are in U, and c be some fixed context. Furthermore, let $d b \in \Omega_{D}^{\Gamma}$ be a database state such that $\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}$. We can check whether $f_{c o n f, \mathrm{~S}}^{u}(\langle d b$, $U, s e c, T, V, c\rangle, a))=\top$ as follows.

1. If $\operatorname{trigger}(s)=\epsilon$ and $a \notin \mathcal{A}_{D, u}$, return \top.
2. If $\operatorname{trigger}(s) \neq \epsilon$ and $\operatorname{invoker}(s) \neq u$, return T.
3. Compute $\operatorname{secure}(u, \phi, s)$ and return its result.

The complexity of the first and second steps is $O(1)$. From Lemma F.22, it follows that the data complexity of the third step is $A C^{0}$. From this, it follows that the data complexity of $f_{\text {conf }, \mathrm{s}}^{u}$ procedure is $A C^{0}$.

Lemma F.22. The data complexity of secure is $A C^{0}$.
Proof. Let $M=\langle D, \Gamma\rangle$ be some fixed system configuration, ϕ be some fixed sentence, $u \in \mathcal{U}$ be some fixed user, $U \subseteq \mathcal{U}$ be some fixed set of users, sec $\in \Omega_{U, D}^{s e c}$ be some fixed policy, T be some fixed set of triggers over D whose owners are in U, V be some fixed set of views over D whose owners are in U, and c be some fixed context. Furthermore, let $d b \in$ Ω_{D}^{Γ} be a database state such that $\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}$. We denote by s the state $\langle d b, U, s e c, T, V, c\rangle$. We can check whether $\operatorname{secure}(u, \phi,\langle d b, U, \sec , T, V, c\rangle)=\mathrm{T}$ as follows:

1. Compute the formula $\phi_{s, u}^{r w}$.
2. Compute $\left[\phi_{s, u}^{r w}\right]^{d b}$.
3. secure $(u, \phi,\langle d b, U, \sec , T, V, c\rangle)=\mathrm{T}$ iff $\left[\phi_{s, u}^{r w}\right]^{d b}=\perp$.

We claim that the first step can be done in constant time in terms of data complexity. It is well-known that the data complexity of query execution is $A C^{0}[3]$. From this, it follows that the data complexity of secure is also $A C^{0}$.

We now prove our claim that computing the formula $\phi_{s, u}^{r w}$ can be done in constant time in terms of data complexity. The extended vocabulary extVocabulary (D, V) does not depend on the database state. From this and the definition of R_{s}^{v}, where R is a predicate symbol and $v \in\{\top, \perp\}$, the set R_{s}^{v} (and the time needed to compute it) depends just on the database schema D and the set of views V. The set $A U T H_{s, u}$ and the time needed to compute it depend just on the size of the policy sec. Furthermore, the time needed to compute $A U T H_{s, u}^{*}$ depends just on the size of the policy sec and of the extended vocabulary. Therefore, for any predicate R, the set R_{s}^{v} can be computed in constant time in terms of database size. The computation of the formula ϕ^{\prime}, obtained by replacing sub-formulae of the form $\exists \bar{x} \cdot R(\bar{x}, \bar{y})$ with the corresponding predicates in the extended vocabulary, can be done in linear time in terms of $|\phi|$ and in constant time in terms of $|d b|$. Note that the size of the resulting formula is linear in $|\phi|$. It is easy to see that also computing $\phi_{s, u}^{\top}$ and $\phi_{s, u}^{\perp}$ can be done in linear time in terms of $|\phi|$ and in constant time in terms of $|d b|$. As shown in Lemma F.18, the size of the resulting formula is linear in $|\phi|$. Finally, we can replace the predicates in the extended vocabulary with the corresponding sub-formulae again in linear time in terms of $|\phi|$. Note that, again, the size of the resulting formula is linear in $|\phi|$. Therefore, the overall rewriting process can be done in linear time in the size of ϕ and in constant time in the size of $d b$.

G. COMPOSITION

Here, we model the PDP f, presented in Section 6 which is obtained by composing the PDPs $f_{\text {int }}$ and $f_{\text {conf }}^{u}$ presented above. The PDP f is obtained by composing $f_{\text {int }}$ and $f_{\text {conf }}^{u}$ as follows:

$$
f(s, a c t)=f_{\text {int }}(s, a c t) \wedge f_{\text {conf }}^{u s e r(a c t, s)}(s, a c t)
$$

The function user takes as input an action and a state and returns the actual user executing the action. It is defined as follows, where i denotes the invoker function and tr denotes the trigger function.

$$
\text { user }(\text { act }, s)= \begin{cases}i(s) & \text { if } \operatorname{tr}(s) \neq \epsilon \\ u & \text { if } \operatorname{tr}(s)=\epsilon \text { and act } \in \mathcal{A}_{D, u}\end{cases}
$$

We now show our main results, namely that (1) f provides both database integrity and data confidentiality, and (2) f's data complexity is $A C^{0}$.

Theorem G.1. Let M be a system configuration, f be as above, and $P=\langle M, f\rangle$ be an extended configuration.

1. For any user $u \in \mathcal{U}$, the PDP f provides data confidentiality with respect to \vdash_{u}, P, and u.
2. The PDP f provides database integrity with respect to P.

Proof. It follows from Lemma G. 1 and Lemma G. 6
Theorem G.2. The data complexity of f is $A C^{0}$.
Proof. From f 's definition, it follows that f 's data complexity is the maximum complexity between $f_{\text {conf }}^{u}$'s complexity and $f_{\text {int }}$'s complexity. From this, Theorem E.2, and Theorem F.2 it follows that the data complexity of f is $A C^{0}$.

G. 1 Database Integrity

Here, we show that f provides database integrity.
Lemma G.1. Let $M=\langle D, \Gamma\rangle$ be a system configuration, f be as above, and $P=\langle M, f\rangle$ be an extended configuration. The PDP f provides database integrity with respect to P.

Proof. We prove the lemma by contradiction. Assume, for contradiction's sake, that f does not satisfy the database integrity property. There are three cases:

- there is a reachable state s and an action act $\in \mathcal{A}_{D, \mathcal{U}}$ such that $\operatorname{trigger}(s)=\epsilon, f(s, a c t)=\mathrm{T}$, and $s \not \chi_{\mathrm{a}_{\text {auth }}}$ act. From $f(s, a c t)=\mathrm{\top}$, it follows that $f_{\text {int }}(s, a c t)=$ \top. From this fact, $\operatorname{trigger}(s)=\epsilon$, and Lemma E.5 it follows $s \sim_{\text {auth }}$ act, which leads to a contradiction.
- there is a reachable state s and a trigger $t \in \mathcal{T} \mathcal{R} \mathcal{G G E} \mathcal{R}_{D}$ such that $\operatorname{trigger}(s)=t, f(s, c)=\top,[\psi]^{s . d b}=\perp$, and $s \not \nsim$ auth t, where $c=\langle u$, SELECT, $\psi\rangle$ is t 's condition. From $f(s, c)=\top$, it follows that $f_{\text {int }}(s, c)=\mathrm{T}$. From $f_{\text {int }}(s, c)=\mathrm{T},[\psi]^{s . d b}=\perp$, $\operatorname{trigger}(s)=t$, and Lemma E.7 it follows $s \sim$ auth t, which leads to a contradiction.
- there is a reachable state s and a trigger $t \in \mathcal{T} \mathcal{R} \mathcal{G G E} \mathcal{R}_{D}$ such that $\operatorname{trigger}(s)=t, f(s, c)=\mathrm{T},[\psi]^{s . d b}=\mathrm{T}$, $f\left(s^{\prime}, a\right)=\mathrm{T}$, and $s \not \chi_{\rightarrow_{\text {auth }}} t$, where $c=\langle u$, SELECT,$\psi\rangle$ is t^{\prime} 's condition, a is t^{\prime} 's action, and s^{\prime} is the state obtained from s by updating the context's history. From $f\left(s^{\prime}, a\right)=\mathrm{T}$, it follows that $f_{\text {int }}\left(s^{\prime}, a\right)=\mathrm{T}$. Since s and s^{\prime} are equivalent modulo the context's history and $f_{\text {int }}$ does not depend on the context's history, it follows
that $f_{\text {int }}(s, a)=\mathrm{T}$. From $f_{\text {int }}(s, c)=\mathrm{T},[\psi]^{s . d b}=\mathrm{T}$, $f_{\text {int }}(s, a)=\top$, $\operatorname{trigger}(s)=t$, and Lemma E.7, it follows $s \sim$ auth t, which leads to a contradiction. This completes the proof.

Lemma G.2. Let $P=\langle M, f\rangle$ be an extended configuration, where $M=\langle D, \Gamma\rangle$ is a system configuration and f is as above, and L be the P-LTS. For each reachable state $s=\langle d b, U$, sec $, T, V, c\rangle, s \sim_{\text {auth }} g$ for all $g \in$ sec.
Proof. The proof is very similar to that of LemmaE.9.

G. 2 Data Confidentiality

Here, we show that f provides the desired data confidentiality guarantees. First, we show that the PDP f^{\prime}, defined as $f^{\prime}(s, a c t):=f_{\text {conf }}^{u s e r(a c t, s)}(s, a c t)$, provides data confidentiality. Afterwards, we analyse the security of f.
In Lemma G. 3 and Lemma G.4, we prove some preliminary results about f^{\prime}. These results will then be used to prove f 's security.

Lemma G.3. Let $M=\langle D, \Gamma\rangle$ be a system configuration, a be an action in $\mathcal{A}_{D, \mathcal{U}}$, and $s, s^{\prime} \in \Omega_{M}$ be two M-states such that $p \operatorname{State}(s) \cong$ aser $(a, s), M$ pState $\left(s^{\prime}\right)$, invoker $(s)=$ invoker $\left(s^{\prime}\right)$, and trigger $(s)=\operatorname{trigger}\left(s^{\prime}\right)$. Then, $f_{\text {conf }}^{\text {user }(a, s)}(s$, $a)=\top$ iff $f_{\text {conf }}^{u s e r\left(a, s^{\prime}\right)}\left(s^{\prime}, a\right)=\top$.

Proof. Let $s=\langle d b, U, s e c, T, V, c\rangle$ and $s^{\prime}=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}\right.$, $\left.T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$ be two M-states such that $p \operatorname{State}(s) \cong{ }_{M, \text { user }(a, s)}^{\text {data }}$ p State $\left(s^{\prime}\right)$, invoker $(s)=\operatorname{invoker}\left(s^{\prime}\right)$, and $\operatorname{trigger}(s)=\operatorname{trigger}\left(s^{\prime}\right)$.
We first show that $u \operatorname{ser}(a, s)=u \operatorname{ser}\left(a, s^{\prime}\right)$. Since $\operatorname{trigger}(s)$ $=\operatorname{trigger}\left(s^{\prime}\right)$, there are two cases:

- $\operatorname{trigger}(s)=\epsilon$. In this case, the result of $u \operatorname{ser}(a, s)$ depends just on a. Therefore, $\operatorname{user}(a, s)=\operatorname{user}\left(a, s^{\prime}\right)$.
- $\operatorname{trigger}(s) \neq \epsilon$. In this case, user $(a, s)=\operatorname{invoker}(s)$ and $\operatorname{user}\left(a, s^{\prime}\right)=\operatorname{invoker}\left(s^{\prime}\right)$. From invoker $(s)=$ invoker $\left(s^{\prime}\right)$, it follows that user $(a, s)=\operatorname{user}\left(a, s^{\prime}\right)$.
Let u be the user $\operatorname{user}(a, s)$. From Lemma F. 9 it follows that $f_{\text {conf }}^{u}(s, a)=f_{\text {conf }}^{u}\left(s^{\prime}, a\right)$. This completes the proof.

Lemma G.4. Let M be a system configuration, f^{\prime} be as above, and $P=\left\langle M, f^{\prime}\right\rangle$ be an extended configuration. For any user $u \in \mathcal{U}$, the PDP f^{\prime} satisfies the data confidentiality property with respect to $P, u, \mathcal{A T} \mathcal{K}_{u}$, and $\cong_{P, u}$.
Proof. It is easy to see that Lemmas F.9 F.11, F. 12 F.13 F. 14 F.15 and F. 16 hold as well for f^{\prime}. Therefore, we can easily adapt the proof of Theorem F.1 to f^{\prime}.

In Lemma G.5 we show that the PDP f returns the same result in any two data-indistinguishable states.

Lemma G.5. Let $M=\langle D, \Gamma\rangle$ be a system configuration, $s, s^{\prime} \in \Omega_{M}$ be two M-states such that pState $(s) \cong \cong_{M, \text { user }(a, s)}^{\text {data }}$ $p \operatorname{State}\left(s^{\prime}\right)$, tuple $(s)=\operatorname{tuple}\left(s^{\prime}\right)$, invoker $(s)=\operatorname{invoker}\left(s^{\prime}\right)$, and trigger $(s)=\operatorname{trigger}\left(s^{\prime}\right)$, and f be the PDP as above. The following conditions hold:

1. If trigger $(s)=\epsilon$, for any action a in $\mathcal{A}_{D, \mathcal{U}}, f(s, a)=\top$ iff $f\left(s^{\prime}, a\right)=\mathrm{T}$.
2. If trigger $(s) \in \mathcal{T} \mathcal{R} \mathcal{I G G E} \mathcal{R}_{D}, f(s, \operatorname{trigCond}(s))=\top$ iff $f\left(s^{\prime}, \operatorname{trigCond}(s)\right)=\top$.
3. If trigger $(s) \in \mathcal{T} \mathcal{R} \mathcal{I G G E} \mathcal{R}_{D}$, $\operatorname{trigCond}(s)=\langle u$, SELECT, $\psi\rangle,[\psi]^{s . d b}=[\psi]^{s^{\prime} \cdot d b}=\top, f(s, \operatorname{trigAct}(s))=\top$ iff $f\left(s^{\prime}, \operatorname{trigAct}\left(s^{\prime}\right)\right)=\mathrm{T}$.

Proof. We prove our three claims by contradiction.

1. Assume, for contradiction's sake, that there are two states s and s^{\prime} and an action a such that $\operatorname{trigger}(s)=$ $\operatorname{trigger}\left(s^{\prime}\right)=\epsilon, p \operatorname{State}(s) \cong_{u \operatorname{ser}(a, s), M}^{\text {data }} \operatorname{pState}\left(s^{\prime}\right), f(s, a)$ $=\top$, and $f\left(s^{\prime}, a\right)=\perp$. From f 's definition, $f(s, a)=$ $\top, f\left(s^{\prime}, a\right)=\perp$, and Lemma G.3 it follows that $f_{\text {int }}(s, a)$ $=\mathrm{T}, f_{\text {int }}\left(s^{\prime}, a\right)=\perp$, and $f_{\text {conf }}^{u s e r(a, s)}(s, a)=f_{\text {conf }}^{\text {user }\left(a, s^{\prime}\right)}\left(s^{\prime}\right.$, $a)=\mathrm{T}$. From this, it follows that $s^{\prime} \chi_{\substack{\text { auth } \\ \text { approx }}}^{\text {a }}$. From $f_{\text {int }}(s, a)=\mathrm{T}$, it follows $s \overbrace{\text { auth }}^{\text {approx }} a$. From this, $a \in$ $\mathcal{A}_{D, \mathcal{U}}$, and Lemma E. 4 it follows $s^{\prime} \sim_{\text {auth }}^{\text {approx }} a$, which contradicts $s^{\prime} \chi_{\text {auth }}^{\text {apprat }} a$. This completes the proof for the first claim.
2. Assume, for contradiction's sake, that there are two states s and s^{\prime} such that trigger $(s)=\operatorname{trigger}\left(s^{\prime}\right)$, trigger $(s) \neq \epsilon, p \operatorname{State}(s) \cong{ }_{\text {user }(a, s), M}^{\operatorname{data}} p \operatorname{State}\left(s^{\prime}\right), f(s, a)=\mathrm{T}$, and $f\left(s^{\prime}, a\right)=\perp$, where $\operatorname{trigCond}(s)=\operatorname{trigCond}\left(s^{\prime}\right)=$ a. From f^{\prime} 's definition, $f(s, a)=\mathrm{T}, f\left(s^{\prime}, a\right)=\perp$, and Lemma G.3 it follows that $f_{\text {int }}(s, a)=\mathrm{T}, f_{\text {int }}\left(s^{\prime}, a\right)=$ \perp, and $f_{\text {conf }}^{\text {user }(a, s)}(s, a)=f_{\text {conf }}^{u s e r\left(a, s^{\prime}\right)}\left(s^{\prime}, a\right)=\mathrm{T}$. From $f_{\text {int }}$'s definition, $\operatorname{trigger}\left(s^{\prime}\right) \neq \epsilon$, and $a=\operatorname{trigCond}\left(s^{\prime}\right)$, it follows that $f_{\text {int }}\left(s^{\prime}, a\right)=\mathrm{\top}$, which contradicts $f_{\text {int }}\left(s^{\prime}\right.$, $a)=\perp$. This completes the proof for the second claim.
3. Assume, for contradiction's sake, that there are two states s and s^{\prime} such that $\operatorname{trigger}(s)=\operatorname{trigger}\left(s^{\prime}\right)=t$, $\operatorname{trigger}(s) \neq \epsilon, p \operatorname{State}(s) \cong_{\text {user }(a, s), M}^{\text {data }}$ pState $\left(s^{\prime}\right),[\psi]^{s . d b}$ $=[\psi]^{s^{\prime} \cdot d b}=\mathrm{\top}, f(s, a)=\mathrm{\top}$, and $f\left(s^{\prime}, a\right)=\perp$, where $a=\operatorname{trigAct}(s)=\operatorname{trigAct}\left(s^{\prime}\right)$. From f 's definition, $f(s, a)=\top, f\left(s^{\prime}, a\right)=\perp$, and Lemma G.3. it follows that $f_{\text {conf }}^{u s e r(a, s)}(s, a)=f_{\text {conf }}^{\text {user }\left(a, s^{\prime}\right)}\left(s^{\prime}, a\right)=\top, f_{\text {int }}(s, a)=$ \top, and $f_{\text {int }}\left(s^{\prime}, a\right)=\perp$. From this, it follows that $s^{\prime} \mathcal{X}_{\text {auth }_{\text {auth }}^{\text {aprox }}}^{\text {a }} t$. From $f_{\text {int }}(s, a)=\mathrm{T}$, it follows $s \sim_{\text {auth }}^{\text {approx }} t$. There are two cases depending on t 's security mode:
(a) $\operatorname{mode}(t)=A$. From this and $s \sim_{a u t h}^{\text {approx }} t$, it follows that $s \overbrace{\text { auth }}^{\text {approx }} \quad a$ and $s \overbrace{\text { auth }}^{\text {approx }} \quad a^{\text {auth }}$, where $a^{\prime}=\operatorname{getAction}($ statement (t), owner (t), tuple $(s))$ is the trigger's action associated with the trigger's owner. Note that s and s^{\prime} are data indistinguishable. From this, $a, a^{\prime} \in \mathcal{A}_{D, \mathcal{U}}$, and Lemma E.4 it follows that $s^{\prime} \overbrace{\text { auth }}^{\text {approx }} \quad a$ and $s^{\prime} \overbrace{\text { auth }}^{\text {appoo }} a^{\prime}$. From $s^{\prime} \overbrace{\text { aupth }}^{\text {approx }} a, s^{\prime} \overbrace{\text { auth }}^{\text {aprox }} a^{\prime},[\psi]^{s^{s^{\prime}} . d b}=\mathrm{T}$, and the rule EXECUTE TRIGGER - 2 , it follows that $s^{\prime} \overbrace{\text { auth }}^{\text {approx }} t$, which contradicts $s^{\prime} \chi_{\text {auth }_{\text {auth }}}^{\text {approx }} t$.
(b) $\operatorname{mode}(t)=O$. From this and $s \overbrace{\text { auth }}^{\text {app } \text { auth }^{\text {auth }}} t$, it follows that $s \sim_{\text {auth }}^{\text {approx }} a$. Note that s and s^{\prime} are data indistinguishable. From this, $a, a^{\prime} \in \mathcal{A}_{D, \mathcal{U}}$, and Lemma E.4 it follows that $s^{\prime} \sim_{\text {auth }}^{\text {approx }} a$. From this, $[\psi]^{s^{\prime} . d b}=\top$, and the rule EXECUTE TRIGGER - 1, it follows that $s^{\prime} \overbrace{\text { auth }}^{\text {approx }} t$, which contradicts $s^{\prime} \chi_{a}^{a p p r o x}$ aprox t.
This completes the proof for the third claim.
This completes the proof.
In Lemma G.6 we prove the main result of this section, namely that f provides data confidentiality. We first recall the concept of derivation. Given a judgment $r, i \vdash_{u} \phi$, a derivation of $r, i \vdash_{u} \phi$ with respect to $\mathcal{A T} \mathcal{K}_{u}$, or a derivation of $r, i \vdash_{u} \phi$ for short, is a proof tree, obtained by applying the rules defining $\mathcal{A T} \mathcal{K}_{u}$, that ends in $r, i \vdash_{u} \phi$. With a slight abuse of notation, we use $r, i \vdash_{u} \phi$ to denote both the judgment and its derivation. The length of a derivation, denoted $\left|r, i \vdash_{u} \phi\right|$, is the number of rule applications in it.

Lemma G.6. Let M be a system configuration, f be as above, and $P=\langle M, f\rangle$ be an extended configuration. For any user $u \in \mathcal{U}$, the PDP f provides data confidentiality with respect to $P, u, \mathcal{A} \mathcal{T} \mathcal{K}_{u}$, and $\cong_{P, u}$.

Proof. Let u be a user in $\mathcal{U}, P=\langle M, f\rangle$ be an extended configuration, where $M=\langle D, \Gamma\rangle$ is a system configuration and f is as above, and L be the P-LTS. Furthermore, let r be a run in $\operatorname{traces}(L), i$ be an integer such that $1 \leq i \leq|r|$, and ϕ be a sentence such that $r, i \vdash_{u} \phi$ holds. We claim that also secure ${ }_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds. The theorem follows trivially from the claim.
We now show that for all $r \in \operatorname{traces}(L)$, all i such that $1 \leq i \leq|r|$, and all sentences ϕ such that $r, i \vdash_{u} \phi$ holds, then also $\operatorname{secure}_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds. We prove our claim by induction on the length of the derivation $r, i \vdash_{u} \phi$. In the following, we denote by e the function extend.

Base Case: Assume that $\left|r, i \vdash_{u} \phi\right|=1$. There are a number of cases depending on the rule used to obtain $r, i \vdash_{u} \phi$.

1. SELECT Success - 1. Let i be such that $r^{i}=r^{i-1}$. $\langle u$, SELECT,$\phi\rangle \cdot s$, where $s=\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}$ and $\operatorname{last}\left(r^{i-1}\right)=s^{\prime}$, where $s^{\prime}=\left\langle d b, U, s e c, T, V, c^{\prime}\right\rangle$. From the rules, it follows that $f\left(s^{\prime},\langle u\right.$, SELECT, $\left.\phi\rangle\right)=\mathrm{T}$. From this and f 's definition, it follows that $f_{\text {int }}\left(s^{\prime},\langle u\right.$, SELECT, $\phi\rangle)=\mathrm{T}$ and $f_{\text {conf }}^{u}\left(s^{\prime},\langle u\right.$, SELECT, $\left.\phi\rangle\right)=\mathrm{T}$, because user $\left(s^{\prime},\langle u, \operatorname{SELECT}, \phi\rangle\right)=u$. From $f_{\text {conf }}^{u}\left(s^{\prime},\langle u\right.$, $\operatorname{SELECT}, \phi\rangle)=\mathrm{T}$, it follows $\operatorname{secure}\left(u, \phi, s^{\prime}\right)=\mathrm{T}$. From this, Lemma F.8 and $p \operatorname{State}(s)=p \operatorname{State}\left(s^{\prime}\right)$, it follows secure $(u, \phi, s)=\top$. From this, Lemma F.7, and $\operatorname{last}\left(r^{i}\right)=s$, it follows that $\operatorname{secure}_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds.
2. SELECT Success - 2. The proof for this case is similar to that of SELECT Success - 1.
3. INSERT Success. Let i be such that $r^{i}=r^{i-1} \cdot\langle u$, INSERT, $R, \bar{t}\rangle \cdot s$, where $s=\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}$ and $\operatorname{last}\left(r^{i-1}\right)=\left\langle d b^{\prime}, U, \sec , T, V, c^{\prime}\right\rangle$, and ϕ be $R(\bar{t})$. Then, secure $_{P, u}\left(r, i \vdash_{u} R(\bar{t})\right)$ holds. Indeed, in all runs r^{\prime} (P, u)-indistinguishable from r^{i} the last action is $\langle u$, INSERT, $R, \bar{t}\rangle$. Furthermore, the action has been executed successfully. Therefore, according to the LTS rules, $\bar{t} \in \operatorname{last}\left(r^{\prime}\right) . d b(R)$ for all runs $r^{\prime} \in \llbracket r^{i} \rrbracket_{P, u}$. From this and the relational calculus semantics, it follows that $[R(\bar{t})]^{\text {last }\left(r^{\prime}\right) \cdot d b}=\mathrm{T}$ for all runs $r^{\prime} \in \llbracket r^{i} \rrbracket_{P, u}$. Hence, secure $_{P, u}\left(r, i \vdash_{u} R(\bar{t})\right)$ holds.
4. INSERT Success - FD. Let i be such that $r^{i}=r^{i-1}$. $\langle u, \operatorname{INSERT}, R,(\bar{v}, \bar{w}, \bar{q})\rangle \cdot s$, where $s=\langle d b, U, s e c, T, V, c\rangle$ $\in \Omega_{M}$ and last $\left(r^{i-1}\right)=\left\langle d b^{\prime}, U, s e c, T, V, c^{\prime}\right\rangle$, and ϕ be $\neg \exists \bar{y}, \bar{z} \cdot R(\bar{v}, \bar{y}, \bar{z}) \wedge \bar{y} \neq \bar{w}$. From the rule's definition, it follows that $\sec E x(s)=\perp$. From this and the LTS rules, it follows that $f\left(s^{\prime},\langle u\right.$, INSERT, $\left.R,(\bar{v}, \bar{w}, \bar{q})\rangle\right)=\mathrm{T}$. From this and f 's definition, it follows that $f_{\text {conf }}^{u}\left(s^{\prime},\langle u\right.$, $\operatorname{INSERT}, R,(\bar{v}, \bar{w}, \bar{q})\rangle)=\mathrm{T}$, because $\operatorname{user}\left(s^{\prime},\langle u, \operatorname{INSERT}\right.$, $R,(\bar{v}, \bar{w}, \bar{q})\rangle)=u$. From this and $f_{\text {conf }}^{u}$'s definition, it follows that $\operatorname{secure}\left(u, \phi, \operatorname{last}\left(r^{i-1}\right)\right)=\top$ holds because ϕ is equivalent to $\operatorname{getInfo} S(\gamma, a)$ for some $\gamma \in$ $\operatorname{Dep}(\Gamma, a)$, where $a=\langle u, \operatorname{INSERT}, R,(\bar{v}, \bar{w}, \bar{q})\rangle$. From this and Lemma F.7, it follows that secure $_{P, u}(r, i-$ $\left.1 \vdash_{u} \phi\right)$ holds. We claim that $\operatorname{secure}_{P, u}^{d a t a}\left(r, i \vdash_{u} \phi\right)$ holds. From this and Lemma F.2 it follows that also secure $_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds.
We now prove our claim that secure ${ }_{P, u}^{\text {data }}\left(r, i \vdash_{u} \phi\right)$ holds. Let s^{\prime} be the state last $\left(r^{i-1}\right)$. Furthermore, for brevity's sake, in the following we omit the pState function where
needed. For instance, with a slight abuse of notation, we write $\llbracket s^{\prime} \rrbracket_{u, M}^{\text {data }}$ instead of $\llbracket p \operatorname{State}\left(s^{\prime}\right) \rrbracket_{u, M}^{d a t a}$. There are two cases:
(a) the INSERT command has caused an integrity constraint violation, i.e., $E x(s) \neq \emptyset$. From $\operatorname{secure}(u, \phi$, $\left.s^{\prime}\right)=\top$ and Lemma F.7. it follows that secure $e_{P, u}^{\text {data }}(r$, $i-1 \vdash_{u} \phi$) holds. From this, it follows that $[\phi]^{v}=$ $[\phi]^{s^{\prime}}$ for any $v \in \llbracket s^{\prime} \rrbracket_{u, M}^{d a t a}$. From this and the fact that the INSERT command caused an exception (i.e., $s^{\prime}=s$), it follows that $[\phi]^{v}=[\phi]^{s}$ for any $v \in$ $\llbracket s \rrbracket_{u, M}^{d a t a}$. From this, it follows that $\operatorname{secure}_{P, u}^{\text {data }}\left(r, i \vdash_{u}\right.$ $\phi)$ holds.
(b) the INSERT command has not caused exceptions, i.e., $E x(s)=\emptyset$. From $\operatorname{secure}\left(u, \phi, s^{\prime}\right)=\top$ and Lemma F. 7 it follows that $\operatorname{secure}_{P, u}^{\text {data }}\left(r, i-1 \vdash_{u}\right.$ $\phi)$ holds. From this, it follows that $[\phi]^{v}=[\phi]^{s^{\prime}}$ for any $v \in \llbracket s^{\prime} \rrbracket_{u, M}^{d a t a}$. Furthermore, from F. 7 and $E x(s)=\emptyset$, it follows that ϕ holds in s^{\prime}. Let $A_{s^{\prime}, R, \bar{t}}$ be the set $\left\{\langle d b[R \oplus \bar{t}], U, s e c, T, V\rangle \in \Pi_{M} \mid \exists d b^{\prime} \in\right.$ $\left.\Omega_{D} \cdot\left\langle d b^{\prime}, U, s e c, T, V\right\rangle \in \llbracket s^{\prime} \rrbracket_{M, u}^{\text {data }}\right\}$. It is easy to see that $\llbracket s \rrbracket_{M, u}^{\text {data }} \subseteq A_{s^{\prime}, R, \bar{t}}$. We now show that ϕ holds for any $z \in A_{s^{\prime}, R, \bar{t}}$. Let $z_{1} \in \llbracket s^{\prime} \rrbracket_{M, u}^{\text {data }}$. From $[\phi]^{v}=$ $[\phi]^{s^{\prime}}$ for any $v \in \llbracket s^{\prime} \rrbracket_{u, M}^{d a t a}$ and the fact that ϕ holds in s^{\prime}, it follows that $[\phi]^{z_{1}}=T$. Therefore, for any $\left(\bar{k}_{1}, \bar{k}_{2}, \bar{k}_{3}\right) \in R\left(z_{1}\right)$ such that $\left|\bar{k}_{1}\right|=|\bar{v}|,\left|\bar{k}_{2}\right|=|\bar{w}|$, and $\left|\bar{k}_{3}\right|=|\bar{z}|$, if $k_{1}=\bar{v}$, then $k_{2}=\bar{w}$. Then, for any $\left(\bar{k}_{1}, \bar{k}_{2}, \bar{k}_{3}\right) \in R\left(z_{1}\right) \cup\{(\bar{v}, \bar{w}, \bar{q})\}$ such that $\left|\bar{k}_{1}\right|=|\bar{v}|,\left|\bar{k}_{2}\right|=|\bar{w}|$, and $\left|\bar{k}_{3}\right|=|\bar{z}|$, if $k_{1}=\bar{v}$, then $k_{2}=\bar{w}$. Therefore, ϕ holds also in $z_{1}[R \oplus$ $\bar{t}] \in A_{p S t a t e\left(s^{\prime}\right), R, \bar{t}}$. Hence, $[\phi]^{z}=\mathrm{T}$ for any $z \in$ $A_{s^{\prime}, R, \bar{t}}$. From this and $\llbracket s \rrbracket_{M, u}^{\text {data }} \subseteq A_{s^{\prime}, R, \bar{t}}$, it follows that $[\phi]^{z}=\top$ for any $z \in \llbracket s \rrbracket_{M, u}^{\text {data }}$. From this, it follows that $\operatorname{secure}_{P, u}^{\text {data }}(r, i, u, \phi)$ holds.
5. INSERT Success - ID. The proof of this case is similar to that for the INSERT Success - FD.
6. DELETE Success. The proof for this case is similar to that of INSERT Success.
7. DELETE Success - ID. The proof of this case is similar to that for the INSERT Success - FD.
8. INSERT Exception. Let i be such that $r^{i}=r^{i-1}$. $\langle u$, INSER, $R, \bar{t}\rangle \cdot s$, where $s=\langle d b, U$, sec $, T, V, c\rangle \in \Omega_{M}$ and last $\left(r^{i-1}\right)=\left\langle d b^{\prime}, U\right.$, sec $\left., T, V, c^{\prime}\right\rangle$, and ϕ be $\neg R(\bar{t})$. From the rule's definition, it follows that $\sec \operatorname{Ex}(s)=\perp$. From this and the LTS rules, it follows that $f\left(s^{\prime},\langle u\right.$, InSERT, $R, \bar{t}\rangle)=\mathrm{T}$. From this and f 's definition, it follows that $f_{\text {conf }}^{u}\left(s^{\prime},\langle u\right.$, INSERT, $\left.R, \bar{t}\rangle\right)=\mathrm{T}$, because $u \operatorname{ser}\left(s^{\prime},\langle u, \operatorname{INSERT}, R, \bar{t}\rangle\right)=u$. From this and $f_{\text {conf }}^{u}$'s definition, it follows that $\operatorname{secure}\left(u, \phi, \operatorname{last}\left(r^{i-1}\right)\right)=\top$ holds because $\phi=\operatorname{getInfo}(\langle u$, InSERT, $R, \bar{t}\rangle)$. From this and Lemma F.7. it follows that secure $_{P, u}\left(r, i-1 \vdash_{u}\right.$ ϕ) holds. From the LTS semantics, it follows that $p \operatorname{State}(s) \cong{ }_{u, M}^{\text {data }} p \operatorname{State}\left(\operatorname{last}\left(r^{i-1}\right)\right)$. From this, $\operatorname{secure}(u$, $\left.\phi, \operatorname{last}\left(r^{i-1}\right)\right)=\mathrm{T}$, and Lemma F. 8 it follows that $\operatorname{secure}\left(u, \phi, \operatorname{last}\left(r^{i}\right)\right)=T$. From this and Lemma F.7. it follows that secure $_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds.
9. DELETE Exception. The proof for this case is similar to that of INSERT Exception.
10. INSERT FD Exception. Let i be such that $r^{i}=r^{i-1}$. $\langle u$, INSERT, $R,(\bar{v}, \bar{w}, \bar{q})\rangle \cdot s$, where $s=\langle d b, U, s e c, T, V, c\rangle$ $\in \Omega_{M}$ and $\operatorname{last}\left(r^{i-1}\right)=\left\langle d b^{\prime}, U, s e c, T, V, c^{\prime}\right\rangle$, and ϕ be $\exists \bar{y}, \bar{z} . R(\bar{v}, \bar{y}, \bar{z}) \wedge \bar{y} \neq \bar{w}$. From the rule's definition, it
follows that $\sec E x(s)=\perp$. From this and the LTS rules, it follows that $f\left(s^{\prime},\langle u\right.$, InSERT, $\left.R,(\bar{v}, \bar{w}, \bar{q})\rangle\right)=\mathrm{T}$. From this and f 's definition, it follows that $f_{\text {conf }}^{u}\left(s^{\prime},\langle u\right.$, INSERT, $R,(\bar{v}, \bar{w}, \bar{q})\rangle)=\mathrm{T}$, because $\operatorname{user}\left(s^{\prime},\langle u\right.$, INSERT, $R, \bar{t}\rangle)=u$. From this and $f_{\text {conf' }}^{u}$'s definition, it follows that $\operatorname{secure}\left(u, \phi, \operatorname{last}\left(r^{i-1}\right)\right)=\top$ because $\phi=$ getInfo $V(\gamma,\langle u$, INSERT, $R,(\bar{v}, \bar{w}, \bar{q})\rangle)$ for some constraint $\gamma \in \operatorname{Dep}(\Gamma,\langle u, \operatorname{INSERT}, R,(\bar{v}, \bar{w}, \bar{q})\rangle)$. From this and Lemma F. 7 it follows that secure $_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$ holds. From the LTS semantics, it follows that $p \operatorname{State}(s)$ $\cong{ }_{u, M}^{\text {data }}$ pState $\left(\operatorname{last}\left(r^{i-1}\right)\right)$. From this, Lemma F.8, and $\operatorname{secure}\left(u, \phi, \operatorname{last}\left(r^{i-1}\right)\right)=\top$, it follows that $\operatorname{secure}(u, \phi$, $\left.\operatorname{last}\left(r^{i}\right)\right)=\mathrm{T}$. From this and Lemma F.7, it follows that also $\operatorname{secure}_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds.
11. INSERT ID Exception. The proof for this case is similar to that of INSERT FD Exception.
12. DELETE FD Exception. The proof for this case is similar to that of INSERT FD Exception.
13. Integrity Constraint. The proof of this case follows trivially from the fact that for any state $s=\langle d b, U, s e c, T$, $V, c\rangle \in \Omega_{M}$ and any $\gamma \in \Gamma,[\gamma]^{d b}=\top$ by definition.
14. Learn GRANT/REVOKE Backward. Let i be such that $r^{i}=r^{i-1} \cdot t \cdot s$, where $s=\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}$, $\operatorname{last}\left(r^{i-1}\right)=\left\langle d b, U, \sec ^{\prime}, T, V, c^{\prime}\right\rangle$, and t be a trigger whose WHEN condition is ϕ and whose action is either a GRANT or a REVOKE. From the rule's definition, it follows that $\sec E x(s)=\perp$. From this and the LTS rules, it follows that $f\left(\operatorname{last}\left(r^{i-1}\right),\left\langle u^{\prime}\right.\right.$, SELECT, $\left.\left.\phi\right\rangle\right)=\top$, where u^{\prime} is either the trigger's owner or the trigger's invoker depending on the security mode. From this and f 's definition, it follows $f_{\text {conf }}^{u}\left(l a s t\left(r^{i-1}\right),\left\langle u^{\prime}\right.\right.$, SELECT, $\left.\left.\phi\right\rangle\right)=\mathrm{T}$, because $\operatorname{user}\left(\operatorname{last}\left(r^{i-1}\right),\left\langle u^{\prime}\right.\right.$, SELECT, $\left.\left.\phi\right\rangle\right)=u$ because t 's invoker is u according to the rules. From this and $f_{\text {conf }}^{u}$'s definition, it follows secure $\left(u, \phi, \operatorname{last}\left(r^{i-1}\right)\right)=T$. From this and F.7, it follows that secure $_{P, u}\left(r, i-1 \vdash_{u}\right.$ $\phi)$ holds.
15. Trigger GRaNT Disabled Backward. Let i be such that $r^{i}=r^{i-1} \cdot t \cdot s$, where $s=\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}$, last $\left(r^{i-1}\right)=\left\langle d b, U, s e c^{\prime}, T, V, c^{\prime}\right\rangle$, and t be a trigger whose WHEN condition is ψ, and ϕ be $\neg \psi$. From the rule's definition, it follows that $\sec E x(s)=\perp$. From this and the LTS rules, it follows that $f\left(\operatorname{last}\left(r^{i-1}\right),\left\langle u^{\prime}\right.\right.$, SELECT, $\phi\rangle$) $=\mathrm{T}$, where u^{\prime} is either the trigger's owner or the trigger's invoker depending on the security mode. From this and f 's definition, it follows $f_{\text {conf }}^{u}\left(\operatorname{last}\left(r^{i-1}\right)\right.$, $\left.\left\langle u^{\prime}, \operatorname{SELECT}, \phi\right\rangle\right)=\mathrm{T}$, as user $\left(\operatorname{last}\left(r^{i-1}\right),\left\langle u^{\prime}, \operatorname{SELECT}, \phi\right\rangle\right)$ $=u$ because t 's invoker is u according to the rules. From this and $f_{\text {conf }}^{u}$'s definition, it follows that also $\operatorname{secure}\left(u, \phi, \operatorname{last}\left(r^{i-1}\right)\right)=T$. From this and F.7, it follows that secure $_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$ holds.
16. Trigger REVOKE Disabled Backward. The proof for this case is similar to that of Trigger GRANT Disabled Backward.
17. Trigger INSERT FD Exception. Let i be such that $r^{i}=$ $r^{i-1} \cdot t \cdot s$, where $s=\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}, \operatorname{last}\left(r^{i-1}\right)=$ $\left\langle d b, U, s e c^{\prime}, T, V, c^{\prime}\right\rangle$, and t be a trigger whose WHEN condition is ϕ and whose action act is a INSERT statement $\left\langle u^{\prime}\right.$, INSERT, $\left.R,(\bar{v}, \bar{w}, \bar{q})\right\rangle$. Furthermore, let ϕ be $\exists \bar{y}, \bar{z} . R(\bar{v}, \bar{y}, \bar{z}) \wedge \bar{y} \neq \bar{w}$. From the rule's definition, it follows that $\sec E x(s)=\perp$. From this and the LTS rules, it follows that $f\left(\operatorname{last}\left(r^{i-1}\right), a c t\right)=T$. From this and f 's definition, it follows that $f_{\text {conf }}^{u}\left(\operatorname{last}\left(r^{i-1}\right), a c t\right)=$
\top, because $\operatorname{user}\left(\operatorname{last}\left(r^{i-1}\right), a c t\right)=u$ because t 's invoker is u according to the rules. From this and $f_{\text {conf }}^{u}$'s definition, it follows that $\operatorname{secure}\left(u, \phi, \operatorname{last}\left(r^{i-1}\right)\right)=\mathrm{T}$ because $\phi=\operatorname{getInfo} V(\gamma, a c t)$ for some constraint $\gamma \in$ $\operatorname{Dep}(\Gamma, a c t)$. From this and Lemma F.7 it follows that secure $_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$ holds.
18. Trigger INSERT ID Exception. The proof for this case is similar to that of Trigger INSERT ID Exception.
19. Trigger DELETE ID Exception. The proof for this case is similar to that of Trigger DELETE ID Exception.
20. Trigger Exception. Let i be such that $r^{i}=r^{i-1} \cdot t$. s, where $s=\langle d b, U, \sec , T, V, c\rangle \in \Omega_{M}, \operatorname{last}\left(r^{i-1}\right)=$ $\left\langle d b, U, \sec ^{\prime}, T, V, c^{\prime}\right\rangle$, and t be a trigger whose WHEN condition is ϕ and whose action is act. From the rule's definition, it follows that $f\left(\operatorname{last}\left(r^{i-1}\right),\left\langle u^{\prime}\right.\right.$, SELECT, $\left.\left.\phi\right\rangle\right)=\mathrm{T}$, where u^{\prime} is either the trigger's owner or the trigger's invoker depending on the security mode. From this and f^{\prime} 's definition, it follows $f_{\text {conf }}^{u}\left(\operatorname{last}\left(r^{i-1}\right),\left\langle u^{\prime}\right.\right.$, SELECT, $\left.\left.\phi\right\rangle\right)$ $=\mathrm{T}$, because $\operatorname{user}\left(\operatorname{last}\left(r^{i-1}\right),\left\langle u^{\prime}, \operatorname{SELECT}, \phi\right\rangle\right)=u$ since t 's invoker is u according to the rules. From this and $f_{\text {conf }}^{u}$'s definition, it follows that $\operatorname{secure}\left(u, \phi, \operatorname{last}\left(r^{i-1}\right)\right)$ $=T$. From this and F.7 it follows that secure $_{P, u}(r, i-$ $1 \vdash_{u} \phi$) holds.
21. Trigger INSERT Exception. The proof for this case is similar to that of INSERT Exception.
22. Trigger DELETE Exception. The proof for this case is similar to that of DELETE Exception.
23. Trigger Rollback INSERT. Let i be such that $r^{i}=r^{i-n-1}$. $\langle u$, INSERT, $R, \bar{t}\rangle \cdot s_{1} \cdot t_{1} \cdot s_{2} \cdot \ldots \cdot t_{n} \cdot s_{n}$, where $s_{1}, s_{2}, \ldots, s_{n}$ $\in \Omega_{M}$ and $t_{1}, \ldots, t_{n} \in \mathcal{T R I G G E R}_{D}$, and ϕ be $\neg R(\bar{t})$. Furthermore, let last $\left(r^{i-n-1}\right)=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$ and s_{n} be $\langle d b, U, s e c, T, V, c\rangle$. From the rule's definition, it follows that $\sec E x\left(s_{1}\right)=\perp$. From this, it follows that $f\left(\operatorname{last}\left(r^{i-n-1}\right),\langle u\right.$, INSERT, $\left.R, \bar{t}\rangle\right)=\mathrm{T}$. From this and f 's definition, it follows $f_{\text {conf }}^{u}\left(\operatorname{last}\left(r^{i-n-1}\right),\langle u\right.$, INSERT, $R, \bar{t}\rangle)=\top$ since $\operatorname{user}\left(\operatorname{last}\left(r^{i-n-1}\right),\langle u\right.$, INSERT, $R, \bar{t}\rangle)=u$. From this and $f_{\text {conf' }}^{u}$'s definition, it follows $\operatorname{secure}\left(u, \phi, \operatorname{last}\left(r^{i-n-1}\right)\right)=\top$ because $\phi=\operatorname{getInfo}(\langle u$, InSERT, $R, \bar{t}\rangle)$. From the LTS semantics, it follows that $\operatorname{last}\left(r^{i-n-1}\right) \cong_{M, u}^{\text {data }} s_{n}$ because $p \operatorname{State}\left(\operatorname{last}\left(r^{i-n-1}\right)\right)=$ $p \operatorname{State}\left(s_{n}\right)$. From this, Lemma F.8, and secure (u, ϕ, last $\left.\left(r^{i-n-1}\right)\right)=\mathrm{T}$, it follows secure $\left(u, \phi, s_{n}\right)=\mathrm{T}$. From this and Lemma $F .7$ it follows that $\operatorname{secure}_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds.
24. Trigger Rollback DELETE. The proof for this case is similar to that of Trigger Rollback INSERT.
This completes the proof of the base step.
Induction Step: Assume that the claim hold for any derivation of $r, j \vdash_{u} \psi$ such that $\left|r, j \vdash_{u} \psi\right|<\left|r, i \vdash_{u} \phi\right|$. We now prove that the claim also holds for $r, i \vdash_{u} \phi$. There are a number of cases depending on the rule used to obtain $r, i \vdash_{u} \phi$.
25. View. The proof of this case follows trivially from the semantics of the relational calculus extended over views.
26. Propagate Forward SELECT. Let i be such that $r^{i+1}=$ $r^{i} \cdot\langle u, \operatorname{SELECT}, \psi\rangle \cdot s$, where $s=\langle d b, U, s e c, T, V, c\rangle \in$ Ω_{M} and $\operatorname{last}\left(r^{i}\right)=\left\langle d b^{\prime}, U^{\prime}, \sec ^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$. From the rule, it follows that $r, i \vdash_{u} \phi$ holds. From this and the induction hypothesis, it follows that $\operatorname{secure}_{P, u}\left(r, i \vdash_{u}\right.$ ϕ) holds. From Lemma G.7, the action $\langle u$, SELECT, $\psi\rangle$ preserves the equivalence class with respect to r^{i}, P,
and u. From this, Lemma F.12 and $\operatorname{secure}_{P, u}\left(r, i \vdash_{u}\right.$ $\phi)$, it follows that also secure $P_{P, u}\left(r, i+1 \vdash_{u} \phi\right)$ holds.
27. Propagate Forward GRANT/REVOKE. Let i be such that $r^{i+1}=r^{i} \cdot\left\langle o p, u^{\prime}, p, u\right\rangle \cdot s$, where $s=\langle d b, U, s e c, T, V, c\rangle \in$ Ω_{M} and $\operatorname{last}\left(r^{i}\right)=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$. From the rule, it follows that $r, i \vdash_{u} \phi$ holds. From this and the induction hypothesis, it follows that $\operatorname{secure}_{P, u}\left(r, i \vdash_{u}\right.$ ϕ) holds. From Lemma G.7 the action $\left\langle o p, u^{\prime}, p, u\right\rangle$ preserves the equivalence class with respect to r^{i}, P, and u. From this, Lemma F.13, and secure $_{P, u}\left(r, i \vdash_{u} \phi\right)$, it follows that also secure $P_{P, u}\left(r, i+1 \vdash_{u} \phi\right)$ holds.
28. Propagate Forward CREATE. The proof for this case is similar to that of Propagate Forward SELECT.
29. Propagate Backward SELECT. Let i be such that $r^{i+1}=$ $r^{i} \cdot\langle u$, SELECT, $\psi\rangle \cdot s$, where $s=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$ $\in \Omega_{M}$ and $\operatorname{last}\left(r^{i}\right)=\langle d b, U, \sec , T, V, c\rangle$. From the rule, it follows that $r, i+1 \vdash_{u} \phi$ holds. From this and the induction hypothesis, it follows that $\operatorname{secure}_{P, u}\left(r, i+1 \vdash_{u}\right.$ ϕ) holds. From Lemma G.7 the action $\langle u$, SELECT, $\psi\rangle$ preserves the equivalence class with respect to r^{i}, P, and u. From this, Lemma F.12 and secure $_{P, u}(r, i+1$ $\left.\vdash_{u} \phi\right)$, it follows that also $\operatorname{secure}_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds.
30. Propagate Backward GRANT/REVOKE. Let i be such that $r^{i+1}=r^{i} \cdot\left\langle o p, u^{\prime}, p, u\right\rangle \cdot s$, where $s=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}\right.$, $\left.c^{\prime}\right\rangle \in \Omega_{M}$ and $\operatorname{last}\left(r^{i}\right)=\langle d b, U, s e c, T, V, c\rangle$. From the rule, it follows that $r, i+1 \vdash_{u} \phi$ holds. From this and the induction hypothesis, it follows that secure $_{P, u}(r, i+$ $1 \vdash_{u} \phi$) holds. From Lemma $G .7$, the action $\left\langle o p, u^{\prime}, p, u\right\rangle$ preserves the equivalence class with respect to r^{i}, P, and u. From this, Lemma F.13, and secure $_{P, u}(r, i+$ $\left.1 \vdash_{u} \phi\right)$, it follows that also secure $_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds.
31. Propagate Backward CREATE TRIGGER. The proof for this case is similar to that of Propagate Backward SELECT.
32. Propagate Backward CREATE VIEW. Note that the formulae ψ and replace (ψ, o) are semantically equivalent. This is the only difference between the proof for this case and the one for the Propagate Backward SELECT case.
33. Rollback Backward - 1. Let i be such that $r^{i}=r^{i-n-1}$. $\langle u, o p, R, \bar{t}\rangle \cdot s_{1} \cdot t_{1} \cdot s_{2} \cdot \ldots \cdot t_{n} \cdot s_{n}$, where $s_{1}, s_{2}, \ldots, s_{n} \in$ $\Omega_{M}, t_{1}, \ldots, t_{n} \in \mathcal{T R} \mathcal{I G G E} \mathcal{R}_{D}$, and $o p$ is one of $\{$ INSERT, DELETE $\}$. Furthermore, let s_{n} be $\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$ and last $\left(r^{i-n-1}\right)$ be $\langle d b, U, s e c, T, V, c\rangle$. From the rule's definition, $r, i \vdash_{u} \phi$ holds. From this and the induction hypothesis, it follows that secure $_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds. From Lemma G.8, the triggers t_{j} preserve the equivalence class with respect to $r^{i-n-1+j}, P$, and u for any $1 \leq j \leq n$. Therefore, for any $v \in \llbracket r^{i-1} \rrbracket_{P, u}$, the run $e\left(v, t_{n}\right)$ contains the roll-back. Therefore, for any $v \in \llbracket r^{i-1} \rrbracket_{P, u}$, the state last $\left(e\left(v, t_{n}\right)\right)$ is the state just before the action $\langle u, o p, R, \bar{t}\rangle$. Let A be the set of partial states associated with the roll-back states. It is easy to see that A is the same as $\left\{p S t a t e\left(\operatorname{last}\left(t^{\prime}\right)\right) \mid t^{\prime} \in\right.$ $\left.\llbracket r^{i-n-1} \rrbracket_{P, u}\right\}$. From secure $_{P, u}\left(r, i \vdash_{u} \phi\right)$, it follows that ϕ has the same result over all states in A. From this and $A=\left\{p \operatorname{State}\left(\operatorname{last}\left(t^{\prime}\right)\right) \mid t^{\prime} \in \llbracket r^{i-n-1} \rrbracket_{P, u}\right\}$, it follows that ϕ has the same result over all states in $\left\{p \operatorname{State}\left(\operatorname{last}\left(t^{\prime}\right)\right) \mid\right.$ $\left.t^{\prime} \in \llbracket r^{i-n-1} \rrbracket_{P, u}\right\}$. From this, it follows that secure $P_{P, u}$ ($r, i-n-1 \vdash_{u} \phi$) holds.
34. Rollback Backward - 2. Let i be such that $r^{i}=r^{i-1}$. $\langle u, o p, R, \bar{t}\rangle \cdot s$, where $s=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle \in$ $\Omega_{M}, \operatorname{last}\left(r^{i-1}\right)=\langle d b, U$, sec $, T, V, c\rangle$, and $o p$ is one of
\{INSERT, DELETE\}. From the rule's definition, $r, i \vdash_{u} \phi$ holds. From this and the induction hypothesis, it follows that secure $_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds. From Lemma G.7. the action $\langle u, o p, R, \bar{t}\rangle$ preserves the equivalence class with respect to r^{i-1}, P, and u. From this, Lemma F.11, the fact that the action does not modify the database state, and $\operatorname{secure}_{P, u}\left(r, i \vdash_{u} \phi\right)$, it follows $\operatorname{secure}_{P, u}(r, i-$ $\left.1 \vdash_{u} \phi\right)$.
35. Rollback Forward - 1. Let i be such that $r^{i}=r^{i-n-1}$. $\langle u, o p, R, \bar{t}\rangle \cdot s_{1} \cdot t_{1} \cdot s_{2} \cdot \ldots \cdot t_{n} \cdot s_{n}$, where $s_{1}, s_{2}, \ldots, s_{n} \in$ $\Omega_{M}, t_{1}, \ldots, t_{n} \in \mathcal{T} \mathcal{R} \mathcal{G G E} \mathcal{R}_{D}$, and $o p$ is one of $\{$ INSERT, DELETE $\}$. Furthermore, let s_{n} be $\langle d b, U, s e c, T, V, c\rangle$ and last $\left(r^{i-n-1}\right)$ be $\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$. From the rule's definition, $r, i-n-1 \vdash_{u} \phi$ holds. From this and the induction hypothesis, it follows that $\operatorname{secure}_{P, u}(r, i-$ $n-1 \vdash_{u} \phi$) holds. From Lemma G.8, the triggers t_{j} preserve the equivalence class with respect to $r^{i-n-1+j}$, P, and u for any $1 \leq j \leq n$. Independently on the cause of the roll-back (either a security exception or an integrity constraint violation), we claim that the set A of roll-back partial states is $\left\{p \operatorname{State}\left(\operatorname{last}\left(t^{\prime}\right)\right) \mid t^{\prime} \in\right.$ $\left.\llbracket r^{i-n-1} \rrbracket_{P, u}\right\}$. From $\operatorname{secure}_{P, u}\left(r, i-n-1 \vdash_{u} \phi\right)$, the result of ϕ is the same for all states in A. From this and $A=\left\{p \operatorname{State}\left(\operatorname{last}\left(t^{\prime}\right)\right) \mid t^{\prime} \in \llbracket r^{i-n-1} \rrbracket_{P, u}\right\}$, it follows that also secure $_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds.
We now prove our claim. It is trivial to see (from the LTS's semantics) that the set of rollback's states is a subset of $\left\{\operatorname{last}(v) \mid v \in \llbracket r^{i-n-1} \rrbracket_{P, u}\right\}$. Assume, for contradiction's sake, that there is a state in $\{\operatorname{last}(v) \mid v \in$ $\left.\llbracket r^{i-n-1} \rrbracket_{P, u}\right\}$ that is not a rollback state for the runs in $\llbracket r^{i} \rrbracket_{P, u}$. This is impossible since all triggers t_{1}, \ldots, t_{n} preserve the equivalence class.
36. Rollback Forward - 2. Let i be such that $r^{i}=r^{i-1}$. $\langle u, o p, R, \bar{t}\rangle \cdot s$, where $o p \in\{$ INSERT, DELETE $\}, s=\langle d b, U$, sec, $T, V, c\rangle \in \Omega_{M}$ and last $\left(r^{i-1}\right)=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}\right.$, $\left.c^{\prime}\right\rangle$. From the rule's definition, $r, i-1 \vdash_{u} \phi$ holds. From this and the induction hypothesis, it follows that secure $_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$ holds. From Lemma G.7 the action $\langle u, o p, R, \bar{t}\rangle$ preserves the equivalence class with respect to r^{i-1}, P, and u. From this, Lemma F.11, the fact that the action does not modify the database state, and $\operatorname{secure}_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$, it follows that also secure $_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds.
37. Propagate Forward INSERT/DELETE Success. Let i be such that $r^{i}=r^{i-1} \cdot\langle u, o p, R, \bar{t}\rangle \cdot s$, where $o p \in\{$ INSERT, $\operatorname{DELETE}\}, s=\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}$ and last $\left(r^{i-1}\right)=$ $\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$. From the rule's definition, $r, i-$ $1 \vdash_{u} \phi$ holds. From this and the induction hypothesis, it follows that secure $_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$ holds. From Lemma G.7, the action $\langle u, o p, R, \bar{t}\rangle$ preserves the equivalence class with respect to r^{i-1}, P, and u. From reviseBelif (r^{i-1}, ϕ, r^{i}), it follows that the execution of $\langle u, o p, R, \bar{t}\rangle$ does not alter the content of the tables in tables (ϕ) for any $v \in \llbracket r^{i-1} \rrbracket_{P, u}$. From this, Lemma F.11 and secure $_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$, it follows that secure $e_{P, u}$ ($r, i \vdash_{u} \phi$) holds.
38. Propagate Forward INSERT Success - 1. Let i be such that $r^{i}=r^{i-1} \cdot\langle u, o p, R, \bar{t}\rangle \cdot s$, where $o p$ is one of $\{$ InSERT, DELETE $\}, s=\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}$, and $\operatorname{last}\left(r^{i-1}\right)=\left\langle d b^{\prime}, U^{\prime}, \sec ^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$. From the rule's definition, $r, i-1 \vdash_{u} \phi$ holds. From this and the induction hypothesis, it follows that secure $_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$ holds. From Lemma G.7 the action $\langle u, o p, R, \bar{t}\rangle$ pre-
serves the equivalence class with respect to r^{i-1}, P, and u. We claim that the execution of $\langle u$, INSERT, $R, \bar{t}\rangle$ does not alter the content of the tables in tables (ϕ). From this, Lemma F.11, and $\operatorname{secure}_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$, it follows that secure $_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds.
We now prove our claim that the execution of $\langle u$, INSERT, $R, \bar{t}\rangle$ does not alter the content of the tables in $\operatorname{tables}(\phi)$. From the rule's definition, it follows that $r, i-1 \vdash_{u}$ $R(\bar{t})$ holds. From this and Lemma B.1 it follows that $[R(\bar{t})]^{\text {last }\left(r^{i-1}\right) \cdot d b}=\mathrm{T}$. From $r, i-1 \vdash_{u} R(\bar{t})$ and the induction hypothesis, it follows that $\operatorname{secure}_{P, u}\left(r, i-1 \vdash_{u}\right.$ $R(\bar{t})$) holds. From this and $[R(\bar{t})]^{\text {last }\left(r^{i-1}\right) \cdot d b}=\mathrm{T}$, it follows that $[R(\bar{t})]^{\text {last }(v) \cdot d b}=\top$ for any $v \in \llbracket r^{i-1} \rrbracket_{P, u}$. From this and the relational calculus semantics, it follows that the execution of $\langle u, o p, R, \bar{t}\rangle$ does not alter the content of the tables in $\operatorname{tables}(\phi)$ for any $v \in \llbracket r^{i-1} \rrbracket_{P, u}$.
39. Propagate Forward DELETE Success - 1. The proof for this case is similar to that of Propagate Forward INSERT Success - 1.
40. Propagate Backward INSERT/DELETE Success. Let i be such that $r^{i}=r^{i-1} \cdot\langle u, o p, R, \bar{t}\rangle \cdot s$, where $o p \in\{$ INSERT, $\operatorname{DELETE}\}, s=\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}$ and last $\left(r^{i-1}\right)=$ $\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$. From the rule's definition, r, i $\vdash_{u} \phi$ holds. From this and the induction hypothesis, it follows that $\operatorname{secure}_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds. From Lemma $G .7$, the action $\langle u, o p, R, \bar{t}\rangle$ preserves the equivalence class with respect to r^{i-1}, P, and u. From reviseBelif (r^{i-1}, ϕ, r^{i}), it follows that the execution of $\langle u, o p, R, \bar{t}\rangle$ does not alter the content of the tables in tables (ϕ) for any $v \in \llbracket r^{i-1} \rrbracket_{P, u}$. From this, Lemma F.11 and secure $_{P, u}\left(r, i \vdash_{u} \phi\right)$, it follows that secure $_{P, u}(r, i-$ $1 \vdash_{u} \phi$) holds.
41. Propagate Backward INSERT Success - 1. Let i be such that $r^{i}=r^{i-1} \cdot\langle u, o p, R, \bar{t}\rangle \cdot s$, where $o p$ is one of $\{$ InSERT, DELETE $\}, s=\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}$ and last $\left(r^{i-1}\right)=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$. From the rule's definition, $r, i \vdash_{u} \phi$ holds. From this and the induction hypothesis, it follows that secure $_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds. From Lemma G.7 the action $\langle u, o p, R, \bar{t}\rangle$ preserves the equivalence class with respect to r^{i-1}, P, and u. We claim that the execution of $\langle u$, INSERT, $R, \bar{t}\rangle$ does not alter the content of the tables in $\operatorname{tables}(\phi)$ for any $v \in$ $\llbracket r^{i-1} \rrbracket_{P, u}$ (the proof of this claim is in the proof of the Propagate Forward INSERT Success - 1 case). From this, Lemma F.11 and $\operatorname{secure}_{P, u}\left(r, i \vdash_{u} \phi\right)$, it follows that secure $_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$ holds.
42. Propagate Backward DELETE Success - 1. The proof for this case is similar to that of Propagate Forward DELETE Success - 1.
43. Reasoning. Let Δ be a subset of $\left\{\delta \mid r, i \vdash_{u} \delta\right\}$ and $\operatorname{last}\left(r^{i}\right)=\langle d b, U, \sec , T, V, c\rangle$. From the induction hypothesis, it follows that $\operatorname{secure}_{P, u}\left(r, i \vdash_{u} \delta\right)$ holds for any $\delta \in \Delta$. Note that, given any $\delta \in \Delta$, from $r, i \vdash_{u} \delta$ and Lemma B.1 it follows that δ holds in $\operatorname{last}\left(r^{i}\right)$. From this, secure $_{P, u}\left(r, i \vdash_{u} \delta\right)$ holds for any $\delta \in \Delta$, $\Delta \models_{\text {fin }} \phi$, and Lemma F.10. it follows that $\operatorname{secure}_{P, u}(r$, $i \vdash_{u} \phi$) holds.
44. Learn INSERT Backward - 3. Let i be such that $r^{i}=$ $r^{i-1} \cdot\langle u$, INSERT, $R, \bar{t}\rangle \cdot s$, where $s=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}\right.$, $\left.c^{\prime}\right\rangle \in \Omega_{M}$ and $\operatorname{last}\left(r^{i-1}\right)=\langle d b, U, s e c, T, V, c\rangle$, and ϕ be $\neg R(\bar{t})$. From the rule's definition, $\sec E x(s)=\perp$. From this and the LTS rules, it follows that $f\left(\operatorname{last}\left(r^{i-1}\right),\langle u\right.$,

INSERT, $R, \bar{t}\rangle)=\mathrm{T}$. From this and f 's definition, it follows that $f_{\text {conf }}^{u}\left(\operatorname{last}\left(r^{i-1}\right),\langle u\right.$, INSERT, $\left.R, \bar{t}\rangle\right)=\top$ because $\operatorname{user}\left(\operatorname{last}\left(r^{i-1}\right),\langle u\right.$, INSERT, $\left.R, \bar{t}\rangle\right)=u$. From this and $f_{\text {conf }}^{u}$'s definition, it follows secure ($u, \phi, \operatorname{last}\left(r^{i-1}\right)$) $=\mathrm{T}$ because $\phi=\operatorname{getInfo}(\langle u$, INSERT, $R, \bar{t}\rangle)$. From this and Lemma F.7, it follows that $\operatorname{secure}_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$ holds.
21. Learn DELETE Backward - 3. The proof for this case is similar to that of Learn INSERT Backward - 3.
22. Propagate Forward Disabled Trigger. Let i be such that $r^{i}=r^{i-1} \cdot t \cdot s$, where $s=\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}$, last $\left(r^{i-1}\right)=\langle d b, U, s e c, T, V, c\rangle$, and t be a trigger. Furthermore, let ψ be t 's condition where all free variables are replaced with $\operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)$. From the rule, it follows that $r, i-1 \vdash_{u} \phi$. From this and the induction hypothesis, it follows that $\operatorname{secure}_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$ holds. Furthermore, from Lemma G.8, it follows that t preserves the equivalence class with respect to r^{i-1}, P, and u. If the trigger's action is an INSERT or a DELETE operation, we claim that the operation does not change the content of any table in tables (ϕ) for any run $v \in \llbracket r^{i-1} \rrbracket_{P, u}$. From this, the fact that t preserves the equivalence class with respect to r^{i-1}, P, and u, Lemma F.14, and secure $_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$, it follows that also secure $_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds.
We now prove our claim. Assume that t's action in either an INSERT or a DELETE operation. From the rule, it follows that $r, i-1 \vdash_{u} \neg \psi$. From this and Lemma B.1, $[\psi]^{l a s t\left(r^{i-1}\right)}=\perp$. From $r, i-1 \vdash_{u} \neg \psi$ and the induction hypothesis, it follows that $\operatorname{secure}_{P, u}\left(r, i-1 \vdash_{u} \psi\right)$ holds. From this and $[\psi]^{\text {last }\left(r^{i-1}\right) \cdot d b}=\perp$, it follows that $[\psi]^{v . d b}=\perp$ for any run $v \in \llbracket r^{i-1} \rrbracket_{P, u}$. Therefore, the trigger t is disabled in any run $v \in \llbracket r^{i-1} \rrbracket_{P, u}$. From this and the LTS semantics, it follows that t 's execution does not change the content of any table in tables (ϕ) for any run $v \in \llbracket r^{i-1} \rrbracket_{P, u}$.
23. Propagate Backward Disabled Trigger. The proof for this case is similar to that of Propagate Forward Disabled Trigger.
24. Learn INSERT Forward. Let i be such that $r^{i}=r^{i-1}$. $t \cdot s$, where $s=\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}, \operatorname{last}\left(r^{i-1}\right)=$ $\langle d b, U, s e c, T, V, c\rangle$, and t be a trigger, and ϕ be $R(\bar{t})$. Furthermore, let ψ be t 's condition where all free variables are replaced with $\operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)$. From the rule's definition, it follows that t 's action is $\left\langle u^{\prime}\right.$, INSERT, $\left.R, \bar{t}\right\rangle$ and that $r, i-1 \vdash_{u} \psi$ holds. From Lemma B.1 and $r, i-1 \vdash_{u} \psi$, it follows that $[\psi]^{\text {last }\left(r^{i-1}\right) \cdot d b}=\top$. From this, $\sec E x(s)=\perp$, and $E x(s)=\emptyset$, it follows that t 's action has been executed successfully. From this, it follows that $\bar{t} \in \operatorname{s.db}(R)$. From $r, i-1 \vdash_{u} \psi$ and the induction hypothesis, it follows that $\operatorname{secure}_{P, u}\left(r, i-1 \vdash_{u}\right.$ $\psi)$. From this and $[\psi]^{\text {last }\left(r^{i-1}\right) \cdot d b}=\mathrm{T}$, it follows that $[\psi]^{\text {last }(v) \cdot d b}=\top$ for any $v \in \llbracket r^{i-1} \rrbracket_{P, u}$. From this, it follows that the trigger t is enabled in any run $v \in$ $\llbracket r^{i-1} \rrbracket_{P, u}$. From Lemma G.8 it follows that t preserves the equivalence class with respect to r^{i-1}, P, and u. From this, $\sec E x(s)=\perp, E x(s)=\emptyset$, and the fact that the trigger t is enabled in any run $v \in \llbracket r^{i-1} \rrbracket_{P, u}$, it follows that t 's action is executed successfully in any run $e(v, t)$, where $v \in \llbracket r^{i-1} \rrbracket_{P, u}$. From this, it follows that $d b^{\prime \prime}(R)$, where $d b^{\prime \prime}=\bar{t} \in \operatorname{last}(e(v, t)) \cdot d b$, for any $v \in \llbracket r^{i-1} \rrbracket_{P, u}$. Therefore, secure $_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds.
25. Learn INSERT - FD. Let i be such that $r^{i}=r^{i-1} \cdot t$. s, where $s=\langle d b, U$, sec $, T, V, c\rangle \in \Omega_{M}, \operatorname{last}\left(r^{i-1}\right)=$ $\left\langle d b^{\prime}, U^{\prime}, \sec ^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$, and $t \in \mathcal{T} \mathcal{R} \mathcal{I} \mathcal{G G E} \mathcal{R}_{D}$, and ϕ be $\neg \exists \bar{y}, \bar{z} . R(\bar{v}, \bar{y}, \bar{z}) \wedge \bar{y} \neq \bar{w}$. Furthermore, let ψ be t^{\prime} s condition where all free variables are replaced with the values in $\operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)$ and $\left\langle u^{\prime}\right.$, INSERT, $\left.R,(\bar{v}, \bar{w}, \bar{q})\right\rangle$ be t 's actual action. From the rule, it follows that $r, i-$ $1 \vdash_{u} \psi$. From this and Lemma B.1 it follows that $[\psi]^{l a s t}\left(r^{i-1}\right) \cdot d b=\top$. From this, $E x(s)=\emptyset$, and $\sec E x(s)$ $=\perp$, it follows that $f\left(s^{\prime},\left\langle u^{\prime}\right.\right.$, INSERT, $\left.\left.R, \bar{t}\right\rangle\right)=\mathrm{T}$, where s^{\prime} is the state just after the execution of the SELECT statement associated with t 's WHEN clause. From this and f 's definition, it follows that $f_{\text {conf }}^{u}\left(s^{\prime},\left\langle u^{\prime}\right.\right.$, INSERT, R, $\bar{t}\rangle)=\top$ because $u \operatorname{ser}\left(s^{\prime},\left\langle u^{\prime}, \operatorname{INSERT}, R, \bar{t}\right\rangle\right)=u$ since u is t 's invoker. From this and $f_{\text {conf }}^{u}$'s definition, it follows that $\operatorname{secure}\left(u, \phi, s^{\prime}\right)=\mathrm{T}$. From this, $p \operatorname{State}\left(s^{\prime}\right)=$ $p \operatorname{State}\left(\operatorname{last}\left(r^{i-1}\right)\right)$, and Lemma F.8. it follows secure (u, $\left.\phi, \operatorname{last}\left(r^{i-1}\right)\right)=T$. From this and Lemma F.7, it follows secure $P_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$. We claim that secure $e_{P, u}^{\text {data }}(r$, $i \vdash_{u} \phi$) holds. From this and Lemma F.2 it follows that also secure $_{P, u}\left(r, i \vdash_{u} \phi\right)$ holds.
We now prove our claim that secure $e_{P, u}^{d a t a}\left(r, i \vdash_{u} \phi\right)$ holds. Let s^{\prime} be the state just after the execution of the SELECT statement associated with t 's WHEN clause and $s^{\prime \prime}$ be the state last $\left(r^{i-1}\right)$. Furthermore, for brevity's sake, in the following we omit the pState function where needed. For instance, with a slight abuse of notation, we write $\llbracket s^{\prime} \rrbracket_{u, M}^{\text {data }}$ instead of $\llbracket p$ State $\left(s^{\prime}\right) \rrbracket_{u, M}^{\text {data }}$. From $\operatorname{secure}\left(u, \phi, s^{\prime}\right)=\mathrm{T}, s^{\prime} \cong{ }_{M, u}^{d a t a} s^{\prime \prime}$, Lemma F.8, and Lemma F. 7 , it follows that $\operatorname{secure}_{P, u}^{\text {data }}\left(r, i-1 \vdash_{u} \phi\right)$ holds. From this, it follows that $[\phi]^{v}=[\phi]^{s^{\prime \prime}}$ for any $v \in \llbracket s^{\prime \prime} \rrbracket_{u, M}^{\text {data }}$. Furthermore, from Proposition F.7 and $E x(s)=\emptyset$, it follows that ϕ holds in $s^{\prime \prime}$. Let $A_{s^{\prime \prime}, R, \bar{t}}$ be the set $\left\{\langle d b[R \oplus \bar{t}], U, s e c, T, V\rangle \in \Pi_{M} \mid \exists d b^{\prime} \in \Omega_{D} .\left\langle d b^{\prime}\right.\right.$, U, sec, $\left.T, V\rangle \in \llbracket s^{\prime \prime} \rrbracket_{M, u}^{\text {data }}\right\}$. It is easy to see that $\llbracket s \rrbracket_{M, u}^{\text {data }} \subseteq$ $A_{s^{\prime \prime}, R, \bar{t}}$. We now show that ϕ holds for any $z \in A_{s^{\prime \prime}, R, \bar{t}}$. Let $z_{1} \in \llbracket s^{\prime \prime} \rrbracket_{M, u}^{d a t a}$. From $[\phi]^{v}=[\phi]^{s^{\prime \prime}}$ for any $v \in$ $\llbracket s^{\prime \prime} \rrbracket_{u, M}^{d a t a}$ and the fact that ϕ holds in $s^{\prime \prime}$, it follows that $[\phi]^{z_{1}}=\mathrm{T}$. Therefore, for any $\left(\bar{k}_{1}, \bar{k}_{2}, \bar{k}_{3}\right) \in R\left(z_{1}\right)$ such that $\left|\bar{k}_{1}\right|=|\bar{v}|,\left|\bar{k}_{2}\right|=|\bar{w}|$, and $\left|\bar{k}_{3}\right|=|\bar{q}|$, if $k_{1}=\bar{v}$, then $k_{2}=\bar{w}$. Then, for any $\left(\bar{k}_{1}, \bar{k}_{2}, \bar{k}_{3}\right) \in R\left(z_{1}\right) \cup\{(\bar{v}, \bar{w}, \bar{q})\}$ such that $\left|\bar{k}_{1}\right|=|\bar{v}|,\left|\bar{k}_{2}\right|=|\bar{w}|$, and $\left|\bar{k}_{3}\right|=|\bar{q}|$, if $k_{1}=\bar{v}$, then $k_{2}=\bar{w}$. Therefore, ϕ holds also in $z_{1}[R \oplus \bar{t}] \in A_{p S t a t e\left(s^{\prime \prime}\right), R, \bar{t}}$. Hence, $[\phi]^{z}=\top$ for any $z \in A_{s^{\prime \prime}, R, \bar{t}}$. From this and $\llbracket s \rrbracket_{M, u}^{d a t a} \subseteq A_{s^{\prime \prime}, R, \bar{t}}$, it follows that $[\phi]^{z}=\mathrm{\top}$ for any $z \in \llbracket s \rrbracket_{M, u}^{\text {data }}$. From this, it follows that secure $e_{P, u}^{\text {data }}\left(r, i \vdash_{u} \phi\right)$ holds.
26. Learn INSERT - FD-1. The proof of this case is similar to that of Learn INSERT - FD.
27. Learn INSERT - ID. The proof of this case is similar to that of Learn INSERT - FD. See also the proof of INSERT Success - ID.
28. Learn INSERT - ID - 1. The proof of this case is similar to that of Learn INSERT - ID.
29. Learn INSERT Backward - 1. Let i be such that $r^{i}=$ $r^{i-1} \cdot t \cdot s$, where $s=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle \in \Omega_{M}$, $\operatorname{last}\left(r^{i-1}\right)=\langle d b, U, s e c, T, V, c\rangle$, and $t \in \mathcal{T} \mathcal{R} \mathcal{I G G E R}{ }_{D}$, and ϕ be t 's actual WHEN condition, where all free variables are replaced with the values in $\operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)$. From the rule's definition, it follows that $\sec E x(s)=T$. From this, the LTS semantics, and $\sec E x(s)=\mathrm{T}$, it fol-
lows that $f\left(\operatorname{last}\left(r^{i-1}\right),\left\langle u^{\prime}\right.\right.$, SELECT, $\left.\left.\phi\right\rangle\right)=\mathrm{T}$. From this and f 's definition, it follows $f_{\text {conf }}^{u}$ (last $\left(r^{i-1}\right),\left\langle u^{\prime}\right.$, SELECT, $\phi\rangle)=\top$ because $\operatorname{user}\left(\operatorname{last}\left(r^{i-1}\right),\left\langle u^{\prime}, \operatorname{SELECT}, \phi\right\rangle\right)=u$ since u is t 's invoker. From this and $f_{\text {conf }}^{u}$'s definition, it follows that $\operatorname{secure}\left(u, \phi, \operatorname{last}\left(r^{i-1}\right)\right)=\mathrm{T}$. From this and Lemma F.7 it follows that also $\operatorname{secure}_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$ holds.
30. Learn INSERT Backward - 2. Let i be such that $r^{i}=$ $r^{i-1} \cdot t \cdot s$, where $s=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle \in \Omega_{M}$, last $\left(r^{i-1}\right)=\langle d b, U$, sec, $T, V, c\rangle$, and $t \in \mathcal{T} \mathcal{R} \mathcal{I G G E} \mathcal{R}_{D}$, and ϕ be $\neg R(\bar{t})$. Furthermore, let act $=\left\langle u^{\prime}\right.$, INSERT, R, $\bar{t}\rangle$ be t 's actual action and γ be t 's actual WHEN condition obtained by replacing all free variables with the values in $\operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)$. From the rule's definition, it follows $\sec E x(s)=T$ and there is a ψ such that $r, i-1 \vdash_{u} \psi$ and $r, i \vdash_{u} \neg \psi$. We claim that $[\gamma]^{d b}=\top$. From this and $\sec E x(s)=\top$, it follows that $f\left(s^{\prime},\left\langle u^{\prime}\right.\right.$, INSERT, $\left.\left.R, \bar{t}\right\rangle\right)=$ T, where s^{\prime} is the state obtained after the evaluation of t 's WHEN condition. From this and f 's definition, it follows $f_{\text {conf }}^{u}\left(s^{\prime},\left\langle u^{\prime}\right.\right.$, INSERT, $\left.\left.R, \bar{t}\right\rangle\right)=\mathrm{T}$ as $u s e r\left(s^{\prime},\left\langle u^{\prime}\right.\right.$, INSERT, $R, \bar{t}\rangle)=u$ because u is t 's invoker. From this and $f_{\text {conf }}^{u}$'s definition, it follows secure $\left(u, \phi, s^{\prime}\right)=\top$ since ϕ is equivalent to $\operatorname{getInfo}\left(\left\langle u^{\prime}, \operatorname{INSERT}, R, \bar{t}\right\rangle\right)$. From this, Lemma F.8. and pState $\left(s^{\prime}\right)=p \operatorname{State}\left(\operatorname{last}\left(r^{i-1}\right)\right)$, it follows secure $\left(u, \phi, \operatorname{last}\left(r^{i-1}\right)\right)=T$. From this and Lemma F.7 it follows $\operatorname{secure}_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$.
We now prove our claim that $[\gamma]^{d b}=\mathrm{T}$. Assume, for contradiction's sake, that this is not the case. From this and the LTS rules, it follows that $d b=d b^{\prime}$. From the rule's definition, it follows that there is a ψ such that $r, i-1 \vdash_{u} \psi$ and $r, i \vdash_{u} \neg \psi$. From this, Lemma B.1 $s=$ $\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$, and last $\left(r^{i-1}\right)=\langle d b, U, s e c, T$, $V, c\rangle$, it follows that $[\psi]^{d b}=\top$ and $[\neg \psi]^{d b^{\prime}}=\mathrm{T}$. Therefore, $[\psi]^{d b}=\top$ and $[\psi]^{d b^{\prime}}=\perp$. Hence, $d b \neq d b^{\prime}$, which contradicts $d b=d b^{\prime}$.
31. Learn DELETE Forward. The proof of this case is similar to that of Learn INSERT Forward.
32. Learn DELETE - ID. The proof of this case is similar to that of Learn INSERT - FD. See also the proof of DELETE Success - ID.
33. Learn DELETE - ID - 1. The proof of this case is similar to that of Learn DELETE - ID.
34. Learn DELETE Backward - 1. The proof of this case is similar to that of Learn INSERT Backward - 1 .
35. Learn DELETE Backward - 2. The proof of this case is similar to that of Learn INSERT Backward - 2.
36. Propagate Forward Trigger Action. Let i be such that $r^{i}=r^{i-1} \cdot t \cdot s$, where t is a trigger, $s=\langle d b, U, s e c, T, V, c\rangle$ $\in \Omega_{M}$ and last $\left(r^{i-1}\right)=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$. From the rule's definition, $r, i-1 \vdash_{u} \phi$ holds. From this and the induction hypothesis, it follows that $\operatorname{secure}_{P, u}(r, i-$ $1 \vdash_{u} \phi$) holds. From Lemma $G .8$, the trigger t preserves the equivalence class with respect to r^{i-1}, P, and u. We claim that the execution of t does not alter the content of the tables in tables (ϕ). From this, Lemma F.11, and secure $_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$, it follows secure $P_{P, u}\left(r, i \vdash_{u} \phi\right)$. We now prove our claim that the execution of t does not alter the content of the tables in tables (ϕ). If the trigger is not enabled, the claim is trivial. In the following, we assume the trigger is enabled. There are four cases:

- t 's action is an INSERT statement. This case amount to claiming that the INSERT statement $\left\langle u^{\prime}\right.$, INSERT,
$R, \bar{t}\rangle$ does not alter the content of the tables in tables (ϕ) in case reviseBelif $\left(r^{i-1}, \phi, r^{i}\right)=T$. We proved the claim above in the Propagate Forward INSERT/DELETE Success case.
- t 's action is an DELETE statement. The proof is similar to that of the INSERT case.
- t 's action is an GRANT statement. In this case, the action does not alter the database state and the claim follows trivially.
- t 's action is an REVOKE statement. The proof is similar to that of the GRANT case.

37. Propagate Backward Trigger Action. The proof of this case is similar to Propagate Backward Trigger Action.
38. Propagate Forward INSERT Trigger Action. Let i be such that $r^{i}=r^{i-1} \cdot t \cdot s$, where t is a trigger, $s=$ $\langle d b, U, s e c, T, V, c\rangle \in \Omega_{M}$ and $\operatorname{last}\left(r^{i-1}\right)=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}\right.$, $\left.T^{\prime}, V^{\prime}, c^{\prime}\right\rangle$. From the rule's definition, $r, i-1 \vdash_{u} \phi$ holds. From this and the induction hypothesis, it follows that secure $_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$ holds. From Lemma G.8, the trigger t preserves the equivalence class with respect to r^{i-1}, P, and u. We claim that the execution of t does not alter the content of the tables in tables (ϕ). From this, Lemma F.11, and $\operatorname{secure}_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$, it follows secure $P_{P, u}\left(r, i \vdash_{u} \phi\right)$.
We now prove our claim that the execution of t does not alter the content of the tables in tables (ϕ). If the trigger is not enabled, the claim is trivial. In the following, we assume the trigger is enabled. Then, t 's action is an INSERT statement. This case amount to claiming that the INSERT statement $\left\langle u^{\prime}\right.$, INSERT, $\left.R, \bar{t}\right\rangle$ does not alter the content of the tables in $\operatorname{tables}(\phi)$ in case $r, i-1 \vdash_{u}$ $R(\bar{t})$ holds. We proved the claim above in the Propagate Forward INSERT Success - 1 case.
39. Propagate Forward DELETE Trigger Action. The proof of this case is similar to that of Propagate Forward INSERT Trigger Action.
40. Propagate Backward INSERT Trigger Action. The proof of this case is similar to that of Propagate Forward INSERT Trigger Action.
41. Propagate Backward DELETE Trigger Action. The proof of this case is similar to that of Propagate Forward INSERT Trigger Action.
42. Trigger FD INSERT Disabled Backward. Let i be such that $r^{i}=r^{i-1} \cdot t \cdot s$, where $s=\left\langle d b^{\prime}, U^{\prime}, s e c^{\prime}, T^{\prime}, V^{\prime}, c^{\prime}\right\rangle \in$ $\Omega_{M}, t \in \mathcal{T} \mathcal{R} \mathcal{I G G E} \mathcal{R}_{D}, \operatorname{last}\left(r^{i-1}\right)=\langle d b, U$, sec, $T, V, c\rangle$, and ϕ be t 's actual WHEN condition obtained by replacing all free variables with the values in $\operatorname{tpl}\left(\operatorname{last}\left(r^{i-1}\right)\right)$. Furthermore, let act $=\left\langle u^{\prime}\right.$, INSERT, $\left.R,(\bar{v}, \bar{w}, \bar{q})\right\rangle$ be t 's actual action and α be $\exists \bar{y}, \bar{z} \cdot R(\bar{v}, \bar{y}, \bar{z}) \wedge \bar{y} \neq \bar{w}$. From the rule's definition, it follows that $\sec E x(s)=\perp$. From this, it follows that $f\left(\operatorname{last}\left(r^{i-1}\right),\left\langle u^{\prime}, \operatorname{SELECT}, \phi\right\rangle\right)=\mathrm{T}$. From this and f 's definition, it follows $f_{\text {conf }}^{u}\left(\operatorname{last}\left(r^{i-1}\right)\right.$, $\left\langle u^{\prime}\right.$, SELECT,$\left.\left.\phi\right\rangle\right)=\top$ since $u s e r\left(\operatorname{last}\left(r^{i-1}\right),\left\langle u^{\prime}\right.\right.$, SELECT, $\phi\rangle)=u$ since u is t 's invoker. From this and $f_{\text {conf }}^{u}$'s definition, it follows that $\operatorname{secure}\left(u, \neg \phi, \operatorname{last}\left(r^{i-1}\right)\right)=$ T. From this, it follows that $\operatorname{secure}\left(u, \phi, \operatorname{last}\left(r^{i-1}\right)\right)=$ T. From this and Lemma F.7, it follows that also secure $_{P, u}\left(r, i-1 \vdash_{u} \phi\right)$.
43. Trigger ID INSERT Disabled Backward. The proof of this case is similar to that of Trigger FD INSERT Disabled Backward.
44. Trigger ID DELETE Disabled Backward. The proof of this case is similar to that of Trigger FD INSERT Dis-

abled Backward.

This completes the proof of the induction step.
This completes the proof.
In Lemma G.7 and Lemma G.8, we show that actions and triggers preserve the equivalence class for any LTS that uses f as PDP.

Lemma G.7. Let u be a user in $\mathcal{U}, P=\langle M, f\rangle$ be an extended configuration, where $M=\langle D, \Gamma\rangle$ is a system configuration and f is as above, L be the P-LTS. For any run $r \in \operatorname{traces}(L)$ and any action $a \in \mathcal{A}_{D, u}$, if extend (r, a) is defined, then a preserves the equivalence class for r, P, and u.

Proof. Let u be a user in $\mathcal{U}, P=\langle M, f\rangle$ be an extended configuration, where $M=\langle D, \Gamma\rangle$ is a system configuration and f is as above, and L be the P-LTS. In the following, we use e to refer to the extend function. We prove our claim by contradiction. Assume, for contradiction's sake, that there is a run $r \in \operatorname{traces}(L)$ and an action $a \in \mathcal{A}_{D, u}$ such that $e(r, a)$ is defined and a does not preserve the equivalence class for r, P, and u. According to the LTS semantics, the fact that $e(r, a)$ is defined implies that triggers $(\operatorname{last}(r))=$ ϵ. Therefore, $\operatorname{triggers}\left(\operatorname{last}\left(r^{\prime}\right)\right)=\epsilon$ holds as well for any for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$ (because r and r^{\prime} are indistinguishable and, therefore, their projections are consistent), and, thus, $e\left(r^{\prime}, a\right)$ is defined as well for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. There are a number of cases depending on a :

1. $a=\langle u$, SELECT, $q\rangle$. There are two cases:
(a) $\sec E x(\operatorname{last}(e(r, a)))=\perp$. From the LTS rules and $\sec E x(\operatorname{last}(e(r, a)))=\perp$, it follows that $f(\operatorname{last}(r), a)$ $=\mathrm{T}$. From this and Lemma G. 5 it follows that $f\left(\operatorname{last}\left(r^{\prime}\right), a\right)=\mathrm{T}$ for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. From this and the LTS rules, it follows $\sec E x\left(\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)\right)=$ \perp for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. From $f\left(\operatorname{last}\left(r^{\prime}\right), a\right)=\top$ for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$, it follows $f_{\text {conf }}^{\text {user }\left(\operatorname{last}\left(r^{\prime}\right), a\right)}\left(\operatorname{last}\left(r^{\prime}\right), a\right)$ $=\top$ for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. Note that $\operatorname{user}\left(\operatorname{last}\left(r^{\prime}\right), a\right)$ $=u$ for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$ because trigger $\left(\operatorname{last}\left(r^{\prime}\right)\right)=$ ϵ and $u \in \mathcal{A}_{D, u}$. From this, $f_{\text {conf }}^{\text {user }\left(\operatorname{last}\left(r^{\prime}\right), a\right)}\left(\operatorname{last}\left(r^{\prime}\right)\right.$, $a)=\top$ for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$, and $f_{\text {conf }}^{u}$'s definition, it follows that $\sec u r e\left(u, q, \operatorname{last}\left(r^{\prime}\right)\right)=\top$ for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. From this and Lemma $F .7$, it follows that $[q]^{\text {last }\left(r^{\prime}\right) \cdot d b}=[q]^{\text {last }(r) \cdot d b}$ for all $r^{\prime} \in$ $\llbracket r \rrbracket_{P, u}$. Furthermore, it follows trivially from the LTS rule SELECT Success, that the state after a 's execution is data indistinguishable from last (r). It is also easy to see that $e\left(r^{\prime}, a\right)$ is well-defined for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. From the considerations above and $r^{\prime} \in \llbracket r \rrbracket_{P, u}$, it follows trivially that $e\left(r^{\prime}, a\right) \in$ $\llbracket e(r, a) \rrbracket_{P, u}$. The bijection b is trivially $b\left(r^{\prime}\right)=$ $e\left(r^{\prime}, a\right)$. This leads to a contradiction.
(b) $\sec E x(\operatorname{last}(e(r, a)))=\mathrm{T}$. From the LTS rules and $\sec E x(\operatorname{last}(e(r, a)))=\mathrm{T}$, it follows that $f(\operatorname{last}(r), a)$ $=\perp$. From this and Lemma G.5 it follows that $f\left(\operatorname{last}\left(r^{\prime}\right), a\right)=\perp$ for any $r^{\prime} \in \llbracket r \rrbracket \rrbracket_{P, u}$. From this and the LTS rules, it follows $\sec E x\left(\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)\right)=$ T for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. The data indistinguishability between $\operatorname{last}\left(e\left(r^{\prime}, a\right)\right.$) and $\operatorname{last}(e(r, a))$ follows trivially from the data indistinguishability between last $\left(r^{\prime}\right)$ and last (r). Therefore, for any run $r^{\prime} \in$ $\llbracket r \rrbracket_{P, C}$, there is exactly one run $e\left(r^{\prime}, a\right)$. From the considerations above, it follows trivially that $e\left(r^{\prime}, a\right)$
$\in \llbracket e(r, a) \rrbracket_{P, u}$. The bijection b is trivially $b\left(r^{\prime}\right)=$ $e\left(r^{\prime}, a\right)$. This leads to a contradiction.
Both cases leads to a contradiction. This completes the proof for $a=\langle u$, SELECT, $q\rangle$.
2. $a=\langle u$, INSERT, $R, \bar{t}\rangle$. In the following, we denote by $g I$ the function getInfo, by $g S$ the function $\operatorname{getInfoS}$, and by $g V$ the function getInfo V. There are three cases:
(a) $\sec E x(\operatorname{last}(e(r, a)))=\perp$ and $E x(\operatorname{last}(e(r, a)))=\emptyset$. From the LTS rules and $\sec E x(\operatorname{last}(e(r, a)))=\perp$, it follows that $f(\operatorname{last}(r), a)=\mathrm{T}$. From this and Lemma G.5, it follows that $f\left(\operatorname{last}\left(r^{\prime}\right), a\right)=\top$ for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. From this and the LTS rules, it follows that $\sec E x\left(\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)\right)=\perp$ for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. From $f(\operatorname{last}(r), a)=\mathrm{T}$, it follows that $f_{\text {conf }}^{u}(\operatorname{last}(r), a)=\top$ because $\operatorname{user}(\operatorname{last}(r), a)=u$ since $\operatorname{trigger}(\operatorname{last}(r), a)=\epsilon$ and $a \in \mathcal{A}_{D, u}$. From this and $f_{\text {conf' }}^{u}$'s definition, it follows that secure (u, $g S(\gamma, a c t)$, last $(r))$ holds for any integrity constraint γ in $\operatorname{Dep}(\Gamma, a)$. From $\operatorname{Ex}(\operatorname{last}(e(r, a)))=\emptyset$ and Proposition F. 7 it follows $[g S(\gamma, a c t)]^{\text {last }(r) \cdot d b}=$ T. From this, secure $(u, g S(\gamma$, act $)$, last $(r))$, and Lemma F.7 it follows that $[g S(\gamma, a c t)]^{\text {last }\left(r^{\prime}\right) \cdot d b}=$ T for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. From this and Proposition F.7 it follows that $\operatorname{Ex}\left(\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)\right)=\emptyset$ for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. We claim that, for any $r^{\prime} \in$ $\llbracket r \rrbracket_{P, u}, \operatorname{last}(e(r, a))$ and last $\left(e\left(r^{\prime}, a\right)\right)$ are data indistinguishable. From this and the above considerations, it follows trivially that $e\left(r^{\prime}, a\right) \in \llbracket e(r, a) \rrbracket_{P, u}$. The bijection b is trivially $b\left(r^{\prime}\right)=e\left(r^{\prime}, a\right)$. This leads to a contradiction.
We now prove our claim that for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$, last $(e(r, a))$ and last $\left(e\left(r^{\prime}, a\right)\right)$ are data indistinguishable. We prove the claim by contradiction. Let $s_{2}=\left\langle d b_{2}, U_{2}, s e c_{2}, T_{2}, V_{2}\right\rangle$ be pState $(\operatorname{last}(e(r, a)))$, $s_{2}^{\prime}=\left\langle d b_{2}^{\prime}, U_{2}^{\prime}, \sec _{2}^{\prime}, T_{2}^{\prime}, V_{2}^{\prime}\right\rangle$ be $p \operatorname{State}\left(\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)\right)$, $s_{1}=\left\langle d b_{1}, U_{1}, \sec _{1}, T_{1}, V_{1}\right\rangle$ be pState $(\operatorname{last}(r))$, and $s_{1}^{\prime}=\left\langle d b_{1}^{\prime}, U_{1}^{\prime}, \sec 1_{1}^{\prime}, T_{1}^{\prime}, V_{1}^{\prime}\right\rangle$ be $p \operatorname{State}\left(\operatorname{last}\left(r^{\prime}\right)\right)$. In the following, we denote the permissions function by p. Furthermore, note that s_{1} and s_{1}^{\prime} are dataindistinguishable because $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. There are a number of cases:
i. $U_{2} \neq U_{2}^{\prime}$. Since a is an INSERT operation, it follows that $U_{1}=U_{2}$ and $U_{1}^{\prime}=U_{2}^{\prime}$. Furthermore, from $s_{1} \cong{ }_{M, u}^{\text {data }} s_{1}^{\prime}$, it follows that $U_{1}=U_{1}^{\prime}$. Therefore, $U_{2}=U_{2}^{\prime}$ leading to a contradiction.
ii. $\sec _{2} \neq \sec _{2}^{\prime}$. The proof is similar to the case $U_{2} \neq U_{2}^{\prime}$.
iii. $T_{2} \neq T_{2}^{\prime}$. The proof is similar to the case $U_{2} \neq$ U_{2}^{\prime}.
iv. $V_{2} \neq V_{2}^{\prime}$. The proof is similar to the case $U_{2} \neq$ U_{2}^{\prime}.
v. there is a table R^{\prime} for which $\langle\oplus$, SELECT, $R\rangle \in$ $p\left(s_{2}, u\right)$ and $d b_{2}\left(R^{\prime}\right) \neq d b_{2}^{\prime}\left(R^{\prime}\right)$. Note that $p\left(s_{2}, u\right)=p\left(s_{1}, u\right)$. There are two cases:

- $R=R^{\prime}$. From $s_{1} \cong{ }_{M, u}^{\text {data }} s_{1}^{\prime}$ and $\langle\oplus$, SELECT, $R\rangle$ $\in p\left(s_{2}, u\right)$, it follows that $d b_{1}\left(R^{\prime}\right)=d b_{1}^{\prime}\left(R^{\prime}\right)$. From this and the fact that a has been executed successfully both in $e(r, a)$ and $e\left(r^{\prime}, a\right)$, it follows that $d b_{2}\left(R^{\prime}\right)=d b_{1}\left(R^{\prime}\right) \cup\{\bar{t}\}$ and $d b_{2}^{\prime}\left(R^{\prime}\right)=d b_{1}^{\prime}\left(R^{\prime}\right) \cup\{\bar{t}\}$. From this and $d b_{1}\left(R^{\prime}\right)=d b_{1}^{\prime}\left(R^{\prime}\right)$, it follows that $d b_{2}\left(R^{\prime}\right)=$ $d b_{2}^{\prime}\left(R^{\prime}\right)$ leading to a contradiction.
- $R \neq R^{\prime}$. From $s_{1} \cong{ }_{M, u}^{\text {data }} s_{1}^{\prime}$ and $\langle\oplus$, SELECT, $R\rangle$
$\in p\left(s_{2}, u\right)$, it follows that $d b_{1}\left(R^{\prime}\right)=d b_{1}^{\prime}\left(R^{\prime}\right)$. From this and the fact that a does not modify R^{\prime}, it follows that $d b_{1}\left(R^{\prime}\right)=d b_{2}\left(R^{\prime}\right)$ and $d b_{1}^{\prime}\left(R^{\prime}\right)=d b_{2}^{\prime}\left(R^{\prime}\right)$. From this and $d b_{1}\left(R^{\prime}\right)=$ $d b_{1}^{\prime}\left(R^{\prime}\right)$, it follows that $d b_{2}\left(R^{\prime}\right)=d b_{2}^{\prime}\left(R^{\prime}\right)$ leading to a contradiction.
vi. there is a view v for which $\langle\oplus$, SELECT, $v\rangle \in$ $p\left(s_{2}, u\right)$ and $d b_{2}(v) \neq d b_{2}^{\prime}(v)$. Note that $p\left(s_{2}, u\right)$ $=p\left(s_{1}, u\right)$. Since a has been successfully executed in both states, we know that leak $\left(s_{1}, a, u\right)$ hold. There are two cases:
- $R \notin \operatorname{tDet}(v, s, M)$. Then, $v\left(s_{1}\right)=v\left(s_{2}\right)$ and $v\left(s_{1}^{\prime}\right)=v\left(s_{2}^{\prime}\right)$ (because R 's content does not determine v 's materialization). From $s_{1} \cong{ }_{M, u}^{\text {data }}$ s_{1}^{\prime} and the fact that a modifies only R, it follows that $v\left(d b_{2}\right)=v\left(d b_{2}^{\prime}\right)$ leading to a contradiction.
- $R \in t \operatorname{Det}(v, s, M)$ and for all $o \in t \operatorname{Det}(v, s, M)$, $\langle\oplus$, SELECT, $o\rangle \in p\left(s_{1}, u\right)$. From this and s_{1} $\cong{ }_{M, u}^{\text {data }} s_{1}^{\prime}$, it follows that, for all $o \in \operatorname{tDet}(v, s$, $M), o\left(s_{1}\right)=o\left(s_{1}^{\prime}\right)$. If $o \neq R, o\left(s_{1}\right)=o\left(s_{1}^{\prime}\right)=$ $o\left(s_{2}\right)=o\left(s_{2}^{\prime}\right)$. From $\langle\oplus$, SELECT, $R\rangle \in p\left(s_{1}, u\right)$ and $s_{1} \cong{ }_{M, u}^{d a t a} s_{1}^{\prime}$, it follows that $d b_{1}(R)=$ $d b_{1}^{\prime}(R)$. From this and the fact that a has been executed successfully both in $e(r, a)$ and $e\left(r^{\prime}, a\right)$, it follows that $d b_{2}(R)=d b_{1}(R) \cup\{\bar{t}\}$ and $d b_{2}^{\prime}(R)=d b_{1}^{\prime}(R) \cup\{\bar{t}\}$. From this and $d b_{1}(R)=d b_{1}^{\prime}(R)$, it follows that $d b_{2}(R)=$ $d b_{2}^{\prime}(R)$. From this and for all $o \in \operatorname{tDet}(v, s, M)$ such that $o \neq R, o\left(s_{2}\right)=o\left(s_{2}^{\prime}\right)$, it follows that for all $o \in t \operatorname{Det}(v, s, M), o\left(s_{2}\right)=o\left(s_{2}^{\prime}\right)$. Since the content of all tables determining v is the same in s_{2} and s_{2}^{\prime}, it follows that $d b_{2}(v)=d b_{2}^{\prime}(v)$ leading to a contradiction.
All the cases lead to a contradiction.
(b) $\sec E x(\operatorname{last}(e(r, a)))=\perp$ and $\operatorname{Ex}(\operatorname{last}(e(r, a))) \neq \emptyset$. From the LTS rules and $\sec E x(\operatorname{last}(e(r, a)))=\perp$, it follows that $f(\operatorname{last}(r), a)=\mathrm{T}$. From this and Lemma G.5, it follows that $f\left(\operatorname{last}\left(r^{\prime}\right), a\right)=\top$ for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. From this and the LTS rules, it follows that $\sec E x\left(\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)\right)=\perp$ for any $r^{\prime} \in$ $\llbracket r \rrbracket_{P, u}$. Assume that the exception has been caused by the constraint γ, i.e., $\gamma \in \operatorname{Ex}(\operatorname{last}(e(r, a)))$. From this and Proposition F.7. it follows that $g V(\gamma, a)$ holds in last $(r) \cdot d b$. From $f(\operatorname{last}(r), a)=T$ and f 's definition, it follows that $f_{\text {conf }}^{u}(\operatorname{last}(r), a)=\top$ because $\operatorname{user}(\operatorname{last}(r), a)=u$ since $\operatorname{trigger}(\operatorname{last}(r))=\epsilon$ and $a \in \mathcal{A}_{D, u}$. From this and $f_{\text {conf }}^{u}$'s definition, it follows that secure $(u, g V(\gamma, a)$, last (r)) holds. From this, Lemma F.7, and $[g V(\gamma, a)]^{\text {last }(r) \cdot d b}=\mathrm{T}$, it follows that also $[g V(\gamma, a c t)]^{\text {last }\left(r^{\prime}\right) \cdot d b}=\top$ for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. From this and Proposition $F .7$ it follows that $\gamma \in \operatorname{Ex}\left(\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)\right)$ for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. The data indistinguishability between last $(e(r, a))$ and last $\left(e\left(r^{\prime}, a\right)\right)$ follows trivially from the data indistinguishability between last (r) and $\operatorname{last}\left(r^{\prime}\right)$ for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. Therefore, for any run $r^{\prime} \in \llbracket r \rrbracket_{P, u}$, there is exactly one run $e\left(r^{\prime}, a\right)$. From the considerations above, it follows trivially that $e\left(r^{\prime}, a\right) \in$ $\llbracket e(r, a) \rrbracket_{P, u}$. The bijection b is trivially $b\left(r^{\prime}\right)=$ $e\left(r^{\prime}, a\right)$. This leads to a contradiction.
(c) $\sec E x(\operatorname{last}(e(r, a)))=\mathrm{T}$. From the LTS rules and $\operatorname{secEx}(\operatorname{last}(e(r, a)))=\mathrm{T}$, it follows that $f(\operatorname{last}(r), a)$
$=\perp$. From this and Lemma G.5 it follows that $f\left(\right.$ last $\left.\left(r^{\prime}\right), a\right)=\perp$ for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. From this and the LTS rules, it follows $\sec E x\left(\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)\right)=$ \top for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. The data indistinguishability between $\operatorname{last}(e(r, a))$ and $\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)$ follows trivially from that between last (r) and last $\left(r^{\prime}\right)$ for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. Therefore, for any run $r^{\prime} \in \llbracket r \rrbracket_{P, u}$, there is exactly one run $e\left(r^{\prime}, a\right)$. From the considerations above, it follows trivially that $e\left(r^{\prime}, a\right) \in$ $\llbracket e(r, a) \rrbracket_{P, u}$. The bijection b is trivially $b\left(r^{\prime}\right)=$ $e\left(r^{\prime}, a\right)$. This leads to a contradiction.
All cases lead to a contradiction. This completes the proof for $a=\langle u$, INSERT, $R, \bar{t}\rangle$.

3. $a=\langle u$, DELETE, $R, \bar{t}\rangle$. The proof is similar to that for $a=\langle u$, INSERT, $R, \bar{t}\rangle$.
4. $a=\left\langle\oplus, u^{\prime}, p, u\right\rangle$. There are two cases:
(a) $\sec E x(\operatorname{last}(e(r, a)))=\perp$. We assume that $p=$〈SELECT,
$O\rangle$ for some $O \in D \cup V$. If this is not the case, the proof is trivial. Furthermore, we also assume that $u^{\prime}=u$, otherwise the proof is, again, trivial since the new permission does not influence u 's permissions. From the LTS rules and $\operatorname{secEx}(\operatorname{last}(e(r, a)))=$ \perp, it follows that $f(\operatorname{last}(r), a)=\top$. From this and Lemma G.5 it follows that $f\left(\operatorname{last}\left(r^{\prime}\right), a\right)=$ \top for any $r{ }^{\prime} \in \llbracket r \rrbracket_{P, u}$. From this and the LTS rules, it follows that $\sec \operatorname{Ex}\left(\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)\right)=\perp$ for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. From $\operatorname{secEx}\left(\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)\right)=\perp$ and $f_{\text {conf }}^{u}$'s definition, it follows that last $\left(r^{\prime}\right) \cdot s e c=$ $\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)$.sec. Therefore, since last (r) and last $\left(r^{\prime}\right)$ are data indistinguishable, for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$, then also last $(e(r, a))$ and $\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)$ are data indistinguishable. Therefore, for any run $r^{\prime} \in \llbracket r \rrbracket_{P, u}$, there is exactly one run $e\left(r^{\prime}, a\right)$. From the considerations above, it follows trivially that $e\left(r^{\prime}, a\right) \in$ $\llbracket e(r, a) \rrbracket_{P, u}$. The bijection b is trivially $b\left(r^{\prime}\right)=$ $e\left(r^{\prime}, a\right)$. This leads to a contradiction.
(b) $\sec E x(\operatorname{last}(e(r, a)))=T$. From the LTS rules and $\sec E x(\operatorname{last}(e(r, a)))=\mathrm{T}$, it follows $f(\operatorname{last}(r), a)=$ \perp. From this and Lemma G.5 it follows that $f\left(\operatorname{last}\left(r^{\prime}\right), a\right)=\perp$ for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. From this and the LTS rules, it follows $\sec E x\left(\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)\right)=$ T for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$. The data indistinguishability between $\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)$ and $\operatorname{last}(e(r, a))$ follows trivially from the data indistinguishability between last $\left(r^{\prime}\right)$ and last (r). Therefore, for any run $r^{\prime} \in$ $\llbracket r \rrbracket_{P, u}$, there is exactly one run $e\left(r^{\prime}, a\right)$. From the considerations above, it follows trivially $e\left(r^{\prime}, a\right) \in$ $\llbracket e(r, a) \rrbracket_{P, u}$. The bijection b is trivially $b\left(r^{\prime}\right)=$ $e\left(r^{\prime}, a\right)$. This leads to a contradiction.
Both cases lead to a contradiction. This completes the proof for $a=\left\langle\oplus, u^{\prime}, p, u\right\rangle$.
5. $a=\left\langle\oplus^{*}, u^{\prime}, p, u\right\rangle$. The proof is similar to that for $a=$ $\left\langle\oplus, u^{\prime}, p, u\right\rangle$.
6. $a=\left\langle\ominus, u^{\prime}, p, u\right\rangle$. The proof is similar to that for $a=$ $\langle u$, SELECT, $q\rangle$. The only difference is in proving that for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$, last $(e(r, a))$ and last $\left(e\left(r^{\prime}, a\right)\right)$ are data indistinguishable. Assume, for contradiction's sake, that this is not the case. Let $s_{2}=\left\langle d b_{2}, U_{2}, s e c_{2}, T_{2}, V_{2}\right\rangle$ be $p \operatorname{State}(\operatorname{last}(e(r, a)))$ and $s_{2}^{\prime}=\left\langle d b_{2}^{\prime}, U_{2}^{\prime}, s e c_{2}^{\prime}, T_{2}^{\prime}, V_{2}^{\prime}\right\rangle$ be $p \operatorname{State}\left(\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)\right)$. Furthermore, let $s_{1}=\left\langle d b_{1}, U_{1}\right.$, $\left.\sec _{1}, T_{1}, V_{1}\right\rangle$ be $p \operatorname{State}(\operatorname{last}(r))$ and $s_{1}^{\prime}=\left\langle d b_{1}^{\prime}, U_{1}^{\prime}, \sec _{1}^{\prime}\right.$, $\left.T_{1}^{\prime}, V_{1}^{\prime}\right\rangle$ be $p \operatorname{State}\left(\operatorname{last}\left(r^{\prime}\right)\right)$. In the following, we de-
note the permissions function by p. Furthermore, note that s_{1} and s_{1}^{\prime} are data-indistinguishable because $r^{\prime} \in$ $\llbracket r \rrbracket_{P, u}$. There are a number of cases:
(a) $U_{2} \neq U_{2}^{\prime}$. Since a is an REVOKE operation, it follows that $U_{1}=U_{2}$ and $U_{1}^{\prime}=U_{2}^{\prime}$. Furthermore, from $s_{1} \cong{ }_{u, M}^{d a t a} \quad s_{1}^{\prime}$, it follows that $U_{1}=U_{1}^{\prime}$. Therefore, $U_{2}=U_{2}^{\prime}$ leading to a contradiction.
(b) $\sec _{2} \neq \sec _{2}^{\prime}$. From $s_{1} \cong{ }_{u, M}^{d a t a} s_{1}^{\prime}$, it follows that $\sec _{1}=\sec _{1}^{\prime}$. From a^{\prime} 's definition and the LTS rules, it follows that $\sec _{2}=\operatorname{revoke}\left(\sec _{1}, u^{\prime}, p, u\right)$ and $\sec _{2}^{\prime}=\operatorname{revoke}\left(\sec _{1}^{\prime}, u^{\prime}, p, u\right)$. From this and $\sec _{1}=\sec _{1}^{\prime}$, it follows that $\sec _{2}=\sec _{2}^{\prime}$ leading to a contradiction.
(c) $T_{2} \neq T_{2}^{\prime}$. The proof is similar to the case $U_{2} \neq U_{2}^{\prime}$.
(d) $V_{2} \neq V_{2}^{\prime}$. The proof is similar to the case $U_{2} \neq U_{2}^{\prime}$.
(e) there is a table R for which $\langle\oplus$, SELECT, $R\rangle \in p\left(s_{2}, u\right)$ and $d b_{2}(R) \neq d b_{2}^{\prime}(R)$. Since a is an REVOKE operation, it follows that $d b_{1}=d b_{2}$ and $d b_{1}^{\prime}=d b_{2}^{\prime}$. Furthermore, from $s_{1} \cong{ }_{u, M}^{\text {data }} s_{1}^{\prime}$, it follows that $d b_{1}(R)=$ $d b_{1}^{\prime}(R)$. From this, $d b_{1}=d b_{2}$, and $d b_{1}^{\prime}=d b_{2}^{\prime}$, it follows that $d b_{2}(R)=d b_{2}^{\prime}(R)$ leading to a contradiction.
(f) there a view v for which $\langle\oplus, \operatorname{SELECT}, v\rangle \in p\left(s_{2}\right.$,
$u)$ and $d b_{2}(v) \neq d b_{2}^{\prime}(v)$. Since a is an REVOKE operation, it follows that $d b_{1}=d b_{2}$ and $d b_{1}^{\prime}=$ $d b_{2}^{\prime}$. Furthermore, from $s_{1} \cong{ }_{u, M}^{d a t a} s_{1}^{\prime}$, it follows that $d b_{1}(v)=d b_{1}^{\prime}(v)$. From this, $d b_{1}=d b_{2}$, and $d b_{1}^{\prime}=d b_{2}^{\prime}$, it follows that $d b_{2}(v)=d b_{2}^{\prime}(v)$ leading to a contradiction.
All the cases lead to a contradiction.
7. $a=\langle u$, CREATE, $o\rangle$. The proof is similar to that for $a=\left\langle\ominus, u^{\prime}, p, u\right\rangle$.
8. $a=\left\langle u\right.$, ADD_USER, $\left.u^{\prime}\right\rangle$. The proof is similar to that for $a=\left\langle\ominus, u^{\prime}, p, u\right\rangle$.
This completes the proof.
Lemma G.8. Let u be a user in $\mathcal{U}, P=\langle M, f\rangle$ be an extended configuration, where $M=\langle D, \Gamma\rangle$ is a system configuration and f is as above, and L be the P-LTS. For any run $r \in \operatorname{traces}(L)$ such that invoker $(\operatorname{last}(r))=u$ and any trigger $t \in \mathcal{T R} \mathcal{I G G E R}_{D}$, if extend (r, t) is defined, then t preserves the equivalence class for r, M, and u.

Proof. Let u be a user in $\mathcal{U}, P=\left\langle M, f_{\text {conf }}^{u}\right\rangle$ be an extended configuration, where $M=\langle D, \Gamma\rangle$ is a system configuration and $f_{\text {conf }}^{u}$ is as above, and L be the P-LTS. In the following, we use e to refer to the extend function. The proof in cases where the trigger t is not enabled or t 's WHEN condition is not secure are similar to the proof of the SELECT case of Lemma G.7. In the following, we therefore assume that the trigger t is enabled and that its WHEN condition is secure. We prove our claim by contradiction. Assume, for contradiction's sake, that there is a run $r \in \operatorname{traces}(L)$ such that $\operatorname{invoker}(\operatorname{last}(r))=u$ and a trigger t such that $e(r, t)$ is defined and t does not preserve the equivalence class for r, P, and u. Since invoker $(\operatorname{last}(r))=u$ and $e(r, t)$ is defined, then $e\left(r^{\prime}, t\right)$ is defined as well for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$ (indeed, from invoker $(\operatorname{last}(r))=u$, it follows that the last action in r is either an action issued by u or a trigger invoker by u. From this, the fact that $e(r, t)$ is defined, and the fact that r and r^{\prime} are indistinguishable, it follows that $\left.\operatorname{trigger}(\operatorname{last}(r))=\operatorname{trigger}\left(\operatorname{last}\left(r^{\prime}\right)\right)=t\right)$. Let a be t 's action and $w=\left\langle u^{\prime}\right.$, SELECT, $\left.q\right\rangle$ be the SELECT command associated with t 's WHEN condition. Let s be the state last $(r), s^{\prime}$ be the
state obtained just after the execution of the WHEN condition, and $s^{\prime \prime}$ be the state last $(e(r, t))$. There are a number of cases depending on t 's action a :

1. $a=\left\langle u^{\prime}, \operatorname{INSERT}, R, \bar{t}\right\rangle$. There are three cases:
(a) $\sec E x(\operatorname{last}(e(r, a)))=\perp$ and $\operatorname{Ex}(\operatorname{last}(e(r, a)))=\emptyset$. The proof of this case is similar to that of the corresponding case in Lemma G. 7
(b) $\sec E x(\operatorname{last}(e(r, a)))=\perp$ and $E x(\operatorname{last}(e(r, a))) \neq \emptyset$. The only difference between the proof of this case in this Lemma and in that of Lemma G.7 is that we have to establish again the data indistinguishability between $\operatorname{last}(e(r, t))$ and $\operatorname{last}\left(e\left(r^{\prime}, t\right)\right)$. Indeed, for triggers the roll-back state is, in general, different from the one immediately before the trigger's execution, i.e., it may be that $p \operatorname{State}(\operatorname{last}(e(r, t)))$ $\neq p \operatorname{State}(\operatorname{last}(r))$. We now prove that last $(e(r, t))$ and last $\left(e\left(r^{\prime}, t\right)\right)$ are data indistinguishable. From the LTS semantics, it follows that $r=p \cdot s_{0}$. $\left\langle\operatorname{invoker}(\operatorname{last}(r))\right.$, op, $\left.R^{\prime}, \bar{v}\right\rangle \cdot s_{1} \cdot t_{1} \cdot \ldots \cdot s_{n-1} \cdot t_{n} \cdot s_{n}$, where $p \in \operatorname{traces}(L)$ and $t_{1}, \ldots, t_{n} \in \mathcal{T R} \mathcal{I G G E} \mathcal{R}_{D}$. Similarly, $r^{\prime}=p^{\prime} \cdot s_{0}^{\prime} \cdot\left\langle\operatorname{invoker}(\operatorname{last}(r)), o p, R^{\prime}, \bar{v}\right\rangle$. $s_{1}^{\prime} \cdot t_{1} \cdot \ldots \cdot s_{n-1}^{\prime} \cdot t_{n} \cdot s_{n}^{\prime}$, where $p^{\prime} \in \operatorname{traces}(L)$, $p \cong_{P, u} p^{\prime}$, and all states s_{i} and s_{i}^{\prime} are data indistinguishable. Then, the roll-back states are, respectively, s_{0} and s_{0}^{\prime}, which are data indistinguishable. From the LTS rules, $\operatorname{last}(e(r, a))=s_{0}$ and $\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)=s_{0}^{\prime}$. Therefore, the data indistinguishability between last $(e(r, a))$ and $\operatorname{last}\left(e\left(r^{\prime}, a\right)\right)$ follows trivially for any $r^{\prime} \in \llbracket r \rrbracket_{P, u}$.
(c) $\sec E x(e(r, a))=\mathrm{T}$. The proof is similar to the previous case.
All cases lead to a contradiction. This completes the proof for $a=\left\langle u^{\prime}\right.$, INSERT, $\left.R, \bar{t}\right\rangle$.
2. $a=\left\langle u^{\prime}\right.$, DELETE, $\left.R, \bar{t}\right\rangle$. The proof is similar to that for $a=\left\langle u^{\prime}, \operatorname{INSERT}, R, \bar{t}\right\rangle$.
3. $a=\left\langle\oplus, u^{\prime \prime}, p, u^{\prime}\right\rangle$. There are two cases:
(a) $\sec E x(\operatorname{last}(e(r, a)))=\perp$. In this case, the proof is similar to the corresponding case in Lemma G.7.
(b) $\sec E x(\operatorname{last}(e(r, a)))=\mathrm{T}$. The proof is similar to the $\operatorname{secEx}(\operatorname{last}(e(r, a)))=T$ case of $a=\left\langle u^{\prime}\right.$, INSERT, $R, \bar{t}\rangle$.
Both cases lead to a contradiction. This completes the proof for $a=\left\langle\oplus, u^{\prime \prime}, p, u^{\prime}\right\rangle$.
4. $a=\left\langle\oplus^{*}, u^{\prime \prime}, p, u^{\prime}\right\rangle$. The proof is similar to that for $a=\left\langle\oplus, u^{\prime \prime}, p, u^{\prime}\right\rangle$.
5. $a=\left\langle\ominus, u^{\prime \prime}, p, u^{\prime}\right\rangle$. The proof is similar to that for $a=$ $\left\langle u^{\prime}\right.$, INSERT, $\left.R, \bar{t}\right\rangle$.
This completes the proof.

H. DATABASE ACCESS CONTROL AND INFORMATION FLOW CONTROL

Here, we first show that the notion of secure judgment can be seen as an instance of non-interference. Afterwards, we present NI-data confidentiality, a security notion for database access control that is an instance of non-interference. Finally, we show that data confidentiality and NI-data confidentiality are equivalent. For non-interference, we use terminology and notation taken from 28 .

It is easy to see that the notion of secure judgment is an instance of non-interference over relational calculus sentences. Indeed, the set of all programs is just the set of all sentences, the set of inputs is the set of all runs, the equivalence relation between the inputs is $\cong_{P, u}$, the set of outputs is $\{T, \perp\}$, the equivalence relation between the outputs is the equality, and the semantics of the programs is obtained by evaluating the sentences, according to the relational calculus semantics, over the database state in the last state of a run. Using a similar argument, one can easily show that both determinacy 34 and instance-based determinacy 30 are just instances of non-interference over relational calculus sentences.
Before defining NI-data confidentiality, we need some machinery. Let $P=\langle M, f\rangle$ be an extended configuration, L be the P-LTS, $u \in \mathcal{U}$ be a user, \vdash_{u} be a (P, u)-attacker model, and \cong be a P-indistinguishability relation. Given a run r, we denote by $K(r)$ the set of all formulae that the user u can derive from any extension of r using A, i.e., $\left\{\phi \in R C_{\text {bool }} \mid \exists s \in \operatorname{traces}(L), i \in \mathbb{N} . s, i \vdash_{u} \phi \in A \wedge s^{|r|}=r\right\}$. Moreover, given a set of formulae K, we say that two runs r and r^{\prime} agree on K, denoted by $r \equiv_{K} r^{\prime}$, iff for all $\phi \in K$, ϕ holds in the last states of r and r^{\prime}. Given a system state $s=\langle d b, U, s e c, T, V, c\rangle$, we denote by $s . d b$ the database state $d b$.

We are now ready to define NI-data confidentiality notion.
Definition H.1. Let $P=\langle M, f\rangle$ be an extended configuration, L be the P-LTS, $u \in \mathcal{U}$ be a user, A be a (P, u) attacker model, and \cong be a P-indistinguishability relation. We say that f provides NI-data confidentiality with respect to P, u, A, and \cong iff for all runs $r, r^{\prime} \in \operatorname{traces}(L)$, if $r \cong r^{\prime}$ holds, then $r \equiv_{K(r) \cup K\left(r^{\prime}\right)} r^{\prime}$ holds.

Finally, we prove that NI-data confidentiality and data confidentiality are equivalent.

Proposition H.1. Let $P=\langle M, f\rangle$ be an extended configuration, L be the P-LTS, $u \in \mathcal{U}$ be a user, \vdash_{u} be a (P, u) attacker model, and $\cong_{P, u}$ be a (P, u)-indistinguishability relation. The PDP f provides data confidentiality iff it provides NI-data confidentiality.

Proof. We prove the two directions separately
(\Rightarrow) We prove this direction by contradiction. Assume that f provides data confidentiality but it does not provide NIdata confidentiality. From the fact that NI-data confidentiality does not hold, it follows that there are two runs $r, r^{\prime} \in \operatorname{traces}(L)$ such that $r \cong r^{\prime}$ but $r \not \equiv_{K(r) \cup K\left(r^{\prime}\right)} r^{\prime}$. From $r \not \equiv_{K(r) \cup K\left(r^{\prime}\right)} r^{\prime}$, it follows that there are two cases:

1. there is a run $s \in \operatorname{traces}(L)$ such that $s^{|r|}=r, s,|r| \vdash_{u}$ $\phi \in A$, and $[\phi]^{\text {last }(r) \cdot d b} \neq[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b}$. From this, it follows that secure $P_{P, \cong}\left(s,|r| \vdash_{u} \phi\right)$ does not hold, since $s^{|r|}=r,[\phi]^{\text {last }(r) \cdot d b} \neq[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b}$, and $r \cong r^{\prime}$. This
contradicts the fact that f provides data confidentiality.
2. there is a run $s \in \operatorname{traces}(L)$ such that $s^{\left|r^{\prime}\right|}=r^{\prime}, s,\left|r^{\prime}\right| \vdash_{u}$ $\phi \in A$, and $[\phi]^{\text {last }(r) \cdot d b} \neq[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b}$. From this, it follows that secure $_{P, \cong}\left(s,\left|r^{\prime}\right| \vdash_{u} \phi\right)$ does not hold, that is not secure, since $s^{\left|r^{\prime}\right|}=r^{\prime},[\phi]^{\text {last }(r) \cdot d b} \neq[\phi]^{l a s t\left(r^{\prime}\right) \cdot d b}$, and $r \cong r^{\prime}$. This contradicts the fact that f provides data confidentiality.
Since both cases lead to a contradiction, this concludes the proof of this direction.
(\Leftarrow) We prove this direction by contradiction. Assume that f provides NI-data confidentiality but it does not provide data confidentiality. From the fact that data confidentiality does not hold, it follows that there is a runs $r \in \operatorname{traces}(L)$, an index i, and a sentence ϕ such that $r, i \vdash_{u} \phi \in A$ and secure $_{P, \cong}\left(r, i \vdash_{u} \phi\right)$ does not hold. From this and secure $_{P, \cong}$ $\left(r, i \vdash_{u} \phi\right)$'s definition, it follows that there are two runs $r, r^{\prime} \in \operatorname{traces}(L)$, an index i, and a sentence ϕ such that $r, i \vdash_{u} \phi \in A, r^{i} \cong r^{\prime}$, and $[\phi]^{\text {last }\left(r^{i}\right) \cdot d b} \neq[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b}$. From this and $\left|r^{i}\right|=i$, it follows that there are two runs $r, r^{\prime} \in$ $\operatorname{traces}(L)$ and a sentence ϕ such that $r,\left|r^{i}\right| \vdash_{u} \phi \in A, r^{i} \cong r^{\prime}$, and $[\phi]^{\text {last }\left(r^{i}\right) \cdot d b} \neq[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b}$. By renaming r^{i} as k and by considering the fact that r is, by definition, an extension of k, it follows that there are two runs $r, r^{\prime} \in \operatorname{traces}(L)$ and a sentence ϕ such that $r,|k| \vdash_{u} \phi \in A, r^{|k|}=k, k \cong r^{\prime}$, and $[\phi]^{\text {last }(k) \cdot d b} \neq[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b}$. From this and $K(k)$'s definition, it follows that there are two runs $k, r^{\prime} \in \operatorname{traces}(L)$ and a sentence ϕ such that $\phi \in K(k), k \cong r^{\prime}$, and $[\phi]^{\text {last }(k) \cdot d b} \neq$ $[\phi]^{\text {last }\left(r^{\prime}\right) \cdot d b}$. From this and $\phi \in K(k)$, it follows that there are two runs $k, r^{\prime} \in \operatorname{traces}(L)$ and a sentence ϕ such that $k \cong r^{\prime}$ and $k \not \equiv_{K(k)} r^{\prime}$. From this, it follows that there are two runs $k, r^{\prime} \in \operatorname{traces}(L)$ and a sentence ϕ such that $k \cong_{P, u} r^{\prime}$, and $k \not \equiv_{K(k) \cup K\left(r^{\prime}\right)} r^{\prime}$. This contradicts the fact that f provides NI-data confidentiality.

We now show that NI-data confidentiality can be seen as an instance of non-interference. Let M be a system configuration and u be a user. The set of programs \mathcal{P} is the set of all pairs of the form $\left(f, \vdash_{u}\right)$, where f is a system configuration and \vdash_{u} is a $(\langle M, f\rangle, u)$-attacker model. The set of inputs \mathcal{I} is the set $\left\{(s, e v s) \mid s \in \mathcal{I}_{M} \wedge e v s \in\left(\mathcal{A}_{D, \mathcal{U}} \cup \mathcal{T} \mathcal{R} \mathcal{I} \mathcal{G G E} \mathcal{R}_{D}\right)^{*}\right\}$. The set of outputs \mathcal{O} is the set of all possible sequences of M-states and labels in $\mathcal{A}_{D, \mathcal{U}} \cup \mathcal{T} \mathcal{R} \mathcal{I} \mathcal{G G E} \mathcal{R}_{D}$. The semantics of the programs $\sigma: \mathcal{P} \times \mathcal{I} \rightarrow(\mathcal{O} \cup\{\perp\})$ is a total function defined as follows: $\sigma\left(\left(f, \vdash_{u}\right),(s, e v s)\right)=r$ iff (1) r is a run in $\operatorname{traces}(L)$, where L is the $\langle M, f\rangle$-LTS, (2) r starts from the state s, and (3) the labels of r are equivalent to evs; $\sigma\left(\left(f, \vdash_{u}\right),(s, e v s)\right)=\perp$ otherwise. Finally, the relation \sim over the set \mathcal{I} is $\sim=\mathcal{I} \times \mathcal{I}$, i.e., any two inputs are indistinguishable, whereas the relation \equiv over the set \mathcal{O} is as follows: for any two $r, r^{\prime} \in \mathcal{O}, r \equiv r^{\prime}$ iff (1) $r=\perp$, (2) $r^{\prime}=\perp$, or (3) $r \neq \perp, r^{\prime} \neq \perp$, and if $r \cong_{P, u} r^{\prime}$, then $r \equiv_{K(r) \cup K\left(r^{\prime}\right)} r^{\prime}$. Note that \equiv is not an equivalence relation, i.e., it is reflexive and symmetric but it is not transitive. Therefore, a PDP f provides NI-data confidentiality (and, therefore, data confidentiality) with respect to an attacker model \vdash_{u} iff $\left(f, \vdash_{u}\right)$ satisfies non-interferences, where $\mathcal{P}, \mathcal{I}, \mathcal{O}, \sigma, \sim$, and \equiv are as above.

```
SqlStmt := SelectStmt | SqlBasicStmt | CreateTrigger | CreateView
SqlBasicStmt := InsertStmt | DeleteStmt | GrantStmt | RevokeStmt
SelectStmt := "SELECT DISTINCT" columnList "FROM" tableList "WHERE" expr
columnList := columnId | columnList "," columnId
tableList := tableId | tableList "," tableId
expr := varId "=" const | varId "=" varId | "NOT" "("expr")" | expr ("AND"|"OR") expr |
    "EXISTS" "("SelectStmt")"
InsertStmt := "INSERT INTO" tableId "VALUES ("valueList")"
valueList := const | valueList "," const
DeleteStmt := "DELETE FROM" tableId "WHERE" restrictedExpr
restrictedExpr := varId "=" const | restrictedExpr "AND" varId "=" const
GrantStmt := "GRANT" privilege "TO" userId ("WITH GRANT OPTION")
RevokeStmt := "REVOKE" privilege "FROM" userId "WITH CASCADE"
privilege := "SELECT ON" (tableId | viewId) | "CREATE VIEW" |
    ( "INSERT" | "DELETE" | "CREATE TRIGGER" ) "ON" tableId
CreateTrigger := "CREATE TRIGGER" triggerId "AFTER" ("INSERT" | "DELETE") "ON" tableId
    ("SECURITY DEFINER" | "SECURITY INVOKER") SqlBasicStmt
CreateView := "CREATE VIEW" viewId ("SECURITY DEFINER" | "SECURITY INVOKER")
    AS SelectStmt
```

Figure 41: This is the syntax of the SQL fragment that corresponds to the features we support in this paper.

[^0]: ${ }^{1}$ As is common in SQL, a user is authorized to execute a command if and only if the policy assigns him the corresponding permission.

[^1]: ${ }^{4}$ With a slight abuse of notation, we consider S as a view.

