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ABSTRACT
Existing SQL access control mechanisms are extremely lim-
ited. Attackers can leak information and escalate their priv-
ileges using advanced database features such as views, trig-
gers, and integrity constraints. This is not merely a problem
of vendors lagging behind the state-of-the-art. The theoret-
ical foundations for database security lack adequate security
definitions and a realistic attacker model, both of which are
needed to evaluate the security of modern databases. We
address these issues and present a provably secure access
control mechanism that prevents attacks that defeat popu-
lar SQL database systems.

1. INTRODUCTION
It is essential to control access to databases that store

sensitive information. To this end, the SQL standard de-
fines access control rules and all SQL database vendors have
accordingly developed access control mechanisms. The stan-
dard however fails to define a precise access control seman-
tics, the attacker model, and the security properties that
the mechanisms ought to satisfy. As a consequence, exist-
ing access control mechanisms are implemented in an ad
hoc fashion, with neither precise security guarantees nor the
means to verify them.

This deficit has dire and immediate consequences. We
show that popular database systems are susceptible to two
types of attacks. Integrity attacks allow an attacker to
perform non-authorized changes to the database. Confi-
dentiality attacks allow an attacker to learn sensitive data.
These attacks exploit advanced SQL features, such as trig-
gers, views, and integrity constraints, and they are easy to
carry out.

Current research efforts in database security are neither
adequate for evaluating the security of modern databases,
nor do they account for their advanced features. In more
detail, existing research [4,12,35,46] implicitly considers at-
tackers who use SELECT commands. But the capabilities
offered by databases go far beyond SELECT. Users, in gen-
eral, can modify the database’s state and security policy,
as well as use features such as triggers, views, and integrity
constraints. Consequently, all proposed research solutions
fail to prevent attacks such as those we present in §2.

In summary, the database vendors have been left to de-
velop access control mechanisms without guidance from ei-
ther the SQL standard or existing research in database se-
curity. It is therefore not surprising that modern databases
are open to abuse.

Contributions. We develop a comprehensive formal frame-

work for the design and analysis of database access control.
We use it to design and verify an access control mechanism
that prevents confidentiality and integrity attacks that de-
feat existing mechanisms.

First, we develop an operational semantics for databases
that supports SQL’s core features, as well as triggers, views,
and integrity constraints. Our semantics models both the
security-critical aspects of these features and the database’s
dynamic behaviour at the level needed to capture realis-
tic attacks. Our semantics is substantially more detailed
than those used in previous works [35,46], which ignore the
database’s dynamics.

Second, we develop a novel attacker model that, in addi-
tion to SQL’s core features, incorporates advanced features
such as triggers, views, and integrity constraints. Further-
more, our attacker can infer information based on the se-
mantics of these features. Note that our attacker model
subsumes the SELECT-only attacker considered in previous
works [35], [46]. We also develop an executable version of our
operational semantics and attacker model using the Maude
term-rewriting framework [14]. The executable model acts
as a reference implementation for our semantics. Given the
complexity of databases and their features, having an ex-
ecutable version of our models provides a way to validate
them against existing database systems and against the ex-
amples we use in this paper.

Third, we present two security definitions—database in-
tegrity and data confidentiality—that reflect two principal
security requirements for database access control. There is a
natural and intuitive relationship between these definitions
and the types of attacks that we identify. We thus argue
that these definitions provide a strong measure of whether a
given access control mechanism prevents our attacker from
exploiting modern SQL databases.

Finally, using our framework, we build a database access
control mechanism that is provably secure with respect to
our attacker model and security definitions. In contrast to
existing mechanisms, our solution prevents all the attacks
that we report on in §2.

Related Work. Surprisingly, and in contrast to other ar-
eas of information security [19], there does not exist a well-
defined attacker model for database access control. From
the literature, we extracted the SELECT-only attacker model,
where the attacker uses just SELECT commands. A number
of access control mechanisms, such as [1, 4, 8, 9, 13, 27, 31,
35, 41, 43, 46], implicitly consider this attacker model. The
boundaries of this model are blurred and the attacker’s ca-
pabilities are unclear. For instance, only a few works, such
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as [46], explicitly state that update commands are not sup-
ported, whereas others [4, 8, 9, 35] ignore what the attacker
can learn from update commands. Works on Inference Con-
trol [12, 20, 44] and Controlled Query Evaluation [11] con-
sider a variation of the SELECT-only attacker, in which the
attacker additionally has some initial knowledge about the
data and can derive new information from the query’s re-
sults through inference rules. Note that while [44] supports
update commands, it treats them just as a way of increasing
data availability, rather than considering them as a possible
attack vector.

Database access control mechanisms can be classified into
two distinct families [35]. Mechanisms in the Truman model
[4,46] transparently modify query results to restrict the user’s
access to the data authorized by the policy. In contrast,
mechanisms in the Non-Truman model [8, 9, 35] either ac-
cept or reject queries without modifying their results. Dif-
ferent notions of security have been proposed for these mod-
els [24, 35, 46]. They are, however, based on SELECT-only
attackers and provide no security guarantees against realis-
tic attackers that can alter the database and the policy or
use advanced SQL features. We refer the reader to §7 for
further comparison with related work.

Organization. In §2 we present attacks that illustrate se-
rious weaknesses in existing Database Management Systems
(DBMSs). In §3 we introduce background and notation
about queries, views, triggers, and access control. In §4
we formalize our system and attacker models, and in §5 we
define the desired security properties. In §6 we present our
access control mechanism, and in §7 we discuss related work.
Finally, we draw conclusions in §8. The system’s operational
semantics, the attacker model, and complete proofs of all
results are in Appendices A–H. A prototype of our enforce-
ment mechanism and its executable semantics are available
at [26]. This technical report is an extended version of [25].

2. ILLUSTRATIVE ATTACKS
We demonstrate here how attackers can exploit existing

DBMSs using standard SQL features. We classify these at-
tacks as either Integrity Attacks or Confidentiality Attacks.
In the former, an attacker makes unauthorized changes to
the database, which stores the data, the policy, the triggers,
and the views. In the latter, an attacker learns sensitive data
by interacting with the system and observing the outcome.
No existing access control mechanism prevents all the at-
tacks we present. Moreover, many related attacks can be
constructed using variants of the ideas presented here. We
manually carried out the attacks against IBM DB2, Ora-
cle Database, PostgreSQL, MySQL, SQL Server, and Fire-
bird. We summarize our findings at the end of this section.

2.1 Integrity Attacks
Our three integrity attacks combine different database fea-

tures: INSERT, DELETE, GRANT, and REVOKE commands to-
gether with views and triggers. In the first attack, an at-
tacker creates a trigger, i.e., a procedure automatically ex-
ecuted by the DBMS in response to user commands, that
will be activated by an unaware user with a higher secu-
rity clearance and will perform unauthorized changes to the
database. The attack requires triggers to be executed under
the privileges of the users activating them. Such triggers are
supported by PostgreSQL, SQL Server, and Firebird.

Attack 1. Triggers with activator’s privileges. Con-
sider a database with two tables P and S and two users u1

and u2. The attacker is the user u1, whose goal is to delete
the content of S. The policy is that u1 is not authorized1

to alter S, u1 can create triggers on P , and u2 can read and
modify S and P . The attack is as follows:

1. u1 creates the trigger:

CREATE TRIGGER t ON P AFTER INSERT
DELETE FROM S;

2. u1 waits until u2 inserts a tuple into the table P . The
trigger will then be invoked using u2’s privileges and
S’s content will be deleted. �

An attacker can use similar attacks to execute arbitrary
commands with administrative privileges. Despite the threat
posed by such simple attacks, the existing countermeasures [2]
are unsatisfactory; they are either too restrictive, for in-
stance completely disabling triggers in the database, or too
time consuming and error prone, namely manually checking
if “dangerous” triggers have been created.

In our second attack, an attacker escalates his privileges
by delegating the read permission for a table without be-
ing authorized to delegate this permission. The attacker
first creates a view over the table and, afterwards, delegates
the access to the view to another user. This attack exploits
DBMSs, such as PostgreSQL, where a user can grant any
read permission over his own views. Note that GRANT and
REVOKE commands are write operations, which target the
database’s internal configuration instead of the tables.

Attack 2. Granting views. Consider a database with a
table S, two users u1 and u2, and the following policy: u1 can
create views and read S (without being able to delegate this
permissions), and u2 cannot read S. The attack is as follows:

1. u1 creates the view: CREATE VIEW v AS SELECT ∗ FROM S.
2. u1 issues the command GRANT SELECT ON v TO u2. Now,
u2 can read S through v. However, u1 is not autho-
rized to delegate the read permission on S. �

This attack exploits several subtleties in the commands’
semantics: (a) users can create views over all tables they can
read, (b) the views are executed under the owner’s privileges,
and (c) view’s owners can grant arbitrary permissions over
their own views. These features give u1 the implicit ability
to delegate the read access over S. As a result, the overall
system’s behaviour does not conform with the given policy.
That is, u1 should not be permitted to delegate the read
access to S or to any view that depends on it. Note that the
commands’ semantics may vary between different DBMSs.

In our third attack, an attacker exploits the failure of ac-
cess control mechanisms to propagate REVOKE commands.

Attack 3. Revoking views. Consider a database with a
table S, three users u1, u2, and u3, and the following policy:
u1 can read S and delegate this permission, u2 can create
views, and u3 cannot read S. The attack proceeds as follows:

1. u1 issues the command GRANT SELECT ON S TO u2 WITH

GRANT OPTION.
2. u2 creates the view: CREATE VIEW v AS SELECT ∗ FROM S.
3. u2 issues the command GRANT SELECT ON v TO u3.

1As is common in SQL, a user is authorized to execute a
command if and only if the policy assigns him the corre-
sponding permission.
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Integrity Attacks Confidentiality Attacks

DBMS
Triggers with Granting Revoking Table updates and Triggers with

activator’s privileges views views integrity constraints owner’s privileges
IBM DB2 (v. 10.5) † X X X X
Oracle (v. 11g) † X X X X
PostgreSQL (v. 9.3.5) X X X X X
MySQL (v. 14.14) † X X X X
SQL Server (v. 12.0) X † † X X
Firebird (v. 2.5.2) X X X X X

Figure 1: The X symbol indicates a successful attack, whereas X indicates a failed attack. The † symbol
indicates that the DBMS does not support the features necessary to launch the attack.

4. u1 revokes the permission to read S (and to delegate
the permission) from u2: REVOKE SELECT ON S FROM

u2. Now, u3 cannot read v because u2, which is v’s
owner, cannot read S.

5. u1 grants again the permission to read S to u2: GRANT

SELECT ON S TO u2. Now, u3 can again read v but u2

can no longer delegate the read permission on v. �

This attack succeeds because, in the fourth step, the RE-

VOKE statement does not remove the GRANT granted by u2 to
u3 to read v. This GRANT only becomes ineffective because
u2 is no longer authorized to read S. However, after the
fifth step, this GRANT becomes effective again, even though
u2 can no longer delegate the read permission on v. Thus,
the policy is left in an inconsistent state.

2.2 Confidentiality Attacks
We now present two attacks that use INSERT and SELECT

commands together with triggers and integrity constraints.
In our fourth attack, an attacker exploits integrity constraint
violations to learn sensitive information. An integrity con-
straint is an invariant that must be satisfied for a database
state to be considered valid. Integrity constraint violations
arise when the execution of an SQL command leads the
database from a valid state into an invalid one.

Attack 4. Table updates and integrity constraints.
Consider a database with two tables P and S. Suppose the
primary key of both tables is the user’s identifier. Further-
more, the set of user identifiers in S is contained in the set
of user identifiers in P , i.e., there is a foreign key from S to
P . The attacker is the user u whose goal is to learn whether
Bob is in S. The access control policy is that u can read P
and insert tuples in S. The attacker u can learn whether
Bob is in S as follows:

1. He reads P and learns Bob’s identifier.
2. He issues an INSERT statement in S using Bob’s id.
3. If Bob is already in S, then u gets an error message

about the primary key’s violation. Alternatively, there
is no violation and u learns that Bob is not in S. �

Even though similar attacks have been identified before [29,
40], existing DBMSs are still vulnerable.

In our fifth attack, an attacker learns sensitive informa-
tion by exploiting the system’s triggers. The trigger in this
attack is executed under the privileges of the trigger’s owner.
Such triggers are supported by IBM DB2, Oracle Database,
PostgreSQL, MySQL, SQL Server, and Firebird.

Attack 5. Triggers with owner’s privileges. Consider
a database with three tables N , P , and T . The attacker is

the user u, who wishes to learn whether v is in T . The
policy is that u is not authorized to read the table T , and
he can read and modify the tables N and P . Moreover, the
following trigger has been defined by the administrator.

CREATE TRIGGER t ON P AFTER INSERT FOR EACH ROW
IF exists(SELECT * FROM T WHERE id = NEW.id)
INSERT INTO N VALUES (NEW.id);

The attack is as follows:
1. u deletes v from N .
2. u issues the command INSERT INTOP VALUES (v).
3. u checks the table N . If it contains v’s id, then v is in
T . Otherwise, v is not in T . �

This attack exploits that the trigger t conditionally mod-
ifies the database. Furthermore, the attacker can activate
t, by inserting tuples in P , and then observe t’s effects, by
reading the table N . He therefore can exploit t’s execution
to learn whether t’s condition holds. We assume here that
the attacker knows the triggers in the system. This is, in
general, a weak assumption as triggers usually describe the
domain-specific rules regulating a system’s behaviour and
users are usually aware of them.

2.3 Discussion
We manually carried out all five attacks against IBM DB2,

Oracle Database, PostgreSQL, MySQL, SQL Server, and
Firebird. Figure 1 summarizes our findings. None of these
systems prevent the confidentiality attacks. They are how-
ever more successful in preventing the integrity attacks. The
most successful is Oracle Database, which prevents two of
the three attacks, while Attack 1 cannot be carried out due
to missing features. IBM DB2, MySQL, and Firebird pre-
vent just one of the three attacks, namely Attack 2. How-
ever, they all fail to prevent Attack 3. Note that Firebird
also fails to prevent Attack 1. In contrast, Attack 1 cannot
be carried out against MySQL and IBM DB2 due to missing
features. SQL Server also fails to prevent Attack 1; however
the remaining two attacks cannot be carried out due to miss-
ing features. PostgreSQL fails to prevent all three attacks.

We argue that the dire state of database access control
mechanisms, as illustrated by these attacks, comes from the
lack of clearly defined security properties that such mecha-
nisms ought to satisfy and the lack of a well-defined attacker
model. We therefore develop a formal attacker model and
precise security properties and we use them to design a prov-
ably secure access control mechanism that prevents all the
above attacks.
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3. DATABASE MODEL
We now formalize databases including features like views,

access control policies, and triggers. Our formalization of
databases and queries follows [3], and our access control poli-
cies formalize SQL policies.

3.1 Overview
In this paper we consider the following SQL features: SE-

LECT, INSERT, DELETE, GRANT, REVOKE, CREATE TRIGGER, CRE-
ATE VIEW, and ADD USER commands.

For SELECT commands, rather than using SQL, we use
the relational calculus (RC ), i.e., function-free first-order
logic, which has a simple and well-defined semantics [3]. We
support GRANT commands with the GRANT OPTION and RE-

VOKE commands with the CASCADE OPTION, i.e., when a user
revokes a privilege, he also revokes all the privileges that
depend on it. We support INSERT and DELETE commands
that explicitly identify the tuple to be inserted or deleted,
i.e., commands of the form INSERT INTO table(x1, . . . , xn)
VALUES (v1, . . . , vn) and DELETE FROM table WHERE x1 = v1 ∧
. . . ∧ xn = vn, where x1, . . . , xn are table’s attributes and
v1, . . . , vn are the tuple’s values. More complex INSERT and
DELETE commands, as well as UPDATEs, can be simulated by
combining SELECT, INSERT, and DELETE commands.

We support only AFTER triggers on INSERT and DELETE

events, i.e., triggers that are executed in response to IN-

SERT and DELETE commands. The triggers’ WHEN conditions
are arbitrary boolean queries and their actions are GRANT,
REVOKE, INSERT, or DELETE commands. Note that DBMSs
usually impose severe restrictions on the WHEN clause, such
as it must not contain sub-queries. However, most DBMSs
can express arbitrary conditions on triggers by combining
control flow statements with SELECT commands inside the
trigger’s body. Thus, we support the class of triggers whose
body is of the form BEGIN IF expr THEN act END, where
act is either a GRANT, REVOKE, INSERT, or DELETE command.
Note that all triggers used in §2 belong to this class.

We support two kinds of integrity constraints: functional
dependencies and inclusion dependencies [3]. They model
the most widely used families of SQL integrity constraints,
namely the UNIQUE, PRIMARY KEY, and FOREIGN KEY con-
straints. We also support views with both the owner’s priv-
ileges and the activator’s privileges.

The SQL fragment we support, shown in Figure 41, con-
tains the most common SQL commands for data manipu-
lation and access control as well as the core commands for
creating triggers and views. The ideas and the techniques
presented in this paper are general and can be extended to
the entire SQL standard.

3.2 Databases and Queries
Let R, U , V, and T be mutually disjoint, countably in-

finite sets, respectively representing identifiers of relation
schemas, users, views, and triggers.

A database schema D is a pair 〈Σ,dom〉, where Σ is a
first-order signature and dom is a fixed countably infinite
domain. The signature Σ consists of a set of relation schemas
R ∈ R, also called tables, with arity |R| and sort sort(R). A
state s of D is a finite Σ-structure over dom. We denote by
ΩD the set of all states. Given a table R ∈ D, s(R) denotes
the set of tuples that belong to R in s.

A query q over a schema D is of the form {x |φ}, where x
is a sequence of variables, φ is a relational calculus formula

over D, and φ’s free variables are those in x. A boolean query
is a query { |φ}, also written as φ, where φ is a sentence.
The result of executing a query q on a state s, denoted by
[q]s, is a boolean value in {>,⊥}, if q is a boolean query, or
a set of tuples otherwise. We denote by RC (respectively
RC bool) the set of all relational calculus queries (respectively
sentences). We consider only domain-independent queries as
is standard, and we employ the standard relational calculus
semantics [3].

Let D = 〈Σ,dom〉 be a schema, s be a state in ΩD, R

be a table in D, and t be a tuple in dom|R|. The result of
inserting (respectively deleting) t in R in the state s is the
state s′, denoted by s[R ⊕ t] (respectively s[R 	 t]), where
s′(T ) = s(T ) for all T ∈ Σ such that T 6= R, and s′(R) =
s(R) ∪ {t} (respectively s′(R) = s(R) \ {t}).

An integrity constraint over D is a relational calculus sen-
tence γ over D. Given a state s, we say that s satisfies
the constraint γ iff [γ]s = >. Given a set of constraints Γ,
ΩΓ
D denotes the set of all states satisfying the constraints

in Γ, i.e., ΩΓ
D = {s ∈ ΩD |

∧
γ∈Γ[γ]s = >}. We consider

two types of integrity constraints: functional dependencies,
which are sentences of the form ∀x, y, y′, z, z′. ((R(x, y, z) ∧
R(x, y′, z′)) ⇒ y = y′), and inclusion dependencies, which
are sentence of the form ∀x, y. (R(x, y)⇒ ∃z. S(x, z)).

3.3 Views
Let D be a schema. A view V over D is a tuple 〈id , o, q,

m〉, where id ∈ V is the view identifier, o ∈ U is the view’s
owner, q is the non-boolean query over D defining the view,
and m ∈ {A,O} is the security mode, where A stands for
activator’s privileges and O stands for owner’s privileges.
Note that the query q may refer to other views. We assume,
however, that views have no cyclic dependencies between
them. We denote by VIEWD the set of all views over D.
The materialization of a view 〈V, o, q,m〉 in a state s, de-
noted by s(V ), is [q]s. We extend the relational calculus in
the standard way to work with views [3].

3.4 Access Control Policies
We now formalize the SQL access control model. We first

formalize five privileges. Let D be a database schema. A
SELECT privilege over D is a tuple 〈SELECT, R〉, where R is a
relation schema in D or a view over D. A CREATE VIEW priv-
ilege over D is a tuple 〈CREATE VIEW〉. An INSERT privilege
over D is a tuple 〈INSERT, R〉, a DELETE privilege over D is a
tuple 〈DELETE, R〉, and a CREATE TRIGGER privilege over D is
a tuple 〈CREATE TRIGGER, R〉, where R is a relation schema
in D. We denote by PRIVD the set of privileges over D.

Following SQL, we use GRANT commands to assign priv-
ileges to users. Let U ⊆ U be a set of users and D be a
database schema. We now define (U,D)-grants and (U,D)-
revokes. There are two types of (U,D)-grants. A (U,D)-
simple grant is a tuple 〈⊕, u, p, u′〉, where u ∈ U is the user
receiving the privilege p ∈ PRIVD and u′ ∈ U is the user
granting this privilege. A (U,D)-grant with grant option is
a tuple 〈⊕∗, u, p, u′〉, where u, p, and u′ are as before. A
(U,D)-revoke is a tuple 〈	, u, p, u′〉, where u ∈ U is the
user from which the privilege p ∈ PRIVD will be revoked
and u′ ∈ U is the user revoking this privilege. We denote by
Ωsec
U,D the set of all (U,D)-grants and (U,D)-revokes. A grant
〈⊕, u, p, u′〉 models the command GRANT p TO u issued by u′,
a grant with grant option 〈⊕∗, u, p, u′〉 models the command
GRANT p TO u WITH GRANT OPTION issued by u′, and a revoke
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Access Control System
Users Database System

Figure 2: System model.

〈	, u, p, u′〉 models the command REVOKE p FROM u CASCADE

issued by u′.
Finally, we define a (U,D)-access control policy S as a

finite set of (U,D)-grants. We denote by SU,D the set of all
(U,D)-policies.

Example 3.1. Consider the policy described in Attack 5.
The database D has three tables: N , P , and T . The set
U is {u, admin} and the policy S contains the following
grants: 〈⊕,u,〈SELECT,P〉,admin〉, 〈⊕,u,〈INSERT,P〉,admin〉,
〈⊕,u,〈DELETE,P〉,admin〉, 〈⊕,u,〈SELECT,N 〉,admin〉, 〈⊕,u,
〈INSERT,N 〉,admin〉, and 〈⊕,u,〈DELETE,N 〉,admin〉. �

3.5 Triggers
Let D be a database schema. A trigger over D is a tu-

ple 〈id , u, e, R, φ, a,m〉, where id ∈ T is the trigger iden-
tifier, u ∈ U is the trigger’s owner, e ∈ {INS ,DEL} is
the trigger event (where INS stands for INSERT and DEL
stands for DELETE), R ∈ D is a relation schema, the trig-
ger condition φ is a relational calculus formula such that
free(φ) ⊆ {x1, . . . , x|R|}, and the trigger action a is one of:
(1) 〈INSERT, R′, t〉, where R′ ∈ D and t is a |R′|-tuple of val-
ues in dom and variables in {x1, . . . , x|R|}, (2) 〈DELETE, R′, t〉,
where R′ and t are as before, or (3) 〈op, u, p〉, where op ∈
{⊕,⊕∗,	}, u ∈ U , and p is a privilege over D. Finally,
m ∈ {A,O} is the security mode, where A stands for acti-
vator’s privileges and O stands for owner’s privileges. We
denote by T RIGGERD the set of all triggers over D.

We assume that any command a is executed atomically
together with all the triggers activated by a. We also as-
sume that triggers do not recursively activate other triggers.
Hence all executions terminate. We enforce this condition
syntactically at the trigger’s creation time; see Appendix
A for additional details. The trigger 〈t , admin, INS ,P ,T (x1),
〈INSERT,N , x1〉, O〉 models the trigger in Attack 5. Here, x1

is bound, at run-time, to the value inserted in P by the
trigger’s invoker.

4. SYSTEM AND ATTACKER MODEL
We next present our system and attacker models. Exe-

cutable versions of these models, built in the Maude frame-
work [14], are available at [26]. The models can be used
for simulating the execution of our operational semantics,
as well as computing the information that an attacker can
infer from the system’s behaviour. We have executed and
validated all of our examples using these models.

4.1 Overview
In our system model, shown in Figure 2, users interact

with two components: a database system and an access
control system. The access control system contains both
a policy enforcement point and a policy decision point. We
assume that all the communication between the users and
the components is over secure channels.

Database System. The database system (or database for
short) manages the data. The database’s state is represented
by a mapping from relation schemas to sets of tuples. We
assume that all database operations are atomic.

Users. Users interact with the database where each com-
mand is checked by the access control system. Each user
has a unique account through which he can issue SELECT,
INSERT, DELETE, GRANT, REVOKE, CREATE TRIGGER, and CRE-

ATE VIEW commands.
The system administrator is a distinguished user respon-

sible for defining the database schema and the access control
policy. In addition to issuing queries and commands, he can
create user accounts and assign them to users. The admin-
istrator interacts with the access control system through a
special account admin.

The attacker is a user, other than the administrator, with
an assigned user account who attempts to violate the ac-
cess control policy. Namely, his goals are: (1) to read or
infer data from the database for which he lacks the neces-
sary SELECT privileges, and (2) to alter the system state in
unauthorized ways, e.g., changing data in relations for which
he lacks the necessary INSERT and DELETE privileges. The
attacker can issue any command available to users and he
sees the results of his commands. The attacker’s inference
capabilities are specified using deduction rules.

Access Control System. The access control system pro-
tects the confidentiality and integrity of the data in the
database. It is configured with an access control policy S,
it intercepts all commands issued by the users, and it pre-
vents the execution of commands that are not authorized
by S. When a user u issues a command c, the access con-
trol system decides whether u is authorized to execute c.
If c complies with the policy, then the access control sys-
tem forwards the command to the DBMS, which executes c
and returns its result to u. Otherwise, it raises a security
exception and rejects c. Note that this corresponds to the
Non-Truman model [35]; see related work for more details.

The access control system also logs all issued commands.
When evaluating a command, the access control system can
access the database’s current state and the log.

4.2 System Model
We formalize our system model as a labelled transition

system (LTS). First, we define a system configuration, which
describes the database schema and the integrity constraints,
and the user actions. Afterwards, we define the system’s
state, which represents a snapshot of the system that con-
tains the database’s state, the identifiers of the users inter-
acting with the system, the access control policy, and the
current triggers and views in the system. Finally, we for-
malize the system’s behaviour as a small step operational
semantics, including all features necessary to reason about
security, even in the presence of attacks like those illustrated
in §2.

A system configuration is a tuple 〈D,Γ〉 such that D is a
schema and Γ is a finite set of integrity constraints over D.
Let M = 〈D,Γ〉 be a system configuration and u ∈ U be a
user. A (D,u)-action is one of the following tuples:
• 〈u, ADD USER, u′〉, where u=admin and u′∈ U\{admin},
• 〈u, SELECT, q〉, where q is a boolean query2 over D,

2Without loss of generality, we focus only on boolean queries
[3]. We can support non-boolean queries as follows. Given a
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• 〈u, INSERT, R, t〉, where R ∈ D and t ∈ dom|R|,
• 〈u, DELETE, R, t〉, where R and t are as above,
• 〈op, u′, p, u〉, where 〈op, u′, p, u〉 ∈ Ωsec

D,U , or
• 〈u, CREATE, o〉, where o ∈ T RIGGERD ∪ VIEWD.

We denote byAD,u the set of all (D,u)-actions and byAD,U ,
for some U ⊆ U , the set

⋃
u∈U AD,u.

An M-context describes the system’s history, the sched-
uled triggers that must be executed, and how to modify the
system’s state in case a roll-back occurs. We denote by CM
the set of all M -contexts. We assume that CM contains a dis-
tinguished element ε representing the empty context, which
is the context in which the system starts. Contexts are for-
malized in Appendix A.

An M-state is a tuple 〈db, U, sec, T, V, c〉 such that db ∈
ΩΓ
D is a database state, U ⊂ U is a finite set of users such

that admin ∈ U , sec ∈ SU,D is a security policy, T is a finite
set of triggers over D owned by users in U , V is a finite
set of views over D owned by users in U , and c ∈ CM is an
M -context. We denote by ΩM the set of all M -states. An
M -state 〈db, U, sec, T, V, c〉 is initial iff (a) sec contains only
grants issued by admin, (b) T (respectively V ) contains only
triggers (respectively views) owned by admin, and (c) c = ε.
We denote by IM the set of all initial states.

An M-Policy Decision Point (M -PDP) is a total function
f : ΩM ×AD,U → {>,⊥} that maps each state s and action
a to an access control decision represented by a boolean
value, where > stands for permit and ⊥ stands for deny.
An extended configuration is a tuple 〈M, f〉, where M is a
system configuration and f is an M -PDP.

We now define the LTS representing the system model.

Definition 4.1. Let P = 〈M, f〉 be an extended configura-
tion, where M = 〈D,Γ〉 and f is an M -PDP. The P-LTS is
the labelled transition system 〈S,A,→f , I〉 where S = ΩM
is the set of states, A = AD,U ∪T RIGGERD is the set of ac-
tions,→f ⊆ S×A×S is the transition relation, and I = IM
is the set of initial states. �

Let P = 〈M, f〉 be an extended configuration. A run r
of a P -LTS L is a finite alternating sequence of states and
actions, which starts with an initial state s, ends in some
state s′, and respects the transition relation→f . We denote
by traces(L) the set of all L’s runs. Given a run r, |r| denotes
the number of states in r, last(r) denotes r’s last state, and
ri, where 1 ≤ i ≤ |r|, denotes the run obtained by truncating
r at the i-th state.

The relation →f formalizes the system’s small step oper-
ational semantics. Figure 3 shows three rules describing the
successful execution of SELECT and INSERT commands, as
well as triggers. In the rules, we represent context changes
using the update function upd , which takes as input an M -
state and an action a ∈ AD,U ∪ T RIGGERD, and returns
the updated context. This function, for instance, updates
the system’s history stored in the context. The function trg
takes as input a system state s and returns the first trig-
ger in the list of scheduled triggers stored in s’s context. If
there are no triggers to be executed, then trg(s) = ε. The
rule SELECT Success models the system’s behaviour when
the user u issues a SELECT query q that is authorized by the

database state s and a query q := {x | φ}, if the access con-
trol mechanism authorizes the boolean query

∧
t∈[q]s φ[x 7→

t] ∧ (∀x. φ ⇒
∨
t∈[q]s x = t), then we return q’s result, and

otherwise we reject q as unauthorized.

PDP f . The only component of the M -state s that changes
is the context c. Namely, c′ is obtained from c by updat-
ing the history and storing q’s result. Similarly, the rule
INSERT Success describes how the system behaves after a
successful INSERT command, i.e., one that neither violates
the integrity constraints nor causes security exceptions. The
database state db is updated by adding the tuple t to R and
the context is updated from c to c′ by (a) storing the ac-
tion’s result, (b) storing the triggers that must be executed
in response to the INSERT event, and (c) keeping track of the
previous state in case a roll-back is needed.

The Trigger INSERT Success rule describes how the system
executes a trigger whose action is an INSERT. The system
extracts from the context the trigger t to be executed, i.e.,
t = trg(s). It determines, using the function user , the user
u under whose privileges the trigger t is executed, which is,
depending on t’s security mode, either the invoker invoker(s)
or t’s owner. It then checks that u is authorized to execute
the SELECT statement associated with t’s WHEN condition, and
that this condition is satisfied. Afterwards, it computes the
actual action using the function act , which instantiates the
free variables in t’s definition with the values in the tuple
tpl(s), i.e., the tuple associated with the action that fired t.
Finally, the system updates the database state db by adding
the tuple v′ to R and the context by storing the results of t’s
execution and removing t from the list of scheduled triggers.

In Appendix A, we give the complete formalization of our
labelled transition system. This includes formalizing con-
texts and all the rules defining the transition relation →f .
Our operational semantics can be tailored to model the be-
haviour of specific DBMSs. Thus, using our executable
model, available at [26], it is possible to validate our op-
erational semantics against different existing DBMSs.

4.3 Attacker Model
We model attackers that interact with the system through

SQL commands and infer information from the system’s
behaviour by exploiting triggers, views, and integrity con-
straints. We argue that database access control mechanisms
should be secure with respect to such strong attackers, as
this reflects how (malicious) users may interact with mod-
ern databases. Furthermore, any mechanism secure against
such strong attackers is also secure against weaker attackers.

Any user other than the administrator can be an attacker,
and we assume that users do not collude to subvert the sys-
tem. Note that our attacker model, the security properties
in §5, and the mechanism we develop in §6, can easily be
extended to support colluding users. We also assume that
an attacker can issue any command available to the system’s
users, and he knows the system’s operational semantics, the
database schema, and the integrity constraints.

We assume that an attacker has access to the system’s
security policy, the set of users, and the definitions of the
triggers and views in the system’s state. In more detail,
given an M -state 〈db, U, sec, T, V, c〉, an attacker can access
U , sec, T , and V . Users interacting with existing DBMSs
typically have access to some, although not all, of this in-
formation. For instance, in PostgreSQL a user can read all
the information about the triggers defined on the tables for
which he has some non-SELECT privileges. Note that the
more information an attacker has, the more attacks he can
launch. Finally, we assume that an attacker knows whether
any two of his commands c and c′ have been executed consec-
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s = 〈db, sec, U, T, V, c〉 f (s, 〈u, SELECT, q〉) = > trg(s) = ε
s′ = 〈db, sec, U, T, V, c′〉 c′ = upd(s, 〈u, SELECT, q〉)

s
〈u,SELECT,q〉−−−−−−−→f s

′

SELECT

Success

s = 〈db, sec, U, T, V, c〉 f (s, 〈u, INSERT, R, t〉) = >
s′ = 〈db[R⊕ t], sec, U, T, V, c′〉 db[R⊕ t] ∈ ΩΓ

D

c′ = upd(s, 〈u, INSERT, R, t〉) trg(s) = ε

s
〈u,INSERT,R,t〉−−−−−−−−−→f s

′

INSERT

Success

s = 〈db, sec, U, T, V, c〉 v = tpl(s)
u = user(m, owner , invoker(s))

trg(s) = 〈id , owner , ev , R′, φ, st ,m〉
f (s, 〈u, SELECT, φ[x 7→ v]〉) = > [φ[x 7→ v]]db = >

〈u, INSERT, R, v′〉 = act(st , u, v)
f (s, 〈u, INSERT, R, v′〉) = > c′ = upd(s, trg(s))
s′ = 〈db[R⊕ v′], sec, U, T, V, c′〉 db[R⊕ v′] ∈ ΩΓ

D

s
trg(s)−−−→f s

′

Trigger
INSERT

Success

Figure 3: Examples of system model’s rules.

ri = ri−1 · 〈u, DELETE, R, t〉 · s 1 < i ≤ |r|
s ∈ ΩM secEx (s) = ⊥ Ex (s) = ∅

r, i `u ¬R(t)

DELETE

Success

ri = ri−1 · 〈u, SELECT, φ〉 · s 1 < i ≤ |r| s ∈ ΩM
secEx (s) = ⊥ Ex (s) = ∅ res(s) = >

r, i `u φ
SELECT

Success

ri+1 = ri · t · s invoker(last(ri)) = u s ∈ ΩM 1 ≤ i < |r|
secEx (s) = ⊥ Ex (s) = ∅ r, i `u ¬ψ r, i+ 1 `u ψ

t = 〈id , ow , ev , R′, φ(x), 〈INSERT, R, t〉,m〉
r, i `u φ[x 7→ tpl(last(ri))]

Learn
INSERT

Backward

ri+1 = ri · 〈u, SELECT, φ〉 · s
r, i+ 1 `u ψ s ∈ ΩM 1 ≤ i < |r|

r, i `u ψ

Propagate
Backward
SELECT

r, i− 1 `u φ ri = ri−1 · 〈u, op, R, t〉 · s s ∈ ΩM 1 < i ≤ |r|
secEx (s) = ⊥ Ex (s) = ∅ revise(ri−1, φ, ri) = > op ∈ {INSERT, DELETE}

r, i `u φ
Propagate Forward

Update Success

Figure 4: Example of attacker inference rules, where r, i `u φ denotes that this judgment holds in AT Ku.

utively by the system, i.e., if there are commands executed
by other users occurring between c and c′. The attacker’s
knowledge about the sequential execution of his commands
is needed to soundly propagate his knowledge about the sys-
tem’s state between his commands. Since the mechanism we
develop in §6 is secure with respect to this attacker, it is also
secure with respect to weaker attackers who have less infor-
mation or cannot detect whether their commands have been
executed consecutively.

An attacker model describes what information an attacker
knows, how he interacts with the system, and what he learns
about the system’s data by observing the system’s behaviour.
Since every user is a potential attacker, for each user u ∈ U
we define an attacker model specifying u’s inference capabil-
ities. To represent u’s knowledge, we introduce judgments.
A judgment is a four-tuple 〈r, i, u, φ〉, written r, i `u φ, de-
noting that from the run r, which represents the system’s
behaviour, the user u can infer that φ holds in the i-th state
of r. An attacker model for u is thus a set of judgments
associating to each position of each run, the sentences that
u can infer from the system’s behaviour. The idea of rep-
resenting the attacker’s knowledge using sentences φ is in-
spired by existing formalisms for Inference Control [12, 20]
and Controlled Query Evaluation [11].

Definition 4.2. Let P be an extended configuration, L be
the P -LTS, and u ∈ U be a user. A (P, u)-judgment is
a tuple 〈r, i, u, φ〉, written r, i `u φ, where r ∈ traces(L),
1 ≤ i ≤ |r|, and φ ∈ RC bool . A (P, u)-attacker model is a set
of (P, u)-judgments. A (P, u)-judgment r, i `u φ holds in a
(P, u)-attacker model A iff r, i `u φ ∈ A. �

For each user u ∈ U , we now define the (P, u)-attacker
model AT Ku that we use in the rest of the paper. We
formalize this model using a set of inference rules, where
AT Ku is the smallest set of judgments satisfying the infer-
ence rules. Figure 4 shows five representative rules. The
complete formalization of all rules is given in Appendix B.

In the following, when we say that a judgment r, i `u φ
holds, we always mean with respect to the attacker model
AT Ku.

Note that AT Ku is sound with respect to the RC se-
mantics, i.e., if r, i `u φ holds, then the formula φ holds in
the i-th state of r. Intuitively, AT Ku models how u infers
information from the system’s behaviour, namely (a) how
u learns information from his commands and their results,
(b) how u learns information from triggers, their execution,
their interleavings, and their side effects, (c) how u propa-
gates his knowledge along a run, and (d) how u learns infor-
mation from exceptions caused by either integrity constraint
violations or security violations. This model is substantially
more powerful than the SELECT-only attacker model.

The rules DELETE Success and SELECT Success describe
how the user u infers information from his successful actions,
i.e., those actions that generate neither security exceptions
nor integrity violations. In the rules, secEx (s) = ⊥ denotes
that there were no security exceptions caused by the action
leading to s, and Ex (s) = ∅ denotes that the action leading
to s has not violated the integrity constraints. After a suc-
cessful DELETE, u knows that the deleted tuple is no longer
in the database, and after a successful SELECT he learns the
query’s result, denoted by res(s).

The rules Propagate Backward SELECT and Propagate For-
ward Update Success describe how u propagates information
along the run. Propagate Backward SELECT states that if
the user u knows that φ holds after a SELECT command,
then he knows that φ also holds just before the SELECT

command because SELECT commands do not modify the
database state. Propagate Forward Update Success states
that if u knows that φ holds before a successful INSERT or
DELETE command and he can determine that the command’s
execution does not influence φ’s truth value, denoted by
revise(ri−1, φ, ri) = >, then he also knows that φ holds
after the command. The function revise is formalized in
Appendix B.
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Finally, the rule Learn INSERT Backward models u’s rea-
soning when he activates a trigger that successfully inserts
a tuple in the database. If u knows that immediately before
the trigger the formula ψ does not hold and immediately
after the trigger the formula ψ holds, then the trigger’s exe-
cution is the cause of the database state’s change. Therefore,
u can infer that the trigger’s condition φ holds just before
the trigger’s execution. Note that invoker(s) denotes the
user who fired the trigger that is executed in the state s,
whereas tpl(s) denotes the tuple associated with the action
that fired the trigger that is executed in the state s.

Example 4.1. Let the schema, the set of users U , and the
policy S be as in Example 3.1. The database state db is
db(N) = {v}, db(P) = ∅, and db(T ) = {v}. The only trig-
ger in the system is t = 〈id , admin, INS , P ,T (x1), 〈INSERT,
N , x1〉, O〉. The run r is as follows:

1. u deletes v from N .
2. u inserts v in P . This activates the trigger t, which

inserts v in N .
3. u issues the SELECT query N(v).
We used Maude to generate the following run, which il-

lustrates how the system’s state changes. Note that there
are no exceptions during the run.

〈db, U, S, {t}, ∅, c1〉 〈db[N 	 v], U, S, {t}, ∅, c2〉

〈db[P ⊕ v,N 	 v], U, S, {t}, ∅, c3〉〈db[P ⊕ v], U, S, {t}, ∅, c4〉

〈db[P ⊕ v], U, S, {t}, ∅, c5〉

〈u, DELETE, N, v〉

〈u, INSERT,P , v〉
t

〈u, SELECT, N(v)〉

Figure 5 models u’s reasoning in Attack 5. The user u first
applies the SELECT Success rule to derive r, 5 `u N (v), i.e.,
he learns the query’s result. By applying the rule Propa-
gate Backward SELECT to r, 5 `u N (v), he obtains r, 4 `u
N (v), i.e., he learns that N (v) holds before the SELECT

query. Similarly, he applies the rule DELETE Success to derive
r, 2 `u ¬N (v), and he obtains r, 3 `u ¬N (v) by applying the
Propagate Forward Update Success rule. Finally, by apply-
ing the rule Learn INSERT Backward to r, 3 `u ¬N (v) and
r, 4 `u N (v), he learns the value of the trigger’s WHEN con-
dition r, 3 `u T (v). Since the user u should not be able to
learn information about T , the attack violates the intended
confidentiality guarantees. We used our executable attacker
model [26] to derive the judgments. �

5. SECURITY PROPERTIES
Here we define two security properties: database integrity

and data confidentiality. These properties capture the two
essential aspects of database security. Database integrity
states that all actions modifying the system’s state are au-
thorized by the system’s policy. In contrast, data confiden-
tiality states that all information that an attacker can learn
by observing the system’s behaviour is authorized.

These two properties formalize security guarantees with
respect to the two different classes of attacks previously
identified. An access control mechanism providing database
integrity prevents non-authorized changes to the system’s
state and, thereby, prevents integrity attacks. Similarly, by
preventing the leakage of sensitive data, a mechanism pro-
viding data confidentiality prevents confidentiality attacks.

s = 〈db, U, sec, T, V, c〉 u, o ∈ U op ∈ {⊕,⊕∗}
priv = 〈SELECT, v〉 v = 〈id , o, q, O〉 v ∈ V

hasAccess(s, v, o,⊕∗)
s;auth 〈op, u, priv , o〉 GRANT

s = 〈db, U, sec, T, V, c〉 t = 〈id , ow , ev , R, φ, st , A〉
[φ[x 7→ tpl(s)]]db = > s;auth act(st , ow , tpl(s))
s;auth act(st , invoker(s), tpl(s)) t ∈ T

s;auth t
TRIGGER

s = 〈db, U, sec, T, V, c〉 s′ = 〈db, U, sec′, T, V, c〉
s′ = apply(〈	, u, p, u′〉, s) ∀g ∈ sec′. s′ ;auth g

s;auth 〈	, u, p, u′〉
REVOKE

Figure 6: Examples of ;auth rules.

5.1 Database Integrity
Database integrity requires a formalization of authorized

actions. We therefore define the relation ;auth between
states and actions, modelling which actions are authorized in
a given state. Let P = 〈M, f〉 be an extended configuration,
where M = 〈D,Γ〉 and f is an M -PDP. The relation ;auth⊆
ΩM×(AD,U∪T RIGGERD) is defined by a set of rules given
in Appendix C. Figure 6 shows three representative rules.
The GRANT rule says that the owner o of a view v with
owner’s privileges is authorized to delegate the SELECT priv-
ilege over v to a user u in the state s, if o has the SE-

LECT privilege with grant option over a set of tables and
views that determine v’s materialization [34], denoted by
hasAccess(s, v, o,⊕∗). The TRIGGER rule says that the exe-
cution of an enabled trigger, i.e., one whose WHEN condition
is satisfied, with the activator’s privileges is authorized if
both the invoker and the trigger’s owner are authorized to
execute the trigger’s action according to ;auth . Note that
the act function instantiates the action given in the trig-
ger’s definition to a concrete action by identifying the user
performing the action and replacing the free variables with
values from dom. Finally, the REVOKE rule says that a RE-

VOKE statement is authorized if the resulting state, obtained
using the function apply , has a consistent policy, namely one
in which all the GRANTs are authorized by ;auth .

We now define database integrity. Intuitively, a PDP pro-
vides database integrity iff all the actions it authorizes are
explicitly authorized by the policy, i.e., they are authorized
by ;auth . This notion comes directly from the SQL stan-
dard, and it is reflected in existing enforcement mechanisms.
Recall that, given a state s, secEx (s) = ⊥ denotes that there
were no security exceptions caused by the action or trigger
leading to s.

Definition 5.1. Let P = 〈M, f〉 be an extended configura-
tion, whereM = 〈D,Γ〉 and f is anM -PDP, and let L be the
P -LTS. We say that f provides database integrity with re-
spect to P iff for all reachable states s, s′ ∈ ΩM , if s′ is reach-
able in one step from s by an action a ∈ AD,U∪T RIGGERD
and secEx (s′) = ⊥, then s;auth a. �

Example 5.1. We consider a run corresponding to Attack 1,
which illustrates a violation of database integrity. The data-
base db is such that db(P ) = ∅ and db(S) = {z}, the policy
sec is {〈⊕,u1,〈CREATE TRIGGER,P 〉,admin〉, 〈⊕,u2,〈INSERT,P 〉,
admin〉,〈⊕,u2,〈DELETE,S〉,admin〉, 〈⊕,u2,〈SELECT,P 〉,admin〉,
〈⊕,u2,〈SELECT,S〉,admin〉}, and the set U is {u1, u2, admin}.
The run r is as follows:
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r, 2 `u ¬N (v)
DELETE Success

r, 3 `u ¬N (v)

Propagate Forward
Update Success

r, 5 `u N (v)
SELECT Success

r, 4 `u N (v)
Propagate Backward SELECT

r, 3 `u T (v)
Learn INSERT Backward

Figure 5: Template Derivation of Attack 5 (contains just selected subgoals)

1. The user u1 creates the trigger t = 〈id , u1, INS , P,>,
〈DELETE, S, z〉, A〉.

2. The user u2 inserts the value v in P . This activates the
trigger t and deletes the content of S, i.e., the value z.

We used Maude to generate the following run, which illus-
trates how the system’s state changes. Note that there are
no exceptions during the run.

〈db, U, sec, ∅, ∅, c1〉 〈db, U, sec, {t}, ∅, c2〉

〈db[P ⊕ v], U, sec, {t}, ∅, c3〉〈db[P ⊕ v, S 	 z], U, sec, {t}, ∅, c4〉

〈u1, CREATE, t〉

〈u2, INSERT, P, v〉

t

Access control mechanisms that do not restrict the exe-
cution of triggers with activator’s privileges violate database
integrity because they do not throw security exceptions when
〈db[P ⊕ v], U, sec, {t}, ∅, c3〉 6;auth t. �

5.2 Data Confidentiality
To model data confidentiality, we first introduce the con-

cept of indistinguishability of runs, which formalizes the de-
sired confidentiality guarantees by specifying whether users
can distinguish between different runs based on their ob-
servations. Formally, a P -indistinguishability relation is an
equivalence relation over traces(L), where P is an extended
configuration and L is the P -LTS. Indistinguishable runs,
intuitively, should disclose the same information.

We now define the concept of a secure judgment, which
is a judgment that does not leak sensitive information or,
equivalently, one that cannot be used to differentiate be-
tween indistinguishable runs.

Definition 5.2. Let P be an extended configuration, L
be the P -LTS, and ∼= be a P -indistinguishability relation.
A judgment r, i `u φ is secure with respect to P and ∼=,
written secureP,∼=(r, i `u φ), iff for all r′ ∈ traces(L) such

that ri ∼= r′, it holds that [φ]db = [φ]db′ , where last(ri) =
〈db, U,S , T, V, c〉 and last(r′) = 〈db′, U ′,S ′, T ′, V ′, c′〉. �

We are now ready to define data confidentiality. Intu-
itively, an access control mechanism provides data confiden-
tiality iff all judgments that an attacker can derive are se-
cure.

Definition 5.3. Let P = 〈M, f〉 be an extended configura-
tion, L be the P -LTS, u ∈ U be a user, A be a (P, u)-attacker
model, and ∼= be a P -indistinguishability relation. We say
that f provides data confidentiality with respect to P , u, A,
and ∼= iff secureP,∼=(r, i `u φ) for all judgments r, i `u φ that
hold in A. �

We now define the indistinguishability relation that we
use in the rest of the paper, which captures what each user
can observe (as stated in §4.3) and the effects of the sys-
tem’s access control policy. Let P = 〈〈D,Γ〉, f〉 be an ex-
tended configuration, L be the P -LTS, and u be a user in
U . Given a run r ∈ traces(L), the user u is aware only

N {v}
P ∅
T {v}

N ∅
P ∅
T {v}

N ∅
P {v}
T {v}

N {v}
P {v}
T {v}

N {v}
P {v}
T {v}

r(db1)

N {v}
P ∅
T {j, v}

N ∅
P ∅
T {j, v}

N ∅
P {v}
T {j, v}

N {v}
P {v}
T {j, v}

N {v}
P {v}
T {j, v}

r(db2)

N {v}
P ∅
T ∅

N ∅
P ∅
T ∅

N ∅
P {v}
T ∅

N ∅
P {v}
T ∅

N ∅
P {v}
T ∅

r(db3)

Figure 7: The runs r(db1) and r(db2) are indistin-
guishable, whereas r(db1) and r(db3) are not.

of his actions and not of the actions of the other users in
r. This is represented by the u-projection of r, which is
obtained by masking all sequences of actions that are not
issued by u using a distinguished symbol ∗. Specifically,
the u-projection of r is a sequence of states in ΩM and ac-
tions in AD,u ∪ T RIGGERD ∪ {∗} that is obtained from
r by (1) replacing each action not issued by u with ∗, (2)
replacing each trigger whose invoker is not u with ∗, and
(3) replacing all non-empty sequences of ∗-transitions with
a single ∗-transition. For each user u ∈ U , we define the
P -indistinguishability relation ∼=P,u, which is formally de-
fined in Appendix D. Intuitively, two runs r and r′ are ∼=P,u-
indistinguishable, denoted r ∼=P,u r

′, iff (1) the labels of the
u-projections of r and r′ are the same, (2) u executes the
same actions a1, . . . , an in r and r′, in the same order, and
with the same results, and (3) before each action ai, where
1 ≤ i ≤ n, as well as in the last states of r and r′, the views,
the triggers, the users, and the data disclosed by the policy
are the same in r and r′.

We remark that there is a close relation between ∼=P,u

and state-based indistinguishability [24,35,46]. For any two
∼=P,u-indistinguishable runs r and r′, the database states
that precede all actions issued by u as well as the last states
in r and r′ are pairwise indistinguishable under existing
state-based notions [24,35,46].

Example 5.2 illustrates our indistinguishability notion.

Example 5.2. Let the schema, the set of users, the policy,
and the triggers be as in Example 4.1. Consider the following
run r(db), parametrized by the initial database state db:

1. u deletes v from N .
2. u inserts v in P . If v is in T , this activates the trigger
t, which, in turn, inserts v in N .

3. u issues the SELECT query N(v).
Let db1, db2, and db3 be three database states such that
db1(T ) = {v}, db2(T ) = {j, v}, and db3(T ) = ∅, whereas
dbi(N) = {v} and dbi(P) = ∅, for 1 ≤ i ≤ 3. Note that
r(db1) is the run used in Example 4.1. Figure 7 depicts
how the database’s state changes during the runs r(dbi), for
1 ≤ i ≤ 3. Gray indicates those tables that the user u cannot
read. The runs r(db1) and r(db2) are indistinguishable for
the user u. The only difference between them is the content
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of the table T , which u cannot read. In contrast, u can
distinguish between r(db1) and r(db3) because the trigger
has been executed in the former and not in the latter.

Indistinguishability may also depend on the actions of the
other users. Consider the runs r′ and r′′ obtained by ex-
tending r(db1) respectively with one and two SELECT queries
issued by the administrator just after u’s query. The user
u can distinguish between r(db1) and r′ because he knows
that other users interacted with the system in r′ but not
in r(db1), i.e., the u-projections have different labels. In
contrast, the runs r′ and r′′ are indistinguishable for u be-
cause he only knows that, after his own SELECT, other users
interacted with the system, i.e., the u-projections have the
same labels. However, he does not know the number of com-
mands, the commands themselves, or their results. �

Example 5.3 shows that existing PDPs leak sensitive in-
formation and therefore do not provide data confidentiality.

Example 5.3. In Example 4.1, we showed how the user u
derives r, 3 `u T (v). The judgment is not secure because
there is a run indistinguishable from r3, i.e., the run r3(db3)
in Example 5.2, in which T (v) does not hold. �

Example 5.4 shows how views may leak information about
the underlying tables. Even though this leakage might be
considered legitimate, there is no way in our setting to dis-
tinguish between intended and unintended leakages. If this
is desired, data confidentiality can be extended with the con-
cept of declassification [6, 7].

Example 5.4. Consider a database with two tables T and
Z and a view V = 〈v , admin, {x |T (x) ∧ Z(x)}, O〉. The set
U is {u, admin} and the policy S is{〈⊕,u, 〈SELECT,T 〉,admin〉,
〈⊕, u, 〈SELECT,V 〉, admin〉, 〈⊕, u, 〈INSERT, T 〉, admin〉}. Con-
sider the following run r, parametrized by the initial database
state db, where u first inserts 27 into T and afterwards issues
the SELECT query V (27). We assume there are no exceptions
in r.

〈db, U, S, ∅, {V }, c1〉 〈db[T ⊕ 27], U, S, ∅, {V }, c2〉

〈db[T ⊕ 27], U, S, ∅, {V }, c3〉

〈u, INSERT, T, 27〉

〈u, SELECT, V (27)〉

We used Maude to generate the runs r(d) and r(d′) with
the initial database states d and d′ such that d(T ) = d(Z) =
d′(T ) = ∅ and d′(Z) = {27}. The runs r1(d) and r1(d′)
are indistinguishable for u because they differ only in the
content of Z, which u cannot read. After the INSERT, u can
distinguish between r2(d) and r2(d′) by reading V . Indeed,
d[T⊕27](V ) = ∅, because d(Z) = ∅, whereas d′[T⊕27](V ) =
{27}. The user u derives r(d′), 1 `u Z(27), which is not
secure because r1(d) and r1(d′) are indistinguishable for u,
but Z(27) holds just in the latter. �

In contrast to existing security notions [24,35,46], we have
defined data confidentiality over runs. This is essential to
model and detect attacks, such as those in Examples 5.3
and 5.4, where an attacker infers sensitive information from
the transitions between states. For instance, the leakage in
Example 5.4 is due to the execution of the INSERT command.
Although the SELECT command is authorized by the policy,
u can use it to infer sensitive information about the system’s
state before the INSERT execution.

6. A PROVABLY SECURE PDP
We now present a PDP that provides both database in-

tegrity and data confidentiality. We first explain the ideas
behind it using examples. Afterwards, we show that it satis-
fies the desired security properties and has acceptable over-
head. Finally, we argue that it is more permissive than
existing access control solutions.

Figure 8 depicts our PDP f together with the functions
fint and fconf . Additional details about the PDP are given
in Appendices F–G. The PDP takes as input a state s and
an action a and outputs > iff both fint and fconf authorize
a in s, i.e., iff a’s execution neither violates database in-
tegrity nor data confidentiality. Note that our algorithm is
not complete in that it may reject some secure commands.
However, from the results in [24, 30, 34], it follows that no
algorithm can be complete and provide database integrity
and data confidentiality for the relational calculus.

Our PDP is invoked by the database system each time a
user u issues an action a to check whether u is authorized to
execute a. The PDP is also invoked whenever the database
system executes a scheduled trigger t: once to check if the
SELECT statement associated with t’s WHEN condition is au-
thorized and once, in case t is enabled, to check if t’s action
is authorized.

6.1 Enforcing Database Integrity
The function fint takes as input a state s and an action

a. If the system is not executing a trigger, denoted by
trg(s) = ε, fint checks (line 1) whether a is authorized with
respect to s. In line 2, fint checks whether a is the current
trigger’s condition. If this is the case, it returns > because
the triggers’ conditions do not violate database integrity. Fi-
nally, the algorithm checks (line 3) whether a is the current
trigger’s action, and if this is the case, it checks whether the
current trigger trg(s) is authorized with respect to s. The
function auth, which checks if a is authorized with respect to
s, is a sound and computable under-approximation of ;auth .
Thus, any action authorized by fint is authorized according
to ;auth . This ensures database integrity. Note that ;auth

relies on the concept of determinacy [34] to decide whether
a query is determined by a set of views. Since determinacy
is undecidable [34], in auth we implement a sound under-
approximation of it, given in Appendix E, that checks syn-
tactically if a query is determined by a set of views.

Example 6.1. Consider a database with three tables: R,
T , and Z. The set U is {u, u′, admin} and the policy S
is {〈⊕, u, 〈SELECT, R〉, admin〉, 〈⊕∗, u, 〈SELECT,T 〉, admin〉,
〈⊕∗, u, 〈SELECT,Z 〉, admin〉}. There are two views V = 〈v ,
admin, {x |T (x) ∧ Z(x)}, O〉 and W = 〈w, u, {x |R(x) ∨
V (x)}, O〉. The user u tries to grant to u′ read access to
W , i.e., he issues 〈⊕, u′, 〈SELECT,W 〉, u〉. The PDP fint

rejects the command and raises a security exception be-
cause u is authorized to delegate the read access only for
T and Z but W ’s result depends also on R, for which u
cannot delegate read access. Assume now that the policy is
{〈⊕∗,u,〈SELECT,R〉,admin〉, 〈⊕∗,u,〈SELECT,T 〉,admin〉,〈⊕∗,u,
〈SELECT,Z 〉,admin〉}. In this case, fint authorizes the GRANT.
The reason is that W ’s definition can be equivalently rewrit-
ten as {x |R(x)∨ (T (x)∧Z(x))} and u is authorized to del-
egate the read access for R, T , and Z. �
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B s is a state and a is an action

function f (s, a)

1. return fint (s, a) ∧ fconf (s, a, user(s, a))

B s is a state and a is an action

function fint (s, a)

1. if trg(s) = ε return auth(s, a)

2. else if a = cond(trg(s), s) return >
3. else if a = act(trg(s), s) return auth(s, trg(s))

4. else return ⊥

B s is a state, a is an action, and u is a user

function fconf (s, a, u)

1. switch a

2. case 〈u′, SELECT, q〉 : return secure(u, q, s)

3. case 〈u′, INSERT, R, t〉 : case 〈u′, DELETE, R, t〉 :

4. if leak(a, s, u) ∨ ¬secure(u, getInfo(a), s) return ⊥
5. for γ ∈ Dep(a,Γ)

6. if (¬secure(u, getInfoS(γ, a), s) ∨ ¬secure(u, getInfoV (γ, a), s))

7. return ⊥
8. case 〈⊕, u′′, pr , u′〉, 〈⊕∗, u′′, pr , u′〉 : return ¬leak(a, s, u)

9. return >
Figure 8: The PDP f uses the two subroutines fint and fconf . The former provides database integrity and the
latter provides data confidentiality with respect to the user user(s, a), which denotes either the user issuing
the action, when the system is not executing a trigger, or the trigger’s invoker.

6.2 Enforcing Data Confidentiality
The function fconf , shown in Figure 8, takes as input an

action a, a state s, and a user u. Note that any user other
than the administrator is a potential attacker. The require-
ment for fconf is that it authorizes only those commands
that result in secure judgments for u as required by Defi-
nition 5.3. To achieve this, fconf over-approximates the set
of judgments that u can derive from a’s execution. For in-
stance, the algorithm assumes that u can always derive the
trigger’s condition from the run, even though this is not al-
ways the case. Then, fconf authorizes a iff it can determine
that all u’s judgements are secure. This can be done by
analysing just a finite subset of the over-approximated set
of u’s judgments.

In more detail, fconf performs a case distinction on the
action a (line 1). If a is a SELECT command (line 2), fconf

checks whether the query is secure with respect to the cur-
rent state s and the user u using the secure procedure. If
a is an INSERT or DELETE command (lines 3–7), fconf checks
(line 4), using the leak procedure, whether a’s execution
may leak sensitive information through the views that u
can read, as in Example 5.4. Afterwards, fconf also checks
(line 4) whether the information u can learn from a’s execu-
tion, modelled by the sentence computed by the procedure
getInfo(a), is secure. In line 5–7, fconf computes the set
of all integrity constraints that a’s execution may violate,
denoted by Dep(a,Γ), and for all constraints γ, it checks
whether the information that u may learn from γ is secure.
The procedure getInfoS (respectively getInfoV ) computes
the sentence modelling the information learned by u from
γ if a is executed successfully (respectively violates γ). If a
is a GRANT command (line 8), fconf checks whether a’s suc-
cessful execution discloses sensitive information to u. In the
remaining cases (line 9), fconf authorizes a.

Secure judgments. Determining if a given judgment is
secure is undecidable for RC [24, 30]. Hence, the secure
procedure implements a sound and computable under-ap-
proximation of this notion. We now present our solution.
Other sound under-approximations can alternatively be used
without affecting fconf ’s data confidentiality guarantees.

Let M = 〈D,Γ〉 be a system configuration, r, i `u φ be
a judgment, and s = 〈db, U, sec, T, V, c〉 be the i-th state
in r. As a first under-approximation, instead of the set of
all runs indistinguishable from ri, we consider the larger set
of all runs r′ whose last state s′ = 〈db′, U, sec, T, V, c′〉 is

such that the disclosed data in db and db′ are the same.
Note that if a judgment is secure with respect to this larger
set, it is secure also with respect to the set of indistinguish-
able runs because the former set contains the latter. This
larger set depends just on the database state db and the
policy sec, not on the run or the attacker model AT Ku.
Determining judgment’s security is, however, still undecid-
able even on this larger set. We therefore employ a second
under-approximation that uses query rewriting. We rewrite
the sentence φ to a sentence φrw such that if r, i `u φ is not
secure for the user u, then [φrw ]db = >. The formula φrw

is ¬φ>s,u ∧ φ⊥s,u, where φ>s,u and φ⊥s,u are defined inductively
over φ. A formal definition of secure is given in Appendix
F.

We now explain how we construct φ>s,u and φ⊥s,u. We as-
sume that both φ and V contain only views with the owner’s
privileges. The extension to the general case is given in Ap-
pendix F. First, for each table or view o ∈ D ∪ V , we cre-
ate additional views representing any possible projection of
o. The extended vocabulary contains the tables in D, the
views in V , and their projections. For instance, given a
table R(x, y), we create the views Rx and Ry representing
respectively {y | ∃x.R(x, y)} and {x | ∃y.R(x, y)}. Second,
we compute the formula φ′ by replacing each sub-formula
∃x.R(x, y) in φ with the view Rx(y) associated with the
corresponding projection. Third, for each predicate R in the
formula φ′, we compute the sets R>s,u and R⊥s,u. The set R>s,u
(respectively R⊥s,u) contains all the tables and views K in the
extended vocabulary such that (1) K is contained in (respec-
tively contains) R, and (2) the user u is authorized to read
K in s, i.e., there is a grant 〈op, u, 〈SELECT,K′〉, u′〉 ∈ sec
such that either K′ = K or K is obtained from K′ through
a projection. The formula φvs,u, where v ∈ {>,⊥}, is:

φvs,u =



∨
S∈R>s,u

S(x) if φ = R(x) and v = >∧
S∈R⊥s,u

S(x) if φ = R(x) and v = ⊥
¬ψ¬vs,u if φ = ¬ψ
ψvs,u ∗ γvs,u if φ = ψ ∗ γ and ∗ ∈ {∨,∧}
Qx.ψv

s,u if φ = Qx.ψ and Q ∈ {∃,∀}
φ otherwise

The formulae are such that if φ>s,u holds, then φ holds and

if ¬φ⊥s,u holds, then ¬φ holds. To compute the sets R>s,u
and R⊥s,u, we check the containment between queries. Since
query containment is undecidable [3], we implement a sound
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Sx = {y | ∃x. S(x, y)}

Sy = {x | ∃y. S(x, y)}

Vx = {y | ∃x. V (x, y)}

Vy = {x | ∃y. V (x, y)}

Sy>s,u = {Vy}
Containment Sets

Sy⊥s,u = ∅

R>s,u = ∅

R⊥s,u = {W}

φ := (∃y. S(2, y)) ∧ (¬R(5) ∨ ∃y. S(4, y)) ≡ Sy(2) ∧ (¬R(5) ∨ Sy(4))

Original Sentence

φrw := ¬φ>s,u ∧ φ⊥s,u

Rewriting

φ>s,u := Sy(2)>s,u ∧ (¬R(5)⊥s,u ∨ Sy(4)>s,u) ≡ Vy(2) ∧ (¬W (5) ∨ Vy(4))

φ⊥s,u := Sy(2)⊥s,u ∧ (¬R(5)>s,u ∨ Sy(4)⊥s,u) ≡ >

Figure 9: Checking the security of the judgment
r, 1 `u (∃y. S(2, y)) ∧ (¬R(5) ∨ ∃y. S(4, y)) from Exam-
ple 6.2.

under-approximation of it, described in Appendix F. Other
sound under-approximations can be used as well.

Our φ>s,u and φ⊥s,u rewritings share similarities with the
low and high evaluations of Wang et al. [46]. Both try to
approximate the result of a query just by looking at the
authorized data. However, we use φ>s,u and φ⊥s,u to determine
a judgment’s security, whereas Wang et al. use evaluations
to restrict the query’s results only to authorized data.

Example 6.2. Consider a database with three tables S, R,
and Q, and two views V = 〈v, admin, {x, y |S(x, y)∧(x = 1∨
y = 3)}, O〉 and W = 〈w, admin, {x |R(x) ∨Q(x)}, O〉. The
database state db is db(S) = {(1, 1), (2, 3), (4, 2)}, db(R) =
{3}, and db(Q) = {4}, the set U is {u, admin}, and the pol-
icy sec is {〈⊕, u, 〈SELECT, V 〉, admin〉, 〈⊕, u, 〈SELECT,W 〉,
admin〉}. Let the state s be 〈db, U, sec, ∅, {V,W}, ε〉 and the
run r be s. We want to check the security of r, 1 `u φ,
where φ := (∃y. S(2, y))∧ (¬R(5)∨ ∃y. S(4, y)), for the user
u. Figure 9 depicts the database state db, the materializa-
tions of the views V and W , and the materializations of the
views Sx, Sy, Vx, and Vy in the extended vocabulary. Gray
indicates those tables and views that u cannot read.

The rewriting process, depicted also in Figure 9, proceeds
as follows. We first rewrite the formula φ as Sy(2)∧(¬R(5)∨
Sy(4)). The sets Sy

>
s,u, Sy

⊥
s,u, R>s,u, and R⊥s,u are respectively

{Vy}, ∅, ∅, and {W}. The formulae φ>s,u and φ⊥s,u are respec-

tively Sy(2)>s,u∧(¬R(5)⊥s,u∨Sy(4)>s,u), which is equivalent to

Vy(2)∧(¬W (5)∨Vy(4)), and Sy(2)⊥s,u∧(¬R(5)>s,u∨Sy(4)⊥s,u),
which is equivalent to >. They are both secure, as they de-
pend only on V and W . Furthermore, since φ>s,u holds in s,

then φ holds as well. Finally, φrw is ¬φ>s,u ∧ φ⊥s,u. Since φrw

does not hold in s, it follows that r, 1 `u φ is secure. �

6.3 Theoretical Evaluation
Our PDP provides the desired security guarantees and its

data complexity, i.e., the complexity of executing f when
the action, the policy, the triggers, and the views are fixed,

is AC 0. This means that f can be evaluated in logarith-
mic space in the database’s size, as AC 0 ⊆ LOGSPACE ,
and evaluation is highly parallelizable. Note that secure’s
data complexity is AC 0 because it relies on query evalu-
ation, whose data complexity is AC 0 [3]. In contrast, all
other operations in f are executed in constant time in terms
of data complexity. Note also that on a single processor,
f ’s data complexity is polynomial in the database’s size.
We believe that this is acceptable because the database is
usually very large, whereas the query, which determines the
degree of the polynomial, is small. The proofs are given in
Appendices F–G.

Theorem 6.1. Let P = 〈M, f〉 be an extended configura-
tion, where M is a system configuration and f is as above.
The PDP f (1) provides data confidentiality with respect to
P , u, AT Ku, and ∼=P,u, for any user u ∈ U , and (2) pro-
vides database integrity with respect to P . Moreover, the
data complexity of f is AC 0.

As the Examples 6.3 and 6.4 below show, f is more per-
missive than existing PDPs for those actions that violate
neither database integrity nor data confidentiality.

Example 6.3. Our PDP is more permissive than existing
mechanisms for commands of the form GRANT SELECT ON V
TO u, where V is a view with owner’s privileges, u is a user,
and the statement is issued by the view’s owner o. Such
mechanisms, in general, authorize the GRANT iff o is autho-
rized to delegate the read permission for all tables and views
that occur in v’s definition. Consider again Example 6.1.
Our PDP authorizes 〈⊕, u′, 〈SELECT,W 〉, u〉 under the pol-
icy S′. However, existing mechanisms reject it because u is
not directly authorized to read V , although u can read the
underlying tables. Our PDP also authorizes all the secure
GRANT statements authorized by existing mechanisms. �

Example 6.4. Our PDP is more permissive than the mech-
anisms used in existing DBMSs for secure SELECT state-
ments. Such mechanisms, in general, authorize a SELECT

statement issued by a user u iff u is authorized to read all
tables and views used in the query. They will reject the
query in Example 6.2 even though the query is secure. Fur-
thermore, any secure SELECT statement authorized by them
will be authorized by our solution as well. Also the PDP
proposed by Rizvi et al. [35] rejects the query in Example
6.2 as insecure. However, our solution and the proposal of
Rizvi et al. [35] are incomparable in terms of permissive-
ness, i.e., some secure SELECT queries are authorized by one
mechanism and not by the other. �

6.4 Implementation
To evaluate the feasibility and security of our approach

in practice, we implemented our PDP in Java. The proto-
type, available at [26], implements both our PDP and the
operational semantics of our system model. It relies on the
underlying PostgreSQL database for executing the SELECT,
INSERT, and DELETE commands. Note that our prototype
also handles all the differences between the relational cal-
culus and SQL. For instance, it translates every relational
calculus query into an equivalent SELECT SQL query over
the underlying database. We performed a preliminary ex-
perimental evaluation of our prototype. Our experiments
were run on a PC with an Intel i7 processor and 32GB of
RAM. Note that we materialized the content of all the views.
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Figure 11: Example 8 : fconf ’s execution time.

Our evaluation has two objectives: (1) to empirically val-
idate that the prototype provides the desired security guar-
antees, and (2) to evaluate its overhead. For (1), we ran the
attacks in §2 against our prototype. As expected, our PDP
prevents all the attacks. For (2), we simulated Examples
6.1 and 6.2 on database states where the number of tuples
ranges from 1,000 to 100,000. Figure 10 shows the PDP’s
execution time. Our results show that our solution is feasi-
ble. In more detail, fint ’s execution time does not depend
on the database size, whereas fconf ’s execution time does.
We believe that the overhead introduced by the PDP is ac-
ceptable for a proof of concept. Even with 100,000 tuples,
the PDP’s running time is under a second. In Example 6.2,
fconf ’s execution time is comparable to the execution time of
the user’s query. As Figure 11 shows, fconf ’s query rewriting
time does not depend on the database’s size, whereas fconf ’s
query execution time does.

To improve fconf ’s performance, one could strike a differ-
ent balance between simple syntactic checks and our query
rewriting solution. This, however, would result in more re-
strictive PDPs. We will investigate further optimizations as
a future work.

7. RELATED WORK AND DISCUSSION
We compare our work against two lines of research: data-

base access control and information flow control. Both of
these have similar goals, namely preventing the leakage and
corruption of sensitive information.

7.1 Database Access Control
Discretionary Database Access Control. Our frame-
work builds on prior research in database access control
[24,35,46] as well as established notions from database the-
ory, such as determinacy [34] and instance-based determi-
nacy [30].

Specifically, our notion of secure judgments extends in-
stance based determinacy from database states to runs, while
data confidentiality extends existing security notions [24,35,
46] to dynamic settings, where both the database and the
policy may change. Similarly, our indistinguishability no-
tion extends those in [24, 46] from database states to runs.
Finally, our formalization of ;auth relies on determinacy to
decide whether the content of a view is fully determined by
a set of other views.

Griffiths and Wade propose a PDP [23] that prevents At-
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tacks 2 and 3 by using syntactic checks and by removing
all views whose owners lack the necessary permissions. In
contrast, we prevent the execution of GRANT and REVOKE op-
erations leading to inconsistent policies.

Mandatory Database Access Control. Research on
mandatory database access control has historically focused
on Multi-Level Security (MLS) [17], where both the data
and the users are associated with security levels, which are
compared to control data access. Our PDP extends the SQL
discretionary access control model with additional manda-
tory checks to provide database integrity and data confi-
dentiality. In the following, we compare our work with the
access control policies and semantics used by MLS systems.

With respect to policies, our work uses the SQL access
control model, where policies are sets of GRANT statements.
In this model, users can dynamically modify policies by del-
egating permissions. In contrast, MLS policies are usually
expressed by labelling each subject and object in the system
with labels from a security lattice [37]. The policy is, in
general, fixed (cf. the tranquillity principle [37]).

With respect to semantics, existing MLS solutions are
based on the so-called Truman model [35], where they trans-
parently modify the commands issued by the users to restrict
the access to only the authorized data. In contrast, we use
the same semantics as SQL, that is, we execute only the se-
cure commands. This is called the Non-Truman model [35].
For an in-depth comparison of these access control mod-
els, see [24, 35]. Operationally, MLS mechanisms use poly-
instantiation [29], which is neither supported by the rela-
tional model nor by the SQL standard, and requires ad-hoc
extensions [17, 38]. Furthermore, the operational semantics
of MLS systems differs from the standard relational seman-
tics. In contrast, our operational semantics supports the
relational model and is directly inspired by SQL.

The above differences influence how security properties
are expressed. Data confidentiality, which relies on a precise
characterization of security based on a possible worlds se-
mantics, is a key component of the Non-Truman model (and
SQL) access control semantics. Similarly, database integrity
requires that any “write” operation is authorized according
to the policy and is directly inspired by the SQL access con-
trol semantics. The security properties in MLS systems, in
contrast, combine the multilevel relational semantics [17,38]
with MLS and BIBA properties [37].

MLS systems prevent attacks similar to Attacks 4 and 5
using poly-instantiated tuples and triggers [38, 42], whereas
attacks similar to Attack 1 cannot be carried out because
triggers with activator’s privileges are not supported [42].
The SeaView system [17], which combines discretionary ac-
cess control and MLS, additionally prevents attacks simi-
lar to Attacks 2 and 3 by relying on Griffiths and Wade’s
PDP [23]. However, these solutions cannot be applied to
SQL databases for the aforementioned reasons.

7.2 Information Flow Control
Various authors have applied ideas from information flow

control to databases. Davis and Chen [16] study how cross-
application information flows can be tracked through data-
bases. Other researchers [15, 32, 39] present languages for
developing secure applications that use databases. They em-
ploy secure type systems to track information flows through
databases. However, they neither model nor prevent the
attacks we identified because they do not account for the

advanced database features and the strong attacker model
we study in this paper.

Schultz and Liskov [40] extend decentralized information
flow control [33] to databases, based on concepts from multi-
level security [17]. They identify one attack on data con-
fidentiality that exploits integrity constraints. Their solu-
tion relies on poly-instantiation [29] and cannot be applied
to SQL databases that do not support multi-level security.
Their mechanism neither prevents the other attacks we iden-
tify nor provides provable and precise security guarantees.

Several researchers have studied attacker models in infor-
mation flow control [5, 21]. Giacobazzi and Mastroeni [21]
model attackers as data-flow analysers that observe the pro-
gram’s behaviour, whereas Askarov and Chong [5] model
attackers as automata that observe the program’s events.
They both model passive attackers, who can observe, but
do not influence, the program’s execution. In contrast, our
attacker is active and interacts with the database.

7.3 Discussion
Historically, database access control and information flow

control rely on different foundations, formalisms, security
notions, and techniques. We see our paper as a starting
point for bridging these topics: we combine database ac-
cess control theory with an operational semantics and an
attacker model, which are common in information flow con-
trol, but have been largely ignored in database access con-
trol. We thereby give a precise logical characterization of the
attacker’s capabilities and of a judgment’s security. Further-
more, our indistinguishability notion has similarities with
the low-equivalence notions used in [6, 7, 10], whereas both
data confidentiality and the notion of secure judgments have
a precise characterization as instances of non-interference [22,
36]; see Appendix H for more details.

We believe our framework provides a basis for (1) further
investigating the connections between these two topics, (2)
applying information flow mechanisms, such as type systems
or multi-execution [18], to database access control, and (3)
investigating how integrity notions used in information flow
control can best be applied to databases.

8. CONCLUSION
Motivated by practical attacks against existing databases,

we have initiated several new research directions. First, we
developed the idea that attacker models should be studied
and formalized for databases. Rather than being implicit,
the relevant models must be made explicit, just like when
analysing security in other domains. In this respect, we pre-
sented a concrete attacker model that accounts for relevant
features of modern databases, like triggers and views, and
attacker inference capabilities.

Second, access control mechanisms must be designed to
be secure, and provably so, with respect to the formalized
attacker capabilities. This requires research on mechanism
design, complemented by a formal operational semantics of
databases as a basis for security proofs. We presented such
a mechanism, proved that it is secure, and built and eval-
uated a prototype of it in PostgreSQL. As a future work,
we will extend our framework and our PDP to directly sup-
port the SQL language, and we will investigate efficiency
improvements for our PDP.
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APPENDIX
In this appendix we formalize the system’s operational se-
mantics, the attacker model, and the security properties.
Furthermore, we present complete proofs of all results.

For simplicity’s sake, in the following we assume, without
loss of generality, that all the relational calculus formulae
do not use constant symbols inside predicates. For instance,
instead of the formula ∃x.R(x, 5, 10), we consider the equiv-
alent formula ∃x, y, z. R(x, y, z) ∧ y = 5 ∧ z = 10. Note that
this does not restrict the scope of our work as all formulae
can be trivially expressed without using constant symbols
inside predicates.

Structure. In Appendix A, we provide a complete formal-
ization of our system model. In Appendix B, we present all
the rules defining the `u relation and we prove the sound-
ness of `u with respect to the relational calculus semantics.
In Appendix C, we provide the complete formalization of the
;auth relation. In Appendix D, we formalize u-projections
and the indistinguishability relation ∼=P,u. In Appendix E
we formalize the access control function fint , we prove that it
provides database integrity, and we prove its data complex-
ity. In Appendix F we formalize the access control function
fuconf , we prove that it provides data confidentiality, and we
prove its data complexity. In Appendix G we prove that the
function f , which is obtained by composing the PDPs fint

and fuconf , provides both database integrity and data confi-

dentiality. We also prove that its data complexity is AC 0.
Finally, in Appendix H we show that the concepts of secure
judgment and data confidentiality have precise interpreta-
tions in terms of non-interference.
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A. FORMALIZING THE SYSTEM MODEL
In this section, we precisely formalize the system model

introduced in §4.2. We first introduce some auxiliary def-
initions about queries, views, privileges, and triggers. Af-
terwards, we introduce the concept of partial state. Then,
we formalize contexts and we refine the notion of M -state
given in §4.2. Finally, we formalize the transition relation
→f together with some auxiliary predicates and functions.

A.1 Auxiliary definitions on queries, views,
privileges, and triggers

Triggers can give rise to non-terminating executions, for
example when the action associated with trigger t1 activates
trigger t2, which in turn activates t1. We say that a set T
of triggers is safe iff no trigger in T can activate another
trigger in T . Note that safety ensures termination. Even
though this termination condition is simple, it is sufficient
for the purpose of this paper. Note that more complex and
permissive termination conditions do not influence our re-
sults. We say that a set of triggers T is safe, denoted by
safe(T ), iff for all triggers t1, t2 ∈ T :
• if the t1’s activation event is an INSERT on the table R,

then t2’s action is not of the form 〈INSERT, R, t〉, or
• if the t1’s activation event is a DELETE on the table R,

then t2’s action is not of the form 〈DELETE, R, t〉.
Let D be a database schema, U be a set of users, t be

a trigger over D, and V be a set of views over D. We say
that t is a U-trigger, denoted by usersIn(t, U), if and only
if owner(t) ∈ U and t’s statement mentions just users in U .
We say that a query q is defined over D and V , denoted by
defined(q,D, V ), iff all the predicates in q are either tables
in D or views in V . We say that a privilege p is defined over
D and V , denoted by defined(p,D, V ), iff the table or view
referred in p is in D ∪ V . We say that a view v is defined
over D and V , denoted by defined(v,D, V ), iff its definition
is defined over D and V . Finally, we say that a trigger t is
defined over D and V , denoted by defined(t,D, V ), iff (1)
the table on which t is defined is in D, (2) t’s WHEN condition
is defined over D and V , and (3) t’s action refers only to
tables and views in D ∪ V .

A.2 Revoke Semantics
We now define the function revoke that models the se-

mantics of SQL’s REVOKE statements with cascade. In the
following, let S be a security policy, i.e., a set of GRANTs,
u1, u2, u3, u4, u, and u′ be user identifiers, op, op′ ∈ {⊕,⊕∗},
and p be a privilege. We say that a chain is a sequence of
grants g1 · g2 · . . . · gn such that (1) g1 = 〈op′, u4, p, start〉,
(2) if p 6= 〈SELECT, V 〉, where V is a view with owner’s privi-
leges, then start = admin, whereas if p = 〈SELECT, V 〉, then
start ∈ {admin, owner(V )}, and (3) for each 1 ≤ i ≤ n− 1,
gi = 〈⊕∗, u2, p, u1〉 and gi+1 = 〈op, u3, p, u2〉. We first de-
fine the chain function that takes as input a policy S and

constructs all possible chains.

chain(S) :={〈op, u, p, u′〉 ∈ S |u′ = admin}∪
{〈op, u, 〈SELECT, V 〉, u′〉 ∈ S |V = 〈v, o, q, O〉
∧ u′ = o}∪⋃

g1·...·gn∈chain(S)

{g1 · . . . · gn · g | g ∈ S∧

g = 〈op, u, p, u′〉 ∧ gn = 〈⊕∗, u′, p, u′′〉∧
∀i ∈ {1, . . . , n}. gi 6= g}.

The function filter takes as input a set of chains C and a
grant g and returns as output the set of all chains in C that
do not contain g:

filter(C, g) :={g1 · . . . · gn ∈ C | ∀i ∈ {1, . . . , n}. gi 6= g}.

The function policy takes as input a set of chains and con-
structs a policy, i.e., a set of grants, out of it:

policy(C) :=
⋃

g1·...·gn∈C

⋃
1≤i≤n

{gi}.

Finally, the function revoke, which models the semantics of
the REVOKE command with cascade, is as follows:

revoke(S, u, p, u′) :=policy(filter(chain(policy(filter(

chain(S), 〈⊕, u, p, u′〉))), 〈⊕∗, u, p, u′〉)).

Given a policy S, revoke(S, u, p, u′) denotes the policy ob-
tained by applying 〈	, u, p, u′〉 to S.

A.3 Partial States
An M-partial state is a tuple 〈db, U, sec, T, V 〉 such that

db ∈ ΩΓ
D is a database state, U ⊂ U is a finite set of users

such that admin ∈ U , sec ∈ SU,D is a security policy, T is
a finite set of safe triggers over D, and V is a finite set of
views over D. We denote by ΠM the set of all M -partial
states. Given an M -state s = 〈db, U, sec, T, V, c〉, we denote
by pState(s) the M -partial state 〈db, U, sec, T, V 〉 obtained
from s by dropping the context c.

A.4 Contexts
Let M = 〈D,Γ〉 be a system configuration and u be a

user. An (M,u)-action effect is a tuple 〈act , accDec, res, E〉,
where act ∈ AD,u is an action, accDec ∈ {>,⊥} is the access
control decision for that action (where > stands for permit
and ⊥ stands for deny), res ∈ {>,⊥} is the action result,
and E ⊆ Γ is the set of integrity constraints violated by
the action. We denote by ΩactEff

M,u the set of all (M,u)-action

effects and by ΩactEff
M,U , for some U ⊆ U , the set

⋃
u∈U ΩactEff

M,u .
An (M,u)-trigger effect is a triple 〈t,when, stmt〉 where t ∈
T RIGGERD is a trigger, when ∈ ΩactEff

M,u is the action effect
associated with the WHEN condition of the trigger, and stmt ∈
ΩactEff
M,u ∪{ε} is the action effect associated with the statement

in the trigger’s body. We denote by ΩtriEff
M,u the set of all

(M,u)-trigger effects and by ΩtriEff
M,U , for some U ⊆ U , the

set
⋃
u∈U ΩtriEff

M,u .

An M-pending trigger transaction is a 4-tuple 〈s, t, u, tr〉,
where s ∈ ΠM ∪ {ε} is an M -partial state representing the
“roll-back state”, i.e., the state that we must restore in case
a roll-back happens, t ∈ {ε} ∪

⋃
n∈N+ domn is the tuple in-

volved in the event that has fired the transaction, u ∈ U∪{ε}
is the user that has activated the triggers in the transactions,
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and tr ∈ T RIGGER∗D is a sequence of triggers. Note that
we denote by · the concatenation operation between strings
over T RIGGER∗D, by ε the empty string in T RIGGER∗D,
and by 〈ε, ε, ε, ε〉 the empty M -pending transaction.

An M-history h is a sequence of action effects and trigger
effects, i.e., h ∈ (ΩactEff

M,U ∪ ΩtriEff
M,U )∗. We denote by HM the

set of all M -histories, by · the concatenation operation over
HM , and by ε the empty history.

We are now ready to formally define contexts. Let M =
〈D,Γ〉 be a system configuration. An M-context is a tuple
〈h, actEff , tr〉, where h ∈ HM models the system’s history,

actEff ∈ ΩactEff
M,U ∪ΩtriEff

M,U ∪{ε} describes the effect of the last
action, i.e., whether the action has been accepted by the
access control mechanism and the action’s result, and tr is
an M -pending transaction. Furthermore, the empty context
ε is the element 〈ε, ε, 〈ε, ε, ε, ε〉〉.

A.4.1 Auxiliary Functions over contexts
Given an M -context c = 〈h, actEff , tr〉, we denote by

secEx the following function, which returns > if the last
action has caused a security exception.

secEx (〈h, aE , tr〉) =


> if aE = 〈act ,⊥, res, E〉
> if aE = 〈t, 〈act ,⊥, res, E〉, ε〉
> if aE = 〈t,when, 〈act ,⊥, res, E〉〉
⊥ otherwise

Similarly, we denote by Ex (c) the function extracting the
integrity constraints violated by the last action.

Ex (〈h, aE , tr〉) =

 E if aE = 〈act , aC , res, E〉
E if aE = 〈t,when, 〈act , aC , res, E〉〉
∅ otherwise

We also denote by res(c) the function extracting the last
action’s result:

res(〈h, aE , tr〉) =


res if aE = 〈act , aC , res, E〉
aC if aE = 〈t, 〈act , aC , res, E〉, ε〉
aC ∧ aC ′ if aE = 〈t, 〈act , aC , res, E〉,
∧res ′ 〈act ′, aC ′, res ′, E′〉〉∧

〈act ′, aC ′, res ′, E′〉 6= ε

Similarly, we denote by acA(c) and acC (c) the functions
that extract the access control decision for the trigger’s ac-
tion and condition:

acA(〈h, aE , tr〉) =


aC ′ if aE = 〈t, 〈act , aC , res, E〉,

〈act ′, aC ′, res ′, E′〉〉∧
〈act ′, aC ′, res ′, E′〉 6= ε

⊥ otherwise

acC (〈h, aE , tr〉) =


aC if aE = 〈t, 〈act , aC , res, E〉, ε〉
aC if aE = 〈t, 〈act , aC , res, E〉,

〈act ′, aC ′, res ′, E′〉〉∧
〈act ′, aC ′, res ′, E′〉 6= ε

⊥ otherwise

We denote by invoker(c) the function extracting the user
in the transaction, i.e., invoker(〈h, aE , 〈s, t, u, trL〉〉) = u.
Similarly, we denote by tpl(c) the function extracting the tu-
ple that has fired the transaction, namely tpl(〈h, aE , 〈s, t, u,
trL〉〉) = t, by triggers(c) the function extracting the list of
triggers, i.e., triggers(〈h, aE , 〈s, t, u, trL〉〉) = trL, and by
trigger(c), or tr(c) for short, the first trigger in the sequence
triggers(c).

A.5 States
We can now define M -states. Let M = 〈D,Γ〉 be a system

configuration. An M-state is a tuple 〈db, U, sec, T, V, c〉 such
that db ∈ ΩΓ

D is a database state, U ⊂ U is a finite set of
users such that admin ∈ U , sec ∈ SU,D is a security policy,
T is a finite set of safe triggers over D such that for any
trigger t ∈ T , both usersIn(t, U) and defined(t,D, V ) hold,
V is a finite set of views over D such that (1) there are no
cyclic dependencies between the views in V , and (2) for any
view v ∈ V , defined(t,D, V ′), for some V ′ ⊆ V , and v’s
owner is in U , and c ∈ CM is an M -context.

In Section 4.2, we denoted anM -state as a tuple 〈db, sec, U,
T, V, c〉, where c = 〈h, actEff , tr〉 is an element of CM . In the
following, instead of representing states as 〈db, sec, U, T, V,
〈h, aE , tr〉〉, we represent them as 〈db, sec, U, T, V, h, aE , tr〉.
Given an M -state s := 〈db, sec, U, T, V, h, aE , tr〉, we denote
by ctx (s) the context 〈h, aE , tr〉. With a slight abuse of
notation, we extend the functions Ex , secEx , res, tpl , acA,
acC , triggers, tr , and invoker from contexts to M -states,
e.g., Ex (s) is just Ex (ctx (s)). Furthermore, given an M -
state s := 〈db, sec, U, T, V, h, aE , tr〉, we use a dot notation
to refer to its components. For instance, we use s.db to refer
to the database’s state in s and s.sec to refer to the policy
in s.

A.6 Transition Relation →f

The transition rules describing the →f transition relation
are shown in Figures 12–19. The →f relation is, thus, the
smallest relation satisfying all the inference rules. Note that
we ignore the upd function introduced in Section 4.2 since
the rules explicitly encode the changes to the contexts.

We now define the functions we used in the rules in Figures
12–19. The getActualUser(m, invk , ow) function, wherem ∈
{A,O} and invk , ow ∈ U , is defined as follows:

getActualUser(m, invk , ow) =

{
invk if m = A
ow if m = O

The ID function takes as input an action act ∈ AD,U and
returns > if act is either 〈u, INSERT, R, t〉 or 〈u, DELETE, R, t〉,
for some u ∈ U , R ∈ D, and t ∈ dom|R|. The function ID
returns ⊥ otherwise.

The apply function, which takes as input an action act ∈
AM,U that is either an INSERT or a DELETE action and a
database state db ∈ ΩD, is defined as follows:

apply(act , db) =

{
db[R⊕ t] if act = 〈u, INSERT , R, t〉
db[R	 t] if act = 〈u,DELETE , R, t〉

Let t = 〈id , ow , ev , R′, φ, stmt ,m〉 be a trigger and R be
a relation schema. We denote t’s owner by owner(t), i.e.,
owner(t) = ow . Similarly, given a view V , we denote by

owner(V ) the owner of V . We also denote by x|R| the tu-
ple of variables 〈x1, . . . , x|R|〉. Furthermore, given a tuple
t := 〈t1, . . . , tn〉, we denote by t(i) the i-th value ti. Fi-

nally, we denote by t[x|R| 7→ v], where t is a tuple of values
in dom and variables in {x1, . . . , x|R|} and v is a tuple in

dom|R|, the tuple z ∈ domn obtained as follows: for each
i ∈ {1, . . . , n}, if t(i) = xj , where xj ∈ {x1, . . . , x|R|}, then
z(i) = v(j), and otherwise z(i) = t(i). We are now ready
to define the function getAction, which takes as input the

trigger’s statement stmt , a user u, and a tuple t
′ ∈ dom|R

′|,
and returns the concrete action executed by the system. For-
mally, getAction is as follows:

18



• getAction(〈INSERT, R, t〉, u, t′) = 〈u, INSERT, R, t[x|R
′|

7→ t′]〉,
• getAction(〈DELETE, R, t〉, u, t′) = 〈u, DELETE, R, t[x|R

′|

7→ t′]〉, and

• getAction(〈op, u, p〉, u, t′) = 〈op, u, p, u〉, where op ∈
{	,⊕,⊕∗}.

We assume there is a total-order relation �T over T . We
use this ordering to determine the order in which triggers are
executed. Given a set of triggers T and a database schema
D, we denote by filter(T, ev , R), where ev ∈ {INS ,DEL}
and R ∈ D, the sequence of triggers in T (ordered according
to �T ) whose event is ev and whose relation schema is R.
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admin ∈ U aE ′ = 〈〈admin, ADD USER, u〉,>,>, ∅〉 f (〈db, U, sec, T, V, h, aE , 〈rS , t
′
, u′, ε〉〉, 〈admin, ADD USER, u〉) = >

〈db, U, sec, T, V, h, aE , 〈rS , t
′
, u′, ε〉〉 〈admin,ADD USER,u〉−−−−−−−−−−−→f 〈db, U ∪ {u}, sec, T, V, h · aE , aE ′, 〈ε, ε, ε, ε〉〉

Add
User

Success

admin ∈ U aE ′ = 〈〈admin, ADD USER, u〉,⊥,⊥, ∅〉 f (〈db, U, sec, T, V, h, aE , 〈rS , t
′
, u′, ε〉〉, 〈admin, ADD USER, u〉) = ⊥

〈db, U, sec, T, V, h, aE , 〈rS , t
′
, u′, ε〉〉 〈admin,ADD USER,u〉−−−−−−−−−−−→f 〈db, U, sec, T, V, h · aE , aE ′, 〈ε, ε, ε, ε〉〉

Add
User
Deny

u ∈ U f (〈db, U, sec, T, V, h, aE , 〈rS , t
′
, u′, ε〉〉, 〈u, SELECT, q〉) = > [q]db = v

aE ′ = 〈〈u, SELECT, q〉,>, v, ∅〉 defined(q,D, V )

〈db, U, sec, T, V, h, aE , 〈rS , t
′
, u′, ε〉〉 〈u,SELECT,q〉−−−−−−−→f 〈db, U, sec, T, V, h · aE , aE ′, 〈ε, ε, ε, ε〉〉

SELECT

Success

u ∈ U f (〈db, U, sec, T, V, h, aE , 〈rS , t
′
, u′, ε〉〉, 〈u, SELECT, q〉) = ⊥

aE ′ = 〈〈u, SELECT, q〉,⊥,⊥, ∅〉 defined(q,D, V )

〈db, U, sec, T, V, h, aE , 〈rS , t
′
, u′, ε〉〉 〈u,SELECT,q〉−−−−−−−→f 〈db, U, sec, T, V, h · aE , aE ′, 〈ε, ε, ε, ε〉〉

SELECT

Deny

Figure 12: Rules defining the →f relation for SELECT and ADD USER

u ∈ U R ∈ D f (〈db, U, sec, T, V, h, aE , 〈rS , t
′
, u′, ε〉〉, act) = > act = 〈u, INSERT, R, t〉

db[R⊕ t] ∈ ΩΓ
D aE ′ = 〈act ,>,>, ∅〉 filter(T, INS , R) = ε ∨ t ∈ db(R)

〈db, U, sec, T, V, h, aE , 〈rS , t
′
, u′, ε〉〉 〈u,INSERT,R,t〉−−−−−−−−−→f 〈db[R⊕ t], U, sec, T, V, h · aE , aE ′, 〈ε, ε, ε, ε〉〉

INSERT

Success 1

u ∈ U R ∈ D f (〈db, U, sec, T, V, h, aE , 〈rS , t
′
, u′, ε〉〉, act) = > act = 〈u, INSERT, R, t〉 db[R⊕ t] ∈ ΩΓ

D

aE ′ = 〈act ,>,>, ∅〉 tr = filter(T, INS , R) tr 6= ε t 6∈ db(R) rS ′ = 〈db, U, sec, T, V 〉

〈db, U, sec, T, V, h, aE , 〈rS , t
′
, u′, ε〉〉 〈u,INSERT,R,t〉−−−−−−−−−→f 〈db[R⊕ t], U, sec, T, V, h · aE , aE ′, 〈rS ′, t, u, tr〉〉

INSERT

Success 2

u ∈ U R ∈ D f (〈db, U, sec, T, V, h, aE , 〈rS , t
′
, u′, ε〉〉, 〈u, INSERT, R, t〉) = >

E′ = {φ ∈ Γ|[φ]db[R⊕t] = ⊥} E′ 6= ∅ aE ′ = 〈〈u, INSERT, R, t〉,>,⊥, E′〉

〈db, U, sec, T, V, h, aE , 〈rS , t
′
, u′, ε〉〉 〈u,INSERT,R,t〉−−−−−−−−−→f 〈db, U, sec, T, V, h · aE , aE ′, 〈ε, ε, ε, ε〉〉

INSERT

Exception

u ∈ U R ∈ D f (〈db, U, sec, T, V, h, aE , 〈rS , t
′
, u′, ε〉〉, 〈u, INSERT, R, t〉) = ⊥ aE ′ = 〈〈u, INSERT, R, t〉,⊥,⊥, ∅〉

〈db, U, sec, T, V, h, aE , 〈rS , t
′
, u′, ε〉〉 〈u,INSERT,R,t〉−−−−−−−−−→f 〈db, U, sec, T, V, h · aE , aE ′, 〈ε, ε, ε, ε〉〉

INSERT

Deny

Figure 13: Rules defining the →f relation for INSERT

u ∈ U R ∈ D f (〈db, U, sec, T, V, h, aE , 〈rS , t
′
, u′, ε〉〉, act) = > act = 〈u, DELETE, R, t〉

db[R	 t] ∈ ΩΓ
D aE ′ = 〈act ,>,>, ∅〉 filter(T,DEL, R) = ε ∨ t 6∈ db(R)

〈db, U, sec, T, V, h, aE , 〈rS , t
′
, u′, ε〉〉 〈u,DELETE,R,t〉−−−−−−−−−→f 〈db[R	 t], U, sec, T, V, h · aE , aE ′, 〈ε, ε, ε, ε〉〉

DELETE

Success 1

u ∈ U R ∈ D f (〈db, U, sec, T, V, h, aE , 〈rS , t
′
, u′, ε〉〉, act) = > act = 〈u, DELETE, R, t〉 db[R	 t] ∈ ΩΓ

D

aE ′ = 〈act ,>,>, ∅〉 tr = filter(T,DEL, R) tr 6= ε t ∈ db(R) rS ′ = 〈db, U, sec, T, V 〉

〈db, U, sec, T, V, h, aE , 〈rS , t
′
, u′, ε〉〉 〈u,DELETE,R,t〉−−−−−−−−−→f 〈db[R	 t], U, sec, T, V, h · aE , aE ′, 〈rS ′, t, u, tr〉〉

DELETE

Success 2

u ∈ U R ∈ D f (〈db, U, sec, T, V, h, aE , 〈rS , t
′
, u′, ε〉〉, 〈u, DELETE, R, t〉) = >

E′ = {φ ∈ Γ|[φ]db[R	t] = ⊥} E′ 6= ∅ aE ′ = 〈〈u, DELETE, R, t〉,>,⊥, E′〉

〈db, U, sec, T, V, h, aE , 〈rS , t
′
, u′, ε〉〉 〈u,DELETE,R,t〉−−−−−−−−−→f 〈db, U, sec, T, V, h · aE , aE ′, 〈ε, ε, ε, ε〉〉

DELETE

Exception

u ∈ U R ∈ D f (〈db, U, sec, T, V, h, aE , 〈rS , t
′
, u′, ε〉〉, 〈u, DELETE, R, t〉) = ⊥ aE ′ = 〈〈u, DELETE, R, t〉,⊥,⊥, ∅〉

〈db, U, sec, T, V, h, aE , 〈rS , t
′
, u′, ε〉〉 〈u,DELETE,R,t〉−−−−−−−−−→f 〈db, U, sec, T, V, h · aE , aE ′, 〈ε, ε, ε, ε〉〉

DELETE

Deny

Figure 14: Rules defining the →f relation for DELETE
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invk , ow ∈ U t = 〈id , ow , ev , R′, φ, stmt ,m〉 u = getActualUser(m, ow , invk) φ′ = φ[x|R
′| 7→ t]

f (〈db, U, sec, T, V, h, aE , 〈rS , t, invk , t · tr〉〉, 〈u, SELECT, φ′〉) = > [φ′]db = > aE ′ = 〈〈u, SELECT, φ′〉,>,>, ∅〉
act = getAction(stmt , u, t) db′ = apply(act , db) f (〈db, U, sec, T, V, h · aE , aE ′, 〈rS , t, invk , t · tr〉〉, act) = >

db′ ∈ ΩΓ
D aE ′′ = 〈act ,>,>, ∅〉 tE ′ = 〈t, aE ′, aE ′′〉 ID(act) = >

〈db, U, sec, T, V, h, aE , 〈rS , t, invk , t · tr〉〉 t−→f 〈db′, U, sec, T, V, h · aE , tE ′, 〈rS , t, invk , tr〉〉

Trigger
DELETE-
INSERT

Success

invk , ow ∈ U t = 〈id , ow , ev , R′, φ, stmt ,m〉 u = getActualUser(m, ow , invk) rS = 〈db′, U ′, sec′, T ′, V ′〉
f (〈db, U, sec, T, V, h, aE , 〈rS , t, invk , t · tr〉〉, 〈u, SELECT, φ′〉) = > [φ′]db = > aE ′ = 〈〈u, SELECT, φ′〉,>,>, ∅〉

act = getAction(stmt , u, t) f (〈db, U, sec, T, V, h · aE , aE ′, 〈rS , t, invk , t · tr〉〉, act) = > ID(act) = >
φ′ = φ[x|R

′| 7→ t] E′ = {φ ∈ Γ|[φ]apply(act,db)} E′ 6= ∅ aE ′′ = 〈act ,>,⊥, E′〉 tE ′ = 〈t, aE ′, aE ′′〉

〈db, U, sec, T, V, h, aE , 〈rS , t, invk , t · tr〉〉 t−→f 〈db′, U ′, sec′, T ′, V ′, h · aE , tE ′, 〈ε, ε, ε, ε〉〉

Trigger
DELETE-
INSERT

Exception
Figure 15: Rules defining the →f relation for triggers with INSERT/DELETE action

invk , ow ∈ U t = 〈id , ow , ev , R′, φ, stmt ,m〉 u = getActualUser(m, ow , invk) φ′ = φ[x|R
′| 7→ t]

f (〈db, U, sec, T, V, h, aE , 〈rS , t, invk , t · tr〉〉, 〈u, SELECT, φ′〉) = > [φ′]db = > aE ′ = 〈〈u, SELECT, φ′〉,>,>, ∅〉
〈op, u′, p, u〉 = getAction(stmt , u, t) f (〈db, U, sec, T, V, h · aE , aE ′, 〈rS , t, invk , t · tr〉〉, 〈op, u′, p, u〉) = >

aE ′′ = 〈〈op, u′, p, u〉,>,>, ∅〉 tE ′ = 〈t, aE ′, aE ′′〉 op ∈ {⊕,⊕∗}

〈db, U, sec, T, V, h, aE , 〈rS , t, invk , t · tr〉〉 t−→f 〈db, U, sec ∪ {〈op, u′, p, u〉}, T, V, h · aE , tE ′, 〈rS , t, invk , tr〉〉

Trigger
GRANT

Success

invk , ow ∈ U t = 〈id , ow , ev , R′, φ, stmt ,m〉 u = getActualUser(m, ow , invk) φ′ = φ[x|R
′| 7→ t]

f (〈db, U, sec, T, V, h, aE , 〈rS , t, invk , t · tr〉〉, 〈u, SELECT, φ′〉) = > [φ′]db = > aE ′ = 〈〈u, SELECT, φ′〉,>,>, ∅〉
〈	, u′, p, u〉 = getAction(stmt , u, t) f (〈db, U, sec, T, V, h · aE , aE ′, 〈rS , t, invk , t · tr〉〉, 〈	, u′, p, u〉) = >

aE ′′ = 〈〈	, u′, p, u〉,>,>, ∅〉 tE ′ = 〈t, aE ′, aE ′′〉

〈db, U, sec, T, V, h, aE , 〈rS , t, invk , t · tr〉〉 t−→f 〈db, U, revoke(sec, u, p, u′), T, V, h · aE , tE ′, 〈rS , t, invk , tr〉〉

Trigger
REVOKE

Success
Figure 16: Rules defining the →f relation for triggers with GRANT/REVOKE action

invk , ow ∈ U t = 〈id , ow , ev , R′, φ, stmt ,m〉 u = getActualUser(m, ow , invk)

φ′ = φ[x|R
′| 7→ t] f (〈db, U, sec, T, V, h, aE , 〈rS , t, invk , tr〉〉, 〈u, SELECT, φ′〉) = >

[φ′]db = ⊥ aE ′ = 〈〈u, SELECT, φ′〉,>,⊥, ∅〉 tE ′ = 〈t, aE ′, ε〉

〈db, U, sec, T, V, h, aE , 〈rS , t, invk , t · tr〉〉 t−→f 〈db, U, sec, T, V, h · aE , tE ′, 〈rS , t, invk , tr〉〉
Trigger

Disabled

invk , ow ∈ U t = 〈id , ow , ev , R′, φ, stmt ,m〉 u = getActualUser(m, ow , invk)
rS = 〈db′, U ′, sec′, T ′, V ′〉 f (〈db, U, sec, T, V, h, aE , 〈rS , t, invk , tr〉〉, 〈u, SELECT, φ′〉) = ⊥

aE ′ = 〈〈u, SELECT, φ′〉,⊥,⊥, ∅〉 tE ′ = 〈t, aE ′, ε〉 φ′ = φ[x|R
′| 7→ t]

〈db, U, sec, T, V, h, aE , 〈rS , t, invk , t · tr〉〉 t−→f 〈db′, U ′, sec′, T ′, V ′, h · aE , tE ′, 〈ε, ε, ε, ε〉〉

Trigger
Deny

Condition

invk , ow ∈ U t = 〈id , ow , ev , R′, φ, stmt ,m〉 u = getActualUser(m, ow , invk)
f (〈db, U, sec, T, V, h, aE , 〈rS , t, invk , t · tr〉〉, 〈u, SELECT, φ′〉) = > [φ′]db = > aE ′ = 〈〈u, SELECT, φ′〉,>,>, ∅〉
act = getAction(stmt , u, t) f (〈db, U, sec, T, V, h · aE , aE ′, 〈rS , t, invk , t · tr〉〉, act) = ⊥ φ′ = φ[x|R

′| 7→ t]
aE ′′ = 〈act ,⊥,⊥, ∅〉 tE ′ = 〈t, aE ′, aE ′′〉 rS = 〈db′, U ′, sec′, T ′, V ′〉

〈db, U, sec, T, V, h, aE , 〈rS , t, invk , t · tr〉〉 t−→f 〈db′, U ′, sec′, T ′, V ′, h · aE , tE ′, 〈ε, ε, ε, ε〉〉

Trigger
Deny

Action
Figure 17: Rules defining the →f relation for triggers

u, u′ ∈ U f (〈db, U, sec, T, V, h, aE , 〈rS , t, u′′, ε〉〉, 〈op, u, p, u′〉) = >
aE ′ = 〈〈op, u, p, u′〉,>,>, ∅〉 op ∈ {⊕,⊕∗} defined(p,D, V )

〈db, U, sec, T, V, h, aE , 〈rS , t, u′′, ε〉〉 〈op,u,p,u′〉−−−−−−−→f 〈db, U, sec ∪ {〈op, u, p, u′〉}, T, V, h · aE , aE ′, 〈ε, ε, ε, ε〉〉

GRANT

Success

u, u′ ∈ U f (〈db, U, sec, T, V, h, aE , 〈rS , t, u′′, ε〉〉, 〈	, u, p, u′〉) = >
aE ′ = 〈〈	, u, p, u′〉,>,>, ∅〉 defined(p,D, V )

〈db, U, sec, T, V, h, aE , 〈rS , t, u′′, ε〉〉 〈	,u,p,u
′〉−−−−−−−→f 〈db, U, revoke(sec, u, p, u′), T, V, h · aE , aE ′, 〈ε, ε, ε, ε〉〉

REVOKE

Success

u, u′ ∈ U f (〈db, U, sec, T, V, h, aE , 〈rS , t, u′′, ε〉〉, 〈op, u, p, u′〉) = ⊥
aE ′ = 〈〈op, u, p, u′〉,⊥,⊥, ∅〉 op ∈ {⊕,⊕∗,	} defined(p,D, V )

〈db, U, sec, T, V, h, aE , 〈rS , t, u′′, ε〉〉 〈op,u,p,u′〉−−−−−−−→f 〈db, U, sec, T, V, h · aE , aE ′, 〈ε, ε, ε, ε〉〉

GRANT-
REVOKE

Deny

Figure 18: Rules defining the →f relation for GRANT and REVOKE
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u ∈ U defined(t,D, V ) safe({t} ∪ T ) usersIn(t, U) f (〈db, U, sec, T, V, h, aE , 〈rS , t, u′, ε〉〉, 〈u, CREATE, t〉) = >
t = 〈id , u, ev , R, φ, stmt ,m〉 aE ′ = 〈〈u, CREATE, t〉,>,>, ∅〉 ¬∃t′ ∈ T. t′ = 〈id , ow ′, ev ′, R′, φ′, stmt ′,m′〉

〈db, U, sec, T, V, h, aE , 〈rS , t, u′, ε〉〉 〈u,CREATE,t〉−−−−−−−→f 〈db, U, sec, T ∪ {t}, V, h · aE , aE ′, 〈ε, ε, ε, ε〉〉

CREATE

TRIGGER

Success

u ∈ U defined(t,D, V ) safe({t} ∪ T ) usersIn(t, U) f (〈db, U, sec, T, V, h, aE , 〈rS , t, u′, ε〉〉, 〈u, CREATE, t〉) = >
t = 〈id , u, ev , R, φ, stmt ,m〉 aE ′ = 〈〈u, CREATE, t〉,>,⊥, ∅〉 t′ = 〈id , ow ′, ev ′, R′, φ′, stmt ′,m′〉 t′ ∈ T t′ 6= t

〈db, U, sec, T, V, h, aE , 〈rS , t, u′, ε〉〉 〈u,CREATE,t〉−−−−−−−→f 〈db, U, sec, T, V, h · aE , aE ′, 〈ε, ε, ε, ε〉〉

CREATE

TRIGGER

Deny

u ∈ U defined(v,D, V ) f (〈db, U, sec, T, V, h, aE , 〈rS , t, u′, ε〉〉, 〈u, CREATE, v〉) = >
v = 〈id , u, q,m〉 aE ′ = 〈〈u, CREATE, v〉,>,>, ∅〉 ¬∃v′ ∈ V. v′ = 〈id , ow ′, q′,m′〉

〈db, U, sec, T, V, h, aE , 〈rS , t, u′, ε〉〉 〈u,CREATE,v〉−−−−−−−→f 〈db, U, sec, T, V ∪ {v}, h · aE , aE ′, 〈ε, ε, ε, ε〉〉

CREATE

VIEW

Success

u ∈ U defined(v,D, V ) f (〈db, U, sec, T, V, h, aE , 〈rS , t, u′, ε〉〉, 〈u, CREATE, v〉) = >
v = 〈id , u, q,m〉 aE ′ = 〈〈u, CREATE, v〉,>,⊥, ∅〉 v′ = 〈id , ow ′, q′,m′〉 v′ ∈ V v 6= v′

〈db, U, sec, T, V, h, aE , 〈rS , t, u′, ε〉〉 〈u,CREATE,v〉−−−−−−−→f 〈db, U, sec, T, V, h · aE , aE ′, 〈ε, ε, ε, ε〉〉

CREATE

VIEW

Deny

u ∈ U defined(o,D, V ) f (〈db, U, sec, T, V, h, aE , 〈rS , t, u′, ε〉〉, 〈u, CREATE, o〉) = ⊥ aE ′ = 〈〈u, CREATE, o〉,⊥,⊥, ∅〉

〈db, U, sec, T, V, h, aE , 〈rS , t, u′, ε〉〉 〈u,CREATE,o〉−−−−−−−→f 〈db, U, sec, T, V, h · aE , aE ′, 〈ε, ε, ε, ε〉〉

CREATE

Deny

Figure 19: Rules defining the →f relation for CREATE triggers and views
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B. ATTACKER MODEL
In this section, we formalize our attacker model AT Ku.

Let P = 〈M, f〉 be an extended configuration, where M =
〈D,Γ〉 is a system configuration and f is an M -PDP, L be
the P -LTS, and u ∈ U be a user. The set AT Ku is the
smallest set of judgments satisfying the inference rules in
Figures 21–33. With a slight abuse of notation, in the rules
we use r, i `u φ to denote that this judgment holds inAT Ku,
i.e., r, i `u φ ∈ AT Ku. Note that we redefine here also the
rules we presented before in Figure 4.

In the rules, we use |=fin to denote the standard seman-
tic entailment relation for first-order logic over finite mod-
els. We also denote by replace(ψ, o), where ψ is a sen-
tence and o is a view 〈V, ow , {x|φ},m〉 ∈ VIEWD, the
formula ψ′ obtained from ψ by replacing all occurrences
of V (x) with φ(x). Note that ψ and replace(ψ, o) are se-
mantically equivalent. Finally, given a database schema
D, a state s = 〈db, U, sec, T, V, ctx 〉, and an action a ∈
AD,U ∪ T RIGGERD, we denote by user(s, a) the following
function:

user(s, a) =

{
invoker(s) if tr(s) 6= ε
u if tr(s) = ε ∧ u ∈ U ∧ a ∈ AD,u

In the rules, we omit some details when dealing with in-
tegrity constraints. For instance, when we refer to func-
tional dependencies of the form ∀x, y, y′, z, z′. (R(x, y, z) ∧
R(x, y′, z′)) ⇒ y = y′, we implicitly assume that |y| = |y′|
and |z| = |z′|. Furthermore, when we refer to tuples in R,
we use the notation (v, w, q) and we implicitly assume that
|v| = |x|, |w| = |y|, and |q| = |z|. We make similar simplifi-
cations for the inclusion dependencies.

In our attacker model, we consider a very simple syntactic
criterion for revising believes. Intuitively, the attacker is able
to propagate the knowledge of a sentence φ after (or before)
an INSERT or a DELETE action on a table R iff the predicate
R does not occur in φ. We formalize this using the function
reviseBelief : traces(L) × RC bool × traces(L) → {>,⊥}. In
Figure 20, we give the definition for the function only for the
inputs r′, φ, r such that φ ∈ RC bool is a sentence and r =

r′ · act · s, where act ∈ AD,U ∪T RIGGERD and s ∈ ΩM . If
this is not the case, then reviseBelif (r′, φ, r) = ⊥. Note that
the function tables takes as input a formula φ and returns
as output the set of all tables mentioned in φ′, where φ′

is the formula obtained from φ by replacing all views with
their definitions. We remark that, given a formula φ, if
R 6∈ tables(φ), then the value of φ is independent on R, i.e.,
R does not determine φ.

In Lemma B.1, we prove that our attacker model is sound
with respect to the relational calculus semantics, i.e., every
judgment r, i `u φ that holds in AT Ku is such that φ is
satisfied in the i-th state of r. We first introduce the concept
of derivation. Given a judgment r, i `u φ, a derivation of
r, i `u φ with respect to AT Ku, or a derivation of r, i `u φ
for short, is a proof tree, obtained by applying the rules
defining AT Ku, that ends in r, i `u φ. With a slight abuse
of notation, we use r, i `u φ to denote both the judgment and
its derivation. The length of a derivation, denoted |r, i `u
φ|, is the number of rule applications in it. Note that a
judgments r, i `u φ holds in AT Ku iff there is a derivation
for it.

Lemma B.1. Let P be an extended configuration, L be the
P -LTS, u be a user, r ∈ traces(L) be an L run, φ ∈ RCbool

be a sentence, and 1 ≤ i ≤ |r|. If r, i `u φ holds in AT Ku,
then [φ]db = >, where last(ri) = 〈db, U, sec, T, V, c〉.

Proof. Let P be an extended configuration, L be the P -
LTS, u be a user, r ∈ traces(L) be an L run, φ ∈ RCbool be
a sentence, and 1 ≤ i ≤ |r|. Furthermore, let r, i `u φ be a
judgment that holds, i.e., there is a derivation d that ends
on this judgment. We prove our claim by induction on the
length of d.

Base Case: The base case is a derivation of length 1.
Thus, there are a number of cases depending on the rule
used to obtain r, i `u φ.

1. SELECT Success - 1. Let i be such that ri = ri−1 ·
〈u, SELECT, φ〉 · s, where s = 〈db, U, sec, T, V, c〉 ∈ ΩM
and last(ri−1) = 〈db, U, sec, T, V, c′〉. From the rules, it
follows that res(s) = >. From this and the LTS rules,
it follows that [φ]db = >.

2. SELECT Success - 2. The proof for this case is similar
to that of SELECT Success - 1.

3. INSERT Success. Let i be such that ri = ri−1·〈u, INSERT,
R, t〉 · s , where s = 〈db, U, sec, T, V, c〉 ∈ ΩM and
last(ri−1) = 〈db′, U, sec, T, V, c′〉, and φ be R(t). From
the LTS rules, it follows that db = db′[R⊕ t]. From ⊕’s
definition, it follows that t ∈ db(R). Therefore, from
the RC’s semantics, it follows that [R(t)]db = >. Since
φ := R(t), it follows that [φ]db = >.

4. INSERT Success - FD. Let i be such that ri = ri−1 ·
〈u, INSERT, R, (v, w, q)〉·s, where s = 〈db, U, sec, T, V, c〉
∈ ΩM and last(ri−1) = 〈db′, U, sec, T, V, c′〉, and φ be

¬∃y, z. R(v, y, z) ∧ y 6= w. We claim that [φ]db′ holds.
From this claim and the LTS semantics, it follows that
there is no tuple (v′, w′, q′) in db′(R) such that v′ = v
and w′ 6= w. There are two cases:
(a) The INSERT command causes an integrity excep-

tion, i.e., Ex (s) 6= ∅. From this and the LTS se-
mantics, it follows that db = db′. From this and

[φ]db′ holds, it follows that also [φ]db holds.
(b) The INSERT command does not cause any integrity

exception, i.e., Ex (s) = ∅. From this, [φ]db′ = >,
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reviseBelief (p′, φ, p′ · act · s)) =


> if act = 〈u, op, R, t〉 ∧R 6∈ tables(φ) ∧ op ∈ {INSERT, DELETE}
> if act = 〈id , ow , ev , R′, φ, 〈op, R, t〉,m〉 ∧R 6∈ tables(φ) ∧ op ∈ {INSERT, DELETE}
> if act = 〈id , ow , ev , R, φ, 〈op, u, p〉,m〉 ∧ op ∈ {⊕,⊕∗,	}
⊥ otherwise

Figure 20: Belief Revision

and db(R) = db′(R) ∪ {(v, w, q)}, it follows that
there is no tuple (v′, w′, q′) in db(R) such that v′ =
v and w′ 6= w. From this, it follows that also [φ]db

holds.
We now prove our claim that [φ]db′ holds. Assume,
for contradiction’s sake, that this is not the case. This
means that there is a tuple (v′, w′, q′) in db′(R) such
that v′ = v and w′ 6= w. Let db′′ be the state db′[R ⊕
(v, w, q)]. From db′′ = db′[R ⊕ (v, w, q)], and the fact
that there is a tuple (v′, w′, q′) in db′(R) such that
v′ = v and w′ 6= w, it follows that there are two tuples
(v, w, q) and (v, w′, q′) in db′′(R) such that w′ 6= w.
From this and the relational calculus semantics, it fol-
lows that [∀x, y, y′, z, z′. ((R(x, y, z) ∧ R(x, y′, z′)) ⇒
y = y′]db′′ = ⊥. This contradicts the fact that ∀x, y, y′,
z, z′. ((R(x, y, z)∧R(x, y′, z′))⇒ y = y′ is not in Ex (s).

5. INSERT Success - ID. Let i be such that ri = ri−1 ·
〈u, INSERT, R, (v, w)〉 · s, where s = 〈db, U, sec, T, V, c〉
∈ ΩM and last(ri−1) = 〈db′, U, sec, T, V, c′〉, and φ be

∃y. S(v, y). We claim that [φ]db′ holds. From this claim
and the LTS semantics, it follows that there is a tuple
(v′, w′) in db′(S) such that v′ = v. There are two cases:
(a) The INSERT command causes an integrity excep-

tion, i.e., Ex (s) 6= ∅. From this and the LTS se-
mantics, it follows that db = db′. From this and

[φ]db′ holds, it follows that also [φ]db holds.
(b) The INSERT command does not cause any integrity

exception, i.e., Ex (s) = ∅. From this, [φ]db′ = >,
and db(S) = db′(S), it follows that there a tuple
(v′, w′) in db(S) such that v′ = v. From this, it
follows that also [φ]db holds.

We now prove our claim that [φ]db′ holds. Assume,
for contradiction’s sake, that this is not the case. This
means that there is no tuple (v′, w′) in db′(S) such that
v′ = v. Let db′′ be the state db′[R ⊕ (v, w)]. From
db′′ = db′[R⊕ (v, w)], and the fact that there is no tu-
ple (v′, w′) in db′(S) such that v′ = v, it follows that
there is a tuple (v, w) in db′′(R) and there is no tu-
ple (v′, w′) in db′′(S) such that v′ = v. From this
and the relational calculus semantics, it follows that

[∀x, z. (R(x, z) ⇒ ∃w. S(x,w))]db′′ = ⊥. This contra-
dicts the fact that ∀x, z. (R(x, z)⇒ ∃w. S(x,w)) is not
in Ex (s).

6. DELETE Success. The proof for this case is similar to
that of INSERT Success.

7. DELETE Success - ID. Let i be such that ri = ri−1 ·
〈u, DELETE, R, (v, w)〉 · s, where s = 〈db, U, sec, T, V, c〉
∈ ΩM and last(ri−1) = 〈db′, U, sec, T, V, c′〉, and φ be
∀x, z. (S(x, z) ⇒ x 6= v) ∨ ∃y. (R(v, y) ∧ y 6= w). We
claim that [φ]db holds. From this claim and the LTS
semantics, it follows that there are two cases:
(a) all tuples (x, y) ∈ db(S) are such that v 6= x. There

are two cases:
i. The DELETE command causes an integrity ex-

ception, i.e., Ex (s) 6= ∅. From this and the
LTS semantics, it follows that db = db′. From

this and [φ]db′ holds, it follows that also [φ]db

holds.
ii. The DELETE command does not cause any in-

tegrity exception, i.e., Ex (s) = ∅. From this,

[φ]db′ = >, and db(S) = db′(S), it follows that
all tuples (x, y) ∈ db(S) are such that v 6= x.
Therefore, also [φ]db holds.

(b) there is a tuple (v, w′) ∈ db(R) such that w 6= w′.
There are two cases:

i. The DELETE command causes an integrity ex-
ception, i.e., Ex (s) 6= ∅. From this and the
LTS semantics, it follows that db = db′. From

this and [φ]db′ holds, it follows that also [φ]db

holds.
ii. The DELETE command does not cause any in-

tegrity exception, i.e., Ex (s) = ∅. From this,

[φ]db′ = >, and db(R) = db′(R) \ {(v, w)}, it
follows that there is a tuple (v, w′) ∈ db(R)
such that w 6= w′. Therefore, also [φ]db holds.

We now prove our claim that [φ]db′ holds. Assume,
for contradiction’s sake, that this is not the case. This
means that there is a tuple (v, z) in db′(S) and there is
no tuple (v, y) ∈ db′(R) such that y 6= w. Let db′′ be
the state db′[R 	 (v, w)]. From db′′ = db′[R 	 (v, w)],
and the fact that there is a tuple (v, z) in db′(S) and
there is no tuple (v, y) ∈ db′(R) such that y 6= w, it
follows that there is a tuple (v, z) in db′′(S) and there
is no tuple (v, y) ∈ db′′(R) such that y 6= w. From this
and the relational calculus semantics, it follows that

[∀x, z. (S(x, z) ⇒ ∃w.R(x,w)]db′′ = ⊥. This contra-
dicts the fact that ∀x, z. (S(x, z) ⇒ ∃w.R(x,w) is not
in Ex (s).

8. INSERT Exception. Let i be such that ri = ri−1 ·
〈u, INSER, R, t〉 · s, where s = 〈db, U, sec, T, V, c〉 ∈ ΩM
and last(ri−1) = 〈db′, U, sec, T, V, c′〉, and φ be ¬R(t).

We claim that [¬R(t)]db′ = > holds. From the LTS
semantics, it follows that db = db′. Therefore, also
[¬R(t)]db = > holds.
We now prove our claim. Assume, for contradiction’s

sake, that [¬R(t)]db′ = ⊥. Therefore, t ∈ db′(R).
From this and the definition of ⊕, it follows that db′ =
db′[R ⊕ t]. From the rules, it follows that Ex (s) 6=
∅. Therefore, from the LTS semantics, it follows that
db′[R⊕t] 6∈ ΩΓ

D. From last(ri−1) = 〈db′, U, sec, T, V, c′〉,
it follows that db′ ∈ ΩΓ

D. However, from db′ = db′[R⊕t]
and db′ ∈ ΩΓ

D, it follows that db′[R ⊕ t] ∈ ΩΓ
D leading

to a contradiction.
9. DELETE Exception. The proof for this case is similar to

that of INSERT Exception.
10. INSERT FD Exception. Let i be such that ri = ri−1 ·
〈u, INSERT, R, (v, w, q)〉·s, where s = 〈db, U, sec, T, V, c〉
∈ ΩM and last(ri−1) = 〈db′, U, sec, T, V, c′〉, and φ be
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∃y, z. R(v, y, z) ∧ y 6= w. We claim that [φ]db′ holds.
From this claim and the LTS semantics, it follows that
there is a tuple (v, w′, q′) in db′(R) such that w′ 6= w.
From this and db = db′, it follows that there is a tuple
(v, w′, q′) in db(R) such that w′ 6= w. From this, it
follows that also [φ]db holds.

We now prove our claim that [φ]db′ holds. Assume,
for contradiction’s sake, that this is not the case. This
means that there is no tuple (v′, w′, q′) in db′(R) such
that v′ = v and w′ 6= w. Therefore, for all tuples
(v′, w′, q′) in db′(R), if v = v′, then w′ = w. From this
and db′[R ⊕ (v, w, q)](R) = db′(R) ∪ {(v, w, q)}, it fol-
lows that for all tuples (v′, w′, q′) in db′[R⊕(v, w, q)](R),
if v = v′, then w′ = w. Furthermore, from db′ ∈ ΩΓ

D ,
it follows that for all tuples (v′, w′, q′) and (v′, w′′, q′′)
in db(R) such that v′ 6= v, then w′ = w. From this and
db[R ⊕ (v, w, q)](R) = db′(R) ∪ {(v, w, q)}, it follows
that for all tuples (v′, w′, q′) and (v′, w′′, q′′) in db′[R⊕
(v, w, q)](R) such that v′ 6= v, then w′ = w. From
these facts and the relational calculus semantics, it fol-
lows that [∀x, y, y′, z, z′. ((R(x, y, z) ∧ R(x, y′, z′)) ⇒
y = y′]db′[R⊕(v,w,q)] = >. This is in contradiction with
the fact that the constraint ∀x, y, y′, z, z′. ((R(x, y, z)∧
R(x, y′, z′))⇒ y = y′ is in Ex (last(ri)).

11. INSERT ID Exception. Let i be such that ri = ri−1 ·
〈u, INSERT, R, (v, w)〉 · s, where s = 〈db, U, sec, T, V, c〉
∈ ΩM and last(ri−1) = 〈db′, U, sec, T, V, c′〉, and φ be

∀x, y. S(x, y) ⇒ x 6= v. We claim that [φ]db′ holds.
From this claim and the LTS semantics, it follows that
there is no tuple (v, w′) in db′(S). From this and db(S) =
db′(S), it follows that there no tuple (v, w′) in db(S).
From this, it follows that also [φ]db holds.

We now prove our claim that [φ]db′ holds. Assume,
for contradiction’s sake, that this is not the case. This
means that there is a tuple (v, w′) in db′(S), for some
w′. From db′ ∈ ΩΓ

D, it follows that for all tuples (x, z) ∈
db′(R) such that x 6= v, there is a tuple (x, y) ∈ db′(S).
From this, (v, w′) in db′(S), db′[R⊕(v, w)](S) = db′(S),
and db′[R ⊕ (v, w)](R) = db′(R) ∪ {(v, w)}, it follows
that for all tuples (x, z) ∈ db′[R ⊕ (v, w)](R), there is
a tuple (x, y) ∈ db′[R ⊕ (v, w)](S). From these facts
and the relational calculus semantics, it follows that

[∀x, z. (R(x, z) ⇒ ∃w. S(x,w))]db′[R⊕(v,w)] = >. This
is in contradiction with the fact that the constraint
∀x, z. (R(x, z)⇒ ∃w. S(x,w)) is in Ex (last(ri)).

12. DELETE FD Exception. Let i be such that ri = ri−1 ·
〈u, DELETE, R, (v, w)〉 · s, where s = 〈db, U, sec, T, V, c〉
∈ ΩM and last(ri−1) = 〈db′, U, sec, T, V, c′〉, and φ be
∃z. S(v, z) ∧ ∀y. (R(v, y) ⇒ y = w). We claim that

[φ]db′ holds. From this claim and the LTS semantics,
it follows that there is a tuple (v, z) in db′(S) and all
tuples (v, y) ∈ db′(R) are such that y = w. From (v, z)
in db′(S) and db(S) = db′(S), it follows that (v, z) in
db′(S). From the fact that all tuples (v, y) ∈ db′(R) are
such that y = w and db(R) = db′(R)}, it follows that all
tuples (v, y) ∈ db(R) are such that y = w. From (v, z)
in db(S) and the fact that all tuples (v, y) ∈ db(R) are
such that y = w, it follows that [φ]db holds.

We now prove our claim that [φ]db′ holds. Assume, for
contradiction’s sake, that this is not the case. There
are two cases:
(a) all tuples (x, y) ∈ db′(S) are such that v 6= x. Fur-

thermore, from db′ ∈ ΩΓ
D, it follows that for all

tuples (x, y) ∈ db(S) such that v 6= x, there is
a tuple (x, z) ∈ db(R). From these facts, db′[R 	
(v, w)](S) = db′(S), and db′[R	(v, w)](R) = db′(R)
\ {(v, w)}, it follows that for all tuples (x, y) ∈
db′[R	 (v, w)](S), there is a tuple (x, z) ∈ db′[R	
(v, w)](R). From this and the relational calculus
semantics, it follows that

[∀x, z. (S(x, z)⇒ ∃w.R(x,w)]db′[R	(v,w))] = >.

This contradicts the fact that the constraint ∀x, z.
(S(x, z)⇒ ∃w.R(x,w)) is in Ex (last(ri)).

(b) there is a tuple (v, w′) ∈ db′(R) such that w 6= w′.
Furthermore, from db′ ∈ ΩΓ

D, it follows that for
all tuples (x, y) ∈ db′(S) such that v 6= x, there is
a tuple (x, z) ∈ db′(R). From these facts, db′[R 	
(v, w)](S) = db′(S), and db′[R	(v, w)](R) = db′(R)
\ {(v, w)}, it follows that for all tuples (x, y) ∈
db′[R	 (v, w)](S), there is a tuple (x, z) ∈ db′[R	
(v, w)](R). From this and the relational calculus
semantics, it follows that

[∀x, z. (S(x, z)⇒ ∃w.R(x,w)]db′[R	(v,w))] = >.

This contradicts the fact that the constraint ∀x, z.
(S(x, z)⇒ ∃w.R(x,w)) is in Ex (last(ri)).

13. Integrity Constraint. The proof of this case follows triv-
ially from the fact that for any state s = 〈db, U, sec, T,
V, c〉 ∈ ΩM and any γ ∈ Γ, [γ]db = > holds by defini-
tion.

14. Learn GRANT/REVOKE Backward. Let i be such that
ri = ri−1 · t · s, where s = 〈db, U, sec, T, V, c〉 ∈ ΩM ,
last(ri−1) = 〈db, U, sec′, T, V, c′〉, and t be a trigger
whose WHEN condition is φ and whose action is either a
GRANT or a REVOKE. From the rule’s definition, it follows
sec 6= sec′. We now prove that [φ]db = >. Assume, for
contradiction’s sake, that [φ]db = ⊥. From this and the
LTS rules for the triggers, it follows that the trigger t is
disabled. Therefore, according to the Trigger Disabled
rule, sec = sec′, which leads to a contradiction.

15. Trigger GRANT Disabled Backward. Let i be such that
ri = ri−1 · t · s, where s = 〈db, U, sec, T, V, c〉 ∈ ΩM ,
last(ri−1) = 〈db, U, sec′, T, V, c′〉, and t be a trigger
whose WHEN condition is ψ, and φ be ¬ψ. Furthermore,
let g ∈ Ωsec

U,D be the GRANT added by the trigger. From
the rule’s definition, it follows g 6∈ sec′. We now prove
that [φ]db = >. Assume, for contradiction’s sake, that
[φ]db =⊥. This would imply that the trigger t is en-
abled. There are two cases:
(a) t’s execution is authorized. Therefore, g ∈ sec′,

which contradicts g 6∈ sec′.
(b) t’s execution is not authorized. This contradicts

secEx (s) = ⊥.
16. Trigger REVOKE Disabled Backward. The proof for this

case is similar to that of Trigger GRANT Disabled Back-
ward.

17. Trigger INSERT FD Exception. The proof for this case
is similar to that of INSERT FD Exception.

18. Trigger INSERT ID Exception. The proof for this case
is similar to that of INSERT ID Exception.

19. Trigger DELETE ID Exception. The proof for this case
is similar to that of DELETE ID Exception.

20. Trigger Exception. Let i be such that ri = ri−1 · t ·
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s, where s = 〈db, U, sec, T, V, c〉 ∈ ΩM , last(ri−1) =
〈db, U, sec′, T, V, c′〉, and t be a trigger whose WHEN con-
dition is φ and whose action is act . From the rule’s
definition, it follows that t is enabled and that the eval-
uation of the WHEN condition is authorized. From this
and the LTS’s rules, it follows that [φ]db = >.

21. Trigger INSERT Exception. The proof for this case is
similar to that of INSERT Exception.

22. Trigger DELETE Exception. The proof for this case is
similar to that of DELETE Exception.

23. Trigger Rollback INSERT. Let i be such that ri = ri−n−1·
〈u, INSERT, R, t〉·s1 ·t1 ·s2 ·. . .·tn ·sn, where s1, s2, . . . , sn
∈ ΩM and t1, . . . , tn ∈ T RIGGERD, and φ be ¬R(t).
Furthermore, let last(ri−n−1) = 〈db′, U ′, sec′, T ′, V ′, c′〉
and sn be 〈db, U, sec, T, V, c〉. Assume, for contradic-
tion’s sake, that [φ]db = ⊥. Therefore, t ∈ db(R). From
the LTS rules, it follows that db′ = db. From this and
t ∈ db(R), it follows t ∈ db′(R). From r’s definition
and the LTS rule INSERT Success - 2, it follows that
t 6∈ db′(R), which leads to a contradiction.

24. Trigger Rollback DELETE. The proof for this case is sim-
ilar to that of Trigger Rollback INSERT.

This completes the proof of the base step.

Induction Step: Assume that the claim hold for any
derivation of r, j `u ψ such that |r, j `u ψ| < |r, i `u φ|.
We now prove that the claim also holds for r, i `u φ. There
are a number of cases depending on the rule used to obtain
r, i `u φ.

1. View. The proof of this case follows trivially from
the semantics of the relational calculus extended over
views.

2. Propagate Forward SELECT. Let i be such that ri+1 =
ri ·〈u, SELECT, ψ〉·s, where s = 〈db, U, sec, T, V, c〉 ∈ ΩM
and last(ri) = 〈db′, U ′, sec′, T ′, V ′, c′〉. From the rule’s
definition, r, i `u φ holds. From this, the induction
hypothesis, and last(ri) = 〈db′, U ′, sec′, T ′, V ′, c′〉, it

follows that [φ]db′ = >. From the LTS semantics, it

follows that db = db′. From this and [φ]db′ = >, it
follows that [φ]db = >.

3. Propagate Forward GRANT/REVOKE. The proof for this
case is similar to that of Propagate Forward SELECT.

4. Propagate Forward CREATE. The proof for this case is
similar to that of Propagate Forward SELECT.

5. Propagate Backward SELECT. Let i be such that ri+1 =
ri · 〈u, SELECT, ψ〉 · s, where s = 〈db′, U ′, sec′, T ′, V ′, c′〉
∈ ΩM and last(ri) = 〈db, U, sec, T, V, c〉. From the
rule’s definition, r, i + 1 `u φ holds. From this, the
induction hypothesis, ri+1 = ri · 〈u, SELECT, ψ〉 · s, and

s = 〈db, U, sec, T, V, c〉, it follows that [φ]db′ = >. From
the LTS semantics, it follows that db = db′. From this

and [φ]db′ = >, it follows that [φ]db = >.
6. Propagate Backward GRANT/REVOKE. The proof for this

case is similar to that of Propagate Backward SELECT.
7. Propagate Backward CREATE TRIGGER. The proof for

this case is similar to that of Propagate Backward SE-

LECT.
8. Propagate Backward CREATE VIEW. Let i be such that
ri+1 = ri · 〈u, CREATE, o〉 · s, where s = 〈db′, U ′, sec′, T ′,
V ′, c′〉 ∈ ΩM and last(ri) = 〈db, U, sec, T, V, c〉. From
the rule’s definition, r, i + 1 `u φ′ holds. From this,
the induction hypothesis, ri+1 = ri · 〈u, SELECT, ψ〉 · s,
and s = 〈db, U, sec, T, V, c〉, it follows that [φ′]db′ = >.

From the definition of replace, it follows that replace(φ′,
o) and φ′ are semantically equivalent. From this and

[φ′]db′ = >, [replace(φ′, o)]db′ = >. From the LTS
semantics, it follows that db = db′. From this and

[replace(φ′, o)]db′ = >, it follows that [replace(φ′, o)]db

= >.
9. Rollback Backward - 1. Let i be such that ri = ri−n−1 ·
〈u, op, R, t〉 ·s1 · t1 ·s2 · . . . · tn ·sn, where s1, s2, . . . , sn ∈
ΩM , t1, . . . , tn ∈ T RIGGERD, and op is one of {INSERT,
DELETE}. Furthermore, let sn be 〈db′, U ′, sec′, T ′, V ′, c′〉
and last(ri−n−1) be 〈db, U, sec, T, V, c〉. From the rule’s
definition, r, i `u φ holds. From this, the induction hy-
pothesis, and sn = 〈db, U, sec, T, V, c〉 ∈ ΩM , it follows

that [φ]db′ = >. From the LTS semantics, it follows
that db = db′ (because a roll-back happened). From

this and [φ]db′ = >, it follows that [φ]db = >.
10. Rollback Backward - 2. Let i be such that ri = ri−1 ·
〈u, op,R, t〉 · s, where s = 〈db′, U ′, sec′, T ′, V ′, c′〉 ∈
ΩM , last(ri−1) = 〈db, U, sec, T, V, c〉, and op is one of
{INSERT, DELETE}. From the rule’s definition, r, i `u
φ holds. From this, the induction hypothesis, ri =
ri−1 · 〈u, op,R, t〉 · s, and s = 〈db′, U ′, sec′, T ′, V ′, c′〉,
it follows that [φ]db′ = >. From the LTS semantics, it
follows that db = db′ (because a roll-back happened).

From this and [φ]db′ = >, it follows that [φ]db = >.
11. Rollback Forward - 1. Let i be such that ri = ri−n−1 ·
〈u, op, R, t〉 ·s1 · t1 ·s2 · . . . · tn ·sn, where s1, s2, . . . , sn ∈
ΩM , t1, . . . , tn ∈ T RIGGERD, and op is one of {INSERT,
DELETE}. Furthermore, let sn be 〈db, U, sec, T, V, c〉
and last(ri−n−1) be 〈db′, U ′, sec′, T ′, V ′, c′〉. From the
rule’s definition, r, i− n− 1 `u φ holds. From this, the
induction hypothesis, and last(ri−n−1) = 〈db′, U ′, sec′,

T ′, V ′, c′〉., it follows that [φ]db′ = >. From the LTS se-
mantics, it follows that db = db′ (because a roll-back

happened). From this and [φ]db′ = >, it follows that
[φ]db = >.

12. Rollback Forward - 2. Let i be such that ri = ri−1 ·
〈u, op,R, t〉·s, where op ∈ {INSERT, DELETE}, s = 〈db, U,
sec, T, V, c〉 ∈ ΩM and last(ri−1) = 〈db′, U ′, sec′, T ′, V ′,
c′〉. From the rule’s definition, r, i − 1 `u φ holds.
From this, the induction hypothesis, and last(ri−1) =

〈db′, U ′, sec′, T ′, V ′, c′〉, it follows that [φ]db′ = >. From
the LTS semantics, it follows that db = db′ (because a

roll-back happened). From this and [φ]db′ = >, it fol-
lows that [φ]db = >.

13. Propagate Forward INSERT/DELETE Success. Let i be
such that ri = ri−1 ·〈u, op,R, t〉·s, where op ∈ {INSERT,
DELETE}, s = 〈db, U, sec, T, V, c〉 ∈ ΩM and last(ri−1) =
〈db′, U ′, sec′, T ′, V ′, c′〉. From the rule’s definition, r, i−
1 `u φ holds. From this, the induction hypothesis,
and last(ri−1) = 〈db′, U ′, sec′, T ′, V ′, c′〉, it follows that

[φ]db′ = >. From reviseBelief (ri−1, φ, ri) = >, it fol-
lows that R does not occur in φ. From the LTS seman-
tics, it follows that db(R′) = db′(R′) for all R′ 6= R.
From this and the fact that R does not occur in φ, it
follows that [φ]db = >.

14. Propagate Forward INSERT Success - 1. Let i be such
that ri = ri−1 · 〈u, op,R, t〉 · s, where op is one of
{INSERT, DELETE}, s = 〈db, U, sec, T, V, c〉 ∈ ΩM and
last(ri−1) = 〈db′, U ′, sec′, T ′, V ′, c′〉. From the rule’s
definition, r, i − 1 `u φ and r, i − 1 `u R(t) hold.
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From this, the induction hypothesis, and last(ri−1) =

〈db′, U ′, sec′, T ′, V ′, c′〉, it follows that [φ]db′ = > and

[R(t)]db′ = >. From [R(t)]db′ = > and the relational
calculus’ semantics, it follows that t ∈ db′(R). From
the LTS semantics, db = db′[R ⊕ t]. From this, it fol-
lows that db(R′) = db′(R′) for all R′ 6= R and db(R) =
db′(R) ∪ {t}. From this and t ∈ db′(R), it follows that
db(R) = db′(R). Therefore, db = db′. From this and

[φ]db′ = >, it follows that [φ]db = >.
15. Propagate Forward DELETE Success - 1. The proof for

this case is similar to that of Propagate Forward INSERT

Success - 1.
16. Propagate Backward INSERT/DELETE Success. The proof

for this case is similar to that of Propagate Forward IN-

SERT/DELETE Success.
17. Propagate Backward INSERT Success - 1. The proof for

this case is similar to that of Propagate Forward INSERT

Success - 1.
18. Propagate Backward DELETE Success - 1. The proof for

this case is similar to that of Propagate Forward DELETE

Success - 1.
19. Reasoning. Let Φ be a subset of {φ | r, i `u φ} and

last(ri) = 〈db, U, sec, T, V, c〉. From the induction hy-
pothesis, it follows that [φ]db = > for any φ ∈ Φ. From
the rule’s definition, it follows that Φ |=fin γ. From this
and [φ]db = > for any φ ∈ Φ, it follows that [γ]db = >.

20. Learn INSERT Backward - 3. Let i be such that ri =
ri−1 ·〈u, INSERT, R, t〉·s, where s = 〈db′, U ′, sec′, T ′, V ′,
c′〉 ∈ ΩM and last(ri−1) = 〈db, U, sec, T, V, c〉, and φ be
¬R(t). We prove that [¬R(t)]db = >. Assume, for
contradiction’s sake, that [¬R(t)]db = ⊥. From this
and the relational calculus semantics, it follows that
t ∈ db(R). From this and the LTS semantics, it fol-
lows that db = db′ because db′ = db[R ⊕ t]. How-
ever, from the rule’s definition, there is a ψ such that
r, i − 1 `u ψ and r, i `u ¬ψ hold. From this, the in-
duction hypothesis, s = 〈db′, U ′, sec′, T ′, V ′, c′〉, and
last(ri−1) = 〈db, U, sec, T, V, c〉, it follows that [ψ]db =

> and [¬ψ]db′ = >. Therefore, [ψ]db = > and [ψ]db′ =
⊥. Hence, db 6= db′ leading to a contradiction with
db = db′.

21. Learn DELETE Backward - 3. The proof for this case is
similar to that of Learn INSERT Backward - 3.

22. Propagate Forward Disabled Trigger. Let i be such that
ri = ri−1 · t · s, where s = 〈db, U, sec, T, V, c〉 ∈ ΩM ,
last(ri−1) = 〈db, U, sec, T, V, c〉, and t be a trigger. Fur-
thermore, let ψ be t’s condition where all free variables
are replaced with the values in tpl(last(ri−1)). From
the rule’s definition, it follows that r, i−1 `u ¬ψ holds.
From this and the induction hypothesis, it follows that

[ψ]db′ = ⊥. From this, the fact that ψ is t’s WHEN con-
dition, and the rule Trigger Disabled, it follows that
db = db′. From the rule’s definition, it follows that
r, i − 1 `u φ holds. From this, the induction hypothe-
sis, and last(ri−1) = 〈db, U, sec, T, V, c〉, it follows that

[φ]db′ = >. From this and db = db′, it follows that
[φ]db = >.

23. Propagate Backward Disabled Trigger. The proof for
this case is similar to that of Propagate Forward Dis-
abled Trigger.

24. Learn INSERT Forward. Let i be such that ri = ri−1 ·
t · s, where s = 〈db, U, sec, T, V, c〉 ∈ ΩM , last(ri−1) =

〈db, U, sec, T, V, c〉, and t be a trigger, and φ be R(t).
Furthermore, let ψ be t’s condition where all free vari-
ables are replaced with the values in tpl(last(ri−1)).
From the rule’s definition, it follows that r, i − 1 `u ψ
holds. From this and the induction hypothesis, it fol-

lows that [ψ]db′ = ⊥. Furthermore, from the rule’s
definition, it follows that secEx (s) = ⊥ and Ex (s) = ∅.
From this, the fact that ψ is t’s WHEN condition, [ψ]db′ =
⊥, and the rule Trigger DELETE-INSERT Success, it fol-
lows that db = db′[R ⊕ t]. From the definition of ⊕,
it follows that t ∈ db(R). From this and the relational
calculus semantics, it follows that [φ]db = >.

25. Learn INSERT - FD. Let i be such that ri = ri−1 · t ·
s, where s = 〈db, U, sec, T, V, c〉 ∈ ΩM , last(ri−1) =
〈db′, U ′, sec′, T ′, V ′, c′〉, and t ∈ T RIGGERD, and φ
be ¬∃y, z. R(v, y, z) ∧ y 6= w. Furthermore, let ψ be t’s
condition where all free variables are replaced with the
values in tpl(last(ri−1)) and 〈u′, INSERT, R, (v, w, q)〉 be
t’s actual action. We claim that db(R) = db′(R) ∪
{(v, w, q)}. Furthermore, we claim that [φ]db holds.
From this claim and the relational calculus semantics, it
follows that there is no tuple (v′, w′, q′) in db(R) such
that v′ = v and w′ 6= w. From this and db(R) =
db′(R) ∪ {(v, w, q)}, it follows that there is no tuple
(v′, w′, q′) in db′(R) such that v′ = v and w′ 6= w.

From this, it follows that also [φ]db′ holds.
We now prove our claim that db(R) = db′(R)∪{(v, w, q)}.
Assume, for contradiction’s sake, that this is not the
case. Since db is obtained from db′, this would im-
ply that the trigger t is disabled. Hence, this would

imply that [ψ]db′ = ⊥. From the rule’s definition,
r, i − 1 `u ψ. From this, the induction’s hypothesis,
and last(ri−1) = 〈db′, U, sec, T, V, c′〉, it follows that

[ψ]db′ = >, which contradicts [ψ]db′ = ⊥.
We now prove our claim that [φ]db holds. Assume, for
contradiction’s sake, that this is not the case. This
means that there is a tuple (v′, w′, q′) in db(R) such
that v′ = v and w′ 6= w. Note that, as we proved
before, (v, w, q) ∈ db(R). Therefore, there are two tu-
ples (v, w, q) and (v, w′, q′) in db(R) such that w′ 6= w.
From this and the relational calculus semantics, it fol-
lows that [∀x, y, y′, z, z′. ((R(x, y, z) ∧ R(x, y′, z′)) ⇒
y = y′]db = ⊥. This is in contradiction with the fact
that the constraint ∀x, y, y′, z, z′. ((R(x, y, z)∧R(x, y′,
z′))⇒ y = y′ is in Γ. Indeed, since the constraint is in
Γ, any state in ΩΓ

D must satisfy it.
26. Learn INSERT - FD - 1. Let i be such that ri = ri−1 ·

t · s, where s = 〈db, U, sec, T, V, c〉 ∈ ΩM , last(ri−1) =
〈db′, U ′, sec′, T ′, V ′, c′〉, and t ∈ T RIGGERD, and φ be
¬∃y, z. R(v, y, z)∧y 6= w. Furthermore, let ψ be t’s con-
dition where all free variables are replaced with the val-
ues in tpl(last(ri−1)) and 〈u′, INSERT, R, (v, w, q)〉 be t’s
actual action. From the rule’s definition, r, i− 1 `u ψ.
From this, the induction’s hypothesis, and last(ri−1) =

〈db′, U, sec, T, V, c′〉, it follows that [ψ]db′ = >. From
this and the LTS semantics, it follows that the trig-
ger t is enabled in last(ri−1). We now prove our claim

that [φ]db′ holds. Assume, for contradiction’s sake, that
this is not the case. This means that there is a tuple
(v′, w′, q′) in db′(R) such that v′ = v and w′ 6= w. Let
db′′ be the state db′[R⊕ (v, w, q)]. From db′′ = db′[R⊕
(v, w, q)], and the fact that there is a tuple (v′, w′, q′)
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in db′(R) such that v′ = v and w′ 6= w, it follows that
there are two tuples (v, w, q) and (v, w′, q′) in db′′(R)
such that w′ 6= w. From this and the relational calculus
semantics, it follows that [∀x, y, y′, z, z′. ((R(x, y, z) ∧
R(x, y′, z′))⇒ y = y′]db′′ = ⊥. Since the trigger t is en-
abled, this contradicts the fact that ∀x, y, y′, z, z′. ((R(x,
y, z) ∧R(x, y′, z′))⇒ y = y′ is not in Ex (s).

27. Learn INSERT - ID. The proof of this case is similar to
that of Learn INSERT - FD. See also the proof of INSERT
Success - ID.

28. Learn INSERT - ID - 1. The proof of this case is similar
to that of Learn INSERT - FD - 1. See also the proof of
INSERT Success - ID.

29. Learn INSERT Backward - 1. Let i be such that ri =
ri−1 · t · s, where s = 〈db′, U ′, sec′, T ′, V ′, c′〉 ∈ ΩM ,
last(ri−1) = 〈db, U, sec, T, V, c〉, and t ∈ T RIGGERD,
and φ be t’s actual WHEN condition, where all free vari-
ables are replaced with the values in tpl(last(ri−1)).
From the rule’s definition, it follows that there is a ψ
such that r, i−1 `u ψ and r, i `u ¬ψ. From this, the in-
duction’s hypothesis, s = 〈db′, U ′, sec′, T ′, V ′, c′〉, and
last(ri−1) = 〈db, U, sec, T, V, c〉, it follows that [ψ]db =

> and [¬ψ]db′ = >. Therefore, [ψ]db = > and [ψ]db′ =
⊥. Hence, db 6= db′. We now prove that [φ]db =
>. Assume, for contradiction’s sake, that [φ]db = ⊥.
From the rule’s definition, it follows that secEx (s) =
⊥. Therefore, f(last(ri−1), 〈u′, SELECT, φ〉) = >. From
this, [φ]db = ⊥, and the rule Trigger Disabled, it fol-
lows that db = db′, which contradicts db 6= db′.

30. Learn INSERT Backward - 2. Let i be such that ri =
ri−1 · t · s, where s = 〈db′, U ′, sec′, T ′, V ′, c′〉 ∈ ΩM ,
last(ri−1) = 〈db, U, sec, T, V, c〉, and t ∈ T RIGGERD,
and φ be ¬R(t). Furthermore, let act = 〈u′, INSERT, R,
t〉 be t’s actual action. From the rule’s definition, it
follows that there is a ψ such that r, i − 1 `u ψ and
r, i `u ¬ψ. From this, the induction’s hypothesis, s =
〈db′, U ′, sec′, T ′, V ′, c′〉, and last(ri−1) = 〈db, U, sec, T,

V, c〉, it follows that [ψ]db = > and [¬ψ]db′ = >. There-

fore, [ψ]db = > and [ψ]db′ = ⊥. Hence, db 6= db′.
We now prove that [φ]db = >. Assume, for contra-
diction’s sake, that [φ]db = ⊥. Therefore, t ∈ db(R).
From this and act = 〈u′, INSERT, R, t〉, it follows that
db′ = db[R⊕ t]. From this and ⊕’s definition, it follows
that db′(R′) = db(R′) for all R′ 6= R and db′(R) =
db(R) ∪ {t}. From db′(R) = db(R) ∪ {t} and t ∈
db(R), it follows that db′(R) = db(R). From this and
db′(R′) = db(R′) for all R′ 6= R, it follows that db′ =
db, which contradicts db 6= db′.

31. Learn DELETE Forward. The proof of this case is similar
to that of Learn INSERT Forward.

32. Learn DELETE - ID. The proof of this case is similar to
that of Learn INSERT - FD. See also the proof of DELETE
Success - ID.

33. Learn DELETE - ID - 1. The proof of this case is similar
to that of Learn INSERT - FD - 1. See also the proof of
DELETE Success - ID.

34. Learn DELETE Backward - 1. The proof of this case is
similar to that of Learn INSERT Backward - 1.

35. Learn DELETE Backward - 2. The proof of this case is
similar to that of Learn INSERT Backward - 2.

36. Propagate Forward Trigger Action. The proof of this
case is similar to Propagate Forward INSERT/DELETE

Success.
37. Propagate Backward Trigger Action. The proof of this

case is similar to Propagate Backward INSERT/DELETE

Success.
38. Propagate Forward INSERT Trigger Action. The proof

of this case is similar to that of Propagate Forward IN-

SERT Success - 1.
39. Propagate Forward DELETE Trigger Action. The proof

of this case is similar to that of Propagate Forward
DELETE Success - 1.

40. Propagate Backward INSERT Trigger Action. The proof
of this case is similar to that of Propagate Backward
INSERT Success - 1.

41. Propagate Backward DELETE Trigger Action. The proof
of this case is similar to that of Propagate Backward
DELETE Success - 1.

42. Trigger FD INSERT Disabled Backward. Let i be such
that ri = ri−1 ·t ·s, where s = 〈db′, U ′, sec′, T ′, V ′, c′〉 ∈
ΩM , t ∈ T RIGGERD, and last(ri−1) = 〈db, U, sec, T, V,

c〉, and ψ be ¬φ[x|R
′| 7→ tpl(last(ri−1))]. Furthermore,

let act = 〈u′, INSERT, R, (v, w, q)〉 be t’s actual action.
From the rule’s definition, it follows that r, i − 1 `u
∃y, z.R(v, y, z)∧ y 6= w holds. From this, the induction
hypothesis, and last(ri−1) = 〈db, U, sec, T, V, c〉, it fol-
lows that [∃y, z.R(v, y, z) ∧ y 6= w]db = >. Therefore,
there is a tuple (v, w′, z′) ∈ db(R) such that w′ 6= w.
We now prove that [ψ]db = >. Assume, for contra-
diction’s sake, that this is not the case, namely that
[φ[x 7→ tpl(last(ri−1))]]db = >. There are two cases:
(a) the trigger t is enabled and the action act is autho-

rized. In this case, the database db[R⊕{(v, w, q)}]
6∈ ΩΓ

D because ∀x, y, y′, z, z′. (R(x, y, z)∧R(x, y′, z′))
⇒ y = y′ ∈ Γ and there is a tuple (v, w′, z′) ∈
db(R) such that w′ 6= w. Therefore, the resulting
state would be such that Ex (s) 6= ∅. This contra-
dicts the fact that, according to the rule’s defini-
tion, Ex (s) = ∅.

(b) the trigger t is enabled and the action act is not
authorized. Therefore, the resulting state would be
such that secEx (s) = >. This contradicts the fact
that, according to the rule’s definition, secEx (s) =
⊥.

43. Trigger ID INSERT Disabled Backward. The proof of
this case is similar to that of Trigger FD INSERT Dis-
abled Backward.

44. Trigger ID DELETE Disabled Backward. The proof of
this case is similar to that of Trigger FD INSERT Dis-
abled Backward.

This completes the proof of the induction step.
This completes the proof of the theorem.
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r, i `u ψ ri+1 = ri · 〈u, SELECT, φ〉 · s 1 ≤ i < |r| s ∈ ΩM

r, i+ 1 `u ψ
Propagate Forward

SELECT

r, i `u ψ ri+1 = ri · 〈op, u′, pr , u〉 · s 1 ≤ i < |r| op ∈ {⊕,⊕∗,	} s ∈ ΩM

r, i+ 1 `u ψ
Propagate Forward

GRANT/REVOKE

r, i `u ψ ri+1 = ri · 〈u, CREATE, o〉 · s 1 ≤ i < |r| o ∈ T RIGGERD ∪ VIEWD s ∈ ΩM

r, i+ 1 `u ψ
Propagate Forward

CREATE

Figure 21: Rules defining how the attacker propagates (forward) the knowledge

r, i+ 1 `u ψ ri+1 = ri · 〈u, SELECT, φ〉 · s 1 ≤ i < |r| s ∈ ΩM

r, i `u ψ
Propagate Backward

SELECT

r, i+ 1 `u ψ ri+1 = ri · 〈op, u′, pr , u〉 · s 1 ≤ i < |r| op ∈ {⊕,⊕∗,	} s ∈ ΩM

r, i `u ψ
Propagate Backward

GRANT/REVOKE

r, i+ 1 `u ψ ri+1 = ri · 〈u, CREATE, o〉 · s 1 ≤ i < |r| o ∈ T RIGGERD s ∈ ΩM

r, i `u ψ
Propagate Backward
CREATE TRIGGER

r, i+ 1 `u ψ ri+1 = ri · 〈u, CREATE, o〉 · s 1 ≤ i < |r| o ∈ VIEWD s ∈ ΩM ψ′ = replace(ψ, o)

r, i `u ψ′
Propagate Backward

CREATE VIEW

Figure 22: Rules defining how the attacker propagates (backward) the knowledge
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1 < i ≤ |r| ri = ri−1 · 〈u, SELECT, φ〉 · s s = 〈db, U, sec, T, V, h, 〈〈u, SELECT, φ〉,>,>, ∅〉, 〈ε, ε, ε, ε〉〉
r, i `u φ

SELECT Success - 1

1 < i ≤ |r| ri = ri−1 · 〈u, SELECT, φ〉 · s s = 〈db, U, sec, T, V, h, 〈〈u, SELECT, φ〉,>,⊥, ∅〉, 〈ε, ε, ε, ε〉〉
r, i `u ¬φ

SELECT Success - 2

1 < i ≤ |r| ri = ri−1 · 〈u, INSERT, R, t〉 · s s = 〈db, U, sec, T, V, h, 〈〈u, INSERT, R, t〉,>,>, ∅〉, 〈rS′, t, u, tr〉〉
r, i `u R(t)

INSERT Success

1 < i ≤ |r| ri = ri−1 · 〈u, INSERT, R, t〉 · s l ∈ {i, i− 1}
s = 〈db, U, sec, T, V, h, 〈〈u, INSERT, R, t〉,>,>, E〉, 〈rS′, t, u, tr〉〉

∀x, y, y′, z, z′. ((R(x, y, z) ∧R(x, y′, z′))⇒ y = y′ ∈ Γ \ E t = (v, w, q)

r, l `u ¬∃y, z. R(v, y, z) ∧ y 6= w
INSERT Success - FD

1 < i ≤ |r| ri = ri−1 · 〈u, INSERT, R, t〉 · s l ∈ {i, i− 1}
s = 〈db, U, sec, T, V, h, 〈〈u, INSERT, R, t〉,>,>, E〉, 〈rS′, t, u, tr〉〉
∀x, z. (R(x, z)⇒ ∃y. S(x, y)) ∈ Γ \ E t = (v, w)

r, l `u ∃y. S(v, y)
INSERT Success - ID

1 < i ≤ |r| ri = ri−1 · 〈u, DELETE, R, t〉 · s s = 〈db, U, sec, T, V, h, 〈〈u, DELETE, R, t〉,>,>, ∅〉, 〈rS′, t, u, tr〉〉
r, i `u ¬R(t)

DELETE Success

1 < i ≤ |r| ri = ri−1 · 〈u, DELETE, R, t〉 · s l ∈ {i, i− 1}
s = 〈db, U, sec, T, V, h, 〈〈u, DELETE, R, t〉,>,>, E〉, 〈rS′, t, u, tr〉〉
∀x, z. (S(x, z)⇒ ∃y.R(x, y)) ∈ Γ \ E t = (v, w)

r, l `u ∀x, z. (S(x, z)⇒ x 6= v) ∨ ∃y. (R(v, y) ∧ y 6= w)
DELETE Success - ID

1 < i ≤ |r| ri = ri−1 · 〈u, INSERT, R, t〉 · s l ∈ {i, i− 1}
s = 〈db, U, sec, T, V, h, 〈〈u, INSERT, R, t〉,>,⊥, E〉, 〈ε, ε, ε, ε〉〉 E 6= ∅

r, l `u ¬R(t)
INSERT Exception

1 < i ≤ |r| ri = ri−1 · 〈u, DELETE, R, t〉 · s l ∈ {i, i− 1}
s = 〈db, U, sec, T, V, h, 〈〈u, DELETE, R, t〉,>,⊥, E〉, 〈ε, ε, ε, ε〉〉 E 6= ∅

r, l `u R(t)
DELETE Exception

1 < i ≤ |r| ri = ri−1 · 〈u, INSERT, R, t〉 · s l ∈ {i, i− 1}
s = 〈db, U, sec, T, V, h, 〈〈u, INSERT, R, t〉,>,⊥, E〉, 〈ε, ε, ε, ε〉〉

(∀x, y, y′, z, z′. ((R(x, y, z) ∧R(x, y′, z′))⇒ y = y′) ∈ E t = (v, w, q)

r, l `u ∃y, z. R(v, y, z) ∧ y 6= w
INSERT FD Exception

1 < i ≤ |r| ri = ri−1 · 〈u, INSERT, R, t〉 · s l ∈ {i, i− 1}
s = 〈db, U, sec, T, V, h, 〈〈u, INSERT, R, t〉,>,⊥, E〉, 〈ε, ε, ε, ε〉〉

∀x, z. (R(x, z)⇒ ∃y. S(x, y)) ∈ E t = (v, w)

r, l `u ∀x, y. S(x, y)⇒ x 6= v
INSERT ID Exception

1 < i ≤ |r| ri = ri−1 · 〈u, DELETE, R, t〉 · s l ∈ {i, i− 1}
s = 〈db, U, sec, T, V, h, 〈〈u, DELETE, R, t〉,>,⊥, E〉, 〈ε, ε, ε, ε〉〉

∀x, z. (S(x, z)⇒ ∃y.R(x, y)) ∈ E t = (v, w)

r, l `u ∃z. S(v, z) ∧ ∀y. (R(v, y)⇒ y = w)
DELETE ID Exception

1 ≤ i ≤ |r| γ ∈ Γ

r, i `u γ
Integrity Constraint

1 ≤ i ≤ |r| v ∈ last(ri).V r, i `u ψ ψ′ = replace(ψ, v)

r, i `u ψ′
View

Figure 23: Rules defining how the attacker extracts knowledge from the run
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r, i `u φ n+ 1 < i ≤ |r| s1, s2, . . . , sn ∈ ΩM t1, . . . , tn ∈ T RIGGERD
secEx (sn) = > ∨ Ex (sn) 6= ∅ ri = ri−n−1 · 〈u, op, R, t〉 · s1 · t1 · s2 · . . . · tn · sn
sn = 〈db, U, sec, T, V, h, 〈tn,when, stmt〉, 〈ε, ε, ε, ε〉〉 op ∈ {INSERT, DELETE}

r, i− n− 1 `u φ Rollback Backward - 1

r, i `u φ 1 < i ≤ |r| secEx (s) = > ∨ Ex (s) 6= ∅ op ∈ {INSERT, DELETE}
ri = ri−1 · 〈u, op, R, t〉 · s s = 〈db, U, sec, T, V, h, 〈〈u, op, R, t〉, v, v′, E〉, 〈ε, ε, ε, ε〉〉

r, i− 1 `u φ Rollback Backward - 2

r, i− n− 1 `u φ n+ 1 < i ≤ |r| s1, s2, . . . , sn ∈ ΩM t1, . . . , tn ∈ T RIGGERD
secEx (sn) = > ∨ Ex (sn) 6= ∅ ri = ri−n−1 · 〈u, op, R, t〉 · s1 · t1 · s2 · . . . · tn · sn
sn = 〈db, U, sec, T, V, h, 〈tn,when, stmt〉, 〈ε, ε, ε, ε〉〉 op ∈ {INSERT, DELETE}

r, i `u φ Rollback Forward - 1

r, i− 1 `u φ 1 < i ≤ |r| secEx (s) = > ∨ Ex (s) 6= ∅ op ∈ {INSERT, DELETE}
ri = ri−1 · 〈u, op, R, t〉 · s s = 〈db, U, sec, T, V, h, 〈〈u, op, R, t〉, v, v′, E〉, 〈ε, ε, ε, ε〉〉

r, i `u φ Rollback Forward - 2

Figure 24: Rules regulating how information propagates in case of rollbacks

1 < i ≤ |r| r, i− 1 `u φ ri = ri−1 · 〈u, op, R, t〉 · s
s ∈ ΩM secEx (sn) = ⊥ Ex (sn) = ∅ s = 〈db, U, sec, T, V, h, actEff , tr〉

reviseBelief (ri−1, φ, ri) = > op ∈ {INSERT, DELETE}
r, i `u φ

Propagate Forward
INSERT/DELETE Success

1 < i ≤ |r| r, i− 1 `u φ r, i− 1 `u R(t) ri = ri−1 · 〈u, INSERT, R, t〉 · s
s ∈ ΩM secEx (sn) = ⊥ Ex (sn) = ∅ s = 〈db, U, sec, T, V, h, actEff , tr〉

r, i `u φ
Propagate Forward
INSERT Success - 1

1 < i ≤ |r| r, i− 1 `u φ r, i− 1 `u ¬R(t) ri = ri−1 · 〈u, DELETE, R, t〉 · s
s ∈ ΩM secEx (sn) = ⊥ Ex (sn) = ∅ s = 〈db, U, sec, T, V, h, actEff , tr〉

r, i `u φ
Propagate Forward
DELETE Success - 1

1 < i ≤ |r| r, i `u φ ri = ri−1 · 〈u, op, R, t〉 · s
s ∈ ΩM secEx (sn) = ⊥ Ex (sn) = ∅ s = 〈db, U, sec, T, V, h, actEff , tr〉

reviseBelief (ri−1, φ, ri) = > op ∈ {INSERT, DELETE}
r, i− 1 `u φ

Propagate Backward
INSERT/DELETE Success

1 < i ≤ |r| r, i `u φ r, i− 1 `u R(t) ri = ri−1 · 〈u, INSERT, R, t〉 · s
s ∈ ΩM secEx (sn) = ⊥ Ex (sn) = ∅ s = 〈db, U, sec, T, V, h, actEff , tr〉

r, i− 1 `u φ
Propagate Backward
INSERT Success - 1

1 < i ≤ |r| r, i `u φ r, i− 1 `u ¬R(t) ri = ri−1 · 〈u, DELETE, R, t〉 · s
s ∈ ΩM secEx (sn) = ⊥ Ex (sn) = ∅ s = 〈db, U, sec, T, V, h, actEff , tr〉

r, i− 1 `u φ
Propagate Backward
DELETE Success - 1

Figure 25: Rules regulating how information propagates in case of successful INSERT and DELETE

1 ≤ i ≤ |r| Φ ⊆ {φ | r, i `u φ} Φ |=fin γ

r, i `u γ
Reasoning

Figure 26: Rules regulating the reasoning

ri = ri−1 · 〈u, INSERT, R, t〉 · s 1 < i ≤ |r|
s = 〈db, U, sec, T, V, h, aE , tr〉 secEx (s) = ⊥

Ex (s) = ∅ r, i− 1 `u ψ r, i `u ¬ψ
r, i− 1 `u ¬R(t)

Learn INSERT Backward - 3

ri = ri−1 · 〈u, DELETE, R, t〉 · s 1 < i ≤ |r|
s = 〈db, U, sec, T, V, h, aE , tr〉 secEx (s) = ⊥

Ex (s) = ∅ r, i− 1 `u ψ r, i `u ¬ψ
r, i− 1 `u R(t)

Learn DELETE Backward - 3

Figure 27: Rules describing how the attacker learns facts about INSERT and DELETE commands
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r, i− 1 `u φ ri = ri−1 · t · s invoker(last(ri−1)) = u
s = 〈db, U, sec, T, V, h, 〈t,when, stmt〉, tr〉 secEx (s) = ⊥

t = 〈id , ow , ev , R, ψ, act ,m〉 r, i− 1 `u ¬ψ[x|R| 7→ tpl(last(ri−1))]

r, i `u φ
Propagate Forward

Disabled Trigger

r, i `u φ ri = ri−1 · t · s invoker(last(ri−1)) = u
s = 〈db, U, sec, T, V, h, 〈t,when, stmt〉, tr〉 secEx (s) = ⊥

t = 〈id , ow , ev , R, ψ, act ,m〉 r, i− 1 `u ¬ψ[x|R| 7→ tpl(last(ri−1))]

r, i− 1 `u φ
Propagate Backward

Disabled Trigger

Figure 28: Rules regulating the propagation of information through disabled triggers

r, i− 1 `u φ[x|R
′| 7→ tpl(last(ri−1))] 1 < i ≤ |r| ri = ri−1 · t · s invoker(last(ri−1)) = u

s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈u′, INSERT, R, t〉,>,>, ∅〉〉, tr〉
secEx (s) = ⊥ Ex (s) = ∅ t = 〈id , ow , ev , R′, φ, act ,m〉

r, i `u R(t)
Learn INSERT Forward

r, i− 1 `u φ[x|R
′| 7→ tpl(last(ri−1))] 1 < i ≤ |r| ri = ri−1 · t · s invoker(last(ri−1)) = u

s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈u′, INSERT, R, t〉,>,>, ∅〉〉, tr〉 l ∈ {i, i− 1}
secEx (s) = ⊥ Ex (s) = ∅ t = 〈id , ow , ev , R′, φ, act ,m〉
∀x, y, y′, z, z′. ((R(x, y, z) ∧R(x, y′, z′))⇒ y = y′ ∈ Γ t = (v, w, q)

r, l `u ¬∃y, z. R(v, y, z) ∧ y 6= w
Learn INSERT - FD

r, i− 1 `u φ[x|R
′| 7→ tpl(last(ri−1))] 1 < i ≤ |r| ri = ri−1 · t · s invoker(last(ri−1)) = u

s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈u′, INSERT, R, t〉,>,>, E〉〉, tr〉 t = (v, w, q) secEx (s) = ⊥
t = 〈id , ow , ev , R′, φ, act ,m〉 ∀x, y, y′, z, z′. ((R(x, y, z) ∧R(x, y′, z′))⇒ y = y′ ∈ Γ \ E

r, i− 1 `u ¬∃y, z. R(v, y, z) ∧ y 6= w
Learn INSERT - FD - 1

r, i− 1 `u φ[x|R
′| 7→ tpl(last(ri−1))] 1 < i ≤ |r| ri = ri−1 · t · s invoker(last(ri−1)) = u

s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈u′, INSERT, R, t〉,>,>, ∅〉〉, tr〉 l ∈ {i, i− 1}
secEx (s) = ⊥ Ex (s) = ∅ t = 〈id , ow , ev , R′, φ, act ,m〉

(∀x, z. (R(x, z)⇒ ∃w. S(x,w)) ∈ Γ t = (v, w)

r, l `u ∃y. S(v, y)
Learn INSERT - ID

r, i− 1 `u φ[x|R
′| 7→ tpl(last(ri−1))] 1 < i ≤ |r| ri = ri−1 · t · s invoker(last(ri−1)) = u

s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈u′, INSERT, R, t〉,>,>, E〉〉, tr〉 t = (v, w)
secEx (s) = ⊥ t = 〈id , ow , ev , R′, φ, act ,m〉 (∀x, z. (R(x, z)⇒ ∃w. S(x,w)) ∈ Γ \ E

r, i− 1 `u ∃y. S(v, y)
Learn INSERT - ID - 1

1 < i ≤ |r| ri = ri−1 · t · s invoker(last(ri−1)) = u
s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈u′, INSERT, R, t〉,>,>, ∅〉〉, tr〉
secEx (s) = ⊥ Ex (s) = ∅ t = 〈id , ow , ev , R′, φ, act ,m〉

r, i− 1 `u ψ r, i `u ¬ψ
r, i− 1 `u φ[x|R

′| 7→ tpl(last(ri−1))]
Learn INSERT Backward - 1

1 < i ≤ |r| ri = ri−1 · t · s invoker(last(ri−1)) = u
s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈u′, INSERT, R, t〉,>,>, ∅〉〉, tr〉
secEx (s) = ⊥ Ex (s) = ∅ t = 〈id , ow , ev , R′, φ, act ,m〉

r, i− 1 `u ψ r, i `u ¬ψ
r, i− 1 `u ¬R(t)

Learn INSERT Backward - 2

Figure 29: Extracting knowledge from triggers
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r, i− 1 `u φ[x|R
′| 7→ tpl(last(ri−1))] 1 < i ≤ |r| ri = ri−1 · t · s invoker(last(ri−1)) = u

s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈u′, DELETE, R, t〉,>,>, ∅〉〉, tr〉
secEx (s) = ⊥ Ex (s) = ∅ t = 〈id , ow , ev , R′, φ, act ,m〉

r, i `u ¬R(t)
Learn DELETE Forward

r, i− 1 `u φ[x|R
′| 7→ tpl(last(ri−1))] 1 < i ≤ |r| ri = ri−1 · t · s invoker(last(ri−1)) = u

s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈u′, DELETE, R, t〉,>,>, ∅〉〉, tr〉 l ∈ {i, i− 1}
secEx (s) = ⊥ Ex (s) = ∅ t = 〈id , ow , ev , R′, φ, act ,m〉

(∀x, z. (S(x, z)⇒ ∃w.R(x,w)) ∈ Γ t = (v, w)

r, l `u ∀x, z. (S(x, z)⇒ x 6= v) ∨ ∃y. (R(v, y) ∧ y 6= w)
Learn DELETE - ID

r, i− 1 `u φ[x|R
′| 7→ tpl(last(ri−1))] 1 < i ≤ |r| ri = ri−1 · t · s invoker(last(ri−1)) = u

s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈u′, DELETE, R, t〉,>,>, E〉〉, tr〉 t = (v, w)
secEx (s) = ⊥ t = 〈id , ow , ev , R′, φ, act ,m〉 (∀x, z. (S(x, z)⇒ ∃w.R(x,w)) ∈ Γ \ E

r, i− 1 `u ∀x, z. (S(x, z)⇒ x 6= v) ∨ ∃y. (R(v, y) ∧ y 6= w)
Learn DELETE - ID - 1

1 < i ≤ |r| ri = ri−1 · t · s invoker(last(ri−1)) = u
s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈u′, DELETE, R, t〉,>,>, ∅〉〉, tr〉
secEx (s) = ⊥ Ex (s) = ∅ t = 〈id , ow , ev , R′, φ, act ,m〉

r, i− 1 `u ψ r, i `u ¬ψ
r, i− 1 `u φ[x|R

′| 7→ tpl(last(ri−1))]
Learn DELETE Backward - 1

1 < i ≤ |r| ri = ri−1 · t · s invoker(last(ri−1)) = u
s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈u′, DELETE, R, t〉,>,>, ∅〉〉, tr〉
secEx (s) = ⊥ Ex (s) = ∅ t = 〈id , ow , ev , R′, φ, act ,m〉

r, i− 1 `u ψ r, 1 `u ¬ψ
r, i− 1 `u R(t)

Learn DELETE Backward - 2

1 < i ≤ |r| ri = ri−1 · t · s invoker(last(ri−1)) = u
s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈op, u′′, pr , u′〉,>,>, ∅〉〉, tr〉
secEx (s) = ⊥ Ex (s) = ∅ t = 〈id , ow , ev , R′, φ, act ,m〉
u′, u′′ ∈ U op ∈ {⊕,⊕∗,	} last(ri−1).sec 6= last(ri).sec

r, i− 1 `u φ[x|R
′| 7→ tpl(last(ri−1))]

Learn GRANT/REVOKE Backward

Figure 30: Extracting knowledge from triggers
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r, i− 1 `u ψ 1 < i ≤ |r| ri = ri−1 · t · s invoker(last(ri−1)) = u
s = 〈db, U, sec, T, V, h, 〈t,when, stmt〉, tr〉 Ex (s) = ∅

secEx (s) = ⊥ t = 〈id , ow , ev , R, φ, act ,m〉 reviseBelief (ri−1, ψ, ri) = >
r, i `u ψ

Propagate Forward
Trigger Action

r, i `u ψ 1 < i ≤ |r| ri = ri−1 · t · s invoker(last(ri−1)) = u
s = 〈db, U, sec, T, V, h, 〈t,when, stmt〉, tr〉 Ex (s) = ∅

secEx (s) = ⊥ t = 〈id , ow , ev , R, φ, act ,m〉 reviseBelief (ri−1, ψ, ri) = >
r, i− 1 `u ψ

Propagate Backward
Trigger Action

r, i− 1 `u ψ r, i− 1 `u R(t) 1 < i ≤ |r| ri = ri−1 · t · s invoker(last(ri−1)) = u
s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈u′, INSERT, R, t〉,>,>, ∅〉〉, tr〉 Ex (s) = ∅

secEx (s) = ⊥ t = 〈id , ow , ev , R′, φ, act ,m〉
r, i `u ψ

Propagate Forward
INSERT Trigger Action

r, i− 1 `u ψ r, i− 1 `u ¬R(t) 1 < i ≤ |r| ri = ri−1 · t · s invoker(last(ri−1)) = u
s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈u′, DELETE, R, t〉,>,>, ∅〉〉, tr〉 Ex (s) = ∅

secEx (s) = ⊥ t = 〈id , ow , ev , R′, φ, act ,m〉
r, i `u ψ

Propagate Forward
DELETE Trigger Action

r, i `u ψ r, i− 1 `u R(t) 1 < i ≤ |r| ri = ri−1 · t · s invoker(last(ri−1)) = u
s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈u′, INSERT, R, t〉,>,>, ∅〉〉, tr〉 Ex (s) = ∅

secEx (s) = ⊥ t = 〈id , ow , ev , R′, φ, act ,m〉
r, i− 1 `u ψ

Propagate Backward
INSERT Trigger Action

r, i `u ψ r, i− 1 `u ¬R(t) 1 < i ≤ |r| ri = ri−1 · t · s invoker(last(ri−1)) = u
s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈u′, DELETE, R, t〉,>,>, ∅〉〉, tr〉 Ex (s) = ∅

secEx (s) = ⊥ t = 〈id , ow , ev , R′, φ, act ,m〉
r, i− 1 `u ψ

Propagate Backward
DELETE Trigger Action

Figure 31: Rules for propagating knowledge through triggers
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1 < i ≤ |r| ri = ri−1 · t · s invoker(last(ri−1)) = u
s = 〈db, U, sec, T, V, h, 〈t,when, stmt〉, tr〉

secEx (s) = ⊥ Ex (s) = ∅ t = 〈id , ow , ev , R, φ, act ,m〉
getAction(act , user(last(ri−1), t), tpl(last(ri−1)) = 〈u′, INSERT, R, (v, w, q)〉

r, i− 1 `u ∃y, z.R(v, y, z) ∧ y 6= w
∀x, y, y′, z, z′. (R(x, y, z) ∧R(x, y′, z′))⇒ y = y′ ∈ Γ

r, i− 1 `u ¬φ[x|R
′| 7→ tpl(last(ri−1))]

Trigger
FD

INSERT

Disabled
Backward

1 < i ≤ |r| ri = ri−1 · t · s invoker(last(ri−1)) = u
s = 〈db, U, sec, T, V, h, 〈t,when, stmt〉, tr〉

secEx (s) = ⊥ Ex (s) = ∅ t = 〈id , ow , ev , R, φ, act ,m〉
getAction(act , user(last(ri−1), t), tpl(last(ri−1)) = 〈u′, INSERT, R, (v, w)〉
r, i− 1 `u ∀x, y. S(x, y)⇒ x 6= v ∀x, z.R(x, z)⇒ ∃w. S(x,w) ∈ Γ

r, i− 1 `u ¬φ[x|R
′| 7→ tpl(last(ri−1))]

Trigger
ID

INSERT

Disabled
Backward

1 < i ≤ |r| ri = ri−1 · t · s invoker(last(ri−1)) = u
s = 〈db, U, sec, T, V, h, 〈t,when, stmt〉, tr〉

secEx (s) = ⊥ Ex (s) = ∅ t = 〈id , ow , ev , R, φ, act ,m〉
getAction(act , user(last(ri−1), t), tpl(last(ri−1)) = 〈u′, DELETE, R, (v, w)〉

r, i− 1 `u ∃z. S(v, z) ∧ ∀y. (R(x, y)⇒ y = w) ∀x, z. S(x, z)⇒ ∃w.R(x,w) ∈ Γ

r, i− 1 `u ¬φ[x|R
′| 7→ tpl(last(ri−1))]

Trigger
ID

DELETE

Disabled
Backward

1 < i ≤ |r| ri = ri−1 · t · s invoker(last(ri−1)) = u
s = 〈db, U, sec, T, V, h, 〈t,when, stmt〉, tr〉

secEx (s) = ⊥ Ex (s) = ∅ t = 〈id , ow , ev , R′, φ, act ,m〉
getAction(act , user(last(ri−1), t), tpl(last(ri−1)) = 〈op, u′′, p, u′〉

u′, u′′ ∈ U op ∈ {⊕,⊕∗} 〈op, u′′, p, u′〉 6∈ last(ri−1).sec last(ri−1).sec = sec

r, i− 1 `u ¬φ[x|R
′| 7→ tpl(last(ri−1))]

Trigger
GRANT

Disabled
Backward

1 < i ≤ |r| ri = ri−1 · t · s invoker(last(ri−1)) = u
s = 〈db, U, sec, T, V, h, 〈t,when, stmt〉, tr〉

secEx (s) = ⊥ Ex (s) = ∅ t = 〈id , ow , ev , R′, φ, act ,m〉
getAction(act , user(last(ri−1), t), tpl(last(ri−1)) = 〈	, u′′, p, u′〉

u′, u′′ ∈ U op ∈ {⊕,⊕∗} 〈op, u′′, p, u′〉 ∈ last(ri−1).sec last(ri−1).sec = sec

r, i− 1 `u ¬φ[x|R
′| 7→ tpl(last(ri−1))]

Trigger
REVOKE

Disabled
Backward

Figure 32: Extracting knowledge from triggers
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1 < i ≤ |r| ri = ri−1 · t · s invoker(last(ri−1)) = u
s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈u′, INSERT, R, t〉,>,>, E〉, tr〉

secEx (s) = ⊥ t = 〈id , ow , ev , R′, φ, act ,m〉
(∀x, y, y′, z, z′. ((R(x, y, z) ∧R(x, y′, z′))⇒ y = y′) ∈ Ex (s) t = (v, w, q)

r, i− 1 `u ∃y, z. R(v, y, z) ∧ y 6= w

Trigger
INSERT

FD
Exception

1 < i ≤ |r| ri = ri−1 · t · s invoker(last(ri−1)) = u
s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈u′, INSERT, R, t〉,>,>, E〉, tr〉

secEx (s) = ⊥ t = 〈id , ow , ev , R′, φ, act ,m〉
(∀x, z. (R(x, z)⇒ ∃w. S(x,w)) ∈ Ex (s) t = (v, w)

r, i− 1 `u ∀x, y. S(x, y)⇒ x 6= v

Trigger
INSERT

ID
Exception

1 < i ≤ |r| ri = ri−1 · t · s invoker(last(ri−1)) = u
s = 〈db, U, sec, T, V, h, 〈t,when, 〈〈u′, DELETE, R, t〉,>,>, E〉, tr〉

secEx (s) = ⊥ t = 〈id , ow , ev , R′, φ, act ,m〉
(∀x, z. (S(x, z)⇒ ∃w.R(x,w)) ∈ Ex (s) t = (v, w)

r, i− 1 `u ∃z. S(v, z) ∧ ∀y. (R(v, y)⇒ y = w)

Trigger
DELETE

ID
Exception

1 < i ≤ |r| ri = ri−1 · t · s invoker(last(ri−1)) = u
s = 〈db, U, sec, T, V, h, 〈t, 〈〈u′, SELECT, φ[x 7→ tpl(last(ri−1))]〉,>,>, ∅〉, stmt , tr〉

secEx (s) = > ∨ Ex (s) 6= ∅ t = 〈id , ow , ev , R, φ, act ,m〉

r, i− 1 `u φ[x|R
′| 7→ tpl(last(ri−1))]

Trigger
Exception

1 < i ≤ |r| ri = ri−1 · t · s invoker(last(ri−1)) = u
s = 〈db, U, sec, T, V, h, 〈t, 〈〈u′, SELECT, φ〉,>,>, ∅〉, 〈〈u′, INSERT, R, t〉, res, aC , E〉, tr〉

secEx (s) = ⊥ Ex (s) 6= ∅ t = 〈id , ow , ev , R′, φ, act ,m〉
r, i− 1 `u ¬R(t)

Trigger
INSERT

Exception

1 < i ≤ |r| ri = ri−1 · t · s invoker(last(ri−1)) = u
s = 〈db, U, sec, T, V, h, 〈t, 〈〈u′, SELECT, φ〉,>,>, ∅〉, 〈〈u′, DELETE, R, t〉, res, aC , E〉, tr〉

secEx (s) = ⊥ Ex (s) 6= ∅ t = 〈id , ow , ev , R′, φ, act ,m〉
r, i− 1 `u R(t)

Trigger
DELETE

Exception

n+ 1 < i ≤ |r| s1, s2, . . . , sn ∈ ΩM t1, . . . , tn ∈ T RIGGERD
secEx (sn) = > ∨ Ex (sn) 6= ∅ ri = ri−n−1 · 〈u, INSERT, R, t〉 · s1 · t1 · s2 · . . . · tn · sn

sn = 〈db, U, sec, T, V, h, 〈tn,when, stmt〉, 〈ε, ε, ε, ε〉〉
r, i `u ¬R(t)

Trigger
Rollback
INSERT

n+ 1 < i ≤ |r| s1, s2, . . . , sn ∈ ΩM t1, . . . , tn ∈ T RIGGERD
secEx (sn) = > ∨ Ex (sn) 6= ∅ ri = ri−n−1 · 〈u, DELETE, R, t〉 · s1 · t1 · s2 · . . . · tn · sn

sn = 〈db, U, sec, T, V, h, 〈tn,when, stmt〉, 〈ε, ε, ε, ε〉〉
r, i `u R(t)

Trigger
Rollback
DELETE

Figure 33: Extracting knowledge from trigger’s exceptions
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C. DATABASE INTEGRITY
In this section, we present the formal definition of the

;auth relation, which is used to define database integrity.
Let P = 〈M, f〉 be an extended configuration, where M =
〈D,Γ〉 is a system configuration and f is an M -PDP. We de-
note by VIEWowner

D the set of all D-views with the owner’s
privileges, i.e., VIEWowner

D = {〈V, o, q,m〉 ∈ VIEWD | m =

O}, and by PRIVSELECT,VIEWowner
D

D the set of privileges {pr ∈
PRIVD | pr = 〈SELECT, V 〉 ∧ V ∈ VIEWowner

D }. Given a
state an M -state s = 〈db, U, sec, T, V, c〉 and a revoke com-
mand r = 〈	, u, p, u′〉, we denote by applyRev(s, r) the
state 〈db, U, revoke(sec, u, p, u′), T, V, c〉 obtained by execut-
ing the REVOKE command. Given a system’s configuration
M = 〈D,Γ〉, a query q, a set of views V with owner’s
privileges, and a set of tables T , we say that V and T
determine q, denoted by determinesM (T, V, q), iff for all
db ∈ ΩΓ

D, for all db1, db2 ∈ JdbKV,T , [q]db1 = [q]db2 , where
JdbKV,T denotes the set {db′ ∈ ΩΓ

D | ∀T1 ∈ T. T1(db) =
T1(db′)∧∀V1 ∈ V. V1(db) = V1(db′)}. Further details on the
concept of determinacy can be found in [34]. Finally, the re-
lation ;auth⊆ ΩM × (AD,U ∪ T RIGGERD) is the smallest
relation satisfying the inference rules given in Figure 34.
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u, u′ ∈ U R ∈ D t ∈ dom|R| g = 〈op, u, 〈op′, R〉, u′〉 g ∈ sec
〈db, U, sec, T, V, c〉;auth g op′ ∈ {INSERT, DELETE}

〈db, U, sec, T, V, c〉;auth 〈u, op′, R, t〉
INSERT

DELETE

u, u′ ∈ U v ∈ VIEWD g = 〈op, u, 〈CREATE VIEW〉, u′〉
g ∈ sec 〈db, U, sec, T, V, c〉;auth g

〈db, U, sec, T, V, c〉;auth 〈u, CREATE, v〉
CREATE

VIEW

u, u′ ∈ U t = 〈id , ow , ev , R, φ, stmt ,m〉
t ∈ T RIGGERD

g = 〈op, u, 〈CREATE TRIGGER, R〉, u′〉
g ∈ sec 〈db, U, sec, T, V, c〉;auth g

〈db, U, sec, T, V, c〉;auth 〈u, CREATE, t〉
CREATE

TRIGGER

R ∈ D t ∈ dom|R| op′ ∈ {INSERT, DELETE}
〈db, U, sec, T, V, c〉;auth 〈admin, op′, R, t〉

INSERT

DELETE

admin

v ∈ VIEWD v = 〈id , admin, q,m〉
〈db, U, sec, T, V, c〉;auth 〈admin, CREATE, v〉

CREATE

VIEW

admin

t = 〈id , admin, ev , R, φ, stmt ,m〉
t ∈ T RIGGERD

〈db, U, sec, T, V, c〉;auth 〈admin, CREATE, t〉

CREATE

TRIGGER

admin

u, u′ ∈ U priv ∈ PRIVD
s = 〈db, U, sec, T, V, c〉 s′ = 〈db, U, sec′, T, V, c〉

s′ = applyRev(s, 〈	, u, p, u′〉)
∀g ∈ sec′. s′ ;auth g

〈db, U, sec, T, V, c〉;auth 〈	, u, priv , u′〉
REVOKE

u, u′, u′′ ∈ U op ∈ {⊕,⊕∗} priv ∈ PRIVD
g = 〈⊕∗, u′, priv , u′′〉 g ∈ sec 〈db, U, sec, T, V, c〉;auth g

〈db, U, sec, T, V, c〉;auth 〈op, u, priv , u′〉
GRANT-1

u ∈ U op ∈ {⊕,⊕∗}
priv ∈ PRIVD \ PRIVSELECT,VIEWownerD

D

〈db, U, sec, T, V, c〉;auth 〈op, u, priv , admin〉 GRANT-2

u, owner ∈ U op ∈ {⊕,⊕∗} priv = 〈SELECT, v〉
v = 〈id , owner , q, O〉 v ∈ V V ′ ⊆ V ∩ VIEWowner

D

T ′ ⊆ D determinesM (T ′, V ′, q)
hasAccess(〈db, U, sec, T, V, c〉, V ′ ∪ T ′, owner ,⊕∗)
〈db, U, sec, T, V, c〉;auth 〈op, u, priv , owner〉 GRANT-3

u, owner ∈ U op ∈ {⊕,⊕∗} priv = 〈SELECT, v〉
v = 〈id , owner , q, O〉 v ∈ V owner 6= admin

V ′ ⊆ V ∩ VIEWowner
D T ′ ⊆ D determinesM (T ′, V ′, q)

hasAccess(〈db, U, sec, T, V, c〉, V ′ ∪ T ′, owner ,⊕)

〈db, U, sec, T, V, c〉;auth 〈op, u, priv , admin〉 GRANT-4

u, owner ∈ U op ∈ {⊕,⊕∗} v ∈ V
priv = 〈SELECT, v〉 v = 〈id , owner , q, A〉
〈db, U, sec, T, V, c〉;auth 〈op, u, priv , owner〉 GRANT-5

u ∈ U u′ = admin

〈db, U, sec, T, V, c〉;auth 〈u′, ADD USER, u〉
ADD USER

t = 〈id , ow , ev , R, φ, stmt , O〉 t ∈ T
〈db, U, sec, T, V, c〉;auth getAction(stmt , ow , tpl(c))

[φ[x|R| 7→ tpl(c)]]db = >
〈db, U, sec, T, V, c〉;auth t

EXECUTE

TRIGGER-1

t = 〈id , ow , ev , R, φ, stmt , A〉 t ∈ T
〈db, U, sec, T, V, c〉;auth getAction(stmt , invoker(c), tpl(c))
〈db, U, sec, T, V, c〉;auth getAction(stmt , ow , tpl(c))

[φ[x|R| 7→ tpl(c)]]db = >
〈db, U, sec, T, V, c〉;auth t

EXECUTE

TRIGGER-2

u ∈ U q ∈ RC

〈db, U, sec, T, V, c〉;auth 〈u, SELECT, q〉
SELECT

t = 〈id , ow , ev , R, φ, stmt ,m〉
t ∈ T [φ[x|R| 7→ tpl(c)]]db = ⊥
〈db, U, sec, T, V, c〉;auth t

EXECUTE

TRIGGER-3

hasAccess(〈db, U, sec, T, V, c〉, S, u, op) =


> if u 6= admin ∧ ∀v ∈ S.∃u′′ ∈ U, g ∈ sec, op′ ∈ {op,⊕∗}.

g = 〈op′, u, 〈SELECT, v〉, u′′〉 ∧ 〈db, U, sec, T, V, c〉;auth g
> if u = admin ∧ ∀v ∈ S.∃u′′ ∈ U, op′ ∈ {op,⊕∗}.

〈db, U, sec, T, V, c〉;auth 〈op′, u, 〈SELECT, v〉, u′′〉
⊥ otherwise

Figure 34: Definition of the ;auth relation
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D. DATA CONFIDENTIALITY
In this section, we define indistinguishability of runs. We

first formalize the notion of u-projection. Afterwards, we
define the notion of consistency between u-projections. Fi-
nally, we formalize the indistinguishability relation ∼=P,u.

We recall that, given a run r, we denote by ri, where
1 ≤ i ≤ |r|, the prefix of r obtained by truncating r at the
i-th state. In the rest of the paper, we use r0 to denote the
empty run.

D.1 Projections
Let P = 〈M, f〉 be an extended configuration, where M =
〈D,Γ〉 and f is an M -PDP, L be the P -LTS, and u be a user
in U . Given a run r ∈ traces(L), its u-projection, denoted by
r|u, is obtained by (1) replacing each action not issued by u
with ∗, (2) replacing each trigger whose invoker is not u with
∗, and (3) replacing all non-empty sequences of ∗-transitions
with a single ∗-transition. Note that the ∗-transitions in
the u-projections represent whether u’s actions are executed
consecutively or not. With a slight abuse of notation, we
extend all the notation we use for runs also to u-projections.
For instance, r|iu denotes the prefix obtained by truncating
r|u at its i-th state. Formally, the u-projection r|u is defined
as c(v(r, u)). The function v takes as input a run r and a
user u and returns another run in which all non-u actions
are replaced with ∗.

v(r, u) =



v(r|r|−1, u) · a · s if r = r|r|−1 · a · s and s ∈ ΩM
and a ∈ AD,u and |r| > 1

v(r|r|−1, u) · ∗ · s if r = r|r|−1 · a · s and s ∈ ΩM
and a ∈ AD,u′ and u′ 6= u and
|r| > 1

v(r|r|−1, u) · t · s if r = r|r|−1 · t · s and s ∈ ΩM
and t ∈ T RIGGERD and

invoker(last(r|r|−1)) = u and
|r| > 1

v(r|r|−1, u) · ∗ · s if r = r|r|−1 · t · s and s ∈ ΩM
and t ∈ T RIGGERD and

invoker(last(r|r|−1)) 6= u and
|r| > 1

s if r = s and s ∈ ΩM

The function c takes as input a run r containing ∗-transitions
and replaces each sequence of ∗-transitions with a single ∗-
transition. Note that the function c is obtained by repeat-
edly applying the function c′ until the computation reaches
a fixed point. The function c′ is as follows:

c′(r) =



c′(r|r|−1) · a · s if r = r|r|−1 · a · s and a 6= ∗
and s ∈ ΩM and |r| > 1

c′(r|r|−2) · ∗ · s if r = r|r|−2 · ∗ · s′ · ∗ · s and
s, s′ ∈ ΩM and |r| > 2

s if r = s and s ∈ ΩM
r if r = s · ∗ · s′ and s, s′ ∈ ΩM

D.2 Consistency
Before defining the notion of consistency, we define the

function labels which takes as input a run r and returns
as output the sequence of labels in the run. In more de-
tail, labels(r) is obtained from r by dropping all the states.
We now define the notion of consistency between two u-
projections.

Definition D.1. Let P = 〈M, f〉 be an extended configu-

r1
a1 a2 a3

r2
a1 a2 a3

r3
a1 a2 a3

r4
a1 a2 a3

r1|u
∗ a1 a2 ∗ a3 ∗

r2|u
∗ a1 a2 ∗ a3 ∗

r3|u
∗ a1 a2 ∗ a3

r4|u
a1 ∗ a2 ∗ a3 ∗

Figure 35: The runs r1, r2, r3, and r4, where the
states are represented using black dots, the actions
a1, a2, and a3 issued by the user u are written above
the edges connecting the states, and the actions of
the other users are omitted. The u-projections of
these runs are, respectively, r1|u, r2|u, r3|u, and r4|u.
The runs r1 and r2 have u-projections with the same
labels, whereas the runs r3 and r4 have u-projections
with different labels.

ration, where M = 〈D,Γ〉 and f is an M -PDP, L be the
P -LTS, and u be a user in U . Furthermore, let r|u and r′|u
be two u-projections for the runs r and r′ in traces(L). We
say that r|u and r′|u are consistent iff the following condi-
tions hold:

1. |r|u| = |r′|u|.
2. labels(r|u) = labels(r′|u).
3. triggers(last(r|u)) = ε iff triggers(last(r′|u)) = ε.
4. for all i such that 1 ≤ i ≤ |r|u|, if r|iu = r|i−1

u · a · s and
a 6= ∗, then
• res(last(r|iu)) = res(last(r′|iu)),
• secEx (last(r|iu)) = secEx (last(r′|iu)),
• if a is a trigger, then acC (last(r|iu)) = acC (last(r′|iu)),
• invoker(last(r|iu)) = invoker(last(r′|iu)),
• triggers(last(r|iu)) = triggers(last(r′|iu)),
• tpl(last(r|iu)) = tpl(last(r′|iu)),
• and Ex (last(r|iu)) = Ex (last(r′|iu)). �

Figure 35 depicts four runs. The states are represented
just as black dots and the action between two states is writ-
ten above the edge connecting them. Note that we represent
just the actions a1, a2, and a3 issued by the user u. Assume
that (a) the action’s effects are the same in all the runs and
(b) the invoker , res, secEx , triggers, tpl , and Ex functions
return the same results in all runs. It is easy to see that r1|u
and r2|u are consistent projections, whereas r3|u and r4|u
are not. Furthermore, there is no other pair of consistent
u-projections between the runs in the figure.

D.3 Indistinguishability
LetM = 〈D,Γ〉 be a system configuration, s = 〈db, U, sec,

T, V 〉 be an M -partial state, and u ∈ U be a user. The set
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permissions(s, u) is permissions(s, u) := {〈⊕, SELECT, O〉 | ∃u′
∈ U, op ∈ {⊕,⊕∗}. 〈op, u, 〈SELECT, O〉, u′〉 ∈ sec}. Note
that permissions(s, admin) = D ∪ V since the administra-
tor has read access to the whole database. We extend per-
missions to M -states as follows. Given an M -state s′ =
〈db, U, sec, T, V, c〉, permissions(s′, u) = permissions(〈db, U,
sec, T, V 〉, u).

We are now ready to introduce the notion of indistin-
guishability between two runs. Intuitively, two runs r and r′

are indistinguishable for a user u iff (1) their u-projections
are consistent, and (2) for each action of the user u as well
as for the last states in the two runs, the policy, the triggers,
the views, the users, and the data disclosed by the policy are
the same in r and r′.

Definition D.2. Let P = 〈M, f〉 be an extended configu-
ration, L be the P -LTS, and u be a user.

We say that two runs r and r′ in traces(L) are (P, u)-
indistinguishable, written r ∼=u,P r

′, iff
1. r|u and r′|u are consistent,
2. pState(last(r)) and pState(last(r′)) are (M,u)-data in-

distinguishable, and
3. for all i such that 1 ≤ i ≤ |r|u| − 1, if r|i+1

u = r|iu ·
a · s, a 6= ∗, and s ∈ ΩM , then pState(last(r|iu)) and
pState(last(r′|iu)) are (M,u)-data indistinguishable.

We say that two M -partial states s = 〈db, U, sec, T, V 〉
and s′ = 〈db′, U ′, sec′, T ′, V ′〉 are (M,u)-data indistinguish-
able, written s ∼=data

u,M s′, iff
1. U = U ′,
2. sec = sec′,
3. T = T ′,
4. V = V ′,
5. for all relation schemaR ∈ D for which 〈⊕, SELECT, R〉 ∈

permissions(s, u), db(R) = db′(R), and
6. for all views v ∈ VIEWowner

D for which 〈⊕, SELECT, v〉 ∈
permissions(s, u), db(v) = db′(v). �

Proposition D.1. Let P = 〈M, f〉 be an extended con-
figuration, L be the P -LTS, and u ∈ U be a user. The
indistinguishability relation ∼=P,u is an equivalence relation
over traces(L).

Proof. We now prove that ∼=P,u is reflexive, symmet-
ric, and transitive. This implies the fact that ∼=P,u is an
equivalence relation over traces(L). In the following, let
P = 〈M, f〉 be an extended configuration, L be the P -LTS,
and u ∈ U be a user. From the definition of data indistin-
guishability and the results in [24], it follows that the data-
indistinguishability relation ∼=data

u,M is an equivalence relation
over the set of all partial states.

Reflexivity Let r ∈ traces(L) be a run. It follows triv-
ially that r|u = r|u. From this, it follows that r|u and r|u
are consistent. It is easy to see that r is indistinguishable
from r. Indeed, the database states are the same in r and r
and the data-indistinguishability relation is reflexive [24].

Symmetry Let r, r′ ∈ traces(L) be two runs such that
r ∼=P,u r

′. From this, it follows that r|u and r′|u are con-
sistent. Note that the consistency definition is symmetric.
Therefore, also r′|u and r|u are consistent. From this and
the symmetry of data indistinguishability [24], it follows the
symmetry of ∼=P,u.

Transitivity Let r, r′, r′′ ∈ traces(L) be three runs such
that r ∼=P,u r

′ and r′ ∼=P,u r
′′. From this it follows that r|u

and r′|u are consistent and r′|u and r′′|u are consistent. It
is easy to see that also r|u and r′′|u are consistent. From
this and the transitivity of data indistinguishability [24], it
follows the transitivity of ∼=P,u.

Given a run r, we denote by JrKP,u the equivalence class
of r defined by ∼=P,u over traces(L). Similarly, we denote by
JsKdata

u,M the equivalence class of s defined by ∼=data
u,M over ΠM .
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E. ENFORCING DATABASE INTEGRITY
In this section, we first define the access control function

fint , which models the fint procedure described in §6. After-
wards, we prove that the function fint satisfies the database
integrity property. Finally, we prove that the data complex-
ity of fint is AC 0.

The function fint is as follows:

fint(s, a) =


> if trigger(s) = ε ∧ s;appr

auth a
> if trigger(s) = t ∧ t 6= ε ∧ a = trigCond(s)
> if trigger(s) = t ∧ t 6= ε ∧ a = trigAct(s)∧

s;appr
auth t

⊥ otherwise

The function trigCond(s) (respectively trigAct(s)) returns
the condition (respectively the action) associated with the
trigger trigger(s). If trigger(s) = 〈id , ow , e, R, φ, st , O〉, then
trigAct(s) = getAction(st , ow , tpl(s)) and trigCond(s) =

〈ow , SELECT, φ[x|R| 7→ tpl(s)]〉. If trigger(s) = 〈id , ow , e, R, φ,
st , A〉, then trigAct(s) = getAction(st , invoker(s), tpl(s)) and

trigCond(s) = 〈invoker(s), SELECT, φ[x|R| 7→ tpl(s)]〉.
Recall that, given an M -state s = 〈db, U, sec, T, V, c〉 and

a revoke statement r = 〈	, u, p, u′〉, applyRev(s, r) denotes
the state 〈db, U, revoke(sec, u, p, u′), T, V, c〉.

The relation ;
appr
auth⊆ ΩM × (AD,U ∪ T RIGGERD) is the

smallest relation satisfying the inference rules given in Fig-
ure 37. We remark that ;

appr
auth is a sound and computable

under-approximation of the relation ;auth . In the rules, we
use a number of auxiliary functions. The most important
ones are:
(a) the aT (respectively aV ) function that takes as input a

database state, an operator op in {⊕,⊕∗}, and a user,
and returns the set of tables (respectively views) that the
user is authorized to read (if op = ⊕) or to delegate the
read access (if op = ⊕∗) according to our approximation
of ;auth , and

(b) the apprDet function is used to determine whether a set
of tables and a set of views completely determine the re-
sult of a formula φ in all possible database states. Note
that the function apprDet is a sound under-approximation
of the concept of query determinacy [34].

In the following, we define the functions extend and apprDet .
The functions aT and aV are defined in Figure 37. We as-
sume that both the formula φ and the set of views V in
the state s contain just views with owner’s privileges. This
is without loss of generality. Indeed, views with activator’s
privileges are just syntactic sugar, they do not disclose addi-
tional information to a user u other than what he is already
authorized to read because they are executed under u’s priv-
ileges. If φ and s contain views with activator’s privileges,
we can compute another formula φ′ and a state s′ with-
out views with activator’s privileges as follows. We replace,
in the formula φ, the predicates of the form V (x), where
V is a view with activator’s privileges, with V ’s definition,
and we repeat this process until the resulting formula φ′ no
longer contains views with activator’s privileges. Similarly,
the set V ′ is obtained from V by (1) removing all views
with activator’s privileges, and (2) for each view v ∈ V with
owner’s privileges, replacing the predicates of the form V (x)
in v’s definition, where V is a view with activator’s privi-
leges, with V ’s definition until v’s definition no longer con-
tains views with activator’s privileges. The security policy
sec′ is also obtained from sec by removing all references to

views with activator’s privileges. Therefore, in §E.1-E.2 we
ignore views with activator’s privileges as the extension to
the general case is trivial.

E.1 Extend function
We now define the extend function, which takes as in-

put a system configuration M , an M -state s, and a set of
views with owner’s privileges, and returns a set of views
V ′ such that V ⊆ V ′. Given a system configuration M ,
an M -partial state s = 〈db, U, sec, T, V 〉, and a normalized
view 〈v, o, q, O〉 ∈ V , we denote by inlineM (〈v, o, q, O〉, s)
the view 〈v, o, q′, O〉 where q′ is obtained from q by replac-
ing all occurrences of views in V with owner’s privileges
with their definitions. Note that inlineM does not com-
pute a fixpoint, i.e., if a view’s definition refers to another
view, the latter is not replaced with its definition. The func-
tion extend(M, s, V ) returns the set V ∪ {inline(v, s)|v ∈
extend(M, s, V )}.

Lemma E.1. Let M = 〈D,Γ〉 be a system configuration,
s = 〈db, U, sec, T, V 〉 be an M-partial state, V ′ ⊆ V be a
set of views with owner’s privileges. For each view v ∈
extend(M, s, V ′), there is a view v′ ∈ V ′ such that v and
v′ disclose the same data.

Proof. Sketch: Assume, for contradiction’s sake, that
there is a view v ∈ extend(M, s, V ′) such that all the views in
V ′ disclose different data from v. This is impossible because
v has been obtained by a view v′ ∈ V ′ just by replacing the
views with their definitions and the definitions of v and v′

are semantically equivalent.

E.2 A sound under-approximation of query de-
terminacy

The definition of the function apprDet(T, V, q) is shown in
Figure 36. Before proving that apprDet is a sound approxi-
mation of determines, we extend determines from sentences
to formulae.

We first introduce assignments. Let dom be the universe
and var be an infinite countably set of variable identifiers.
An assignment ν is a partial function from var to dom that
maps variables to values in the universe. Given a formula φ
and an assignment ν, we say that ν is well-formed for φ iff ν
is defined for all variables in free(φ). Given an assignment ν
and a sequence of variables x such that ν is defined for each
x ∈ x, we denote by ν(x) the tuple obtained by replacing
each occurrence of x ∈ x with ν(x). Given an assignment
ν, a variable v ∈ var, and a value u ∈ dom, we denote by
ν ⊕ [v 7→ u] the assignment ν′ obtained as follows: ν′(v′) =
ν(v′) for any v′ 6= v, and ν′(v) = u. Finally, given a formula
φ with free variables free(φ) and an assignment ν, we denote
by φ ◦ ν the formula φ′ obtained by replacing, for each free
variable x ∈ free(φ) such that ν(x) is defined, all the free
occurrences of x with ν(x).

Given a system’s configuration M = 〈D,Γ〉, a formula φ,
a set of views V with owner’s privileges, a set of tables T ,
and a well-formed assignment ν for φ, we say that V and
T determine (φ, ν), denoted by determinesM (T, V, φ, ν), iff
for all db ∈ ΩΓ

D, for all db1, db2 ∈ JdbKV,T , [φ ◦ ν]db1 =
[φ ◦ ν]db2 . In the following, given a view 〈u, o, q,m〉, we
denote by def (〈u, o, q,m〉) its definition q.

In Lemma E.2, we show that apprDet is, indeed, a sound
under-approximation of query determinacy.
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apprDet(T, V, φ, s,M) =



> if ∃〈v, o, q, O〉 ∈ extend(M, s, V ). q = {x|φ(x)}
> if φ = (x = v) ∨ φ = > ∨ φ = ⊥
> if φ = R(x) ∧R ∈ T
> if φ = V (x) ∧ ∃u ∈ U , q ∈ RC . 〈V, u, q, O〉 ∈ V
> if φ = (ψ ∧ γ) ∧ apprDet(T, V, ψ, s,M) = > ∧ apprDet(T, V, γ, s,M) = >
> if φ = (ψ ∨ γ) ∧ apprDet(T, V, ψ, s,M) = > ∧ apprDet(T, V, γ, s,M) = >
> if φ = (¬ψ) ∧ apprDet(T, V, ψ, s,M) = >
> if φ = (∃x. ψ) ∧ apprDet(T, V, ψ, s,M) = >
> if φ = (∀x. ψ) ∧ apprDet(T, V, ψ, s,M) = >
⊥ otherwise

Figure 36: apprDet function

Lemma E.2. Let M = 〈D,Γ〉 be a system configuration,
s = 〈db, U, sec, T, V 〉 be an M-partial state, T ′ ⊆ D be a set
of tables, V ′ ⊆ V be a set of views with owner’s privileges,
and φ be a formula. If apprDet(T ′, V ′, φ, s,M) = >, then
for all well-formed assignments ν for φ, determinesM (T ′, V ′,
φ, ν) holds.

Proof. Let M = 〈D,Γ〉 be a system configuration, s =
〈db, U, sec, T, V 〉 be an M -partial state, T ′ ⊆ D be a set of
tables, V ′ ⊆ V be a set of views with owner’s privileges, and
φ be a formula. We prove the lemma by structural induction
over the formula φ.

Base Case: There are a number of alternatives.

φ := R(x) Assume that apprDet(T, V,R(x), s,M) = >.
There are two cases:
1. R ∈ T ′. In this case, the set T ′ trivially determines

the formula R(x) for any well-formed assignment
ν. Therefore, determinesM (T ′, V ′, R(x), ν) holds.
Indeed, assume that this is not the case. Thus,
there are three database states db, db1, and db2

such that db1, db2 ∈ JdbKV ′,T ′ and [R(x) ◦ ν]db1 6=
[R(x) ◦ ν]db2 . From this and the RC semantics, it
follows that db1(R) 6= db2(R). From this, R ∈ T ′,
and db1, db2 ∈ JdbKV ′,T ′ , it follows that db1(R) =
db2(R) leading to a contradiction.

2. there is a view v′ in extend(M, s, V ′) such that
def (v′) = {x|R(x)}. This means that there is a se-
quences of views V1, . . . , Vn in s such that def (V1) =
{x|R(x)}, def (V2) = {x|V1(x)}, . . . , def (Vn) =
{x|Vn−1(x)}, and Vn ∈ V ′. Therefore, the set V ′

trivially determines the formula R(x) for any well-
formed assignment ν, and Vn and R are equivalent.
Therefore, determinesM (T ′, V ′, R(x), ν) holds.

φ := V (x) Assume that apprDet(T, V, V (x), s,M) = >.
There are two cases:
1. There is a view 〈V, o, q, O〉 ∈ V ′. In this case, the

set V ′ trivially determines the formula V (x) for any
assignment ν that is well-formed for φ. Therefore,
determinesM (T ′, V ′, V (x), ν) holds.

2. there is a view v′ in extend(M, s, V ′) such that
def (v′) = {x|V (x)}. This means that there is
a sequences of views V1, . . . , Vn in s such that
def (V1) = {x|V (x)}, def (V2) = {x|V1(x)}, . . . ,
def (Vn) = {x|Vn−1(x)}, and Vn ∈ V ′. Therefore,
the set V ′ trivially determines the formula V (x) for
any well-formed assignment ν, and Vn and V are
equivalent. Therefore, determinesM (T ′, V ′, V (x), ν)
holds.

φ := x = v For any well-formed assignment ν, the empty
set trivially determines the formula x = v and apprDet
(T ′, V ′, x = v, s,M) = >.

φ := > The proof of this case is similar to that of φ := x =
v.

φ := ⊥ The proof of this case is similar to that of φ := x =
v.

This concludes the proof of the base case.

Induction Step: Assume that the claim holds for all
sub-formulae of φ. There are a number of cases:
φ := ψ ∧ γ Assume that apprDet(T ′, V ′, ψ∧γ, s,M) = >.

There are two cases:
1. apprDet(T ′, V ′, ψ, s,M) = > and apprDet(T ′, V ′,
γ, s,M) = >. From the induction hypothesis, it
follows that both determinesM (T ′, V ′, ψ, ν) and
determinesM (T ′, V ′, γ, ν) hold for all well-formed
assignments ν. Therefore, also determinesM (T ′, V ′,
ψ ∧ γ, ν) holds for all well-formed assignments ν.
Indeed, assume that this is not the case. Then,
there are three database states db, db1, and db2

such that db1, db2 ∈ JdbKV ′,T ′ and [(ψ∧γ)◦ν]db1 6=
[(ψ ∧ γ) ◦ ν]db2 . From this and the RC semantics,
there are two cases:
(a) [ψ◦ν]db1 6= [ψ◦ν]db2 . From this, it follows that

determinesM (T ′, V ′, ψ, ν) does not hold. This
contradicts the fact that determinesM (T ′, V ′, ψ,
ν) holds.

(b) [γ ◦ ν]db1 6= [γ ◦ ν]db2 . The proof of this case is
similar to the previous one.

2. there is a view v′ in extend(M, s, V ′) such that
def (v′) = {x|ψ ∧ γ}. From Lemma E.1, it fol-
lows that there is a view v′′ ∈ V ′ that is equiv-
alent to v′, and, therefore, to {x|ψ ∧ γ}. Thus,
determinesM (T ′, V ′, ψ ∧ γ, ν) holds for all assign-
ments ν that are well-formed for φ.

φ := ψ ∨ γ This case is similar to ψ ∧ γ.
φ := ¬ψ Assume that apprDet(T ′, V ′,¬ψ, s,M) = >. There

are two cases:
1. apprDet(T ′, V ′, ψ, s,M) = >. From the induction

hypothesis, it follows that determinesM (T ′, V ′, ψ, ν)
holds. Therefore, also determinesM (T ′, V ′,¬ψ, ν)
holds. Indeed, assume that this is not the case.
This means that there are three database states
db, db1, and db2 such that db1, db2 are in JdbKV ′,T ′
and [¬ψ ◦ ν]db1 6= [¬ψ ◦ ν]db2 . From this and the
RC semantics, it follows that [ψ◦ν]db1 6= [ψ◦ν]db2 .
From this, it follows that determinesM (T ′,
V ′, ψ, ν) does not hold. This contradicts the fact
that determinesM (T ′, V ′, ψ, ν) holds.

2. there is a view v′ in extend(M, s, V ′) such that
def (v′) = {x|¬ψ}. From Lemma E.1, it follows
that there is a view v′′ ∈ V ′ that is equivalent to
v′, and, therefore, to {x|¬ψ}. Thus, determinesM
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(T ′, V ′,¬ψ, ν) holds for all well-formed assignments
ν.

φ := ∃x. ψ Assume that apprDet(T ′, V ′,∃x. ψ, s,M) = >.
There are two cases:
1. apprDet(T ′, V ′, ψ, s,M) = >. From the induction

hypothesis, it follows that determinesM (T ′, V ′, ψ, ν)
holds for all well-formed assignments ν. There-
fore, also determinesM (T ′, V ′, ∃x. ψ, ν) holds for
all well-formed assignments ν (note that any well-
formed assignment for ψ is also a well-formed as-
signment for ∃x. ψ). Indeed, assume that this is
not the case. This means that there are three
database states db, db1, and db2 such that db1,
db2 are in JdbKV ′,T ′ and [(∃x. ψ)◦ν]db1 6= [(∃x. ψ)◦
ν]db2 . From this and the RC semantics, it fol-
lows that there is a value v ∈ dom such that
[ψ ◦ ν[x 7→ v]]db1 6= [ψ ◦ ν[x 7→ v]]db2 . Note that
ν[x 7→ v] is a well-formed assignment for ψ. Let’s
call the assignment ν′. From this, it follows that
[ψ ◦ ν′]db1 6= [ψ ◦ ν′]db2 . From this, it follows that
determinesM (T ′, V ′, ψ, ν′) does not hold. This con-
tradicts the fact that determinesM (T ′, V ′, ψ, ν) holds
for any well-formed assignment ν.

2. there is a view v′ in extend(M, s, V ′) such that
def (v′) = {x|∃x. ψ}. From Lemma E.1, it fol-
lows that there is a view v′′ ∈ V ′ that is equiv-
alent to v′, and, therefore, to {x|∃x. ψ}. Thus,
determinesM (T ′, V ′,∃x. ψ, ν) holds for all well-formed
assignments for ∃x. ψ.

φ := ∀x. ψ This case is similar to ∃x. ψ.
This concludes the proof of the induction step.

This completes the proof.

We now show that ;
appr
auth is a sound approximation of

;auth , i.e., if s;appr
auth act , then s;auth act . A derivation of

s;appr
auth act is a proof tree, obtained using the rules defining

;
appr
auth , which ends in s ;

appr
auth act . The size of a deriva-

tion is the number of ;
appr
auth rules that are used to show

that s ;
appr
auth act . In the following, we switch freely be-

tween statements of the form s ;
appr
auth act and their deriva-

tions. We denote the size of the derivation of s ;
appr
auth act

as |s;appr
auth act |.

Lemma E.3. Let M = 〈D,Γ〉 be a system configuration,
s be an M-state, c be an M-context, and act ∈ AD,U ∪
T RIGGERD. If s;appr

auth act, then s;auth act.

Proof. Let M = 〈D,Γ〉 be a system configuration, s
be an M -state, c be an M -context, and act ∈ AD,U ∪
T RIGGERD. Furthermore, we assume that there is a deriva-
tion of s ;

appr
auth act . We prove our claim by structural in-

duction on the size of s;appr
auth act ’s derivation.

Base Case: We now show that, for all s and act such
that |s ;

appr
auth act | = 1, if s ;

appr
auth act , then s ;auth act .

There are several cases:
1. Rule INSERT DELETE admin: If s;appr

auth act , then s;auth

act follows trivially from the rule’s definition.
2. Rule CREATE VIEW admin: If s;appr

auth act , then s;auth

act follows trivially from the rule’s definition.
3. Rule CREATE TRIGGER admin: If s ;

appr
auth act , then

s;auth act follows trivially from the rule’s definition.
4. Rule SELECT : If s ;

appr
auth act , then s ;auth act follows

trivially from the rule’s definition.
5. Rule EXECUTE TRIGGER-3 : If s;appr

auth act , then s;auth

act follows trivially from the rule’s definition.

6. Rule GRANT-2 : If s;appr
auth act , then s;auth act follows

trivially from the rule’s definition.
7. Rule GRANT-5 : If s;appr

auth act , then s;auth act follows
trivially from the rule’s definition.

8. Rule ADD USER : If s;appr
auth act , then s;auth act follows

trivially from the rule’s definition.
Induction Step: We now assume that, for all deriva-

tions of size less than |s;appr
auth act |, it holds that if s′ ;appr

auth

act ′, then s′ ;auth act ′. There are several cases:
1. Rule INSERT DELETE : Assume that s ;

appr
auth act holds

and that act = 〈u, op′, R, t〉, where op′ is one of {INSERT,
DELETE}. From the rule’s definition, it follows that
there is a grant g = 〈op, u, 〈op′, R〉, u′〉 in s.sec such
that s ;

appr
auth g. From this and the induction hypoth-

esis, it follows that s ;auth g. Therefore, s ;auth act
holds because we can apply the INSERT DELETE rule in
;auth .

2. Rule CREATE VIEW : The proof is similar to the one for
the INSERT DELETE rule.

3. Rule CREATE TRIGGER : The proof is similar to the one
for the INSERT DELETE rule.

4. Rule EXECUTE TRIGGER-2 : Assume that s ;
appr
auth act

holds and that act = 〈i , o, e, R, φ, st , A〉 such that [φ[x|R|

7→ tpl(s)]]s.db = >. From the rule’s definition, it follows
that both s;appr

auth getAction(st , ow , tpl(s)) and s;appr
auth

getAction(st , invoker(s), tpl(s)) hold. From this and
the induction hypothesis, both s;auth getAction(st , ow ,
tpl(s)) and s;auth getAction(st , invoker(s), tpl(s)) hold.
From this and the EXECUTE TRIGGER-2 rule in ;auth , it
follows that also s;auth act holds.

5. Rule EXECUTE TRIGGER-1 : The proof is similar to the
one for the EXECUTE TRIGGER-2 rule.

6. Rule GRANT-1 : Assume that s;appr
auth act holds and that

act = 〈op, u, p, u′〉, where op ∈ {⊕,⊕∗}. From the
rule’s definition, it follows that there is a grant g =
〈⊕∗, u′, p, u′′〉 in s.sec such that s ;

appr
auth g. From this

and the induction hypothesis, ti follows that s;auth g.
From this and the GRANT-1 rule in ;auth , it follows that
s;auth act holds.

7. Rule GRANT-3 : Assume that s ;
appr
auth act holds and

that act = 〈op, u, p, o〉, where p = 〈SELECT, v〉, v ∈
VIEWowner

D , op ∈ {⊕,⊕∗}, and o = owner(v) such
that o 6= admin. Let T ′ be the set obtained through
the aT function and V ′ be the set obtained through
the aV function. From the rule’s definition, it fol-
lows that apprDet(T ′, V ′, def (v)) = >. From this and
Lemma E.2, it follows that determinesM (T ′, V ′, def (v))
holds. We now show that for any obj ∈ T ′ ∪ V ′,
hasAccess(s′, {obj}, o,⊕∗) holds. There are four cases:
(a) o = admin and obj ∈ D. Since obj ∈ T ′, it fol-

lows that there is a g = 〈⊕∗, o, 〈SELECT, obj 〉, u′〉
such that s ;

appr
auth g. From this and the induction

hypothesis, it follows that s ;auth g. Therefore,
hasAccess(s′, {obj}, o,⊕∗) holds.

(b) o 6= admin and obj ∈ D. Since obj ∈ T ′, it fol-
lows that there is a g = 〈⊕∗, o, 〈SELECT, obj 〉, u′〉 in
sec such that s ;appr

auth g. From this and the induc-
tion hypothesis, it follows that s ;auth g. Thus,
hasAccess(s′, {obj}, o,⊕∗) holds.

(c) o = admin and obj ∈ V . The proof of this case is
similar to that of o = admin and obj ∈ D.

(d) o 6= admin and obj ∈ V . The proof of this case is
similar to that of o 6= admin and obj ∈ D.
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Note that from hasAccess(s′, A, o, op) and hasAccess(s′,
B, o, op), it follows that hasAccess(s′, A∪B, o, op). Thus,
hasAccess(s, T ′ ∪ V ′, o,⊕∗) holds. From this, it follows
that s;auth act holds because we can apply the corre-
sponding rule in ;auth .

8. Rule GRANT-4 : The proof is similar to the one for the
GRANT-3 rule.

9. Rule REVOKE : Assume that s;appr
auth act holds and that

act = 〈	, u, p, u′〉. From the rule’s definition, it fol-
lows that s′ ;appr

auth g for any g ∈ s′.sec, where s′ =
applyRev(s, 〈	, u, p, u′〉). From the induction’s hypoth-
esis, it follows that s′ ;auth g for any g ∈ s′.sec. There-
fore, we can apply the rule REVOKE of ;auth to derive
s;auth act .

This completes our proof.

E.3 Database Integrity Proofs
We are now ready to prove that fint satisfies the database

integrity property.

Lemma E.4. For any two states s = 〈db, U, sec, T, V, c〉,
s′ = 〈db′, U, sec, T, V, c′〉 in ΩM and any action a ∈ AD,U :

1. s;auth a iff s′ ;auth a, and
2. s;appr

auth a iff s′ ;appr
auth a.

Proof. It is easy to see that the only rules that depends
on db, db′, c, and c′ are EXECUTE TRIGGER - 1, EXECUTE

TRIGGER - 2, and EXECUTE TRIGGER - 3. Since they are
not used to evaluate whether s ;auth a and s ;appr

auth a hold
for actions in AD,U , the lemma follows trivially.

Lemma E.5. Let P = 〈M, fint〉 be an extended configu-
ration, where M is a system configuration, and L be the
P -LTS. Then, for all M-states s = 〈db, U, sec, T, V, c〉 ∈ ΩM
such that trigger(s) = ε and all actions act ∈ AD,U , if
fint(s, act) = >, then s;auth act.

Proof. We prove the theorem by contradiction. As-
sume, for contradiction’s sake, that the claim does not hold.
Therefore, there is a state s and an action act such that
fint(s, act) = >, trigger(s) = ε, and s 6;auth act . Thus,
from fint(s, act) = >, trigger(s) = ε, and fint ’s definition, it
follows s ;

appr
auth act . From this and Lemma E.3, it follows

that s;auth act leading to a contradiction.

Lemma E.6. Let P = 〈M, fint〉 be an extended configu-
ration, where M is a system configuration, and L be the
P -LTS. Then, for all M-states s = 〈db, U, sec, T, V, c〉 ∈ ΩM
such that trigger(s) = ε and all actions act ∈ AD,U , and
all M-states s′ reachable from s in one step through t, if
secEx (s′) = ⊥, then s;auth act.

Proof. We prove the theorem by contradiction. Assume,
for contradiction’s sake, that the claim does not hold. There-
fore, there are two states s and s′ and an action act such that
s′ is reachable in one step from s through act , secEx (s′) = ⊥,
trigger(s) = ε, and s 6;auth act . From secEx (s′) = ⊥ and
the LTS’s rules, it follows that fint(s, act) = >. From this,
trigger(s) = ε, and fint ’s definition, it follows s ;

appr
auth act .

From this and Lemma E.3, it follows that s;auth act lead-
ing to a contradiction.

Lemma E.7. Let P = 〈M, fint〉 be an extended configu-
ration, where M is a system configuration, and L be the
P -LTS. Then, for all M-states s = 〈db, U, sec, T, V, c〉 ∈ ΩM
and all triggers t ∈ T RIGGERD such that trigger(s) = t,
the following hold:

1. If fint(s, c) = > and [ψ]db = ⊥, then s ;auth t, where
c = trigCond(s) = 〈u, SELECT, ψ〉.

2. If fint(s, c) = >, [ψ]db = >, and fint(s, a) = >, then
s ;auth t, where c = trigCond(s) = 〈u, SELECT, ψ〉 and
a = trigAct(s).

Proof. We prove both claims by contradiction. Assume,
for contradiction’s sake, that the first claim does not hold.
Therefore, there is a state s and a trigger t such that fint(s, c)
= > and [ψ]db = ⊥ and s 6;auth t. From [ψ]db = ⊥,
trigger(s) = t, and the rule EXECUTE TRIGGER - 3, it fol-
lows that s ;auth t holds, which leads to a contradiction.
Assume, for contradiction’s sake, that the second claim does
not hold. Therefore, there is a state s and a trigger t such
that fint(s, c) = >, [ψ]db = >, fint(s, a) = >, and s 6;auth t.
From fint(s, a) = >, it follows s ;

appr
auth t. From this and

Lemma E.3, it follows that s ;auth t holds leading to a
contradiction. This completes the proof.

Lemma E.8. Let P = 〈M, fint〉 be an extended configura-
tion, where M is a system configuration, and L be the P -
LTS. Then, for all M-states s = 〈db, U, sec, T, V, c〉 ∈ ΩM ,
all triggers t ∈ T RIGGERD, and all M-states s′ reach-
able from s in one step through t, if secEx (s′) = ⊥, then
s;auth t.

Proof. We prove the theorem by contradiction. Assume,
for contradiction’s sake, that the claim does not hold. There-
fore, there are two states s and s′ and a trigger t such that
s′ is reachable in one step through t from s, secEx (s′) = ⊥,
and s 6;auth t. In the following, let c = 〈u, SELECT, ψ〉 be
trigCond(s) and a be trigAct(s). Since t is a trigger, s′ is
reachable in one-step from s through t, and secEx (s′) = ⊥,
there are two cases, according to the LTS rules:

1. fint(s, c) = > and [ψ]db = ⊥. In this case, we can al-
ways apply the rule EXECUTE TRIGGER - 3 in the state
s to derive s;auth t leading to a contradiction.

2. fint(s, c) = >, [ψ]db = >, and fint(s
′′, a) = >, where

s′′ is the state obtained from s by updating the context
according to the LTS rules. From fint ’s definition and
fint(s

′′, a) = >, it follows s′′ ;appr
auth t. From this and

Lemma E.3, it follows s′′ ;auth t. Since s and s′′ are
equivalent modulo the context’s history and the con-
text’s history is not used in the rules defining ;auth ,
it also follows that s ;auth t holds. This lead to a
contradiction.

Both cases lead to a contradiction. This completes the
proof.

We are now ready to prove our main result, namely that
fint provides database integrity.

Theorem E.1. Let P = 〈M, fint〉 be an extended config-
uration, where M = 〈D,Γ〉 is a system configuration. The
PDP fint provides database integrity with respect to P .

Proof. To show that fint satisfies the database integrity
property, we have to prove that for all reachable states s =
〈db, U, sec, T, V, c〉:

1. for all states s′ reachable from s in one step through an
action a ∈ AD,U , if secEx (s′) = ⊥, then s;auth a,

2. for all states s′ reachable from s in one step through
a trigger t ∈ T RIGGERD, if secEx (s′) = ⊥, then
s;auth t.

The first condition has been proved in Lemma E.6 and
the second one has been proved in Lemma E.8. Therefore,
fint satisfies the database integrity property.
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We also prove that, by using fint , any reachable state has
a consistent policy. This is the underlying reason why fint

prevents Attacks 2 and 3.

Lemma E.9. Let P = 〈M, fint〉 be an extended configu-
ration, where M = 〈D,Γ〉 is a system configuration. For
each reachable state s = 〈db, U, sec, T, V, c〉, s ;auth g for
all g ∈ sec.

Proof. We claim that, for any run r, the state last(r) is
such that for all p ∈ last(r).sec, last(r) ;auth p. From this,
the lemma follows trivially.

We now prove that for any run r, the state last(r) is such
that for all p ∈ last(r).sec, last(r) ;auth p. We do this by
structural induction on the length of the run r.

Base Case: The base case consists of the runs containing
only one initial state. Note that an initial state contains only
grants issued by admin, together with views and triggers
owned by admin. It is easy to see that for any permission
p = 〈op, u, pr , admin〉 in a policy sec in an initial state s, it
holds that s;auth p. There are two cases:

1. The privilege pr in p is such that pr ∈ PRIVD \
PRIVSELECT,VIEWowner

D
D . Then, s ;auth p by the rule

GRANT-2.
2. The privilege pr in p is such that pr is in the set

PRIVSELECT,VIEWowner
D

D . Recall that admin is the owner
of all views in the state. Then, s ;auth p by the rule
GRANT-3. Indeed, admin can read (and delegate the SE-

LECT permission over) all tables in the database. There-
fore, hasAccess(s,D, admin,⊕∗) and determinesM
(D, ∅, q) hold for any query q.

This complete the proof for the base case.

Induction Step: We now assume that for all runs r′ of
length less than the length of r, the state last(r′) is such
that for all p ∈ last(r′).sec, last(r′) ;auth p. Let r′ be the

run r|r|−1. There are two cases, depending on whether act
raises an exception or not.

1. secEx (last(r)) = ⊥ and Ex (last(r)) = ∅. There are a
number of cases depending on act :
(a) act is 〈u, INSERT, R, t〉, 〈u, DELETE, R, t〉, 〈u, SELECT,

q〉, 〈u, ADD USER, u′〉, or 〈u, CREATE, o〉. In these cases,
last(r′).sec = last(r).sec. Furthermore, last(r′).U ⊆
last(r).U , last(r′).T ⊆ last(r).T , and last(r′).V ⊆
last(r).V . From this and the fact that last(r′) ;auth

g for all g ∈ last(r′).sec, it follows that last(r) ;auth

g for all g ∈ last(r).sec.
(b) act is 〈op, u, p, u′〉, where op ∈ {⊕,⊕∗}. From

secEx (last(r)) = ⊥, it follows that last(r′) ;auth

act . From the induction hypothesis, it follows that
last(r′) ;auth g for all g ∈ last(r′).sec. We claim
that, for any grant statement g, if 〈db, U, sec, T, V, c〉
;auth g, then 〈db′, U, sec′, T, V, c′〉;auth g for any
policy such that sec ⊆ sec′. From the claim, it
follows that last(r) ;auth act and last(r) ;auth g
for all g ∈ last(r′).sec. From this and last(r).sec =
{act} ∪ last(r′).sec, it follows that last(r) ;auth g
for all g ∈ last(r).sec.
Our claim that, for any grant statement g, if 〈db, U,
sec, T, V, c〉;auth g, then 〈db′, U, sec′, T, V, c′〉;auth

g, where sec ⊆ sec′, follows trivially from the defi-
nition of the rules for GRANT statements.

(c) act is 〈	, u, p, u′〉. From secEx (last(r)) = ⊥, it
follows that last(r′) ;auth act . From this, it fol-

lows that s′ ;appr
auth g for all g ∈ s′.sec, where s ′ =

applyRev(last(r′), act). From this and Lemma E.3,
it follows that s′ ;auth g for all g ∈ s′.sec. Re-
call that last(r) and s ′ are equivalent modulo the
database and the context. From this, Lemma E.4,
and s′ ;auth g for all g ∈ s′.sec, it follows that
last(r) ;auth g for all g ∈ last(r).sec.

(d) act is a trigger and the WHEN condition is not sat-
isfied. In this case, last(r′) and last(r) are equiv-
alent modulo the context. From this, the induc-
tion hypothesis, and Lemma E.4, it follows that
last(r) ;auth g for all g ∈ last(r).sec.

(e) act is a trigger and the WHEN condition is satisfied.
In this case, the proof is the same as the previous
cases depending on the trigger’s action.

2. secEx (last(r)) = > or Ex (last(r)) 6= ∅. From this and
the LTS’s rules, it follows that there is a state s′ ∈
{last(ri)|1 ≤ i ≤ |r| − 1} such that pState(last(r)) =
pState(s′) (because there has been a roll-back). Let
sec be the policy in s′. From the induction hypothesis,
it follows that for all p ∈ sec, s′ ;auth p. From this fact,
the ;auth ’s definition, pState(last(r)) = pState(s′), and
Lemma E.4, it follows that for all p ∈ last(r).sec, also
last(r) ;auth p.

This complete the proof for the induction step.
This completes the proof.

E.4 Complexity Proofs

Theorem E.2. The data complexity of fint is O(1).

Proof. Let M = 〈D,Γ〉 be some fixed system config-
uration, a ∈ AD,U be some fixed action, u ∈ U be some
fixed user, U ⊆ U be some fixed set of users, sec ∈ Ωsec

U,D

be some fixed policy, T be some fixed set of triggers over
D whose owners are in U , V be some fixed set of views
over D whose owners are in U , and c be some fixed con-
text. Furthermore, let db ∈ ΩΓ

D be a database state such
that 〈db, U, sec, T, V, c〉 ∈ ΩM . We denote by s the state
〈db, U, sec, T, V, c〉. We can check whether fint(s, a) = > as
follows:

1. If trigger(s) = ε, then return > iff s;appr
auth a.

2. If trigger(s) 6= ε and a = trigCond(s), return >.
3. If trigger(s) 6= ε and a = trigAct(s), return > iff both
s ;

appr
auth getAction(stmt , ow , tpl(s)) = > and s ;

appr
auth

getAction(stmt , invoker(s), tpl(s)) = >, where trigger
(s) = 〈id , ow , ev , R, φ, stmt ,m〉.

4. Otherwise return ⊥.
Note that in the above algorithm we use all the rules in
;

appr
auth other than EXECUTE TRIGGER - 1, EXECUTE

TRIGGER - 2, and EXECUTE TRIGGER - 3. These are
the only rules that depend on the database state. Therefore,
evaluating any statement of the form s;appr

auth a can be done
in constant time in terms of data complexity. Therefore, all
steps 1–4 can be executed in constant time in terms of data
complexity.

Lemma E.10. The complexity of apprDet is O(|φ|3 + |φ| ·
max2 · |V |3).

Proof. Let M = 〈D,Γ〉 be a system configuration, T ⊆
D be a set of tables, V ⊆ VIEWowner

D be a set of views
over D, φ be a formula over D, and s be an M -state. An
algorithm that computes apprDet(T, V, φ, s,M) is as follows:

1. Compute the set extend(M, s, V ).
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2. Compute the set S of all sub-formulae of φ, i.e., S =
subF (φ). Note that φ ∈ subF (φ).

3. Sort by length the set of sub-formulae in such a way
that the shortest formula is the first one.

4. Let S′ := ∅.
5. For each sub-formula ψ in the sequence:

(a) Check whether there is a view v ∈ extend(M, s, V )
such that ψ is v’s definition. If this is the case, let
S′ = S′ ∪ subF (ψ).

(b) Make a case distinction on ψ:
i. If ψ := R(x) and R ∈ T , S′ = S′ ∪ subF (ψ).
ii. If ψ := V (x) and 〈V, u, q, O〉 ∈ V , S′ = S′ ∪

subF (ψ).
iii. If ψ := α ∧ β and α, β ∈ S′, then S′ = S′ ∪

subF (ψ).
iv. If ψ := α ∨ β and α, β ∈ S′, then S′ = S′ ∪

subF (ψ).
v. If ψ := ¬α and α ∈ S′, then S′ = S′∪subF (ψ).
vi. If ψ := ∃x.α and α ∈ S′, then S′ = S′ ∪

subF (ψ).
vii. If ψ := ∀x.α and α ∈ S′, then S′ = S′ ∪

subF (ψ).
6. apprDet(T, V, φ, s,M) = > iff S = S′.

We claim that the size of subF (φ) is O(|φ|) and that comput-
ing subF (ψ) can be done in O(|φ|2). Let max be the max-
imum length of the definitions of the views in V . We also
claim that the size of the set extend(M, s, V ) is O(max ·|V |3)
and that extend(M, s, V ) can be computed in O(|V |3 ·max2).
From these claims, it follows that the fifth step can be exe-
cuted inO(|S|·((|extend(M, s, V )|+|S|)+|S|2))). After some
simplification, it follows that the fifth step can be executed in
O(|S|3+|S|·|extend(M, s, V )|). From this, |S| = O(|φ|), and
|extend(M, s, V )| = O(max · |V |3), it follows that the fifth
step can be executed in O(|φ|3 + |φ| ·max · |V |3). Therefore,
the overall complexity is O(|φ|3 + |φ| ·max2 · |V |3).

We now prove our claims about subF (φ). It is easy to
see that the size of subF (φ) is O(|φ|). Indeed, we can view
the formula φ as a tree, where the operators are the internal
nodes and the predicates and equalities are the leaves. Then,
there is a sub-formula for each sub-tree. From this and from
the fact that the number of sub-tree of a tree is linear in the
number of nodes, it follows that |subF (φ)| is O(|φ|). Note
that computing subF (ψ) can be done in O(|φ|2).

We now prove our claims about extend(M, s, V ). Let max
be the maximum length of the definitions of the views in
V . For each v ∈ V , computing inline(v, s) can be done
in O(|v| · |V | · max ). Furthermore, since the views’ defini-
tions are acyclic, after |V | applications of inline there are
no views in the view’s definition. Therefore, for each v ∈ V ,
we can compute all views derivable from v in O(|v| · |V |2 ·
max ). Therefore, we can compute the set extend(M, s, V ) in
O(|V |3 · max2). Therefore, also the size of extend(M, s, V )
is less than O(max · |V |3).
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u, u′ ∈ U R ∈ D t ∈ dom|R| g = 〈op, u, 〈op′, R〉, u′〉 g ∈ sec
〈db, U, sec, T, V, c〉;appr

auth g op ∈ {⊕,⊕∗} op′ ∈ {INSERT, DELETE}
〈db, U, sec, T, V, c〉;appr

auth 〈u, op′, R, t〉
INSERT

DELETE

u, u′ ∈ U v ∈ VIEWD g = 〈op, u, 〈CREATE VIEW〉, u′〉
g ∈ sec 〈db, U, sec, T, V, c〉;appr

auth g op ∈ {⊕,⊕∗}
〈db, U, sec, T, V, c〉;appr

auth 〈u, CREATE, v〉
CREATE

VIEW

u, u′ ∈ U t = 〈id , ow , ev , R, φ, stmt ,m〉
t ∈ T RIGGERD

g = 〈op, u, 〈CREATETRIGGER, R〉, u′〉
g ∈ sec 〈db, U, sec, T, V, c〉;appr

auth g op ∈ {⊕,⊕∗}
〈db, U, sec, T, V, c〉;appr

auth 〈u, CREATE, t〉
CREATE

TRIGGER

R ∈ D t ∈ dom|R| op′ ∈ {INSERT, DELETE}
〈db, U, sec, T, V, c〉;appr

auth 〈admin, op′, R, t〉

INSERT

DELETE

admin

v ∈ VIEWD

〈db, U, sec, T, V, c〉;appr
auth 〈admin, CREATE, v〉

CREATE

VIEW

admin

t ∈ T RIGGERD
〈db, U, sec, T, V, c〉;appr

auth 〈admin, CREATE, t〉

CREATE

TRIGGER

admin

u, u′ ∈ U priv ∈ PRIVD
s = 〈db, U, sec, T, V, c〉 s′ = 〈db, U, sec′, T, V, c〉

s′ = applyRev(s, 〈	, u, p, u′〉)
∀g ∈ sec′. s′ ;appr

auth g

〈db, U, sec, T, V, c〉;appr
auth 〈	, u, priv , u′〉

REVOKE

u, u′, u′′ ∈ U op ∈ {⊕,⊕∗} priv ∈ PRIVD
g = 〈⊕∗, u′, priv , u′′〉 g ∈ sec 〈db, U, sec, T, V, c〉;appr

auth g

〈db, U, sec, T, V, c〉;appr
auth 〈op, u, priv , u′〉

GRANT-1

u ∈ U op ∈ {⊕,⊕∗}
priv ∈ PRIVD \ PRIVSELECT,VIEWownerD

D

〈db, U, sec, T, V, c〉;appr
auth 〈op, u, priv , admin〉 GRANT-2

u, owner ∈ U op ∈ {⊕,⊕∗} priv = 〈SELECT, v〉
v = 〈id , owner , q, O〉 v ∈ V
T ′ = aT (〈db, U, sec, T, V, c〉,⊕∗, owner)
V ′ = aV (〈db, U, sec, T, V, c〉,⊕∗, owner)

apprDet(T ′, V ′, q) = >
〈db, U, sec, T, V, c〉;appr

auth 〈op, u, priv , owner〉 GRANT-3

u, owner ∈ U op ∈ {⊕,⊕∗} priv = 〈SELECT, v〉
v = 〈id , owner , q, O〉 v ∈ V owner 6= admin

T ′ = aT (〈db, U, sec, T, V, c〉,⊕, owner)
V ′ = aV (〈db, U, sec, T, V, c〉,⊕, owner)

apprDet(T ′, V ′, q) = >
〈db, U, sec, T, V, c〉;appr

auth 〈op, u, priv , admin〉 GRANT-4

u, owner ∈ U op ∈ {⊕,⊕∗} v ∈ V
priv = 〈SELECT, v〉 v = 〈id , owner , q, A〉
〈db, U, sec, T, V, c〉;appr

auth 〈op, u, priv , owner〉 GRANT-5
u ∈ U u′ = admin

〈db, U, sec, T, V, c〉;appr
auth 〈u

′, ADD USER, u〉
ADD USER

t = 〈id , ow , ev , R, φ, stmt , O〉 t ∈ T
〈db, U, sec, T, V, c〉;appr

auth getAction(stmt , ow , tpl(c))
[φ[x|R| 7→ tpl(c)]]db = >
〈db, U, sec, T, V, c〉;appr

auth t

EXECUTE

TRIGGER-1

t = 〈id , ow , ev , R, φ, stmt , A〉 t ∈ T
〈db, U, sec, T, V, c〉;appr

auth getAction(stmt , invoker(c), tpl(c))
〈db, U, sec, T, V, c〉;appr

auth getAction(stmt , ow , tpl(c))
[φ[x|R| 7→ tpl(c)]]db = >
〈db, U, sec, T, V, c〉;appr

auth t

EXECUTE

TRIGGER-2

u ∈ U q ∈ RC

〈db, U, sec, T, V, c〉;appr
auth 〈u, SELECT, q〉

SELECT

t = 〈id , ow , ev , R, φ, stmt ,m〉
t ∈ T [φ[x|R| 7→ tpl(c)]]db = ⊥
〈db, U, sec, T, V, c〉;appr

auth t

EXECUTE

TRIGGER-3

aT (〈db, U, sec, T, V, c〉, op, u) = {R ∈ D | (u = admin ∧ ∃u′ ∈ U, op′ ∈ {⊕∗, op}.
〈db, U, sec, T, V, c〉;appr

auth 〈op′, u, 〈SELECT, R〉, u′〉)∨
∃u′ ∈ U, g ∈ sec, op′ ∈ {⊕∗, op}. g = 〈op′, u, 〈SELECT, R〉, u′〉

∧ 〈db, U, sec, T, V, c〉;appr
auth g}

aV (〈db, U, sec, T, V, c〉, op, u) = {V ∈ V ∩ VIEWowner
D | (u = admin ∧ ∃u′ ∈ U, op′ ∈ {⊕∗, op}.

〈db, U, sec, T, V, c〉;appr
auth 〈op′, u, 〈SELECT, V 〉, u′〉)∨

∃u′ ∈ U, g ∈ sec, op′ ∈ {⊕∗, op}. g = 〈op′, u, 〈SELECT, V 〉, u′〉
∧ 〈db, U, sec, T, V, c〉;appr

auth g}

Figure 37: Definition of the ;
appr
auth relation
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F. ENFORCING DATA CONFIDENTIALITY
Here, we first formalize the PDP fconf . Afterwards, we

prove that it provides the data confidentiality property. Fi-
nally, we show that its data complexity is AC 0.

LetM = 〈D,Γ〉 be a system configuration. The PDP fuconf

is shown in Figure 38. The function is parametrized by the
user u against which the PDP provides data confidentiality.
The PDP fuconf (s, a) models the function fconf (s, a, u) shown
in Figure 8. The mapping between the PDP fuconf and the
pseudo-code shown in Figure 8 is immediate.

The PDP fuconf uses a number of auxiliary functions. Re-
call that the function tr , defined in Appendix A, takes as
input an M -state s ∈ ΩM and returns the definition of the
trigger that the system is executing. If the system is not
executing any trigger, then tr(s) = ε. Equivalently, tr(s)
is the first trigger in the sequence of triggers returned by
triggers(s).

The function tDet takes as input a view v = 〈i , o, {x|φ},m〉
∈ VIEWD, a state s ∈ ΩM , and a system configuration
M = 〈D,Γ〉 and returns as output the smallest set of tables
in D that determines v, namely the smallest set T ∈ P(D)
such that apprDet(T, ∅, φ, s,M) holds, where apprDet is de-
fined in Appendix E. Note that such a set is always unique.

The function noLeak , defined in Figure 38, takes as input
a state s, an INSERT or DELETE action a, and a user u and
checks whether the execution of the action a may leak sensi-
tive information through the views that the user u can read,
as shown in Example 5.4. Note that the function noLeak
returns > if there is no leakage of sensitive information and
returns ⊥ if the action a may leak sensitive information
through the views the user u can read in the state s. We re-
mark that the function leak(a, s, u) used in the algorithm in
Section 6 returns is defined as leak(a, s, u) = noLeak(s, a, u).

We now define the Dep, getInfoS , getInfoV , and getInfo
functions. The function Dep is as follows. Dep(〈u, INSERT, R,
t〉,Γ) returns the set containing all the formulae in Γ of the
form ∀x, y, y′, z, z′. (R(x, y, z) ∧ R(x, y′, z′)) ⇒ y = y′ or
∀x, z.R(x, z)⇒ ∃w. S(x,w), whereas Dep(〈u, DELETE, R, t〉,
Γ) returns the set containing all the formulae in Γ of the
form ∀x, z. S(x, z)⇒ ∃w.R(x,w).

The function getInfoS is defined as follows:
• getInfoS(〈u, INSERT, R, (v, w, q)〉, φRfunct) is the formula

¬∃y, z.R(v, y, z)∧y 6= w, where φRfunct is a formula of the
form ∀x, y, y′, z, z′. (R(x, y, z) ∧R(x, y′, z′))⇒ y = y′.

• getInfoS(〈u, INSERT, R, (v, w)〉, φR,Sincl ) is the formula ∃y.
S(v, y), where φR,Sincl is a formula of the form ∀x, z.R(x, z)
⇒ ∃w. S(x,w).

• getInfoS(〈u, DELETE, R, (v, w)〉, φS,Rincl ) is the formula ∀x,
z. (S(x, z)⇒ x 6= v)∨∃y. (R(v, y)∧y 6= w), where φS,Rincl

is a formula of the form ∀x, z. S(x, z)⇒ ∃w.R(x,w).
• getInfoS(act , φ) = > otherwise.
The function getInfoV is defined as follows:
• getInfoV (〈u, INSERT, R, (v, w, q)〉, φRfunct) is the formula

∃y, z.R(v, y, z)∧y 6= w, where φRfunct is a formula of the
form ∀x, y, y′, z, z′. (R(x, y, z) ∧R(x, y′, z′))⇒ y = y′.

• getInfoV (〈u, INSERT, R, (v, w)〉, φR,Sincl ) is the formula ∀x,
y. S(x, y)⇒ x 6= v, where φR,Sincl is a formula of the form
∀x, z.R(x, z)⇒ ∃w. S(x,w).

• getInfoV (〈u, DELETE, R, (v, w)〉, φS,Rincl ) is the formula ∃z.
S(v, z)∧∀y. (R(v, y)⇒ y = w), where φS,Rincl is a formula
of the form ∀x, z. S(x, z)⇒ ∃w.R(x,w).

• getInfoV (act , φ) = > otherwise.
The function getInfo is as follows:

getInfo(〈u, op, R, t〉) =

{
¬R(t) if op = INSERT

R(t) if op = DELETE

In §F.1 we describe the secure function and we show that
it is a sound, under-approximation of the concept of secure
judgments. Afterwards, in §F.2 we prove that fuconf provides
data confidentiality with respect to the user u. Finally, in
§F.3 we prove that the data complexity of fuconf is AC 0.
In the rest of the paper, instead of writing secureP,∼=P,u we
simply write secureP,u and we omit the reference to the in-
distinguishability relation ∼=P,u defined in Appendix D.

F.1 Checking a judgment’s security
We still have to define the secure : U × RC bool × ΩM →
{>,⊥} function that determines a given judgment’s security.
In more detail, the secure function is as follows:

secure(u, φ, s) =

{
> if [φrw

s,u]s.db = ⊥
⊥ otherwise

In the following, we assume that both the formula φ and
the set of views V in the state s contain just views with
owner’s privileges. This is without loss of generality. Indeed,
views with activator’s privileges are just syntactic sugar,
they do not disclose additional information to a user other
than what he is already authorized to read because they
are executed under the activator’s privileges. If φ and s
contain views with activator’s privileges, we can compute
another formula φ′ and a state s′ without views with activa-
tor’s privileges as follows. We replace, in the formula φ, the
predicates of the form V (x), where V is a view with activa-
tor’s privileges, with V ’s definition, and we repeat this pro-
cess until the resulting formula φ′ no longer contains views
with activator’s privileges. Similarly, the set V ′ is obtained
from V by (1) removing all views with activator’s privileges,
and (2) for each view v ∈ V with owner’s privileges, re-
placing the predicates of the form V (x) in v’s definition,
where V is a view with activator’s privileges, with V ’s defi-
nition until v’s definition no longer contains views with ac-
tivator’s privileges. The security policy sec′ is also obtained
from sec by removing all references to views with activa-
tor’s privileges. Finally, secure(u, φ, 〈db, U, sec, T, V, c〉) is
just secure(u, φ′, 〈db, U, sec′, T, V ′, c〉).

Before defining the φ>s,u and φ⊥s,u rewritings, we define
query containment. Let M = 〈D,Γ〉 be a system configura-
tion. Given two formulae φ(x) and ψ(y), we write φ ⊆M ψ
to denote that φ is contained in ψ, i.e., ∀d ∈ ΩΓ

D. [{x|φ}]d ⊆
[{y|ψ}]d . Determining whether φ ⊆M ψ holds is undecidable
for RC [3]. Hence, we develop a sound, under-approximation
of query containment. Figure 39 describes the rules defining
our under-approximation. For simplicity’s sake, the rules
are defined only for relational calculus formulae that do not
use views. To check whether φ ⊆M ψ holds for two formulae
φ and ψ that use views, we first compute the formulae φ′

and ψ′, obtained by replacing views’ identifiers with their
definitions, and then we check whether φ′ ⊆M ψ′ using the
rules in Figure 39. This preserves containment since φ and
ψ are semantically equivalent to φ′ and ψ′. Both in the
rules and in the proof of Lemma F.1, we assume that there
is a total ordering �var over the set of all possible variable
identifiers. This ensures that, given a formula φ, there is a
unique non-boolean query {x |φ} associated to it, where the
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f uconf (s, act) =



f uconf ,S(s, act) if act = 〈u′, SELECT, q〉
f uconf ,I,D(s, act) if act = 〈u′, INSERT, R, t〉
f uconf ,I,D(s, act) if act = 〈u′, DELETE, R, t〉
f uconf ,G,R(s, act) if act = 〈op, u′′, p, u′〉 ∧ op ∈ {⊕,⊕∗}
> if u = admin
> otherwise

f uconf ,I,D(s, act) =



secure(u, getInfo(act), s)∧ if act = 〈u, op, R, t〉 ∧ trigger(s) = ε ∧ noLeak(s, act , u) = >∧
γ∈Dep(act,Γ) secure(u, getInfoS(γ, act), s)

∧secure(u, getInfoV (γ, act), s)

⊥ if act = 〈u, op, R, t〉 ∧ trigger(s) = ε ∧ noLeak(s, act , u) = ⊥

secure(u, getInfo(act), s)∧ if invoker(s) = u ∧ trigger(s) 6= ε ∧ noLeak(s, act , u) = >∧
γ∈Dep(act,Γ) secure(u, getInfoS(γ, act), s)

∧secure(u, getInfoV (γ, act), s)

⊥ if invoker(s) = u ∧ trigger(s) 6= ε ∧ noLeak(s, act , u) = ⊥

> otherwise

f uconf ,S(s, 〈u′, SELECT, q〉) =

 secure(u, q, s) if u′ = u ∧ trigger(s) = ε
secure(u, q, s) if invoker(s) = u ∧ trigger(s) 6= ε
> otherwise

f uconf ,G(s, 〈op, u′′, p, u′〉) =


⊥ if u′′ = u ∧ u′ = u ∧ trigger(s) = ε ∧ op ∈ {⊕,⊕∗} ∧ p = 〈SELECT, O〉∧

〈⊕, SELECT, O〉 6∈ permissions(s, u)
⊥ if u′′ = u ∧ invoker(s) = u ∧ trigger(s) 6= ε ∧ op ∈ {⊕,⊕∗} ∧ p = 〈SELECT, O〉∧

〈⊕, SELECT, O〉 6∈ permissions(s, u)
> otherwise

noLeak(s, 〈u′, op, R, t〉, u) =



> if u′ = u ∧ trigger(s) = ε ∧ ∀v ∈ VIEWD. ((〈⊕, SELECT, v〉 ∈ permissions(s, u)∧
R ∈ tDet(v, s,M))⇒ (∀o ∈ tDet(v, s,M). 〈⊕, SELECT, o〉 ∈ permissions(s, u)))

> if invoker(s) = u ∧ trigger(s) 6= ε ∧ ∀v ∈ VIEWD. ((〈⊕, SELECT, v〉 ∈ permissions(s, u)∧
R ∈ tDet(v, s,M))⇒ (∀o ∈ tDet(v, s,M). 〈⊕, SELECT, o〉 ∈ permissions(s, u)))

⊥ otherwise
Figure 38: Access control function fuconf
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variables in x are those in free(φ) ordered according to �var .
Lemma F.1 proves that the rules in Figure 39 are a sound,

under-approximation of query containment.

Lemma F.1. Let M = 〈D,Γ〉 be a system configuration,
and φ(x) and ψ(y) be two formulae. If φ ⊆M ψ, according to
the rules in Figure 39, then ∀d ∈ ΩΓ

D. [{x|φ}]d ⊆ [{y|ψ}]d ,
where x (respectively y) is the tuple defined by the variables
in free(φ) (respectively free(ψ)) ordered according to �var .

Proof. φ ⊆M ψ iff there is a finite derivation that ends
in φ ⊆M ψ created using the rules in Figure 39. We prove
our claim by structural induction on the derivation’s length.

Base Case Assume that the derivation has length 1. There
are four cases depending on the rule used to derive φ ⊆M ψ:

1. Rule And. From the rule’s definition, it follows that
free(φ) = free(φ∧ψ) = x. Let d ∈ ΩΓ

D and t ∈ [{x |φ∧
ψ}]d. From t ∈ [{x |φ∧ψ}]d and the definition of non-
boolean query, it follows that [(φ ∧ ψ)[x 7→ t]]d = >.
From this and the relational calculus semantics, it fol-
lows that [φ[x 7→ t]]d = >. From this and the defi-
nition of non-boolean query, t ∈ [{x |φ}]d. Therefore,
[{x|φ ∧ ψ}]d ⊆ [{x|φ}]d.

2. Rule Or. From the rule’s definition, it follows that
free(φ) = free(φ ∨ ψ) = x. Let d ∈ ΩΓ

D and t ∈
[{x |φ}]d. From t ∈ [{x |φ}]d and the definition of non-
boolean query, it follows that [φ[x 7→ t]]d = >. From
this and the relational calculus semantics, it follows
that [(φ ∨ ψ)[x 7→ t]]d = >. From this and the defini-
tion of non-boolean query, t ∈ [{x |φ∨ψ}]d. Therefore,
[{x|φ}]d ⊆ [{x|φ ∨ ψ}]d.

3. Rule Identity. From the rule’s definition, it follows that
free(φ) = x, free(ψ) = y, and φ[x 7→ y] = ψ. Let
d ∈ ΩΓ

D and t ∈ [{x |φ}]d. From t ∈ [{x |φ}]d and the
definition of non-boolean query, it follows that [φ[x 7→
t]]d = >. From this and φ[x 7→ y] = ψ, it follows that
[ψ[y 7→ t]]d = >. From this and the definition of non-
boolean query, t ∈ [{y |ψ}]d. Therefore, [{x|φ}]d ⊆
[{y|ψ}]d.

4. Rule Inclusion Dependency. From the rule’s definition,
it follows that γ := ∀x, z. (R(x, z) ⇒ ∃w. S(x,w)) is
in Γ. Let d ∈ ΩΓ

D and t ∈ [{x | ∃z.R(x, z)}]d. From
t ∈ [{x | ∃z.R(x, z)}]d and the definition of non-boolean
query, it follows that [∃z.R(t, z)]d = >. Therefore,
there is a tuple (t, w) ∈ d(R). From this and γ ∈ Γ,
it follows that there is a tuple (t, w′) ∈ d(S). From
this, it follows that [∃w. S(t, w)]d = >. From this and
the definition of non-boolean query, it follows that t ∈
[{x | ∃w. S(x,w)}]d. Therefore, it follows that [{x | ∃z.
R(x, z)}]d ⊆ [{x | ∃w. S(x,w)}]d holds.

This completes the proof for the base case.

Induction Step Assume now that the claim holds for all
derivations of length less than that of φ ⊆M ψ. We now
prove that it holds also for φ ⊆M ψ. There is just one case,
namely φ ⊆M ψ is of the form ∃xi. α ⊆M ∃yi. β and it is
obtained by applying the rule Projection to α ⊆M β. From
the rule, it follows that α ⊆M β holds. Let 1 ≤ u ≤ n and
t
′

(respectively x′ and y′) be the tuple obtained from t (re-
spectively x and y) by dropping the i-th value (respectively
variable). We now prove that [{x′|∃xi. α}]d ⊆ [{y′|∃yi. β}]d .
Assume, for contradiction’s sake, that this is not the case,
namely there is a tuple v such that v ∈ [{x′|∃xi. α}]d but
v 6∈ [{y′|∃yi. β}]d . From v ∈ [{x′|∃xi. α}]d and the relational

calculus semantics, it follows that there is a tuple v1, ob-
tained by adding a value to v in the i-th position, such that
v1 ∈ [{x|α}]d . From this, α ⊆M β, and the induction hy-
pothesis, it follows that v1 ∈ [{y|β}]d . From this and the re-
lational calculus semantics, it follows that v ∈ [{y′|∃yi. β}]d .
This contradicts the fact that v 6∈ [{y′|∃yi. β}]d .

This completes the proof.

free(φ ∧ ψ) = free(φ)
M = 〈D,Γ〉 free(φ) 6= ∅

φ ∧ ψ ⊆M φ
And

free(φ) = free(φ ∨ ψ)
M = 〈D,Γ〉 free(φ) 6= ∅

φ ⊆M φ ∨ ψ Or

M = 〈D,Γ〉 n > 1
free(φ) = {x1, . . . , xn}
free(ψ) = {y1, . . . , yn}
1 ≤ i ≤ n φ ⊆M ψ

∃xi.φ ⊆M ∃yi.φ
Projection

M = 〈D,Γ〉 n > 0
free(φ) = {x1, . . . , xn}
free(ψ) = {y1, . . . , yn}

φ[x1 7→ y1, . . . , xn 7→ yn] = ψ

φ ⊆M ψ
Identity

M = 〈D,Γ〉 |x| > 0
∀x, z. (R(x, z)⇒ ∃w. S(x,w)) ∈ Γ

∃z.R(x, z) ⊆M ∃w. S(x,w)

Inclusion
Dependency

Figure 39: Containment rules

Given a table or a view O and a sequence of distinct inte-
gers i := (i1, . . . , in) such that 1 ≤ ij ≤ |O| for all 1 ≤ j ≤ n,
where 0 ≤ n < |O|, the i-projection of O, denoted by Oi, is
the formula ∃xi1 , . . . , xin . O(x1, . . . , x|O|). Given a database
schema D and a set of views V defined over D, we denote
by extVocabulary(D,V ) the extended vocabulary obtained
by defining all possible projections of tables in D and views
in V , i.e., for each O ∈ D ∪ V , we define a predicate Oi
for each projection ∃xi1 , . . . , xin . O(x1, . . . , x|O|) of O. Fur-
thermore, given a relational calculus formula φ over D, we
denote by extVocV,D(φ) the formula obtained by replacing
all sub-formulae of the form ∃x.R(x, y) with the predicates
in extVocabulary(D,V ) representing the corresponding pro-
jections Ri. Finally, we denote by inlineD,V (φ), where φ is
a relational calculus formula over extVocabulary(D,V ), the
formula φ′ obtained by replacing all predicates associated
with projections with the corresponding formulae.

Let S be predicate in extVocabulary(D,V ) and s be an
M -state. We denote by S>s the set of all projections of
tables in D and views in V that are contained in S, i.e.,
S>s := {R ∈ extVocabulary(D,V ) |R(x) ⊆M S(y)}3. Sim-
ilarly, we denote by S⊥s the set of all projections of tables
in D and views in V that contains S, i.e., S⊥s := {R ∈
extVocabulary(D,V ) |S(x) ⊆M R(y)}. Furthermore, we de-
note by AUTH s,u the set of all tables and views that u is au-
thorized to read in s, i.e., AUTH s,u := {v | 〈⊕, SELECT, v〉 ∈
permissions(s, u)}, and by AUTH ∗s,u the set of all the pro-
jections obtained from tables and views in AUTH s,u.

We are now ready to formally define the φ>s,u and φ⊥s,u
rewritings.

Definition F.1. Let M = 〈D,Γ〉 be a system configura-
tion, s = 〈db, U, sec, T, V, c〉 be an M -state, u be a user, and
φ be a relational calculus sentence over extVocabulary(D,V ).

The function bound takes as input a formula φ, a state s,
a user u, a variable identifier x, and a value v in {>,⊥}. It
is inductively defined as follows:
• bound(R(y), s, u, x, v), where R is a predicate symbol

in extVocabulary(D,V ), is > iff (a) x occurs in y, and
(b) the set Rvs,u, which is Rvs ∩AUTH ∗s,u, is not empty.

3With a slight abuse of notation, we write R(x) ⊆M S(y)
instead of inlineD,V (R(x)) ⊆M inlineD,V (S(y)).

50



• bound(y = z, s, u, x, v) is > iff x = y and z is a constant
symbol or x = z and y is a constant symbol.
• bound(>, s, u, x, v) := ⊥.
• bound(⊥, s, u, x, v) := ⊥.
• bound(¬ψ, s, u, x, v) := bound(ψ, s, u, x,¬v), where ψ

is a relational calculus formula.
• bound(ψ∧γ, s, u, x, v) := bound(ψ, s, u, x, v)∨bound(γ,
s, u, x, v), where ψ and γ are relational calculus formu-
lae.
• bound(ψ∨γ, s, u, x, v) := bound(ψ, s, u, x, v)∧bound(γ,
s, u, x, v), where ψ and γ are relational calculus formu-
lae.
• bound(∃y.ψ, s, u, x, v), where ψ is a relational calcu-

lus formula, is bound(ψ, s, u, x, v) ∧ bound(ψ, s, u, y, v)
if x 6= y, and bound(∃y.ψ, s, u, x, v) := ⊥ otherwise.
• bound(∀y.ψ, s, u, x, v), where ψ is a relational calcu-

lus formula, is bound(ψ, s, u, x, v) ∧ bound(ψ, s, u, y, v)
if x 6= y, and bound(∀y.ψ, s, u, x, v) := ⊥ otherwise.

The formula φ>s,u is inductively defined as follows:

• R(x)>s,u :=
∨
S∈R>s,u

S(x), where R is a predicate sym-

bol in extVocabulary(D,V ) and R>s,u := R>s ∩AUTH ∗s,u.

• (x = v)>s,u := (x = v), where x and v are either variable
identifiers or constant symbols.
• (>)>s,u := >.

• (⊥)>s,u := ⊥.

• (¬ψ)>s,u := ¬ψ⊥s,u, where ψ is a relational calculus for-
mula.
• (ψ ∧ γ)>s,u := ψ>s,u ∧ γ>s,u, where ψ and γ are relational

calculus formulae.
• (ψ ∨ γ)>s,u := ψ>s,u ∨ γ>s,u, where ψ and γ are relational

calculus formulae.
• (∃x. ψ)>s,u, where ψ is a relational calculus formula and

x is a variable identifier, is ∃x. ψ>s,u if bound(ψ, s, u, x,>)

= > and (∃x. ψ)>s,u := ⊥ otherwise.

• (∀x. ψ)>s,u, where ψ is a relational calculus formula and

x is a variable identifier, is ∀x. ψ>s,u if bound(ψ, s, u, x,>)

= > and (∀x. ψ)>s,u := ⊥ otherwise.

The formula φ⊥s,u is inductively defined as follows:

• R(x)⊥s,u :=
∧
S∈R⊥s,u

S(x), where R is a predicate sym-

bol in extVocabulary(D,V ) and R⊥s,u := R⊥s ∩AUTH ∗s,u.

• (x = v)⊥s,u := (x = v), where x and v are either variable
identifiers or constant symbols.
• (>)⊥s,u := >.

• (⊥)⊥s,u := ⊥.

• (¬ψ)⊥s,u := ¬ψ>s,u, where ψ is a relational calculus for-
mula.
• (ψ ∧ γ)⊥s,u := ψ⊥s,u ∧ γ⊥s,u, where ψ and γ are relational

calculus formulae.
• (ψ ∨ γ)⊥s,u := ψ⊥s,u ∨ γ⊥s,u, where ψ and γ are relational

calculus formulae.
• (∃x. ψ)⊥s,u, where ψ is a relational calculus formula and

x is a variable identifier, is ∃x. ψ⊥s,u if bound(ψ, s, u, x,⊥)

= > and (∃x. ψ)⊥s,u := ⊥ otherwise.

• (∀x. ψ)⊥s,u, where ψ is a relational calculus formula and

x is a variable identifier, is ∀x. ψ⊥s,u if bound(ψ, s, u, x,⊥)

= > and (∀x. ψ)⊥s,u := ⊥ otherwise. �

Finally, we define the formula φrw
s,u which represents the

overall rewritten formula.

Definition F.2. Let M = 〈D,Γ〉 be a system configura-

tion, s = 〈db, U, sec, T, V, c〉 be an M -state, u be a user,
and φ be a relational calculus sentence over D. The for-
mula φrw

s,u is defined as inlineV,D(¬ψ>s,u ∧ ψ⊥s,u), where ψ :=
extVocV,D(φ). �

Let P = 〈M, f〉 be an extended configuration, L be the P -
LTS, u ∈ U be a user, r ∈ traces(L) be an L-run, φ ∈ RCbool

is a sentence, and 1 ≤ i ≤ |r|. Furthermore, let s be the i-
th state of r. The judgment r, i `u φ is data-secure for
M , u, and s, denoted by securedata

P,u (r, i `u φ), iff for all

s′, s′′ ∈ JpState(s)Kdata
u,M , [φ]s

′.db = [φ]s
′′.db , where ∼=data

u,M is
the data-indistinguishability relation defined in Appendix D
and JsKdatau,M := {s′ ∈ ΠM |s ∼=data

u,M s′}.
We first recall our definitions and notations for assign-

ments. Let dom be the universe and var be an infinite
countably set of variable identifiers. An assignment ν is a
partial function from var to dom that maps variables to val-
ues in the universe. Given a formula φ and an assignment ν,
we say that ν is well-formed for φ iff ν is defined for all vari-
ables in free(φ). Given an assignment ν and a sequence of
variables x such that ν is defined for each x ∈ x, we denote
by ν(x) the tuple obtained by replacing each occurrence of
x ∈ x with ν(x). Given an assignment ν, a variable v ∈ var,
and a value u ∈ dom, we denote by ν ⊕ [v 7→ u] the assign-
ment ν′ obtained as follows: ν′(v′) = ν(v′) for any v′ 6= v,
and ν′(v) = u. Finally, given a formula φ with free variables
free(φ) and an assignment ν, we denote by φ◦ν the formula
φ′ obtained by replacing, for each free variable x ∈ free(φ)
such that ν(x) is defined, all the free occurrences of x with
ν(x).

Lemma F.2 shows that securedata
P,u is a sound, under ap-

proximation of secureP,u. However, as shown in [24], decid-
ing whether securedata

P,u (r, i `u φ) holds for a given judgment
is still undecidable for the relational calculus.

Lemma F.2. Let P = 〈M, f〉 be an extended configura-
tion, L be the P -LTS, u ∈ U be a user, r ∈ traces(L)
be an L-run, φ ∈ RCbool is a sentence, and 1 ≤ i ≤ |r|.
Given a judgment r, i `u φ, if securedata

P,u (r, i `u φ), then
secureP,u(r, i `u φ).

Proof. We prove the claim by contradiction. Let P =
〈M, f〉 be an extended configuration, L be the P -LTS, u ∈ U
be a user, r ∈ traces(L) be an L-run, φ ∈ RCbool is a sen-
tence, and 1 ≤ i ≤ |r|. Furthermore, let s = 〈db, U, sec, T, V,
c〉 be the i-th state of r. Assume, for contradiction’s sake,
that securedata

P,u (r, i `u φ) holds and secureP,u(r, i `u φ)
does not hold. We denote, for brevity’s sake, the fact that
secureP,u(r, i `u φ) does not hold as ¬secureP,u(r, i `u φ).
From ¬secureP,u(r, i `u φ), it follows that there is a run r′ ∈
traces(L), whose last state is s′ = 〈db′, U ′, sec′, T ′, V ′, c′〉,
such that ri ∼=P,u r′ and [φ]db 6= [φ]db′ . From the (P, u)-
indistinguishability definition, it follows that pState(last(ri))
and pState(last(r′)) are data indistinguishable according to
M and u, i.e., pState(last(ri)) ∼=data

u,M pState(last(r′)). From

securedata
P,u (r, i `u φ), it also follows that for all s′, s′′ ∈

JpState(s)Kdata
u,M , [φ]s

′.db = [φ]s
′′.db . From this and the fact

that pState(last(ri)) ∼=data
u,M pState(last(r′)), it follows that

[φ]db = [φ]db′ , which contradicts [φ]db 6= [φ]db′ . This com-
pletes the proof.

We now show that the rewritings φ>s,u and φ⊥s,u provide
the desired properties. First, Lemma F.3 proves that the
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two rewriting satisfy the following invariants: “if φ>s,u holds

in s, then also φ holds in s” and “if φ⊥s,u does not hold in
s, then also φ does not hold in s”. Afterwards, Lemma F.4
shows that both φ>s,u and φ⊥s,u are secure. Then, Lemma F.5

shows that φ>s,u and φ⊥s,u are equivalent to φ>s′,u and φ⊥s′,u
for any two data indistinguishable M -state s and s′. Fi-
nally, Lemma F.6 shows that both φ>s,u and φ⊥s,u are domain-
independent.

Lemma F.3. Let M = 〈D,Γ〉 be a system configuration,
s = 〈db, U, sec, T, V 〉 be a partial M-state, u ∈ U be a user,
and φ be a D-formula. For all assignments ν over dom that
are well-formed for φ, the following conditions hold:
• if [φ>s,u ◦ ν]db = >, then [φ ◦ ν]db = >, and

• if [φ⊥s,u ◦ ν]db = ⊥, then [φ ◦ ν]db = ⊥.

Proof. Let M = 〈D,Γ〉 be a system configuration, s =
〈db, U, sec, T, V 〉 be a partial M -state, u ∈ U be a user, and
φ be a D-formula. Furthermore, let ν be an assignment that
is well-formed for φ. We prove our claim by induction on
the structure of the formula φ.

Base Case There are four cases:
1. φ := x = y. In this case, φ>s,u = φ⊥s,u = φ. From this,

it follows that [(x = v)>s,u ◦ ν]db = [(x = v) ◦ ν]db and

[(x = v)⊥s,u ◦ν]db = [(x = v)◦ν]db . Therefore, our claim
follows trivially.

2. φ := >. The proof of this case is similar to that of
φ := x = y.

3. φ := ⊥. The proof of this case is similar to that of
φ := x = y.

4. φ := R(x). Let t be the tuple ν(x). Note that since ν
is well-formed for φ, t is well-defined.
Assume that [φ>s,u ◦ ν]db = >. From this and φ>s,u :=∨
S∈R>s,u

S(x), it follows that there is an S ∈ R>s,u such

that t ∈ db(S). Since S ∈ R>s,u, it follows that S ⊆M R.
From S ⊆M R, t ∈ db(S), and Lemma F.1, it follows
that t ∈ db(R). From this and the relational calculus
semantics, it follows that [φ ◦ ν]db = >.
Assume that [φ⊥s,u ◦ ν]db = ⊥. From this and φ⊥s,u :=∧
S∈R⊥s,u

S(x), it follows that there is an S ∈ R⊥s,u such

that t 6∈ db(S). Since S ∈ R⊥s,u, it follows that R ⊆M S.
From R ⊆M S, t 6∈ db(S), and Lemma F.1, it follows
that t 6∈ db(R). From this and the relational calculus
semantics, it follows that [φ ◦ ν]db = ⊥.

This completes the proof of the base case.

Induction Step Assume that our claim holds for all for-
mulae whose length is less than φ’s length. We now show
that our claim holds also for φ. There are a number of cases
depending on φ’s structure.

1. φ := ψ ∧ γ. Assume that [φ>s,u ◦ ν]db = >. From this

and φ>s,u := ψ>s,u ∧ γ>s,u, it follows that [ψ>s,u ◦ ν]db = >
and [γ>s,u ◦ ν]db = >. Since ν is well-formed for φ, it is
also well-formed for ψ and γ because free(ψ) ⊆ free(φ)
and free(γ) ⊆ free(φ). From [ψ>s,u ◦ ν]db = > and the

induction hypothesis, it follows that [ψ◦ν]db = >. From
[γ>s,u ◦ν]db = > and the induction hypothesis, it follows

that [γ ◦ ν]db = >. From [ψ ◦ ν]db = >, [γ ◦ ν]db = >,
φ := ψ ∧ γ, and the relational calculus semantics, it
follows that [φ ◦ ν]db = >.
Assume that [φ⊥s,u ◦ ν]db = ⊥. From this and φ⊥s,u :=

ψ⊥s,u ∧ γ⊥s,u, there are two cases:

(a) [ψ⊥s,u ◦ ν]db = ⊥. From [ψ⊥s,u ◦ ν]db = ⊥ and the

induction hypothesis, it follows that [ψ ◦ ν]db = ⊥.
From this, φ := ψ ∧ γ, and the relational calculus
semantics, it follows that [φ ◦ ν]db = ⊥

(b) [γ⊥s,u ◦ ν]db = ⊥. From [γ⊥s,u ◦ ν]db = ⊥ and the

induction hypothesis, it follows that [γ ◦ ν]db = ⊥.
From this, φ := ψ ∧ γ, and the relational calculus
semantics, it follows that [φ ◦ ν]db = ⊥

2. φ := ψ ∨ γ. The proof of this case is similar to that of
φ := ψ ∧ γ.

3. φ := ¬ψ. Assume that [φ>s,u ◦ ν]db = >. From this

and φ>s,u := ¬ψ⊥s,u, it follows that [ψ⊥s,u ◦ ν]db = ⊥.
From this and the induction hypothesis, it follows that
[ψ ◦ ν]db = ⊥. From this, φ := ¬ψ, and the relational
calculus semantics, it follows that [φ ◦ ν]db = >.
Assume that [φ⊥s,u ◦ ν]db = ⊥. From this and φ⊥s,u :=

¬ψ>s,u, it follows that [ψ>s,u◦ν]db = >. From this and the

induction hypothesis, it follows that [ψ◦ν]db = >. From
this, φ := ¬ψ, and the relational calculus semantics, it
follows that [φ ◦ ν]db = ⊥.

4. φ := ∃x. ψ. Assume that [φ>s,u ◦ ν]db = >. From this

and φ>s,u := ∃x. ψ>s,u, it follows that there is a v ∈ dom

such that [ψ>s,u ◦ ν[x 7→ v]]db = >. Note that since v is
well-formed for φ, ν[x 7→ v] is well-formed for ψ because
φ := ∃x. ψ. From this, [ψ>s,u ◦ ν[x 7→ v]]db = >, and the

induction hypothesis, it follows that [ψ ◦ ν[x 7→ v]]db =
>. From this, φ := ∃x. ψ, and the relational calculus
semantics, it follows that [φ ◦ ν]db = >.
Assume that [φ⊥s,u ◦ ν]db = ⊥. From this and φ⊥s,u :=

∃x. ψ⊥s,u, it follows that for all v ∈ dom, [ψ⊥s,u ◦ ν[x 7→
v]]db = ⊥. Note that since v is well-formed for φ, ν[x 7→
v] is well-formed for ψ because φ := ∃x. ψ. From this,
[ψ⊥s,u◦ν[x 7→ v]]db = ⊥, and the induction hypothesis, it

follows that for all v ∈ dom, [ψ◦ν[x 7→ v]]db = ⊥. From
this, φ := ∃x. ψ, and the relational calculus semantics,
it follows that [φ ◦ ν]db = ⊥.

5. φ := ∀x. ψ. The proof of this case is similar to that of
φ := ∃x. ψ.

This completes the proof of the induction step.
This completes the proof of our claim.

In Lemma F.4, we prove that our rewritings are secure.

Lemma F.4. Let P = 〈M, f〉 be an extended configura-
tion, where M = 〈D,Γ〉 is a system configuration and f is
an M-PDP, r ∈ traces(L) be a run, φ be a RC -formula,
and 1 ≤ i ≤ r. Furthermore, let s be the i-th state of r.
For all assignments ν over dom that are well-formed for φ,
securedata

P,u (r, i `u φ>s,u ◦ ν), securedata
P,u (r, i `u φ⊥s,u ◦ ν), and

securedata
P,u (r, i `u φrw

s,u ◦ ν) hold.

Proof. The security of r, i `u φrw
s,u follows trivially from

that of r, i `u φ>s,u and r, i `u φ⊥s,u. Therefore, in the fol-

lowing we prove just that securedata
P,u (r, i `u φ>s,u ◦ ν) and

securedata
P,u (r, i `u φ⊥s,u◦ν) hold. Let M = 〈D,Γ〉 be a system

configuration, s = 〈db, U, sec, T, V 〉 be a partial M -state,
u ∈ U be a user, and φ be a D-formula. Furthermore, let
ν be an assignment that is well-formed for φ. We prove our
claim by induction on the structure of the formula φ.

Base Case There are four cases:
1. φ := x = y. The claim holds trivially. Indeed, φ>s,u ◦ ν

and φ⊥s,u ◦ ν are always equivalent either to > or to ⊥.
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Since for all s′, s′′ ∈ JpState(last(ri))Kdata
u,M , [>]s

′.db =

[>]s
′′.db and [⊥]s

′.db = [⊥]s
′′.db , it follows that both

securedata
P,u (r, i `u φ>s,u◦ν) and securedata

P,u (r, i `u φ⊥s,u◦ν)
hold.

2. φ := >. The proof of this case is similar to that of
φ := x = y.

3. φ := ⊥. The proof of this case is similar to that of
φ := x = y.

4. φ := R(x). Assume, for contradiction’s sake, that
securedata

P,u (r, i `u φ>s,u ◦ν) does not hold. From this and

securedata
P,u ’s definition, it follows that there are two M -

partial states s′ = 〈db′, U, sec, T, V 〉 and s′′ = 〈db′′, U,

sec, T, V 〉 in JpState(last(ri))Kdata
u,M such that [φ>s,u◦ν]db′

6= [φ>s,u◦ν]db′′ . Note that this rule out the cases in which
Rvs,u = ∅ for any v ∈ {>,⊥}. We assume without loss of

generality that [φ>s,u ◦ ν]db′ = > and [φ>s,u ◦ ν]db′′ = ⊥.

From this and φ>s,u :=
∨
S∈R>s,u

S(x), it follows that

there is an predicate symbol S in the extended vocabu-
lary such that ν(x) ∈ db′(S) and ν(x) 6∈ db′′(S). There
are two cases:
• S is a table in D or a view in V . Since S ∈ R>s,u, it

follows that 〈⊕, SELECT, S〉 ∈ permissions(last(ri),
u). Note that permissions(s′, u) = permissions(s′′,
u) = permissions(last(ri), u) because all the states
are in the same equivalence class. From s′ ∼=data

u,M s′′,
〈⊕, SELECT, S〉 ∈ permissions(s′, u), and the defi-
nition of data indistinguishability, it follows that
db′(S) = db′′(S). From this, it follows that ν(x) ∈
db′(S) iff ν(x) ∈ db′′(S), which contradicts ν(x) ∈
db′(S) and ν(x) 6∈ db′′(S).
• S is a projection of O, which is either a table in D

or a view in V . From S ∈ R>s,u and R>s,u’s defini-
tion, it follows that 〈⊕, SELECT, O〉 ∈ permissions
(last(ri), u). From s′ ∼=data

u,M s′′, 〈⊕, SELECT, O〉 ∈
permissions(s′, u), and the definition of data indis-
tinguishability, it follows that db′(O) = db′′(O).
From this and the definition of S, it also follows
that db′(S) = db′′(S)4. From this, it follows that
ν(x) ∈ db′(S) iff ν(x) ∈ db′′(S), which contradicts
ν(x) ∈ db′(S) and ν(x) 6∈ db′′(S).

The proof of securedata
P,u (r, i `u φ⊥s,u ◦ ν) is analogous.

This completes the proof of the base case.

Induction Step Assume that our claim holds for all for-
mulae whose length is less than φ’s length. We now show
that our claim holds also for φ. There are a number of cases
depending on φ’s structure.

1. φ := ψ ∧ γ. Assume, for contradiction’s sake, that
securedata

P,u (r, i `u φ>s,u ◦ν) does not hold. From this and

securedata
P,u ’s definition, it follows that there are two M -

partial states s′ = 〈db′, U, sec, T, V 〉 and s′′ = 〈db′′, U,

sec, T, V 〉 in JpState(last(ri))Kdata
u,M such that [φ>s,u◦ν]db′

6= [φ>s,u ◦ ν]db′′ . We assume, without loss of generality,

that [φ>s,u ◦ ν]db′ = > and [φ>s,u ◦ ν]db′′ = ⊥. From this

and φ>s,u = ψ>s,u ∧ γ>s,u, it follows that either [ψ>s,u ◦
ν]db′ = > and [ψ>s,u ◦ ν]db′′ = ⊥ or [γ>s,u ◦ ν]db′ = >
and [γ>s,u ◦ ν]db′′ = ⊥. We assume, without loss of

generality, that [ψ>s,u ◦ ν]db′ = > and [ψ>s,u ◦ ν]db′′ =

⊥. From this, it follows that securedata
P,u (r, i `u ψ>s,u ◦

4With a slight abuse of notation, we consider S as a view.

ν) does not hold. From the induction hypothesis, it
follows that securedata

P,u (r, i `u ψ>s,u ◦ ν) holds leading to
a contradiction.
The proof of securedata

P,u (r, i `u φ⊥s,u ◦ ν) is analogous.
2. φ := ψ ∨ γ. The proof of this case is similar to that of
φ := ψ ∧ γ.

3. φ := ¬ψ. Assume, for contradiction’s sake, that
securedata

P,u (r, i `u φ>s,u ◦ν) does not hold. From this and

securedata
P,u ’s definition, it follows that there are two M -

partial states s′ = 〈db′, U, sec, T, V 〉 and s′′ = 〈db′′, U,

sec, T, V 〉 in JpState(last(ri))Kdata
u,M such that [φ>s,u◦ν]db′

6= [φ>s,u ◦ ν]db′′ . We assume, without loss of gener-

ality, that [φ>s,u ◦ ν]db′ = > and [φ>s,u ◦ ν]db′′ = ⊥.

From this and φ>s,u = ¬ψ⊥s,u, it follows that [ψ⊥s,u ◦
ν]db′ = ⊥ and [ψ⊥s,u ◦ ν]db′′ = >. From this, it follows

that securedata
P,u (r, i `u ψ⊥s,u ◦ ν) does not hold. From

the induction hypothesis and φ := ¬ψ, it follows that
securedata

P,u (r, i `u ψ⊥s,u ◦ ν) holds leading to a contradic-
tion.
The proof of securedata

P,u (r, i `u φ⊥s,u ◦ ν) is analogous.
4. φ := ∃x. ψ. Assume, for contradiction’s sake, that

securedata
P,u (r, i `u φ>s,u ◦ν) does not hold. From this and

securedata
P,u ’s definition, it follows that there are two M -

partial states s′ = 〈db′, U, sec, T, V 〉 and s′′ = 〈db′′, U,

sec, T, V 〉 in JpState(last(ri))Kdata
u,M such that [φ>s,u◦ν]db′

6= [φ>s,u ◦ ν]db′′ . We assume, without loss of generality,

that [φ>s,u ◦ ν]db′ = > and [φ>s,u ◦ ν]db′′ = ⊥. From this

and φ>s,u = ∃x. ψ>s,u, it follows that there is a v′ ∈ dom

such that [ψ>s,u ◦ν[x 7→ v′]]db′ = > and there is no v′′ ∈
dom such that [ψ>s,u ◦ ν[x 7→ v′′]]db′′ = >. Therefore,

[ψ>s,u ◦ ν[x 7→ v′]]db′ = > and [ψ>s,u ◦ ν[x 7→ v′]]db′′ = ⊥.

Note that ν[x 7→ v′] is well-formed for ψ>s,u. From this,

it follows that securedata
P,u (r, i `u ψ>s,u ◦ ν[x 7→ v′]) does

not hold. However, from the fact that ν[x 7→ v′] is well-
formed for ψ>s,u and the induction hypothesis, it follows

that securedata
P,u (r, i `u ψ>s,u ◦ν[x 7→ v′]) holds leading to

a contradiction.
The proof of securedata

P,u (r, i `u φ⊥s,u ◦ ν) is analogous.
5. φ := ∀x. ψ. The proof of this case is similar to that of
φ := ∃x. ψ.

This completes the proof of the induction step.
This completes the proof of our claim.

Proposition F.1. Let M = 〈D,Γ〉 be a system configu-
ration, s = 〈db, U, sec, T, V 〉 and s′ = 〈db′, U ′, sec′, T ′, V ′〉
be two partial M-states, u ∈ U be a user, v ∈ {>,⊥}, and
φ be a D-formula. If s ∼=data

u,M s′, then bound(φ, s, u, x, v) =
bound(φ, s′, u, x, v).

Proof. Let M = 〈D,Γ〉 be a system configuration, s =
〈db, U, sec, T, V 〉 and s′ = 〈db′, U ′, sec′, T ′, V ′〉 be two par-
tial M -states, u ∈ U be a user, v ∈ {>,⊥}, and φ be a
D-formula. We prove our claim by induction on the struc-
ture of the formula φ.

Base Case There are four cases:
1. φ := y = z. The result of bound(φ, s, u, x, v) and

bound(φ, s′, u, x, v) does not depend on s. Therefore,
bound(φ, s, u, x, v) = bound(φ, s′, u, x, v).

2. φ := >. bound(φ, s, u, x, v) = bound(φ, s′, u, x, v) = ⊥.
3. φ := ⊥. bound(φ, s, u, x, v) = bound(φ, s′, u, x, v) = ⊥.
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4. φ := R(x). The result of bound(φ, s, u, x, v) and bound
(φ, s′, u, x, v) depend only on the sets Rvs,u and Rvs′,u,
which in turn depend on the content of the sets Rvs , Rvs′ ,
AUTH ∗s,u, and AUTH ∗s′,u. Assume that s ∼=data

u,M s′.
From this, it follows that Rvs = Rvs′ (because D is the
same and V = V ′) and AUTH ∗s,u = AUTH ∗s′,u (be-

cause sec = sec′). From this, it follows that bound(φ, s,
u, x, v) = bound(φ, s′, u, x, v).

This completes the proof of the base case.

Induction Step Assume that our claim holds for all formu-
lae whose length is less than φ. We now show that our claim
holds also for φ. There are a number of cases depending on
φ’s structure.

1. φ := ψ ∧ γ. Assume that s ∼=data
u,M s′. From this and the

induction hypothesis, it follows that bound(ψ, s, u, x, v)
= bound(ψ, s′, u, x, v) and bound(γ, s, u, x, v) = bound
(γ, s′, u, x, v). From this and bound(φ, s, u, x, v) :=
bound(ψ, s, u, x, v) ∨ bound(γ, s, u, x, v), it follows that
bound(φ, s, u, x, v) = bound(φ, s′, u, x, v).

2. φ := ψ ∨ γ. The proof of this case is similar to that of
φ := ψ ∧ γ.

3. φ := ¬ψ. Assume that s ∼=data
u,M s′. From this and the

induction hypothesis, it follows that bound(ψ, s, u, x, v)
= bound(ψ, s′, u, x, v). From this, bound(¬ψ, s, u, x, v)
= bound(ψ, s, u, x,¬v), and bound(¬ψ, s′, u, x, v) =
bound(ψ, s′, u, x,¬v), it follows that bound(φ, s, u, x, v)
= bound(φ, s′, u, x, v).

4. φ := ∃y. ψ. Assume that s ∼=data
u,M s′. There are two

cases:
(a) x = y. In this case, the proof is trivial as bound(φ, s,

u, x, v) = bound(φ, s′, u, x, v) = ⊥.
(b) x 6= y. In this case, bound(φ, s, u, x, v) = bound(ψ,

s, u, x, v)∧bound(ψ, s, u, y, v) and bound(φ, s′, u, x,
v) = bound(ψ, s′, u, x, v)∧bound(ψ, s′, u, y, v). From
s ∼=data

u,M s′ and the induction hypothesis, it follows
that bound(ψ, s, u, x, v) = bound(ψ, s′, u, x, v) and
bound(ψ, s, u, y, v) = bound(ψ, s′, u, y, v). From this,
bound(φ, s, u, x, v) = bound(ψ, s, u, x, v)∧bound(ψ,
s, u, y, v), and bound(φ, s′, u, x, v) = bound(ψ, s′, u,
x, v)∧bound(ψ, s′, u, y, v), it follows that bound(φ, s,
u, x, v) = bound(φ, s′, u, x, v).

5. φ := ∀x. ψ. The proof of this case is similar to that of
φ := ∃x. ψ.

This completes the proof of the induction step.
This completes the proof of our claim.

Lemma F.5. Let M = 〈D,Γ〉 be a system configuration,
s = 〈db, U, sec, T, V 〉 and s′ = 〈db′, U ′, sec′, T ′, V ′〉 be two
partial M-states, u ∈ U be a user, and φ be a D-formula. If
s ∼=data

u,M s′, then φ>s,u = φ>s′,u, φ⊥s,u = φ⊥s′,u, and φrw
s,u = φrw

s′,u.

Proof. Let M = 〈D,Γ〉 be a system configuration, s =
〈db, U, sec, T, V 〉 and s′ = 〈db′, U ′, sec′, T ′, V ′〉 be two par-
tial M -states, u ∈ U be a user, and φ be a D-formula. We
prove our claim by induction on the structure of the formula
φ.

Base Case There are four cases:
1. φ := x = y. The claim holds trivially. Indeed, φ>s,u =

φ⊥s,u = φ.
2. φ := >. The proof of this case is similar to that of
φ := x = y.

3. φ := ⊥. The proof of this case is similar to that of
φ := x = y.

4. φ := R(x). The formulae φ>s,u and φ>s′,u depend only

on the sets R>s,u and R>s′,u, which in turn depends on

R>s , R>s′ , AUTH ∗s,u, and AUTH ∗s′,u. If s ∼=data
u,M s′, then

R>s = R>s′ (because D is the same and V = V ′) and
AUTH ∗s,u = AUTH ∗s′,u (because sec = sec′). There-

fore, φ>s,u = φ>s′,u. The proof for φ⊥s,u is analogous.
This completes the proof of the base case.

Induction Step Assume that our claim holds for all formu-
lae whose length is less than φ. We now show that our claim
holds also for φ. There are a number of cases depending on
φ’s structure.

1. φ := ψ ∧ γ. Assume that s ∼=data
u,M s′. From this and the

induction hypothesis, it follows that ψ>s,u = ψ>s′,u and

γ>s,u = γ>s′,u. From this, φ := ψ ∧ γ, φ>s,u := ψ>s,u ∧ γ>s,u,

and φ>s′,u := ψ>s′,u ∧ γ>s′,u, it follows that φ>s,u = φ>s′,u.

The proof of φ⊥s,u = φ⊥s′,u is analogous.
2. φ := ψ ∨ γ. The proof of this case is similar to that of
φ := ψ ∧ γ.

3. φ := ¬ψ. Assume that s ∼=data
u,M s′. From this and the

induction hypothesis, it follows that ψ>s,u = ψ>s′,u and

ψ⊥s,u = ψ⊥s′,u. From this, φ := ¬ψ, φ>s,u := ¬ψ⊥s,u, and

φ>s′,u := ¬ψ⊥s′,u, it follows that φ>s,u = φ>s′,u.

The proof of φ⊥s,u = φ⊥s′,u is analogous.

4. φ := ∃x. ψ. Assume that s ∼=data
u,M s′. From this and the

induction hypothesis, it follows that ψ>s,u = ψ>s′,u. We

remark that bound(ψ, s, u, x,>) = bound(ψ, s′, u, x,>),
as proved in Proposition F.1. There are two cases:
(a) bound(ψ, s, u, x,>) = >. From this, bound(ψ, s, u,

x,>) = bound(ψ, s′, u, x,>), ψ>s,u = ψ>s′,u, φ :=

∃x. ψ, φ>s,u := ∃x. ψ>s,u, and φ>s′,u := ∃x. ψ>s′,u, it

follows that φ>s,u = φ>s′,u.
(b) bound(ψ, s, u, x,>) = ⊥. From this, bound(ψ, s, u,

x,>) = bound(ψ, s′, u, x,>), and φ>s,u definition, it

follows that φ>s′,u = φ>s′,u = ⊥.

The proof of φ⊥s,u = φ⊥s′,u is analogous.
5. φ := ∀x. ψ. The proof of this case is similar to that of
φ := ∃x. ψ.

This completes the proof of the induction step.
The equivalence φrw

s,u = φrw
s′,u follows trivially from φrw

s,u’s

definition and the fact that φ>s,u = φ>s′,u and φ⊥s,u = φ⊥s′,u.
This completes the proof of our claim.

Before proving the domain independence of φ>s,u and φ⊥s,u,
we introduce some notation. The relation gen, introduced
in [45], is the smallest relation defined by the rules in Figure
40. Note that we extended gen by adding the rules Equiv,
Const 1, and Const 2. A relational calculus formula φ is
allowed iff it satisfies the following conditions:
• for all x ∈ free(φ), gen(x, φ) holds,
• for every sub-formula ∃x.ψ in φ, gen(x, ψ) holds, and
• for every sub-formula ∀x.ψ in φ, gen(x,¬ψ) holds.

As shown in [45], every allowed formula is domain indepen-
dent. Note that the addition of the Equiv, Const 1, and
Const 2 rules does not modify this result.

Proposition F.2. Let M = 〈D,Γ〉 be a system configu-
ration, s = 〈db, U, sec, T, V 〉 be an M-partial state, u ∈ U
be a user, and v ∈ {>,⊥}. For any formulae φ and ψ, the
following equivalences hold:
• (¬φ)vs,u ≡ ¬φ¬vs,u,
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x ∈ x
gen(x,R(x))

Pred
gen(x, push(¬φ))

gen(x,¬φ)
Neg

x 6= y gen(x, φ)

gen(x,∃y.φ)
Exists

x 6= y gen(x, φ)

gen(x,∀y.φ)
For all

gen(x, φ) gen(x, ψ)

gen(x, φ ∨ ψ)
Or

gen(x, ψ) φ ≡ ψ
gen(x, φ)

Equiv

v ∈ dom

gen(x, x = v)
Const 1

v ∈ dom

gen(x, v = x)
Const 2

gen(x, φ)

gen(x, φ ∧ ψ)
And 1

gen(x, ψ)

gen(x, φ ∧ ψ)
And 2

push(φ) =



¬ψ ∨ ¬γ if φ := ¬(ψ ∧ γ)
¬ψ ∧ ¬γ if φ := ¬(ψ ∨ γ)
∀x.¬ψ if φ := ¬∃x.ψ
∃x.¬ψ if φ := ¬∀x.ψ
ψ if φ := ¬¬ψ
x 6= y if φ := ¬(x = y)
x = y if φ := ¬(x 6= y)

Figure 40: gen rules

• (φ)vs,u ∧ (ψ)vs,u ≡ (φ ∧ ψ)vs,u,
• (φ)vs,u ∨ (ψ)vs,u ≡ (φ ∨ ψ)vs,u,
• (∃x. φ)vs,u ≡ (¬∀x.¬φ)vs,u, and
• (∀x. φ)vs,u ≡ (¬∃x.¬φ)vs,u.

Proof. Let M = 〈D,Γ〉 be a system configuration, s =
〈db, U, sec, T, V 〉 be an M -partial state, u ∈ U be a user,
v ∈ {>,⊥}, and φ, ψ be two formulae.
• (¬φ)vs,u ≡ ¬φ¬vs,u. This case follows trivially from the

definition of the rewriting.
• (φ)vs,u ∧ (ψ)vs,u ≡ (φ ∧ ψ)vs,u. This case follows trivially

from the definition of the rewriting.
• (φ)vs,u ∨ (ψ)vs,u ≡ (φ ∨ ψ)vs,u This case follows trivially

from the definition of the rewriting.
• (∃x. φ)vs,u ≡ (¬∀x.¬φ)vs,u. There are two cases:

1. bound(φ, s, u, x, v) = >. From this, it follows that
(∃x. φ)vs,u = ∃x. φvs,u. From (¬φ)vs,u ≡ ¬φ¬vs,u and
(¬∀x.¬φ)vs,u, it follows that (¬∀x.¬φ)vs,u ≡ ¬(∀x.
¬φ)¬vs,u. From the definition of bound , it follows
that bound(¬φ, s, u, x,¬v) = bound(φ, s, u, x,¬¬v).
From this and v = ¬¬v, it follows that bound(¬φ, s,
u, x,¬v) = bound(φ, s, u, x, v). From this and bound
(φ, s, u, x, v) = ⊥, it follows that bound(¬φ, s, u, x,
¬v) = >. From this, it follows that (∀x.¬φ)¬vs,u =
∀x. (¬φ)¬vs,u. From this and (¬φ)vs,u ≡ ¬φ¬vs,u, it
follows that (∀x.¬φ)¬vs,u ≡ ∀x.¬φvs,u. From this
and (¬∀x.¬φ)vs,u ≡ ¬(∀x.¬φ)¬vs,u, it follows that
(¬∀x.¬φ)vs,u ≡ ¬∀x.¬φvs,u. From this and stan-
dard RC equivalences, it follows that (¬∀x.¬φ)vs,u
≡ ∃x. φvs,u.

2. bound(φ, s, u, x, v) = ⊥. From this, it follows that
(∃x. φ)vs,u = ¬v. From (¬φ)vs,u ≡ ¬φ¬vs,u and (¬∀x.
¬φ)vs,u, it follows that (¬∀x.¬φ)vs,u ≡ ¬(∀x.¬φ)¬vs,u.
From the definition of bound , it follows that bound
(¬φ, s, u, x,¬v) = bound(φ, s, u, x,¬¬v). From this
and v = ¬¬v, it follows that bound(¬φ, s, u, x,¬v)
= bound(φ, s, u, x, v). From this and bound(φ, s, u,
x, v) = ⊥, it follows that bound(¬φ, s, u, x,¬v) =
⊥. From this, it follows that (∀x.¬φ)¬vs,u = v. From
this and (¬∀x.¬φ)vs,u ≡ ¬(∀x.¬φ)¬vs,u, it follows

that (¬∀x.¬φ)vs,u ≡ ¬v. From this and (∃x. φ)vs,u =
¬v, it follows that (∃x. φ)vs,u ≡ (¬∀x.¬φ)vs,u.

• (∀x. φ)vs,u ≡ (¬∃x.¬φ)vs,u. The proof of this case is
similar to that of (∃x. φ)vs,u ≡ (¬∀x.¬φ)vs,u.

This completes the proof.

Proposition F.3. Let M = 〈D,Γ〉 be a system configu-
ration, s = 〈db, U, sec, T, V 〉 be an M-partial state, u ∈ U
be a user, v ∈ {>,⊥}, and φ be a formula. Furthermore, let
x ∈ free(φ)∩ free(φvs,u). If gen(x, φ) holds, then gen(x, φvs,u)
holds.

Proof. Let M = 〈D,Γ〉 be a system configuration, s =
〈db, U, sec, T, V 〉 be an M -partial state, u ∈ U be a user, v ∈
{>,⊥}, and φ be a formula. Furthermore, let x ∈ free(φ) ∩
free(φvs,u). We prove our claim by structural induction on
the length of φ. In the following, the length of φ is the
number of predicates, quantifiers, negations, conjunctions,
and disjunctions in φ.

Base Case There are four cases:
1. φ := x = y. In this case, the claim holds trivially.
2. φ := >. In this case, the claim holds trivially.
3. φ := ⊥. In this case, the claim holds trivially.
4. φ := R(x). Assume gen(x, φ) holds. From this, it fol-

lows that x is one of the free variables in x. Further-
more, from x ∈ free(φvs,u), it follows that Rvs,u 6= ∅.
There are two cases:
(a) φvs,u is a conjunction of predicates S(x) such that

gen(x, S(x)) holds. From the rule And 1, it follows
that gen(x, φvs,u) holds.

(b) φvs,u is a disjunction of predicates S(x) such that
gen(x, S(x)) holds. From the rule Or, it follows
that gen(x, φvs,u) holds.

This completes the proof of the base case.

Induction Step Assume that our claim holds for all for-
mulae whose length is less than φ’s length. We now show
that our claim holds also for φ. There are a number of cases
depending on φ’s structure.

1. φ := ψ ∧ γ. Assume that gen(x, φ) holds. From this
and the rules And 1 and And 2, it follows that either
gen(x, ψ) or gen(x, γ) hold. Assume, without loss of
generality, that gen(x, ψ) holds. From this and the in-
duction hypothesis, it follows that gen(x, ψvs,u) holds.
From this, φvs,u := ψvs,u ∧ γvs,u, and the rule And 1, it
follows that gen(x, φvs,u) holds.

2. φ := ψ∨γ. Assume that gen(x, φ) holds. From this and
the rule Or, it follows that both gen(x, ψ) and gen(x, γ)
hold. From this and the induction hypothesis, it follows
that both gen(x, ψvs,u) and gen(x, γvs,u) hold. From this,
φvs,u := ψvs,u ∨ γvs,u, and the rule Or, it follows that
gen(x, φvs,u) holds.

3. φ := ¬ψ. Assume that gen(x, φ) holds. From this and
the rule Not, it follows that gen(x, push(¬ψ)). There
are a number of cases depending on ψ. In the fol-
lowing, we exploit standard relational calculus equiv-
alences, see, for instance, [3], and the equivalences we
proved in Proposition F.2.
(a) ψ := (α ∧ β). In this case, push(¬ψ) is (¬α ∨
¬β). From this and gen(x, push(¬ψ)), it follows
gen(x, (¬α ∨ ¬β)). From this and the Or rule, it
follows that gen(x,¬α) and gen(x,¬β) hold. From
this and the induction hypothesis, it follows that
gen(x, (¬α)vs,u) and gen(x, (¬β)vs,u). From this and
the Or rule, it follows that gen(x, (¬α)vs,u∨(¬β)vs,u).
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From this, (¬α)vs,u ∨ (¬β)vs,u ≡ (¬α ∨ ¬β)vs,u, and
the Equiv rule, it follows that gen(x, (¬α∨¬β)vs,u).
From this, (¬α ∨ ¬β)vs,u ≡ (¬(α ∧ β))vs,u, and the
Equiv rule, it follows that gen(x, (¬(α ∧ β))vs,u).
From this, (¬(α ∧ β))vs,u ≡ ¬(α ∧ β)¬vs,u, and the
Equiv rule, it follows that gen(x,¬(α∧β)¬vs,u). From
this and ψ := α ∧ β, it follows that gen(x,¬ψ¬vs,u).
From this and φvs,u := ¬ψ¬vs,u, it follows that gen(x,
φvs,u) holds.

(b) ψ := (α ∨ β). The proof is similar to the ψ :=
¬(α ∧ β) case.

(c) ψ := ∃y. α. In this case, push(¬ψ) is ∀y.¬α. From
this and gen(x, push(¬ψ)), it follows gen(x,∀y.¬α).
From this and the induction hypothesis, it follows
that gen(x, (∀y.¬α)vs,u). From this, ¬¬(∀y.¬α)vs,u
≡ (∀y.¬α)vs,u, and the Equiv rule, it follows that
gen(x,¬¬(∀y.¬α)vs,u). From this, ¬¬(∀y.¬α)vs,u ≡
¬(¬∀y.¬α)¬vs,u, and the Equiv rule, it follows that
gen(x,¬(¬∀y.¬α)¬vs,u). From this, ¬(¬∀y.¬α)¬vs,u ≡
¬(∃y.¬¬α)¬vs,u, and the Equiv rule, it follows that
gen(x,¬(∃y.¬¬α)¬vs,u). From this, ¬(∃y.¬¬α)¬vs,u ≡
¬(∃y. α)¬vs,u, and the Equiv rule, it follows that gen(x,
¬(∃y. α)¬vs,u). From this and ψ := ∃y. α, it follows
that gen(x,¬ψ¬vs,u). From this and φvs,u := ¬ψ¬vs,u,
it follows that gen(x, φvs,u) holds.

(d) ψ := ∀y. α. The proof is similar to the ψ := ¬∃y. α
case.

(e) ψ := ¬α. In this case, push(¬ψ) is α. From this
and gen(x, push(¬ψ)), it follows gen(x, α). From
this and the induction hypothesis, it follows that
gen(x, αvs,u). From this, ¬¬αvs,u ≡ αvs,u, and the
Equiv rule, it follows that gen(x,¬¬αvs,u). From
this, ¬¬αvs,u ≡ ¬(¬α)¬vs,u, and the Equiv rule, it
follows that gen(x,¬(¬α)¬vs,u). From this and ψ :=
¬α, it follows that gen(x,¬ψ¬vs,u). From this and
φvs,u := ¬ψ¬vs,u, it follows that gen(x, φvs,u) holds.

(f) ψ := x = y. The proof for this case is trivial.
(g) ψ := x 6= y. The proof for this case is trivial.

4. φ := ∃x. ψ. Assume that gen(x, φ) holds. From this
and the rule Exists, it follows that gen(x, ψ) holds.
From this and the induction hypothesis, it follows that
gen(x, ψvs,u) holds. From this, φvs,u := ∃x. ψvs,u, and the
rule Exists, it follows that gen(x, φvs,u) holds.

5. φ := ∀x. ψ. The proof of this case is similar to that of
φ := ∃x. ψ.

This completes the proof of the induction step.
This completes the proof of our claim.

Proposition F.4. Let M = 〈D,Γ〉 be a system configu-
ration, s = 〈db, U, sec, T, V 〉 be an M-partial state, u ∈ U
be a user, v ∈ {>,⊥}, and φ be a formula. For every sub-
formula ∃x. ψ of φ, if gen(x, ψ) holds and x ∈ free(ψ) ∩
free(ψvs,u), then gen(x, ψvs,u) holds.

Proof. Let M = 〈D,Γ〉 be a system configuration, s =
〈db, U, sec, T, V 〉 be an M -partial state, u ∈ U be a user,
v ∈ {>,⊥}, and φ be a formula. We prove our claim by
structural induction on the length of φ. In the following, the
size of φ is the number of predicates, quantifiers, negations,
conjunctions, and disjunctions in φ.

Base Case The claim is vacuously satisfied for the base
cases as there is no sub-formula of the form ∃x. ψ.

Induction Step Assume that our claim holds for all formu-
lae whose length is less than φ. We now show that our claim

holds also for φ. There are a number of cases depending on
φ’s structure.

1. φ := ψ∧γ. Let α be a sub-formula of φ of the form ∃x. β
such that gen(x, β) holds and x ∈ free(β) ∩ free(βvs,u).
The formula α is either a sub-formula of ψ or a sub-
formula of γ. From this and the induction hypothesis,
it follows that gen(x, βsv,u) holds.

2. φ := ψ ∨ γ. The proof of this case is similar to that of
φ := ψ ∧ γ.

3. φ := ¬ψ. Let α be a sub-formula of φ of the form ∃x. β
such that gen(x, β) holds and x ∈ free(β) ∩ free(βvs,u).
Since φ := ¬ψ, the formula α is also a sub-formula of
ψ. From this and the induction hypothesis, it follows
that gen(x, βsv,u) holds.

4. φ := ∃x. ψ. Let α be a sub-formula of φ of the form
∃x. β such that gen(x, β) holds and x ∈ free(β)∩free(βvs,u).
There are two cases:
(a) α is a sub-formula of ψ. From this and the induc-

tion hypothesis, it follows that gen(x, βsv,u) holds.
(b) α = φ. From gen(x, β), x ∈ free(β)∩free(βvs,u), and

Proposition F.3, it follows that gen(x, βvs,u) holds.
5. φ := ∀x. ψ. The proof of this case is similar to that of
φ := ∃x. ψ.

This completes the proof of the induction step.
This completes the proof of our claim.

Proposition F.5. Let M = 〈D,Γ〉 be a system configu-
ration, s = 〈db, U, sec, T, V 〉 be an M-partial state, u ∈ U
be a user, v ∈ {>,⊥}, and φ be a formula. For every sub-
formula ∀x. ψ of φ, if gen(x, ψ) holds and x ∈ free(ψ) ∩
free(ψvs,u), then gen(x, (¬ψ)vs,u) holds.

Proof. The proof is similar to that of Proposition F.4.

Proposition F.6. Let M = 〈D,Γ〉 be a system configu-
ration, s = 〈db, U, sec, T, V 〉 be an M-partial state, u ∈ U
be a user, v ∈ {>,⊥}, and φ be a formula. Let Q ∈
{∃, ∀} be a quantifier and subsQ(φ) be the set of sub-formulae
of φ of the form Qx.ψ. There is a surjective function f
from subsQ(φ) to subsQ(φvs,u) such that for any Qx.ψ in
subsQ(φ), if f(Qx.ψ) is defined, then f(Qx.ψ)vs,u = Qx.ψvs,u.

Proof. The claim follows trivially from the definition of
φvs,u.

Lemma F.6. Let M = 〈D,Γ〉 be a system configuration,
s = 〈db, U, sec, T, V 〉 be an M-partial state, u ∈ U be a user,
and φ be a formula. If φ is allowed and all views in V are
allowed, then φ>s,u, φ⊥s,u, and φrw

s,u are domain independent.

Proof. From Proposition F.3, Proposition F.4, Proposi-
tion F.5, and Proposition F.6, it follows that if φ is allowed,
then both φ>s,u and φ⊥s,u are allowed. Since every allowed for-

mula is domain independent [45], it follows that both φ>s,u
and φ⊥s,u are domain independent. Finally, the domain in-
dependence of φrw

s,u follows easily from its definition and the

domain independence of φ>s,u and φ⊥s,u.

We now prove the main result of this section, namely that
the secure function is, indeed, a sound, under-approximation
of the notion of judgment’s security.

Lemma F.7. Let P = 〈M, f〉 be an extended configura-
tion, L be the P -LTS, u ∈ U be a user, r ∈ traces(L) be an
L-run, φ ∈ RCbool is a sentence, and 1 ≤ i ≤ |r|. Further-
more, let s be the i-th state in r. The following statements
hold:
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1. Given a judgment r, i `u φ, if secure(u, φ, s) = >, then
securedata

P,u (r, i `u φ) holds.
2. Given a judgment r, i `u φ, if secure(u, φ, s) = >, then

secureP,u(r, i `u φ) holds.

Proof. Note that the second statement follows trivially
from Lemma F.2 and the first statement. Therefore, in the
following we prove just that given a judgment r, i `u φ, if
secure(u, φ, s) = >, then securedata

P,u (r, i `u φ) holds.
Let P = 〈M, f〉 be an extended configuration, L be the

P -LTS, u ∈ U be a user, r ∈ traces(L) be an L-run, φ ∈
RCbool is a sentence, and 1 ≤ i ≤ |r|. Furthermore, let
s = 〈db, U, sec, T, V, c〉 be the i-th state in r. Assume that
secure(u, φ, s) = >. From this and secure’s definition, [φrw

s,u]db

= ⊥. In the following, with a slight abuse of notation we
ignore the inline and ext functions in φrw

s,u’s definition. This
is without loss of generality since inline and ext do not
modify φ’s result. From this and φrw

s,u’s definition, it fol-

lows that either [φ>s,u]db = > or [φ⊥s,u]db = ⊥. Note that

from Lemma F.4, it follows that securedata
P,u (r, i `u φ>s,u) and

securedata
P,u (r, i `u φ⊥s,u). Furthermore, let ∆ be the equiva-

lence class JpState(s)Kdata
u,M . There are two cases:

1. [φ>s,u]db = >. From securedata
P,u (r, i `u φ>s,u), it fol-

lows that for all s′, s′′ ∈ ∆, [φ>s,u]s
′.db = [φ>s,u]s

′′.db .

From this, s ∈ ∆, and [φ>s,u]db = >, it follows that

[φ>s,u]s
′.db = > for all s′ ∈ ∆. From Lemma F.5, it fol-

lows that for all s′, s′′ ∈ ∆, φ>s,u = φ>s′,u = φ>s′′,u. From

this and the fact that for all s′ ∈ ∆, [φ>s,u]s
′.db = >,

it follows that for all s′ ∈ ∆, [φ>s′,u]s
′.db = >. From

this and Lemma F.3, it follows that for all s′ ∈ ∆,

[φ]s
′.db = >. From this, it follows that for all s′, s′′ ∈

∆, [φ]s
′.db = [φ]s

′′.db . From this, r’s definition, and
securedata

P,u , it follows that securedata
P,u (r, i `u φ).

2. [φ⊥s,u]db = ⊥. From securedata
P,u (r, i `u φ⊥s,u), it fol-

lows that for all s′, s′′ ∈ ∆, [φ⊥s,u]s
′.db = [φ⊥s,u]s

′′.db .

From this, s ∈ ∆, and [φ⊥s,u]db = ⊥, it follows that

[φ⊥s,u]s
′.db = ⊥ for all s′ ∈ ∆. From Lemma F.5, it fol-

lows that for all s′, s′′ ∈ ∆, φ⊥s,u = φ⊥s′,u = φ⊥s′′,u. From

this and the fact that for all s′ ∈ ∆, [φ⊥s,u]s
′.db = ⊥,

it follows that for all s′ ∈ ∆, [φ⊥s′,u]s
′.db = ⊥. From

this and Lemma F.3, it follows that for all s′ ∈ ∆,

[φ]s
′.db = ⊥. From this, it follows that for all s′, s′′ ∈

∆, [φ]s
′.db = [φ]s

′′.db . From this, r’s definition, and
securedata

P,u , it follows that securedata
P,u (r, i `u φ).

This completes the proof of our claim.

Lemma F.8 proves that the secure function produces the
same result for any two indistinguishable states.

Lemma F.8. Let M be a system configuration, u ∈ U be
a user, s, s′ ∈ ΩM be two M-states such that pState(s) ∼=data

u,M

pState(s′), and φ be a sentence. Then, secure(u, φ, s) = >
iff secure(u, φ, s′) = >.

Proof. Let M be a system configuration, u ∈ U be a
user, s = 〈db, U, sec, T, V, c〉 and s′ = 〈db′, U ′, sec′, T ′, V ′, c′〉
be two M -states such that pState(s) ∼=data

u,M pState(s′), and φ
be a sentence. We now prove that secure(u, φ, s) = secure(u,
φ, s′). Assume, for contradiction’s sake, that secure(u, φ, s) 6=
secure(u, φ, s′). From this, it follows that [φrw

s,u]db 6= [φrw
s′,u]db′ .

From pState(s) ∼=data
u,M pState(s′) and Lemma F.5, it follows

that φrw
s,u = φrw

s′,u. From this and [φrw
s,u]db 6= [φrw

s′,u]db′ , it fol-

lows that [φrw
s,u]db 6= [φrw

s,u]db′ . This contradicts securedata
P,u (r, i

`u φrw
s,u), which has been proved in Lemma F.4. This com-

pletes the proof of our claim.

F.2 Data Confidentiality Proofs
In this section, we first prove some simple results about

fuconf . Afterwards, we prove our main result, namely that
fuconf provides data confidentiality with respect to the user
u.

Lemma F.9. Let M = 〈D,Γ〉 be a system configuration,
u ∈ U be a user, s, s′ ∈ ΩM be two M-states such that
pState(s) ∼=data

u,M pState(s′), invoker(s) = invoker(s′), and
tr(s) = tr(s′), and a be an action in AD,U . Then, fuconf (s, a)
= fuconf (s′, a).

Proof. Let M = 〈D,Γ〉 be a system configuration, u ∈ U
be a user, s = 〈db, U, sec, T, V, c〉 and s′ = 〈db′, U ′, sec′, T ′, V ′,
c′〉 be two M -states such that pState(s) ∼=data

u,M pState(s′),
invoker(s) = invoker(s′), and tr(s) = tr(s′), and a be an
action in AD,u. There are a number of cases depending on
the action a.

1. a = 〈u′, SELECT, φ〉. Assume, for contradiction’s sake,
that fuconf ,(s, a) 6= fuconf (s′, a). This happens iff secure(u,
φ, s) 6= secure(u, φ, s′). This contradicts Lemma F.8
because pState(s) ∼=data

u,M pState(s′).
2. a = 〈u′, INSERT, R, t〉. We claim that noLeak(s, a, u) =

noLeak(s′, a, u). Assume, for contradiction’s sake, that
fuconf ,(s, a) 6= fuconf (s′, a). This happens iff there is a
formula φ, which has been derived using the getInfo,
getInfoV , or getInfoD functions, such that secure(u, φ,
s) 6= secure(u, φ, s′). This contradicts Lemma F.8 be-
cause pState(s) ∼=data

u,M pState(s′).
We prove our claim that noLeak(s, a, u) = noLeak(s′, a,
u) for any two states s and s′ such that pState(s) ∼=data

u,M

pState(s′). Assume, for contradiction’s sake, that this
is not the case. Without loss of generality we assume
that noLeak(s, a, u) = > and noLeak(s′, a, u) = ⊥.
From noLeak(s, a, u) = >, it follows that for all views V
such that 〈⊕, SELECT, V 〉 ∈ permissions(s, u) and R ∈
tDet(V, s,M), for all o ∈ tDet(V, s,M), 〈⊕, SELECT, o〉
is in permissions(s, u). From pState(s) ∼=data

u,M pState(s′),
it follows that sec = sec′. From this, permissions(s, u)
= permissions(s′, u). From noLeak(s′, a, u) = ⊥, there
are two views V ′ and o such that 〈⊕, SELECT, V ′〉 ∈
permissions(s′, u), 〈⊕, SELECT, o〉 6∈ permissions(s′, u),
R ∈ tDet(V ′, s′,M), and o ∈ tDet(V ′, s′,M). Note
that tDet(V ′, s′,M) = tDet(V ′, s,M) because query
determinacy does not consider the database state. From
this and permissions(s, u) = permissions(s′, u), it fol-
lows that there is a view V ′ such that 〈⊕, SELECT, V ′〉 ∈
permissions(s, u) and R ∈ tDet(V ′, s,M), such that
there is a table o ∈ tDet(V ′, s,M) for which 〈⊕, SELECT,
o〉 6∈ permissions(s, u). This contradicts noLeak(s, a, u)
= >.

3. a = 〈u′, DELETE, R, t〉. The proof of this case is similar
to the a = 〈u′, INSERT, R, t〉 case.

4. a = 〈op, u′′, p, u′〉, where op ∈ {⊕,⊕∗}. Assume, for
contradiction’s sake, that fuconf ,(s, a) 6= fuconf (s′, a). Note
that this happens iff p = 〈SELECT, o〉 for some o. With-
out loss of generality, we further assume that fuconf ,(s, a)
= > and fuconf (s′, a) = ⊥. From fuconf ,(s, a) = >, it
follows that 〈⊕, SELECT, o〉 ∈ permissions(s, u). From
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pState(s) ∼=data
u,M pState(s′), it follows permissions(s, u)

= permissions(s′, u). From this and 〈⊕, SELECT, o〉 ∈
permissions(s, u), it follows that 〈⊕, SELECT, o〉 is in
permissions(s′, u). From fuconf ,(s

′, a) = ⊥, it follows
that 〈⊕, SELECT, o〉 6∈ permissions(s, u). This contra-
dicts 〈⊕, SELECT, o〉 ∈ permissions(s′, u).

5. For any other action a, the proof is trivial.
This completes the proof of our claim.

Lemma F.10. Let P be an extended configuration, L be
the P -LTS, r ∈ traces(L) be a run, u be a user, γ be a
sentence, and Φ be a set of sentences such that Φ |=fin γ. If,

for all φ ∈ Φ, secureP,u(r, i `u φ) holds and [φ]last(r).db = >,

then secureP,u(r, i `u γ) holds and [γ]last(ri).db = >.

Proof. Let P be an extended configuration, L be the P -
LTS, r ∈ traces(L) be a run, u be a user, γ be a sentence, and
Φ be a set of sentences such that Φ |=fin γ such that for all

φ ∈ Φ, secureP,u(r, i `u φ) holds and [φ]last(ri).db = >. We

now show that secureP,u(r, i `u γ) holds and [γ]last(ri).db =

>. From Φ |=fin γ, the fact that for all φ ∈ Φ, [φ]last(ri).db =

>, and |=fin ’s definition, it follows that [γ]last(ri).db = >.
Assume, for contradiction’s sake, that secureP,u(r, i `u γ)

does not hold. From this and [γ]last(ri).db = >, it follows that
there is a run r′ ∈ traces(L) such that ri ∼=P,u r

′ such that

[γ]last(r′).db = ⊥. We claim that for all φ ∈ Φ, [φ]last(r′).db =

>. From this and Φ |=fin γ, it follows that [γ]last(r′).db = >,

which contradicts [γ]last(r′).db = ⊥.

We now prove our claim that for all φ ∈ Φ, [φ]last(r′).db =
> for any trace r′ such that ri ∼=P,u r

′. From secureP,u(r, i `u
φ), it follows that [φ]last(ri).db = [φ]last(r′).db . From this and

[φ]last(ri).db = >, it follows that [φ]last(r′).db = >.

Before proving our main result, namely that fuconf provides
data confidentiality for the user u, we introduce the concept
of an action that preserves the equivalence class induced by
the indistinguishability relation ∼=P,u.

Definition F.3. Let P = 〈M, f〉 be an extended configu-
ration, where M = 〈D,Γ〉 is a system configuration and f is
an M -PDP, L be the P -LTS, r ∈ traces(L) be a run, a be
an action in AD,U ∪T RIGGERD, and u be a user in U . We
denote by extend(r, a), where r is a run and a is an action,
the run r′ ∈ traces(L), where s ∈ ΩM and r′ = r · a · s,
obtained by executing the action a at the end of the run
r′. If there is no such run, then extend(r, a) is undefined.
We say that a preserves the equivalence class for r, P , and
u iff (1) extend(r, a) is defined, and (2) there is a bijec-
tion b between JrKP,u and Jextend(r, a)KP,u such that for all
r′ ∈ JrKP,u, extend(r′, a) is defined and b(r′) = extend(r′, a).
�

Lemma F.11. Let P = 〈M, f〉 be an extended configura-
tion, where M = 〈D,Γ〉 is a system configuration and f
is an M-PDP, L be the P -LTS, u be a user in U , r be a
run in traces(L), a ∈ AD,u be an INSERT or DELETE action
〈u, op, R, t〉, φ be a sentence, and i be such that 1 ≤ i ≤ |r|,
triggers(last(ri)) = ε, and ri+1 = extend(ri, a). If (1) a
preserves the equivalence class for ri, P , and u, and (2) the
execution of a does not change any table in tables(φ) for
any run v ∈ JriKP,u, then secureP,u(r, i `u φ) holds iff
secureP,u(r, i+ 1 `u φ) holds.

Proof. Let P = 〈M, f〉 be an extended configuration,
where M = 〈D,Γ〉 is a system configuration and f is an
M -PDP, L be the P -LTS, u be a user in U , r be a run
in traces(L), a ∈ AD,u be an INSERT or DELETE action
〈u, op, R, t〉, φ be a sentence, and i be such that 1 ≤ i ≤ |r|,
triggers(last(ri)) = ε, and ri+1 = extend(ri, a). Assume
that (1) a preserves the equivalence class for ri, P , and u,
and (2) the execution of a does not change any table in
tables(φ) for any run v ∈ JriKP,u. Without loss of gener-
ality, assume that a is an INSERT action. In the following,
we denote the extend function by e. Furthermore, we also
denote the fact that secureP,u(r, i, u, φ) does not hold as
¬secureP,u(r, i, u, φ). From Definition F.3 and a preserves
the equivalence class for ri, P , and u, it follows that e(r′, a)
is defined for any r′ ∈ JriKP,u. Assume, for contradiction’s
sake, that our claim does not hold. There are two cases:
• secureP,u(r, i `u φ) holds and secureP,u(r, i + 1 `u φ)

does not hold. From secureP,u(r, i `u φ), it follows that

for all r′ ∈ JriKP,u, [φ]last(r′).db = [φ]last(ri).db . We claim

that [φ]last(r′).db = [φ]last(e(r′,a)).db holds for any r′ ∈
JriKP,u. From this and [φ]last(r′).db = [φ]last(ri).db for all

r′ ∈ JriKP,u, it follows that [φ]last(ri).db = [φ]last(e(r′,a)).db

holds for any r′ ∈ JriKP,u. From ¬secureP,u(r, i+ 1 `u
φ), it follows that there is a run r′ ∈ Jri+1KP,u such that

[φ]last(ri+1).db 6= [φ]last(r′).db . From this, [φ]last(r′).db =

[φ]last(e(r′,a)).db for any r′ ∈ JriKP,u, and e(ri, a) = ri+1,

it follows that [φ]last(ri).db 6= [φ]last(r′).db . Let b be the
bijection showing that a preserves the equivalence class
with respect to ri, P , and u. From e(ri, a) = ri+1

and r′ ∈ Jri+1KP,u, it follows that r′ ∈ Je(ri, a)KP,u.
From this, it follows that there is a r′′ = b−1(r′) such
that r′′ ∈ JriKP,u and e(r′′, a) = r′. From this and

[φ]last(v).db = [φ]last(e(v,a)).db for any v ∈ JriKP,u, it fol-

lows that [φ]last(r′′).db = [φ]last(r′).db . From this and

[φ]last(ri).db 6= [φ]last(r′).db , it follows that [φ]last(ri).db 6=
[φ]last(r′′).db . This contradicts the fact that for all r′ ∈
JriKP,u, [φ]last(r′).db = [φ]last(ri).db . Indeed, r′′ ∈ JriKP,u
and [φ]last(ri).db 6= [φ]last(r′′).db .

We prove our claim that [φ]last(r′).db = [φ]last(e(r′,a)).db

holds for any r′ ∈ JriKP,u. Assume that this is not the
case. This implies that the content of one of the rela-
tions that determines φ is different in last(r′).db and
last(e(r′, a)).db. This is impossible. Indeed, if a’s exe-
cution has been successful, i.e., secEx (last(e(r′, a))) =
⊥ and Ex (last(e(r′, a))) = ∅, then a’s execution does
not change any table in tables(φ), and the set of rela-
tions that determines φ is always a subset of tables(φ).

This leads to a contradiction, and, therefore, [φ]last(r′).db

= [φ]last(e(r′,a)).db holds. Similarly, if a’s execution has
not been successful, i.e., secEx (last(e(r′, a))) = > or
Ex (last(e(r′, a))) 6= ∅, then last(r′).db is the same as
last(e(r′, a)).db, and the claim holds trivially.
• secureP,u(r, i + 1 `u φ) holds and secureP,u(r, i `u φ)

does not hold. We have already shown that [φ]last(r′).db

= [φ]last(e(r′,a)).db holds for any r′ ∈ JrKP,u. From
¬secureP,u(r, i `u φ), it follows that there is r′ ∈ JriKP,u
such that [φ]last(ri).db 6= [φ]last(r′).db . Let b the bijection
showing that a preserves the equivalence class with re-
spect to r, P , and u. Since r′ ∈ JriKP,u, then let r′′ =
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b(r′) = e(r′, a). From [φ]last(r′).db = [φ]last(e(r′,a)).db

holds for any r′ ∈ JriKP,u, it follows that [φ]last(ri).db 6=
[φ]last(e(r′,a)).db . From this, e(ri, a) = ri+1, and the fact

that [φ]last(r′).db = [φ]last(e(r′,a)).db holds for any r′ ∈
JrKP,u, it follows that [φ]last(ri+1).db 6= [φ]last(e(r′,a)).db .
From this and e(r′, a) ∈ Jri+1KP,u, it follows ¬secureP,u
(r, i+1 `u φ). This contradicts the fact that secureP,u(r,
i+ 1 `u φ) holds.

This completes the proof.

Lemma F.12. Let P = 〈M, f〉 be an extended configura-
tion, where M = 〈D,Γ〉 is a system configuration and f is
an M-PDP, L be the P -LTS, u be a user in U , r be a run in
traces(L), a ∈ AD,u be a SELECT or CREATE action, φ be a
sentence, and i be such that 1 ≤ i ≤ |r|, triggers(last(ri)) =
ε, and ri+1 = extend(ri, a). If a preserves the equivalence
class for ri, P , and u, then secureP,u(r, i `u φ) holds iff
secureP,u(r, i+ 1 `u φ) holds.

Proof. Proof similar to that of Lemma F.11.

Lemma F.13. Let P = 〈M, f〉 be an extended configura-
tion, where M = 〈D,Γ〉 is a system configuration and f is
an M-PDP, L be the P -LTS, u be a user in U , r be a run in
traces(L), a ∈ AD,u be a GRANT or REVOKE action, φ be a sen-
tence, and i be such that 1 ≤ i ≤ |r|, triggers(last(ri)) = ε,
and ri+1 = extend(ri, a). If a preserves the equivalence
class for ri, P , and u, then secureP,u(r, i `u φ) holds iff
secureP,u(r, i+ 1 `u φ) holds.

Proof. Proof similar to that of Lemma F.11.

Lemma F.14. Let P = 〈M, f〉 be an extended configura-
tion, where M = 〈D,Γ〉 is a system configuration and f is
an M-PDP, L be the P -LTS, u be a user in U , r be a run
in traces(L), a be a trigger in T RIGGERD, φ be a sen-
tence, and i be such that 1 ≤ i ≤ |r|, invoker(last(ri)) = u,
and ri+1 = extend(ri, a). If (1) a preserves the equivalence
class for ri, P , and u, (2) if a’s action is either an INSERT

or DELETE, then t’s execution does not change any table in
tables(φ) for any run v ∈ JriKP,u, and (3) secEx (last(extend
(ri, a)) = ⊥ and Ex (last(extend(ri, a)) = ∅, then secureP,u(r,
i `u φ) holds iff secureP,u(r, i+ 1 `u φ) holds.

Proof. Let P = 〈M, f〉 be an extended configuration,
where M = 〈D,Γ〉 is a system configuration and f is an
M -PDP, L be the P -LTS, u be a user in U , r be a run in
traces(L), a be a trigger in T RIGGERD, φ be a sentence,
and i be such that 1 ≤ i ≤ |r|, invoker(last(ri)) = u, and
ri+1 = extend(ri, a). Assume also (1) that a preserves the
equivalence class for ri, P , and u, and (2) secEx (last(extend
(ri, a)) = ⊥ and Ex (last(extend(ri, a)) = ∅. In the follow-
ing, we denote the extend function by e. Furthermore, we
also denote the fact that secureP,u(r, i `u φ) does not hold
as ¬secureP,u(r, i `u φ). From Definition F.3 and the fact
that a preserves the equivalence class for ri, P , and u, it
follows that e(r′, a) is defined for any r′ ∈ JriKP,u. Assume,
for contradiction’s sake, that our claim does not hold. There
are two cases:
• secureP,u(r, i `u φ) holds and secureP,u(r, i + 1 `u φ)

does not hold. From secureP,u(r, i `u φ), it follows

that [φ]last(ri).db = [φ]last(r′).db for any r′ ∈ JriKP,C . We

claim that [φ]last(r′).db = [φ]last(e(r′,a)).db holds for any
r′ ∈ JriKP,u. From ¬secureP,u(r, i + 1 `u φ), it follows

that there is a r′′ ∈ Jri+1KP,u such that [φ]last(r′′).db 6=
[φ]last(ri+1).db . Let b the bijection showing that a pre-
serves the equivalence class with respect to ri, P , and
u. Since ri+1 = e(ri, a) and r′ ∈ Je(r, a)KP,u, then
there is a run v ∈ JriKP,u such that v = b−1(r′′). From

this, [φ]last(r′).db = [φ]last(e(r′,a)).db holds for any r′ ∈
JriKP,u, and the fact that [φ]last(r′′).db 6= [φ]last(ri+1).db ,

it follows that [φ]last(v).db 6= [φ]last(ri+1).db . From this,

[φ]last(r′).db = [φ]last(e(r′,a)).db holds for any r′ ∈ JriKP,u,

and ri+1 = e(ri, a), it follows [φ]last(v).db 6= [φ]last(ri).db .

This contradicts the fact that [φ]last(ri).db = [φ]last(r′).db

for any r′ ∈ JriKP,C .

We now prove that [φ]last(r′).db = [φ]last(e(r′,a)).db holds
for any r′ ∈ JriKP,u. Assume, for contradiction’s sake,

that there is a run r′ ∈ JriKP,u such that [φ]last(r′).db 6=
[φ]last(e(r′,a)).db . There are three cases:

– the trigger a is not enabled in e(r′, a). From this
and the LTS semantics, it follows that last(r′).db =
last(e(r′, a)).db. From this, it therefore follows that

[φ]last(r′).db = [φ]last(e(r′,a)).db . This contradicts our
assumption.

– the trigger a is enabled in e(r′, a) and its action
is a GRANT or a REVOKE. From this and the LTS
semantics, it therefore follows that last(r′).db =
last(e(r′, a)).db. From this, it thus follows that

[φ]last(r′).db = [φ]last(e(r′,a)).db . This contradicts our
assumption.

– the trigger a is enabled in e(r′, a) and its action

is a INSERT or a GRANT. Thus, from [φ]last(r′).db 6=
[φ]last(e(r′,a)).db , it follows that the content of one
of the relations that determines φ is different in
last(r′).db and last(e(r′, a)).db. This contradicts
the fact that the a’s execution does not change the
tables in tables(φ) for any run r′ ∈ JriKP,u.

• secureP,u(r, i + 1 `u φ) holds and secureP,u(r, i `u φ)

does not hold. We have already shown that [φ]last(r′).db

= [φ]last(e(r′,a)).db holds for any r′ ∈ JrKP,u. From
¬secureP,u(r, i `u φ), it follows that there is r′ ∈ JriKP,u
such that [φ]last(ri).db 6= [φ]last(r′).db . Let b the bijection
showing that a preserves the equivalence class with re-
spect to r, P , and u. Since r′ ∈ JriKP,u, then let r′′ =

b(r′) = e(r′, a). From [φ]last(r′).db = [φ]last(e(r′,a)).db

holds for any r′ ∈ JriKP,u, it follows that [φ]last(ri).db 6=
[φ]last(e(r′,a)).db . From this, e(ri, a) = ri+1, and the fact

that [φ]last(r′).db = [φ]last(e(r′,a)).db holds for any r′ ∈
JrKP,u, it follows that [φ]last(ri+1).db 6= [φ]last(e(r′,a)).db .
From this and e(r′, a) ∈ Jri+1KP,u, it follows ¬secureP,u
(r, i+1 `u φ). This contradicts secureP,u(r, i+1 `u φ).

This completes the proof.

Proposition F.7. Let P = 〈M, f〉 be an extended con-
figuration, where M = 〈D,Γ〉 is a system configuration and
f is an M-PDP, L be the P -LTS, a ∈ AD,u be an INSERT

or DELETE action, and r be a run such that tr(last(r)) = ε.
For any constraint γ in Dep(Γ, a), the following statements
hold:
• [getInfoS(γ, a)]last(r).db = > iff γ 6∈ Ex (last(extend(r, a))),

and
• [getInfoV (γ, a)]last(r).db = > iff γ ∈ Ex (last(extend(r, a))).

59



Proof. Let P = 〈M, f〉 be an extended configuration,
where M = 〈D,Γ〉 is a system configuration and f is an M -
PDP, L be the P -LTS, a ∈ AD,u be an INSERT or DELETE

action, and r be a run such that tr(last(r)) = ε. Further-
more, let γ be a constraint in Dep(Γ, a). We first note
that getInfoS(γ, a) = ¬getInfoV (γ, a). From this, it fol-
lows trivially that we can prove just one of the two claims.
We thus prove that [getInfoS(γ, a)]last(r).db = > iff γ 6∈
Ex (last(extend(r, a))). There are two cases:

1. a = 〈u, INSERT, R, t〉. There are two cases depending
on γ:
(a) γ is of the form ∀x, y, y′, z, z′. (R(x, y, z) ∧R(x, y′,

z′)) ⇒ y = y′. Let t be (v, w, q), db be the state
last(r).db, and db′ be the state db[R⊕ t].
(⇒) Assume that [getInfoS(γ, a)]last(r).db = >. From
this and getInfoS(γ, a)’s definition, it follows that
for all tuples (v, w′, q′) ∈ db(R), then w′ = w.
From a’s definition and the LTS semantics, it fol-
lows that db′(R) = db(R) ∪ {(v, w, q)}. From this
and the fact that for all tuples (v, w′, q′) ∈ db(R),
then w′ = w, it follows that for all tuples (v, w′, q′)
∈ db′(R), then w′ = w. Furthermore, since db ∈
ΩΓ
D, it follows that for all tuples (v′, w′, q′), (v′′, w′′,

q′′) ∈ db′(R), if v′ = v′′ and v′ 6= v, then w′ = w.
Therefore, it follows that for all tuples (v′, w′, q′),
(v′′, w′′, q′′) ∈ db′(R), if v′ = v′′, then w′ = w.

Therefore, [γ]db′ = >. From this and the LTS se-
mantics, it follows that γ 6∈ Ex (last(extend(r, a))).
(⇐) Assume that γ 6∈ Ex (last(extend(r, a)))). From

this and the LTS semantics, it follows that [γ]db′ =
>. Therefore, for any two tuples (v′, w′, q′) and
(v′′, w′′, q′′) ∈ db′(R), if v′ = v′′, then w′ = w. As-
sume, for contradiction’s sake, that [getInfoS(γ, a)]db

= ⊥. This means that there is a tuple (v, w′, q′) in
db(R) such that w′ 6= w. From db′ = db[R(v, w, q)]
and the LTS semantics, it follows that both (v, w′, q′)
and (v, w, q) are in db′(R). From this and w′ 6=
w, it follows that there are two tuples (v, w, q)
and (v, w′, q′) in db(R) such that w′ 6= w. From
this and the relational calculus semantics, it fol-
lows that [γ]db = ⊥. This is in contradiction with

[γ]db′ = >.
(b) γ is of the form ∀x, z.R(x, z) ⇒ ∃w. S(x,w). Let

t be (v, w), db be the state last(r).db, and db′ be
the state db[R⊕ t].
(⇒) Assume that [getInfoS(γ, a)]db = >. From this
and getInfoS(γ, a)’s definition, it follows that there
is a tuple (v, y) in db(S). From a’s definition and
the LTS semantics, it follows that db′(S) = db(S).
From this, it follows that there is a tuple (v, y) in
db′(S). Furthermore, since db ∈ ΩΓ

D, it follows
that for all tuples (v′, w′) ∈ db(R), if v′ 6= v, there

is a tuple (v′, y′) ∈ db(S). From this and db
′

=
db[R⊕(v, w)], it follows that for all tuples (v′, w′) ∈
db′(R), there is a tuple (v′, y′) ∈ db′(S). Therefore,

[γ]db′ = >. From this and the LTS semantics, it
follows that γ 6∈ Ex (last(extend(r, a))).
(⇐) Assume that γ 6∈ Ex (last(extend(r, a))). From

this and the LTS semantics, it follows that [γ]db′ =
>. Therefore, for any tuple (v′, w′) ∈ db′(R), there
is a tuple (v′, y′) ∈ db′(S). Assume, for contra-
diction’s sake, that [getInfoS(γ, a)]db = ⊥. This

means that for any tuple (v′, y′) in db(S), v′ 6= v.
From db′(S) = db(S), it follows that for any tuple
(v′, y′) in db′(S), v′ 6= v. From db′ = db[R⊕(v, w)],
it follows that there is a tuple (v, w) in db′(R)
such that there is no tuple (v, y′) in db′(S). From
this and the relational calculus semantics, it fol-
lows that [γ]db = ⊥. This is in contradiction with

[γ]db′ = >.
2. a = 〈u, DELETE, R, t〉. In this case, γ is of the form
∀x, z. S(x, z)⇒ ∃w.R(x,w). Let t be (v, w), db be the
state last(r).db, and db′ be the state db[R	 t].
(⇒) Assume that [getInfoS(γ, a)]db = >. From this and
getInfoS(γ, a)’s definition, it follows that either there
is no tuple (v, y) in db(S) or there is a tuple (v, w′) in
db(R) such that w′ 6= w. There are two cases:
(a) there is no tuple (v, y) in db(S). From this, a’s

definition, and the LTS semantics, it follows that
there is no tuple (v, y) in db′(S). From db ∈ ΩΓ

D,
it follows that for all tuples (v′, y′) in db(S) such
that v′ 6= v, there is a tuple (v′, w′) in db(R). From
this, db′(R) = db(R) \ {(v, w)}, db′(S) = db(S),
and there is no tuple (v, y) in db′(S), it follows
that for all tuples (v′, y′) in db(S), there is a tuple

(v′, w′) in db(R). Therefore, [γ]db′ = >. From
this and the LTS semantics, it follows that γ 6∈
Ex (last(extend(r, a))).

(b) there is a tuple (v, w′) in db(R) such that w′ 6= w.
From this, a’s definition, and the LTS semantics, it
follows that there is a tuple (v, w′) in db′(R) such
that w′ 6= w. From db ∈ ΩΓ

D, it follows that for
all tuples (v′, y′) in db(S) such that v′ 6= v, there
is a tuple (v′, w′′) in db(R). From this, db′(R) =
db(R) \ {(v, w)}, db′(S) = db(S), and there is a
tuple (v, w′) in db′(R) such that w′ 6= w, it follows
that for all tuples (v′, y′) in db(S), there is a tuple

(v′, w′) in db(R). Therefore, [γ]db′ = >. From
this and the LTS semantics, it follows that γ 6∈
Ex (last(extend(r, a))).

(⇐) Assume that γ 6∈ Ex (last(extend(r, a))). From

this and the LTS semantics, it follows that [γ]db′ = >.
Therefore, for any tuple (v′, y′) ∈ db′(S), there is a
tuple (v′, w′) ∈ db′(R). Assume, for contradiction’s
sake, that [getInfoS(γ, a)]db = ⊥. Therefore, there is a
tuple (v, y) in db(S) and for all tuples (v, w′′) in db(R),
w′′ = w. From this, db′(S) = db(S), and db′ = db[R	
(v, w)], it follows that there is a tuple (v, y) in db′(S)
and for all tuples (v′′, w′′) in db′(R), v′′ 6= v. From this
and the relational calculus semantics, it follows that

[γ]db = ⊥. This is in contradiction with [γ]db′ = >.
This completes the proof.

Lemma F.15. Let u be a user in U , P = 〈M, fuconf 〉 be
an extended configuration, where M = 〈D,Γ〉 is a system
configuration and fuconf is as above, and L be the P -LTS.
For any run r ∈ traces(L) and any action a ∈ AD,u, if
extend(r, a) is defined, then a preserves the equivalence class
for r, P , and u.

Proof. Let u be a user in U , P = 〈M, fuconf 〉 be an ex-
tended configuration, where M = 〈D,Γ〉 is a system config-
uration and fuconf is as above, and L be the P -LTS. In the
following, we use e to refer to the extend function and f to
refer to fuconf . We prove our claim by contradiction. Assume,
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for contradiction’s sake, that there is a run r ∈ traces(L) and
an action a ∈ AD,u such that e(r, a) is defined and a does
not preserve the equivalence class for r, P , and u. According
to the LTS semantics, the fact that e(r, a) is defined implies
that triggers(last(r)) = ε. Therefore, triggers(last(r′)) = ε
holds as well for any for any r′ ∈ JrKP,u (because r and r′ are
indistinguishable and, therefore, their projections are consis-
tent), and, thus, e(r′, a) is defined as well for any r′ ∈ JrKP,u.
There are a number of cases depending on a:

1. a = 〈u, SELECT, q〉. There are two cases:
(a) secEx (last(e(r, a))) = ⊥. From the LTS rules and

secEx (last(e(r, a))) = ⊥, it follows that f(last(r), a)
= >. From this and Lemma F.9, it follows that
f(last(r′), a) = > for any r′ ∈ JrKP,u. From this
and the LTS rules, it follows secEx (last(e(r′, a))) =
⊥ for any r′ ∈ JrKP,u. From f(last(r′), a) = > for
any r′ ∈ JrKP,u, it follows that secure(u, q, last(r′))
= > for any r′ ∈ JrKP,u. From this and Lemma F.7,

it follows that [q]last(r′).db = [q]last(r).db for all r′ ∈
JrKP,u. Furthermore, it follows trivially from the
LTS rule SELECT Success, that the state after a’s
execution is data indistinguishable from last(r). It
is also easy to see that e(r′, a) is well-defined for
any r′ ∈ JrKP,u. From the considerations above
and r′ ∈ JrKP,u, it follows trivially that e(r′, a) ∈
Je(r, a)KP,u. The bijection b is trivially b(r′) =
e(r′, a). This leads to a contradiction.

(b) secEx (last(e(r, a))) = >. From the LTS rules and
secEx (last(e(r, a))) = >, it follows that f(last(r), a)
= ⊥. From this and Lemma F.9, it follows that
f(last(r′), a) = ⊥ for any r′ ∈ JrKP,u. From this
and the LTS rules, it follows secEx (last(e(r′, a))) =
> for any r′ ∈ JrKP,u. The data indistinguishabil-
ity between last(e(r′, a)) and last(e(r, a)) follows
trivially from the data indistinguishability between
last(r′) and last(r). Therefore, for any run r′ ∈
JrKP,C , there is exactly one run e(r′, a). From the
considerations above, it follows trivially that e(r′, a)
∈ Je(r, a)KP,u. The bijection b is trivially b(r′) =
e(r′, a). This leads to a contradiction.

Both cases leads to a contradiction. This completes the
proof for a = 〈u, SELECT, q〉.

2. a = 〈u, INSERT, R, t〉. In the following, we denote by gI
the function getInfo, by gS the function getInfoS , and
by gV the function getInfoV . There are three cases:
(a) secEx (last(e(r, a))) = ⊥ and Ex (last(e(r, a))) = ∅.

From the LTS rules and secEx (last(e(r, a))) = ⊥,
it follows that f(last(r), a) = >. From this and
Lemma F.9, it follows that f(last(r′), a) = > for
any r′ ∈ JrKP,u. From this and the LTS rules, it
follows that secEx (last(e(r′, a))) = ⊥ for any r′ ∈
JrKP,u. From fuconf ’s definition and f(last(r), a) =
>, it follows that secure(u, gS(γ, act), last(r)) holds
for any integrity constraint γ in Dep(Γ, a). From
Ex (last(e(r, a))) = ∅ and Proposition F.7, it fol-

lows [gS(γ, act)]last(r).db = >. From this, secure(u,
gS(γ, act), last(r)), and Lemma F.7, it follows that

[gS(γ, act)]last(r′).db = > for any r′ ∈ JrKP,u. From
this and Proposition F.7, it follows that Ex (last(e(r′,
a))) = ∅ for any r′ ∈ JrKP,u. We claim that, for
any r′ ∈ JrKP,u, last(e(r, a)) and last(e(r′, a)) are
data indistinguishable. From this and the above
considerations, it follows trivially that e(r′, a) ∈

Je(r, a)KP,u. The bijection b is trivially b(r′) =
e(r′, a). This leads to a contradiction.
We now prove our claim that for any r′ ∈ JrKP,u,
last(e(r, a)) and last(e(r′, a)) are data indistinguish-
able. We prove the claim by contradiction. Let
s2 = 〈db2, U2, sec2, T2, V2〉 be pState(last(e(r, a))),
s′2 = 〈db′2, U

′
2, sec′2, T

′
2, V

′
2 〉 be pState(last(e(r′, a))),

s1 = 〈db1, U1, sec1, T1, V1〉 be pState(last(r)), and
s′1 = 〈db′1, U

′
1, sec′1, T

′
1, V

′
1 〉 be pState(last(r′)). In

the following, we denote the permissions function
by p. Furthermore, note that s1 and s′1 are data-
indistinguishable because r′ ∈ JrKP,u. There are a
number of cases:

i. U2 6= U ′2. Since a is an INSERT operation, it
follows that U1 = U2 and U ′1 = U ′2. Further-
more, from s1

∼=data
u,M s′1, it follows that U1 = U ′1.

Therefore, U2 = U ′2 leading to a contradiction.
ii. sec2 6= sec′2. The proof is similar to the case

U2 6= U ′2.
iii. T2 6= T ′2. The proof is similar to the case U2 6=

U ′2.
iv. V2 6= V ′2. The proof is similar to the case U2 6=

U ′2.
v. there is a table R′ for which 〈⊕, SELECT, R〉 ∈
p(s2, u) and db2(R′) 6= db′2(R′). Note that
p(s2, u) = p(s1, u). There are two cases:
• R = R′. From s1

∼=data
u,M s′1 and 〈⊕, SELECT, R〉

∈ p(s2, u), it follows that db1(R′) = db′1(R′).
From this and the fact that a has been exe-
cuted successfully both in e(r, a) and e(r′, a),
it follows that db2(R′) = db1(R′) ∪ {t} and
db′2(R′) = db′1(R′) ∪ {t}. From this and
db1(R′) = db′1(R′), it follows that db2(R′) =
db′2(R′) leading to a contradiction.
• R 6= R′. From s1

∼=data
P,u s′1 and 〈⊕, SELECT, R〉

∈ p(s2, u), it follows that db1(R′) = db′1(R′).
From this and the fact that a does not mod-
ify R′, it follows that db1(R′) = db2(R′) and
db′1(R′) = db′2(R′). From this and db1(R′) =
db′1(R′), it follows that db2(R′) = db′2(R′)
leading to a contradiction.

vi. there is a view v for which 〈⊕, SELECT, v〉 ∈
p(s2, u) and db2(v) 6= db′2(v). Note that p(s2,
u) = p(s1, u). Since a has been successfully ex-
ecuted in both states, we know that noLeak(s1,
a, u) hold. There are two cases:
• R 6∈ tDet(v, s,M). Then, v(s1) = v(s2) and
v(s′1) = v(s′2) (because R’s content does not
determine v’s materialization). From s1

∼=data
u,M

s′1 and the fact that a modifies only R, it fol-
lows that v(db2) = v(db′2) leading to a con-
tradiction.
• R ∈ tDet(v, s,M) and for all o ∈ tDet(v, s,
M), 〈⊕, SELECT, o〉 ∈ p(s1, u). From this and
s1
∼=data
u,M s′1, it follows that, for all o ∈ tDet(v,

s,M), o(s1) = o(s′1). If o 6= R, o(s1) =
o(s′1) = o(s2) = o(s′2). From s1

∼=data
u,M s′1

and 〈⊕, SELECT, R〉 ∈ p(s1, u), it follows that
db1(R) = db′1(R). From this and the fact
that a has been executed successfully both in
e(r, a) and e(r′, a), it follows that db2(R) =
db1(R) ∪ {t} and db′2(R) = db′1(R) ∪ {t}.
From this and db1(R) = db′1(R), it follows
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that db2(R) = db′2(R). From this and for all
o ∈ tDet(v, s,M) such that o 6= R, o(s2) =
o(s′2), it follows that for all o ∈ tDet(v, s,M),
o(s2) = o(s′2). Since the content of all ta-
bles determining v is the same in s2 and s′2,
it follows that db2(v) = db′2(v) leading to a
contradiction.

All the cases lead to a contradiction.
(b) secEx (last(e(r, a))) = ⊥ and Ex (last(e(r, a))) 6=
∅. From the LTS rules and secEx (e(r, a)) = ⊥,
it follows that f(last(r), a) = >. From this and
Lemma F.9, it follows that f(last(r′), a) = > for
any r′ ∈ JrKP,u. From this and the LTS rules, it
follows that secEx (last(e(r′, a))) = ⊥ for any r′ ∈
JrKP,u. Assume that the exception has been caused
by the constraint γ, i.e., γ ∈ Ex (last(e(r, a))). From
this and Proposition F.7, it follows that gV (γ, a)
holds in last(r).db. From fuconf ’s definition, it thus
follows that secure(u, gV (γ, a), last(r)) holds. From

this, [gV (γ, a)]last(r).db = >, and Lemma F.7, it

follows that [gV (γ, act)]last(r′).db = > for any r′ ∈
JrKP,u. From this and Proposition F.7, it follows
that γ ∈ Ex (last(e(r′, a))) for any r′ ∈ JrKP,u. The
data indistinguishability between last(e(r, a)) and
last(e(r′, a)) follows trivially from the data indis-
tinguishability between last(r) and last(r′) for any
r′ ∈ JrKP,u. Therefore, for any run r′ ∈ JrKP,u,
there is exactly one run e(r′, a). From the consid-
erations above, it follows trivially that e(r′, a) ∈
Je(r, a)KP,u. The bijection b is trivially b(r′) =
e(r′, a). This leads to a contradiction.

(c) secEx (last(e(r, a))) = >. From the LTS rules and
secEx (last(e(r, a))) = >, it follows that f(last(r), a)
= ⊥. From this and Lemma F.9, it follows that
f(last(r′), a) = ⊥ for any r′ ∈ JrKP,u. From this
and the LTS rules, it follows secEx (last(e(r′, a))) =
> for any r′ ∈ JrKP,u. The data indistinguishabil-
ity between last(e(r, a)) and last(e(r′, a)) follows
trivially from the data indistinguishability between
last(r) and last(r′) for any r′ ∈ JrKP,u. Therefore,
for any run r′ ∈ JrKP,u, there is exactly one run
e(r′, a). From the considerations above, it follows
trivially that e(r′, a) ∈ Je(r, a)KP,u. The bijection b
is trivially b(r′) = e(r′, a). This leads to a contra-
diction.

All cases lead to a contradiction. This completes the
proof for a = 〈u, INSERT, R, t〉.

3. a = 〈u, DELETE, R, t〉. The proof is similar to that for
a = 〈u, INSERT, R, t〉.

4. a = 〈⊕, u′, p, u〉. There are two cases:
(a) secEx (last(e(r, a))) = ⊥. We assume that p =
〈SELECT, O〉 for some O ∈ D ∪ V . If this is not
the case, the proof is trivial. Furthermore, we
also assume that u′ = u, otherwise the proof is,
again, trivial since the new permission does not
influence u’s permissions. From the LTS rules and
secEx (last(e(r, a))) = ⊥, it follows that f(last(r), a)
= >. From this and Lemma F.9, it follows that
f(last(r′), a) = > for any r′ ∈ JrKP,u. From this
and the LTS rules, it follows secEx (last(e(r′, a))) =
⊥ for any r′ ∈ JrKP,u. From secEx (last(e(r, a))) =
⊥ and fuconf ’s definition, it follows that last(r′).sec =
last(e(r′, a)).sec. Therefore, since last(r) and last(r′)

are data indistinguishable, for any r′ ∈ JrKP,u, then
also last(e(r, a)) and last(e(r′, a)) are data indis-
tinguishable. Therefore, for any run r′ ∈ JrKP,u,
there is exactly one run e(r′, a). From the consid-
erations above, it follows trivially that e(r′, a) ∈
Je(r, a)KP,u. The bijection b is trivially b(r′) =
e(r′, a). This leads to a contradiction.

(b) secEx (last(e(r, a))) = >. From the LTS rules and
secEx (last(e(r, a))) = >, it follows that f(last(r), a)
= ⊥. From this and Lemma F.9, it follows that
f(last(r′), a) = ⊥ for any r′ ∈ JrKP,u. From this
and the LTS rules, it follows secEx (last(e(r′, a))) =
> for any r′ ∈ JrKP,u. The data indistinguishabil-
ity between last(e(r′, a)) and last(e(r, a)) follows
trivially from the data indistinguishability between
last(r′) and last(r). Therefore, for any run r′ ∈
JrKP,u, there is exactly one run e(r′, a). From the
considerations above, it follows trivially that e(r′, a)
∈ Je(r, a)KP,u. The bijection b is trivially b(r′) =
e(r′, a). This leads to a contradiction.

Both cases lead to a contradiction. This completes the
proof for a = 〈⊕, u′, p, u〉.

5. a = 〈⊕∗, u′, p, u〉. The proof is similar to that for a =
〈⊕, u′, p, u〉.

6. a = 〈	, u′, p, u〉. The proof is similar to that for a =
〈u, SELECT, q〉. The only difference is in proving that for
any r′ ∈ JrKP,u, last(e(r, a)) and last(e(r′, a)) are data
indistinguishable. Assume, for contradiction’s sake, that
this is not the case. Let s2 = 〈db2, U2, sec2, T2, V2〉
be pState(last(e(r, a))), s′2 = 〈db′2, U

′
2, sec′2, T

′
2, V

′
2 〉 be

pState(last(e(r′, a))), s1 = 〈db1, U1, sec1, T1, V1〉 be
pState(last(r)), and, finally, s′1 = 〈db′1, U

′
1, sec′1, T

′
1, V

′
1 〉

be pState(last(r′)). In the following, we denote the
permissions function by p. Furthermore, note that s1

and s′1 are data-indistinguishable because r′ ∈ JrKP,u.
There are a number of cases:
(a) U2 6= U ′2. Since a is an REVOKE operation, it follows

that U1 = U2 and U ′1 = U ′2. Furthermore, from
s1
∼=data
u,M s′1, it follows that U1 = U ′1. Therefore,

U2 = U ′2 leading to a contradiction.
(b) sec2 6= sec′2. From s1

∼=data
u,M s′1, it follows that

sec1 = sec′1. From a’s definition and the LTS
rules, it follows that sec2 = revoke(sec1, u

′, p, u)
and sec′2 = revoke(sec′1, u

′, p, u). From this and
sec1 = sec′1, it follows that sec2 = sec′2 leading to
a contradiction.

(c) T2 6= T ′2. The proof is similar to the case U2 6= U ′2.
(d) V2 6= V ′2. The proof is similar to the case U2 6= U ′2.
(e) there is a tableR for which 〈⊕, SELECT, R〉 ∈ p(s2, u)

and db2(R) 6= db′2(R). Since a is an REVOKE opera-
tion, it follows that db1 = db2 and db′1 = db′2. Fur-
thermore, from s1

∼=data
u,M s′1, it follows that db1(R) =

db′1(R). From this, db1 = db2, and db′1 = db′2, it
follows that db2(R) = db′2(R) leading to a contra-
diction.

(f) there a view v for which 〈⊕, SELECT, v〉 ∈ p(s2, u)
and db2(v) 6= db′2(v). Since a is an REVOKE opera-
tion, it follows that db1 = db2 and db′1 = db′2. Fur-
thermore, from s1

∼=data
u,M s′1, it follows that db1(v) =

db′1(v). From this, db1 = db2, and db′1 = db′2, it
follows that db2(v) = db′2(v) leading to a contra-
diction.

All the cases lead to a contradiction.
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7. a = 〈u, CREATE, o〉. The proof is similar to that for
a = 〈	, u′, p, u〉.

8. a = 〈u, ADD USER, u′〉. The proof is similar to that for
a = 〈	, u′, p, u〉.

This completes the proof.

Lemma F.16. Let u be a user in U , P = 〈M, fuconf 〉 be
an extended configuration, where M = 〈D,Γ〉 is a system
configuration and fuconf is as above, and L be the P -LTS.
For any run r ∈ traces(L) such that invoker(last(r)) = u
and any trigger t ∈ T RIGGERD, if extend(r, t) is defined,
then t preserves the equivalence class for r, M , and u.

Proof. Let u be a user in U , P = 〈M, fuconf 〉 be an ex-
tended configuration, where M = 〈D,Γ〉 is a system con-
figuration and fuconf is as above, and L be the P -LTS. In
the following, we use e to refer to the extend function. The
proof in the cases where the trigger t is not enabled, i.e.,
its WHEN condition is not satisfied, or t’s WHEN condition is
not secure are similar to the proof of the SELECT case of
Lemma F.15. In the following, we therefore assume that
the trigger t is enabled and that its WHEN condition is se-
cure. We prove our claim by contradiction. Assume, for
contradiction’s sake, that there is a run r ∈ traces(L) such
that invoker(last(r)) = u and a trigger t such that e(r, t)
is defined and t does not preserve the equivalence class for
r, P , and u. Since invoker(last(r)) = u and e(r, t) is de-
fined, then e(r′, t) is defined as well for any r′ ∈ JrKP,u
(indeed, from invoker(last(r)) = u, it follows that the last
action in r is either an action issued by u or a trigger in-
voker by u. From this, the fact that e(r, t) is defined, and
the fact that r and r′ are indistinguishable, it follows that
tr(last(r)) = tr(last(r′)) = t). Let a be t’s action and
w = 〈u′, SELECT, q〉 be the SELECT command associated with
t’s WHEN condition. Let s be the state last(r), s′ be the state
obtained just after the execution of the WHEN condition, and
s′′ be the state last(e(r, t)). There are a number of cases
depending on t’s action a:

1. a = 〈u′, INSERT, R, t〉. There are three cases:
(a) secEx (s′′) = ⊥ and Ex (s′′) = ∅. The proof of this

case is similar to that of the corresponding case in
Lemma F.15.

(b) secEx (s′′) = ⊥ and Ex (s′′) 6= ∅. The only differ-
ence between the proof of this case in this Lemma
and in that of Lemma F.15 is that we have to es-
tablish again the data indistinguishability between
last(e(r, t)) and last(e(r′, t)). Indeed, for triggers
the roll-back state is, in general, different from the
one immediately before the trigger’s execution, i.e.,
it may be that pState(last(e(r, t))) 6= pState(last(r)).
We now prove that last(e(r, t)) and last(e(r′, t)) are
data indistinguishable. From the LTS semantics, it
follows that r = p · s0 · 〈invoker(last(r)), op, R′, v〉 ·
s1 · t1 · . . . · sn−1 · tn · sn, where p ∈ traces(L) and
t1, . . . , tn ∈ T RIGGERD. Similarly, r′ = p′ · s′0 ·
〈invoker(last(r)), op, R′, v〉 ·s′1 · t1 · . . . ·s′n−1 · tn ·s′n,
where p′ ∈ traces(L), p ∼=u,M p′, and all states
si and s′i are data indistinguishable. Then, the
roll-back states are, respectively, s0 and s′0, which
are data indistinguishable. From the LTS rules,
last(e(r, a)) = s0 and last(e(r′, a)) = s′0. There-
fore, the data indistinguishability between last(e(r,
a)) and last(e(r′, a)) follows trivially for any r′ ∈
JrKP,u.

(c) secEx (s′′) = >. The proof is similar to the previous
case.

All cases lead to a contradiction. This completes the
proof for a = 〈u′, INSERT, R, t〉.

2. a = 〈u′, DELETE, R, t〉. The proof is similar to that for
a = 〈u′, INSERT, R, t〉.

3. a = 〈⊕, u′′, p, u′〉. There are two cases:
(a) secEx (s′′) = ⊥. In this case, the proof is similar to

the corresponding case in Lemma F.15.
(b) secEx (s′′) = >. The proof is similar to the secEx (s′′)

= > case of the a = 〈u′, INSERT, R, t〉 case.
Both cases lead to a contradiction. This completes the
proof for a = 〈⊕, u′′, p, u′〉.

4. a = 〈⊕∗, u′′, p, u′〉. The proof is similar to that for
a = 〈⊕, u′′, p, u′〉.

5. a = 〈	, u′′, p, u′〉. The proof is similar to that for a =
〈u′, INSERT, R, t〉.

This completes the proof.

We now prove our main result, namely that fuconf provides
data confidentiality with respect to the user u. We first recall
the concept of derivation. Given a judgment r, i `u φ, a
derivation of r, i `u φ with respect to AT Ku, or a derivation
of r, i `u φ for short, is a proof tree, obtained by applying
the rules defining AT Ku, that ends in r, i `u φ. With a
slight abuse of notation, we use r, i `u φ to denote both
the judgment and its derivation. The length of a derivation,
denoted |r, i `u φ|, is the number of rule applications in it.

Theorem F.1. Let u be a user in U , P = 〈M, fuconf 〉 be
an extended configuration, where M is a system configura-
tion and fuconf is as above. The PDP fuconf provides data
confidentiality with respect to P , u, AT Ku, and ∼=P,u.

Proof. Let u be a user in U , P = 〈M, fuconf 〉 be an ex-
tended configuration, where M is a system configuration and
fuconf is as above, and L be the P -LTS. Furthermore, let r
be a run in traces(L), i be an integer such that 1 ≤ i ≤ |r|,
and φ be a sentence such that r, i `u φ holds. We claim that
also secureP,u(r, i `u φ) holds. The theorem follows trivially
from the claim.

We now prove our claim that secureP,u(r, i `u φ) holds.
Let r be a run in traces(L), i be an integer such that 1 ≤
i ≤ |r|, and φ be a sentence such that r, i `u φ holds. Fur-
thermore, in the following we use e to denote the extend
function. We prove our claim by induction on the length of
the derivation r, i `u φ.

Base Case: Assume that |r, i `u φ| = 1. There are
a number of cases depending on the rule used to obtain
r, i `u φ.

1. SELECT Success - 1. Let i be such that ri = ri−1 ·
〈u, SELECT, φ〉 · s, where s = 〈db, U, sec, T, V, c〉 ∈ ΩM
and last(ri−1) = s′, where s′ = 〈db, U, sec, T, V, c′〉.
From the rules, it follows that fuconf (s′, 〈u, SELECT, φ〉) =
>. From this and fuconf ’s definition, it follows that
secure(u, φ, s′) = > holds. From this, Lemma F.8, and
pState(s) = pState(s′), it follows that secure(u, φ, s) =
> holds. From this, Lemma F.7, and last(ri) = s, it
follows that secureP,u(r, i `u φ) holds.

2. SELECT Success - 2. The proof for this case is similar
to that of SELECT Success - 1.

3. INSERT Success. Let i be such that ri = ri−1·〈u, INSERT,
R, t〉 · s , where s = 〈db, U, sec, T, V, c〉 ∈ ΩM and
last(ri−1) = 〈db′, U, sec, T, V, c′〉, and φ be R(t). Then,
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secureP,u(r, i `u R(t)) holds. Indeed, in all runs r′ in-
distinguishable from ri the last action is 〈u, INSERT, R,
t〉. Furthermore, the action has been executed suc-
cessfully. Therefore, according to the LTS rules, t ∈
db′′(R), where db′′ = last(r′).db. From this and the re-

lational calculus semantics, it follows that [R(t)]last(r′).db

= >. Therefore, [R(t)]last(r′).db = > for any run r′ ∈
JriKP,u. Hence, secureP,u(r, i `u R(t)) holds.

4. INSERT Success - FD. Let i be such that ri = ri−1 ·
〈u, INSERT, R, (v, w, q)〉·s, where s = 〈db, U, sec, T, V, c〉
∈ ΩM and last(ri−1) = 〈db′, U, sec, T, V, c′〉, and φ be
¬∃y, z. R(v, y, z) ∧ y 6= w. From the rule’s definition,
it follows that secEx (s) = ⊥. From this and the LTS
rules, it follows that fuconf (s′, 〈u, INSERT, R, (v, w, q)〉) =
>. From this and fuconf ’s definition, it follows that

secure(u, φ, last(ri−1)) = > holds because φ is equiv-
alent to getInfoS(γ, a) for some γ ∈ Dep(Γ, a), where
a = 〈u, INSERT, R, (v, w, q)〉. From this and Lemma F.7,
it follows that secureP,u(r, i− 1 `u φ) holds. We claim
that securedata

P,u (r, i `u φ) holds. From Lemma F.2 and

securedata
P,u (r, i `u φ), it follows secureP,u(r, i `u φ).

We now prove our claim that securedata
P,u (r, i `u φ) holds.

Let s′ be the state last(ri−1). Furthermore, for brevity’s
sake, in the following we omit the pState function where
needed. For instance, with a slight abuse of notation,
we write Js′Kdata

u,M instead of JpState(s′)Kdata
u,M . There are

two cases:
(a) the INSERT command has caused an integrity con-

straint violation, i.e., Ex (s) 6= ∅. From secure(u, φ,
s′) = > and Lemma F.7, it follows that securedata

P,u (r,
i− 1 `u φ) holds. From this, it follows that [φ]v =

[φ]s
′

for any v ∈ Js′Kdata
u,M . From this and the fact

that the INSERT command caused an exception (i.e.,
s′ = s), it follows that [φ]v = [φ]s for any v ∈
JsKdata

u,M . From this, it follows that securedata
P,u (r, i `u

φ) holds.
(b) the INSERT command has not caused exceptions,

i.e., Ex (s) = ∅. From secure(u, φ, s′) = > and
Lemma F.7, it follows that securedata

P,u (r, i − 1 `u
φ) holds. From this, it follows that [φ]v = [φ]s

′

for any v ∈ Js′Kdata
u,M . Furthermore, from Proposi-

tion F.7 and Ex (s) = ∅, it follows that φ holds in
s′. Let As′,R,t be the set {〈db[R⊕t], U, sec, T, V 〉 ∈
ΠM | ∃db′ ∈ ΩD. 〈db′, U, sec, T, V 〉 ∈ Js′Kdata

u,M}. It is

easy to see that JsKdata
u,M ⊆ As′,R,t. We now show

that φ holds for any z ∈ As′,R,t. Let z1 ∈ Js′Kdata
u,M .

From [φ]v = [φ]s
′

for any v ∈ Js′Kdata
u,M and the fact

that φ holds in s′, it follows that [φ]z1 = >. There-
fore, for any (k1, k2, k3) ∈ R(z1) such that |k1| =
|v|, |k2| = |w|, and |k3| = |z|, if k1 = v, then k2 =
w. Then, for any (k1, k2, k3) ∈ R(z1) ∪ {(v, w, q)},
if k1 = v, then k2 = w. Therefore, φ holds also
in z1[R ⊕ t] ∈ ApState(s′),R,t. Hence, [φ]z = > for

any z ∈ As′,R,t. From this and JsKdata
u,M ⊆ As′,R,t,

it follows that [φ]z = > for any z ∈ JsKdata
u,M . From

this, it follows that securedata
P,u (r, i `u φ) holds.

5. INSERT Success - ID. The proof of this case is similar
to that for the INSERT Success - FD.

6. DELETE Success. The proof for this case is similar to
that of INSERT Success.

7. DELETE Success - ID. The proof of this case is similar
to that for the INSERT Success - FD.

8. INSERT Exception. Let i be such that ri = ri−1 ·
〈u, INSER, R, t〉 · s, where s = 〈db, U, sec, T, V, c〉 ∈ ΩM
and last(ri−1) = 〈db′, U, sec, T, V, c′〉, and φ be ¬R(t).
From the rule’s definition, it follows that secEx (s) = ⊥.
From this and the LTS rules, it follows that fuconf (s′,
〈u, INSERT, R, t〉) = >. From this and fuconf ’s defini-

tion, it follows that secure(u, φ, last(ri−1)) = > holds
because φ = getInfo(〈u, INSERT, R, t〉). From this and
Lemma F.7, it follows that secureP,u(r, i − 1 `u φ)
holds. From the LTS semantics, it follows that pState(s)
∼=data
u,M pState(last(ri−1)). From this, Lemma F.8, and

secure(u, φ, last(ri−1)) = >, it follows that secure(u, φ,
last(ri)) = >. From this and Lemma F.7, it follows
that secureP,u(r, i `u φ) holds.

9. DELETE Exception. The proof for this case is similar to
that of INSERT Exception.

10. INSERT FD Exception. Let i be such that ri = ri−1 ·
〈u, INSERT, R, (v, w, q)〉·s, where s = 〈db, U, sec, T, V, c〉
∈ ΩM and last(ri−1) = 〈db′, U, sec, T, V, c′〉, and φ be
∃y, z. R(v, y, z) ∧ y 6= w. From the rule’s definition,
it follows that secEx (s) = ⊥. From this and the LTS
rules, it follows that fuconf (s′, 〈u, INSERT, R, (v, w, q)〉) =
>. From this and fuconf ’s definition, it follows that

secure(u, φ, last(ri−1)) = > because φ = getInfoV (γ,
〈u, INSERT, R, (v, w, q)〉) for some constraint γ ∈ Dep(Γ,
〈u, INSERT, R, (v, w, q)〉). From this and Lemma F.7, it
follows that secureP,u(r, i − 1 `u φ) holds. From the
LTS semantics, it follows that pState(s) ∼=data

u,M pState(

last(ri−1)). From this, secure(u, φ, last(ri−1)) = >,
and Lemma F.8, it follows that secure(u, φ, last(ri)) =
>. From this and Lemma F.7, it follows that also
secureP,u(r, i `u φ) holds.

11. INSERT ID Exception. The proof for this case is similar
to that of INSERT FD Exception.

12. DELETE FD Exception. The proof for this case is similar
to that of INSERT FD Exception.

13. Integrity Constraint. The proof of this case follows triv-
ially from the fact that for any state s = 〈db, U, sec, T,
V, c〉 ∈ ΩM and any γ ∈ Γ, [γ]db = > holds by defini-
tion.

14. Learn GRANT/REVOKE Backward. Let i be such that
ri = ri−1 · t · s, where s = 〈db, U, sec, T, V, c〉 ∈ ΩM ,
last(ri−1) = 〈db, U, sec′, T, V, c′〉, and t be a trigger
whose WHEN condition is φ and whose action is either a
GRANT or a REVOKE. From the rule’s definition, it follows
that secEx (s) = ⊥. From this and the LTS rules, it fol-
lows that fuconf (last(ri−1), 〈u′, SELECT, φ〉) = >, where
u′ is either the trigger’s owner or the trigger’s invoker
depending on the security mode. From this and fuconf ’s

definition, it follows that secure(u, φ, last(ri−1)) = >.
From this and F.7, it follows that secureP,u(r, i− 1 `u
φ) holds.

15. Trigger GRANT Disabled Backward. Let i be such that
ri = ri−1 · t · s, where s = 〈db, U, sec, T, V, c〉 ∈ ΩM ,
last(ri−1) = 〈db, U, sec′, T, V, c′〉, and t be a trigger
whose WHEN condition is ψ, and φ be ¬ψ. From the
rule’s definition, it follows that secEx (s) = ⊥. From
this and the LTS rules, it follows that fuconf (last(ri−1),
〈u′, SELECT, φ〉) = >, where u′ is either the trigger’s
owner or the trigger’s invoker depending on the se-
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curity mode. From this and fuconf ’s definition, it fol-

lows that secure(u, φ, last(ri−1)) = >. From this and
Lemma F.7, it follows that secureP,u(r, i − 1 `u φ)
holds.

16. Trigger REVOKE Disabled Backward. The proof for this
case is similar to that of Trigger GRANT Disabled Back-
ward.

17. Trigger INSERT FD Exception. Let i be such that ri =
ri−1·t·s, where s = 〈db, U, sec, T, V, c〉 ∈ ΩM , last(ri−1)
= 〈db, U, sec′, T, V, c′〉, and t be a trigger whose WHEN

condition is φ and whose action act is a INSERT state-
ment 〈u′, INSERT, R, (v, w, q)〉. Furthermore, let φ be
∃y, z. R(v, y, z) ∧ y 6= w. From the rule’s definition, it
follows that secEx (s) = ⊥. From this and the LTS
rules, it follows that fuconf (last(ri−1), act) = >. From
this and fuconf ’s definition, it follows that secure(u, φ, last

(ri−1)) = > because φ = getInfoV (γ, act) for some
constraint γ ∈ Dep(Γ, act). From this and Lemma F.7,
it follows that secureP,u(r, i− 1 `u φ) holds.

18. Trigger INSERT ID Exception. The proof for this case
is similar to that of Trigger INSERT ID Exception.

19. Trigger DELETE ID Exception. The proof for this case
is similar to that of Trigger DELETE ID Exception.

20. Trigger Exception. Let i be such that ri = ri−1 · t ·
s, where s = 〈db, U, sec, T, V, c〉 ∈ ΩM , last(ri−1) =
〈db, U, sec′, T, V, c′〉, and t be a trigger whose WHEN con-
dition is φ and whose action is act . From the rule’s def-
inition, it follows fuconf (last(ri−1), 〈u′, SELECT, φ〉) = >,
where u′ is either the trigger’s owner or the trigger’s in-
voker depending on the security mode. From this and
fuconf ’s definition, it follows secure(u, φ, last(ri−1)) = >.
From this and F.7, it follows that secureP,u(r, i− 1 `u
φ) holds.

21. Trigger INSERT Exception. The proof for this case is
similar to that of INSERT Exception.

22. Trigger DELETE Exception. The proof for this case is
similar to that of DELETE Exception.

23. Trigger Rollback INSERT. Let i be such that ri = ri−n−1·
〈u, INSERT, R, t〉·s1 ·t1 ·s2 ·. . .·tn ·sn, where s1, s2, . . . , sn
∈ ΩM and t1, . . . , tn ∈ T RIGGERD, and φ be ¬R(t).
Furthermore, let last(ri−n−1) = 〈db′, U ′, sec′, T ′, V ′, c′〉
and sn be 〈db, U, sec, T, V, c〉. From the rule’s defini-
tion, it follows that secEx (s1) = ⊥. From this, it
follows that fuconf (last(ri−n−1), 〈u, INSERT, R, t〉) = >.
From this and fuconf ’s definition, it follows that secure(u,

φ, last(ri−n−1)) = > because φ = getInfo(〈u, INSERT, R,
t〉). From the LTS semantics, it follows that last(ri−n−1)
∼=data
u,M sn. From this, secure(u, φ, last(ri−n−1)) = >,

and Lemma F.8, it follows that secure(u, φ, sn) = >.
From this and Lemma F.7, it follows that secureP,u(r, i
`u φ) holds.

24. Trigger Rollback DELETE. The proof for this case is sim-
ilar to that of Trigger Rollback INSERT.

This completes the proof of the base step.

Induction Step: Assume that the claim hold for any
derivation of r, j `u ψ such that |r, j `u ψ| < |r, i `u φ|.
We now prove that the claim also holds for r, i `u φ. There
are a number of cases depending on the rule used to obtain
r, i `u φ.

1. View. The proof of this case follows trivially from
the semantics of the relational calculus extended over
views.

2. Propagate Forward SELECT. Let i be such that ri+1 =
ri · 〈u, SELECT, ψ〉 · s, where s = 〈db, U, sec, T, V, c〉 ∈
ΩM and last(ri) = 〈db′, U ′, sec′, T ′, V ′, c′〉. From the
rule, it follows that r, i `u φ holds. From this and the
induction hypothesis, it follows that secureP,u(r, i `u
φ) holds. From Lemma F.15, the action 〈u, SELECT, ψ〉
preserves the equivalence class with respect to ri, P ,
and u. From this, Lemma F.12, and secureP,u(r, i `u
φ), it follows that also secureP,u(r, i+ 1 `u φ) holds.

3. Propagate Forward GRANT/REVOKE. Let i be such that
ri+1 = ri·〈op, u′, p, u〉·s, where s = 〈db, U, sec, T, V, c〉 ∈
ΩM and last(ri) = 〈db′, U ′, sec′, T ′, V ′, c′〉. From the
rule, it follows that r, i `u φ holds. From this and the
induction hypothesis, it follows that secureP,u(r, i `u
φ) holds. From Lemma F.15, the action 〈op, u′, p, u〉
preserves the equivalence class with respect to ri, P ,
and u. From this, Lemma F.13, and secureP,u(r, i `u
φ), it follows that also secureP,u(r, i+ 1 `u φ) holds.

4. Propagate Forward CREATE. The proof for this case is
similar to that of Propagate Forward SELECT.

5. Propagate Backward SELECT. Let i be such that ri+1 =
ri · 〈u, SELECT, ψ〉 · s, where s = 〈db′, U ′, sec′, T ′, V ′, c′〉
∈ ΩM and last(ri) = 〈db, U, sec, T, V, c〉. From the rule,
it follows that r, i+1 `u φ holds. From this and the in-
duction hypothesis, it follows that secureP,u(r, i+ 1 `u
φ) holds. From Lemma F.15, the action 〈u, SELECT, ψ〉
preserves the equivalence class with respect to ri, P ,
and u. From this, Lemma F.12, and secureP,u(r, i+ 1
`u φ), it follows that also secureP,u(r, i `u φ) holds.

6. Propagate Backward GRANT/REVOKE. Let i be such that
ri+1 = ri·〈op, u′, p, u〉·s, where s = 〈db′, U ′, sec′, T ′, V ′,
c′〉 ∈ ΩM and last(ri) = 〈db, U, sec, T, V, c〉. From the
rule, it follows that r, i + 1 `u φ holds. From this and
the induction hypothesis, it follows that secureP,u(r, i+
1 `u φ) holds. From Lemma F.15, the action 〈op, u′, p,
u〉 preserves the equivalence class with respect to ri,
P , and u. From this, Lemma F.13, and secureP,u(r, i+
1 `u φ), it follows that also secureP,u(r, i `u φ) holds.

7. Propagate Backward CREATE TRIGGER. The proof for
this case is similar to that of Propagate Backward SE-

LECT.
8. Propagate Backward CREATE VIEW. Note that the for-

mulae ψ and replace(ψ, o) are semantically equivalent.
This is the only difference between the proof for this
case and the one for the Propagate Backward SELECT

case.
9. Rollback Backward - 1. Let i be such that ri = ri−n−1 ·
〈u, op, R, t〉 ·s1 · t1 ·s2 · . . . · tn ·sn, where s1, s2, . . . , sn ∈
ΩM , t1, . . . , tn ∈ T RIGGERD, and op is one of {INSERT,
DELETE}. Furthermore, let sn be 〈db′, U ′, sec′, T ′, V ′, c′〉
and last(ri−n−1) be 〈db, U, sec, T, V, c〉. From the rule’s
definition, r, i `u φ holds. From this and the induction
hypothesis, it follows that secureP,u(r, i `u φ) holds.
From Lemma F.16, the triggers tj preserve the equiv-
alence class with respect to ri−n−1+j , P , and u for
any 1 ≤ j ≤ n. Therefore, for any v ∈ Jri−1KP,u, the
run e(v, tn) contains the roll-back. Therefore, for any
v ∈ Jri−1KP,u, the state last(e(v, tn)) is the state just
before the action 〈u, op, R, t〉. Let A be the set of par-
tial states associated with the roll-back states. It is
easy to see that A is the same as {pState(last(t′))|t′ ∈
Jri−n−1KP,u}. From secureP,u(r, i `u φ), it follows that
φ has the same result over all states in A. From this and
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A = {pState(last(t′))|t′ ∈ Jri−n−1KP,u}, it follows that
φ has the same result over all states in {pState(last(t′))|
t′ ∈ Jri−n−1KP,u}. From this, it follows that secureP,u
(r, i− n− 1 `u φ) holds.

10. Rollback Backward - 2. Let i be such that ri = ri−1 ·
〈u, op,R, t〉 · s, where s = 〈db′, U ′, sec′, T ′, V ′, c′〉 ∈
ΩM , last(ri−1) = 〈db, U, sec, T, V, c〉, and op is one of
{INSERT, DELETE}. From the rule’s definition, r, i `u φ
holds. From this and the induction hypothesis, it fol-
lows that secureP,u(r, i `u φ) holds. From Lemma F.15,
the action 〈u, op, R, t〉 preserves the equivalence class
with respect to ri−1, P , and u. From this, Lemma F.11,
the fact that the action does not modify the database
state, and secureP,u(r, i `u φ), it follows secureP,u(r, i−
1 `u φ).

11. Rollback Forward - 1. Let i be such that ri = ri−n−1 ·
〈u, op, R, t〉 ·s1 · t1 ·s2 · . . . · tn ·sn, where s1, s2, . . . , sn ∈
ΩM , t1, . . . , tn ∈ T RIGGERD, and op is one of {INSERT,
DELETE}. Furthermore, let sn be 〈db, U, sec, T, V, c〉
and last(ri−n−1) be 〈db′, U ′, sec′, T ′, V ′, c′〉. From the
rule’s definition, r, i− n− 1 `u φ holds. From this and
the induction hypothesis, it follows that secureP,u(r, i−
n − 1 `u φ) holds. From Lemma F.16, the triggers tj
preserve the equivalence class with respect to ri−n−1+j ,
P , and u for any 1 ≤ j ≤ n. Independently on the
cause of the roll-back (either a security exception or
an integrity constraint violation), we claim that the
set A of roll-back partial states is {pState(last(t′))|t′ ∈
Jri−n−1KP,u}. From secureP,u(r, i − n − 1 `u φ), the
result of φ is the same for all states in A. From this
and A = {pState(last(t′))|t′ ∈ Jri−n−1KP,u}, it follows
that also secureP,u(r, i `u φ) holds.
We now prove our claim. It is trivial to see (from
the LTS’s semantics) that the set of rollback’s states
is a subset of {pState(last(v))|v ∈ Jri−n−1KP,u}. As-
sume, for contradiction’s sake, that there is a state in
{pState(last(v))|v ∈ Jri−n−1KP,u} that is not a rollback
state for the runs in JriKP,u. This is impossible since
all triggers t1, . . . , tn preserve the equivalence class.

12. Rollback Forward - 2. Let i be such that ri = ri−1 ·
〈u, op,R, t〉·s, where op ∈ {INSERT, DELETE}, s = 〈db, U,
sec, T, V, c〉 ∈ ΩM and last(ri−1) = 〈db′, U ′, sec′, T ′, V ′,
c′〉. From the rule’s definition, r, i − 1 `u φ holds.
From this and the induction hypothesis, it follows that
secureP,u(r, i − 1 `u φ) holds. From Lemma F.15, the
action 〈u, op, R, t〉 preserves the equivalence class with
respect to ri−1, P , and u. From this, Lemma F.11,
the fact that the action does not modify the database
state, and secureP,u(r, i − 1 `u φ), it follows that also
secureP,u(r, i `u φ) holds.

13. Propagate Forward INSERT/DELETE Success. Let i be
such that ri = ri−1 ·〈u, op,R, t〉·s, where op ∈ {INSERT,
DELETE}, s = 〈db, U, sec, T, V, c〉 ∈ ΩM and last(ri−1) =
〈db′, U ′, sec′, T ′, V ′, c′〉. From the rule’s definition, r, i−
1 `u φ holds. From this and the induction hypothe-
sis, it follows that secureP,u(r, i− 1 `u φ) holds. From
Lemma F.15, the action 〈u, op, R, t〉 preserves the equiv-
alence class with respect to ri−1, P , and u. From
reviseBelif (ri−1, φ, ri), it follows that the execution of
〈u, op, R, t〉 does not alter the content of the tables in
tables(φ) for any v ∈ Jri−1KP,u. From this, Lemma F.11,
and secureP,u(r, i− 1 `u φ), it follows that secureP,u
(r, i `u φ) holds.

14. Propagate Forward INSERT Success - 1. Let i be such
that ri = ri−1·〈u, op,R, t〉·s, where op is one if {INSERT,
DELETE}, s = 〈db, U, sec, T, V, c〉 ∈ ΩM and last(ri−1) =
〈db′, U ′, sec′, T ′, V ′, c′〉. From the rule’s definition, r, i−
1 `u φ holds. From this and the induction hypothe-
sis, it follows that secureP,u(r, i− 1 `u φ) holds. From
Lemma F.15, the action 〈u, op, R, t〉 preserves the equiv-
alence class with respect to ri−1, P , and u. We claim
that the execution of 〈u, INSERT, R, t〉 does not alter the
content of the tables in tables(φ). From this, secureP,u(r,
i−1 `u φ), and Lemma F.11, it follows that secureP,u(r, i
`u φ) holds.
We now prove our claim that the execution of 〈u, INSERT,
R, t〉 does not alter the content of the tables in tables(φ).
From the rule’s definition, it follows that r, i − 1 `u
R(t) holds. From this and Lemma B.1, it follows that

[R(t)]last(ri−1).db = >. From r, i − 1 `u R(t) and the
induction hypothesis, it follows that secureP,u(r, i −
1, u, R(t)) holds. From this and [R(t)]last(ri−1).db = >,

it follows that [R(t)]last(v).db = > for any v ∈ Jri−1KP,u.
From this and the relational calculus semantics, it fol-
lows that the execution of 〈u, op, R, t〉 does not alter the
content of the tables in tables(φ) for any v ∈ Jri−1KP,u.

15. Propagate Forward DELETE Success - 1. The proof for
this case is similar to that of Propagate Forward INSERT

Success - 1.
16. Propagate Backward INSERT/DELETE Success. Let i be

such that ri = ri−1 ·〈u, op,R, t〉·s, where op ∈ {INSERT,
DELETE}, s = 〈db, U, sec, T, V, c〉 ∈ ΩM and last(ri−1) =
〈db′, U ′, sec′, T ′, V ′, c′〉. From the rule’s definition, r, i
`u φ holds. From this and the induction hypothe-
sis, it follows that secureP,u(r, i `u φ) holds. From
Lemma F.15, the action 〈u, op, R, t〉 preserves the equiv-
alence class with respect to ri−1, P , and u. From
reviseBelif (ri−1, φ, ri), it follows that the execution of
〈u, op, R, t〉 does not alter the content of the tables in
tables(φ) for any v ∈ Jri−1KP,u. From this, Lemma F.11,
and secureP,u(r, i `u φ), it follows that secureP,u(r, i−
1 `u φ) holds.

17. Propagate Backward INSERT Success - 1. Let i be such
that ri = ri−1 · 〈u, op,R, t〉 · s, where op is one of
{INSERT, DELETE}, s = 〈db, U, sec, T, V, c〉 ∈ ΩM , and
last(ri−1) = 〈db′, U ′, sec′, T ′, V ′, c′〉. From the rule’s
definition, r, i `u φ holds. From this and the induction
hypothesis, it follows that secureP,u(r, i `u φ) holds.
From Lemma F.15, the action 〈u, op, R, t〉 preserves
the equivalence class with respect to ri−1, P , and u.
We claim that the execution of 〈u, INSERT, R, t〉 does
not alter the content of the tables in tables(φ) for any
v ∈ Jri−1KP,u (the proof of this claim is in the proof of
the Propagate Forward INSERT Success - 1 case). From
this, Lemma F.11, and secureP,u(r, i `u φ), it follows
that secureP,u(r, i− 1 `u φ) holds.

18. Propagate Backward DELETE Success - 1. The proof for
this case is similar to that of Propagate Forward DELETE

Success - 1.
19. Reasoning. Let ∆ be a subset of {δ | r, i `u δ} and

last(ri) = 〈db, U, sec, T, V, c〉. From the induction hy-
pothesis, it follows that secureP,u(r, i `u δ) holds for
any δ ∈ ∆. Note that, given any δ ∈ ∆, from r, i `u δ
and Lemma B.1, it follows that δ holds in last(ri).
From this, secureP,u(r, i `u δ) holds for any δ ∈ ∆,
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∆ |=fin φ, and Lemma F.10, it follows that secureP,u(r,
i `u φ) holds.

20. Learn INSERT Backward - 3. Let i be such that ri =
ri−1 ·〈u, INSERT, R, t〉·s, where s = 〈db′, U ′, sec′, T ′, V ′,
c′〉 ∈ ΩM and last(ri−1) = 〈db, U, sec, T, V, c〉, and φ be
¬R(t). From the rule’s definition, secEx (s) = ⊥. From
this and the LTS rules, it follows that fuconf (last(ri−1),
〈u, INSERT, R, t〉) = >. From this and fuconf ’s definition,

it follows that secure(u, φ, last(ri−1)) = > because φ =
getInfo(〈u, INSERT, R, t〉). From this and Lemma F.7,
it follows that secureP,u(r, i− 1 `u φ) holds.

21. Learn DELETE Backward - 3. The proof for this case is
similar to that of Learn INSERT Backward - 3.

22. Propagate Forward Disabled Trigger. Let i be such that
ri = ri−1 · t · s, where s = 〈db, U, sec, T, V, c〉 ∈ ΩM ,
last(ri−1) = 〈db, U, sec, T, V, c〉, and t be a trigger. Fur-
thermore, let ψ be t’s condition where all free variables
are replaced with tpl(last(ri−1)). From the rule, it
follows that r, i − 1 `u φ. From this and the induc-
tion hypothesis, it follows that secureP,u(r, i− 1 `u φ)
holds. Furthermore, from Lemma G.8, it follows that
t preserves the equivalence class with respect to ri−1,
P , and u. If the trigger’s action is an INSERT or a
DELETE operation, we claim that the operation does not
change the content of any table in tables(φ) for any
run v ∈ Jri−1KP,u. From this, the fact that t preserves
the equivalence class with respect to ri−1, P , and u,
Lemma F.14, and secureP,u(r, i − 1 `u φ), it follows
that also secureP,u(r, i `u φ) holds.
We now prove our claim. Assume that t’s action in ei-
ther an INSERT or a DELETE operation. From the rule, it
follows that r, i− 1 `u ¬ψ. From this and Lemma B.1,

[ψ]last(ri−1) = ⊥. From r, i − 1 `u ¬ψ and the induc-
tion hypothesis, it follows that secureP,u(r, i− 1 `u ψ)

holds. From this and [ψ]last(ri−1).db = ⊥, it follows
that [ψ]v.db = ⊥ for any run v ∈ Jri−1KP,u. Therefore,
the trigger t is disabled in any run v ∈ Jri−1KP,u. From
this and the LTS semantics, it follows that t’s execution
does not change the content of any table in tables(φ)
for any run v ∈ Jri−1KP,u.

23. Propagate Backward Disabled Trigger. The proof for
this case is similar to that of Propagate Forward Dis-
abled Trigger.

24. Learn INSERT Forward. Let i be such that ri = ri−1 ·
t · s, where s = 〈db, U, sec, T, V, c〉 ∈ ΩM , last(ri−1) =
〈db, U, sec, T, V, c〉, and t be a trigger, and φ be R(t).
Furthermore, let ψ be t’s condition where all free vari-
ables are replaced with tpl(last(ri−1)). From the rule’s
definition, it follows that t’s action is 〈u′, INSERT, R, t〉
and that r, i−1 `u ψ holds. From Lemma B.1 and r, i−
1 `u ψ, it follows that [ψ]last(ri−1).db = >. From this,
secEx (s) = ⊥, and Ex (s) = ∅, it follows that t’s action
has been executed successfully. From this, it follows
that t ∈ s.db(R). From r, i− 1 `u ψ and the induction
hypothesis, it follows secureP,u(r, i−1 `u ψ). From this

and [ψ]last(ri−1).db = >, it follows that [ψ]last(v).db = >
for any v ∈ Jri−1KP,u. From this, it follows that the
trigger t is enabled in any run v ∈ Jri−1KP,u. From
Lemma F.16, it follows that t preserves the equiva-
lence class with respect to ri−1, P , and u. From this,
secEx (s) = ⊥, Ex (s) = ∅, and the fact that the trigger
t is enabled in any run v ∈ Jri−1KP,u, it follows that t’s

action is executed successfully in any run e(v, t), where
v ∈ Jri−1KP,u. From this, it follows that t ∈ db′′(R) for
any v ∈ Jri−1KP,u, where db′′ = last(e(v, t)).db. There-
fore, secureP,u(r, i `u φ) holds.

25. Learn INSERT - FD. Let i be such that ri = ri−1 · t ·
s, where s = 〈db, U, sec, T, V, c〉 ∈ ΩM , last(ri−1) =
〈db′, U ′, sec′, T ′, V ′, c′〉, and t ∈ T RIGGERD, and φ
be ¬∃y, z. R(v, y, z) ∧ y 6= w. Furthermore, let ψ be t’s
condition where all free variables are replaced with the
values in tpl(last(ri−1)) and 〈u′, INSERT, R, (v, w, q)〉 be
t’s actual action. From the rule, it follows that r, i −
1 `u ψ. From this and Lemma B.1, it follows that

[ψ]last(ri−1).db = >. From this, Ex (s) = ∅, and secEx (s)
= ⊥, it follows that fuconf (s′, 〈u′, INSERT, R, t〉) = >,
where s′ is the state just after the execution of the SE-

LECT statement associated with t’s WHEN clause. From
this and fuconf ’s definition, it follows that secure(u, φ, s′)

= >. From this, pState(s′) = pState(last(ri−1)), and
Lemma F.8, it follows that secure(u, φ, last(ri−1)) =
>. From this and Lemma F.7, it follows also that
secureP,u(r, i−1 `u φ) holds. We claim that securedata

P,u

(r, i `u φ) holds. From this and Lemma F.2, it follows
that also secureP,u(r, i `u φ) holds.
We now prove our claim that securedata

P,u (r, i `u φ) holds.
Let s′ be the state just after the execution of the SE-

LECT statement associated with t’s WHEN clause and s′′

be the state last(ri−1). Furthermore, for brevity’s sake,
in the following we omit the pState function where
needed. For instance, with a slight abuse of nota-
tion, we write Js′Kdata

u,M instead of JpState(s′)Kdata
u,M . From

secure(u, φ, s′) = >, s′ ∼=data
u,M s′′, Lemma F.8, and

Lemma F.7, it follows that securedata
P,u (r, i − 1 `u φ)

holds. From this, it follows that [φ]v = [φ]s
′′

for any
v ∈ Js′′Kdata

u,M . Furthermore, from Proposition F.7 and
Ex (s) = ∅, it follows that φ holds in s′′. Let As′′,R,t be

the set {〈db[R⊕t], U, sec, T, V 〉 ∈ ΠM | ∃db′ ∈ ΩD. 〈db′,
U, sec, T, V 〉 ∈ Js′′Kdata

u,M}. It is easy to see that JsKdata
u,M ⊆

As′′,R,t. We now show that φ holds for any z ∈ As′′,R,t.
Let z1 ∈ Js′′Kdata

u,M . From [φ]v = [φ]s
′′

for any v ∈
Js′′Kdata

u,M and the fact that φ holds in s′′, it follows that

[φ]z1 = >. Therefore, for any (k1, k2, k3) ∈ R(z1), if
k1 = v, then k2 = w. Then, for any (k1, k2, k3) ∈
R(z1)∪{(v, w, q)}, if k1 = v, then k2 = w. Therefore, φ
holds also in z1[R⊕t] ∈ ApState(s′′),R,t. Hence, [φ]z = >
for any z ∈ As′′,R,t. From this and JsKdata

u,M ⊆ As′′,R,t,

it follows that [φ]z = > for any z ∈ JsKdata
u,M . From this,

it follows that securedata
P,u (r, i `u φ) holds.

26. Learn INSERT - FD - 1. The proof of this case is similar
to that of Learn INSERT - FD.

27. Learn INSERT - ID. The proof of this case is similar to
that of Learn INSERT - FD. See also the proof of INSERT
Success - ID.

28. Learn INSERT - ID - 1. The proof of this case is similar
to that of Learn INSERT - ID.

29. Learn INSERT Backward - 1. Let i be such that ri =
ri−1 · t · s, where s = 〈db′, U ′, sec′, T ′, V ′, c′〉 ∈ ΩM ,
last(ri−1) = 〈db, U, sec, T, V, c〉, and t ∈ T RIGGERD,
and φ be t’s actual WHEN condition, where all free vari-
ables are replaced with the values in tpl(last(ri−1)).
From the rule’s definition, it follows that secEx (s) =
>. From this, the LTS semantics, and secEx (s) =
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>, it follows that fuconf (last(ri−1), 〈u′, SELECT, φ〉) =
>. From this and fuconf ’s definition, it follows that

secure(u, φ, last(ri−1)) = >. From this and Lemma F.7,
it follows that also secureP,u(r, i− 1 `u φ) holds.

30. Learn INSERT Backward - 2. Let i be such that ri =
ri−1 · t · s, where s = 〈db′, U ′, sec′, T ′, V ′, c′〉 ∈ ΩM ,
last(ri−1) = 〈db, U, sec, T, V, c〉, and t ∈ T RIGGERD,
and φ be ¬R(t). Furthermore, let act = 〈u′, INSERT, R,
t〉 be t’s actual action and γ be t’s actual WHEN condi-
tion obtained by replacing all free variables with the
values in tpl(last(ri−1)). From the rule’s definition,
it follows that secEx (s) = > and there is a ψ such
that r, i − 1 `u ψ and r, i `u ¬ψ. We claim that
[γ]db = >. From this and secEx (s) = >, it follows
fuconf (s′, 〈u′, INSERT, R, t〉) = >, where s′ is the state
obtained after the evaluation of t’s WHEN condition. From
this and fuconf ’s definition, it follows secure(u, φ, s′) = >
since φ is equivalent to getInfo(〈u′, INSERT, R, t〉). From
this, pState(last(ri−1)) = pState(s′), and Lemma F.8,
it follows that secure(u, φ, last(ri−1)) = >. From this
and Lemma F.7, it follows secureP,u(r, i− 1 `u φ).
We now prove our claim that [γ]db = >. Assume, for
contradiction’s sake, that this is not the case. From this
and the LTS rules, it follows that db = db′. From the
rule’s definition, it follows that there is a ψ such that
r, i−1 `u ψ and r, i `u ¬ψ. From this, Lemma B.1, s =
〈db′, U ′, sec′, T ′, V ′, c′〉, and last(ri−1) = 〈db, U, sec, T,

V, c〉, it follows that [ψ]db = > and [¬ψ]db′ = >. There-

fore, [ψ]db = > and [ψ]db′ = ⊥. Hence, db 6= db′, which
contradicts db = db′.

31. Learn DELETE Forward. The proof of this case is similar
to that of Learn INSERT Forward.

32. Learn DELETE - ID. The proof of this case is similar to
that of Learn INSERT - FD. See also the proof of DELETE
Success - ID.

33. Learn DELETE - ID - 1. The proof of this case is similar
to that of Learn DELETE - ID.

34. Learn DELETE Backward - 1. The proof of this case is
similar to that of Learn INSERT Backward - 1.

35. Learn DELETE Backward - 2. The proof of this case is
similar to that of Learn INSERT Backward - 2.

36. Propagate Forward Trigger Action. Let i be such that
ri = ri−1·t·s, where t is a trigger, s = 〈db, U, sec, T, V, c〉
∈ ΩM and last(ri−1) = 〈db′, U ′, sec′, T ′, V ′, c′〉. From
the rule’s definition, r, i− 1 `u φ holds. From this and
the induction hypothesis, it follows that secureP,u(r, i−
1 `u φ) holds. From Lemma F.16, the trigger t pre-
serves the equivalence class with respect to ri−1, P ,
and u. We claim that the execution of t does not al-
ter the content of the tables in tables(φ). From this,
Lemma F.11, and secureP,u(r, i − 1 `u φ), it follows
that also the judgment r, i `u φ is secure, i.e., secureP,u
(r, i `u φ) holds.
We now prove our claim that the execution of t does
not alter the content of the tables in tables(φ). If the
trigger is not enabled, proving the claim is trivial. In
the following, we assume the trigger is enabled. There
are four cases:
• t’s action is an INSERT statement. This case amount

to claiming that the INSERT statement 〈u′, INSERT,
R, t〉 does not alter the content of the tables in
tables(φ) in case reviseBelif (ri−1, φ, ri) = >. We

proved the claim above in the Propagate Forward
INSERT/DELETE Success case.
• t’s action is an DELETE statement. The proof is

similar to that of the INSERT case.
• t’s action is an GRANT statement. In this case, the

action does not alter the database state and the
claim follows trivially.
• t’s action is an REVOKE statement. The proof is

similar to that of the GRANT case.
37. Propagate Backward Trigger Action. The proof of this

case is similar to Propagate Backward Trigger Action.
38. Propagate Forward INSERT Trigger Action. Let i be

such that ri = ri−1 · t · s, where t is a trigger, s =
〈db, U, sec, T, V, c〉 ∈ ΩM and last(ri−1) = 〈db′, U ′, sec′,
T ′, V ′, c′〉. From the rule’s definition, r, i−1 `u φ holds.
From this and the induction hypothesis, it follows that
secureP,u(r, i − 1 `u φ) holds. From Lemma F.16, the
trigger t preserves the equivalence class with respect
to ri−1, P , and u. We claim that the execution of t
does not alter the content of the tables in tables(φ).
From this, Lemma F.11, and secureP,u(r, i−1 `u φ), it
follows that also the judgment r, i `u φ is secure, i.e.,
secureP,u(r, i `u φ) holds.
We now prove our claim that the execution of t does
not alter the content of the tables in tables(φ). If the
trigger is not enabled, proving the claim is trivial. In
the following, we assume the trigger is enabled. Then,
t’s action is an INSERT statement. This case amount to
claiming that the INSERT statement 〈u′, INSERT, R, t〉
does not alter the content of the tables in tables(φ) in
case r, i− 1 `u R(t) holds. We proved the claim above
in the Propagate Forward INSERT Success - 1 case.

39. Propagate Forward DELETE Trigger Action. The proof
of this case is similar to that of Propagate Forward IN-

SERT Trigger Action.
40. Propagate Backward INSERT Trigger Action. The proof

of this case is similar to that of Propagate Forward IN-

SERT Trigger Action.
41. Propagate Backward DELETE Trigger Action. The proof

of this case is similar to that of Propagate Forward IN-

SERT Trigger Action.
42. Trigger FD INSERT Disabled Backward. Let i be such

that ri = ri−1 ·t ·s, where s = 〈db′, U ′, sec′, T ′, V ′, c′〉 ∈
ΩM , t ∈ T RIGGERD, last(ri−1) = 〈db, U, sec, T, V, c〉,
and ψ be t’s actual WHEN condition obtained by replac-
ing all free variables with the values in tpl(last(ri−1)).
Furthermore, let act = 〈u′, INSERT, R, (v, w, q)〉 be t’s
actual action and α be ∃y, z.R(v, y, z) ∧ y 6= w. From
the rule’s definition, it follows that secEx (s) = ⊥. From
this, it follows that fuconf (last(ri−1), 〈u′, SELECT, ψ〉) =
>. From this and fuconf ’s definition, it follows that

secure(u,¬ψ, last(ri−1)) = >. From this, it follows
secure(u, ψ, last(ri−1)) = >. From this and Lemma F.7,
it follows secureP,u(r, i− 1 `u ψ).

43. Trigger ID INSERT Disabled Backward. The proof of
this case is similar to that of Trigger FD INSERT Dis-
abled Backward.

44. Trigger ID DELETE Disabled Backward. The proof of
this case is similar to that of Trigger FD INSERT Dis-
abled Backward.

This completes the proof of the induction step.
This completes the proof.
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F.3 Complexity proofs
In this section, we prove that data complexity of fuconf is

AC 0. Note that the complexity class AC 0 identifies those
problems that can be solved using constant-depth, polynomial-
size boolean circuits with AND, OR, and NOT gates with
unbounded fan-in. Note also that, in the following, with
AC 0 we usually refer to uniform-AC 0. Given a database
schema D and a database state db ∈ ΩΓ

D, the size of db,
denoted also as |db|, is |db| = ΣR∈DΣt∈db(R)|t|, where the

size |t| of a tuple t is just its cardinality. Similarly, the
the size of the schema D, denoted |D|, is ΣR∈D|R|. Fi-
nally, given a set of views V over D, the size of the extended
vocabulary extVocabulary(D,V ), denoted |extVoc(D,V )|, is

Σo∈R∪V Σ0≤i<|o|
|o|!

(|o| − i)! · i! . Note that, given a view V ,

we denote by |V | its cardinality. Furthermore, given a RC -
formula φ, the size of φ, denoted as |φ|, is defined as follows:

|φ| =



1 + |x| if φ := R(x)
1 if φ := >
1 if φ := ⊥
3 if φ := x = y
1 + |ψ|+ |γ| if φ := ψ O γ and O ∈ {∨,∧}
1 + |ψ| if φ := ¬ψ
2 + |ψ| if φ := Qx.ψ and Q ∈ {∃,∀}

Lemma F.18 shows that the rewritten formula φvs,u, for
some v ∈ {>,⊥}, is linear in the size of the original formula
φ.

Lemma F.17. Let M = 〈D,Γ〉 be a system configura-
tion, s = 〈db, U, sec, T, V 〉 be a partial M-state, u ∈ U be
a user, and φ be a D-formula. For all formulae φ and all
v ∈ {>,⊥}, |φvs,u| ≤ (|extVoc(D,V )|+ 1) · |φ|.

Proof. Let M = 〈D,Γ〉 be a system configuration, s =
〈db, U, sec, T, V 〉 be a partial M -state, and u ∈ U be a user.
Let φ be an arbitrary formula over D ∪ V and v be an ar-
bitrary value in {>,⊥}. We now prove that |φvs,u| ≤ m · |φ|
by induction over the structure of the formula φ.

Base Case There are four cases:
1. φ := x = y. In this case, φvs,u = φ. From this,
|φvs,u| = |φ|. From this, it follows trivially that |φvs,u| ≤
(|extVoc(D,V )|+ 1) · |φ|.

2. φ := >. The proof of this case is similar to that of
φ := x = y.

3. φ := ⊥. The proof of this case is similar to that of
φ := x = y.

4. φ := R(x). Without loss of generality, we assume that
v = >. From this, it follows that φ>s,u :=

∨
S∈R>s,u

S(x).

From this, it follows that |φ>s,u| = (|R>s,u|−1)+ΣS∈R>s,u
|S(x)|. From this and |S(x)| = 1 + |x|, it follows that
|φ>s,u| = (|R>s,u| − 1) + ΣS∈R>s,u(1 + |x|). From this, it

follows that |φ>s,u| = (|R>s,u| − 1) + |R>s,u| · (1 + |x|).
From φ := R(x), it follows that |φ| = 1+ |x|. From this
and |φ>s,u| = (|R>s,u| − 1) + |R>s,u| · (1 + |x|), it follows

that |φ>s,u| = |R>s,u| · |φ| + (|R>s,u| − 1). We claim that

|R>s,u| ≤ |extVoc(D,V )|. From this and |φ>s,u| = |R>s,u| ·
|φ|+(|R>s,u|−1), it follows that |φ>s,u| ≤ |extVoc(D,V )|·
|φ|+ |extVoc(D,V )|. From this, it follows that |φ>s,u| ≤
(|extVoc(D,V )|+ 1) · |φ|.
We now prove our claim that |R>s,u| ≤ |extVoc(D,V )|.
The set R>s,u is a subset of extVocabulary(D,V ) by con-

struction. The set extVocabulary(D,V ) contains any
possible projection of tables in D and views in V . It is
easy to check that the cardinality of extVocabulary(D,V )
is, indeed, |extVoc(D,V )|.

This completes the proof of the base case.

Induction Step Assume that our claim holds for all sub-
formulae of φ. We now show that our claim holds also for
φ. There are a number of cases depending on φ’s structure.

1. φ := ψ∧γ. From this, it follows that φvs,u := ψvs,u∧γvs,u.
From this, it follows that |φvs,u| = 1 + |ψvs,u| + |γvs,u|.
From the induction hypothesis, it follows that |ψvs,u| ≤
(|extVoc(D,V )|+1) · |ψ| and |γvs,u| ≤ (|extVoc(D,V )|+
1) · |γ|. From this and |φvs,u| = 1 + |ψvs,u| + |γvs,u|, it
follows that |φvs,u| ≤ 1 + (|extVoc(D,V )| + 1) · |ψ| +
(|extVoc(D,V )|+ 1) · |γ|. From this and |extVoc(D,V )|
≥ 0, it follows that |φvs,u| ≤ |extVoc(D,V )|+1+(|extVoc
(D,V )|+1)·|ψ|+(|extVoc(D,V )|+1)·|γ|. From this, it
follows that |φvs,u| ≤ (|extVoc(D,V )|+1) ·(1+ |ψ|+ |γ|).
From this and |φ| = 1+ |ψ|+ |γ|, it follows that |φvs,u| ≤
(|extVoc(D,V )|+ 1) · |φ|.

2. φ := ψ ∨ γ. The proof of this case is similar to that of
φ := ψ ∧ γ.

3. φ := ¬ψ. From this, it follows that φvs,u := ¬ψ¬vs,u.
From this, it follows that |φvs,u| = 1 + |ψ¬vs,u|. From the
induction hypothesis, it follows that |ψ¬vs,u| ≤ (|extVoc
(D,V )| + 1) · |ψ|. From this and |φvs,u| = 1 + |ψvs,u|, it
follows that |φvs,u| ≤ 1+(|extVoc(D,V )|+1) · |ψ|. From
this and |extVoc(D,V )| ≥ 0, it follows that |φvs,u| ≤
|extVoc(D,V )|+1+(|extVoc(D,V )|+1)·|ψ|. From this,
it follows that |φvs,u| ≤ (|extVoc(D,V )|+ 1) · (1 + |ψ|).
From this and |φ| = 1 + |ψ|, it follows that |φvs,u| ≤
(|extVoc(D,V )|+ 1) · |φ|.

4. φ := ∃x. ψ. If φvs,u is ¬v, then the claim holds triv-
ially since |φvs,u| = 1. In the following, we assume that
φvs,u := ∃x. ψvs,u. From this, it follows that |φvs,u| =
2 + |ψvs,u|. From the induction hypothesis, it follows
that |ψvs,u| ≤ (|extVoc(D,V )| + 1) · |ψ|. From this
and |φvs,u| = 2 + |ψvs,u|, it follows that |φvs,u| ≤ 2 +
(|extVoc(D,V )|+1) · |ψ|. From this and |extVoc(D,V )|
≥ 0, it follows that |φvs,u| ≤ 2 · |extVoc(D,V )| + 2 +
(|extVoc(D,V )| + 1) · |ψ|. From this, it follows that
|φvs,u| ≤ (|extVoc(D,V )|+ 1) · (2 + |ψ|). From this and
|φ| = 2 + |ψ|, it follows that |φvs,u| ≤ (|extVoc(D,V )|+
1) · |φ|.

5. φ := ∀x. ψ. The proof of this case is similar to that of
φ := ∃x. ψ.

This completes the proof of the induction step.
This completes the proof of our claim.

Lemma F.18. Let M = 〈D,Γ〉 be a system configuration,
s = 〈db, U, sec, T, V 〉 be a partial M-state, u ∈ U be a user,
and φ be a D-formula. For all sentences φ and all v ∈
{>,⊥}, |φvs,u| ≤ (|extVoc(D,V )|+1)·|φ| and |¬φ>s,u∧φ⊥s,u| ≤
2(|extVoc(D,V )|+ 1) · |φ|.

Proof. Let M = 〈D,Γ〉 be a system configuration, s =
〈db, U, sec, T, V 〉 be a partialM -state, u ∈ U be a user, and φ
be a D-formula. Furthermore, let φ be a sentence and v be a
value in {>,⊥}. The fact that |φvs,u| ≤ (|extVoc(D,V )|+1) ·
|φ| follows trivially from Lemma F.17. Let ψ be the formula
¬φ>s,u ∧ φ⊥s,u. The size of ψ is 2 + |φ>s,u| + |φ⊥s,u|. From this
and Lemma F.17, it follows that |ψ| ≤ 2+(|extVoc(D,V )|+
1) · |φ| + (|extVoc(D,V )| + 1) · |φ|. From this, it follows
that |ψ| ≤ 2(|extVoc(D,V )| + 1) · |φ|. This completes the
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proof.

In the following, we study the data complexity of our
PDP. Note that, given a PDP f , the data complexity of
f is the data complexity of the following decision problem:

Definition F.4. Let M = 〈D,Γ〉 be some fixed system
configuration, a ∈ AD,U be some fixed action, u ∈ U be some
fixed user, U ⊆ U be some fixed set of users, sec ∈ Ωsec

U,D be
some fixed policy, T be some fixed set of triggers over D
whose owners are in U , V be some fixed set of views over D
whose owners are in U , and c be some fixed context.
INPUT: A database state db such that 〈db, U, sec, T, V, c〉 ∈
ΩM .
Question: Is f(〈db, U, sec, T, V, c〉, a) = >? �

We define in a similar way the data complexity of the
secure procedure.

Theorem F.2. The data complexity of fuconf is AC 0.

Proof. Let M = 〈D,Γ〉 be some fixed system configura-
tion, a ∈ AD,U be some fixed action, u ∈ U be some fixed
user, U ⊆ U be some fixed set of users, sec ∈ Ωsec

U,D be some
fixed policy, T be some fixed set of triggers over D whose
owners are in U , V be some fixed set of views over D whose
owners are in U , and c be some fixed context. The data com-
plexity of fuconf is the maximum of the data complexities of
fuconf ,I,D, f

u
conf ,G, and fuconf ,S. We claim that:

1. the data complexity of fuconf ,I,D is AC 0,

2. the data complexity of fuconf ,S is AC 0, and
3. the data complexity of fuconf ,G is O(1).

From this, it follows that the data complexity of fuconf is

max (AC0, O(1)). From this, it follows that the data com-
plexity of fuconf is AC 0.

Our claims on the data complexity of fuconf ,I,D, f
u
conf ,S, and

fuconf ,G are proved respectively in Lemma F.19, Lemma F.21,
and Lemma F.20.

Lemma F.19. The data complexity of fuconf ,I,D is AC 0.

Proof. Let M = 〈D,Γ〉 be some fixed system configu-
ration, a ∈ AD,U be some fixed INSERT or DELETE action,
u ∈ U be some fixed user, U ⊆ U be some fixed set of users,
sec ∈ Ωsec

U,D be some fixed policy, T be some fixed set of
triggers over D whose owners are in U , V be some fixed
set of views over D whose owners are in U , and c be some
fixed context. Furthermore, let db ∈ ΩΓ

D be a database state
such that 〈db, U, sec, T, V, c〉 ∈ ΩM . We can check whether
fuconf ,I,D(〈db, U, sec, T, V, c〉, a) = > as follows:

1. If trigger(s) = ε and a 6∈ AD,u, return >.
2. If trigger(s) 6= ε and invoker(s) 6= u, return >.
3. Compute the result of noLeak(s, a, u). If noLeak(s, a, u)

= ⊥, then returns ⊥.
4. Compute the set Dep(Γ, a).
5. Compute secure(u, getInfo(a), s). If its result is ⊥, re-

turn ⊥.
6. For each γ ∈ Dep(Γ, a), compute secure(u, getInfoV (a,
γ), s). If its result is ⊥, return ⊥.

7. For each γ ∈ Dep(Γ, a), compute secure(u, getInfoS(a,
γ), s). If its result is ⊥, return ⊥.

8. Return >.
The data complexity of the steps 1 and 2 is O(1). We claim
that also the data complexity of the third step is O(1). The
complexity of the fourth step is O(|Γ|). From the definition

of getInfo, the resulting formula is constant in the size of the
database. Furthermore, also constructing the formula can be
done in constant time in the size of the database. From this
and Lemma F.22, it follows that the data complexity of the
fifth step is AC 0. For a similar reason, the data complexity
of the sixth and seventh steps is also AC 0. Therefore, the
overall data complexity of the fuconf ,I,D procedure is AC 0.

We now prove our claim that the data complexity of the
noLeak procedure is O(1). An algorithm implementing the
noLeak procedure is as follows:

1. for each view v ∈ V , for each grant g ∈ sec, if g =
〈op, u, 〈SELECT, v〉, u′〉, then
(a) compute the set tDet(v, s,M).
(b) if R ∈ tDet(v, s,M), for each o ∈ tDet(v, s,M),

check whether 〈op, u, 〈SELECT, o〉, u′′〉 ∈ sec.
The size of the set tDet(v, s,M) is at most |D|. From this,
it follows that the complexity of the step 1.(b) is O(|D| ·
|sec|). From Lemma E.10 and the definition of tDet , the
complexity of computing tDet(v, s,M) is O(|φ|3), where φ
is v’s definition. The overall complexity is, therefore, O(|V | ·
|sec| · (|D| · |sec|+ 2|D| · |φ|)), where φ is the definition of the
longest view in V . From this, it is easy to see that the data
complexity of the noLeak procedure is O(1).

Lemma F.20. The data complexity of fuconf ,G is O(1).

Proof. Let M = 〈D,Γ〉 be some fixed system configura-
tion, a ∈ AD,U be some fixed GRANT action, u ∈ U be some
fixed user, U ⊆ U be some fixed set of users, sec ∈ Ωsec

U,D

be some fixed policy, T be some fixed set of triggers over
D whose owners are in U , V be some fixed set of views
over D whose owners are in U , and c be some fixed context.
Furthermore, let db ∈ ΩΓ

D be a database state such that
〈db, U, sec, T, V, c〉 ∈ ΩM . We can check whether fuconf ,G(〈db,
U, sec, T, V, c〉, 〈op, u′′, p, u′〉)) = > as follows.

1. If trigger(s) = ε and a 6∈ AD,u, return >.
2. If trigger(s) 6= ε and invoker(s) 6= u, return >.
3. If p is not a SELECT privilege, return >.
4. If u′′ 6= u, return >.
5. For each g ∈ sec, if g = 〈op, u, p, u′〉, return >.
6. Return ⊥.

The complexity of the fifth step is O(|sec|), whereas the
complexity of the other steps is O(1). Therefore, the overall
complexity of the fuconf ,G procedure is O(|sec|). From this,
it follows that the data complexity of fuconf ,G procedure is
O(1).

Lemma F.21. The data complexity of fuconf ,S is AC 0.

Proof. Let M = 〈D,Γ〉 be some fixed system configura-
tion, a ∈ AD,U be some fixed SELECT action, u ∈ U be some
fixed user, U ⊆ U be some fixed set of users, sec ∈ Ωsec

U,D

be some fixed policy, T be some fixed set of triggers over
D whose owners are in U , V be some fixed set of views
over D whose owners are in U , and c be some fixed context.
Furthermore, let db ∈ ΩΓ

D be a database state such that
〈db, U, sec, T, V, c〉 ∈ ΩM . We can check whether fuconf ,S(〈db,
U, sec, T, V, c〉, a)) = > as follows.

1. If trigger(s) = ε and a 6∈ AD,u, return >.
2. If trigger(s) 6= ε and invoker(s) 6= u, return >.
3. Compute secure(u, φ, s) and return its result.

The complexity of the first and second steps is O(1). From
Lemma F.22, it follows that the data complexity of the third
step is AC 0. From this, it follows that the data complexity
of fuconf ,S procedure is AC 0.
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Lemma F.22. The data complexity of secure is AC 0.

Proof. Let M = 〈D,Γ〉 be some fixed system configura-
tion, φ be some fixed sentence, u ∈ U be some fixed user,
U ⊆ U be some fixed set of users, sec ∈ Ωsec

U,D be some fixed
policy, T be some fixed set of triggers over D whose owners
are in U , V be some fixed set of views over D whose owners
are in U , and c be some fixed context. Furthermore, let db ∈
ΩΓ
D be a database state such that 〈db, U, sec, T, V, c〉 ∈ ΩM .

We denote by s the state 〈db, U, sec, T, V, c〉. We can check
whether secure(u, φ, 〈db, U, sec, T, V, c〉) = > as follows:

1. Compute the formula φrw
s,u.

2. Compute [φrw
s,u]db .

3. secure(u, φ, 〈db, U, sec, T, V, c〉) = > iff [φrw
s,u]db = ⊥.

We claim that the first step can be done in constant time
in terms of data complexity. It is well-known that the data
complexity of query execution is AC 0 [3]. From this, it
follows that the data complexity of secure is also AC 0.

We now prove our claim that computing the formula φrw
s,u

can be done in constant time in terms of data complexity.
The extended vocabulary extVocabulary(D,V ) does not de-
pend on the database state. From this and the definition
of Rvs , where R is a predicate symbol and v ∈ {>,⊥}, the
set Rvs (and the time needed to compute it) depends just
on the database schema D and the set of views V . The set
AUTH s,u and the time needed to compute it depend just on
the size of the policy sec. Furthermore, the time needed to
compute AUTH ∗s,u depends just on the size of the policy sec
and of the extended vocabulary. Therefore, for any predicate
R, the set Rvs can be computed in constant time in terms of
database size. The computation of the formula φ′, obtained
by replacing sub-formulae of the form ∃x.R(x, y) with the
corresponding predicates in the extended vocabulary, can be
done in linear time in terms of |φ| and in constant time in
terms of |db|. Note that the size of the resulting formula
is linear in |φ|. It is easy to see that also computing φ>s,u
and φ⊥s,u can be done in linear time in terms of |φ| and in
constant time in terms of |db|. As shown in Lemma F.18,
the size of the resulting formula is linear in |φ|. Finally, we
can replace the predicates in the extended vocabulary with
the corresponding sub-formulae again in linear time in terms
of |φ|. Note that, again, the size of the resulting formula is
linear in |φ|. Therefore, the overall rewriting process can be
done in linear time in the size of φ and in constant time in
the size of db.
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G. COMPOSITION
Here, we model the PDP f , presented in Section 6, which

is obtained by composing the PDPs fint and fuconf presented
above. The PDP f is obtained by composing fint and fuconf

as follows:

f(s, act) = fint(s, act) ∧ fuser(act,s)
conf (s, act)

The function user takes as input an action and a state and
returns the actual user executing the action. It is defined as
follows, where i denotes the invoker function and tr denotes
the trigger function.

user(act , s) =

{
i(s) if tr(s) 6= ε
u if tr(s) = ε and act ∈ AD,u

We now show our main results, namely that (1) f provides
both database integrity and data confidentiality, and (2) f ’s
data complexity is AC 0.

Theorem G.1. Let M be a system configuration, f be as
above, and P = 〈M, f〉 be an extended configuration.

1. For any user u ∈ U , the PDP f provides data confiden-
tiality with respect to `u, P , and u.

2. The PDP f provides database integrity with respect to
P .

Proof. It follows from Lemma G.1 and Lemma G.6.

Theorem G.2. The data complexity of f is AC 0.

Proof. From f ’s definition, it follows that f ’s data com-
plexity is the maximum complexity between fuconf ’s com-
plexity and fint ’s complexity. From this, Theorem E.2, and
Theorem F.2, it follows that the data complexity of f is
AC 0.

G.1 Database Integrity
Here, we show that f provides database integrity.

Lemma G.1. Let M = 〈D,Γ〉 be a system configuration,
f be as above, and P = 〈M, f〉 be an extended configuration.
The PDP f provides database integrity with respect to P .

Proof. We prove the lemma by contradiction. Assume,
for contradiction’s sake, that f does not satisfy the database
integrity property. There are three cases:
• there is a reachable state s and an action act ∈ AD,U

such that trigger(s) = ε, f(s, act) = >, and s 6;auth

act . From f(s, act) = >, it follows that fint(s, act) =
>. From this fact, trigger(s) = ε, and Lemma E.5, it
follows s;auth act , which leads to a contradiction.
• there is a reachable state s and a trigger t ∈ T RIGGERD

such that trigger(s) = t, f(s, c) = >, [ψ]s.db = ⊥,
and s 6;auth t, where c = 〈u, SELECT, ψ〉 is t’s condi-
tion. From f(s, c) = >, it follows that fint(s, c) = >.
From fint(s, c) = >, [ψ]s.db = ⊥, trigger(s) = t, and
Lemma E.7, it follows s;auth t, which leads to a con-
tradiction.
• there is a reachable state s and a trigger t ∈ T RIGGERD

such that trigger(s) = t, f(s, c) = >, [ψ]s.db = >,
f(s′, a) = >, and s 6;auth t, where c = 〈u, SELECT, ψ〉
is t’s condition, a is t’s action, and s′ is the state ob-
tained from s by updating the context’s history. From
f(s′, a) = >, it follows that fint(s

′, a) = >. Since s
and s′ are equivalent modulo the context’s history and
fint does not depend on the context’s history, it follows

that fint(s, a) = >. From fint(s, c) = >, [ψ]s.db = >,
fint(s, a) = >, trigger(s) = t, and Lemma E.7, it fol-
lows s;auth t, which leads to a contradiction.

This completes the proof.

Lemma G.2. Let P = 〈M, f〉 be an extended configura-
tion, where M = 〈D,Γ〉 is a system configuration and f
is as above, and L be the P -LTS. For each reachable state
s = 〈db, U, sec, T, V, c〉, s;auth g for all g ∈ sec.

Proof. The proof is very similar to that of Lemma E.9.

G.2 Data Confidentiality
Here, we show that f provides the desired data confiden-

tiality guarantees. First, we show that the PDP f ′, defined

as f ′(s, act) := f
user(act,s)
conf (s, act), provides data confiden-

tiality. Afterwards, we analyse the security of f .
In Lemma G.3 and Lemma G.4, we prove some prelim-

inary results about f ′. These results will then be used to
prove f ’s security.

Lemma G.3. Let M = 〈D,Γ〉 be a system configuration,
a be an action in AD,U , and s, s′ ∈ ΩM be two M-states
such that pState(s) ∼=data

user(a,s),M pState(s′), invoker(s) =

invoker(s′), and trigger(s) = trigger(s′). Then, f
user(a,s)
conf (s,

a) = > iff f
user(a,s′)
conf (s′, a) = >.

Proof. Let s = 〈db, U, sec, T, V, c〉 and s′ = 〈db′, U ′, sec′,
T ′, V ′, c′〉 be two M -states such that pState(s) ∼=data

M,user(a,s)

pState(s′), invoker(s) = invoker(s′), and trigger(s) = trigger(s′).
We first show that user(a, s) = user(a, s′). Since trigger(s)

= trigger(s′), there are two cases:
• trigger(s) = ε. In this case, the result of user(a, s)

depends just on a. Therefore, user(a, s) = user(a, s′).
• trigger(s) 6= ε. In this case, user(a, s) = invoker(s)

and user(a, s′) = invoker(s′). From invoker(s) =
invoker(s′), it follows that user(a, s) = user(a, s′).

Let u be the user user(a, s). From Lemma F.9, it follows
that fuconf (s, a) = fuconf (s′, a). This completes the proof.

Lemma G.4. Let M be a system configuration, f ′ be as
above, and P = 〈M, f ′〉 be an extended configuration. For
any user u ∈ U , the PDP f ′ satisfies the data confidentiality
property with respect to P , u, AT Ku, and ∼=P,u.

Proof. It is easy to see that Lemmas F.9, F.11, F.12,
F.13, F.14, F.15, and F.16 hold as well for f ′. Therefore, we
can easily adapt the proof of Theorem F.1 to f ′.

In Lemma G.5, we show that the PDP f returns the same
result in any two data-indistinguishable states.

Lemma G.5. Let M = 〈D,Γ〉 be a system configuration,
s, s′ ∈ ΩM be two M-states such that pState(s) ∼=data

M,user(a,s)

pState(s′), tuple(s) = tuple(s′), invoker(s) = invoker(s′),
and trigger(s) = trigger(s′), and f be the PDP as above.
The following conditions hold:

1. If trigger(s) = ε, for any action a in AD,U , f(s, a) = >
iff f(s′, a) = >.

2. If trigger(s) ∈ T RIGGERD, f(s, trigCond(s)) = > iff
f(s′, trigCond(s)) = >.

3. If trigger(s) ∈ T RIGGERD, trigCond(s) = 〈u, SELECT,
ψ〉, [ψ]s.db = [ψ]s

′.db = > , f(s, trigAct(s)) = > iff
f(s′, trigAct(s′)) = >.
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Proof. We prove our three claims by contradiction.
1. Assume, for contradiction’s sake, that there are two

states s and s′ and an action a such that trigger(s) =
trigger(s′) = ε, pState(s) ∼=data

user(a,s),M pState(s′), f(s, a)

= >, and f(s′, a) = ⊥. From f ’s definition, f(s, a) =
>, f(s′, a) = ⊥, and LemmaG.3, it follows that fint(s, a)

= >, fint(s
′, a) = ⊥, and f

user(a,s)
conf (s, a) = f

user(a,s′)
conf (s′,

a) = >. From this, it follows that s′ 6;approx
auth a. From

fint(s, a) = >, it follows s ;
approx
auth a. From this, a ∈

AD,U , and Lemma E.4, it follows s′ ;approx
auth a, which

contradicts s′ 6;approx
auth a. This completes the proof for

the first claim.
2. Assume, for contradiction’s sake, that there are two

states s and s′ such that trigger(s) = trigger(s′), trigger
(s) 6= ε, pState(s) ∼=data

user(a,s),M pState(s′), f(s, a) = >,

and f(s′, a) = ⊥, where trigCond(s) = trigCond(s′) =
a. From f ’s definition, f(s, a) = >, f(s′, a) = ⊥, and
Lemma G.3, it follows that fint(s, a) = >, fint(s

′, a) =

⊥, and f
user(a,s)
conf (s, a) = f

user(a,s′)
conf (s′, a) = >. From

fint ’s definition, trigger(s′) 6= ε, and a = trigCond(s′),
it follows that fint(s

′, a) = >, which contradicts fint(s
′,

a) = ⊥. This completes the proof for the second claim.
3. Assume, for contradiction’s sake, that there are two

states s and s′ such that trigger(s) = trigger(s′) = t,
trigger(s) 6= ε, pState(s) ∼=data

user(a,s),M pState(s′), [ψ]s.db

= [ψ]s
′.db = >, f(s, a) = >, and f(s′, a) = ⊥, where

a = trigAct(s) = trigAct(s′). From f ’s definition,
f(s, a) = >, f(s′, a) = ⊥, and Lemma G.3, it follows

that f
user(a,s)
conf (s, a) = f

user(a,s′)
conf (s′, a) = >, fint(s, a) =

>, and fint(s
′, a) = ⊥. From this, it follows that

s′ 6;approx
auth t. From fint(s, a) = >, it follows s;approx

auth t.
There are two cases depending on t’s security mode:
(a) mode(t) = A. From this and s ;

approx
auth t, it fol-

lows that s ;
approx
auth a and s ;

approx
auth a′, where

a′ = getAction(statement(t), owner(t), tuple(s)) is
the trigger’s action associated with the trigger’s
owner. Note that s and s′ are data indistinguish-
able. From this, a, a′ ∈ AD,U , and Lemma E.4,
it follows that s′ ;

approx
auth a and s′ ;

approx
auth a′.

From s′ ;
approx
auth a, s′ ;

approx
auth a′, [ψ]s

′.db = >,
and the rule EXECUTE TRIGGER - 2, it follows that
s′ ;approx

auth t, which contradicts s′ 6;approx
auth t.

(b) mode(t) = O. From this and s;approx
auth t, it follows

that s ;
approx
auth a. Note that s and s′ are data

indistinguishable. From this, a, a′ ∈ AD,U , and
Lemma E.4, it follows that s′ ;approx

auth a. From

this, [ψ]s
′.db = >, and the rule EXECUTE TRIGGER

- 1, it follows that s′ ;approx
auth t, which contradicts

s′ 6;approx
auth t.

This completes the proof for the third claim.
This completes the proof.

In Lemma G.6, we prove the main result of this section,
namely that f provides data confidentiality. We first recall
the concept of derivation. Given a judgment r, i `u φ, a
derivation of r, i `u φ with respect to AT Ku, or a derivation
of r, i `u φ for short, is a proof tree, obtained by applying
the rules defining AT Ku, that ends in r, i `u φ. With a
slight abuse of notation, we use r, i `u φ to denote both
the judgment and its derivation. The length of a derivation,
denoted |r, i `u φ|, is the number of rule applications in it.

Lemma G.6. Let M be a system configuration, f be as
above, and P = 〈M, f〉 be an extended configuration. For
any user u ∈ U , the PDP f provides data confidentiality
with respect to P , u, AT Ku, and ∼=P,u.

Proof. Let u be a user in U , P = 〈M, f〉 be an extended
configuration, where M = 〈D,Γ〉 is a system configuration
and f is as above, and L be the P -LTS. Furthermore, let r
be a run in traces(L), i be an integer such that 1 ≤ i ≤ |r|,
and φ be a sentence such that r, i `u φ holds. We claim that
also secureP,u(r, i `u φ) holds. The theorem follows trivially
from the claim.

We now show that for all r ∈ traces(L), all i such that
1 ≤ i ≤ |r|, and all sentences φ such that r, i `u φ holds,
then also secureP,u(r, i `u φ) holds. We prove our claim by
induction on the length of the derivation r, i `u φ. In the
following, we denote by e the function extend .

Base Case: Assume that |r, i `u φ| = 1. There are
a number of cases depending on the rule used to obtain
r, i `u φ.

1. SELECT Success - 1. Let i be such that ri = ri−1 ·
〈u, SELECT, φ〉 · s, where s = 〈db, U, sec, T, V, c〉 ∈ ΩM
and last(ri−1) = s′, where s′ = 〈db, U, sec, T, V, c′〉.
From the rules, it follows that f(s′, 〈u, SELECT, φ〉) = >.
From this and f ’s definition, it follows that fint(s

′, 〈u,
SELECT, φ〉) = > and fuconf (s′, 〈u, SELECT, φ〉) = >, be-
cause user(s′, 〈u, SELECT, φ〉) = u. From fuconf (s′, 〈u,
SELECT, φ〉) = >, it follows secure(u, φ, s′) = >. From
this, Lemma F.8, and pState(s) = pState(s′), it fol-
lows secure(u, φ, s) = >. From this, Lemma F.7, and
last(ri) = s, it follows that secureP,u(r, i `u φ) holds.

2. SELECT Success - 2. The proof for this case is similar
to that of SELECT Success - 1.

3. INSERT Success. Let i be such that ri = ri−1·〈u, INSERT,
R, t〉 · s , where s = 〈db, U, sec, T, V, c〉 ∈ ΩM and
last(ri−1) = 〈db′, U, sec, T, V, c′〉, and φ be R(t). Then,
secureP,u(r, i `u R(t)) holds. Indeed, in all runs r′

(P, u)-indistinguishable from ri the last action is 〈u,
INSERT, R, t〉. Furthermore, the action has been exe-
cuted successfully. Therefore, according to the LTS
rules, t ∈ last(r′).db(R) for all runs r′ ∈ JriKP,u. From
this and the relational calculus semantics, it follows

that [R(t)]last(r′).db = > for all runs r′ ∈ JriKP,u. Hence,
secureP,u(r, i `u R(t)) holds.

4. INSERT Success - FD. Let i be such that ri = ri−1 ·
〈u, INSERT, R, (v, w, q)〉·s, where s = 〈db, U, sec, T, V, c〉
∈ ΩM and last(ri−1) = 〈db′, U, sec, T, V, c′〉, and φ be
¬∃y, z. R(v, y, z) ∧ y 6= w. From the rule’s definition,
it follows that secEx (s) = ⊥. From this and the LTS
rules, it follows that f(s′, 〈u, INSERT, R, (v, w, q)〉) = >.
From this and f ’s definition, it follows that fuconf (s′, 〈u,
INSERT, R, (v, w, q)〉) = >, because user(s′, 〈u, INSERT,
R, (v, w, q)〉) = u. From this and fuconf ’s definition,

it follows that secure(u, φ, last(ri−1)) = > holds be-
cause φ is equivalent to getInfoS(γ, a) for some γ ∈
Dep(Γ, a), where a = 〈u, INSERT, R, (v, w, q)〉. From
this and Lemma F.7, it follows that secureP,u(r, i −
1 `u φ) holds. We claim that securedata

P,u (r, i `u φ)
holds. From this and Lemma F.2, it follows that also
secureP,u(r, i `u φ) holds.
We now prove our claim that securedata

P,u (r, i `u φ) holds.

Let s′ be the state last(ri−1). Furthermore, for brevity’s
sake, in the following we omit the pState function where
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needed. For instance, with a slight abuse of notation,
we write Js′Kdata

u,M instead of JpState(s′)Kdata
u,M . There are

two cases:
(a) the INSERT command has caused an integrity con-

straint violation, i.e., Ex (s) 6= ∅. From secure(u, φ,
s′) = > and Lemma F.7, it follows that securedata

P,u (r,
i− 1 `u φ) holds. From this, it follows that [φ]v =

[φ]s
′

for any v ∈ Js′Kdata
u,M . From this and the fact

that the INSERT command caused an exception (i.e.,
s′ = s), it follows that [φ]v = [φ]s for any v ∈
JsKdata

u,M . From this, it follows that securedata
P,u (r, i `u

φ) holds.
(b) the INSERT command has not caused exceptions,

i.e., Ex (s) = ∅. From secure(u, φ, s′) = > and
Lemma F.7, it follows that securedata

P,u (r, i − 1 `u
φ) holds. From this, it follows that [φ]v = [φ]s

′

for any v ∈ Js′Kdata
u,M . Furthermore, from F.7 and

Ex (s) = ∅, it follows that φ holds in s′. Let As′,R,t
be the set {〈db[R ⊕ t], U, sec, T, V 〉 ∈ ΠM | ∃db′ ∈
ΩD. 〈db′, U, sec, T, V 〉 ∈ Js′Kdata

M,u}. It is easy to see

that JsKdata
M,u ⊆ As′,R,t. We now show that φ holds

for any z ∈ As′,R,t. Let z1 ∈ Js′Kdata
M,u. From [φ]v =

[φ]s
′

for any v ∈ Js′Kdata
u,M and the fact that φ holds

in s′, it follows that [φ]z1 = >. Therefore, for any
(k1, k2, k3) ∈ R(z1) such that |k1| = |v|, |k2| = |w|,
and |k3| = |z|, if k1 = v, then k2 = w. Then,
for any (k1, k2, k3) ∈ R(z1) ∪ {(v, w, q)} such that
|k1| = |v|, |k2| = |w|, and |k3| = |z|, if k1 = v,
then k2 = w. Therefore, φ holds also in z1[R ⊕
t] ∈ ApState(s′),R,t. Hence, [φ]z = > for any z ∈
As′,R,t. From this and JsKdata

M,u ⊆ As′,R,t, it follows

that [φ]z = > for any z ∈ JsKdata
M,u. From this, it

follows that securedata
P,u (r, i, u, φ) holds.

5. INSERT Success - ID. The proof of this case is similar
to that for the INSERT Success - FD.

6. DELETE Success. The proof for this case is similar to
that of INSERT Success.

7. DELETE Success - ID. The proof of this case is similar
to that for the INSERT Success - FD.

8. INSERT Exception. Let i be such that ri = ri−1 ·
〈u, INSER, R, t〉 · s, where s = 〈db, U, sec, T, V, c〉 ∈ ΩM
and last(ri−1) = 〈db′, U, sec, T, V, c′〉, and φ be ¬R(t).
From the rule’s definition, it follows that secEx (s) = ⊥.
From this and the LTS rules, it follows that f(s′, 〈u,
INSERT, R, t〉) = >. From this and f ’s definition, it
follows that fuconf (s′, 〈u, INSERT, R, t〉) = >, because
user(s′, 〈u, INSERT, R, t〉) = u. From this and fuconf ’s

definition, it follows that secure(u, φ, last(ri−1)) = >
holds because φ = getInfo(〈u, INSERT, R, t〉). From this
and Lemma F.7, it follows that secureP,u(r, i − 1 `u
φ) holds. From the LTS semantics, it follows that
pState(s) ∼=data

u,M pState(last(ri−1)). From this, secure(u,

φ, last(ri−1)) = >, and Lemma F.8, it follows that
secure(u, φ, last(ri)) = >. From this and Lemma F.7,
it follows that secureP,u(r, i `u φ) holds.

9. DELETE Exception. The proof for this case is similar to
that of INSERT Exception.

10. INSERT FD Exception. Let i be such that ri = ri−1 ·
〈u, INSERT, R, (v, w, q)〉·s, where s = 〈db, U, sec, T, V, c〉
∈ ΩM and last(ri−1) = 〈db′, U, sec, T, V, c′〉, and φ be
∃y, z. R(v, y, z) ∧ y 6= w. From the rule’s definition, it

follows that secEx (s) = ⊥. From this and the LTS
rules, it follows that f(s′, 〈u, INSERT, R, (v, w, q)〉) = >.
From this and f ’s definition, it follows that fuconf (s′, 〈u,
INSERT, R, (v, w, q)〉) = >, because user(s′, 〈u, INSERT,
R, t〉) = u. From this and fuconf ’s definition, it fol-

lows that secure(u, φ, last(ri−1)) = > because φ =
getInfoV (γ, 〈u, INSERT, R, (v, w, q)〉) for some constraint
γ ∈ Dep(Γ, 〈u, INSERT, R, (v, w, q)〉). From this and
Lemma F.7, it follows that secureP,u(r, i − 1 `u φ)
holds. From the LTS semantics, it follows that pState(s)
∼=data
u,M pState(last(ri−1)). From this, Lemma F.8, and

secure(u, φ, last(ri−1)) = >, it follows that secure(u, φ,
last(ri)) = >. From this and Lemma F.7, it follows
that also secureP,u(r, i `u φ) holds.

11. INSERT ID Exception. The proof for this case is similar
to that of INSERT FD Exception.

12. DELETE FD Exception. The proof for this case is similar
to that of INSERT FD Exception.

13. Integrity Constraint. The proof of this case follows triv-
ially from the fact that for any state s = 〈db, U, sec, T,
V, c〉 ∈ ΩM and any γ ∈ Γ, [γ]db = > by definition.

14. Learn GRANT/REVOKE Backward. Let i be such that
ri = ri−1 · t · s, where s = 〈db, U, sec, T, V, c〉 ∈ ΩM ,
last(ri−1) = 〈db, U, sec′, T, V, c′〉, and t be a trigger
whose WHEN condition is φ and whose action is either
a GRANT or a REVOKE. From the rule’s definition, it fol-
lows that secEx (s) = ⊥. From this and the LTS rules,
it follows that f(last(ri−1), 〈u′, SELECT, φ〉) = >, where
u′ is either the trigger’s owner or the trigger’s invoker
depending on the security mode. From this and f ’s def-
inition, it follows fuconf (last(ri−1), 〈u′, SELECT, φ〉) = >,

because user(last(ri−1), 〈u′, SELECT, φ〉) = u because
t’s invoker is u according to the rules. From this and
fuconf ’s definition, it follows secure(u, φ, last(ri−1)) = >.
From this and F.7, it follows that secureP,u(r, i− 1 `u
φ) holds.

15. Trigger GRANT Disabled Backward. Let i be such that
ri = ri−1 · t · s, where s = 〈db, U, sec, T, V, c〉 ∈ ΩM ,
last(ri−1) = 〈db, U, sec′, T, V, c′〉, and t be a trigger
whose WHEN condition is ψ, and φ be ¬ψ. From the
rule’s definition, it follows that secEx (s) = ⊥. From
this and the LTS rules, it follows that f(last(ri−1), 〈u′,
SELECT, φ〉) = >, where u′ is either the trigger’s owner
or the trigger’s invoker depending on the security mode.
From this and f ’s definition, it follows fuconf (last(ri−1),

〈u′, SELECT, φ〉) = >, as user(last(ri−1), 〈u′, SELECT, φ〉)
= u because t’s invoker is u according to the rules.
From this and fuconf ’s definition, it follows that also

secure(u, φ, last(ri−1)) = >. From this and F.7, it fol-
lows that secureP,u(r, i− 1 `u φ) holds.

16. Trigger REVOKE Disabled Backward. The proof for this
case is similar to that of Trigger GRANT Disabled Back-
ward.

17. Trigger INSERT FD Exception. Let i be such that ri =
ri−1·t·s, where s = 〈db, U, sec, T, V, c〉 ∈ ΩM , last(ri−1) =
〈db, U, sec′, T, V, c′〉, and t be a trigger whose WHEN con-
dition is φ and whose action act is a INSERT state-
ment 〈u′, INSERT, R, (v, w, q)〉. Furthermore, let φ be
∃y, z. R(v, y, z) ∧ y 6= w. From the rule’s definition, it
follows that secEx (s) = ⊥. From this and the LTS
rules, it follows that f(last(ri−1), act) = >. From this
and f ’s definition, it follows that fuconf (last(ri−1), act) =
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>, because user(last(ri−1), act) = u because t’s invoker
is u according to the rules. From this and fuconf ’s def-

inition, it follows that secure(u, φ, last(ri−1)) = > be-
cause φ = getInfoV (γ, act) for some constraint γ ∈
Dep(Γ, act). From this and Lemma F.7, it follows that
secureP,u(r, i− 1 `u φ) holds.

18. Trigger INSERT ID Exception. The proof for this case
is similar to that of Trigger INSERT ID Exception.

19. Trigger DELETE ID Exception. The proof for this case
is similar to that of Trigger DELETE ID Exception.

20. Trigger Exception. Let i be such that ri = ri−1 · t ·
s, where s = 〈db, U, sec, T, V, c〉 ∈ ΩM , last(ri−1) =
〈db, U, sec′, T, V, c′〉, and t be a trigger whose WHEN con-
dition is φ and whose action is act . From the rule’s defi-
nition, it follows that f(last(ri−1), 〈u′, SELECT, φ〉) = >,
where u′ is either the trigger’s owner or the trigger’s in-
voker depending on the security mode. From this and
f ’s definition, it follows fuconf (last(ri−1), 〈u′, SELECT, φ〉)
= >, because user(last(ri−1), 〈u′, SELECT, φ〉) = u since
t’s invoker is u according to the rules. From this and
fuconf ’s definition, it follows that secure(u, φ, last(ri−1))
= >. From this and F.7, it follows that secureP,u(r, i−
1 `u φ) holds.

21. Trigger INSERT Exception. The proof for this case is
similar to that of INSERT Exception.

22. Trigger DELETE Exception. The proof for this case is
similar to that of DELETE Exception.

23. Trigger Rollback INSERT. Let i be such that ri = ri−n−1·
〈u, INSERT, R, t〉·s1 ·t1 ·s2 ·. . .·tn ·sn, where s1, s2, . . . , sn
∈ ΩM and t1, . . . , tn ∈ T RIGGERD, and φ be ¬R(t).
Furthermore, let last(ri−n−1) = 〈db′, U ′, sec′, T ′, V ′, c′〉
and sn be 〈db, U, sec, T, V, c〉. From the rule’s defini-
tion, it follows that secEx (s1) = ⊥. From this, it fol-
lows that f(last(ri−n−1), 〈u, INSERT, R, t〉) = >. From
this and f ’s definition, it follows fuconf (last(ri−n−1), 〈u,
INSERT, R, t〉) = > since user(last(ri−n−1), 〈u, INSERT,
R, t〉) = u. From this and fuconf ’s definition, it follows

secure(u, φ, last(ri−n−1)) = > because φ = getInfo(〈u,
INSERT, R, t〉). From the LTS semantics, it follows that
last(ri−n−1) ∼=data

M,u sn because pState(last(ri−n−1)) =
pState(sn). From this, Lemma F.8, and secure(u, φ, last
(ri−n−1)) = >, it follows secure(u, φ, sn) = >. From
this and Lemma F.7, it follows that secureP,u(r, i `u φ)
holds.

24. Trigger Rollback DELETE. The proof for this case is sim-
ilar to that of Trigger Rollback INSERT.

This completes the proof of the base step.

Induction Step: Assume that the claim hold for any
derivation of r, j `u ψ such that |r, j `u ψ| < |r, i `u φ|.
We now prove that the claim also holds for r, i `u φ. There
are a number of cases depending on the rule used to obtain
r, i `u φ.

1. View. The proof of this case follows trivially from
the semantics of the relational calculus extended over
views.

2. Propagate Forward SELECT. Let i be such that ri+1 =
ri · 〈u, SELECT, ψ〉 · s, where s = 〈db, U, sec, T, V, c〉 ∈
ΩM and last(ri) = 〈db′, U ′, sec′, T ′, V ′, c′〉. From the
rule, it follows that r, i `u φ holds. From this and the
induction hypothesis, it follows that secureP,u(r, i `u
φ) holds. From Lemma G.7, the action 〈u, SELECT, ψ〉
preserves the equivalence class with respect to ri, P ,

and u. From this, Lemma F.12, and secureP,u(r, i `u
φ), it follows that also secureP,u(r, i+ 1 `u φ) holds.

3. Propagate Forward GRANT/REVOKE. Let i be such that
ri+1 = ri·〈op, u′, p, u〉·s, where s = 〈db, U, sec, T, V, c〉 ∈
ΩM and last(ri) = 〈db′, U ′, sec′, T ′, V ′, c′〉. From the
rule, it follows that r, i `u φ holds. From this and the
induction hypothesis, it follows that secureP,u(r, i `u
φ) holds. From LemmaG.7, the action 〈op, u′, p, u〉 pre-
serves the equivalence class with respect to ri, P , and
u. From this, Lemma F.13, and secureP,u(r, i `u φ), it
follows that also secureP,u(r, i+ 1 `u φ) holds.

4. Propagate Forward CREATE. The proof for this case is
similar to that of Propagate Forward SELECT.

5. Propagate Backward SELECT. Let i be such that ri+1 =
ri · 〈u, SELECT, ψ〉 · s, where s = 〈db′, U ′, sec′, T ′, V ′, c′〉
∈ ΩM and last(ri) = 〈db, U, sec, T, V, c〉. From the rule,
it follows that r, i+1 `u φ holds. From this and the in-
duction hypothesis, it follows that secureP,u(r, i+ 1 `u
φ) holds. From Lemma G.7, the action 〈u, SELECT, ψ〉
preserves the equivalence class with respect to ri, P ,
and u. From this, Lemma F.12, and secureP,u(r, i+ 1
`u φ), it follows that also secureP,u(r, i `u φ) holds.

6. Propagate Backward GRANT/REVOKE. Let i be such that
ri+1 = ri·〈op, u′, p, u〉·s, where s = 〈db′, U ′, sec′, T ′, V ′,
c′〉 ∈ ΩM and last(ri) = 〈db, U, sec, T, V, c〉. From the
rule, it follows that r, i + 1 `u φ holds. From this and
the induction hypothesis, it follows that secureP,u(r, i+
1 `u φ) holds. From LemmaG.7, the action 〈op, u′, p, u〉
preserves the equivalence class with respect to ri, P ,
and u. From this, Lemma F.13, and secureP,u(r, i +
1 `u φ), it follows that also secureP,u(r, i `u φ) holds.

7. Propagate Backward CREATE TRIGGER. The proof for
this case is similar to that of Propagate Backward SE-

LECT.
8. Propagate Backward CREATE VIEW. Note that the for-

mulae ψ and replace(ψ, o) are semantically equivalent.
This is the only difference between the proof for this
case and the one for the Propagate Backward SELECT

case.
9. Rollback Backward - 1. Let i be such that ri = ri−n−1 ·
〈u, op, R, t〉 ·s1 · t1 ·s2 · . . . · tn ·sn, where s1, s2, . . . , sn ∈
ΩM , t1, . . . , tn ∈ T RIGGERD, and op is one of {INSERT,
DELETE}. Furthermore, let sn be 〈db′, U ′, sec′, T ′, V ′, c′〉
and last(ri−n−1) be 〈db, U, sec, T, V, c〉. From the rule’s
definition, r, i `u φ holds. From this and the induction
hypothesis, it follows that secureP,u(r, i `u φ) holds.
From Lemma G.8, the triggers tj preserve the equiv-
alence class with respect to ri−n−1+j , P , and u for
any 1 ≤ j ≤ n. Therefore, for any v ∈ Jri−1KP,u, the
run e(v, tn) contains the roll-back. Therefore, for any
v ∈ Jri−1KP,u, the state last(e(v, tn)) is the state just
before the action 〈u, op, R, t〉. Let A be the set of par-
tial states associated with the roll-back states. It is
easy to see that A is the same as {pState(last(t′))|t′ ∈
Jri−n−1KP,u}. From secureP,u(r, i `u φ), it follows that
φ has the same result over all states in A. From this and
A = {pState(last(t′))|t′ ∈ Jri−n−1KP,u}, it follows that
φ has the same result over all states in {pState(last(t′))|
t′ ∈ Jri−n−1KP,u}. From this, it follows that secureP,u
(r, i− n− 1 `u φ) holds.

10. Rollback Backward - 2. Let i be such that ri = ri−1 ·
〈u, op,R, t〉 · s, where s = 〈db′, U ′, sec′, T ′, V ′, c′〉 ∈
ΩM , last(ri−1) = 〈db, U, sec, T, V, c〉, and op is one of
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{INSERT, DELETE}. From the rule’s definition, r, i `u φ
holds. From this and the induction hypothesis, it fol-
lows that secureP,u(r, i `u φ) holds. From Lemma G.7,
the action 〈u, op, R, t〉 preserves the equivalence class
with respect to ri−1, P , and u. From this, Lemma F.11,
the fact that the action does not modify the database
state, and secureP,u(r, i `u φ), it follows secureP,u(r, i−
1 `u φ).

11. Rollback Forward - 1. Let i be such that ri = ri−n−1 ·
〈u, op, R, t〉 ·s1 · t1 ·s2 · . . . · tn ·sn, where s1, s2, . . . , sn ∈
ΩM , t1, . . . , tn ∈ T RIGGERD, and op is one of {INSERT,
DELETE}. Furthermore, let sn be 〈db, U, sec, T, V, c〉
and last(ri−n−1) be 〈db′, U ′, sec′, T ′, V ′, c′〉. From the
rule’s definition, r, i− n− 1 `u φ holds. From this and
the induction hypothesis, it follows that secureP,u(r, i−
n − 1 `u φ) holds. From Lemma G.8, the triggers tj
preserve the equivalence class with respect to ri−n−1+j ,
P , and u for any 1 ≤ j ≤ n. Independently on the
cause of the roll-back (either a security exception or
an integrity constraint violation), we claim that the
set A of roll-back partial states is {pState(last(t′))|t′ ∈
Jri−n−1KP,u}. From secureP,u(r, i − n − 1 `u φ), the
result of φ is the same for all states in A. From this
and A = {pState(last(t′))|t′ ∈ Jri−n−1KP,u}, it follows
that also secureP,u(r, i `u φ) holds.
We now prove our claim. It is trivial to see (from the
LTS’s semantics) that the set of rollback’s states is a
subset of {last(v)|v ∈ Jri−n−1KP,u}. Assume, for con-
tradiction’s sake, that there is a state in {last(v)|v ∈
Jri−n−1KP,u} that is not a rollback state for the runs in
JriKP,u. This is impossible since all triggers t1, . . . , tn
preserve the equivalence class.

12. Rollback Forward - 2. Let i be such that ri = ri−1 ·
〈u, op,R, t〉·s, where op ∈ {INSERT, DELETE}, s = 〈db, U,
sec, T, V, c〉 ∈ ΩM and last(ri−1) = 〈db′, U ′, sec′, T ′, V ′,
c′〉. From the rule’s definition, r, i − 1 `u φ holds.
From this and the induction hypothesis, it follows that
secureP,u(r, i − 1 `u φ) holds. From Lemma G.7, the
action 〈u, op, R, t〉 preserves the equivalence class with
respect to ri−1, P , and u. From this, Lemma F.11,
the fact that the action does not modify the database
state, and secureP,u(r, i − 1 `u φ), it follows that also
secureP,u(r, i `u φ) holds.

13. Propagate Forward INSERT/DELETE Success. Let i be
such that ri = ri−1 ·〈u, op,R, t〉·s, where op ∈ {INSERT,
DELETE}, s = 〈db, U, sec, T, V, c〉 ∈ ΩM and last(ri−1) =
〈db′, U ′, sec′, T ′, V ′, c′〉. From the rule’s definition, r, i−
1 `u φ holds. From this and the induction hypothe-
sis, it follows that secureP,u(r, i− 1 `u φ) holds. From
Lemma G.7, the action 〈u, op, R, t〉 preserves the equiv-
alence class with respect to ri−1, P , and u. From
reviseBelif (ri−1, φ, ri), it follows that the execution of
〈u, op, R, t〉 does not alter the content of the tables in
tables(φ) for any v ∈ Jri−1KP,u. From this, Lemma F.11,
and secureP,u(r, i− 1 `u φ), it follows that secureP,u
(r, i `u φ) holds.

14. Propagate Forward INSERT Success - 1. Let i be such
that ri = ri−1 · 〈u, op,R, t〉 · s, where op is one of
{INSERT, DELETE}, s = 〈db, U, sec, T, V, c〉 ∈ ΩM , and
last(ri−1) = 〈db′, U ′, sec′, T ′, V ′, c′〉. From the rule’s
definition, r, i−1 `u φ holds. From this and the induc-
tion hypothesis, it follows that secureP,u(r, i− 1 `u φ)
holds. From Lemma G.7, the action 〈u, op, R, t〉 pre-

serves the equivalence class with respect to ri−1, P ,
and u. We claim that the execution of 〈u, INSERT, R, t〉
does not alter the content of the tables in tables(φ).
From this, Lemma F.11, and secureP,u(r, i − 1 `u φ),
it follows that secureP,u(r, i `u φ) holds.
We now prove our claim that the execution of 〈u, INSERT,
R, t〉 does not alter the content of the tables in tables(φ).
From the rule’s definition, it follows that r, i − 1 `u
R(t) holds. From this and Lemma B.1, it follows that

[R(t)]last(ri−1).db = >. From r, i−1 `u R(t) and the in-
duction hypothesis, it follows that secureP,u(r, i− 1 `u
R(t)) holds. From this and [R(t)]last(ri−1).db = >, it

follows that [R(t)]last(v).db = > for any v ∈ Jri−1KP,u.
From this and the relational calculus semantics, it fol-
lows that the execution of 〈u, op, R, t〉 does not alter the
content of the tables in tables(φ) for any v ∈ Jri−1KP,u.

15. Propagate Forward DELETE Success - 1. The proof for
this case is similar to that of Propagate Forward INSERT

Success - 1.
16. Propagate Backward INSERT/DELETE Success. Let i be

such that ri = ri−1 ·〈u, op,R, t〉·s, where op ∈ {INSERT,
DELETE}, s = 〈db, U, sec, T, V, c〉 ∈ ΩM and last(ri−1) =
〈db′, U ′, sec′, T ′, V ′, c′〉. From the rule’s definition, r, i
`u φ holds. From this and the induction hypothe-
sis, it follows that secureP,u(r, i `u φ) holds. From
Lemma G.7, the action 〈u, op, R, t〉 preserves the equiv-
alence class with respect to ri−1, P , and u. From
reviseBelif (ri−1, φ, ri), it follows that the execution of
〈u, op, R, t〉 does not alter the content of the tables in
tables(φ) for any v ∈ Jri−1KP,u. From this, Lemma F.11,
and secureP,u(r, i `u φ), it follows that secureP,u(r, i−
1 `u φ) holds.

17. Propagate Backward INSERT Success - 1. Let i be such
that ri = ri−1 · 〈u, op,R, t〉 · s, where op is one of
{INSERT, DELETE}, s = 〈db, U, sec, T, V, c〉 ∈ ΩM and
last(ri−1) = 〈db′, U ′, sec′, T ′, V ′, c′〉. From the rule’s
definition, r, i `u φ holds. From this and the induction
hypothesis, it follows that secureP,u(r, i `u φ) holds.
From Lemma G.7, the action 〈u, op, R, t〉 preserves the
equivalence class with respect to ri−1, P , and u. We
claim that the execution of 〈u, INSERT, R, t〉 does not
alter the content of the tables in tables(φ) for any v ∈
Jri−1KP,u (the proof of this claim is in the proof of the
Propagate Forward INSERT Success - 1 case). From
this, Lemma F.11, and secureP,u(r, i `u φ), it follows
that secureP,u(r, i− 1 `u φ) holds.

18. Propagate Backward DELETE Success - 1. The proof for
this case is similar to that of Propagate Forward DELETE

Success - 1.
19. Reasoning. Let ∆ be a subset of {δ | r, i `u δ} and

last(ri) = 〈db, U, sec, T, V, c〉. From the induction hy-
pothesis, it follows that secureP,u(r, i `u δ) holds for
any δ ∈ ∆. Note that, given any δ ∈ ∆, from r, i `u δ
and Lemma B.1, it follows that δ holds in last(ri).
From this, secureP,u(r, i `u δ) holds for any δ ∈ ∆,
∆ |=fin φ, and Lemma F.10, it follows that secureP,u(r,
i `u φ) holds.

20. Learn INSERT Backward - 3. Let i be such that ri =
ri−1 ·〈u, INSERT, R, t〉·s, where s = 〈db′, U ′, sec′, T ′, V ′,
c′〉 ∈ ΩM and last(ri−1) = 〈db, U, sec, T, V, c〉, and φ be
¬R(t). From the rule’s definition, secEx (s) = ⊥. From
this and the LTS rules, it follows that f(last(ri−1), 〈u,
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INSERT, R, t〉) = >. From this and f ’s definition, it
follows that fuconf (last(ri−1), 〈u, INSERT, R, t〉) = > be-

cause user(last(ri−1), 〈u, INSERT, R, t〉) = u. From this
and fuconf ’s definition, it follows secure(u, φ, last(ri−1))
= > because φ = getInfo(〈u, INSERT, R, t〉). From this
and Lemma F.7, it follows that secureP,u(r, i− 1 `u φ)
holds.

21. Learn DELETE Backward - 3. The proof for this case is
similar to that of Learn INSERT Backward - 3.

22. Propagate Forward Disabled Trigger. Let i be such that
ri = ri−1 · t · s, where s = 〈db, U, sec, T, V, c〉 ∈ ΩM ,
last(ri−1) = 〈db, U, sec, T, V, c〉, and t be a trigger. Fur-
thermore, let ψ be t’s condition where all free variables
are replaced with tpl(last(ri−1)). From the rule, it
follows that r, i − 1 `u φ. From this and the induc-
tion hypothesis, it follows that secureP,u(r, i− 1 `u φ)
holds. Furthermore, from Lemma G.8, it follows that
t preserves the equivalence class with respect to ri−1,
P , and u. If the trigger’s action is an INSERT or a
DELETE operation, we claim that the operation does not
change the content of any table in tables(φ) for any
run v ∈ Jri−1KP,u. From this, the fact that t preserves
the equivalence class with respect to ri−1, P , and u,
Lemma F.14, and secureP,u(r, i − 1 `u φ), it follows
that also secureP,u(r, i `u φ) holds.
We now prove our claim. Assume that t’s action in ei-
ther an INSERT or a DELETE operation. From the rule, it
follows that r, i− 1 `u ¬ψ. From this and Lemma B.1,

[ψ]last(ri−1) = ⊥. From r, i − 1 `u ¬ψ and the induc-
tion hypothesis, it follows that secureP,u(r, i− 1 `u ψ)

holds. From this and [ψ]last(ri−1).db = ⊥, it follows
that [ψ]v.db = ⊥ for any run v ∈ Jri−1KP,u. Therefore,
the trigger t is disabled in any run v ∈ Jri−1KP,u. From
this and the LTS semantics, it follows that t’s execution
does not change the content of any table in tables(φ)
for any run v ∈ Jri−1KP,u.

23. Propagate Backward Disabled Trigger. The proof for
this case is similar to that of Propagate Forward Dis-
abled Trigger.

24. Learn INSERT Forward. Let i be such that ri = ri−1 ·
t · s, where s = 〈db, U, sec, T, V, c〉 ∈ ΩM , last(ri−1) =
〈db, U, sec, T, V, c〉, and t be a trigger, and φ be R(t).
Furthermore, let ψ be t’s condition where all free vari-
ables are replaced with tpl(last(ri−1)). From the rule’s
definition, it follows that t’s action is 〈u′, INSERT, R, t〉
and that r, i − 1 `u ψ holds. From Lemma B.1 and

r, i − 1 `u ψ, it follows that [ψ]last(ri−1).db = >. From
this, secEx (s) = ⊥, and Ex (s) = ∅, it follows that t’s
action has been executed successfully. From this, it
follows that t ∈ s.db(R). From r, i− 1 `u ψ and the in-
duction hypothesis, it follows that secureP,u(r, i− 1 `u
ψ). From this and [ψ]last(ri−1).db = >, it follows that

[ψ]last(v).db = > for any v ∈ Jri−1KP,u. From this, it
follows that the trigger t is enabled in any run v ∈
Jri−1KP,u. From Lemma G.8, it follows that t preserves
the equivalence class with respect to ri−1, P , and u.
From this, secEx (s) = ⊥, Ex (s) = ∅, and the fact that
the trigger t is enabled in any run v ∈ Jri−1KP,u, it
follows that t’s action is executed successfully in any
run e(v, t), where v ∈ Jri−1KP,u. From this, it follows
that db′′(R), where db′′ = t ∈ last(e(v, t)).db, for any
v ∈ Jri−1KP,u. Therefore, secureP,u(r, i `u φ) holds.

25. Learn INSERT - FD. Let i be such that ri = ri−1 · t ·
s, where s = 〈db, U, sec, T, V, c〉 ∈ ΩM , last(ri−1) =
〈db′, U ′, sec′, T ′, V ′, c′〉, and t ∈ T RIGGERD, and φ
be ¬∃y, z. R(v, y, z) ∧ y 6= w. Furthermore, let ψ be t’s
condition where all free variables are replaced with the
values in tpl(last(ri−1)) and 〈u′, INSERT, R, (v, w, q)〉 be
t’s actual action. From the rule, it follows that r, i −
1 `u ψ. From this and Lemma B.1, it follows that

[ψ]last(ri−1).db = >. From this, Ex (s) = ∅, and secEx (s)
= ⊥, it follows that f(s′, 〈u′, INSERT, R, t〉) = >, where
s′ is the state just after the execution of the SELECT

statement associated with t’s WHEN clause. From this
and f ’s definition, it follows that fuconf (s′, 〈u′, INSERT, R,
t〉) = > because user(s′, 〈u′, INSERT, R, t〉) = u since u
is t’s invoker. From this and fuconf ’s definition, it fol-
lows that secure(u, φ, s′) = >. From this, pState(s′) =
pState(last(ri−1)), and Lemma F.8, it follows secure(u,
φ, last(ri−1)) = >. From this and Lemma F.7, it fol-
lows secureP,u(r, i−1 `u φ). We claim that securedata

P,u (r,
i `u φ) holds. From this and Lemma F.2, it follows that
also secureP,u(r, i `u φ) holds.
We now prove our claim that securedata

P,u (r, i `u φ) holds.
Let s′ be the state just after the execution of the SE-

LECT statement associated with t’s WHEN clause and s′′

be the state last(ri−1). Furthermore, for brevity’s sake,
in the following we omit the pState function where
needed. For instance, with a slight abuse of nota-
tion, we write Js′Kdata

u,M instead of JpState(s′)Kdata
u,M . From

secure(u, φ, s′) = >, s′ ∼=data
M,u s′′, Lemma F.8, and

Lemma F.7, it follows that securedata
P,u (r, i − 1 `u φ)

holds. From this, it follows that [φ]v = [φ]s
′′

for any
v ∈ Js′′Kdata

u,M . Furthermore, from Proposition F.7 and
Ex (s) = ∅, it follows that φ holds in s′′. Let As′′,R,t be

the set {〈db[R⊕t], U, sec, T, V 〉 ∈ ΠM | ∃db′ ∈ ΩD. 〈db′,
U, sec, T, V 〉 ∈ Js′′Kdata

M,u}. It is easy to see that JsKdata
M,u ⊆

As′′,R,t. We now show that φ holds for any z ∈ As′′,R,t.
Let z1 ∈ Js′′Kdata

M,u. From [φ]v = [φ]s
′′

for any v ∈
Js′′Kdata

u,M and the fact that φ holds in s′′, it follows that

[φ]z1 = >. Therefore, for any (k1, k2, k3) ∈ R(z1) such
that |k1| = |v|, |k2| = |w|, and |k3| = |q|, if k1 = v, then
k2 = w. Then, for any (k1, k2, k3) ∈ R(z1)∪ {(v, w, q)}
such that |k1| = |v|, |k2| = |w|, and |k3| = |q|, if
k1 = v, then k2 = w. Therefore, φ holds also in
z1[R ⊕ t] ∈ ApState(s′′),R,t. Hence, [φ]z = > for any

z ∈ As′′,R,t. From this and JsKdata
M,u ⊆ As′′,R,t, it follows

that [φ]z = > for any z ∈ JsKdata
M,u. From this, it follows

that securedata
P,u (r, i `u φ) holds.

26. Learn INSERT - FD - 1. The proof of this case is similar
to that of Learn INSERT - FD.

27. Learn INSERT - ID. The proof of this case is similar to
that of Learn INSERT - FD. See also the proof of INSERT
Success - ID.

28. Learn INSERT - ID - 1. The proof of this case is similar
to that of Learn INSERT - ID.

29. Learn INSERT Backward - 1. Let i be such that ri =
ri−1 · t · s, where s = 〈db′, U ′, sec′, T ′, V ′, c′〉 ∈ ΩM ,
last(ri−1) = 〈db, U, sec, T, V, c〉, and t ∈ T RIGGERD,
and φ be t’s actual WHEN condition, where all free vari-
ables are replaced with the values in tpl(last(ri−1)).
From the rule’s definition, it follows that secEx (s) = >.
From this, the LTS semantics, and secEx (s) = >, it fol-
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lows that f(last(ri−1), 〈u′, SELECT, φ〉) = >. From this
and f ’s definition, it follows fuconf (last(ri−1), 〈u′, SELECT,
φ〉) = > because user(last(ri−1), 〈u′, SELECT, φ〉) = u
since u is t’s invoker. From this and fuconf ’s definition, it

follows that secure(u, φ, last(ri−1)) = >. From this and
Lemma F.7, it follows that also secureP,u(r, i− 1 `u φ)
holds.

30. Learn INSERT Backward - 2. Let i be such that ri =
ri−1 · t · s, where s = 〈db′, U ′, sec′, T ′, V ′, c′〉 ∈ ΩM ,
last(ri−1) = 〈db, U, sec, T, V, c〉, and t ∈ T RIGGERD,
and φ be ¬R(t). Furthermore, let act = 〈u′, INSERT, R,
t〉 be t’s actual action and γ be t’s actual WHEN condition
obtained by replacing all free variables with the values
in tpl(last(ri−1)). From the rule’s definition, it follows
secEx (s) = > and there is a ψ such that r, i − 1 `u ψ
and r, i `u ¬ψ. We claim that [γ]db = >. From this and
secEx (s) = >, it follows that f(s′, 〈u′, INSERT, R, t〉) =
>, where s′ is the state obtained after the evaluation
of t’s WHEN condition. From this and f ’s definition, it
follows fuconf (s′, 〈u′, INSERT, R, t〉) = > as user(s′, 〈u′,
INSERT, R, t〉) = u because u is t’s invoker. From this
and fuconf ’s definition, it follows secure(u, φ, s′) = >
since φ is equivalent to getInfo(〈u′, INSERT, R, t〉). From
this, Lemma F.8, and pState(s′) = pState(last(ri−1)),
it follows secure(u, φ, last(ri−1)) = >. From this and
Lemma F.7, it follows secureP,u(r, i− 1 `u φ).
We now prove our claim that [γ]db = >. Assume, for
contradiction’s sake, that this is not the case. From this
and the LTS rules, it follows that db = db′. From the
rule’s definition, it follows that there is a ψ such that
r, i−1 `u ψ and r, i `u ¬ψ. From this, Lemma B.1, s =
〈db′, U ′, sec′, T ′, V ′, c′〉, and last(ri−1) = 〈db, U, sec, T,

V, c〉, it follows that [ψ]db = > and [¬ψ]db′ = >. There-

fore, [ψ]db = > and [ψ]db′ = ⊥. Hence, db 6= db′, which
contradicts db = db′.

31. Learn DELETE Forward. The proof of this case is similar
to that of Learn INSERT Forward.

32. Learn DELETE - ID. The proof of this case is similar to
that of Learn INSERT - FD. See also the proof of DELETE
Success - ID.

33. Learn DELETE - ID - 1. The proof of this case is similar
to that of Learn DELETE - ID.

34. Learn DELETE Backward - 1. The proof of this case is
similar to that of Learn INSERT Backward - 1.

35. Learn DELETE Backward - 2. The proof of this case is
similar to that of Learn INSERT Backward - 2.

36. Propagate Forward Trigger Action. Let i be such that
ri = ri−1·t·s, where t is a trigger, s = 〈db, U, sec, T, V, c〉
∈ ΩM and last(ri−1) = 〈db′, U ′, sec′, T ′, V ′, c′〉. From
the rule’s definition, r, i− 1 `u φ holds. From this and
the induction hypothesis, it follows that secureP,u(r, i−
1 `u φ) holds. From Lemma G.8, the trigger t preserves
the equivalence class with respect to ri−1, P , and u. We
claim that the execution of t does not alter the content
of the tables in tables(φ). From this, Lemma F.11, and
secureP,u(r, i− 1 `u φ), it follows secureP,u(r, i `u φ).
We now prove our claim that the execution of t does not
alter the content of the tables in tables(φ). If the trigger
is not enabled, the claim is trivial. In the following, we
assume the trigger is enabled. There are four cases:
• t’s action is an INSERT statement. This case amount

to claiming that the INSERT statement 〈u′, INSERT,

R, t〉 does not alter the content of the tables in
tables(φ) in case reviseBelif (ri−1, φ, ri) = >. We
proved the claim above in the Propagate Forward
INSERT/DELETE Success case.
• t’s action is an DELETE statement. The proof is

similar to that of the INSERT case.
• t’s action is an GRANT statement. In this case, the

action does not alter the database state and the
claim follows trivially.
• t’s action is an REVOKE statement. The proof is

similar to that of the GRANT case.
37. Propagate Backward Trigger Action. The proof of this

case is similar to Propagate Backward Trigger Action.
38. Propagate Forward INSERT Trigger Action. Let i be

such that ri = ri−1 · t · s, where t is a trigger, s =
〈db, U, sec, T, V, c〉 ∈ ΩM and last(ri−1) = 〈db′, U ′, sec′,
T ′, V ′, c′〉. From the rule’s definition, r, i−1 `u φ holds.
From this and the induction hypothesis, it follows that
secureP,u(r, i − 1 `u φ) holds. From Lemma G.8, the
trigger t preserves the equivalence class with respect
to ri−1, P , and u. We claim that the execution of t
does not alter the content of the tables in tables(φ).
From this, Lemma F.11, and secureP,u(r, i − 1 `u φ),
it follows secureP,u(r, i `u φ).
We now prove our claim that the execution of t does not
alter the content of the tables in tables(φ). If the trigger
is not enabled, the claim is trivial. In the following, we
assume the trigger is enabled. Then, t’s action is an
INSERT statement. This case amount to claiming that
the INSERT statement 〈u′, INSERT, R, t〉 does not alter
the content of the tables in tables(φ) in case r, i− 1 `u
R(t) holds. We proved the claim above in the Propagate
Forward INSERT Success - 1 case.

39. Propagate Forward DELETE Trigger Action. The proof
of this case is similar to that of Propagate Forward IN-

SERT Trigger Action.
40. Propagate Backward INSERT Trigger Action. The proof

of this case is similar to that of Propagate Forward IN-

SERT Trigger Action.
41. Propagate Backward DELETE Trigger Action. The proof

of this case is similar to that of Propagate Forward IN-

SERT Trigger Action.
42. Trigger FD INSERT Disabled Backward. Let i be such

that ri = ri−1 ·t ·s, where s = 〈db′, U ′, sec′, T ′, V ′, c′〉 ∈
ΩM , t ∈ T RIGGERD, last(ri−1) = 〈db, U, sec, T, V, c〉,
and φ be t’s actual WHEN condition obtained by replac-
ing all free variables with the values in tpl(last(ri−1)).
Furthermore, let act = 〈u′, INSERT, R, (v, w, q)〉 be t’s
actual action and α be ∃y, z.R(v, y, z) ∧ y 6= w. From
the rule’s definition, it follows that secEx (s) = ⊥. From
this, it follows that f(last(ri−1), 〈u′, SELECT, φ〉) = >.
From this and f ’s definition, it follows fuconf (last(ri−1),

〈u′, SELECT, φ〉) = > since user(last(ri−1), 〈u′, SELECT,
φ〉) = u since u is t’s invoker. From this and fuconf ’s

definition, it follows that secure(u,¬φ, last(ri−1)) =
>. From this, it follows that secure(u, φ, last(ri−1)) =
>. From this and Lemma F.7, it follows that also
secureP,u(r, i− 1 `u φ).

43. Trigger ID INSERT Disabled Backward. The proof of
this case is similar to that of Trigger FD INSERT Dis-
abled Backward.

44. Trigger ID DELETE Disabled Backward. The proof of
this case is similar to that of Trigger FD INSERT Dis-
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abled Backward.
This completes the proof of the induction step.

This completes the proof.

In Lemma G.7 and Lemma G.8, we show that actions and
triggers preserve the equivalence class for any LTS that uses
f as PDP.

Lemma G.7. Let u be a user in U , P = 〈M, f〉 be an
extended configuration, where M = 〈D,Γ〉 is a system con-
figuration and f is as above, L be the P -LTS. For any run
r ∈ traces(L) and any action a ∈ AD,u, if extend(r, a) is
defined, then a preserves the equivalence class for r, P , and
u.

Proof. Let u be a user in U , P = 〈M, f〉 be an extended
configuration, where M = 〈D,Γ〉 is a system configuration
and f is as above, and L be the P -LTS. In the following, we
use e to refer to the extend function. We prove our claim by
contradiction. Assume, for contradiction’s sake, that there
is a run r ∈ traces(L) and an action a ∈ AD,u such that
e(r, a) is defined and a does not preserve the equivalence
class for r, P , and u. According to the LTS semantics, the
fact that e(r, a) is defined implies that triggers(last(r)) =
ε. Therefore, triggers(last(r′)) = ε holds as well for any
for any r′ ∈ JrKP,u (because r and r′ are indistinguishable
and, therefore, their projections are consistent), and, thus,
e(r′, a) is defined as well for any r′ ∈ JrKP,u. There are a
number of cases depending on a:

1. a = 〈u, SELECT, q〉. There are two cases:
(a) secEx (last(e(r, a))) = ⊥. From the LTS rules and

secEx (last(e(r, a))) = ⊥, it follows that f(last(r), a)
= >. From this and Lemma G.5, it follows that
f(last(r′), a) = > for any r′ ∈ JrKP,u. From this
and the LTS rules, it follows secEx (last(e(r′, a))) =
⊥ for any r′ ∈ JrKP,u. From f(last(r′), a) = > for

any r′ ∈ JrKP,u, it follows f
user(last(r′),a)
conf (last(r′), a)

= > for any r′ ∈ JrKP,u. Note that user(last(r′), a)
= u for any r′ ∈ JrKP,u because trigger(last(r′)) =

ε and u ∈ AD,u. From this, f
user(last(r′),a)
conf (last(r′),

a) = > for any r′ ∈ JrKP,u, and fuconf ’s defini-
tion, it follows that secure(u, q, last(r′)) = > for
any r′ ∈ JrKP,u. From this and Lemma F.7, it

follows that [q]last(r′).db = [q]last(r).db for all r′ ∈
JrKP,u. Furthermore, it follows trivially from the
LTS rule SELECT Success, that the state after a’s
execution is data indistinguishable from last(r). It
is also easy to see that e(r′, a) is well-defined for
any r′ ∈ JrKP,u. From the considerations above
and r′ ∈ JrKP,u, it follows trivially that e(r′, a) ∈
Je(r, a)KP,u. The bijection b is trivially b(r′) =
e(r′, a). This leads to a contradiction.

(b) secEx (last(e(r, a))) = >. From the LTS rules and
secEx (last(e(r, a))) = >, it follows that f(last(r), a)
= ⊥. From this and Lemma G.5, it follows that
f(last(r′), a) = ⊥ for any r′ ∈ JrKP,u. From this
and the LTS rules, it follows secEx (last(e(r′, a))) =
> for any r′ ∈ JrKP,u. The data indistinguishabil-
ity between last(e(r′, a)) and last(e(r, a)) follows
trivially from the data indistinguishability between
last(r′) and last(r). Therefore, for any run r′ ∈
JrKP,C , there is exactly one run e(r′, a). From the
considerations above, it follows trivially that e(r′, a)

∈ Je(r, a)KP,u. The bijection b is trivially b(r′) =
e(r′, a). This leads to a contradiction.

Both cases leads to a contradiction. This completes the
proof for a = 〈u, SELECT, q〉.

2. a = 〈u, INSERT, R, t〉. In the following, we denote by gI
the function getInfo, by gS the function getInfoS , and
by gV the function getInfoV . There are three cases:
(a) secEx (last(e(r, a))) = ⊥ and Ex (last(e(r, a))) = ∅.

From the LTS rules and secEx (last(e(r, a))) = ⊥,
it follows that f(last(r), a) = >. From this and
Lemma G.5, it follows that f(last(r′), a) = > for
any r′ ∈ JrKP,u. From this and the LTS rules,
it follows that secEx (last(e(r′, a))) = ⊥ for any
r′ ∈ JrKP,u. From f(last(r), a) = >, it follows that
fuconf (last(r), a) = > because user(last(r), a) = u
since trigger(last(r), a) = ε and a ∈ AD,u. From
this and fuconf ’s definition, it follows that secure(u,
gS(γ, act), last(r)) holds for any integrity constraint
γ in Dep(Γ, a). From Ex (last(e(r, a))) = ∅ and

Proposition F.7, it follows [gS(γ, act)]last(r).db =
>. From this, secure(u, gS(γ, act), last(r)), and

Lemma F.7, it follows that [gS(γ, act)]last(r′).db =
> for any r′ ∈ JrKP,u. From this and Proposi-
tion F.7, it follows that Ex (last(e(r′, a))) = ∅ for
any r′ ∈ JrKP,u. We claim that, for any r′ ∈
JrKP,u, last(e(r, a)) and last(e(r′, a)) are data indis-
tinguishable. From this and the above considera-
tions, it follows trivially that e(r′, a) ∈ Je(r, a)KP,u.
The bijection b is trivially b(r′) = e(r′, a). This
leads to a contradiction.
We now prove our claim that for any r′ ∈ JrKP,u,
last(e(r, a)) and last(e(r′, a)) are data indistinguish-
able. We prove the claim by contradiction. Let
s2 = 〈db2, U2, sec2, T2, V2〉 be pState(last(e(r, a))),
s′2 = 〈db′2, U

′
2, sec′2, T

′
2, V

′
2 〉 be pState(last(e(r′, a))),

s1 = 〈db1, U1, sec1, T1, V1〉 be pState(last(r)), and
s′1 = 〈db′1, U

′
1, sec′1, T

′
1, V

′
1 〉 be pState(last(r′)). In

the following, we denote the permissions function
by p. Furthermore, note that s1 and s′1 are data-
indistinguishable because r′ ∈ JrKP,u. There are a
number of cases:

i. U2 6= U ′2. Since a is an INSERT operation, it
follows that U1 = U2 and U ′1 = U ′2. Further-
more, from s1

∼=data
M,u s

′
1, it follows that U1 = U ′1.

Therefore, U2 = U ′2 leading to a contradiction.
ii. sec2 6= sec′2. The proof is similar to the case

U2 6= U ′2.
iii. T2 6= T ′2. The proof is similar to the case U2 6=

U ′2.
iv. V2 6= V ′2. The proof is similar to the case U2 6=

U ′2.
v. there is a table R′ for which 〈⊕, SELECT, R〉 ∈
p(s2, u) and db2(R′) 6= db′2(R′). Note that
p(s2, u) = p(s1, u). There are two cases:
• R = R′. From s1

∼=data
M,u s

′
1 and 〈⊕, SELECT, R〉

∈ p(s2, u), it follows that db1(R′) = db′1(R′).
From this and the fact that a has been exe-
cuted successfully both in e(r, a) and e(r′, a),
it follows that db2(R′) = db1(R′) ∪ {t} and
db′2(R′) = db′1(R′) ∪ {t}. From this and
db1(R′) = db′1(R′), it follows that db2(R′) =
db′2(R′) leading to a contradiction.
• R 6= R′. From s1

∼=data
M,u s

′
1 and 〈⊕, SELECT, R〉
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∈ p(s2, u), it follows that db1(R′) = db′1(R′).
From this and the fact that a does not mod-
ify R′, it follows that db1(R′) = db2(R′) and
db′1(R′) = db′2(R′). From this and db1(R′) =
db′1(R′), it follows that db2(R′) = db′2(R′)
leading to a contradiction.

vi. there is a view v for which 〈⊕, SELECT, v〉 ∈
p(s2, u) and db2(v) 6= db′2(v). Note that p(s2, u)
= p(s1, u). Since a has been successfully exe-
cuted in both states, we know that leak(s1, a, u)
hold. There are two cases:
• R 6∈ tDet(v, s,M). Then, v(s1) = v(s2) and
v(s′1) = v(s′2) (because R’s content does not
determine v’s materialization). From s1

∼=data
M,u

s′1 and the fact that a modifies only R, it fol-
lows that v(db2) = v(db′2) leading to a con-
tradiction.
• R ∈ tDet(v, s,M) and for all o ∈ tDet(v, s,M),
〈⊕, SELECT, o〉 ∈ p(s1, u). From this and s1
∼=data
M,u s

′
1, it follows that, for all o ∈ tDet(v, s,

M), o(s1) = o(s′1). If o 6= R, o(s1) = o(s′1) =
o(s2) = o(s′2). From 〈⊕, SELECT, R〉 ∈ p(s1, u)
and s1

∼=data
M,u s′1, it follows that db1(R) =

db′1(R). From this and the fact that a has
been executed successfully both in e(r, a) and
e(r′, a), it follows that db2(R) = db1(R)∪{t}
and db′2(R) = db′1(R) ∪ {t}. From this and
db1(R) = db′1(R), it follows that db2(R) =
db′2(R). From this and for all o ∈ tDet(v, s,M)
such that o 6= R, o(s2) = o(s′2), it follows
that for all o ∈ tDet(v, s,M), o(s2) = o(s′2).
Since the content of all tables determining
v is the same in s2 and s′2, it follows that
db2(v) = db′2(v) leading to a contradiction.

All the cases lead to a contradiction.
(b) secEx (last(e(r, a))) = ⊥ and Ex (last(e(r, a))) 6= ∅.

From the LTS rules and secEx (last(e(r, a))) = ⊥,
it follows that f(last(r), a) = >. From this and
Lemma G.5, it follows that f(last(r′), a) = > for
any r′ ∈ JrKP,u. From this and the LTS rules, it
follows that secEx (last(e(r′, a))) = ⊥ for any r′ ∈
JrKP,u. Assume that the exception has been caused
by the constraint γ, i.e., γ ∈ Ex (last(e(r, a))). From
this and Proposition F.7, it follows that gV (γ, a)
holds in last(r).db. From f(last(r), a) = > and f ’s
definition, it follows that fuconf (last(r), a) = > be-
cause user(last(r), a) = u since trigger(last(r)) = ε
and a ∈ AD,u. From this and fuconf ’s definition, it
follows that secure(u, gV (γ, a), last(r)) holds. From

this, Lemma F.7, and [gV (γ, a)]last(r).db = >, it

follows that also [gV (γ, act)]last(r′).db = > for any
r′ ∈ JrKP,u. From this and Proposition F.7, it fol-
lows that γ ∈ Ex (last(e(r′, a))) for any r′ ∈ JrKP,u.
The data indistinguishability between last(e(r, a))
and last(e(r′, a)) follows trivially from the data in-
distinguishability between last(r) and last(r′) for
any r′ ∈ JrKP,u. Therefore, for any run r′ ∈ JrKP,u,
there is exactly one run e(r′, a). From the consid-
erations above, it follows trivially that e(r′, a) ∈
Je(r, a)KP,u. The bijection b is trivially b(r′) =
e(r′, a). This leads to a contradiction.

(c) secEx (last(e(r, a))) = >. From the LTS rules and
secEx (last(e(r, a))) = >, it follows that f(last(r), a)

= ⊥. From this and Lemma G.5, it follows that
f(last(r′), a) = ⊥ for any r′ ∈ JrKP,u. From this
and the LTS rules, it follows secEx (last(e(r′, a))) =
> for any r′ ∈ JrKP,u. The data indistinguishabil-
ity between last(e(r, a)) and last(e(r′, a)) follows
trivially from that between last(r) and last(r′) for
any r′ ∈ JrKP,u. Therefore, for any run r′ ∈ JrKP,u,
there is exactly one run e(r′, a). From the consid-
erations above, it follows trivially that e(r′, a) ∈
Je(r, a)KP,u. The bijection b is trivially b(r′) =
e(r′, a). This leads to a contradiction.

All cases lead to a contradiction. This completes the
proof for a = 〈u, INSERT, R, t〉.

3. a = 〈u, DELETE, R, t〉. The proof is similar to that for
a = 〈u, INSERT, R, t〉.

4. a = 〈⊕, u′, p, u〉. There are two cases:
(a) secEx (last(e(r, a))) = ⊥. We assume that p =
〈SELECT,
O〉 for some O ∈ D ∪ V . If this is not the case, the
proof is trivial. Furthermore, we also assume that
u′ = u, otherwise the proof is, again, trivial since
the new permission does not influence u’s permis-
sions. From the LTS rules and secEx (last(e(r, a))) =
⊥, it follows that f(last(r), a) = >. From this
and Lemma G.5, it follows that f(last(r′), a) =
> for any r′ ∈ JrKP,u. From this and the LTS
rules, it follows that secEx (last(e(r′, a))) = ⊥ for
any r′ ∈ JrKP,u. From secEx (last(e(r′, a))) = ⊥
and fuconf ’s definition, it follows that last(r′).sec =
last(e(r′, a)).sec. Therefore, since last(r) and last(r′)
are data indistinguishable, for any r′ ∈ JrKP,u, then
also last(e(r, a)) and last(e(r′, a)) are data indis-
tinguishable. Therefore, for any run r′ ∈ JrKP,u,
there is exactly one run e(r′, a). From the consid-
erations above, it follows trivially that e(r′, a) ∈
Je(r, a)KP,u. The bijection b is trivially b(r′) =
e(r′, a). This leads to a contradiction.

(b) secEx (last(e(r, a))) = >. From the LTS rules and
secEx (last(e(r, a))) = >, it follows f(last(r), a) =
⊥. From this and Lemma G.5, it follows that
f(last(r′), a) = ⊥ for any r′ ∈ JrKP,u. From this
and the LTS rules, it follows secEx (last(e(r′, a))) =
> for any r′ ∈ JrKP,u. The data indistinguishabil-
ity between last(e(r′, a)) and last(e(r, a)) follows
trivially from the data indistinguishability between
last(r′) and last(r). Therefore, for any run r′ ∈
JrKP,u, there is exactly one run e(r′, a). From the
considerations above, it follows trivially e(r′, a) ∈
Je(r, a)KP,u. The bijection b is trivially b(r′) =
e(r′, a). This leads to a contradiction.

Both cases lead to a contradiction. This completes the
proof for a = 〈⊕, u′, p, u〉.

5. a = 〈⊕∗, u′, p, u〉. The proof is similar to that for a =
〈⊕, u′, p, u〉.

6. a = 〈	, u′, p, u〉. The proof is similar to that for a =
〈u, SELECT, q〉. The only difference is in proving that for
any r′ ∈ JrKP,u, last(e(r, a)) and last(e(r′, a)) are data
indistinguishable. Assume, for contradiction’s sake, that
this is not the case. Let s2 = 〈db2, U2, sec2, T2, V2〉 be
pState(last(e(r, a))) and s′2 = 〈db′2, U

′
2, sec′2, T

′
2, V

′
2 〉 be

pState(last(e(r′, a))). Furthermore, let s1 = 〈db1, U1,
sec1, T1, V1〉 be pState(last(r)) and s′1 = 〈db′1, U

′
1, sec′1,

T ′1, V
′
1 〉 be pState(last(r′)). In the following, we de-
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note the permissions function by p. Furthermore, note
that s1 and s′1 are data-indistinguishable because r′ ∈
JrKP,u. There are a number of cases:
(a) U2 6= U ′2. Since a is an REVOKE operation, it follows

that U1 = U2 and U ′1 = U ′2. Furthermore, from
s1
∼=data
u,M s′1, it follows that U1 = U ′1. Therefore,

U2 = U ′2 leading to a contradiction.
(b) sec2 6= sec′2. From s1

∼=data
u,M s′1, it follows that

sec1 = sec′1. From a’s definition and the LTS
rules, it follows that sec2 = revoke(sec1, u

′, p, u)
and sec′2 = revoke(sec′1, u

′, p, u). From this and
sec1 = sec′1, it follows that sec2 = sec′2 leading to
a contradiction.

(c) T2 6= T ′2. The proof is similar to the case U2 6= U ′2.
(d) V2 6= V ′2. The proof is similar to the case U2 6= U ′2.
(e) there is a tableR for which 〈⊕, SELECT, R〉 ∈ p(s2, u)

and db2(R) 6= db′2(R). Since a is an REVOKE opera-
tion, it follows that db1 = db2 and db′1 = db′2. Fur-
thermore, from s1

∼=data
u,M s′1, it follows that db1(R) =

db′1(R). From this, db1 = db2, and db′1 = db′2, it
follows that db2(R) = db′2(R) leading to a contra-
diction.

(f) there a view v for which 〈⊕, SELECT, v〉 ∈ p(s2,
u) and db2(v) 6= db′2(v). Since a is an REVOKE

operation, it follows that db1 = db2 and db′1 =
db′2. Furthermore, from s1

∼=data
u,M s′1, it follows

that db1(v) = db′1(v). From this, db1 = db2, and
db′1 = db′2, it follows that db2(v) = db′2(v) leading
to a contradiction.

All the cases lead to a contradiction.
7. a = 〈u, CREATE, o〉. The proof is similar to that for
a = 〈	, u′, p, u〉.

8. a = 〈u, ADD USER, u′〉. The proof is similar to that for
a = 〈	, u′, p, u〉.

This completes the proof.

Lemma G.8. Let u be a user in U , P = 〈M, f〉 be an
extended configuration, where M = 〈D,Γ〉 is a system con-
figuration and f is as above, and L be the P -LTS. For any
run r ∈ traces(L) such that invoker(last(r)) = u and any
trigger t ∈ T RIGGERD, if extend(r, t) is defined, then t
preserves the equivalence class for r, M , and u.

Proof. Let u be a user in U , P = 〈M, fuconf 〉 be an ex-
tended configuration, where M = 〈D,Γ〉 is a system con-
figuration and fuconf is as above, and L be the P -LTS. In
the following, we use e to refer to the extend function. The
proof in cases where the trigger t is not enabled or t’s WHEN

condition is not secure are similar to the proof of the SELECT

case of Lemma G.7. In the following, we therefore assume
that the trigger t is enabled and that its WHEN condition is
secure. We prove our claim by contradiction. Assume, for
contradiction’s sake, that there is a run r ∈ traces(L) such
that invoker(last(r)) = u and a trigger t such that e(r, t)
is defined and t does not preserve the equivalence class for
r, P , and u. Since invoker(last(r)) = u and e(r, t) is de-
fined, then e(r′, t) is defined as well for any r′ ∈ JrKP,u
(indeed, from invoker(last(r)) = u, it follows that the last
action in r is either an action issued by u or a trigger in-
voker by u. From this, the fact that e(r, t) is defined, and
the fact that r and r′ are indistinguishable, it follows that
trigger(last(r)) = trigger(last(r′)) = t). Let a be t’s action
and w = 〈u′, SELECT, q〉 be the SELECT command associated
with t’s WHEN condition. Let s be the state last(r), s′ be the

state obtained just after the execution of the WHEN condition,
and s′′ be the state last(e(r, t)). There are a number of cases
depending on t’s action a:

1. a = 〈u′, INSERT, R, t〉. There are three cases:
(a) secEx (last(e(r, a))) = ⊥ and Ex (last(e(r, a))) = ∅.

The proof of this case is similar to that of the cor-
responding case in Lemma G.7.

(b) secEx (last(e(r, a))) = ⊥ and Ex (last(e(r, a))) 6= ∅.
The only difference between the proof of this case
in this Lemma and in that of Lemma G.7 is that we
have to establish again the data indistinguishabil-
ity between last(e(r, t)) and last(e(r′, t)). Indeed,
for triggers the roll-back state is, in general, differ-
ent from the one immediately before the trigger’s
execution, i.e., it may be that pState(last(e(r, t)))
6= pState(last(r)). We now prove that last(e(r, t))
and last(e(r′, t)) are data indistinguishable. From
the LTS semantics, it follows that r = p · s0 ·
〈invoker(last(r)), op, R′, v〉 ·s1 · t1 · . . . ·sn−1 · tn ·sn,
where p ∈ traces(L) and t1, . . . , tn ∈ T RIGGERD.
Similarly, r′ = p′ · s′0 · 〈invoker(last(r)), op, R′, v〉 ·
s′1 · t1 · . . . · s′n−1 · tn · s′n, where p′ ∈ traces(L),
p ∼=P,u p′, and all states si and s′i are data in-
distinguishable. Then, the roll-back states are, re-
spectively, s0 and s′0, which are data indistinguish-
able. From the LTS rules, last(e(r, a)) = s0 and
last(e(r′, a)) = s′0. Therefore, the data indistin-
guishability between last(e(r, a)) and last(e(r′, a))
follows trivially for any r′ ∈ JrKP,u.

(c) secEx (e(r, a)) = >. The proof is similar to the
previous case.

All cases lead to a contradiction. This completes the
proof for a = 〈u′, INSERT, R, t〉.

2. a = 〈u′, DELETE, R, t〉. The proof is similar to that for
a = 〈u′, INSERT, R, t〉.

3. a = 〈⊕, u′′, p, u′〉. There are two cases:
(a) secEx (last(e(r, a))) = ⊥. In this case, the proof is

similar to the corresponding case in Lemma G.7.
(b) secEx (last(e(r, a))) = >. The proof is similar to

the secEx (last(e(r, a))) = > case of a = 〈u′, INSERT,
R, t〉.

Both cases lead to a contradiction. This completes the
proof for a = 〈⊕, u′′, p, u′〉.

4. a = 〈⊕∗, u′′, p, u′〉. The proof is similar to that for
a = 〈⊕, u′′, p, u′〉.

5. a = 〈	, u′′, p, u′〉. The proof is similar to that for a =
〈u′, INSERT, R, t〉.

This completes the proof.
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H. DATABASE ACCESS CONTROL AND IN-
FORMATION FLOW CONTROL

Here, we first show that the notion of secure judgment can
be seen as an instance of non-interference. Afterwards, we
present NI-data confidentiality, a security notion for database
access control that is an instance of non-interference. Fi-
nally, we show that data confidentiality and NI-data confi-
dentiality are equivalent. For non-interference, we use ter-
minology and notation taken from [28].

It is easy to see that the notion of secure judgment is
an instance of non-interference over relational calculus sen-
tences. Indeed, the set of all programs is just the set of all
sentences, the set of inputs is the set of all runs, the equiva-
lence relation between the inputs is ∼=P,u, the set of outputs
is {>,⊥}, the equivalence relation between the outputs is
the equality, and the semantics of the programs is obtained
by evaluating the sentences, according to the relational cal-
culus semantics, over the database state in the last state of
a run. Using a similar argument, one can easily show that
both determinacy [34] and instance-based determinacy [30]
are just instances of non-interference over relational calculus
sentences.

Before defining NI-data confidentiality, we need some ma-
chinery. Let P = 〈M, f〉 be an extended configuration, L
be the P -LTS, u ∈ U be a user, `u be a (P, u)-attacker
model, and ∼= be a P -indistinguishability relation. Given
a run r, we denote by K(r) the set of all formulae that
the user u can derive from any extension of r using A, i.e.,
{φ ∈ RC bool | ∃s ∈ traces(L), i ∈ N. s, i `u φ ∈ A ∧ s|r| = r}.
Moreover, given a set of formulae K, we say that two runs
r and r′ agree on K, denoted by r ≡K r′, iff for all φ ∈ K,
φ holds in the last states of r and r′. Given a system state
s = 〈db, U, sec, T, V, c〉, we denote by s.db the database state
db.

We are now ready to define NI-data confidentiality notion.

Definition H.1. Let P = 〈M, f〉 be an extended configu-
ration, L be the P -LTS, u ∈ U be a user, A be a (P, u)-
attacker model, and ∼= be a P -indistinguishability relation.
We say that f provides NI-data confidentiality with respect
to P , u, A, and ∼= iff for all runs r, r′ ∈ traces(L), if r ∼= r′

holds, then r ≡K(r)∪K(r′) r
′ holds. �

Finally, we prove that NI-data confidentiality and data
confidentiality are equivalent.

Proposition H.1. Let P = 〈M, f〉 be an extended con-
figuration, L be the P -LTS, u ∈ U be a user, `u be a (P, u)-
attacker model, and ∼=P,u be a (P, u)-indistinguishability re-
lation. The PDP f provides data confidentiality iff it pro-
vides NI-data confidentiality.

Proof. We prove the two directions separately.

(⇒) We prove this direction by contradiction. Assume that
f provides data confidentiality but it does not provide NI-
data confidentiality. From the fact that NI-data confiden-
tiality does not hold, it follows that there are two runs
r, r′ ∈ traces(L) such that r ∼= r′ but r 6≡K(r)∪K(r′) r′.
From r 6≡K(r)∪K(r′) r

′, it follows that there are two cases:

1. there is a run s ∈ traces(L) such that s|r| = r, s, |r| `u
φ ∈ A, and [φ]last(r).db 6= [φ]last(r′).db . From this, it
follows that secureP,∼=(s, |r| `u φ) does not hold, since

s|r| = r, [φ]last(r).db 6= [φ]last(r′).db , and r ∼= r′. This

contradicts the fact that f provides data confidential-
ity.

2. there is a run s ∈ traces(L) such that s|r
′| = r′, s, |r′| `u

φ ∈ A, and [φ]last(r).db 6= [φ]last(r′).db . From this, it fol-
lows that secureP,∼=(s, |r′| `u φ) does not hold, that is

not secure, since s|r
′| = r′, [φ]last(r).db 6= [φ]last(r′).db ,

and r ∼= r′. This contradicts the fact that f provides
data confidentiality.

Since both cases lead to a contradiction, this concludes the
proof of this direction.

(⇐) We prove this direction by contradiction. Assume that
f provides NI-data confidentiality but it does not provide
data confidentiality. From the fact that data confidentiality
does not hold, it follows that there is a runs r ∈ traces(L),
an index i, and a sentence φ such that r, i `u φ ∈ A and
secureP,∼=(r, i `u φ) does not hold. From this and secureP,∼=
(r, i `u φ)’s definition, it follows that there are two runs
r, r′ ∈ traces(L), an index i, and a sentence φ such that

r, i `u φ ∈ A, ri ∼= r′, and [φ]last(ri).db 6= [φ]last(r′).db . From
this and |ri| = i, it follows that there are two runs r, r′ ∈
traces(L) and a sentence φ such that r, |ri| `u φ ∈ A, ri ∼= r′,

and [φ]last(ri).db 6= [φ]last(r′).db . By renaming ri as k and by
considering the fact that r is, by definition, an extension of
k, it follows that there are two runs r, r′ ∈ traces(L) and a

sentence φ such that r, |k| `u φ ∈ A, r|k| = k, k ∼= r′, and

[φ]last(k).db 6= [φ]last(r′).db . From this and K(k)’s definition,
it follows that there are two runs k, r′ ∈ traces(L) and a

sentence φ such that φ ∈ K(k), k ∼= r′, and [φ]last(k).db 6=
[φ]last(r′).db . From this and φ ∈ K(k), it follows that there
are two runs k, r′ ∈ traces(L) and a sentence φ such that
k ∼= r′ and k 6≡K(k) r

′. From this, it follows that there
are two runs k, r′ ∈ traces(L) and a sentence φ such that
k ∼=P,u r

′, and k 6≡K(k)∪K(r′) r
′. This contradicts the fact

that f provides NI-data confidentiality.

We now show that NI-data confidentiality can be seen as
an instance of non-interference. Let M be a system configu-
ration and u be a user. The set of programs P is the set of all
pairs of the form (f,`u), where f is a system configuration
and `u is a (〈M, f〉, u)-attacker model. The set of inputs I
is the set {(s, evs) | s ∈ IM ∧evs ∈ (AD,U ∪T RIGGERD)∗}.
The set of outputs O is the set of all possible sequences of
M -states and labels in AD,U ∪T RIGGERD. The semantics
of the programs σ : P × I → (O ∪ {⊥}) is a total function
defined as follows: σ((f,`u), (s, evs)) = r iff (1) r is a run
in traces(L), where L is the 〈M, f〉-LTS, (2) r starts from
the state s, and (3) the labels of r are equivalent to evs;
σ((f,`u), (s, evs)) = ⊥ otherwise. Finally, the relation ∼
over the set I is ∼= I ×I, i.e., any two inputs are indistin-
guishable, whereas the relation ≡ over the setO is as follows:
for any two r, r′ ∈ O, r ≡ r′ iff (1) r = ⊥, (2) r′ = ⊥, or
(3) r 6= ⊥, r′ 6= ⊥, and if r ∼=P,u r

′, then r ≡K(r)∪K(r′) r
′.

Note that ≡ is not an equivalence relation, i.e., it is reflexive
and symmetric but it is not transitive. Therefore, a PDP f
provides NI-data confidentiality (and, therefore, data confi-
dentiality) with respect to an attacker model `u iff (f,`u)
satisfies non-interferences, where P, I, O, σ, ∼, and ≡ are
as above.
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SqlStmt := SelectStmt | SqlBasicStmt | CreateTrigger | CreateView
SqlBasicStmt := InsertStmt | DeleteStmt | GrantStmt | RevokeStmt
SelectStmt := "SELECT DISTINCT" columnList "FROM" tableList "WHERE" expr
columnList := columnId | columnList "," columnId
tableList := tableId | tableList "," tableId
expr := varId "=" const | varId "=" varId | "NOT" "("expr ")" | expr ("AND"|"OR") expr |

"EXISTS" "("SelectStmt ")"
InsertStmt := "INSERT INTO" tableId "VALUES ("valueList ")"
valueList := const | valueList "," const
DeleteStmt := "DELETE FROM" tableId "WHERE" restrictedExpr
restrictedExpr := varId "=" const | restrictedExpr "AND" varId "=" const
GrantStmt := "GRANT" privilege "TO" userId ("WITH GRANT OPTION ")

RevokeStmt := "REVOKE" privilege "FROM" userId "WITH CASCADE"

privilege := "SELECT ON" (tableId | viewId) | "CREATE VIEW" |

( "INSERT" | "DELETE" | "CREATE TRIGGER" ) "ON" tableId
CreateTrigger := "CREATE TRIGGER" triggerId "AFTER" (" INSERT" | "DELETE ") "ON" tableId

(" SECURITY DEFINER" | "SECURITY INVOKER ") SqlBasicStmt
CreateView := "CREATE VIEW" viewId (" SECURITY DEFINER" | "SECURITY INVOKER ")

AS SelectStmt

Figure 41: This is the syntax of the SQL fragment that corresponds to the features we support in this paper.
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